
Document Number: 344991-003US

Intel® TDX Virtual Firmware

Design Guide

December 2022

Introduction

Document Number: 344991-003US

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning

Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter

drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with

your system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer

or retailer.

The products described may contain design defects or errors known as errata, which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness

for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or

usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel

product specifications and roadmaps

Copies of documents that have an order number and are referenced in this document may be obtained by calling 1-800-548-

4725 or visit www.intel.com/design/literature.htm.

Intel, the Intel logo, are trademarks of Intel Corporation in the USA and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2020 Intel Corporation. All rights reserved.

Introduction

Document Number: 344991-003US

Contents

1 Introduction .. 7

1.1 Background .. 7
1.2 Overview ... 7
1.3 Terminology ... 8

2 Architectural Overview ... 11

2.1 TDVF Features .. 11
2.2 TD Hardware .. 11
2.3 Boot Flow... 12

2.3.1 VMM Setup Phase .. 12
2.3.2 TDVF Launch Phase ... 12
2.3.3 TDVF OS Boot Phase .. 13

2.4 TDVF Requirements... 13
2.5 Reproducibility .. 14

2.5.1 Challenge ... 14
2.5.2 Solution.. 14

2.6 Security Considerations ... 15
2.6.1 General Security Practice .. 15
2.6.2 Side Channel Security Practice .. 15
2.6.3 Confidential Computing Virtual Firmware Security Practice 16
2.6.4 TDX Specific Security Practice ... 17

3 TDVF Binary Image .. 19

3.1 Boot Firmware Volume (BFV) ... 19
3.2 Configuration Firmware Volume (CFV) ... 19

4 TD Launch .. 21

4.1 TDVF initialization ... 21
4.1.1 VCPU Init State ... 21
4.1.2 System Information ... 21
4.1.3 Long Mode Transition ... 21
4.1.4 Setup stack to call C function .. 22
4.1.5 Switch to UEFI environment .. 22

4.2 TD Hand-Off Block (HOB) ... 23
4.2.1 PHIT HOB ... 23
4.2.2 Resource Description HOB .. 23
4.2.3 CPU HOB .. 24
4.2.4 GUID Extension HOB .. 24

4.3 TDVF AP handling ... 24
4.3.1 AP Init State ... 24
4.3.2 AP Information Reporting from VMM to TDVF 24
4.3.3 AP initialization in TDVF .. 25
4.3.4 AP information reporting from TDVF to OS 25
4.3.5 AP initialization in OS ... 26

5 TDVF UEFI Secure Boot Support .. 29

5.1 Provisioning UEFI Secure Boot .. 29
5.2 Variable Driver ... 29

6 TDVF ACPI Support .. 30

Introduction

Document Number: 344991-003US

6.1 Source of ACPI Tables ... 30
6.2 ACPI Support ... 30
6.3 FADT ... 30
6.4 DSDT .. 30
6.5 FACS ... 30
6.6 MADT .. 30

7 TD Memory Management .. 32

7.1 Memory Type ... 32
7.1.1 Private Memory Indicator in Guest Page Table. 32

7.2 Initial State from VMM ... 32
7.2.1 Memory Type in TD Resource HOB ... 33

7.3 Memory Information for DXE Core .. 35
7.3.1 Memory Type in DXE Resource HOB ... 37

7.4 Memory Map to TD-OS .. 38
7.5 Convert Shared to Private .. 38
7.6 Convert Private to Shared .. 39
7.7 Memory State Transition .. 39
7.8 Optimization Consideration .. 40

7.8.1 Partial Memory Initialization in Pre-UEFI 40
7.8.2 Partial Memory Initialization in UEFI ... 40
7.8.3 Parallelized Memory Initialization ... 41
7.8.4 Pre-allocating Virtual Device IO Buffer .. 41

8 TD Measurement ... 42

8.1 Measurement Register Usage in TD ... 42
8.2 Fundamental Support .. 43
8.3 Virtual Firmware Configuration ... 45

8.3.1 Build-Time Configuration .. 45
8.3.2 Launch-Time Configuration ... 45
8.3.3 Runtime Configuration.. 45
8.3.4 Hypervisor Specific Configuration Interface 45

8.4 Attestation and Quote Support ... 46

9 TDVF Device Support ... 48

9.1 Minimal Requirement ... 48
9.2 VirtIo Requirement.. 48
9.3 Security Device .. 48
9.4 HotPlug Device ... 49
9.5 PCI Device Option ROM ... 49

10 Exception Handling .. 50

10.1 Virtualization Exception (#VE) .. 50
10.2 Instruction Conversion... 50

11 TDVF Metadata .. 51

11.1 TDVF Metadata Location .. 51
11.2 TDVF descriptor .. 51

12 OS Direct Boot .. 55

12.1 Measurement ... 55

13 Minimal TDVF (TD-Shim) Requirements .. 57

Introduction

Document Number: 344991-003US

13.1 Hardware Virtualization-based Containers .. 57
13.1.1 TD Container Requirements .. 57

13.2 TD-Shim Launch ... 57
13.2.1 TD-Shim AP Handling ... 58

13.3 TD-Shim Secure Boot Support .. 58
13.4 TD-Shim ACPI Support .. 58
13.5 TD-Shim Memory Management ... 58

13.5.1 Memory Type in Initialization .. 58
13.5.2 Memory Map for OS ... 59

13.6 TD-Shim Measurement .. 59
13.6.1 TD Measurement ... 59
13.6.2 TD Event Log .. 60

13.7 TD-Shim Device Support .. 60
13.8 TD-Shim Exception Handling .. 60

14 Disk Encryption ... 62

14.1 Overview ... 62
14.2 Attestation Agent .. 64

14.2.1 Network Communication ... 64
14.2.2 Authenticated Secure Session ... 64
14.2.3 Key Server Information .. 64
14.2.4 Key transport from Server .. 65

14.3 Decryption Agent .. 65
14.3.1 Key Passing – SVKL table ... 65
14.3.2 Storage Volume Key Usage in TDVF ... 65

14.4 High-level Flow Examples .. 65
14.4.1 Example on Full Disk Encryption .. 65
14.4.2 Example on Data Partition Encryption ... 66

Appendix A - References ... 67

Figures

Figure 1-1: Intel TDX Architecture .. 8
Figure 3-1: TDVF Configuration Firmware Volume ... 20
Figure 4-1: TDVF General Flow ... 23
Figure 7-1: TD Hob and Initial Memory Layout ... 33
Figure 7-2: DXE HOB and Runtime Memory Layout ... 37
Figure 7-3: TDVF Memory State Transition ... 39
Figure 8-1: TDVF Measurement .. 44
Figure 8-2: TDVF Measurement Interface... 45
Figure 8-3: Attestation and Quote ... 47
Figure 11-1: TDVF Metadata Layout .. 51
Figure 14-1: Preboot Disk Decryption Flow... 63
Figure 14-2: Early-boot Disk Decryption Flow .. 63

Tables

Introduction

Document Number: 344991-003US

Table 1-1: Differences between VMX and TDX .. 8
Table 1-2: Terminology ... 8
Table 7-1: Memory Type in TD Resource HOB .. 33
Table 7-2: TDVF memory state from VMM .. 34
Table 7-3: Memory Type in DXE resource HOB ... 37
Table 8-1: TD Measurement-related Register ... 42
Table 11-1: TDVF_DESCRIPTOR definition ... 52
Table 11-2: TDVF_SECTION definition ... 52
Table 11-3: TDVF_DESCTION.Attributes definition .. 53
Table 11-4: TDVF_DESCTION.Attributes definition .. 53
Table 12-1: OS loader measurement ... 55
Table 13-1: TD-Shim memory state from VMM ... 58
Table 13-2: TD Measurement-Related Registers for TD-Shim ... 59
Table 14-1: Disk Encryption Use Cases .. 62
Table 14-2: Security Property Example... 63

Introduction

Document Number: 344991-003US

1 Introduction

1.1 Background

Intel Total Memory Encryption (TME) engine encrypts the platform’s entire memory
with a single key and provides the ability to specify use of a specific key for a page of

memory. The Multi-Key mode of TME (MK-TME) extends TME to support multiple
encryption keys. In a virtualization scenario, a Virtual Machine Manager (VMM) or
hypervisor will manage keys to transparently support legacy operating systems
without any changes (thus, MKTME can also be viewed as TME virtualization in these
scenarios). An operating system (OS) may take advantage of MKTME capabilities in a

native or virtualized environment. When properly enabled, MKTME is available to each

guest OS in a virtualized environment, so both native and guest OS can take
advantage of MKTME. In these usages, the VMM is in the Trust Computing Base (TCB).

Intel Trust Domain Extensions (Intel TDX) refers to an Intel technology that extends
Virtual Machines Extensions (VMX) and Multi-Key Total Memory Encryption (MKTME)
with a new kind of virtual machine guest called a Trust Domain (TD). A TD runs in a

CPU mode that protects the confidentiality of its memory contents and its CPU state
from any other software, including the hosting Virtual Machine Monitor (VMM), unless
explicitly shared by the TD itself.

The TDX solution is built using a combination of Intel® Virtual Machine Extensions

(VMX) and Multi-Key Total Memory Encryption (MK-TME), as extended by the Intel®
Trust Domain Instruction Set Architecture Extensions (TDX ISA). An attested software
module called The Intel TDX module implements the TDX architecture.

The platform is managed by a TDX-aware host VMM. A host VMM can launch and
manage both guest TDs and legacy guest VMs. The host VMM maintains all legacy

functionality from the legacy VMs perspective; it’s restricted only with regard to the
TDs it manages.

In Summary, Intel TDX:

1) Removes the cloud host software and devices from the Trust Computing Base

(TCB) of cloud (TD) tenants.

2) Provides memory encryption and integrity multi-tenancy for hardware attack

protection.

3) Supports TD measurement for attestation to a relying party.

1.2 Overview

Intel® Trust Domain Extensions (Intel® TDX) provides the capabilities required to
enable an TDX-aware VMM to manage the lifecycle of a TD.

Introduction

Document Number: 344991-003US

Figure 1-1: Intel TDX Architecture

Fundamental differences between Virtual Machine Extension (VMX) and Intel TDX are
outlined in the following table.

Table 1-1: Differences between VMX and TDX

 Access to Guest
State

Transitions for State
Save & Restore

Controls

VMX VMM has full access VMM SW augments VMX

transitions (e.g. general-

purpose registers)

VMM has a rich set of

controls to interact with

the VM in order to de-

privilege the VM

TDX VMM has no direct
access;

TD may volunteer info

State transitions

completed are managed

by Intel TDX Module in

Secure-Arbitration Mode

(SEAM)

VMM has a limited set of

controls for resource

management

Trust Domain Virtual Firmware (TDVF) is required to provide TD services to the TD

Guest OS. This document describes the TDVF architecture.

TDVF reference code is integrated to TianoCore open source repository:
https://github.com/tianocore/edk2/tree/master/OvmfPkg. A minimal TDVF (td-shim)

reference code is at confidential container repository: https://github.com/confidential-
containers/td-shim.

