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1. About this Document

1.1. Scope of this Document

This document describes the architecture of the Intel® Trust Domain Extensions (Intel® TDX) module, implemented using
the Intel TDX Instruction Set Architecture (ISA) extensions, for confidential execution of Trust Domains in an untrusted
hosted cloud environment.

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

Document Name Reference Description
TDX Module [TDX Module Spec] Base TDX module architecture overview
Base Architecture Specification and specification, covering key

management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

TDX Module [TD Migration Spec] | Architecture overview and specification for
TD Migration Architecture Specification TD migration

TDX Module [TDX Module ABI] Detailed TDX module Application Binary
ABI Reference Specification Interface (ABI) reference specification,

covering the entire TDX module
architecture

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This

10 document does not imply any product commitment from Intel to anything in terms of features and/or behaviors.
Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.
15 1.2, Document Organization
The document has the following main sections:
e Section 1 contains an introduction to the document and an overview of the Intel TDX module.
e Section 2 contains the Intel TDX module architecture specification.
1.3. Glossary
20 Table 1.2: Intel TDX Glossary
Acronym | Full Name New | Description
for
TDX
Application No A programming interface defined at the binary level (i.e., instruction opcode and
Binary CPU registers). The Intel TDX module interface is specified as an ABI.
Interface
ACM Authenticated | No A code module that is designed to be loaded, verified and executed by the CPU in
Code Module on-chip memory (CRAM).
N/A Accessible No Memory whose content is readable and/or writeable (e.g., TD private memory is
(Memory) accessible to the guest TD).
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Acronym | Full Name New | Description
for
TDX
N/A Addressable No Memory that can be referred to by its address. The content of addressable
(Memory) memory might not necessarily be accessible (e.g., TDCS is not accessible to the
host VMM).
CMR Convertible Yes A range of physical memory configured by BIOS and verified by MCHECK. MCHECK
Memory Range verification is intended to help ensure that a CMR may be used to hold TDX
memory pages encrypted with a private HKID.
N/A Enlightened No A TD OS is considered enlightened if it is aware that it is running as a TD (see
(o} Paravirtualization).

EPXE Extended No The CPU’s cache of EPT intermediate translations (as opposed to TLB, which
Paging caches full LA or GPA to HPA translations).
Structures
Cache

GPA Guest Physical | No An address viewed as a physical address, from a guest VM’s point of view. A GPA
Address is subject to further translation (by EPT) to produce an HPA.
N/A Hidden No A resource or a data structure that is not directly addressable by software (except
the Intel TDX module).
HKID Host Key ID Yes When MKTME is activated, HKID is a key identifier for an encryption key used by
one or more memory controllers on the platform.
N/A Host VMM Yes The VMM that serves as a host to guest TDs. The term “host” is used to
differentiate between the “host VMM” and future VMMs that may be nested
within TDs.
HPA Host Physical No A physical address at the host VMM level. This is the actual physical address used
Address by the hardware (e.g., caches). See also PA.

KET Key Encryption | Yes A table held by each MKTME encryption engine, intended for holding encryption
Table key information, indexed by HKID.

KOT Key Ownership | Yes An internal, hidden table held by the Intel TDX module, intended for controlling
Table the assignment of HKIDs to TDs.

MBZ Must Be Zero No Normally used to indicate that reserved fields must contain 0.

MKTME Multi-Key TME | No This SoC capability adds support to the TME to allow software to use one or more
separate keys for encryption of volatile or persistent memory encryption. When
used with TDX, it can provide confidentiality via separate keys for memory used by
TDs. MKTME can be used with and without TDX extensions.!

MRTD Measurement | Yes The SHA-384 measurement of a TD accumulated during TD build.

of Trust
Domain

NP- Non-Persistent | Yes An ACM intended to load an Intel P-SEAMLDR module into the SEAM range.

SEAMLDR | SEAM Loader

P- Persistent Yes A SEAM module intended to install (load or update) Intel TDX modules into SEAM

SEAMLDR | SEAM Loader range.

1n this document, the term “MK-TME” is used to mean both the feature and the encryption engine itself.
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Acronym | Full Name New | Description
for
TDX
PA Physical No The physical address used by the hardware (e.g., caches). See also HPA.
Address
PAMT Physical Yes An internal, hidden data structure used by the Intel TDX module, which is intended
Address to hold the metadata of physical pages.
Metadata
Table
PV Para- No A virtualization technique where the VM can be aware it is being virtualized (as
Virtualization opposed to running directly on hardware).
RTMR Run-Time Yes A SHA-384 measurement register that can be updated during TD run-time.
Measurement
Register
SEAM Secure Yes See TDX ISA.
Arbitration
Mode
SEAMRR SEAM Range Yes A range register used by the BIOS to help configure the SEAM memory range,
Register where the Intel TDX module is loaded and executed.
Service Service TD Yes A Trust Domain (TD) VM used to provide a dedicated service/utility. Extends the
D TCB of the tenant TD it provides the service to. Migration TD (MigTD) is an
example Service TD.
SEPT Secure EPT Yes An Extended Page Table for GPA-to-HPA translation of TD private HPA. A Secure
EPT is designed to be encrypted with the TD’s ephemeral private key. SEPT pages
are allocated by the host VMM via Intel TDX functions, but their content is
intended to be hidden and is not architectural.
Intel® Intel® No An Intel CPU mode and ISA extensions that support operation and management of
SGX Software Intel® SGX enclaves.
Guard
Extensions

SoC System on No A whole system, including cores, uncore, interconnects etc., packaged as a single
Chip device.

