
Prescott New Instructions
Software Developer’s Guide

252490-001

February 2003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN
MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

The Intel® IA-32 architecture processors may contain design defects or errors known as errata. Current characterized
errata are available on request.

Intel, Pentium, Intel Xeon, Intel Pentium III Xeon, Intel NetBurst, MMX, and Celeron, are trademarks or registered
trademarks of Intel Corporation and its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http://www.intel.com

COPYRIGHT © 2003 INTEL CORPORATION

CONTENTS
PAGE
CHAPTER 1
NEXT GENERATION
INTEL® PROCESSOR OVERVIEW
1.1. KEY FEATURES . 1-1
1.2. HYPER-THREADING TECHNOLOGY . 1-1
1.3. ENHANCED CPUID CAPABILITIES . 1-2
1.4. PRESCOTT NEW INSTRUCTIONS . 1-3
1.4.1. One Instruction That Improves x87-FP Integer Conversion 1-3
1.4.2. Three Instructions Enhance LOAD/MOVE/DUPLICATE Performance1-3
1.4.3. One Instruction Provides Specialized 128-bit Unaligned Data Load1-4
1.4.4. Two Instructions Provide Packed Addition/Subtraction .1-4
1.4.5. Four Instructions Provide Horizontal Addition/Subtraction 1-5
1.4.6. Two Instructions Improve Synchronization Between Agents.1-6

CHAPTER 2
CPUID EXTENSIONS
2.1. VALUES RETURNED USING CPUID . 2-1
2.1.1. Extended Feature Information Returned in ECX and EDX2-4
2.1.2. Version Information Returned in EAX .2-6
2.1.3. Brand and Maximum Frequency Identification .2-7
2.1.4. Determining Support for the Processor Brand String .2-8
2.1.5. Algorithm for Extracting Maximum Processor Frequency2-9
2.1.6. Determining Explicit Cache Descriptors .2-10

CHAPTER 3
INSTRUCTION SET REFERENCE
3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES 3-1
3.2. PRESCOTT NEW INSTRUCTIONS . 3-2

ADDSUBPD: Packed Double-FP Add/Subtract. .3-3
ADDSUBPS: Packed Single-FP Add/Subtract .3-6
FISTTP: Store Integer with Truncation .3-9
HADDPD: Packed Double-FP Horizontal Add. .3-11
HADDPS: Packed Single-FP Horizontal Add .3-15
HSUBPD: Packed Double-FP Horizontal Subtract .3-18
HSUBPD: Packed Double-FP Horizontal Subtract (Continued) 3-19
HSUBPD: Packed Double-FP Horizontal Subtract (Continued) 3-20
HSUBPS: Packed Single-FP Horizontal Subtract .3-21
LDDQU: Load Unaligned Integer 128 bits .3-25
MONITOR: Setup Monitor Address .3-27
MOVDDUP: Move One Double-FP and Duplicate .3-29
MOVSHDUP: Move Packed Single-FP High and Duplicate3-31
MOVSLDUP: Move Packed Single-FP Low and Duplicate3-34
MWAIT: Monitor Wait .3-37

CHAPTER 4
SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
4.1. SYSTEM PROGRAMMING MODEL AND REQUIREMENTS 4-1
iii

CONTENTS

PAGE
4.1.1. Enabling Prescott New Instructions Support in a System Executive.4-1
4.1.2. FXSAVE/FXRSTOR Replaces Use of FSAVE/FRSTOR 4-1
4.1.3. Initialization .4-2
4.1.4. Exception Handler .4-2
4.1.4.1. Device Not Available (DNA) Exceptions. .4-2
4.1.4.2. Numeric Error flag and IGNNE# .4-2
4.1.4.3. Technology Emulation .4-2
4.1.5. Detecting Support for MONITOR/MWAIT .4-2
4.2. APPLICATION PROGRAMMING MODEL. 4-3
4.2.1. Detecting Support for MONITOR/MWAIT Instructions .4-3
4.2.2. Detecting Prescott New Instructions Technology Using CPUID4-3
4.3. GUIDELINES FOR PRESCOTT NEW INSTRUCTIONS. 4-4
4.3.1. Guideline for Data Movement Instructions .4-4
4.3.2. Guideline for Packed ADDSUBxx Instructions .4-4
4.3.3. Guideline for FISTTP. .4-5
4.3.4. Guideline for Unaligned 128-bit Load .4-6
4.3.5. Guideline for Horizontal Add/Subtract .4-7
4.3.6. Guideline for MONITOR/MWAIT .4-8
4.3.6.1. MONITOR/MWAIT Address Range Determination. .4-8
4.3.6.2. Waking-up From MWAIT .4-8

APPENDIX A
A.1. INSTRUCTION SUMMARY . A-1
iv

FIGURES
PAGE
FIGURES
Figure 1-1. Two Logical Processors in One Physical Package. .1-2
Figure 2-1. Prescott Feature Information Returned in the ECX Register2-4
Figure 2-2. Prescott Feature Information in the EDX Register .2-5
Figure 2-3. Version Information Returned by CPUID in EAX .2-6
Figure 2-4. Determination of Support for the Processor Brand String 2-8
Figure 2-5. Algorithm for Extracting Maximum Processor Frequency.2-9
Figure 2-6. Determination of Support for Explicit Cache Descriptors2-10
Figure 3-1. ADDSUBPD: Packed Double-FP Add/Subtract .3-3
Figure 3-2. ADDSUBPS: Packed Single-FP Add/Subtract .3-6
Figure 3-3. HADDPD: Packed Double-FP Horizontal Add .3-11
Figure 3-4. HADDPS: Packed Single-FP Horizontal Add .3-15
Figure 3-5. HSUBPD: Packed Double-FP Horizontal Subtract .3-18
Figure 3-6. HSUBPS: Packed Single-FP Horizontal Subtract. .3-22
Figure 3-7. MOVDDUP: Move One Double-FP and Duplicate .3-29
Figure 3-8. MOVSHDUP: Move Packed Single-FP High and Duplicate3-31
Figure 3-9. MOVSLDUP: Move Packed Single-FP Low and Duplicate 3-34
v

TABLE OF FIGURES

PAGE
vi

TABLES
PAGE

TABLES
Table 2-1. CPUID Return Values. .2-1
Table 2-2. Highest CPUID Source Operand for IA-32 Processors 2-3
Table 2-3. More on Feature Information Returned in the ECX Register2-4
Table 2-4. Mapping Brand Index and Brand Identification String 2-7
Table 2-5. Prescott Cache and TLB Descriptors .2-11
Table A-1. x87 FPU and SIMD Floating-point Exceptions . A-1
Table A-2. Prescott New Instruction Technology Instruction Set Summary. A-1
vii

TABLE OF TABLES

PAGE
viii

CHAPTER 1
NEXT GENERATION

INTEL® PROCESSOR OVERVIEW

1.1. KEY FEATURES

Prescott is the code name for a new generation of IA32 processors. The technology incorporates
an enhanced Intel® NetBurst™ microarchitecture. Other key features of the Prescott include:

• Support for Hyper-Threading (HT) Technology

• Prescott New Instructions support

• Deeper pipelining to enable higher frequency

• A High-speed System Bus

Prescott improves on the Pentium® 4 processor’s hyper-pipelined technology to achieve even
higher clock rates than previous generations of Pentium 4 processors. At the same time, the new
processor has larger first-level and second-level caches, more store buffers, write-combining
buffers.

Support for Prescott New Instructions does not require new OS support for saving and restoring
the new state during a context switch, beyond that provided for Streaming SIMD Extensions.
Prescott New Instructions are fully compatible with all software written for Intel® architecture
microprocessors.

1.2. HYPER-THREADING TECHNOLOGY

Hyper-Threading Technology (HT Technology) makes a single physical processor appear as
multiple logical processors by running two threads simultaneously. This is accomplished by
duplicating the architecture state for each logical processor in the physical processor and sharing
the physical execution resources within a physical processor package between the logical
processors. Each logical processor maintains a complete architecture state (see Figure 1-1).

From a software or architecture perspective, this means operating systems and user programs
can schedule processes or threads to logical processors as they would on conventional physical
processors. From a microarchitectural perspective, this means that instructions from both logical
processors will persist and execute simultaneously on shared execution resources.

HT Technology is available across the server, workstation and desktop segments in the IA-32
processor family. Software detects support for HT Technology in IA-32 processors by using the
CPUID instruction. All HT Technology configurations require a chipset and BIOS that utilize
the technology, and an operating system that includes optimizations for HT Technology. See
www.intel.com/info/hyperthreading for more information.
1-1

NEXT GENERATION INTEL® PROCESSOR OVERVIEW
A system with processors that are HT Technology capable appear to the operating system and
application software as having twice the number of processors as the number of physical proces-
sors. Operating systems manage logical processors as they do physical processors, scheduling
run-able tasks or threads to logical processors.

Processors with HT Technology deliver higher performance than a comparable physical
processor without HT technology, because two simultaneously running threads utilize more
execution resources in the physical processor. However, HT Technology does not deliver the
same performance as a multiprocessor system with two physical processors.

1.3. ENHANCED CPUID CAPABILITIES

The CPUID instruction has been enhanced to support the following new features:

• Prescott New Instructions

• Debug Trace Store Qualification

• MONITOR-MWAIT support

The behavior of the CPUID instruction has not changed (although more values are returned).
The instruction provides a wealth of information that are organized into pages or leaves; leaves
are queried by loading different values in EAX and then executing the instruction.

For detailed information, see Chapter 2, “CPUID Extensions”.