1.3 Terminology

Table 1-2: Terminology

Term Description

ACPI Advanced Configuration and Power Interface

https://software.intel.com/content/www/us/en/develop/documentation/debug-extensions-windbg-hyper-v-user-guide/top/virtual-machine-extension-vmx-operation.html

Introduction

Document Number: 344991-003US

AP Application Processor

APIC Advanced Programmable Interrupt Controller

BFV Boot Firmware Volume

BSP Bootstrap Processor

CFV Configuration Firmware Volume

CSM Compatibility Support Module

DXE Driver Execution Environment

EPT Extended Page Table

GPA Guest Physical Address

GPAW Guest Physical Address Width

HOB Hand Off Block

HPA Host Physical Address

MADT Multiple APIC Description Table

MKTME Multi-Key Total Memory Encryption

MPWK Multiple Processor Wakeup

MRCONFIGID Measurement Register of configuration data

MRTD TD Measurement Register

OVMF Open Virtual Machine Firmware

PEI Pre-EFI Initialization

RA-TLS Remote Attestation-TLS

RTMR Runtime Extendable Measurement Register

SEAM Secure-Arbitration Mode

SEC Security Phase

SMM System Management Mode

SMX Safer Mode Extensions

TCB Trust Computing Base

TCG Trusted Computing Group

TD Trust Domain

TDVF Trust Domain Virtual Firmware

TDX (Intel) Trust Domain Extensions

TLS Transport Layer Security

TME Total Memory Encryption

UEFI Unified Extensible Firmware Interface

VCPU Virtual CPU

VE Virtualization Exception

VM Virtual Machine

Introduction

Document Number: 344991-003US

VMCS Virtual Machine Control State

VMM Virtual Machine Monitor

VMX Virtual Machine Extension

§

Architectural Overview

Document Number: 344991-003US

2 Architectural Overview

2.1 TDVF Features

TDVF has the following features:

1) Use Unified Extensible Firmware Interface (UEFI) Secure Boot as base with

extensions for TD launch.

2) Use Trusted Computing Group (TCG) Trusted Boot to perform a measured and

verified launch of a guest OS loader or kernel.

3) Simplify firmware by removing features found in traditional UEFI implementations:

a) SEC, PEI, SMM (DXE Only)

b) CSM (UEFI Class 3 OS only)

c) Setup UI

d) Recovery

e) Capsule-based Firmware Update

f) ACPI S3 (not supported by TDX guests)

2.2 TD Hardware

A TD is based on the following hardware:

1) CPU: x2APIC

2) CPU: xFLUSH, STI, CLI, LIDT, LGDT instruction are allowed.

3) VMM-specific Virtual Device (block device, console, network). This is highly
dependent on the hypervisor configuration (e.g. VirtIo device for KVM/XEN,

Vmbus device for Microsoft Hyper-V).

4) Hot Plug – CPU and memory hotplug are not supported now. Device hotplug is out
of scope of this document.

5) TD may or may not support below feature. If it is supported, the device must be

access via TDCALL [TDG.VP.VMCALL] interface instead of direct hardware access.
For example, the IO access needs to be replaced by TDCALL [TDG.VP.VMCALL]
<INSTRUCTION.IO>.

a) Persistent NV storage.

b) The emulated physical device. (Graphic, Keyboard, Storage, etc.)

Architectural Overview

Document Number: 344991-003US

c) I/O Subsystems (PCI, USB, ISA, DMA, IOMMU, PIC, PIT, etc.). For example,

the PCI might only be used to emulate the VirtIo device.

d) MMIO (APIC, HPET)

e) vTPM

2.3 Boot Flow

A TD launch takes below steps:

1) VMM sets up TDVF, calls Intel TDX module to create the initial measurement, then
calls Intel TDX module to launch TDVF.

2) TDVF boots and enables UEFI Secure Boot.

3) TDVF prepares TD event log and launches the OS loader.

2.3.1 VMM Setup Phase

The TDVF image includes firmware code, which is measured into TD Measurement

Register (MRTD). The TDVF image may also include static configuration data, including
UEFI Secure Boot certificates (PK/KEK/db/dbx). The VMM provides dynamic
configuration data, including the hand-off block (HOB) list as a parameter for the
entrypoint.

The VMM calls Intel TDX module to initialize TD memory. This includes firmware code

and UEFI Secure Boot configuration read-only data captured by the tenant:

• Intel TDX module associates memory via Extended Page Table (EPT) with the

TD guest.

• Intel TDX module associates logical processors with TD guest via TD-Virtual
Machine Control State (VMCS).

• Intel TDX module performs TDENTER instruction on all processors, including

Bootstrap Processor (BSP) and Application Processors (APs).

2.3.2 TDVF Launch Phase

TDVF is launched on all processors:

• All processors start in 32-bit protected mode with flat descriptors (paging

disabled).

• The CPU with VCPU_INDEX 0 is elected as BSP, the other CPUs are APs.

• Startup code switches to 4-level paging enabled (0-4GB). Option for startup
code to switch to 5-level paging enabled (0-4GB).

• BSP performs Virtual Firmware initialization and determines how many APs to

wake via TDCALL [TDG.VP.INFO].

Architectural Overview

Document Number: 344991-003US

• APs perform TDCALL [TDG.VP.INFO] and wait for virtual-wake triggered in-

memory by BSP.

2.3.3 TDVF OS Boot Phase

The TDVF prepared information and boots to OS loader finally.

• Memory map is prepared, and private memory is used.

• ACPI Tables report platform information.

• UEFI Secure Boot is enabled.

• TD event log is prepared.

• APs are in wait for wake-up.

2.4 TDVF Requirements

TDVF should meet the following requirements:

1) TDVF is launched by a hypervisor and Intel TDX module (see 'TD Launch' for
details).

a) The entry point of TDVF is 32-bit protected mode, launched by Intel TDX

module.

b) TDVF enables long mode and continues to run in long mode.

c) TDVF parses system information passed from the hypervisor.

d) TDVF halts the AP till AP wakeup.

2) TDVF launches guest TD.

a) TDVF starts the guest TD OS loader.

b) TDVF provides memory map to guest TD (see 'TD Memory Management' for

details).

c) TDVF provides ACPI table to guest TD (see 'TDVF ACPI Support' for details).

d) TDVF supports multi-processors and allows guest TD to wake up APs. (see

'TD Launch' for details).

3) Security

a) TDVF enables UEFI Secure Boot (see 'TDVF UEFI Secure Boot Support' for
details)

b) TDVF creates the TD event log and pass it to guest TD (see 'TD

Measurement' for details).

c) TDVF sets up private memory (see 'TD Memory Management' for details).

Architectural Overview

Document Number: 344991-003US

2.5 Reproducibility

If a virtual firmware (TDVF or Td-shim) is used in a service TD, the binary should be

reproducible, meaning you can recreate the same release binary with the same source
code version and same compiler version. This condition should be true under any
circumstances, anytime, on any machine, and any source path location.

2.5.1 Challenge

There are reproducibility challenges today. For example, some C code may use

__FILE__, __LINE__, __DATE__, __TIME__ as the build-in information. The __FILE__
may change based on the file location. __DATA__ and __TIME__ may change based
on the build time.

The compiler may generate a debug entry, including a source file path. The Rust

compiler may add additional tool file paths, such as CARGO_HOME and
RUSTUP_HOME.

For a PE/COFF image, the compiler may generate a time stamp for when the binary is
created. In addition, the compiler may include the unique GUID to provide detailed

debugging information.

Refer to the Microsoft PE/COFF specification for more details.

2.5.2 Solution

To resolve the reproducibility challenge, we have the following recommendation:

2.5.2.1 Code

The C code should use __FILE__, __LINE__, __DATE__, __TIME__ only for debug

purposes.

If present, the info should be included in the DEBUG macro and removed in release
build.

2.5.2.2 Compiler Option

Don’t generate any debug info in the release build. Strip all symbols.

2.5.2.3 Additional tools

The additional tools should be created to zero the debug data fields in the PE image,

and zero the time stamp and unique GUID.

For example, the EDKII project (using C) includes a `GenFW` tool that has -z, --zero

option to zero such information. The Td-shim project (using Rust) includes a `td-shim-
strip-info` tool that can zero such information for a PE image and zero the Rust tool
path.

Architectural Overview

Document Number: 344991-003US

2.6 Security Considerations

This section introduces security practices for the TD virtual firmware. The Linux kernel

version is at https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html.

2.6.1 General Security Practice

2.6.1.1 Minimize the Attack Surface

The virtual firmware should include a driver only when it is necessary. For example,

the TCP/IP network is a big attack surface, and it should be excluded in the TDVF.

2.6.1.2 Input Validation

Any input data from VMM should be treated as untrusted. The data must be verified

before use. If the data is in shared memory, TDVF should copy the data to private
memory, then validate and use.

2.6.1.3 Enable Defensive Technologies

TDVF should consider enabling the following technologies:

1) Data Execution Protection (DEP)

The virtual firmware may set up DEP to mark data regions (including stack and heap)

to be non-executable, and mark code regions to be read-only to prevent code
injection attacks.

2) Address Space Layout Randomization (ASLR)

The virtual firmware may use ASLR for the heap/stack allocation. The effectiveness of
ASLR is based upon random bit entropy. If the TDVF only has limited memory
resources, then the entropy bit cannot be too large. But shifting even a few bits offers
some benefit.

3) Control Flow Enforcement Technology (CET)

The virtual firmware may set up CET Shadow Stack (SS) protection to prevent Return

Oriented Programming (ROP) attacks.

The virtual firmware may set up CET Indirect Branch Tracking (IBT) to prevent Jump
Oriented Programming (JOP) attacks. This mainly depends upon the compiler’s
capability.

2.6.2 Side Channel Security Practice

The TDVF should consider side channel attacks that may steal secrets, including but

not limited to the disk encryption key, TLS session key, SPDM session key, ephemeral
private key, etc. The host firmware version is at
https://www.intel.com/content/www/us/en/developer/articles/technical/software-

Architectural Overview

Document Number: 344991-003US

security-guidance/technical-documentation/host-firmware-speculative-side-channel-
mitigation.html.

2.6.2.1 Bound Check Bypass (Spectre Variant 1)

The TDVF should use LFENCE before parsing any VMM input data if the data includes

length or offset field, such as CFV and TD_HOB.

Care must be taken that the data from the device might also be from VMM, including
MMIO, IO, or PCI Configuration. The device driver should also follow the same rule to

consume the length or offset fields.

2.6.2.2 Branch Target Injection (Spectre Variant 2)

N/A. Branch predictions cached by the CPU before entering a guest TD should not

impact the behavior of that TD. The Intel TDX module helps ensure that by applying
CPU mechanisms to isolate the branch predictions of each guest TD from branch
predications done elsewhere.

2.6.2.3 Rogue Data Cache Load (Meltdown Variant 3)

N/A. The TDVF is a bare metal execution environment. All code runs in supervisor

mode.

2.6.2.4 Rogue System Register Load (Meltdown Variant 3a)

N/A.

2.6.2.5 Speculative Store Bypass (Spectre Variant 4)

N/A.

2.6.3 Confidential Computing Virtual Firmware Security Practice

2.6.3.1 Measured Boot

TDVF should follow the measured boot principle to construct the chain of trust.

Any configuration data from VMM should be measured to a measurement register

(MR) before being used, including but not limited to the data in CFV, TD_HOB (ACPI),
or VMM specific configuration, such as QEMU FW_CONFIG_IO.

The dynamic data from VMM, such as device state or device base address register,

should not be measured. These data should be treated as untrusted input and should
be verified before use.

Please refer to chapter 8 TD Measurement for more detail.

Architectural Overview

Document Number: 344991-003US

2.6.3.2 Random Number

If a random number is required, TDVF should only use RDSEED/RDRAND CPU
instruction.

Other software random number, such as virtio-rng is not trusted.

2.6.3.3 Timer

TDX architecture does not provide a trusted timer. The legacy source, such as

Runtime-Clock (RTC) via port 0x70/0x71 is not trusted.

If a trusted timer is required, the TDVF should connect to an authenticated time

server.

2.6.3.4 CPU Information

The TDVF may require accessing CPU information such as CPUID or MSR. Most of

those resources are emulated by VMM, and they cannot be trusted.

Only a small portion of CPUID and MSR are provided to the TDX-module, and they can
be trusted. Please refer to the TDX Module architecture specification, chapter 18 ABI
reference: CPU Virtualization Tables.

2.6.3.5 Device Information

The TDVF may require accessing resources such as MMIO, IO, PCI Configuration
Space, etc. Those resources are emulated by VMM, and they cannot be trusted. TDVF
should verify the data before use.