SPA System No The physical address used by the hardware (e.g., caches). See also HPA.
Physical
Address

TD Trust Domain Yes Trust Domains (TDs) are designed to be hardware isolated Virtual Machines (VMs)
deployed using Intel® Trust Domain Extensions (Intel® TDX).

TD OS Trust Domain Yes The guest operating system that runs in a TD.

Operating
System
TD VM TD Virtual Yes Same as TD
Machine
N/A TD Private Yes TD Private Memory is designed to hold TD private content, encrypted by the CPU
Memory using the TD ephemeral key.
(Access)
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Acronym | Full Name New | Description

for
TDX

N/A TD Shared Yes TD Shared memory is designed to hold content accessible to the TD and the host
Memory software (and/or other TDs). TD shared memory may be encrypted using MKTME
(Access) keys managed by the VMM.

TDCS Trust Domain Yes Multi-page control structure for a TD. TDCS pages are allocated by the host VMM
Control via Intel TDX functions, but their content is intended to be non-architectural and
Structure not directly accessible to software.

TDCX Trust Domain Yes 4KB physical pages that are intended to hold parts of a multi-page control
Control structure.

Extension

TDR Trust Domain Yes The root control structure for a TD. The TDR page is allocated by the host VMM
Root via Intel TDX functions, but its content is intended to be non-architectural and not

directly accessible to software.

TDMR Trust Domain Yes A range of memory, configured by the host VMM, that is covered by PAMT and is
Memory Range intended to hold TD private memory and TD control structures.

TDVPS Trust Domain Yes A multi-page structure for holding a TD Virtual CPU (VCPU) state. TDVPS pages are
Virtual allocated by the host VMM via Intel TDX functions, but their content is intended to
Processor be non-architectural and not directly accessible to software.

State

TDVPR Trust Domain Yes A 4KB physical page that is intended to be the root (first) page of a TDVPS.
Virtual
Processor Root

Intel® Intel® Trust Yes An architecture, based on the TDX Instruction Set Architecture (ISA) extensions

TDX Domain and the Intel TDX module, which supports operation and management of Trust
Extensions Domains.

TDX ISA Intel® TDX Yes Intel CPU Instruction Set Architecture (ISA) extensions that support the Intel TDX
Instruction Set module: an isolated software module that facilitates the operation and
Architecture management of Trust Domains.

TME Intel® Total No A memory encryption/decryption engine using an ephemeral platform key
Memory designed to encrypt memory contents exposed externally from the SoC.
Encryption

XFAM Extended Yes A mask of CPU extended features (in XCRO format) that the TD is allowed to use.
Features
Allowed Mask

1.4. Notation

This section describes the notation used in this document.
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1.4.1. Require

When specifying

ment and Definition Commitment Levels

requirements or definitions, the level of commitment is specified following the convention of REC 2119:

Key words for use in RFCs to indicate Requirement Levels, as described in the following table:

Table 1.3: Requirement and Definition Commitment Levels

Keyword

Description

Must

“Must”, "Required" or "Shall" means that the definition is an absolute requirement of the
specification.

Must Not

“Must Not” or "Shall Not" means that the definition is an absolute prohibition of the
specification.

Should

“Should”, or the adjective "Recommended", means that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

Should Not

“Should Not”, or the phrase "Not Recommended" means that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood, and the case must be carefully weighed before
implementing any behavior described with this label.

May

“May”, or the adjective "Optional"”, means that an item is discretionary. An implementation
may choose to include the item, while another may omit the same item, because of various
reasons.

1.5, References

1.5.1. Intel Public Documents

Table 1.4: Intel Public Documents

Reference

Document

Version & Date

Intel SDM

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

325462-072US,
May 2020

ISA Extensions

Intel® Architecture
Instruction Set Extensions and Future Features
Programming Reference

319433-040,
June 2020

1.5.2. Intel TDX Public Documents

Table 1.5: Intel TDX Public Documents

Reference

Document

Version & Date

TDX Whitepaper

Intel Trust Domain Extensions Whitepaper

August 2020

Intel TDX Spec

Intel® Architecture Trust Domain Extensions (TDX)
Specification

Rev. 1.0, August
2020

MKTMEi Spec

Intel® Architecture Memory Integrity Specification

Rev. 1.0, March 2020

TDX Module Spec

Intel TDX Module 1.5 Base Architecture Specification

348549-001US
September 2021
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Reference

Document

Version & Date

TD Migration Spec

Intel TDX Module 1.5 TD Migration Architecture Specification

348550-001US
September 2021

TDX Module ABI

Intel TDX Module 1.5 ABI Reference Specification

348551-001US
September 2021

GHCI Spec Intel TDX Guest-Hypervisor Communication Interface Version 348552-001US
1.5 September 2021
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2. Overview of Intel® Trust Domain Extensions

Intel® Trust Domain Extensions (Intel® TDX) refers to an Intel technology that extends Virtual Machines Extensions (VMX)
and Multi-Key Total Memory Encryption (MKTME) with a new kind of virtual machine guest called a Trust Domain (TD).
A TD runs in a CPU mode that is designed to protect the confidentiality of its memory contents and its CPU state from
any other software, including the hosting Virtual Machine Monitor (VMM), unless explicitly shared by the TD itself.