Figure 1-1. Two Logical Processors in One Physical Package

OM15631

Bus Interface

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

System Bus

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

Bus Interface
1-2

NEXT GENERATION INTEL® PROCESSOR OVERVIEW
1.4. PRESCOTT NEW INSTRUCTIONS

Prescott New Instruction technology for the IA-32 Intel architecture is a set of 13 new instruc-
tions that accelerate performance of Streaming SIMD Extensions technology, Streaming SIMD
Extensions 2 technology, and x87-FP math capabilities. The new technology is compatible with
existing software written for Intel architecture microprocessors and existing software should
continue to run correctly, without modification, on microprocessors that incorporate Prescott
New Instructions.

The thirteen new instructions are summarized in the following sections. For detailed informa-
tion on each instruction, see Chapter 3, “Instruction Set Reference”.

1.4.1. One Instruction That Improves x87-FP Integer Conversion

FISTTP (Store Integer and Pop from x87-FP with Truncation) behaves like the FISTP instruc-
tion but uses truncation, irrespective of the rounding mode specified in the floating-point control
word (FCW). The instruction converts the top of stack (ST0) to integer with rounding to truncate
and pop the stack.

FISTTP is available in three precisions: short integer (word or 16-bit), integer (double word or
32-bit), and long integer (64-bit). With FISTTP, applications no longer need to change the FCW
when truncation is desired. This instruction is the only x87-FP instruction in the Prescott New
Instruction technology.

1.4.2. Three Instructions Enhance LOAD/MOVE/DUPLICATE
Performance

MOVSHDUP loads/moves 128-bits, duplicating the second and fourth 32-bit data elements.

• MOVSHDUP OperandA OperandB

• OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

• OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

• Result (stored in OperandA): 3b, 3b, 1b, 1b

MOVSLDUP loads/moves 128-bits, duplicating the first and third 32-bit data elements.

• MOVSLDUP OperandA OperandB

• OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

• OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

• Result (stored in OperandA): 2b, 2b, 0b, 0b

MOVDDUP loads/moves 64-bits (bits[63-0] if the source is a register) and returns the same 64
bits in both the lower and upper halves of the 128-bit result register. This duplicates the 64 bits
from the source.
1-3

NEXT GENERATION INTEL® PROCESSOR OVERVIEW
• MOVDDUP OperandA OperandB

• OperandA (128 bits, two data elements): 1a, 0a

• OperandB (64 bits, one data element): 0b

• Result (stored in OperandA): 0b, 0b

1.4.3. One Instruction Provides Specialized 128-bit Unaligned
Data Load

LDDQU is a special 128-bit unaligned load designed to avoid cache line splits. If the address of
the load is aligned on a 16-byte boundary, LDQQU loads the 16 bytes requested. If the address
of the load is not aligned on a 16-byte boundary, LDDQU loads a 32-byte block starting at the
16-byte aligned address immediately below the load request. It then extracts the requested 16
bytes.

The instruction provides significant performance improvement on 128-bit unaligned memory
accesses at the cost of some usage model restrictions.

1.4.4. Two Instructions Provide Packed Addition/Subtraction

ADDSUBPS has two 128-bit operands. The instruction performs single-precision addition on
the second and fourth pairs of 32-bit data elements within the operands; and single-precision
subtraction on the first and third pairs. This instruction is effective at evaluating complex prod-
ucts on packed single-precision data.

• ADDSUBPS OperandA OperandB

• OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

• OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

• Result (stored in OperandA): 3a+3b, 2a-2b, 1a+1b, 0a-0b

ADDSUBPD has two 128-bit operands. The instruction performs double-precision addition on
the second pair of quadwords, and double-precision subtraction on the first pair. This instruction
is useful when evaluating complex products on packed double-precision data.

• ADDSUBPD OperandA OperandB

• OperandA (128 bits, two data elements): 1a, 0a

• OperandB (128 bits, two data elements): 1b, 0b

• Result (stored in OperandA): 1a+1b, 0a-0b
1-4

NEXT GENERATION INTEL® PROCESSOR OVERVIEW
1.4.5. Four Instructions Provide Horizontal Addition/Subtraction

Most SIMD instructions operate vertically. This means that the result in position i of the result
is a function of the elements in position i of both operands. Horizontal addition/subtraction oper-
ates horizontally. This means that contiguous data elements from the same operand are used to
produce a result data element.

HADDPS performs a single-precision addition on contiguous data elements. The first data
element of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the first operand; the third by adding
the first and second elements of the second operand; and the fourth by adding the third and
fourth elements of the second operand.

• HADDPS OperandA OperandB

• OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

• OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

• Result (Stored in OperandA): 3b+2b, 1b+0b, 3a+2a, 1a+0a

HSUBPS performs a single-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand from the
first element of the first operand; the second element by subtracting the fourth element of the first
operand from the third element of the first operand; the third by subtracting the second element
of the second operand from the first element of the second operand; and the fourth by subtracting
the fourth element of the second operand from the third element of the second operand.

• HSUBPS OperandA OperandB

• OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

• OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

• Result (Stored in OperandA): 2b-3b, 0b-1b, 2a-3a, 0a-1a

HADDPD performs a double-precision addition on contiguous data elements. The first data
element of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the first and second elements of the second operand.

• HADDPD OperandA OperandB

• OperandA (128 bits, two data elements): 1a, 0a

• OperandB (128 bits, two data elements): 1b, 0b

• Result (Stored in OperandA): 1b+0b, 1a+0a

HSUBPD performs a double-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand from the
first element of the first operand; the second element by subtracting the second element of the
second operand from the first element of the second operand.

• HSUBPD OperandA OperandB

• OperandA (128 bits, two data elements): 1a, 0a
1-5

NEXT GENERATION INTEL® PROCESSOR OVERVIEW
• OperandB (128 bits, two data elements): 1b, 0b

• Result (Stored in OperandA): 0b-1b, 0a-1a

1.4.6. Two Instructions Improve Synchronization Between
Agents

MONITOR sets up an address range used to monitor write-back stores.

MWAIT enables a logical processor to enter into an optimized state while waiting for a write-
back store to the address range set up by the MONITOR instruction.

Support for MONITOR/MWAIT is indicated by the CPUID MONITOR/MWAIT Software need
not check for support of SSE in order to use the MONITOR/MWAIT.
1-6

CHAPTER 2
CPUID EXTENSIONS

2.1. VALUES RETURNED USING CPUID

CPUID instruction and feature-identification bits have been added for software to identify the
features offered by Prescott New Instructions. Table 2-1 shows the value in EAX before a call
to CPUID and the value returned. For impacted areas, see the bold type.

See also: Section 4.2.2., Detecting Prescott New Instructions Technology Using CPUID.

Table 2-1. CPUID Return Values

EAX Value Leaf Information Returned

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 2-2).
“Genu”
“ntel”
“ineI”

1H EAX

EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID; see Figure
2-3).
Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size. (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor. (2 for the
Prescott if Hyper-Threading Technology enabled)
Bits 31-24: Processor Initial Local APIC ID
Extended Feature information (see Figure 2-1)
Extended Feature Information (see Figure 2-2). PSN is not supported
in Prescott)

2H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 2-5)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

3H EAX
EBX
ECX
EDX

Reserved
Reserved
Reserved
Reserved
2-1

CPUID EXTENSIONS
4H
EAX

EBX

ECX
EDX

Deterministic Cache Parameters Leaf
Bits 4-0: Cache Type**
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bits 13-10: Reserved
Bits 25-14: Number of threads sharing this cache*
Bits 31-26: Number of processor cores on this die (Multicore)*.
Bits 11-00: L = System Coherency Line Size
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*.
Bits 31-00: S = Number of Sets*
Reserved = 0

* Add one to the value in the register file to get the number. For
example, the number of processor cores is EAX[31:26]+1.

** Cache Types fields
 0 = Null - No more caches
 1 = Data Cache
 2 = Instruction Cache
 3 = Unified Cache
 4-31 = Reserved

NOTE: CPUID leaves > 3 < 80000000 are only visible when
IA32_CR_MISC_ENABLES.BOOT_NT4 (bit 22) is clear (Default)

5H
EAX

EBX

ECX
EDX

MONITOR/MWAIT Leaf
Bits 15-00: Smallest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0.
Bits 15-00: Largest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0.
Reserved = 0
Reserved = 0

Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see
Table 2-2).
Reserved.
Reserved.
Reserved.

80000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently
Reserved.)
Reserved.
Reserved.
Reserved.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

EAX Value Leaf Information Returned
2-2

CPUID EXTENSIONS
Table 2-2. Highest CPUID Source Operand for IA-32 Processors

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX
ECX

EDX

Reserved = 0
Reserved = 0
Bits 7-0: Cache Line size
Bits 15-12: L2 Associativity
Bits 31-16: Cache size in 1K units
In initial implementation ECX = 0x01000840
Reserved = 0

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Prescott A Step 5H 80000008H

EAX Value Leaf Information Returned
2-3

CPUID EXTENSIONS
2.1.1. Extended Feature Information Returned in ECX and EDX

This section describes the feature information returned in ECX and EDX (by calling CPUID
with EAX = 01H; see Table 2-1).

Figure 2-1. Prescott Feature Information Returned in the ECX Register

Table 2-3. More on Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 PNI Prescott New Instructions. A value of 1 indicates the processor supports Prescott
New Instructions.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the
extensions to the Debug Store feature to allow for branch message storage
qualified by CPL.

7 Reserved. Reserved.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this
technology.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either
adaptive mode or shared mode. A value of 0 indicates this feature is not
supported. See definition of the IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache
Context Mode) for details.

OM15192

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2

DS-CPL — CPL Qualif ied Debug Store
MONITOR — MONITOR/MWAIT
PNI — Prescott New Instructions

Reserv ed
2-4

CPUID EXTENSIONS
Figure 2-2. Prescott Feature Information in the EDX Register

OM15191

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Hyper-Threading Tech.
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE–Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
2-5

CPUID EXTENSIONS
2.1.2. Version Information Returned in EAX

This section describes version information returned in EAX (by calling CPUID with EAX =
01H; see Table 2-1). Note that Prescott does not support the Processor Serial Number.