2.6.4 TDX Specific Security Practice

2.6.4.1 Private Memory Acceptance

The TDVF needs to use TDCALL[TDG.MEM.PAGE.ACCEPT] to accept PENDING pages
added by VMM via SEAMCALL[TDH.MEM.PAGE.AUG]

The TDVF should track the accepted pages and not accept the previously accepted
memory. Otherwise, the VMM could zero-out a page by removing it and add a new
one at the same address.

2.6.4.2 MMIO Access in #VE handler

To support an unmodified driver using MMIO, a TDVF may implement a Virtualization
Exception (#VE) handler for an extended page table (EPT) violation. The #VE handler
will use the guest physical address (GPA) as the MMIO address in
TDCALL[TDG.VP.VMCALL]<#VE.RequestMMIO>.

In #VE handler, the TDVF should check if the SHARED bit is set in the GPA, and
should reject this request if the SHARED bit is clear. Otherwise, the VMM could remove
an accepted page and TDH.MEM.PAGE.AUG the same page to put the page in
PENDING state. Then the VMM could use

Architectural Overview

Document Number: 344991-003US

TDCALL[TDG.VP.VMCALL]<#VE.RequestMMIO> to inject the malicious data to the
private page.

2.6.4.3 TD ATTRIBUTES.SEPT_VE_DISABLE

Ideally, the VMM should set SEPT_VE_DISABLE in the TD ATTRIBUTES to prevent an

EPT violation to #VE caused by guest TD access of PENDING pages.

The TDVF early boot code should read the TD ATTRIBUTES via TDCALL[TDG.VP.INFO]
to ensure the VMM sets the SEPT_VE_DISABLE bit. Otherwise, there is risk in the #VE

handler for this EPT violation.

2.6.4.4 TDCS.NOTIFY_ENABLES

TDX module may raise a #VE as a notification mechanism when it detects excessive

Secure EPT violations raised by the same TD instruction (zero-step attack is suspected
by TDX module). This is only done if bit 0 of TDCS.NOTIFY_ENABLES field is set.

TDCS.NOTIFY_ENABLES is 0 by default. The TDVF should not set the

TDCS.NOTIFY_ENABLES via TDCALL[TDG.VM.WR]. Otherwise, there is risk in the #VE

handler for this EPT violation.

TDVF Binary Image

Document Number: 344991-003US

3 TDVF Binary Image

This chapter describes the TDVF binary image format.

3.1 Boot Firmware Volume (BFV)

The TDVF includes one Firmware Volume (FV) known as the Boot Firmware Volume.

The FV format is defined in the UEFI Platform Initialization (PI) specification.

The Boot Firmware Volume includes all TDVF components required during boot.

The file system GUID must be EFI_FIRMWARE_FILE_SYSTEM2_GUID or

EFI_FIRMWARE_FILE_SYSTEM3_GUID, which is defined in PI specification.

1) TdResetVector – this component provides the entrypoint for TDVF, switch to long

mode, and jumps to the DxeIpl. The FFS GUID must be
EFI_FFS_VOLUME_TOP_FILE_GUID, which is defined in PI specification.

2) TdDxeIpl – This component prepares the required parameter for DxeCore and

jumps to DxeCore.

3) DxeCore – This is standard DxeCore, used in standard UEFI firmware. It

dispatches all DXE modules.

4) DXE Modules – These are TDVF-specific modules, to initialize the TDVF

environment and launch the OS loader.

The BFV may include an initial static page table to assist the ResetVector switch from
32-bit mode to 64-bit mode.

3.2 Configuration Firmware Volume (CFV)

TDVF may also include a configuration firmware volume (CFV) that is separated from
the boot firmware volume. The reason to do this is because the CFV is measured in
RTMR, while the boot FV is measured in MRTD.

Configuration Firmware Volume includes all the provisioned data. This region is read
only. One possible usage is to provide UEFI Secure Boot Variable content in this
region, such as PK, KEK, db, dbx.

This region may include additional configuration variables.

The file system GUID must be EFI_SYSTEM_NV_DATA_FV_GUID, which is defined in

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/System
NvDataGuid.h.

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/SystemNvDataGuid.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/SystemNvDataGuid.h

TDVF Binary Image

Document Number: 344991-003US

The variable storage header must be VARIABLE_STORE_HEADER, and the variable
header must be VARIABLE_HEADER. Both are defined in
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/Variable
Format.h.

Figure 3-1: TDVF Configuration Firmware Volume

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/VariableFormat.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/VariableFormat.h

TD Launch

Document Number: 344991-003US

4 TD Launch

This chapter describes how a VMM passes control to TDVF.

4.1 TDVF initialization

Because TDVF relies on Intel TDX module, initialization flow is different from the

typical firmware used for VM support (e.g. Open Virtual Machine Firmware (OVMF)).

4.1.1 VCPU Init State

When Intel TDX module launches TDVF, the virtual CPU (VCPU) executes in 32-bit

protected mode with flat descriptor paging disabled. See [TDX-CPU] for details on
the VCPU init state.

4.1.2 System Information

When the VMM calls Intel TDX module to launch TDVF, the VMM must build system
information and pass it to TDVF as part of a TD HOB in RCX and R8 (the system

memory location) if the TD_HOB section is present in the TDVF metadata area. If the
TD_HOB section in the TDVF metadata area is absent, then the PermMem (permanent
memory) section must be present and VMM must follow the memory requirement in
the permanent memory section.

Please refer to 'TD Memory Management' for details on memory information reporting.

4.1.3 Long Mode Transition

The 32-bit TDVF init code will set up paging and switch to long mode. Because TDCALL
is only valid in long mode, the 32-bit TDVF init code cannot invoke TDCALL to convert
private memory regions, and 32-bit TDVF init code cannot access any permanent
memory.

The 32-bit TDVF init code may refer to an initial temporary page table inside of the
TDVF flash image (ROM page table), which is created at build time. Because the page
table is not updatable, the page table Access Bit and Dirty Bit must be set to 1. The
ROM page table must be in the Boot Firmware Volume if it is implemented.

Once TDVF switches to long mode it will obtain permanent memory information from

the resource description HOB, allocate private memory, and create the final page table

in private memory.

The TDVF should refer to GPAW (RBX[0:6]) to decide how much memory can be

covered by the page table. If the GPAW is 48bit, then TDVF should set up 4 level
paging. If the GPAW is 52bit, the TDVF should set up 5 level paging.

TD Launch

Document Number: 344991-003US

4.1.4 Setup stack to call C function

The 32-bit TDVF init code runs on the flash. Because it cannot access any permanent
memory, the code cannot use stack, which is required by C language.

After TDVF switches to the long mode and issues TDCALL to convert the shared

memory to private memory, the TDVF can set up stack in the private memory and call
C function.

4.1.5 Switch to UEFI environment

The purpose of PEI is to detect and initialize memory. Since TDVF already knows the

memory information via the HOB, the TDVF may skip PEI phase for information

collection, and jump directly to DXE. If more HOB entry is required, the TDVF may
allocate a new HOB from permanent memory and pass it to DXE.

The whole boot flow is shown below:

Stage 1: TD Init Code - 32-bit protected mode (stackless)
1) Use the TDVF flash image for ROM page table.
2) Switch to long mode

Stage 2: TD Init Code - 64-bit long mode (stackless)

1) Parse the TD Hob to get the memory location.
2) Set up initial private page, now we can use memory.
3) Set up temp stack from private page
4) Jump to C-code.

Stage 3: TD Init Code - 64-bit long mode (C-code)

1) Setup TD Initial Heap from private page.

2) Create the DXE Hob in the heap, based upon TD Hob.
3) Setup final page table in the heap.
4) Set up final stack in the heap.
5) Relocate DXE core in the heap.
6) Jump to DXE

Stage 4: UEFI environment
1) Dispatch drivers.
2) Wake up APs
3) Setup ACPI table
4) Prepare TD measurement
5) Prepare memory map
6) Start Console and storage Device

7) Invoke OS loader

Stage 5: OS environment
1) Init OS
2) Wake up APs.

The following figure shows the general TDVF flow.

TD Launch

Document Number: 344991-003US

Figure 4-1: TDVF General Flow

4.2 TD Hand-Off Block (HOB)

The TD HOB list is used to pass the information from VMM to TDVF. The HOB format is
defined in PI specification.

The TD HOB must include PHIT HOB, Resource Descriptor HOB. Other HOBs are

optional.

The TDVF must create its own DXE HOB based upon TD HOB and pass the DXE HOB to

DXE Core. The DXE HOB requirements are described in the UEFI PI specification.

4.2.1 PHIT HOB

The TD HOB must include PHIT HOB as the first HOB. EfiMemoryTop,

EfiMemoryBottom, EfiFreeMemoryTop, and EfiFreeMemoryBottom shall be zero.

4.2.2 Resource Description HOB

The TD HOB must include at least one Resource Description HOB to declare the
physical memory resource.

Any DRAM reported here should be accepted by TDVF, except the Temporary

memory and TD HOB regions, which are declared in the TD metadata (see section 11).
The resource HOB may optionally report the MMIO and IO regions based on the guest
hardware provided by the VMM.

TD Launch

Document Number: 344991-003US

4.2.3 CPU HOB

The CPU HOB is optional; if it is included the TDVF must ignore it and create its own

CPU HOB for DXE. This CPU HOB shall have SizeOfMemorySpace equal to GPAW (48

or 52) and SizeOfIoSpace (0 or 16) based on the IO reported by the Resource HOB.

4.2.4 GUID Extension HOB

The TD HOB may include the GUID extension HOB to describe the TD Feature, which is
VMM or TDVF specific. Any GUID extension HOB in TD HOB must be passed to DXE
HOB.

4.3 TDVF AP handling

4.3.1 AP Init State

The AP init state is exactly same as the BSP init state.

The VCPU_INDEX is reported by INIT_STATE.RSI or TD_INFO.R9[0:31]. It is the

starting from 0 and allocated sequentially on each successful TDINITVP.

The NUM_VCPUS is reported by TD_INFO.R8[0:31]. It is the Number of Virtual CPUs

that are usable, i.e. either active or ready. The TDVF need use this number to
determine how many CPUs will join.

The MAX_VCPUS is reported by TD_INFO.R8[32:63]. It is TD's maximum number of

Virtual CPUs. This value should be ignored by the TDVF in this version. It may be used
for other purpose in future version such as later-add.

Intel TDX module will start the VCPU with VCPU_INDEX from 0 to (NUM_VCPUS – 1).

As such, the TDVF can treat the BSP as the CPU with VCPU_INDEX 0. However, the

TDVF cannot assume that the CPU with VCPU_INDEX 0 is the first one to launch. The

TDVF needs to rendezvous in early initialization code, let the BSP execute the main
boot flow and let APs execute in the wait loop.

4.3.2 AP Information Reporting from VMM to TDVF

In TDX, there is no INIT/SIPI protocol. The expectation is that VMM need launch all
VCPU to the TDVF entrypoint. After reset, all CPUs run the same initialization code.

TDVF will do the BSP selection.

There might be several ways for BSP selection. Here the TDVF may rely on the
information from Intel TDX module, but the TDVF must not rely on the information
from VMM.

1) All CPUs try to set a global flag. The first CPU set the flag is elected as the BSP
and does the rest of BSP work. The rest CPUs just wait for the release signal
from the BSP, then does the rest of AP work. (Do not rely on the information
provided by Intel TDX module)

TD Launch

Document Number: 344991-003US

2) CPU with VCPU_INDEX 0 is BSP. CPUs with non-0 VCPU_INDEX are APs. (Rely

on the information provided by Intel TDX module)

The pseudo code in TDVF is below:

==================
VOID
BspSelection (
 VOID
)
{
 if (VCPU_INDEX == 0) {
 BspInit()
 } else {
 ApInit()
 }
}

VOID
BspInit (
 VOID
)
{
 // Set up page table
 // Jump to 64-bit mode.
 // Set up AP MPWK mailbox.
 // Wakeup AP for init rendezvous
 // Do rest of initialization
 // Wakeup AP to perform required function
 // Jump to OS
}

VOID
ApInit (
 VOID
)
{
 // Wait for BSP init notification
 // Jump to the 64-bit mode setup by BSP (page table, etc.)
@Wait:
 // Wait in MPWK mailbox
 // Do the task assigned in MPWK mailbox
 // jump @Wait:
}
==================

4.3.3 AP initialization in TDVF

In TDVF, there is no need to do normal CPU initialization such as configure MTRR, or

patch Microcode. The AP is just in a wait-for-procedure state.