The TDX solution is built using a combination of Intel® Virtual Machine Extensions (VMX) and Multi-Key Total Memory
Encryption (MK-TME), as extended by the Intel® Trust Domain Extensions Instruction Set Architecture (Intel TDX ISA).
An attested software module called the Intel TDX module is designed to implement the TDX architecture.

The platform is managed by a TDX-aware host VMM. As shown in Figure 2.1 below, a host VMM can launch and manage
both guest TDs and legacy guest VMs. The host VMM maintains all legacy functionality from the legacy VMs’ perspective;
it is restricted only with regard to the TDs it manages.

Host VMM managed access Intel TDX module managed access control,
control, enhanced with MK-TME / leveraging MK-TME and Secure EPT x
Legacy VM Legacy VM Trust Domain Trust Domain
Applications Applications Unmodified iR
PR PP Applications Applications
) . Unmodified Unmodified
Drivers Drivers . .
Drivers Drivers
TDX- TDX-
0S oS Enlightened Enlightened
oS 0s
| t ] t
Intel TDX Intel TDX
Guest-Side Interface Guest-Side Interface
— } — )
Intel TDX Intel TDX Module
TDX-Aware Host VMM 4= Host-Side —> .
Interface Running in SEAM Root Mode
=1
I
Platform (Cores, Caches, Devices etc.)

Figure 2.1: Intel® Trust Domain Extension Components Overview

2.1. Intel TDX Module Lifecycle

2.1.1. Boot-Time Configuration and Intel TDX Module Loading

1. BIOS should configure the SEAMRR registers and prepares a table of Convertible Memory Regions (CMRs) — memory
regions that can hold TD-private memory pages.

2. BIOS should then initiate MCHECK (as part of a uCode patch load) by WRMSR(0x79). MCHECK is designed to check
the correct configuration of SEAMRR and CMRs and store the information in a well-known location in SEAMRR.

3. The host VMM can then load the Intel TDX module using the Persistent SEAMLDR module.

2.1.2. UPDATED: Intel TDX Module Initialization, Enumeration and Configuration

1. After loading the Intel TDX module, the host VMM should call the TDH.SYS.INIT function to globally initialize the
module.

2. The host VMM should then call the TDH.SYS.LP.INIT function on each logical processor. TDH.SYS.LP.INIT is intended
to initialize the module within the scope of the Logical Processor (LP).

3. The host VMM should then call the TDH.SYS.RD/RDALL or TDH.SYS.INFO function to enumerate the Intel TDX module
functionality and parameters, and retrieve the trusted platform topology and CMR information as previously checked
by MCHECK.
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4. Based on the above, the host VMM should then decide on a set of Trust Domain Memory Regions (TDMRs). TDMR
is a region of convertible memory that may contain some reserved sub-regions.

5. The host VMM should then call the TDH.SYS.CONFIG function and pass TDMR information with other configuration
information. TDH.SYS.CONFIG is intended to check the configuration information vs. the Intel TDX module’s trusted
internal data.

6. The host VMM should then call the TDH.SYS.KEY.CONFIG function per package. TDH.SYS.KEY.CONFIG is intended to
configure a CPU-generated random key that is used as the Intel TDX module’s global private key.

7. The host VMM should then use the TDH.SYS.TDMR.INIT function to initialize the TDMRs and their associated control
structures.

The Intel TDX module lifecycle is detailed in Chapter 4.

2.2. Guest TD Life Cycle Overview

2.2.1. Guest TD Build

The host VMM can create a new guest TD by allocating and initializing a TD Root (TDR) control structure using the
TDH.MNG.CREATE function. As an input to TDH.MNG.CREATE, the host VMM assigns the TD with a memory protection
key identifier, also known as a Host Key ID (HKID). The HKID can be used by the CPU to tag memory accesses done by the
TD and by the multi-key total memory encryption engines (MKTMEs) to select the encryption/decryption keys — the keys
themselves are designed to not be exposed to the host VMM. The VMM should then program the HKID and encryption
key into the MKTME encryption engines using the TDH.MNG.KEY.CONFIG function on each package.

Once the TD is assigned a key, the host VMM can build the TD Control Structure (TDCS) by adding control structure pages,
using the TDH.MNG.ADDCX function, and initialize using the TDH.MNG.INIT function. It can then build the Secure EPT
tree using the TDH.MEM.SEPT.ADD function and add the initial set of TD-private pages using the TDH.MEM.PAGE.ADD
function. These pages typically contain Virtual BIOS code and data along with some clear pages for stacks and heap.
Most of the guest TD code and data is dynamically loaded at a later stage. The guest TD can extend run-time
measurement registers, designed to be securely maintained by the Intel TDX module, for the added contents using the
TDH.MR.EXTEND function.

The host VMM can then create and initialize TD Virtual CPUs (VCPUs). After creating each VCPU using the TDH.VP.CREATE
function, the VMM allocates a set of pages to hold the VCPU state (in a structure called TDVPS) using the TDH.VP.ADDCX
function. The host VMM can then initialize the VCPU using the TDH.VP.INIT function.