The Extended Family ID and the Extended Model ID need to be examined only if the family is
OFH. Often software will display processor information as a combination of family, model and
stepping. Integrate the Family ID and Extended Family ID fields into the displayed family
follows:

Displayed family = Extended Family ID (8-bits)

+ Family ID (4-bits zero extended to 8-bits)

Compute the displayed model from the Model ID and the Extended Model ID as follows.

Displayed Model = ((Extended Model ID (4-bits) << 4))(8-bits)

+ Model (4-bits zero extended to 8-bits)

Figure 2-3. Version Information Returned by CPUID in EAX

OM15193

Processor Type (not supported)

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family
Model (Prescott processor starts at 03H)

Extended
Family ID

Extended
Model ID

Family
ID

Model
Stepping

ID

Extended Family ID (0)

Extended Model ID (0)

Reserved
2-6

CPUID EXTENSIONS
2.1.3. Brand and Maximum Frequency Identification

To facilitate the correct identification of Intel processors, the Pentium 4 processor introduced the
brand index and the brand string. Software uses the brand index to locate a brand identification
string in the brand identification table. The first entry (brand index 0) in this table is reserved,
allowing for backward compatibility with processors that do not support the brand identification
feature.

Table 2-4 shows the relationship between the brand indices and corresponding brand strings. All
reserved entries in the brand identification table should be associated with a brand string that
indicates that the index is reserved for future Intel processors. Software should be able to handle
reserved brand indices gracefully.

Table 2-4. Mapping Brand Index and Brand Identification String

Using the brand string feature, future IA-32 architecture-based processors will return an ASCII
brand identification string and a maximum operating frequency using CPUID calls. Note that
the frequency returned is the maximum operating frequency, not the current frequency of the
processor.

Brand Index Brand String

00H Not supported

01H Intel® Celeron® processor

02H Intel® Pentium® III processor

03H Intel® Pentium® III Xeon™ processor
If processor signature = 000006B1H; then Intel® Celeron® processor

04H Intel® Pentium® III processor

06H Mobile Intel® Pentium® III processor -M

07H Mobile Intel® Celeron® processor

08H Intel® Pentium® 4 processor
If processor signature ≥ 00000F13H; then Intel® Genuine processor

09H Intel® Pentium® 4 processor

0AH Intel® Celeron® processor

0BH Intel® Xeon™ processor
If processor signature < 00000F13H; then Intel® Xeon™ processor MP

0CH Intel® Xeon™ processor MP

0EH Mobile Intel® Pentium® 4 processor -M
If processor signature < 00000F13H; then Intel® Xeon™ processor

0FH Mobile Intel® Celeron® processor

Other Values RESERVED
2-7

CPUID EXTENSIONS
2.1.4. Determining Support for the Processor Brand String

Figure 2-5 describes the algorithm used for detection of the brand string feature. Processor brand
identification software should execute this algorithm on all IA-32 architecture compatible
processors.

Figure 2-4. Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
>= 0x80000004)

CPUID
Function

Supported

True =>
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=1

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
2-8

CPUID EXTENSIONS
2.1.5. Algorithm for Extracting Maximum Processor Frequency

Figure 2-5 provides an algorithm (for IA-32 architecture based processors) which software can
use to extract the maximum processor operating frequency from the processor brand string.

Figure 2-5. Algorithm for Extracting Maximum Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq"
Reverse Digits

To Decimal Value

Max. Qualified
Frequency =

"Freq" x "Multiplier" "Freq" = XY.Z if
Digits = "Z.YX"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
2-9

CPUID EXTENSIONS
2.1.6. Determining Explicit Cache Descriptors

Use of the cache descriptor based mechanism to determine cache hierarchy information requires
the operating system to have knowledge of specific descriptor values and the corresponding
cache information. The need for a-priori knowledge limits the ability of deployed operating
systems to correctly identify cache sizes and structures on processors not available at the time
of their development. To address this limitation, Prescott provides a mechanism for enumer-
ating/calculating details of the cache hierarchy at runtime by using CPUID. The algorithm for
extracting cache parameters is as shown in Figure 2-6.

Information about Translation Lookaside Buffers (TLBs) is not provided using this mechanism.
See the IA-32 Intel Architecture Software Developer’s Guide for more information about
TLBs.

Figure 2-6. Determination of Support for Explicit Cache Descriptors

OM15196

IF (3 <= EAX <
0x80000000)

CPUID

False

Explicit Cache
Descriptor Not

Supported

Input: EAX = 0

Input:
ECX = 0, EAX = 4

True => Explicit

No More Explicit
Cache Descriptors

IF (EAX[4:0] ! = 0)

Interpret EAX,
EBX Return Values

Cache Descriptor
Supported

CPUID

Set EAX = 4,
Increment ECX

CPUID

Query Next
Cache Level

False

True
2-10

CPUID EXTENSIONS
Prescott cache and TLB descriptor values are provided in Table 2-5 (returned in
EAX/EBX/ECX/EDX by CPUID when EAX = 02H; see also Table 2-1). The cache level closest
to the processor is referred to as the first-level cache, the next level as the second-level cache,
and so forth.

Table 2-5. Prescott Cache and TLB Descriptors

Cache or TLB Descriptor Description
Descriptor
value (Hex)

512K Third-Level Cache, 4-way, dual-sectored line, 64 byte sector size 22h

1MB Third-Level Cache, 8-way, dual-sectored line, 64 byte sector size 23h

2MB Third-Level Cache, 8-way, dual-sectored line, 64 byte sector size 25h

4MB Third-Level Cache, 8-way, dual-sectored line, 64 byte sector size 29h

No Third-Level Cache 40h

64 entries for 4KB pages & 2MB/4MB pages (ITLB) 50h

128 entries for 4KB pages & 2MB/4MB pages (ITLB) 51h

256 entries for 4KB pages & 2MB/4MB pages (ITLB) 52h

64 entries for 4KB pages & 4MB pages (DTLB) 5Bh

128 entries for 4KB pages & 4MB pages (DTLB) 5Ch

256 entries for 4KB pages & 4MB pages (DTLB) 5Dh

8KB First-Level Data Cache, 4-way set associative, 64 byte line size 66h

16KB First-Level Data Cache, 4-way set associative, 64 byte line size 67h

32KB First-Level Data Cache, 4-way set associative, 64 byte line size 68h

12K uops, Trace Cache, 8-way set associative 70h

16K uops, Trace Cache, 8-way set associative 71h

32K uops, Trace Cache, 8-way set associative 72h

128KB Second-Level Cache, 8-way set associative, byte size 79h

256KB Second-Level Cache, 8-way set associative, dual-sectored line, 64 byte
sector size

7Ah

512KB Second-Level Cache, 8-way set associative, dual-sectored line, 64 byte
sector size

7Bh

1MB Second-Level Cache, 8-way set associative, dual-sectored line, 64 byte
sector size

7Ch
2-11

CPUID EXTENSIONS
2-12

CHAPTER 3
INSTRUCTION SET REFERENCE

3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES

Prescott New Instructions technology uses existing instruction formats. Instructions use the
ModR/M format and in general, operations are not duplicated to provide two directions (i.e.,
separate load and store variants).

Besides opcodes, two kinds of notations describe information found in the ModR/M byte:

• /digit: (digit between 0 and 7) indicates that the instruction uses only the r/m (register and
memory) operand. The reg field contains the digit that provides an extension to the
instruction's opcode.

• /digitR: (digit between 0 and 7) indicates that the instruction uses only the register operand
(i.e., mod=11). The reg field contains the digit that provides an extension to the
instruction’s opcode.

• /r: indicates that the ModR/M byte of an instruction contains both a register operand and
an r/m operand.

In addition, the following abbreviations are used:

r32 Intel architecture 32-bit integer register

xmm/m128 Indicates a 128-bit FP Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 128-bit memory location.

xmm/m64 Indicates a 128-bit FP Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 64-bit memory location.

xmm/m32 Indicates a 128-bit FP Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 32-bit memory location.

mm/m64 Indicates a 64-bit integer register using MMX™ media enhancement tech-
nolgy or a 64-bit memory location.

xmm/m128 Indicates a 128-bit integer register using MMX media enhancement tech-
nolgy or a 128-bit memory location.

imm8 Indicates an immediate 8-bit operand.

ib Indicates that an immediate byte operand follows the opcode, ModR/M
byte or scaled-indexing byte.

When there is ambiguity, xmm1 indicates the first source operand and xmm2 the second source
operand. For more information on notation, refer to the notation section in the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 3.
3-1

INSTRUCTION SET REFERENCE
3.2. PRESCOTT NEW INSTRUCTIONS

This chapter describes the thirteen instructions which form Prescott New Instructions tech-
nology. Detailed information follows. Appendix A summarizes the new instructions.
3-2

INSTRUCTION SET REFERENCE
ADDSUBPD: Packed Double-FP Add/Subtract

Description

Adds the double-precision floating-point values in the high quadword of the source and desti-
nation operands and stores the result in the high quadword of the destination operand.

Subtracts the double-precision floating-point value in the low quadword of the source operand
from the low quadword of the destination operand and stores the result in the low quadword of
the destination operand.

Operation
xmm1[63-0] = xmm1[63-0] - xmm2/m128[63-0];
xmm1[127-64] = xmm1[127-64] + xmm2/m128[127-64];

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte boundary or a
general-protection exception (#GP) will be generated.

Instruction Description

ADDSUBPD xmm1, xmm2/m128 Add/Subtract packed DP FP numbers from
XMM2/Mem to XMM1.