4.3.4 AP information reporting from TDVF to OS

In TDVF, the CPU information is reported via ACPI MADT table. The MADT need report
the existing APIC ID and processor UID in ASL and enabled flags.

TD Launch

Document Number: 344991-003US

The existing APIC ID may be got from the TD_VCPU_INFO_HOB or MAX_VCPUS.

The ACPI driver need assign processor UID and match them in ASL code and MADT.

The enabled flag may be reported by TD_VCPU_INFO_HOB with

PROCESSOR_ENABLED_BIT, or NUM_VCPUS or confirmed by the AP itself.

4.3.5 AP initialization in OS

For the system that does not support INIT-SIPI-SIPI, the platform firmware publishes

an ACPI MADT MPWK STRUCT in the MADT ACPI table. Please refer to the TDX Guest
Hypervisor Communication Interface document for the detailed data structure.

The firmware pseudo code is shown below:

==================
VOID
BspInitMailBox (
 VOID
)
{
 MailBox->ApicId = ACPI_MPWK_APICID_INVALID;
 MailBox->WakeupVector = 0;
 MailBox->Command = AcpiMpwkCommandNoop;
}

VOID
ApWaitForWakeup (
 VOID
)
{
 while (TRUE) {
 if (MonitorSupported()) {
 Monitor (MailBox);
 Mwait (Extension, Hint);
 }
 else if (UMonitorSupported()) {
 UMonitor (MailBox);
 UMwait (Extension, Hint);
 }
 else {
 Pause ();
 }
 //
 // Wait for wakeup
 //
 if (MailBox->Command == AcpiMpwkCommandNoop) {
 continue;
 }

 //
 // Check if for me
 //
 if (!ApIsMyMessage (MailBox->ApicId) {
 continue;

TD Launch

Document Number: 344991-003US

 }

 //
 // Dispatch command
 //
 switch (MailBox->Command) {
 case AcpiMpwkCommandWakeup:
 //
 // 64-bit vector
 //
 UINT64 WakeupVector = MailBox->WakeupVector;
 //
 // Ack MailBox
 //
 ReadWriteBarrier();
 MailBox->Command = AcpiMpwkCommandNoop;
 ReadWriteBarrier();

 Jump64 (WakeupVector)
 //
 // Never returns
 //
 CpuDeadLoop();
 break;
 default:
 break;
 }
 }
}

BOOLEAN
ApIsMyMessage (
 UINT32 ApicId
)
{
 if (ApicId == MyApicId()) {
 return TRUE;
 }
 return FALSE;
}

==================

The OS pseudo code is shown below:

==================

VOID
BspWakeupThis (
 UINT32 ApicId
)
{
 ReadWriteBarrier();
 MailBox->Command = AcpiMpwkCommandNoop;
 ReadWriteBarrier();
 //
 // Fill the mailbox

TD Launch

Document Number: 344991-003US

 //
 MailBox->ApicId = ApicId;
 MailBox->WakeupVector = ApWakeupAddress();

 ReadWriteBarrier();
 MailBox->Command = AcpiMpwkCommandWakeup;
 ReadWriteBarrier();
 //
 // Wait to join
 //
 Command = AcpiMpwkCommandWakeup;
 while ((Command != AcpiMpwkCommandNoop) && (!IsTimeout())) {
 ReadWriteBarrier();
 Command = MailBox->Command;
 ReadWriteBarrier();
 CpuPause();
 }

 if (GetJoinedCpuApicId() != ApicId) {
 // Something Wrong
 } else {
 // Good, new AP is here
 }
}

==================

§

TDVF UEFI Secure Boot Support

Document Number: 344991-003US

5 TDVF UEFI Secure Boot Support

This chapter describes TDVF support for UEFI Secure Boot.

5.1 Provisioning UEFI Secure Boot

The TDVF creator should be responsible for provisioning the UEFI Secure Boot variable

as the CFV.

The initialization code may build a variable hob and pass the information to variable

driver. The GUID hob gEfiAuthenticatedVariableGuid is defined in

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/Variable
Format.h.

5.2 Variable Driver

The TDVF variable driver uses the emulation variable driver in EDKII. This emulation
driver does not support non-volatile storage and uses variable storage in RAM.

During variable initialization, the variable driver consults the variable GUID HOB data

and initializes the variable storage region in RAM.

§

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/VariableFormat.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/VariableFormat.h

TDVF ACPI Support

Document Number: 344991-003US

6 TDVF ACPI Support

This section describes TDVF ACPI Support.

Please refer to the ACPI specification for detailed information on what ACPI tables

should be reported to OS.

6.1 Source of ACPI Tables

There are different ways to create ACPI table. For example:

1) The ACPI table may be created at build time, as the part of Boot Firmware
Volume. It is measured automatically.

2) The ACPI table may be input at launch time, as the part of TD Hob or

Configuration Firmware Volume. It is measured automatically.

3) The ACPI table may be input via a hypervisor-specific configuration interface.
If this method is chosen, the consumer in TDVF must explicitly measure the
raw ACPI table data to RTMR register. (See chapter 8, TD measurement).

6.2 ACPI Support

• ACPI S5 should be supported.

6.3 FADT

FADT should be configured for 'no ACPI Hardware' mode.

Due to the lack of SMM support, any SMI command field in FADT must be 0.

6.4 DSDT

The DSDT may report PCI or IO device based upon the device emulated by the VMM.

6.5 FACS

No ACPI S3 support is required.

6.6 MADT

Please refer to 'TDVF AP handling' (Section 4.3) for information on AP handling.

TDVF ACPI Support

Document Number: 344991-003US

§

TD Memory Management

Document Number: 344991-003US

7 TD Memory Management

This chapter describes the memory management.

7.1 Memory Type

There are four defined types of TD memory:

1) Private Memory - SEAMCALL [TDH.MEM.PAGE.ADD] by VMM or TDCALL
[TDG.MEM.PAGE.ACCEPT] by TDVF with S-bit clear in page table

2) Shared Memory - SEAMCALL [TDH.MEM.PAGE.ADD] by VMM or TDCALL
[TDG.MEM.PAGE.ACCEPT] by TDVF with S-bit set in page table

3) Unaccepted Memory - SEAMCALL [TDH.MEM.PAGE.AUG] by VMM and not

accepted by TDVF yet

4) Memory-Mapped I/O (MMIO) – Shared memory accessed by TDVF via
TDCALL [TDG.VP.VMCALL] <#VE.RequestMMIO>

The private memory type should be used by default.

Unaccepted memory is a special type of private memory. The TDVF must invoke
TDCALL [TDG.MEM.PAGE.ACCEPT] the unaccepted memory before use it.

The shared memory can be converted from private memory. It is used for information
pass from VMM or for IO buffer including Direct Memory Access (DMA). It must not be

used for page table or executable. The private page is the default memory type in a
TD for confidentiality and integrity. It must NOT be used for IO buffer.

The MMIO is a special shared memory. It can only be accessed via TDCALL
[TDG.VP.VMCALL] <#VE.RequestMMIO>. It cannot be accessed via direct memory
read or write.

7.1.1 Private Memory Indicator in Guest Page Table.

The guest indicates if a page is shared using the Guest Physical Address (GPA) Shared

(S) bit. If the GPA Width (GPAW) is 48, the S-bit is bit-47. If the GPAW is 52, the S-bit
is bit-51.

7.2 Initial State from VMM

The memory map information is passed from VMM to TDVF, via resource description

Hob. The following figure shows a sample memory layout.

TD Memory Management

Document Number: 344991-003US

Figure 7-1: TD Hob and Initial Memory Layout

The VMM shall copy the BFV and CFV from the TDVF binary image, then fill TD_HOB to
describe the memory layout if the TD_HOB is present in the TD metadata. If the

TD_HOB is input from the VMM, the TD_HOB shall be measured by TDVF as the

evidence of the initial TD memory configuration at the TD launch time.

7.2.1 Memory Type in TD Resource HOB

There are different types of memory in TD Hob, described in Table 7-1.

Table 7-1: Memory Type in TD Resource HOB

Memory
Type

Report from VMM VMM Action TDVF Action

Private
Memory

Optional, because TDVF can get the information
from TD metadata directly.

If it is reported, below format should be used
TD Hob - Resource Hob
Type: EFI_RESOURCE_SYSTEM_MEMORY
Attributes: EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED |
EFI_RESOURCE_ATTRIBUTE_ENCRYPTED

SEAMCALL
[TDH.MEM.PAG

E.ADD]

N/A
Use directly

TD Memory Management

Document Number: 344991-003US

Unaccepted
Memory

TD Hob - Resource Hob
Type: EFI_RESOURCE_MEMORY_UNACCEPTED
Attributes: EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED

SEAMCALL
[TDH.MEM.PAG
E.AUG]

TDCALL
[TDG.MEM.PAGE.ACCE
PT]

Memory-
Mapped I/O
(MMIO)

TD Hob - Resource Hob
Type: EFI_RESOURCE_MEMORY_MAPPED_IO
Attribute: EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE

N/A Use directly via
TDCALL

[TDG.VP.VMCALL]
<#VE.RequestMMIO>

The TDVF may indicate a small chunk of temporary initialized memory (added by
SEAMCALL [TDH.MEM.PAGE.ADD]) for temporary usage before the TDVF accepts the

unaccepted memory (added by SEAMCALL [TDH.MEM.PAGE.AUG]). The temporary

initialize memory size can be small to support initial TDVF code finishing the memory
initialization.

Any physical memory reported in TD Hob should be ACCEPTED by TDVF, except the
Temporary memory and TD HOB regions, which are declared in the TD metadata.

TDVF must consult the TD metadata to not accept any ADDED memory region, such
as BFV, CFV, TD Hob, and Temporary memory. TDVF must only accept the unaccepted
memory reported by VMM. The summary of the TDVF memory state from VMM is
shown in Table 7-2.

Table 7-2: TDVF memory state from VMM

Component Provider Data Report VMM Action TDVF Action Measurement

Static
Firmware
Code (BFV,
Page table)

TDVF
(Tenant)

Initialized From TD
Metadata

SEAMCALL

[TDH.MEM.PAGE.
ADD]

SEAMCALL

[TDH.MR.EXTEN
D]

SEAMCALL
[TDH.MR.FINALI
ZE] (called after
all SEAMCALL
[TDH.MEM.PAGE.
ADD])

N/A MRTD

Static
Firmware
Configuration
(CFV, UEFI
variable)

TDVF
(Tenant)

Initialized From TD
Metadata

SEAMCALL
[TDH.MEM.PAGE.

ADD]

TDCALL

[TDG.MR.RTMR.
EXTEND]

RTMR[0]

Dynamic
Runtime
Configuration
(TD Hob)

VMM
(CSP)

Initialized From TD
Metadata

SEAMCALL

[TDH.MEM.PAGE.
ADD]

TDCALL

[TDG.MR.RTMR.
EXTEND]

RTMR[0]

TD Memory Management

Document Number: 344991-003US

Temporary
Initialized TD
Memory

VMM
(CSP)

0 From TD
Metadata

SEAMCALL
[TDH.MEM.PAGE.
ADD]

N/A N/A

Unaccepted
TD Memory

VMM
(CSP)

0 TD Hob -
Resource
Hob

SEAMCALL
[TDH.MEM.PAGE.
AUG]

TDCALL
[TDG.MEM.PAG
E.ACCEPT]

N/A

MMIO VMM
(CSP)

Initialized TD Hob -
Resource
Hob

N/A N/A N/A

Disk TD Guest
(Tenant)

Not loaded N/A Virtual Disk
Access

TDCALL

[TDG.MR.RTMR.
EXTEND] for the

content in the

disk, but not
the full disk.