After the initial set of pages is added and extended, the VMM can finalize the TD measurement using the
TDH.MR.FINALIZE function.

2.2.2. Guest TD Execution

The host VMM may enter the TD (launch the TD for the first time, or resume a previously intercepted TD execution) using
the TDH.VP.ENTER function. The Intel TDX module is designed to load CPU state from the TDVPS structure and perform
VM entry to go into TDX non-root mode.

When TD exit is triggered, the Intel TDX module is designed to save CPU state into the TDVPS structure, load the CPU
state saved on TD entry, and switch back to TDX root mode (SEAMRET) at the instruction following SEAMCALL. The VMM
can then inspect the TD exit information in General Purpose Registers (GPRs).

2.2.3. Guest TD Management during its Run-Time

During TD lifetime, the VMM might need to dynamically control the TD and manage the resources assigned to it. The
Intel TDX module provides the VMM with functions to support scenarios such as:

Adding and removing TD pages.

Changing page mapping sizes.

e  Reclaiming the HKIDs from a TD, and assigning them to another TD.
Destroying an existing TD.
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2.3. Intel TDX Operation Modes and Transitions

The Intel TDX module is designed to provide two main new logical modes of operation built upon the new SEAM root
and non-root CPU modes added to the Intel VMX architecture: TDX Root Mode, and TDX Non-Root Mode. Figure 2.2
below shows the Intel TDX logical modes and transitions (in red) on top of the CPU architectural modes.

SMM

Legacy VMX ! SEAM

‘: TDX Non-Root

| |
: |
1
Parallel VM Legacy VM I : VMX
" | Non-Root
|
[ '
______________________________________________ j__TD_ _ =5 B D
= T T T T NafEntry 1
SEAMCALY X\ I
Parallel VMM : VMX
I
I Root
|
N
Opt-in SMM I N _ _ —TDExit  SsI
Opt-out SMM
Out of
VMX
5
Figure 2.2: Overview of Intel TDX Modes & Transitions based on VMX and SEAM Modes and Transitions
The following table adds more details.
Table 2.1: Overview of Intel TDX Modes
Intel TDX Intel VMX Mode | SEAM Mode Description
Logical Mode
TDX Root VMX Root Non-SEAM TDX root mode is mostly identical to the legacy VMX root operation
(mostly), mode. It is generally used for host VMM operation.
SEAM .(during Host-side Intel TDX functions, triggered by SEAMCALL, are provided
host-side !ntel by the Intel TDX module. Logically, host-side functions run in TDX
TDX functions root mode, though the CPU’s SEAM mode is on.
execution)
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Intel TDX Intel VMX Mode | SEAM Mode Description
Logical Mode
TDX VMX Non-Root SEAM TDX non-root mode is used for TD guest operation. TDX non-root
Non-Root (mostly), operation is similar to legacy VMX non-root operation, with
VMX Root changes and restrictions to better assure that no other software or
(during guest- hardware has direct visibility of the TD memory and state.
side Intel TDX

flows execution)

The changes in TDX non-root mode vs. legacy VMX non-root
operation are implemented by:

e The CPU running in SEAM non-root mode. This modifies the
address translation to support Secure EPT and usage of private

HKIDs, and it also modifies the VMX operation (entry, exit,
etc.).

e The Intel TDX module, acting as the root VMM for the guest
TD, using VMX and SEAM to virtualize the CPU behavior and
emulate the required TDX non-root behavior.

the Intel TDX module. Logically, guest-side functions run in TDX
non-root mode, though the CPU runs VMX root mode.

TDX non-root operation is described in Chapter 11.

Guest-side Intel TDX flows, triggered by a VM Exit, are provided by
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Intel TDX transitions between TDX root operation and TDX non-root operation include TD Entries, from TDX root to TDX
non-root mode, and TD Exits from TDX non-root to TDX root mode. A TD Exit might be asynchronous, triggered by some
external event (e.g., external interrupt or SMI) or an exception, or it might be synchronous, triggered by a
TDCALL(TDG.VP.VMCALL) function.

2.4. Guest TD Private Memory Protection

2.4.1.1. Memory Encryption

The Intel TDX module helps protect guest TD private memory using memory encryption and integrity protection as
enabled by the CPU’s MKTME and TDX ISA features. The Intel TDX module adds key management functionality to help
enforce its security objectives.

Memory encryption is designed to be performed by encryption engines that reside at each memory controller. An
encryption engine holds a table of encryption keys, known as the Key Encryption Table (KET). An encryption key is
selected for each memory transaction based on a Host Key Identifier (HKID) that should be provided with the transaction.

In the first generation of MKTME, HKID is “stolen” from the physical address by allocating a configurable number of bits
from the top of the physical address. TDX ISA is designed to further partition the HKID space into shared HKIDs for legacy
MKTME accesses and private HKIDs for SEAM-mode-only accesses. Future generations might choose to express HKID
differently.

During TDX non-root operation, memory accesses can be qualified as either shared or private, based on the value of a
new SHARED bit in the Guest Physical Address (GPA). Shared accesses are intended to behave as legacy memory accesses
and use the upper bits of the host physical address as an HKID, which must be from the range allocated to legacy MKTME.
Private accesses use the guest TD’s private HKID.