Figure 3-1. ADDSUBPD: Packed Double-FP Add/Subtract

OM15991

[127-64]

xmm1[127-64] + xmm2/m128[127-64] xmm1[63-0] - xmm2/m128[63-0]

[63-0]

[127-64] [63-0]

ADDSUBPD xmm1, xmm2/m128

RESULT:
xmm1

xmm2/m128
3-3

INSTRUCTION SET REFERENCE
ADDSUBPD: Packed Double-FP Add/Subtract (Continued)

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0);

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-4

INSTRUCTION SET REFERENCE
ADDSUBPD: Packed Double-FP Add/Subtract (Continued)

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-5

INSTRUCTION SET REFERENCE
ADDSUBPS: Packed Single-FP Add/Subtract

Description

Adds odd-numbered single-precision floating-point values of the source operand with the corre-
sponding single-precision floating-point values from the destination operand; stores the result
in the odd-numbered values of the destination operand.

Subtracts the even-numbered single-precision floating-point values in the source operand from
the corresponding single-precision floating values in the destination operand; stores the result
into the even-numbered values of the destination operand.

Operation
xmm1[31-0] = xmm1[31-0] - xmm2/m128[31-0];
xmm1[63-32] = xmm1[63-32] + xmm2/m128[63-32];
xmm1[95-64] = xmm1[95-64] - xmm2/m128[95-64];
xmm1[127-96] = xmm1[127-96] + xmm2/m128[127-96];

Instruction Description

ADDSUBPS xmm1, xmm2/m128 Add/Subtract packed SP FP numbers from
XMM2/Mem to XMM1.

Figure 3-2. ADDSUBPS: Packed Single-FP Add/Subtract

OM15992

ADDSUBPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x mm1[31-0] -
x m m2 /m 12 8 [31 -0]

[31-0]

x m m1 [6 3 - 32] +
x m m2 /m 12 8 [63 -3 2]

[63-32]

x mm1[95 -64] - x mm2/
m 12 8 [95 -6 4]

[95-64]

x mm 1[12 7- 96] +
x mm 2/ m1 28 [1 27 -9 6]

[127-96]

[127-96] [95-64] [63-32] [31-0]
3-6

INSTRUCTION SET REFERENCE
ADDSUBPS: Packed Single-FP Add/Subtract (Continued)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-7

INSTRUCTION SET REFERENCE
ADDSUBPS: Packed Single-FP Add/Subtract (Continued)

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-8

INSTRUCTION SET REFERENCE
FISTTP: Store Integer with Truncation

Description

FISTTP converts the value in ST into a signed integer using truncation (chop) as rounding mode,
transfers the result to the destination, and pop ST. FISTTP accepts word, short integer, and long
integer destinations.

The following table shows the results obtained when storing various classes of numbers in
integer format.

Notes:

F Means finite floating-point value.

Ι Means integer.

∗ Indicates floating-point invalid-operation (#IA) exception.

Operation

DEST ← ST;
pop ST;

Flags Affected

C1 is cleared; C0, C2, C3 undefined.

Numeric Exceptions

Invalid, Stack Invalid (stack underflow), Precision.

Instruction Description

FISTTP m16int
FISTTP m32int
FISTTP m64int

Store ST as a signed integer (truncate) in
m16int and pop ST.
Store ST as a signed integer (truncate) in
m32int and pop ST.
Store ST as a signed integer (truncate) in
m64int and pop ST.

ST(0) DEST

−∞ or Value Too Large for DEST Format ∗

F ≤ − 1 − Ι

− 1 < F < +1 0

F ≥ +1 + Ι

+ ∞ or Value Too Large for DEST Format ∗

NaN ∗
3-9

INSTRUCTION SET REFERENCE
FISTTP: Store Integer with Truncation (Continued)

Protected Mode Exceptions

#GP(0) If the destination is in a nonwritable segment.

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

#NM If CR0.EM = 1.

If TS bit in CR0 is set.

#UD If CPUID.PNI(ECX bit 0) = 0.

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If CR0.EM = 1.

If TS bit in CR0 is set.

#UD If CPUID.PNI(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If CR0.EM = 1.

If TS bit in CR0 is set.

#UD If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege is 3.
3-10

INSTRUCTION SET REFERENCE
HADDPD: Packed Double-FP Horizontal Add

Description

Adds the double-precision floating-point values in the high and low quadwords of the destina-
tion operand and stores the result in the low quadword of the destination operand.

Adds the double-precision floating-point values in the high and low quadwords of the source
operand and stores the result in the high quadword of the destination operand.

Operation
xmm1[63-0] = xmm1[63-0] + xmm1[127-64];
xmm1[127-64] = xmm2/m128[63-0] + xmm2/m128[127-64];

Instruction Description

HADDPD xmm1, xmm2/m128 Add horizontally packed DP FP numbers from
XMM2/Mem to XMM1.

Figure 3-3. HADDPD: Packed Double-FP Horizontal Add

OM15993

HADDPD xmm1, xmm2/m128

xmm1

xmm2
/m128

[63-0][127-64]

[127-64] [63-0]

[63-0][127-64]

Result:
xmm1

xmm2/m128[63-0] +
xmm2/m128[127-64]

xmm1[63-0] + xmm1[127-64]
3-11

INSTRUCTION SET REFERENCE
Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.
3-12

INSTRUCTION SET REFERENCE
HADDPD: Packed Double-FP Horizontal Add (Continued)

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0);

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-13

INSTRUCTION SET REFERENCE
HADDPD: Packed Double-FP Horizontal Add (Continued)

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-14

INSTRUCTION SET REFERENCE
HADDPS: Packed Single-FP Horizontal Add

Description

Adds the single-precision floating-point values in the first and second dwords of the destination
operand and stores the result in the first dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the destination
operand and stores the result in the second dword of the destination operand.

Adds single-precision floating-point values in the first and second dword of the source operand
and stores the result in the third dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the source operand
and stores the result in the fourth dword of the destination operand.

Instruction Description

HADDPS xmm1, xmm2/m128 Add horizontally packed SP FP numbers from
XMM2/Mem to XMM1.

Figure 3-4. HADDPS: Packed Single-FP Horizontal Add

OM15994

HADDPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x mm 1[31 -0] +
x mm 1[63 -3 2]

[31-0]

x m m1 [9 5 - 64] +
x m m1 [1 27 -9 6]

[63-32]

[63-32] [31-0]

xmm1[31-0][63-32]

x m m 2 / m 1 2 8
[31 -0] + x mm2/

m1 28 [6 3 - 32]

[95-64]

x m m 2 / m 1 2 8
[95 -64] + x mm2/

m 12 8 [12 7- 96]

[127-96]

[127-96] [95-64]

[95-64][127-96]
3-15

INSTRUCTION SET REFERENCE
HADDPS: Packed Single-FP Horizontal Add (Continued)

Operation
xmm1[31-0] = xmm1[31-0] + xmm1[63-32];
xmm1[63-32] = xmm1[95-64] + xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] + xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] + xmm2/m128[127-96];

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-16

INSTRUCTION SET REFERENCE
HADDPS: Packed Single-FP Horizontal Add (Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-17

INSTRUCTION SET REFERENCE
HSUBPD: Packed Double-FP Horizontal Subtract

Description

The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both operands.

Subtracts the double-precision floating-point value in the high quadword of the destination
operand from the low quadword of the destination operand and stores the result in the low quad-
word of the destination operand.

Subtracts the double-precision floating-point value in the high quadword of the source operand
from the low quadword of the source operand and stores the result in the high quadword of the
destination operand.

Operation
xmm1[63-0] = xmm1[63-0] - xmm1[127-64];
xmm1[127-64] = xmm2/m128[63-0] - xmm2/m128[127-64];

Instruction Description

HSUBPD xmm1, xmm2/m128 Subtract horizontally packed DP FP numbers
in XMM2/Mem from XMM1.

Figure 3-5. HSUBPD: Packed Double-FP Horizontal Subtract

OM15995

HSUBPD xmm1, xmm2/m128

xmm1

xmm2
/m128

[63-0][127-64]

[127-64] [63-0]

[63-0][127-64]

Result:
xmm1

xmm2/m128[63-0] -
xmm2/m128[127-64]

xmm1[63-0] - xmm1[127-64]
3-18

INSTRUCTION SET REFERENCE
HSUBPD: Packed Double-FP Horizontal Subtract (Continued)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-19

INSTRUCTION SET REFERENCE
HSUBPD: Packed Double-FP Horizontal Subtract (Continued)

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-20

INSTRUCTION SET REFERENCE
HSUBPS: Packed Single-FP Horizontal Subtract

Description

Subtracts the single-precision floating-point value in the second dword of the destination
operand from the first dword of the destination operand and stores the result in the first dword
of the destination operand.

Subtracts the single-precision floating-point value in the fourth dword of the destination operand
from the third dword of the destination operand and stores the result in the second dword of the
destination operand.

Subtracts the single-precision floating-point value in the second dword of the source operand
from the first dword of the source operand and stores the result in the third dword of the desti-
nation operand.

Subtracts the single-precision floating-point value in the fourth dword of the source operand
from the third dword of the source operand and stores the result in the fourth dword of the desti-
nation operand.

Instruction Description

HSUBPS xmm1, xmm2/m128 Subtract horizontally packed SP FP numbers
in XMM2/Mem from XMM1.
3-21

INSTRUCTION SET REFERENCE
Figure 3-6. HSUBPS: Packed Single-FP Horizontal Subtract

OM15996

HSUBPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x mm1[31 -0] -
x mm 1[63 -3 2]

[31-0]

x mm1[95 -64] -
x mm 1[12 7- 96]

[63-32]

[63-32] [31-0]

xmm1[31-0][63-32]

x m m 2 / m 1 2 8
[31-0] - x mm2/
m1 28 [6 3 - 32]

[95-64]

x m m 2 / m 1 2 8
[95 -64] - x mm2/
m 12 8 [12 7- 96]

[127-96]

[127-96] [95-64]

[95-64][127-96]
3-22

INSTRUCTION SET REFERENCE
HSUBPS: Packed Single-FP Horizontal Subtract (Continued)

Operation
xmm1[31-0] = xmm1[31-0] - xmm1[63-32];
xmm1[63-32] = xmm1[95-64] - xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-23

INSTRUCTION SET REFERENCE
HSUBPS: Packed Single-FP Horizontal Subtract (Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-24

INSTRUCTION SET REFERENCE
LDDQU: Load Unaligned Integer 128 bits

Description

The instruction is functionally equivalent to MOVDQU xmm, m128. It moves a double quad-
word from the source memory operand (second operand) to the destination register (first
operand). The source operand may be unaligned on a 16-byte boundary without causing a
general-protection exception (#GP) to be generated.