RTMR[1] for
OS loader,
kernel, initrd,
boot
parameter.

NOTE:
RTMR[2] is
reserved for
OS application
measurement
by OS kernel.

RTMR[3] is
reserved only
for special
usage.

7.3 Memory Information for DXE Core

The initial TDVF code needs to build a DXE HOB based on the TD HOB to pass the

memory information to DXE Core. Figure 7-2 shows the DXE HOB and Runtime
Memory Layout.

The flow of DXE HOB creation is below:

1) TDVF only uses the temporary initialized memory for temporary stack and

temporary heap.

2) TDVF scans the TD HOB to get the memory layout information.

3) TDVF initializes permanent memory (by calling TDCALL
[TDG.MEM.PAGE.ACCEPT]) from the top of the usable memory below 4GiB.
The size of initial permanent memory can be small to support initial DXE core
finishing the initialization and running memory test for the rest of permanent
memory.

4) TDVF sets up heap from the top of the usable memory below 4GiB. The page
table, stack, or DXE Core memory can be allocated there.

TD Memory Management

Document Number: 344991-003US

5) TDVF constructs the DXE_HOB in the permanent memory.

a. The PHIT points to the location in the permanent memory.

b. The FV Hob is created based upon TD Metadata. (See chapter 11)

c. The CPU Hob is created based upon memory GPAW bit (48 or 52
SizeOfMemorySpace) and IO resource reporting (0 or 16
SizeOfIoSpace)

d. The Resource Hob is created based upon the memory initialization
state. The TDVF may optionally allocate shared memory. If this is the
case, the shared memory should be reported as a stand-alone HOB
entry without EFI_RESOURCE_ATTRIBUTE_ENCRYPTED. (See below section)

e. The Memory Allocation Hob is created to describe the allocated
memory in heap, such as permanent page table, stack, or DxeCore
module.

6) The TDVF reclaims the temporary memory.

7) The TDVF handles the MMIO reported by TD HOB.

a. If the MMIO region is for fixed resource such as APIC and HPET, the

MMIO region should be reported in the DXE HOB.

b. If the MMIO region is for dynamic resource allocation and will be
managed by a dedicated DXE driver, then the MMIO region might not

be reported in the DXE HOB. (Such as for an MMIO space for PCI
MMIO BAR allocation by the PCI host bridge driver.) If the MMIO
region is reported, then the HOB resource attribute

EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE must be used, because PCI host

bridge driver will try to add this region with GCD attribute
EFI_MEMORY_UC.

8) The TDVF handles the Port IO reported by TD HOB.

a. If the port IO region is for fixed resource such as 8254 and 8259, the
port IO region should be reported in the DXE HOB.

b. If the port IO region is for dynamic resource allocation and will be

managed by a dedicated DXE driver, then IO region might not be
reported in the DXE HOB. (For example, for an IO space for PCI IO
BAR allocation by the PCI host bridge driver.)

TD Memory Management

Document Number: 344991-003US

Figure 7-2: DXE HOB and Runtime Memory Layout

7.3.1 Memory Type in DXE Resource HOB

There are different types of memory in DXE Hob. See table 7-3.

Table 7-3: Memory Type in DXE resource HOB

Memory
Type

Report from TDVF initial code VMM/TDVF initial
code Action

TDVF Action

Private
Memory

DXE Hob - Resource Hob
Type: EFI_RESOURCE_SYSTEM_MEMORY
Attributes: EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED |
EFI_RESOURCE_ATTRIBUTE_ENCRYPTED

SEAMCALL
[TDH.MEM.PAGE.
ADD] / TDCALL
[TDG.MEM.PAGE.

ACCEPT]

Use directly

Shared
Memory
(optional)

DXE Hob - Resource Hob
Type: EFI_RESOURCE_SYSTEM_MEMORY
Attributes: EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED

SEAMCALL
[TDH.MEM.PAGE.
ADD] / TDCALL
[TDG.MEM.PAGE.

ACCEPT]

Use directly

TD Memory Management

Document Number: 344991-003US

Unaccepted
Memory

DXE Hob - Resource Hob
Type: EFI_RESOURCE_MEMORY_UNACCEPTED
Attributes: EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TEST

SEAMCALL
[TDH.MEM.PAGE.
AUG]

TDCALL
[TDG.MEM.PAGE.ACCE
PT]

Memory-
Mapped I/O
(MMIO)

DXE Hob - Resource Hob
Type: EFI_RESOURCE_MEMORY_MAPPED_IO
Attribute: EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE

N/A Use directly via
TDCALL

[TDG.VP.VMCALL]
<#VE.RequestMMIO>

7.4 Memory Map to TD-OS

If a memory region is private memory, the final UEFI memory map shall report the

region with normal UEFI memory type.

If a memory region is shared memory, the final UEFI memory map shall report the
region with normal UEFI memory type. It is converted by the IOMMU driver to private

memory automatically at ExitBootServices event.

If a memory region is unaccepted memory and requires TDCALL

[TDG.MEM.PAGE.ACCEPT]in the TD guest OS, then the final UEFI memory map shall
report this region in EfiUnacceptedMemoryType. The OS need TDCALL

[TDG.MEM.PAGE.ACCEPT] before use it.

If a memory region is MMIO, it can only be accessed via TDCALL [TDG.VP.VMCALL]
<#VE.RequestMMIO>. It cannot be accessed via direct memory read or write. There is

no need to report this region in UEFI memory map because no RUNTIME attribute is
required. The full MMIO regions should be reported in ACPI ASL code via memory
resource descriptors.

For non-UEFI system, the memory map is reported via E820 table. The private
memory is reported as normal E820 memory type. The unaccepted memory is

reported as AddressRangeUnaccepted type.

The TDVF need report the memory map information to OS. Please refer to the TDX
Guest Hypervisor Communication Interface document for the detailed information.

7.5 Convert Shared to Private

The TDVF need convert shared memory to private memory in late memory
initialization or to reclaim virtual device IO buffer or hypervisor communication buffer.

The TDVF must take the following steps to convert shared memory to private
memory:

• Guest removes GPA from shared space. Clear S-bit in page table.

• TDCALL [TDG.VP.VMCALL] <MAPGPA>

• TDCALL [TDG.MEM.PAGE.ACCEPT]

TD Memory Management

Document Number: 344991-003US

This step can be done by an IOMMU protocol FreePages()/Unmap() if this is for the

virtual device IO buffer.

The IOMMU protocol definition can be found at

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Protocol/IoM
mu.h

7.6 Convert Private to Shared

The TDVF needs to convert private memory to shared memory for hypervisor

communication such as TDCALL [TDG.VP.VMCALL] or virtual device IO buffer.

The TDVF should take the following steps to convert shared memory to private

memory:

• Guest adds GPA to the shared space. Set S-bit in page table.

• TDCALL [TDG.VP.VMCALL] <MAPGPA>

This step can be done by an IOMMU protocol AllocatePages()/Map() if this is for the

virtual device IO buffer.

7.7 Memory State Transition

Please see the figure below for the TDVF memory statue transition.

Figure 7-3: TDVF Memory State Transition

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Protocol/IoMmu.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Protocol/IoMmu.h

TD Memory Management

Document Number: 344991-003US

7.8 Optimization Consideration

The TDVF implementation may add all physical pages to private memory before

transfer control to OS. This may increase the boot time, because the TDCALL
[TDG.MEM.PAGE.ACCEPT] is time-consuming. As such, the TDVF may choose to add
part of memory to be private memory and boot to OS. Then the TD-OS can convert
the rest page to be private. The TDVF may do below optimization.

7.8.1 Partial Memory Initialization in Pre-UEFI

When the TDVF MemoryInit module initializes the memory - convert all memory to be
accepted private memory, the MemoryInit module need mark the resource description

HOB to be EFI_RESOURCE_SYSTEM_MEMORY with

(EFI_RESOURCE_ATTRIBUTE_PRESENT |

EFI_RESOURCE_ATTRIBUTE_INITIALIZED |

EFI_RESOURCE_ATTRIBUTE_TESTED).

There is no need to initialize all system memory in the early phase, where it is the
single thread environment. The MemoryInit module just need initialize enough
memory to launch the DXE Core. The MemoryInit module need split the resource

description HOB into 2 parts: the initialized private or shared memory

EFI_RESOURCE_SYSTEM_MEMORY with (EFI_RESOURCE_ATTRIBUTE_PRESENT |

EFI_RESOURCE_ATTRIBUTE_INITIALIZED |

EFI_RESOURCE_ATTRIBUTE_TESTED) and the unaccepted memory

EFI_RESOURCE_MEMORY_UNACCEPTED with (EFI_RESOURCE_ATTRIBUTE_PRESENT |

EFI_RESOURCE_ATTRIBUTE_INITIALIZED |

EFI_RESOURCE_ATTRIBUTE_TESTED).

For example, the MemoryInit may just need to initialize 256M memory for DXE core,
even if there are 4G memory available.

7.8.2 Partial Memory Initialization in UEFI

Once the DXE Core is launched, it checks the resource description HOB and only uses

the memory EFI_RESOURCE_SYSTEM_MEMORY with

(EFI_RESOURCE_ATTRIBUTE_PRESENT |

EFI_RESOURCE_ATTRIBUTE_INITIALIZED |

EFI_RESOURCE_ATTRIBUTE_TESTED). A MemoryTest module must go through

the resource description HOB and do the late-initialization in DXE phase for the
unaccepted memory EFI_RESOURCE_MEMORY_UNACCEPTED with

(EFI_RESOURCE_ATTRIBUTE_PRESENT |

EFI_RESOURCE_ATTRIBUTE_INITIALIZED |

EFI_RESOURCE_ATTRIBUTE_TESTED).

After the late initialization, the GCD type of the memory is converted from

EfiGcdMemoryTypeUnaccepted to EfiGcdMemoryTypeSystemMemory

The MemoryTest module just needs to initialize enough accepted private memory for
the UEFI environment, and launch the OS loader. The accepted private memory is

TD Memory Management

Document Number: 344991-003US

reported as normal memory type. The unaccepted memory is reported as

EfiUnacceptedMemoryType. This allows OS to do late initialization.

For example, the UEFI environment may only need to initialize 4G memory for the OS
loader if there is 256G memory available.

7.8.3 Parallelized Memory Initialization

The MemoryTest module is executed in the multi-processor environment.

The MemoryTest module may consider using multi-processor to parallelize the

memory initialization process. The BSP may split the task and wake up all APs and let
multiple APs do the memory initialization.

For example, if a system has 16 CPUs and 8G memory to be initialized, the BSP may
wake up 15 APs to let each CPU initialize 512M memory.

7.8.4 Pre-allocating Virtual Device IO Buffer

The TDVF may use virtual device IO buffer in the deriver driver to support system

boot, such as virt-io, file system driver. Because the virtual device IO buffer is shared
memory, there is risk of thrashing which means the excessive swapping between
shared memory and private memory.

To avoid such thrashing, the IOMMU driver may pre-allocate a big chunk of shared

memory as the virtual device IO buffer in the driver entrypoint, and only convert it

back to private in the ExitBootServices event. The other virtual device IO buffer

allocation should be inside of the pre-allocated IO buffer. As such, the overhead of the

virtual device IO buffer converting can be reduced.

§

TD Measurement

Document Number: 344991-003US

8 TD Measurement

This chapter describes the measurement/attestation/quote.

8.1 Measurement Register Usage in TD

TDs have two types of measurement registers:

• TD measurement register (MRTD): Static measurement of the TD build

process and the initial contents of the TD.