The host-side Intel TDX functions help provide the means for the host VMM to manage HKID assignment to guest TDs,
configure the memory encryption engines, etc., while better assuring proper operation to help maintain the TDX’s
security objectives. By design, the host VMM does not have access to the encryption keys.

Encryption-based memory protection is described in the [MKTME PAS] and [SEAM PAS]. Key management is described
in Chapter 4.

2.4.2. Address Translation

Guest Physical Address (GPA) space is divided into private and shared sub-spaces, determined by the SHARED bit of GPA.

As designed, the CPU translates shared GPAs using the Shared EPT, which resides in host VMM memory. The Shared EPT
is directly managed by the host VMM — the same as with legacy VMX.
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As designed, the CPU translates private GPAs using a separate Secure EPT. The Secure EPT pages are encrypted and
integrity-protected with the TD’s ephemeral private key. The Secure EPT is not intended to be directly accessible by any
software other than the Intel TDX module, nor by any devices. Secure EPT can be managed indirectly by the host VMM,
using Intel TDX functions. The Intel TDX module helps ensure that the Secure EPT security properties are kept. At the
end of translation, the CPU sets the HKID bits in the HPA to the TD’s assigned HKID.

TD private memory management is described in Chapter 9.
Private GPA Space

TDO /{ Guest Physical Address }
— Memory encrypted with a

CR3 Private Code/data ‘ TD private key

—[ Private Code/data ‘

}—4 Shared Data ‘

lGuest Physical Address (GPA)

Shared GPA Space
— Memory encrypted with a
key shared with VMM

Ll

CPU PMH
. ‘ HPA Space
TD Privat )
Hl?l\s . GPA.SHARED ) Physical Memory
Physical Pages
o Address +
Yesl HKID

[
Shared Extended Extended
Page Tables Page Tables
(Shared EPT) (Secure EPT)

Figure 2.3: Secure EPT Concept
2.5. Guest TD State Protection

Intel TDX helps protect the confidentiality and integrity of a guest TD and the state of its Virtual CPUs (VCPUs) with the
following mechanisms:

Protected Control TD-scope and TD VCPU-scope control structures, which hold guest TD metadata and TD VCPU

Structures state, are not directly accessible to any software (besides the Intel TDX module) or devices. As
designed, the control structures are encrypted and integrity-protected with a private key, and
managed by Intel TDX functions. TD control structures are described in Chapter 6.

VCPU State on TD On asynchronous TD exits, which happen due to exceptions or external events, the CPU state is
Transitions saved to the VCPU control structures, and a synthetic state is loaded into the CPU registers. On
the following TD Entry, the CPU state is restored from the protected control structures.

On synchronous TD-initiated exit, using the TDCALL(TDG.VP.VMCALL) function, selected GPR
and XMM state can be passed as-is to the host VMM. On the following TD entry, that state can
be passed back as-is to the guest TD.

2.6. Intel TDX I/0 Model

The TD guest can use the following I/0 models:

e  Paravirtualized devices
e  Paravirtualized devices with MMIO emulation
e Direct assignment of devices to a TD
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The Intel TDX architecture does not provide specific mechanisms for trusted 1/O. Any integrity or confidentiality
protection of data submitted to or received from physical or emulated devices must be done by the guest software using

cryptography.
Intel TDX 1/O is detailed in Chapter 13.

2.7. Measurement and Attestation

As designed, during TD launch, the initial contents and configuration of the TD are recorded by the Intel TDX module. In
addition, run-time measurement registers can be used by the guest TD software, e.g., to measure a boot process. At run-
time, the Intel TDX module reuses the Intel® Software Guard Extensions (Intel® SGX) attestation infrastructure to provide
support for attesting to these measurements as described below.

Intel TDX attestation is intended to be used in two phases:

1. Software within the guest TD can use the TDCALL(TDG.MR.REPORT) function to request the Intel TDX module to
generate an integrity-protected TDREPORT structure. The Intel TDX ISA provides support for enabling the Intel TDX
module to create this structure that includes the TD’s measurements, the Intel TDX module’s measurements, and a
value provided by the guest TD software. This will typically be an asymmetric key that the attestation verifier can
use to establish a secure channel or protect sensitive data to be sent to the TD software.

2. An Intel SGX Quoting Enclave, written specifically to support quoting Intel TDX TDs, uses a new ENCLU instruction
leaf, EVERIFYREPORT2, to help check the integrity of the TDG.MR.REPORT. If it passes, the Quoting Enclave can use
a certified quote signing key to sign a quote containing the guest TD’s measurements and the additional data being
quoted.

The Quoting Enclave can run anywhere on the platform where Intel SGX is supported.

Note: Running Intel SGX enclaves within a guest TD is not supported.

1) TDREPORT
(TDCALL Leaf)

MAC Key

Trust Domain TD Quoting Enclave -

2) EVERIFYTDREPORT2
(Instruction)

TDREPORT
mAC)  (JOJ

Figure 2.4: TD Attestation

TD measurement and attestation is described in Chapter 12.
2.8. Intel TDX Managed Control Structures

As designed, the Intel TDX module holds and manages a set of control structures that are not directly accessible to
software (except the Intel TDX module itself). The controls structures are encrypted with private keys and HKIDs, and
their content is only accessible in SEAM mode. Most control structures are addressable by the host VMM, which is
responsible for allocating the memory to hold them.