This instruction may improve performance relative to MOVDQU if the source operand crosses
a cacheline boundary. This instruction may reduce performance if the load requires store to load
forwarding. To move a double quadword to or from memory locations that are known to be
aligned on 16-byte boundaries, use the MOVDQA instruction.

Implementation Note

Specific processors may implement LDDQU exactly like MOVDQU if the implementation of
LDDQU as described above (with two aligned 16-byte memory accesses) would lead to lower
performance than MOVDQU.

Operation
xmm[127-0] = m128;

Numeric Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault; #UD if CR0.EM = 1.

#NM If TS bit in CR0 is set; #UD if CR4.OSFXSR(bit 9) = 0.

#UD If CPUID.PNI(ECX bit 0) = 0.

Instruction Description

LDDQU xmm, m128 Load 128 bits from Mem to XMM register.
3-25

INSTRUCTION SET REFERENCE
LDDQU: Load Unaligned Integer 128 bits (Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.

Comments

This instruction may emulate an unaligned memory access with two 128-bit aligned loads (for
example, loading 32 bytes) if such an implementation gains a performance advantage relative to
loading 16 bytes with MOVDQU.

If the source is aligned to a 16-byte boundary, based on the implementation, the 16 bytes may
be loaded more than once. For that reason, the usage of LDDQU should be avoided when using
uncached or write-combining (WC) memory regions. For uncached or WC memory regions,
keep using MOVDQU.

This instruction is a replacement for MOVDQU (load) in situations where cache line splits
significantly affect performance. It should not be used in situations where store-load forwarding
is performance critical. If performance of store-load forwarding is critical to the application, use
MOVDQA store-load pairs when data is 128-bit aligned or MOVDQU store-load pairs when
data is 128-bit unaligned.

LDDQU behavior for offsets that are within 15 bytes of an unaligned (specifically 16-byte
unaligned) base or limit is implementation specific; this situation may signal a #GP Exception.
The bytes accessed may be different based on the segment definition (base, limit value).
LDDQU behavior in 16b(32b) addressing mode, when the data access crosses a 16b(32b)
boundary, is also implementation specific and may or may not signal a #GP Exception. The
bytes accessed may be different based on the segment definition (base, limit value).
3-26

INSTRUCTION SET REFERENCE
MONITOR: Setup Monitor Address

Description

The MONITOR instruction relies on a state in the processor called the monitor event pending
flag. The monitor event pending flag is either set or clear; its value is not architecturally visible
except through the behavior of the MWAIT instruction. The monitor event pending flag is set
by multiple events including a write to the address range being monitored and reset by the
MONITOR instruction.

The MONITOR instruction sets up the address monitoring hardware using the address specified
in EAX and resets the monitor event pending flag. The address range that the hardware checks
for stores can be determined by calling CPUID. Additional details for determining setup of this
address range to prevent false wake ups are provided in The monitoring hardware detects stores
to an address within the address range and sets the monitor event pending flag when the write is
detected. The state of the monitor event pending flag is used by the MWAIT instruction. Other
events will also set the monitor event pending flag.

The address range must be in memory of write-back caching type. Only write-back memory type
stores to the monitored address range set the monitor event pending flag.

The content of EAX is a logical address. By default, the DS segment is used to create a linear
address that is then monitored. Segment overrides can be used with the MONITOR instruction.
ECX and EDX are used to communicate other information to the MONITOR instruction. ECX
specifies optional extensions for the MONITOR instruction. EDX may contain hints and will
not change the architectural behavior of the instruction. For Prescott, no extensions or hints are
defined and the value for ECX and EDX should be zero. Non-zero values for ECX and EDX are
reserved and the processor will raise a general protection fault exception on the execution of the
MONITOR instruction with reserved values in ECX. The processor ignores setting of reserved
bits in EDX.

The MONITOR instruction is ordered as a load operation with respect to other memory trans-
actions. The instruction can be used at all privilege levels and is subject to all permission
checking and faults associated with a byte load. Like a load, the MONITOR instruction sets the
A-bit but not the D-bit in page tables.

The MONITOR CPUID feature flag (bit 3 of ECX when CPUID is executed with EAX=1) indi-
cates that a processor supports this instruction. The operating system or system BIOS may
disable this instruction through the IA32_MISC_ENABLES MSR; disabling the instruction
clears the CPUID feature flag and causes execution of the MONITOR instruction to generate an
illegal opcode exception.

See also: Section 4.3.6., Guideline for MONITOR/MWAIT.

Instruction Description

MONITOR EAX, ECX, EDX Sets up a linear address range to be monitored by
hardware and activates the monitor. The address
range should be of a write-back memory caching
type.
3-27

INSTRUCTION SET REFERENCE
MONITOR: Setup Monitor Address (Continued)

Operation

MONITOR sets up an address range for the monitor hardware using the content of EAX as a
logical address and resets the monitor event pending flag. The memory address range should be
within memory of the write-back caching type. A store to the specified address range will set
the monitor event pending flag.

The content of ECX and EDX are used to communicate other information to the MONITOR
instruction.

Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#GP(0) For ECX has a value other than 0.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault (TBD).

#UD If CPUID feature flag MONITOR is 0.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

Real Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

Virtual 8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#GP(0) For ECX has a value other than 0; #UD if CPUID feature flag MONITOR
is 0.

#UD If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

#PF(fault-code) For a page fault.
3-28

INSTRUCTION SET REFERENCE
MOVDDUP: Move One Double-FP and Duplicate

Description

The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 8 bytes of data at memory location m64
are loaded. When the register-register form of this operation is used, the lower half of the 128-
bit source register is duplicated and copied into the 128-bit destination register.

Operation
if (source == m64) {

// load instruction
xmm1[63-0] = m64;
xmm1[127-64] = m64;

}
else {

// move instruction
xmm1[63-0] = xmm2[63-0];
xmm1[127-64] = xmm2[63-0];

}

Instruction Description

MOVDDUP xmm1, xmm2/m64 Move 64 bits representing the lower DP
data element from XMM2/Mem to XMM1
register and duplicate.

Figure 3-7. MOVDDUP: Move One Double-FP and Duplicate

OM15997

xmm1[127-64] xmm2/m64[63-0] xmm1[63-0] xmm2/m64[63-0]

[63-0]

[127-64] [63-0]

MOVDDUP xmm1, xmm2/m64

RESULT:
xmm1

xmm2/m64
3-29

INSTRUCTION SET REFERENCE
MOVDDUP: Move One Double-FP and Duplicate (Continued)

Exceptions

None

Numeric Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

I CPUID.PNI(ECX bit 0) = 0.

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-30

INSTRUCTION SET REFERENCE
MOVSHDUP: Move Packed Single-FP High and Duplicate

Description

The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 16 bytes of data at memory location
m128 are loaded and the single-precision elements in positions 1 and 3 are duplicated. When the
register-register form of this operation is used, the same operation is performed but with data
coming from the 128-bit source register.

Instruction Description

MOVSHDUP xmm1, xmm2/m128 Move 128 bits representing packed SP
data elements from XMM2/Mem to XMM1
register and duplicate high.

Figure 3-8. MOVSHDUP: Move Packed Single-FP High and Duplicate

OM15998

MOVSHDUP xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x m m1 [3 1 - 0]
 xmm2/

m1 28 [6 3 - 32]

[31-0]

x m m1 [6 3 - 32]
 xmm2/
m 12 8 [63 -3 2]

[63-32]

x mm 1[95 -6 4]
 xmm2/
m1 28 [1 27 -9 6]

[95-64]

x m m1 [1 27 -9 6]
 xmm2/
m 12 8 [12 7- 96]

[127-96]

[127-96] [95-64] [63-32] [31-0]
3-31

INSTRUCTION SET REFERENCE
MOVSHDUP: Move Packed Single-FP High and Duplicate
(Continued)

Operation
if (source == m128) {

// load instruction
xmm1[31-0] = m128[63-32];
xmm1[63-32] = m128[63-32]
xmm1[95-64] = m128[127-96];
xmm1[127-96] = m128[127-96];

}
else {

// move instruction
xmm1[31-0] = xmm2[63-32];
xmm1[63-32] = xmm2[63-32];
xmm1[95-64] = xmm2[127-96];
xmm1[127-96] = xmm2[127-96];

}

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-32

INSTRUCTION SET REFERENCE
MOVSHDUP: Move Packed Single-FP High and Duplicate
(Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-33

INSTRUCTION SET REFERENCE
MOVSLDUP: Move Packed Single-FP Low and Duplicate

Description

The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 16 bytes of data at memory location
m128 are loaded and the single-precision elements in positions 0 and 2 are duplicated. When the
register-register form of this operation is used, the same operation is performed but with data
coming from the 128-bit source register.

Operation
if (source == m128) {

// load instruction
xmm1[31-0] = m128[31-0];
xmm1[63-32] = m128[31-0]
xmm1[95-64] = m128[95-64];
xmm1[127-96] = m128[95-64];

}
else {

// move instruction

Instruction Description

MOVSLDUP xmm1, xmm2/m128 Move 128 bits representing packed SP
data elements from XMM2/Mem to XMM1
register and duplicate low.