• Runtime Extendable measurement register (RTMR): An array of general-
purpose measurement registers, available to the TD software for measuring
additional logic and data loaded into the TD at runtime.

A system has 1 MRTD and 4 RTMR. The typical usage is shown below:
• MRTD is for the TDVF code (match PCR[0]).

• RTMR[0] is for the TDVF configuration (match PCR[1,7]).
• RTMR[1] is for the TD OS loader or kernel (match PCR[4,5]).
• RTMR[2] is for the OS application (match PCR[8~15]).
• RTMR[3] is reserved for special usage only.

Table 8-1 shows how to match the PCR used in the regular platform to the TD

Measurement Register used in TDVF.

Table 8-1: TD Measurement-related Register

PCR
Index

Typical Usage TD
Register

TD
Reg
Index

Event
Log

Extended by Checked
by

Content

0 Firmware
Code (BFV,
including init
page table)

MRTD 0 NO VMM: TDCALL
[TDH.MR.EXTEND]

Remote VF code (BFV)

1 Firmware
Data
(CFV, TD Hob,
ACPI Table)

RTMR
[0]

1 YES TDVF: TDCALL
[TDG.MR.RTMR.E
XTEND]

Remote Static Configuration
(CFV),
Dynamic Configuration
(TD HOB, ACPI)

2 Option ROM
code

RTMR

[1]
2 YES TDVF: TDCALL

[TDG.MR.RTMR.E
XTEND]

Remote PCI Option ROM, such as
NIC.

TD Measurement

Document Number: 344991-003US

3 Option ROM
data

RTMR
[1]

2 YES TDVF: TDCALL
[TDG.MR.RTMR.E
XTEND]

Remote

4 OS loader
code

RTMR
[1]

2 YES TDVF: TDCALL
[TDG.MR.RTMR.E
XTEND]

Remote OS loader, OS kernel,
initrd.

5 Configuration
(GPT, Boot
Variable)

RTMR
[1]

2 YES TDVF: TDCALL
[TDG.MR.RTMR.E
XTEND]

Remote GPT, Boot Variable, Boot
Parameter.

6 N/A N/A N/A N/A N/A

7 Secure Boot
Configuration

RTMR

[0]
1 YES TDVF: TDCALL

[TDG.MR.RTMR.E
XTEND]

Remote SecureBootConfig (in
CFV)

8~15 TD OS APP
measurement

RTMR
[2]

3 - TD OS: TDCALL
[TDG.MR.RTMR.E
XTEND]

- TD OS App. Done by OS.

8.2 Fundamental Support

Intel TDX module shall measure TD BFV and extend to MRTD. MRTD can be used for

attestation purpose. (Similar to the trust boot flow)

During runtime, TDVF shall measure TD CFV and TD Hob to RTMR[0] and the OS
code/data and extend to RTMR[1]. This action is done via TDCALL

[TDG.MR.RTMR.EXTEND] that allows dynamic measurement extensions (Dynamic

data). RTMR can be used for attestation purpose. (Similar to the trust boot flow)

TD Measurement

Document Number: 344991-003US

Figure 8-1: TDVF Measurement

Please see the Intel® TDX Guest-Hypervisor Communication Interface document for

the detailed data structure.

The TDVF should expose EFI_CC_MEASURMENT_PROTOCOL and CCEL ACPI table. The
original EFI_TCG2_PROTOCOL and TPM2 ACPI table should be used for virtual TPM
only. See figure 8-2.

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html

TD Measurement

Document Number: 344991-003US

Figure 8-2: TDVF Measurement Interface

8.3 Virtual Firmware Configuration

The TDVF may support to consume different configuration data as the policy to control

the code flow. Care must be taken that this is an attack surface, because the VMM is
not trusted. Please use the following guidance:

• The TDVF should reduce configuration options to reduce the attack surface.

• Configuration data must be copied to private memory, measured, and verified

before it is used.

8.3.1 Build-Time Configuration

The Build-Time configuration is the configuration firmware volume (CFV). It may

include UEFI Secure Boot variables (PK, KEK, db, dbx).

The data will be exposed as UEFI variable.

8.3.2 Launch-Time Configuration

The Launch-Time configuration is the TD HOB passed from VMM. This hob may include
the system configuration, such as the memory range, MMIO range, IO range, CPU

number, etc.

The hypervisor vendor may add GUIDed Hob as the extension to provide hypervisor-

specific information to the hypervisor-specific TDVF, such as ACPI tables and SMBIOS
tables.

The data included in TD HOB must be accessible during the whole firmware boot time.

8.3.3 Runtime Configuration

Runtime configuration uses non-volatile UEFI variable data.

In order to simplify the design, TDVF does not support non-volatile variables.

If TDVF requires support for non-volatile variables in the future, the variable area

must be measured into RTMR[0].

8.3.4 Hypervisor Specific Configuration Interface

Currently, some virtual firmware may use hypervisor-specific configuration interface to

get the configuration information.

TD Measurement

Document Number: 344991-003US

For example, OVMF uses FW_CFG_IO_SELECTOR (0x510) and FW_CFG_IO_DATA

(0x511) to get configuration information from QEMU. Example information:
• “etc/system-states”
• "etc/table-loader"
• "etc/extra-pci-roots"

• "bootorder"
• "etc/boot-menu-wait"
• "etc/tpm/config"
• "etc/edk2/https/cacerts"
• "etc/msr_feature_control"
• "etc/e820"
• "opt/ovmf/X-PciMmio64Mb"

• "etc/reserved-memory-end"
• "etc/ramfb"

• "etc/smbios/smbios-tables"
• "etc/smi/supported-features"
• "etc/smi/requested-features"
• "etc/smi/features-ok"

If TDVF uses this method, configuration data must be measured into RTMR[0].

8.4 Attestation and Quote Support

TD Measurement

Document Number: 344991-003US

Figure 8-3: Attestation and Quote

1. Guest TD invokes TDCALL [TDG.MR.REPORT] API function.
2. Intel TDX module uses the SEAMOPS [SEAMREPORT] instruction to create a MAC

TDREPORT_STRUCT with the Intel TDX module measurements from CPU and TD
measurements from TDCS.

3. Guest TD uses TDCALL [TDG.VP.VMCALL] <GETQUOTE> to request
TDREPORT_STRUCT be converted into Quote.

4. The TD Quoting enclave uses ENCLU[EVERIFYREPORT2] to verify the
TDREPORT_STRUCT. This allows the Quoting Enclave to verify the report without

requiring direct access to the CPU’s HMAC key. Once the integrity of the
TDREPORT_STRUCT has been verified, the TD Quoting Enclave signs the
TDREPORT_STRCUT body with an ECDSA 384 signing key.

§

TDVF Device Support

Document Number: 344991-003US

9 TDVF Device Support

TDVF device driver support must align with the TD-VMM capability. Microsoft Windows
Hyper-V may require Vmbus. Linux KVM may require VirtIo.

9.1 Minimal Requirement

The following devices are enabled for a typical guest OS:

1) Debug Device (Serial Port)

2) Storage Device (Block device or SCSI)

3) Output Device (Graphic)

4) Input Device (Keyboard)

5) Network Device (LAN)

For a container use case, a simplified TDVF may jump directly to the OS kernel
without enabling any devices.

9.2 VirtIo Requirement

VirtIo requires the following:

• virtio-pci (Enumeration over PCI)

• virtio-serial (serial output / debug)

• virtio-blk and/or virtio-scsi (Storage)

• virtio-gpu (Graphics)

• virtio-input (Keyboard)

• virtio-net and/or virtio-socket (Network)

9.3 Security Device

Support for virtio-rng is not required because the VMM is not trusted. TD must use the

RDSEED or RDRAND instruction to obtain a random number.

TDVF Device Support

Document Number: 344991-003US

9.4 HotPlug Device

The current TDX does not support CPU Hot Plug feature. As such, the TDVF does not

support CPU Hot Plug. Memory Hot Plug can be supported by TDX architecture. The
TDVF does not support the memory hot plug and only reports the memory map from
VMM at TD launch time, including accepted memory and unaccepted memory. The TD
OS may support memory hot plug at runtime as an optional feature.

1) CPU Hot Add – This is blocked by Intel TDX module. Intel TDX module injects

all VCPU into the guest TD at one time. The MADT ACPI table holds and only
holds the active CPUs reported by the Intel TDX module.

2) CPU Hot Remove – It can be used as a denial-of-service attack from the VMM.

This feature is out of scope for TDX.

3) Memory Hot Add – VMM must use the standard defined process (such as ACPI)
to notify the hot add event to TD OS. Otherwise, TD OS should ignore memory
configuration changes.

4) Memory Hot Remove – VMM must use the standard defined process (such as
ACPI) to notify the hot remove event to TD OS. Surprise removing can be
used as a denial-of-service attack from the VMM. This feature is out of scope
for TDX.

Although TDVF does not support Hot Plug, a VMM may report an ACPI table with Hot
Plug support to access the guest OS. In order to mitigate this, any input from the VMM
must be measured by OVMF into RMTD for attestation. Note that TDVF cannot verify
ACPI table content. The guest OS should treat ACPI input as untrusted data and parse
it carefully.

9.5 PCI Device Option ROM

UEFI x64 PCI Option ROMs (OROM) are supported. Before execution, the OROM must
be measured into RTMR. Because UEFI Secure Boot is enabled, the PCI OROM must be

signed with valid certificate against info enrolled into UEFI Secure Boot variables.

Legacy 16bit OROM and 32-bit UEFI OROM must be rejected and ignored.

§

Exception Handling

Document Number: 344991-003US

10 Exception Handling

This chapter describes exceptions that may be injected by Intel TDX module.

10.1 Virtualization Exception (#VE)

The TDVF provides the default #VE exception handler. The handler is implementation-

specific, like all other exception handlers.

The default handler may:

• Dump the exception reason via TDCALL [TDG.VP.VEINFO.GET] and the
architecture state, including general-purpose registers, in debug mode for
root-cause analysis

• Dead loop

Care must be taken that the debug output must NOT violate TDX restrictions. For
example, IO port access is illegal in TD, so the Serial IO debug output must be
modified with TDCALL [TDG.VP.VMCALL] <INSTRUCTION.IO>.

10.2 Instruction Conversion

The VE exception handler may also convert some of the forbidden instruction to the
TDCALL [TDG.VP.VMCALL] <INSTRUCTION>. For example:

CPUID => TDCALL [TDG.VP.VMCALL] <Instruction.CPUID>

IO => TDCALL [TDG.VP.VMCALL] <Instruction.IO>

MMIO => TDCALL [TDG.VP.VMCALL] <#VE.RequestMMIO>RDMSR => TDCALL
[TDG.VP.VMCALL] <Instruction.RDMSR>

WRMSR => TDCALL [TDG.VP.VMCALL] <Instruction.WRMSR>

Care must be taken that when the #VE handler should not use
TDCALL[TDG.VP.VMCALL]<#VE.RequestMMIO> to access any private memory caused
by the EPT violation. Please refer to Chapter 2 Security Consideration.

§

TDVF Metadata

Document Number: 344991-003US

11 TDVF Metadata

This section describes TDVF Metadata. This metadata provides information to the VMM
that is used to build a TD.

11.1 TDVF Metadata Location

The metadata is located at (TDVF end – 0x20) byte. It is a 4-bytes offset of the
TDVF_DESCRIPTOR to the beginning of the TDVF image.

Figure 11-1: TDVF Metadata Layout

11.2 TDVF descriptor

The VMM refers to TDVF_DESCRIPTOR to set up memory for TDVF.

TDVF Metadata

Document Number: 344991-003US

Table 11-1: TDVF_DESCRIPTOR definition

Field Offset
(Byte)

Type Size
(Byte)

Description

Signature 0 CHAR8[4] 4 “TDVF”

Length 4 UINT32 4 Size of the structure (d)

Version 8 UINT32 4 Version of the structure. It must be 1.