The Intel TDX module uses control structures to help manage TD-private memory, transitions into and out of TDX non-
root operation (TD entries and TD exits), as well as processor behavior in TDX non-root operation.

Table 2.2: TDX-Managed Control Structures Overview

Scope Name Meaning Description
Platform KOT Key Ownership Designed to control private HKID assignment. KOT is internal to
Table the Intel TDX module, intended not to be directly accessible to

any other software.

PAMT Physical Address The PAMT is designed to hold metadata of each page in a Trust
Metadata Table Domain Memory Range (TDMR). It controls assignment of
physical pages to guest TDs, etc. The PAMT is intended not to
be directly accessible to software. It resides in memory
allocated by the host VMM on TDX initialization.
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Scope Name

Meaning

Description

Guest TD TDR

Trust Domain
Root

The TDR is intended to be the root control structure of a guest
TD. It controls the key management and build/teardown
process. The TDR is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.

TDCS

Trust Domain
Control Structure

The TDCS is intended to control the operation of a guest TD as a
whole. The TDCS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.

SEPT

Secure EPT

The TDX-managed Extended Page Table (EPT) tree, used to help
securely manage address translation for the TD private pages.
The SEPT is not intended to be directly accessible to software.
SEPT pages reside in memory allocated by the host VMM via
Intel TDX interface functions.

Guest TD TDVPS
VCPU

Trust Domain
Virtual Processor
State

The TDVPS helps control the operation and hold the state of a
guest TD virtual processor. It holds the TD VMCS and its
auxiliary structures as well as other non-VMX control and state
fields. The TDVPS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.

Intel TDX control structures are described in Chapter 6.

2.9. Intel TDX Interface Functions

The Intel TDX module implements functions that are triggered by executing two TDX instructions:

5 SEAMCALL The instruction used by the host VMM to invoke host-side TDX interface functions. The desired interface
function is selected by an input operand (leaf number, in RAX). Host-side interface function names start
with TDH (Trust Domain Host).

TDCALL The instruction used by the guest TD software (in TDX non-root mode) to invoke guest-side TDX functions.
The desired interface function is selected by an input operand (leaf number, in RAX). Guest-side interface
10 function names start with TDG (Trust Domain Guest).

Intel TDX interface function details are described in the [TDX Module ABI].

2.9.1. Host-Side (SEAMCALL Leaf) Interface Functions

Table 2.3: Host-Side (SEAMCALL Leaf) Interface Functions

Class

Interface Function Name Leaf | Description

#

Intel TDX Module Management

TDH.SYS.CONFIG

45 | Globally configure the Intel TDX module

Intel TDX Module Management

TDH.SYS.INFO

32 | Get Intel TDX module information

Intel TDX Module Management

TDH.SYS.INIT

33 | Globally initialize the Intel TDX module

Intel TDX Module Management

TDH.SYS.KEY.CONFIG

31 | Configure the Intel TDX global private key on the
current package

Intel TDX Module Management

TDH.SYS.LP.INIT

35 | Initialize the Intel TDX module per logical processor

Intel TDX Module Management

TDH.SYS.LP.SHUTDOWN 44 | Shutdown the Intel TDX module on the current LP

Intel TDX Module Management

TDH.SYS.RD

34 | Read a TDX Module global-scope metadata field

Intel TDX Module Management

TDH.SYS.RDALL

37 | Read all host-readable TDX Module global-scope
metadata fields

Intel TDX Module Management

TDH.SYS.TDMR.INIT

36 | Partially initialize a Trust Domain Memory Region
(TDMR)
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Class Interface Function Name Leaf | Description

#
TD Management TDH.MNG.ADDCX 1 | Add a control structure page to a TD
TD Management TDH.MNG.CREATE 9 | Create a guest TD and its TDR root page

TD Management

TDH.MNG.INIT

21

Initialize per-TD control structures

TD Management

TDH.MNG.KEY.CONFIG

Configure the TD private key on a single package

TD Management TDH.MNG.KEY.FREEID 20 | Mark the guest TD’s HKID as free

TD Management TDH.MNG.KEY.RECLAIMID 27 | Does nothing; provided for backward compatibility
TD Management TDH.MNG.RD 11 | Read TD metadata

TD Management TDH.MNG.VPFLUSHDONE 19 | Check all of a guest TD’s VCPUs have been flushed by

TDH.VP.FLUSH

TD Management

TDH.MNG.WR

13

Write TD metadata

VCPU Scope TDH.VP.ADDCX 4 | Add a control structure page to a TD VCPU

VCPU Scope TDH.VP.CREATE 10 | Create a guest TD VCPU and its TDVPR root page

VCPU Scope TDH.VP.ENTER 0 | Enter TDX non-root operation

VCPU Scope TDH.VP.FLUSH 18 | Flush the address translation caches and cached TD
VMCS associated with a TD VCPU

VCPU Scope TDH.VP.INIT 22 | Initialize the per-VCPU control structures

VCPU Scope TDH.VP.RD 26 | Read VCPU metadata

VCPU Scope TDH.VP.WR 43 | Write VCPU metadata

Physical Memory Management TDH.PHYMEM.CACHE.WB 40 | Write back the contents of the cache on a package