Figure 3-9. MOVSLDUP: Move Packed Single-FP Low and Duplicate

OM15999

MOVSLDUP xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x m m1 [3 1 - 0]
 xmm2/
m 12 8 [31 -0]

[31-0]

x m m1 [6 3 - 32]
 xmm2/
m1 28 [3 1 - 0]

[63-32]

x mm 1[95 -6 4]
 xmm2/
m1 28 [9 5 - 64]

[95-64]

x m m1 [1 27 -9 6]
 xmm2/
m 12 8 [95 -6 4]

[127-96]

[127-96] [95-64] [63-32] [31-0]
3-34

INSTRUCTION SET REFERENCE
MOVSLDUP: Move Packed Single-FP Low and Duplicate
(Continued)

xmm1[31-0] = xmm2[31-0];
xmm1[63-32] = xmm2[31-0];
xmm1[95-64] = xmm2[95-64];
xmm1[127-96] = xmm2[95-64];

}

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.
3-35

INSTRUCTION SET REFERENCE
MOVSLDUP: Move Packed Single-FP Low and Duplicate
(Continued)

Virtual 8086 Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.PNI(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-36

INSTRUCTION SET REFERENCE
MWAIT: Monitor Wait

Description

The MWAIT instruction is designed to operate with the MONITOR instruction to allow a
processor to signal an address on which to wait (MONITOR) and an instruction that causes the
wait operation to commence (MWAIT). The MWAIT instruction is also a hint to the processor
that it can choose to enter an implementation-dependent state while waiting for an event or for
the store to the address range set up by the preceding MONITOR instruction in program flow.

A given implementation may choose to ignore the hint and continue executing the next instruc-
tion. Future processor implementations may implement several optimized wait states and will
select among those states based on the hint argument.

In future processor designs, EAX and ECX will be used to communicate other information to
the MWAIT instruction, such as the kind of optimized state the processor should enter. ECX
specifies optional extensions for the MWAIT instruction. EAX may contain hints such as the
preferred optimized state the processor should enter. For Prescott, all non-zero values for EAX
and ECX are reserved. The processor will raise a general protection fault on the execution of the
MWAIT instruction with reserved values in ECX. The processor ignores setting of reserved bits
in EDX.

A store to the address range set by the MONITOR instruction, an interrupt, NMI, SMI, a debug
exception, a machine check exception, the BINIT# signal, the INIT# signal, or the RESET#
signal will exit the optimized state. Note that an interrupt will cause the processor to exit the
optimized state only if the state was entered with interrupts enabled. If a store to the address
range caused the processor to exit then execution will resume at the instruction following the
MWAIT instruction. If an interrupt (including NMI) caused the processor to exit the optimized
state, the processor will exit the optimized state and handle the interrupt. If an SMI caused the
processor to exit the optimized state, execution will resume at the instruction following the
MWAIT after handling of the SMI. Unlike the HALT instruction, the MWAIT instruction does
not support a restart at the MWAIT instruction. There may also be other implementation-depen-
dent events or time-outs that may take the processor out of the optimized state and resume
execution at the instruction following the MWAIT.

If the preceding MONITOR instruction did not successfully set an address range or if the
MONITOR instruction has not been executed prior to executing MWAIT, then the processor will
not enter the optimized state. Execution will resume at the instruction following the MWAIT.

The MWAIT instruction can be executed at any privilege level. The MONITOR CPUID feature
flag (bit 3 of ECX when CPUID is executed with EAX=1) indicates that a processor supports
this instruction. The operating system or system BIOS may disable this instruction through the
IA32_MISC_ENABLES MSR; disabling the instruction clears the CPUID feature flag and
causes execution of the MWAIT instruction to generate an illegal opcode exception

Instruction Description

MWAIT EAX, ECX A hint that allows the processor to stop instruction
execution and enter an implementation-dependent
optimized state until occurrence of a class of events.
3-37

INSTRUCTION SET REFERENCE
MWAIT: Monitor Wait (Continued)

Operation

// MWAIT takes the argument inEAX as a hint extension and is
// architected to take the argument in ECX as an instruction extension
// MWAIT EAX, ECX
{
WHILE (! ("monitor_event_pending_flag" OR "monitor_not_active")) {

implementation_dependent_optimized_state(EAX, ECX);
}
Clear monitor_event_pending_flag;
}

Example

The MONITOR and MWAIT instructions must be coded in the same loop because execution of
the MWAIT instruction will clear the monitor address range. It is not possible to execute
MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without executing
MWAIT has no adverse effects.

Assume that there is a globally shared volatile integer trigger, that is written to zero (0x0) before
the processor enters MWAIT, and written to one (0x1) by the other thread/processor that wants
to wake this one up.

Trigger = 0;
If (!trigger) {

EAX = &trigger
ECX = 0
EDX = 0
MONITOR EAX, ECX, EDX
If (!trigger) {

EAX = 0
ECX = 0
MWAIT EAX, ECX

}
}

The above code sequence makes sure that a triggering store does not happen between the first
check of the trigger and the execution of the monitor instruction. Without the second check that
triggering store would go un-noticed. Typical usage of MONITOR and MWAIT would have the
above code sequence within a loop.

Exceptions

None
3-38

INSTRUCTION SET REFERENCE
MWAIT: Monitor Wait (Continued)

Numeric Exceptions

None

Protected Mode Exceptions

#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0.

If LOCK prefix is used.

Real Address Mode Exceptions

#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0.

If LOCK prefix is used.
3-39

INSTRUCTION SET REFERENCE
3-40

CHAPTER 4
SYSTEM AND APPLICATION PROGRAMMING

GUIDELINES

4.1. SYSTEM PROGRAMMING MODEL AND REQUIREMENTS

The Prescott New Instructions state requires no new OS support for saving and restoring the new
state during a context switch, beyond that provided for Streaming SIMD Extensions (SSE). The
operating system or executive must provide support for initializing the processor to use Prescott
New Instruction extensions, for handling the FXSAVE and FXRSTOR state saving instructions,
and for handling SIMD floating-point exceptions. The following sections provide guidelines for
providing this support.

4.1.1. Enabling Prescott New Instructions Support in a System
Executive

Eleven of the thirteen new instructions are extensions to Streaming SIMD Extensions and
Streaming SIMD Extensions 2 technologies. Providing operating system or executive support
for Prescott New Instructions technology is similar to the steps described in General Guidelines
for Adding Support to an Operating System for the SSE and SSE2 Extensions, Chapter 12, Vol. 3:
IA-32 Intel Software Developer’s Manual. The steps are:

1. Check that the processor supports SSE, SSE2 and Prescott New Instruction extensions.

2. Check that the processor supports FXSAVE and FXRESTOR.

3. Provide a procedure that initializes the SSE and SSE2 state.

4. Provide support for FXSAVE and FXRSTOR.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions generated
by SSE, SSE2 and Prescott New Instructions.

6. Provide a handler for the SIMD floating-point exception (#XF).

See also: Section 4.2.2., Detecting Prescott New Instructions Technology Using CPUID.

4.1.2. FXSAVE/FXRSTOR Replaces Use of FSAVE/FRSTOR

The FSAVE instruction does not save the new state associated with Streaming SIMD Exten-
sions/Streaming SIMD Extensions 2.

FSAVE/FRSTOR should be replaced with FXSAVE/FXRSTOR; the new instructions saves and
restore 128-bit registers. EXAMPLE: Exception handlers that use 64-bit integer MMX tech-
4-1

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
nology or x87-FP operations are a case where FSAVE/FRSTOR should be replaced by
FXSAVE/FXRSTOR.

4.1.3. Initialization

The steps required for a system executive to initialize support for Prescott New Instructions are
the same as the initialization steps required to support SSE and SSE2 extensions. See Initializa-
tion of the SSE and SSE2 Extensions in Chapter 12, Vol. 3: IA-32 Intel Architecture Software
Developer’s Manual.

4.1.4. Exception Handler

Prescott New Instructions do not introduce new exception types.

4.1.4.1. DEVICE NOT AVAILABLE (DNA) EXCEPTIONS

Prescott New Instructions will cause a DNA Exception (#NM) if the processor attempts to
execute a Prescott New Instruction while CR0.TS is set. If CPUID.PNI is clear, execution of any
Prescott New Instructions will cause an invalid opcode fault regardless of the state of CR0.TS.

4.1.4.2. NUMERIC ERROR FLAG AND IGNNE#

Most of the Prescott New Instructions ignore CR0.NE (treats it as if it were always set) and the
IGNNE# pin. They uses the vector 19 software exception for error reporting. The exception is
FISTTP. This instruction behaves like other x87-FP instructions.

4.1.4.3. TECHNOLOGY EMULATION

The CR0.EM bit used to emulate floating-point instructions cannot be used in the same way for
MMX technology emulation. If a Prescott New Instructions execute when the CR0.EM bit is
set, an Invalid Opcode exception (Int 6) is generated instead of a Device Not Available exception
(Int 7).

4.1.5. Detecting Support for MONITOR/MWAIT

To use the MONITOR/MWAIT instruction, system software must detect support for these
instructions using the CPUID instruction. The extended feature flag bit 3 [CPUID Function 01,
ECX:3] indicates support for the MONITOR/MWAIT instructions. Software must also query
CPUID’s MONITOR/MWAIT leaf to obtain the monitor line size information.
4-2

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
4.2. APPLICATION PROGRAMMING MODEL

The application programming environment for using Prescott New Instructions is unchanged
from that provided for Streaming SIMD Extensions and Streaming SIMD Extensions 2.

4.2.1. Detecting Support for MONITOR/MWAIT Instructions

Support for MONITOR/MWAIT can be detected by the Monitor bit in the CPUID extended
feature flags. In Prescott implementation, the MONITOR/MWAIT instructions are targeted for
use by system software to support efficient thread synchronization. While application software
may attempt to use MONITOR/MWAIT, both instructions may be explicitly disabled either by
the OS or the BIOS. Disabling the instructions will clear the CPUID feature flag; this also causes
MWAIT execution to generate an illegal opcode exception.