NumberOfSectionEntry 12 UINT32 4 Number of the section entry (n)

SectionEntries 16 TDVF_SECTION[n] 32*n See table 13-2.

Table 11-2: TDVF_SECTION definition

Field Offset
(Byte)

Type Size
(Byte)

Description

DataOffset 0 UINT32 4 The offset to the raw section in the binary
image.

RawDataSize 4 UINT32 4 The size of the raw section in the image.

If it is zero, the VMM shall allocate zero
memory from MemoryAddress to
(MemoryAddress + MemoryDataSize).

If it is zero, then the DataOffset shall also be
zero.

MemoryAddress 8 UINT64 8 The guest physical address of the section
loaded.
It must be 4K aligned.

MemoryDataSize 16 UINT64 8 The size of the section loaded.
It must be 4K aligned.
It must be non-zero value.
It must be not less than RawDataSize.

If MemoryDataSize is greater than
RawDataSize, the VMM shall fill zero up to
the MemoryDataSize.

Type 24 UINT32 4 The type of the TDVF_SECTION. See table
13-3.

Attributes 28 UINT32 4 The attribute of the section. See table 13-4.

TDVF Metadata

Document Number: 344991-003US

Table 11-3: TDVF_DESCTION.Attributes definition

Value Name Memory
Type

VMM Action Td-Shim Action Measurement

0 BFV/TdShim Private
Memory

PAGE.ADD +
MR.EXTEND

N/A MRTD

1 CFV Private
Memory

PAGE.ADD RTMR.EXTEND RTMR[0]

2 TD_HOB Private
Memory

PAGE.ADD RTMR.EXTEND RTMR[0]

3 TempMem Private
Memory

PAGE.ADD N/A N/A

4 PermMem Unaccepted
Memory

PAGE.AUG PAGE.ACCEPT N/A

5 Payload Private
Memory

PAGE.ADD +
MR.EXTEND*

RTMR.EXTEND* MRTD (or)
RTMR[1]

6 PayloadParam Private
Memory

PAGE.ADD RTMR.EXTEND RTMR[1]

7 ~
0xFFFFFFFF

Reserved N/A N/A N/A N/A

Table 11-4: TDVF_DESCTION.Attributes definition

Bits Name Description

0 MR.EXTEND If the VMM need use TDCALL [TDH.MR.EXTEND] for this section.
0: Do not need TDCALL [TDH.MR.EXTEND]
1: Need TDCALL [TDH.MR.EXTEND]

For example, TDVF BFV sets to 1. TDVF CFV/TD_HOB/TempMem
/PermMem set to 0. The Payload sets 1 or 0. The PayloadParam

sets to 0.
1 PAGE.AUG If the VMM need use TDCALL [TDH.MEM.PAGE.AUG] for this

section.
0: Use TDCALL [TDH.MEM.PAGE.ADD]
1: Use TDCALL [TDH.MEM.PAGE.AUG]

For example, PermMem sets be 1. Others set to 0.

31:2 Reserved Must be 0.

Rules for the TDVF_SECTION:

• A TDVF shall include at least one BFV section and the reset vector shall be

inside of BFV. The RawDataSize of BFV must be non-zero.

• A TDVF may have zero, one or multiple CFV sections. The RawDataSize of CFV
must be non-zero.

TDVF Metadata

Document Number: 344991-003US

• A TDVF may have zero or one TD_HOB section. The RawDataSize of TD_HOB

must be zero. If TDVF reports zero TD_HOB section, then TDVF shall report all
required memory in PermMem section.

• A TDVF may have zero, one or multiple TempMem sections. The RawDataSize

of TempMem must be zero.

• A TD-Shim may have zero, one or multiple PermMem sections. The
RawDataSize of PermMem must be zero. If a TD provides PermMem section,
that means the TD will own the memory allocation. VMM shall allocate the

permanent memory for this TD. TD will NOT use the system memory
information in the TD HOB. Even if VMM adds system memory information in
the TD HOB, it will be ignored.

• A TD-Shim may have zero or one Payload. The RawDataSize of Payload must

be non-zero, if the whole image includes the Payload. Otherwise the

RawDataSize must be zero.

• A TD-Shim may have zero or one PayloadParam. PayloadParam is present only
if the Payload is present.

The metadata above may support below use cases as example:

• Normal TDVF: The metadata includes one BFV, one CFV, one TD_HOB and
multiple TempMem.

• TD-Shim with container OS: The metadata includes one BFV, one TD_HOB,
multiple TempMem and one OS kernel as Payload. The OS kernel is added so
that the TD-Shim does not need load it from other storage.

TD-Shim with Service TD core: The metadata includes one
BFV, zero or one CFV, multiple TempMem, one PermMem,

and one Service TD Core as Payload. The TD_HOB is
removed and the PermMem is added, so that the

configuration is static, and all measurement registers are
predictable at build time.§

OS Direct Boot

Document Number: 344991-003US

12 OS Direct Boot

This section describes OS Direct Boot that may be implemented in TDVF.

The default TDVF implementation boots to an OS loader, which in turn loads the OS

kernel. As implementation option, TDVF may implement an OS loader that directly
boots the OS kernel.

For specialized workloads like functions or containers, the underlying guest OS is both
simplified and customized. In these cases, a bootloader or general-purpose firmware

is needed, so the VMM can directly boot to the guest kernel entry point. With TDX, the
VMM does not choose the guest entry point and must offload the guest direct kernel

boot to a TD firmware shim.

For more information on Linux Direct Boot using efi-stub, please refer to the following
documentation: https://github.com/torvalds/linux/blob/master/Documentation/admin-

guide/efi-stub.rst

12.1 Measurement

The OS loader must load the OS kernel and kernel-required data (such as boot

parameter) into private memory. And the OS loader must measure the kernel and
required data (boot parameter) before passing the control to the OS kernel.

For example, if the TDVF loads the Linux kernel (bzImage or an ELF binary vmlinux or

PVH) and initrd (initrd.img) with kernel boot parameter console=ttyS0
root=/dev/sda4, then TDVF needs to measure the following in RTMR[1]:

• bzImage

• initrd.img (binary format)

• console=ttyS0 root=/dev/sda4 (string format)

Table 12-1: OS loader measurement

Data Register
Event

Log Extended by Checked by

OS kernel RTMR [1] YES TDVF: TDCALL
[TDG.MR.RTMR.EXTEND]

Remote

initrd RTMR [1] YES TDVF: TDCALL
[TDG.MR.RTMR.EXTEND]

Remote

Boot Parameter RTMR [1] YES TDVF: TDCALL
[TDG.MR.RTMR.EXTEND]

Remote

OS application RTMR [2] - TDOS: TDCALL
[TDG.MR.RTMR.EXTEND]

Remote

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/efi-stub.rst
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/efi-stub.rst

OS Direct Boot

Document Number: 344991-003US

§

Minimal TDVF (TD-Shim) Requirements

Document Number: 344991-003US

13 Minimal TDVF (TD-Shim)

Requirements

This section describes requirements for a minimal TDVF implementation (TD-Shim).

In a TD container solution, the VMM loads almost everything into memory before TD
launch. This means TDVF can perform minimal initialization and jump directly to the
Linux Kernel without a full UEFI implementation.

For more information on Linux Boot Protocol and Linux Boot Parameter, please refer to
the following documentation:

• https://www.kernel.org/doc/Documentation/x86/boot.txt

• https://www.kernel.org/doc/Documentation/x86/zero-page.txt

13.1 Hardware Virtualization-based Containers

Hardware virtualization-based containers are designed to launch and run containerized
applications in hardware virtualized environments. While containers usually run
directly as bare-metal applications, using TD or VT as an isolation layer from the host
OS is used as a secure and efficient way of building multi-tenant Cloud-native
infrastructures (e.g. Kubernetes).

In order to match the short start-up time and resource consumption overhead of bare-
metal containers, runtime architectures for TD- and VT-based containers put a strong

focus on minimizing boot time. They must also launch the container payload as quickly
as possible. Hardware virtualization-based containers typically run on top of simplified

and customized Linux kernels to minimize the overall guest boot time.

Simplified kernels typically have no UEFI dependencies and, no ACPI ASL support. This
allows guests to boot without firmware dependencies. Current VT-based container
runtimes rely on VMMs that are capable of directly booting into the guest kernel
without loading firmware.

13.1.1 TD Container Requirements

While it is possible to let a VMM drive a VT guest via direct kernel boot, this is not part
of the TD threat model (which leaves VMM outside of the TCB). The TD initial state is
not modifiable by the VMM so TD containers, as opposed to VT containers, rely on a
minimal TD virtual firmware solution (TD-Shim) to launch a TD guest OS.

13.2 TD-Shim Launch

The VMM launches TD-Shim in 32-bit protected mode. The TD-Shim needs to set the
page tables up and then switch to 64-bit long mode.

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/zero-page.txt

Minimal TDVF (TD-Shim) Requirements

Document Number: 344991-003US

TD-Shim assumes the VMM loads the Linux kernel (bzImage or vmLinux) and optional

initrd (initrd.img) with boot parameter into memory. The VMM passes information to
the TD-Shim via the TD HOB and/or Linux boot protocol and Linux boot parameter.

13.2.1 TD-Shim AP Handling

The Intel TDX module initializes all CPUs and allows them to jump to the reset vector

at the same time. In a full TDVF implementation, the BSP does the TD initialization
and lets APs do wait-loop. TDVF creates an ACPI table to share mailbox information
with the OS, and send the OS commands via ACPI mailbox to wakeup APs.

A TD container cannot assume the guest environment supports ACPI. This enables

boot to a guest environment without ACPI ASL support.

When TD containers support ACPI static table, then the TD-Shim can generate MADT
table and inserts the mailbox information into it.

13.3 TD-Shim Secure Boot Support

UEFI Secure Boot is not required for TD-Shim.

13.4 TD-Shim ACPI Support

ACPI is optional for TD containers, but a typical VMM will build guest ACPI tables.

When TD containers support ACPI, those tables may be passed by the initial HOB.

When TD containers do not support ACPI ASL, device information may be passed via

other mechanisms (e.g. kernel command line parameter).

13.5 TD-Shim Memory Management

13.5.1 Memory Type in Initialization

Table 13-1: TD-Shim memory state from VMM

Memory
Type

Provider Data Report VMM Action TDVF Action Measurement

Static
Firmware
Code (Shim,
Page table)

TDVF
(Tenant)

Initialized From TD
Metadata

SEAMCALL
[TDH.MEM.PAG

E.ADD]

SEAMCALL
[TDH.MR.EXTE
ND]

N/A MRTD

Minimal TDVF (TD-Shim) Requirements

Document Number: 344991-003US

SEAMCALL
[TDH.MR.FINA
LIZE] (called
after all
SEAMCALL

[TDH.MEM.PAG
E.ADD])

Dynamic
Runtime
Configuration
(TD Hob)

VMM
(CSP)

Initialized From TD
Metadata

SEAMCALL
[TDH.MEM.PAG
E.ADD]

TDCALL

[TDG.MR.RTMR.E
XTEND]

RTMR[0]

Temporary
Initialized TD
Memory

VMM
(CSP)

0 From TD
Metadata

SEAMCALL
[TDH.MEM.PAG

E.ADD]

N/A N/A

Unaccepted
TD Memory

VMM
(CSP)

0 TD Hob -
Resource Hob

SEAMCALL
[TDH.MEM.PAG
E.AUG]

TDCALL
[TDG.MEM.PAGE.
ACCEPT]

N/A

Kernel TD Guest
(Tenant)

Initialized TD Hob -
Resource Hob,
GUID hob

SEAMCALL
[TDH.MEM.PAG

E.ADD]

TDCALL

[TDG.MR.RTMR.E
XTEND]

RTMR[1]

Initrd TD Guest
(Tenant)

Initialized TD Hob -
Resource Hob,
GUID hob

SEAMCALL
[TDH.MEM.PAG
E.ADD]

TDCALL

[TDG.MR.RTMR.E
XTEND]

RTMR[1]

Boot
Parameter

TD Guest
(Tenant)

Initialized TD Hob -
Resource Hob,
GUID hob

SEAMCALL
[TDH.MEM.PAG
E.ADD]

TDCALL

[TDG.MR.RTMR.E
XTEND]

RTMR[1]

13.5.2 Memory Map for OS

VMM shall pass the initial memory map information via TD HOB. TD-Shim may
generate E820 table for the container.