Physical Memory Management TDH.PHYMEM.PAGE.RDMD 24 | Read the metadata of a page in a TDMR

Physical Memory Management TDH.PHYMEM.PAGE.RECLAIM 28 | Reclaim a physical memory page owned by a TD (i.e.,
TD private page, Secure EPT page or a control structure
page)

Physical Memory Management TDH.PHYMEM.PAGE.WBINVD 41 | Write back and invalidate all cache lines associated
with the specified memory page and HKID

Private Memory Management TDH.MEM.PAGE.ADD 2 | Add a 4KB private page to a TD during TD build time

Private Memory Management TDH.MEM.PAGE.AUG 6 | Dynamically add a 4KB private page to an initialized TD

Private Memory Management TDH.MEM.PAGE.DEMOTE 15 | Split a 2MB or a 1GB private TD page mapping into 512
4KB or 2MB page mappings respectively

Private Memory Management TDH.MEM.PAGE.PROMOTE 23 | Merge 512 consecutive 4KB or 2MB private TD page
mappings into one 2MB or 1GB page mapping
respectively

Private Memory Management TDH.MEM.PAGE.RELOCATE 5 | Relocate a 4KB mapped page from its HPA to another

Private Memory Management TDH.MEM.PAGE.REMOVE 29 | Remove a private page from a guest TD

Private Memory Management TDH.MEM.RANGE.BLOCK 7 | Block a TD private GPA range

Private Memory Management TDH.MEM.RANGE.UNBLOCK 39 | Remove the blocking of a TD private GPA range

Private Memory Management TDH.MEM.RD 12 | Read from private memory of a debuggable guest TD

Private Memory Management TDH.MEM.SEPT.ADD 3 | Add and map a 4KB Secure EPT page toa TD

Private Memory Management TDH.MEM.SEPT.RD 25 | Read a Secure EPT entry

Private Memory Management TDH.MEM.SEPT.REMOVE 30 | Remove a Secure EPT page froma TD

Private Memory Management TDH.MEM.TRACK 38 | Increment the TD’s TLB tracking counter

Private Memory Management TDH.MEM.WR 14 | Write to private memory of a debuggable guest TD

Measurement and Attestation TDH.MR.EXTEND 16 | Extend the guest TD measurement register during TD
build

Measurement and Attestation TDH.MR.FINALIZE 17 | Finalize the guest TD measurement register

Service TD TDH.SERVTD.BIND 48 | Bind a service TD to a target TD

Service TD TDH.SERVTD.MSG 49 | Process a service TD request message

Migration TDH.MIG.STREAM.CREATE 96 | Create a migration stream

Migration Export TDH.EXPORT.ABORT 64 | Abort an export session

Migration Export TDH.EXPORT.BLOCKW 65 | Block a TD private page for writing

Migration Export TDH.EXPORT.RESTORE 66 | Cancel the export of a previously exported TD private
page

Migration Export TDH.EXPORT.MEM 68 | Export a TD private page

Migration Export TDH.EXPORT.PAUSE 70 | Pause the exported TD
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Class

Interface Function Name

Leaf

Description

Migration Export

TDH.EXPORT.TRACK

71

End an in-order export phase epoch and start a new
epoch or the out-of-order phase

Migration Export

TDH.EXPORT.STATE.IMMUTABLE

72

Start an export session and export the TD's immutable
state

Migration Export TDH.EXPORT.STATE.TD 73 | Export the TD's mutable state

Migration Export TDH.EXPORT.STATE.VP 74 | Export a VCPU mutable state

Migration Export TDH.EXPORT.UNBLOCKW 75 | Unblock a page that has been blocked for writing
Migration Import TDH.IMPORT.ABORT 80 | Abort an import session

Migration Import

TDH.IMPORT.END

81

End an import session

Migration Import

TDH.IMPORT.COMMIT

82

Commit the import session and allow the imported TD
to run

Migration Import

TDH.IMPORT.MEM

83

Import a TD private page

Migration Import

TDH.IMPORT.TRACK

84

Process a start token and end the in-order import
phase

Migration Import

TDH.IMPORT.STATE.IMMUTABLE

85

Start an import session and import the TD's immutable
state

Migration Import

TDH.IMPORT.STATE.TD

86

Import the TD's mutable state

Migration Import

TDH.IMPORT.STATE.VP

87

Import a VCPU mutable state

2.9.2. Guest-Side (TDCALL Leaf) Interface Functions
Table 2.4: Guest-Side (TDCALL Leaf) Interface Functions
Class Interface Function Name Leaf | Description
#

Global Scope TDG.SYS.RD 11 | Read a TDX Module global-scope metadata field

Global Scope TDG.SYS.RDALL 12 | Read all gust-readable TDX Module global-scope
metadata fields

VM Scope TDG.VM.RD 7 | Read a TD-scope metadata field

VM Scope TDG.VM.WR 8 | Write a TD-scope metadata field

VCPU Scope TDG.VP.CPUIDVE.SET 5 | Control delivery of #VE on CPUID instruction execution

VCPU Scope TDG.VP.INFO 1 | Get TD execution environment information

VCPU Scope TDG.VP.RD 9 | Read a VCPU-scope metadata field

VCPU Scope TDG.VP.VEINFO.GET 3 | Get Virtualization Exception Information for the recent
#VE exception

VCPU Scope TDG.VP.VMCALL 0 | Call a host VM service

VCPU Scope TDG.VP.WR 10 | Write a VCPU-scope metadata field

Private Memory Management TDG.MEM.PAGE.ACCEPT 6 | Accept a pending private page into the TD

Measurement and Attestation TDG.MR.REPORT 4 | Creates a cryptographic report of the TD

Measurement and Attestation TDG.MR.RTMR.EXTEND 2 | Extend a TD run-time measurement register
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3. Software Use Cases

This chapter summarizes the software use cases (also known as software flows) used with the Intel TDX module.