4.2.2. Detecting Prescott New Instructions Technology Using
CPUID

If an application attempts to use Prescott New Instructions and the processor is not capable of
using the new instructions, an Interrupt 6 is generated. To use Prescott New Instructions, the
following conditions must exist:

• CR0.EM = 0 (emulation disabled)

• CR4.OSFXSR = 1 (OS supports saving Streaming SIMD Extensions/Streaming SIMD
Extensions 2 state during context switches)

• CPUID.PNI = 1 (processor supports Prescott New Instructions technology)

An application can verify that Prescott New Instructions are supported by using this code
sequence:

boolean prescott_new_instructions_work = TRUE;

try {

 IssuePrescottNewInstructions();

 // Use ADDSUBPD

} except (UNWIND) {

 // if we get here, Prescott New Instructions doesn't work

 prescott_new_instructions_work = FALSE;
4-3

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
4.3. GUIDELINES FOR PRESCOTT NEW INSTRUCTIONS

4.3.1. Guideline for Data Movement Instructions

The MOVSHDUP and MOVSLDUP instructions require the source memory operand to be
aligned to 16-byte boundary. MOVDDUP and LDDQU do not require the source memory
operand to be 16-byte aligned.

The results of MOVSHDUP, MOVSLDUP, and MOVDDUP instructions are typed. The first
two instructions should only be used with SSE single-precision floating point computations. The
result of MOVDDUP instruction should only be used with SSE2 double-precision floating point
computations. The result of LDDQU instruction is not typed, it can be used with SIMD packed
integer instructions or packed floating-point instructions.

4.3.2. Guideline for Packed ADDSUBxx Instructions

Double-precision and single-precision packed ADDSUBxx instructions are designed to support
complex arithmetic computations. These instructions can be used with arrays of complex data
types declared to be a structure of a real and imaginary numbers. Example 4-1 shows two code
samples: (a) multiplies two pairs of single-precision, complex values, (b) calculates the division
of two pairs of single-precision, complex values.

Double-precision complex multiplication and division can be calculated one pair at a time in a
similar fashion. When evaluating more sophisticated expressions involving complex values,
such as fractions with complex multiplications, evaluate the expression to favor multiplications
and reduce the number of divisions.

Example 4-1. Sample Code for Complex Multiplication and Complex Divisions

(A) Product of two pair of complex data (ak + i bk) * (ck + i dk)

movsldup xmm0, Src1 ; load real parts into the

; destination, a1, a1, a0, a0

movaps xmm1, src2 ; load the 2nd pair of complex

; values, i.e. d1, c1, d0, c0

mulps xmm0, xmm1 ; temporary results, a1d1, a1c1,

; a0d0, a0c0

shufps xmm1, xmm1, b1 ; reorder the real and imaginary

; parts, c1, d1, c0, d0

movshdup xmm2, Src1 ; load the real parts into the

; destination, b1, b1, b0, b0

mulps xmm2, xmm1 ; temporary results, b1c1, b1d1,
4-4

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
; b0c0, b0d0

addsubps xmm0, xmm2 ; b1c1+a1d1, a1c1 -b1d1, b0c0+a0d0,

; a0c0-b0d0
(B)Division of two pair of complex data (ak + i bk) / (ck + i dk)

movshdup xmm0, Src1 ; load imaginary parts into the

: destination, b1, b1, b0, b0

movaps xmm1, src2 ; load the 2nd pair of complex

; values, i.e. d1, c1, d0, c0

mulps xmm0, xmm1 ; temporary results, b1d1, b1c1,

; b0d0, b0c0

shufps xmm1, xmm1, b1 ; reorder the real and imaginary parts,

; c1, d1, c0, d0

movsldup xmm2, Src1 ; load the real parts into the

; destination, a1, a1, a0, a0

mulps xmm2, xmm1 ; temporary results, a1c1, a1d1, a0c0, a0d0

addsubps xmm0, xmm2 ; a1c1+b1d1, b1c1-a1d1, a0c0+b0d0, b0c0-a0d0

mulps xmm1, xmm1 ; c1c1, d1d1, c0c0, d0d0

movps xmm2, xmm1 ; c1c1, d1d1, c0c0, d0d0

shufps xmm2, xmm2, b1 ; d1d1, c1c1, d0d0, c0c0

addps xmm2, xmm1 ; c1c1+d1d1, c1c1+d1d1, c0c0+d0d0, c0c0+d0d0

divps xmm0, xmm2

shufps xmm0, xmm0, b1 ; (b1c1-a1d1)/(c1c1+d1d1), (a1c1+b1d1)/

; (c1c1+d1d1), (b0c0-a0d0)/(c0c0+d0d0),

; (a0c0+b0d0)/(c0c0+d0d0)

4.3.3. Guideline for FISTTP

The FISTTP instruction provides a quick way to truncate a floating-point value on the x87 stack
to a signed integer, pop the stack and store the result in a memory destination. The behavior of
FISTTP is identical to FISTP, except FISTTP does not require modification to the floating-point
control word (FCW) to change the rounding mode. FISTTP is available in three precisions
depending on the size of the destination operand: short integer (word or 16-bit), integer (double
word or 32-bit), and long integer (64-bit).

Using FISTTP improves the performance of x87 code. It saves the extra code needed to maintain
the current value of the FCW, to change to a new value appropriate to the operand size, and to
write the new value back.
4-5

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
Example 4-1 compares the code that a compiler might generate for a simple C statement that
cast a floating-point value to integer. Example 4-2 shows the assembly code that a compiler
supporting Prescott New Instructions might generate for the same C statement.

Example 4-1. Converting a Floating-point Value to Integer without FISTTP

// Compiler output without Precott New Instructions

// for ivalue = (int) fvalue;

fld DWORD PTR [ebp-20] ;Load fvalue from memory

fnstcw [ebp-12] ;save a copy of current FCW

mov DWORD PTR [ebp-8], eax ;Save the content of eax

movzx eax, WORD PTR [ebp-12] ;Load FCW value for change

or eax, 3072 ;Modify to desired rounding mode

mov DWORD PTR [ebp-4], eax ;Prepare new value to

;write to FCW

mov eax, DWORD PTR [ebp-8] ;Restore eax to its original

fldcw [ebp-4] ;Write new value to FCW

fistp DWORD PTR [ebp-16] ;Convert fvalue to integer

;and pop stack

fldcw [ebp-12] ;Restore FCW to its

;original state

Example 4-2. Using FISTTP to Convert a Floating-point Value to an Integer

// Converting floating-point value to integer with

// Prescott New Instructions:

// ivalue = (int) fvalue;

fld DWORD PTR [ebp-20] ;Load fvalue from memory

fistp DWORD PTR [ebp-16] ;Convert fvalue to integer

;and pop stack

4.3.4. Guideline for Unaligned 128-bit Load

The Streaming SIMD Extensions (SSE) provides the MOVDQU instruction for loading memory
from addresses that are not aligned on 16-byte boundaries. Code sequences that use MOVDQU
frequently encounter situations where the source spans across a 64-byte boundary (or cache line
boundary). Loading from a memory address that span across a cache line boundary causes a
hardware stall and degrades software performance.

LDDQU is a special 128-bit unaligned load designed to avoid cache line splits. If the address of
the load is aligned on a 16-byte boundary, LDQQU loads the 16 bytes requested. If the address
of the load is not aligned on a 16-byte boundary, LDDQU loads a 32-byte block starting at the
16-byte aligned address immediately below the address of the load request. It then provides the
requested 16 bytes. If the address is aligned on a 16-byte boundary, the effective number of
memory requests is implementation dependent (one, or more). Because LDDQU usually
4-6

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
accesses more data than is needed (32 bytes when 16 are needed) and because the number of
memory accesses is implementation dependent, great care must be taken when dealing with
uncached or write-combining (WC) memory regions.

LDDQU is a typed instruction for integer data, it is best used with integer data. Because of
implementation issues, restrict the usage of LDDQU to situations where no store-to-load
forwarding is expected. Restrict the usage of LDDQU to situations where no store-to-load
forwarding is expected. For situations where store-to-load forwarding is expected, use regular
store/load pairs (either aligned or unaligned based on the alignment of the data accessed).

4.3.5. Guideline for Horizontal Add/Subtract

Most SIMD instructions operate vertically. Data element of the result in position k are a function
of data elements in position k the instructions operands. Horizontal instructions operate differ-
ently. Contiguous data elements from the same operand are used to produce the result.

Packed horizontal add instructions can be useful to evaluate dot products, matrix multiplica-
tions, and facilitate some SIMD computation operating on vectors that are arranged in arrays of
structures. Example 4-1 demonstrates computing the dot product of a four component vector,
and can be adapted and extended to compute matrix multiplication of 4x4 matrix.

Example 4-1. Using Horizontal Add to Compute Dot Products

// An example that computes a four component dot product and

// broadcasts the result which is stored in xmm0.

movaps xmm0, Vector1

movaps xmm1, Vector2

mulps xmm0, xmm1

haddps xmm0, xmm0

haddps xmm0, xmm0

// An example that computes two four component

// dot product from 4 vectors.

movaps xmm0, Vector1

movaps xmm1, Vector2

movaps xmm2, Vector3

movaps xmm3, Vector4

mulps xmm0, xmm1

mulps xmm2, xmm3

haddps xmm0, xmm2

haddps xmm0, xmm0
4-7

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
4.3.6. Guideline for MONITOR/MWAIT

MONITOR and MWAIT are provided to improve synchronization between multiple agents. In
the Prescott implementation, MONITOR/MWAIT are targeted for use by system software to
provide more efficient thread synchronization primitives. MONITOR defines an address range
used to monitor write-back stores. MWAIT is used to indicate that the software thread is waiting
for a write-back store to the address range defined by the MONITOR instruction.