13.6 TD-Shim Measurement

13.6.1 TD Measurement

TD-Shim must extend RTMR before transferring control to the Linux kernel.

Table 13-2: TD Measurement-Related Registers for TD-Shim

PCR Typical Usage Register Event
Log

Extended by Checked
by

Content

0 Firmware
Code

MRTD NO VMM: SEAMCALL
[TDH.MR.EXTEND]

Remote TD-Shim + Initial Page
Table

Minimal TDVF (TD-Shim) Requirements

Document Number: 344991-003US

1 Firmware
Data

RTMR
[0]

YES TDVF: TDCALL
[TDG.MR.RTMR.E
XTEND]

Remote Static Configuration (CFV),
Dynamic Configuration
(TD HOB)

2 Option ROM
code

N/A N/A N/A N/A N/A

3 Option ROM
data

N/A N/A N/A N/A N/A

4 OS loader
code

RTMR
[1]

YES TDVF: TDCALL
[TDG.MR.RTMR.E
XTEND]

Remote OS kernel, initrd.

5 Boot
Configuration

RTMR
[1]

YES TDVF: TDCALL
[TDG.MR.RTMR.E
XTEND]

Remote Boot Parameter

6 N/A N/A N/A N/A N/A N/A

7 Secure Boot
Configuration

N/A N/A N/A N/A N/A

8~15 TD OS APP
measurement

RTMR
[2]

- TDOS: TDCALL
[TDG.MR.RTMR.E
XTEND]

- TD OS App. Done by OS.

13.6.2 TD Event Log

When TD containers support ACPI static table, TD-Shim passes the TD event log via

ACPI table.

13.7 TD-Shim Device Support

No Device Support is required in TD-Shim. TD-Shim will jump to the Linux kernel

without initializing any device.

13.8 TD-Shim Exception Handling

This model assumes TD-Shim does not generate exceptions. Exception handling is not

required.

§

Minimal TDVF (TD-Shim) Requirements

Document Number: 344991-003US

Disk Encryption

Document Number: 344991-003US

14 Disk Encryption

Today a VM disk image may be encrypted. Before boot, the VMM gets a storage
volume key to decrypt the VM disk image and pass the decrypted disk content to the
VM. However, in the TDX the VMM is not trusted. The TD needs to have a way to get
the storage volume key to decrypt the VM disk image.

The VM disk image may be decrypted in OS or may be decrypted in the virtual
firmware based upon the use case.

This section describes the possible solutions in the virtual firmware.

14.1 Overview

There are two agents involved in the disk encryption solution:

1) Attestation Agent: It will perform attestation, retrieve the storage volume key
from a remote key server, and pass it to a decryption agent.

• Preboot attestation: The attestation agent is in TDVF or OS loader. See Figure

14-1.

• Early OS boot attestation: The attestation agent is in initrd. See Figure 14-2.

• OS runtime attestation: The attestation agent is an OS application.

2) Decryption Agent: This will get the storage volume key from the attestation

agent and decrypt the disk.

The scope of the encrypted disk is use case specific. A common storage volume key

may be used to decrypt:

• Full Disk Encryption (System Partition + Data Partition): The decryption agent

may be in TDVF or integrated OS loader (grub).

• Data Partition Encryption: The decryption agent may be in TDVF, OS loader
(grub) or initrd.

• Container Image Encryption: The decryption agent may be an OS application.

Table 14-1 shows these use cases.

Table 14-1: Disk Encryption Use Cases

Use Case Preboot
Attestation

Early OS Boot
Attestation

OS Runtime
Attestation

Full Disk Encryption Yes No No

Data Partition Encryption Yes Yes No

Container Image Encryption Yes Yes Yes

Disk Encryption

Document Number: 344991-003US

Figure 14-1: Preboot Disk Decryption Flow

Figure 14-2: Early-boot Disk Decryption Flow

Since TDVF is involved in preboot disk decryption, we list security properties for
preboot attestation as an example in table 14-2.

Table 14-2: Security Property Example

Property Comment

Confidentiality Required. VMM should not be able to read the content.

Integrity Required. VMM should not be able to write the content.

Availability N/A. VMM may disconnect the network for TD.

Authentication Mutual authentication is required.
1) TD needs to ensure the data is from a real key server.
2) Key server needs to ensure the request is from a known TD.

Authorization Simple model is used.

Disk Encryption

Document Number: 344991-003US

Any access (read/write/execute) is allowed once the key is
acquired.
Key management (provision/revocation) is out of scope.

Non-Repudiation N/A

One possible way to support the above security properties is that the TDVF attestation
agent creates an authenticated secure session with the key server. Then the TDVF
gets the storage volume key from the key server in the secure session.

14.2 Attestation Agent

14.2.1 Network Communication

In order to communicate with the remote key server, the TDVF needs network
capability. Because the TDVF is in TCB, it is not recommended to include a full TCP/IP

network stack in a TDVF. Instead, the TDVF should use the network stack in the
untrusted VMM host environment.

The TDVF may use a special TDG.VP.VMCALL to send and receive the network packet
on top of transport layer, such as network TLS packets, or TDVF may use the VMM
specific communication, such as virt-io or vmbus.

14.2.2 Authenticated Secure Session

The network TLS protocol is a standard to allow two entities to create an
authenticated secure session. TDVF can provision the public certificate of the key
server and verify the server certificate at runtime.

14.2.2.1 Mutual Authentication

In order to let the key server verify the TDVF, a typical mutual authentication in TLS
requires X.509 certificate provision. However, it is hard to provision a private key to
TDVF. A way to resolve this problem is to use remote attestation TLS (RA-TLS).

RA-TLS does not require private key provision. The TDVF can generate an ephemeral

keypair at runtime and include the public key in the TD report data and TD quote
data. Then the TDVF generates an X.509 certificate at runtime, includes the TD Quote
in the X.509 certificate, and sends this TD certificate to the key server as the TLS
certificate. When the key server receives the certificate, it gets the TD Quote, verifies

the Quote, then it can trust the public key. Finally, the key server can use the public
key to verify additional TLS messages.

14.2.3 Key Server Information

The remote key server information (such as server certificate) should be provisioned
to TDVF configuration FV as a UEFI variable. It will be used in TLS authentication.

This information shall be extended to RTMR for remote attestation.

Disk Encryption

Document Number: 344991-003US

14.2.4 Key transport from Server

Once TDVF and remote key server establish an authenticated secure session, the
TDVF can request the key from the server. This can be done via high level network
protocol on top of TLS.

One possible way is to use RESTful API. For example, the TDVF sends a “Transfer

Storage Volume Key” request message, then the key server returns a “Storage
Volume Key Data” response message.

14.3 Decryption Agent

14.3.1 Key Passing – SVKL table

Once the attestation agent gets the key, the attestation agent should allocate a
reserved data memory and put the key into this memory, then create a Storage
Volume Key Location (SVKL) ACPI table to contain the address and size of the key.

The decryption agent should locate the key from the SVKL table, read the key, then

erase the key in the reserved data memory.

14.3.2 Storage Volume Key Usage in TDVF

In Full Disk Encryption, the decryption agent should decrypt the disk image. Then the
TDVF can load the OS from the decrypted partition and launch it.

In Data Partition Encryption or container image encryption, the decryption happens

outside of TDVF boot phase.

14.4 High-level Flow Examples

14.4.1 Example on Full Disk Encryption

1. VMM gets the encrypted disk image from the customer.

2. VMM launches TDVF with encrypted disk.

3. TDVF launches the attestation agent to communicate with remote key server.

4. The attestation agent sets up an authenticate secure session with remote key

server via RA-TLS.

5. The attestation agent gets the disk encryption key from the remote key server,
then passes the key to the decryption agent.

6. The decryption agent decrypts the disk.

7. TDVF locates the OS loader and boots to OS.

Disk Encryption

Document Number: 344991-003US

14.4.2 Example on Data Partition Encryption

1. VMM launches TDVF with a normal OS image and encrypted use data partition.

2. TDVF launches the attestation agent to communicate with remote key server.

3. The attestation agent sets up an authenticate secure session with remote key
server via RA-TLS.

4. The attestation agent gets the storage volume key from the remote key server.

5. The attestation agent stores the storage volume key in the SVKL ACPI table.

6. TDVF boots to OS.

7. The OS decryption agent locates the SVKL ACPI table and decrypts the user data
partition.

 §

Disk Encryption

Document Number: 344991-003US

Appendix A - References

[TDX] Intel Trust Domain Extensions,

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[TDX-CPU] Intel CPU Architecture Extensions Specification,
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-

extensions.html

[TDX-SEAM] Intel TDX Module EAS,
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[TDX-SEAMLoader] Intel TDX Loader Interface Specification,

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[TDX-VMM] Intel TDX Guest-Hypervisor Communication Interface,

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[TDX Linux Security] Intel® Trust Domain Extension Linux* Guest Kernel Security

Specification, https://intel.github.io/ccc-linux-guest-hardening-docs/security-
spec.html[Firmware Side Channel] Host Firmware Speculative Execution Side
Channel Mitigation,
https://www.intel.com/content/www/us/en/developer/articles/technical/software-

security-guidance/technical-documentation/host-firmware-speculative-side-channel-
mitigation.html

[ACPI] ACPI Specification, https://uefi.org/specifications

[UEFI] UEFI Specification, https://uefi.org/specifications

[UEFI PI] UEFI Platform Initialization Specification, https://uefi.org/specifications

[Virtio] Virtual I/O Device (VIRTIO) Version 1.1, http://docs.oasis-
open.org/virtio/virtio/v1.1/virtio-v1.1.html

[Hyper-V*] Hyper-V Top-Level Functional Specification (TLFS),

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs

[TCG2 Protocol] TCG EFI Protocol specification,

https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-
rev13-160330final.pdf

[TCG ACPI] TCG ACPI specification, https://trustedcomputinggroup.org/wp-
content/uploads/TCG_ACPIGeneralSpecification_v1.20_r8.pdf

[TCG PFP] PC Client-Specific Platform Firmware Profile Specification,

https://trustedcomputinggroup.org/wp-content/uploads/PC-
ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v51.pdf

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html
https://uefi.org/specifications
https://uefi.org/specifications
https://uefi.org/specifications
http://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
http://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_ACPIGeneralSpecification_v1.20_r8.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_ACPIGeneralSpecification_v1.20_r8.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v51.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v51.pdf

Disk Encryption

Document Number: 344991-003US

[Linux Direct Boot]

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/efi-
stub.rst

[Linux Boot Protocol] https://www.kernel.org/doc/Documentation/x86/boot.txt

[Linux Boot Parameter] https://www.kernel.org/doc/Documentation/x86/zero-
page.txt

[Intel RA-TLS] Intel Remote Attestation TLS, https://github.com/cloud-security-

research/sgx-ra-tls

[Open Enclave RA-TLS] open enclave Remote Attestation TLS,
https://github.com/openenclave/openenclave/tree/master/samples/attested_tls,
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attest

ation/attester.h,
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attest
ation/verifier.h

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/efi-stub.rst
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/efi-stub.rst
https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/zero-page.txt
https://www.kernel.org/doc/Documentation/x86/zero-page.txt
https://github.com/cloud-security-research/sgx-ra-tls
https://github.com/cloud-security-research/sgx-ra-tls
https://github.com/openenclave/openenclave/tree/master/samples/attested_tls
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/attester.h
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/attester.h
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/verifier.h
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/verifier.h