4.3.6.1. MONITOR/MWAIT ADDRESS RANGE DETERMINATION

Software should know the exact length of the region that will be monitored for writes by the
MONITOR/MWAIT. Allocating and using a region smaller in length than the triggering area for
the processor could lead to false wake-ups (resulting from writes to data variables that are incor-
rectly located in the triggering area). Conversely, allocating a region greater in length than the
triggering area could lead to the processor not waking appropriately. CPUID allows for the
determination of the exact length of the triggering area. This length has no relationship to any
cache line size in the system and software should not make any assumptions to that effect. Based
on the size provided by CPUID, the OS/software should dynamically allocate structures with
appropriate padding. If correct allocation causes issues, choose to not use MONTIOR/MWAIT.

While a single length is expected to suffice for single cluster based systems, setting up the data
layout for systems with multiple clusters is expected to be more complicated. Depending on the
mechanism implemented by the chipset in such a system, a single monitor-line size may not
suffice.

Typically software will have a set of data variables that it monitors for writes. It will be neces-
sary to locate these in the monitor triggering area. To eliminate false wake-ups due to writes to
other variables, software will need to add padding around the monitored variables. This is
referred to as the padded area.

See also: Chapter 2, CPUID Extensions and Chapter 4.2.2., Detecting Prescott New Instructions
Technology Using CPUID.

4.3.6.2. WAKING-UP FROM MWAIT

Multiple events other than a write to the triggering address range can cause a processor that
executed MWAIT to wake up. These include:

• External interrupts: NMI, SMI, INIT, BINIT, MCERR

• Faults, Aborts including Machine Check

• Architectural TLB invalidations, including writes to CR0, CR3, CR4 and certain MSR
writes

• Voluntary transitions due to fast system call and far calls

Power management related events such as Thermal Monitor or chipset driven STP-CLK# asser-
tions will not cause the Monitor event pending bit to be cleared (Chapter 3, Instruction Set Refer-
ence: “MONITOR: Setup Monitor Address”). Debug traps and faults will not cause the Monitor
event pending bit to be cleared.
4-8

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
Example 4-1 below shows the typical usage of MONITOR/MWAIT.

Example 4-1. Pseudo Code to Use MONITOR/MWAIT

// Trigger[MONITORDATARANGE] is the memory address range that will be

// used as the trigger data range Trigger[0] = 0;

If (trigger[0] != TRIGERRDATAVALUE) {

EAX = &trigger[0]

ECX = 0

EDX = 0

MONITOR EAX, ECX, EDX

If (trigger[0] != TRIGERRDATAVALUE) {

EAX = 0

ECX = 0

MWAIT EAX, ECX

}

}

4-9

SYSTEM AND APPLICATION PROGRAMMING GUIDELINES
4-10

APPENDIX A

A.1. INSTRUCTION SUMMARY

Table A-1, lists the six types of floating-point exceptions that can be generated by Prescott New
Instructions. Table A-2 lists individual instructions and associated exceptions. All of the excep-
tions shown except the denormal-operand exception (#D) and invalid-operation exception for
stack underflow or stack overflow (#IS) are defined in IEEE Standard 754 for Binary Floating-
Point Arithmetic.

Table A-1. x87 FPU and SIMD Floating-point Exceptions

Floating-point
Exception Description

#IS Invalid-operation exception for stack underflow or stack overflow. (Can only be
generated for x87 FPU instructions.)

#IA or #I Invalid-operation exception for invalid arithmetic operands and
unsupported formats.

#D Denormal-operand exception.

#Z Divide-by-zero exception.

#O Numeric-overflow exception.

#U Numeric-underflow exception.

#P Inexact-result (precision) exception.

Table A-2. Prescott New Instruction Technology Instruction Set Summary

Instruction Description #I #D #Z #O #U #P

ADDSUBPD xmm1,
xmm2/m128

Add /Sub packed DP FP
numbers from
XMM2/Mem to XMM1.

Y Y Y Y Y

ADDSUBPS xmm1,
xmm2/m128

Add /Sub packed SP FP
numbers from
XMM2/Mem to XMM1.

Y Y Y Y Y

FISTTP m16int Store ST in int16 (chop)
and pop.

Y Y

FISTTP m32int Store ST in int32 (chop)
and pop.

Y Y

FISTTP m64int Store ST in int64 (chop)
and pop.

Y Y
A-1

HADDPD xmm1,
xmm2/m128

Add horizontally packed
DP FP numbers
XMM2/Mem to XMM1.

Y Y Y Y Y

HADDPS xmm1,
xmm2/m128

Add horizontally packed
SP FP numbers
XMM2/Mem to XMM1

Y Y Y Y Y

HSUBPD xmm1,
xmm2/m128

Sub horizontally packed
DP FP numbers
XMM2/Mem to XMM1

Y Y Y Y Y

HSUBPS xmm1,
xmm2/m128

Sub horizontally packed
SP FP numbers
XMM2/Mem to XMM1

Y Y Y Y Y

LDDQU xmm,
m128

Load unaligned integer
128-bit.

MONITOR eax,
ecx, edx

Set up a linear address
range to be monitored by
hardware.

MOVDDUP xmm1,
xmm2/m64

Move 64 bits representing
one DP data from
XMM2/Mem to XMM1
and duplicate.

MOVSHDUP
xmm1, xmm2/m128

Move 128 bits
representing 4 SP data
from XMM2/Mem to
XMM1 and duplicate high.

MOVSLDUP xmm1,
xmm2/m128

Move 128 bits
representing 4 SP data
from XMM2/Mem to
XMM1 and duplicate low.

MWAIT eax, ecx Wait until write-back store
performed within the
range specified by the
instruction MONITOR.

Table A-2. Prescott New Instruction Technology Instruction Set Summary

Instruction Description #I #D #Z #O #U #P
A-2

INDEX
A
ADDSUBPD instruction . 3-3
ADDSUBPS instruction . 3-6

C
CPUID instruction

cache and TLB characteristics 2-1
extended function CPUID information. 2-2
processor brand string. 2-2
version information. 2-1

F
FISTTP instruction . 3-9

H
HADDPD instruction . 3-11
HADDPS instruction. 3-15
HSUBPD instruction. 3-18
HSUBPS instruction. 3-21

L
LDDQU instruction . 3-25

M
MONITOR instruction . 3-27
MOVDDUP instruction. 3-29
MOVSHDUP instruction 3-31
MOVSLDUP instruction. 3-34
MWAIT instruction 3-34, 3-37

P
Prescott New Instructions Technology

introduction . 1-3
INDEX-1

INDEX
INDEX-2

	CHAPTER 1 Next Generation Intel® Processor Overview
	1.1. Key Features
	1.2. Hyper-Threading Technology
	1.3. Enhanced CPUID capabilities
	1.4. Prescott New Instructions
	1.4.1. One Instruction That Improves x87-FP Integer Conversion
	1.4.2. Three Instructions Enhance LOAD/MOVE/DUPLICATE Performance
	1.4.3. One Instruction Provides Specialized 128-bit Unaligned Data Load
	1.4.4. Two Instructions Provide Packed Addition/Subtraction
	1.4.5. Four Instructions Provide Horizontal Addition/Subtraction
	1.4.6. Two Instructions Improve Synchronization Between Agents

	CHAPTER 2 CPUID Extensions
	2.1. Values Returned USING CPUID
	2.1.1. Extended Feature Information Returned in ECX and EDX
	2.1.2. Version Information Returned in EAX
	2.1.3. Brand and Maximum Frequency Identification
	2.1.4. Determining Support for the Processor Brand String
	2.1.5. Algorithm for Extracting Maximum Processor Frequency
	2.1.6. Determining Explicit Cache Descriptors

	CHAPTER 3 Instruction Set Reference
	3.1. Interpreting the Instruction Reference Pages
	3.2. Prescott New Instructions
	ADDSUBPD: Packed Double-FP Add/Subtract
	ADDSUBPS: Packed Single-FP Add/Subtract
	FISTTP: Store Integer with Truncation
	HADDPD: Packed Double-FP Horizontal Add
	HADDPS: Packed Single-FP Horizontal Add
	HSUBPD: Packed Double-FP Horizontal Subtract
	HSUBPD: Packed Double-FP Horizontal Subtract (Continued)
	HSUBPD: Packed Double-FP Horizontal Subtract (Continued)
	HSUBPS: Packed Single-FP Horizontal Subtract
	LDDQU: Load Unaligned Integer 128 bits
	MONITOR: Setup Monitor Address
	MOVDDUP: Move One Double-FP and Duplicate
	MOVSHDUP: Move Packed Single-FP High and Duplicate
	MOVSLDUP: Move Packed Single-FP Low and Duplicate
	MWAIT: Monitor Wait

	CHAPTER 4 System and Application Programming Guidelines
	4.1. System Programming Model and Requirements
	4.1.1. Enabling Prescott New Instructions Support in a System Executive
	4.1.2. FXSAVE/FXRSTOR Replaces Use of FSAVE/FRSTOR
	4.1.3. Initialization
	4.1.4. Exception Handler
	4.1.4.1. Device Not Available (DNA) Exceptions
	4.1.4.2. Numeric Error flag and IGNNE#
	4.1.4.3. Technology Emulation

	4.1.5. Detecting Support for MONITOR/MWAIT

	4.2. Application Programming Model
	4.2.1. Detecting Support for MONITOR/MWAIT Instructions
	4.2.2. Detecting Prescott New Instructions Technology Using CPUID

	4.3. Guidelines for Prescott New Instructions
	4.3.1. Guideline for Data Movement Instructions
	4.3.2. Guideline for Packed ADDSUBxx Instructions
	4.3.3. Guideline for FISTTP
	4.3.4. Guideline for Unaligned 128-bit Load
	4.3.5. Guideline for Horizontal Add/Subtract
	4.3.6. Guideline for MONITOR/MWAIT
	4.3.6.1. MONITOR/MWAIT Address Range Determination
	4.3.6.2. Waking-up From MWAIT

	APPENDIX A
	A.1. Instruction Summary