3.1.

3.1.1.

Intel TDX Module Lifecycle

UPDATED: Intel TDX Module Platform-Scope Initialization

5 This sequence is intended to be used by the host VMM to initialize the Intel TDX module at the platform scope.

Table 3.1: Typical Intel TDX Module Platform-Scope Initialization Sequence

Phase Intel TDX Function Scope Execute On Description
Boot 1 N/A Platform | Each core BIOS configures Convertible Memory Regions
(CMRs); MCHECK checks them and securely
stores the information.
P-SEAMLDR 2 N/A Platform | One of the OS launches the NP-SEAMLDR ACM, which loads
Loading BSPs the Intel P-SEAMLDR module.
Intel TDX 3 | SEAMLDR.INSTALL Platform | All LPs VMM calls the P-SEAMLDR with “load” scenario
Module to install the TDX module.
Loading
Intel TDX 4 | TDH.SYS.INIT Platform | Any one LP Perform global initialization of the Intel TDX
Module module.
Initialization
5 | TDH.SYS.LP.INIT LP Each LP Perform LP-scope, core-scope and package-
scope initialization, checking and configuration
of the platform and the Intel TDX module.
Enumeration 6 | TDH.SYS.RD* or Platform | Any Retrieve Intel TDX module information and
and TDH.SYS.INFO initialized LP convertible memory (CMR) information.
Configuration
& 7 | TDH.SYS.CONFIG Platform | Any one LP Configure the Intel TDX module with TDMR and
PAMT setup.
8 N/A Package | Each Package | If any MODIFIED cache lines may exist for the
PAMT ranges, flush them to memory using, e.g.,
WBINVD.
9 | TDH.SYS.KEY.CONFIG | Package | Each Package | Configure the Intel TDX global private key used
for encrypting PAMT and TDR on the hardware
(other TD-scope control structures are
encrypted with their respective TD’s ephemeral
private keys).
At this point any Intel TDX function may be executed on any LP.
Memory 10 | TDH.SYS.TDMR.INIT Platform | One or more Called multiple times to gradually initialize the
Initialization (multiple) LPs PAMT structure for each TDMR.
Once each 1GB block of TDMR has been initialized by TDH.SYS.TDMR.INIT, it can be used to hold TD-
private pages.
3.1.2. Intel TDX Module Reload and Update

In both reload and update scenarios, the previous TDX module in SEAM range is erased when the next TDX module is
10 installed. Since the previous module can’t pass any information to the next TDX module, the next TDX module starts
afresh, and all guest TDs’ context and memory out of SEAM range becomes effectively inaccessible.

September 2021

Page 26 of 133

Introduction and Overview

Section 1:



Intel® TDX Module Base Spec Section 1: Introduction and Overview

348549-001US

Table 3.2: TDX Module Reload Sequence

Phase Intel TDX Function Scope Execute On Description
P-SEAMLDR | 1 | SEAMLDR.INSTALL with | Platform | All LPs Installs the next TDX module.
”Ioad".or “update” If the scenario is “load” then the installation
scenario proceeds regardless of the previous TDX
module.
If the scenario is “update” then the installation
fails is the previous TDX module had higher
SEAM SVN.
Next TDX The initialization sequence continues in the same way as described in 3.1.1 above, steps 3 to 8.

Module

3.2. TD Build

The following sequence is intended to be used by the host VMM to build a TD.

Table 3.3: Typical TD Build Sequence

Step

Description

SEAMCALL Leaf
Functions

A | TD Creation

The host VMM finds/allocates a free HKID for the new TD.

and Key
Resource
Assignment

The host VMM allocates a 4K page for the TDR in TDMR. If any
MODIFIED cache lines may exist for this page, the host VMM flushes
them to memory using, e.g., CLFLUSHOPT or
TDH.PHYMEM.PAGE.WBINVD.

The host VMM creates the new TD by calling the TDH.MNG.CREATE
function (passing HPA of the TDR page). This initializes the target TDR
page.

The TD host VMM configures the MKTME hardware with the TD’s
private key by calling the TDH.MNG.KEY.CONFIG function on each
package.

At this point, the TD private memory is accessible. The VMM can use
Intel TDX interface functions to create control structures and TD private
pages as described below.

TDH.MNG.CREATE
TDH.MNG.KEY.CONFIG

B | TDCS
Memory
Allocation
and TD
Initialization

The host VMM allocates multiple 4KB TDCX pages for TDCS. The
number of required TDCX pages is enumerated by TDH.SYS.RD* or
TDH.SYS.INFO. If any MODIFIED cache lines may exist for these pages,
the host VMM flushes them to memory using, e.g., CLFLUSHOPT or
TDH.PHYMEM.PAGE.WBINVD.

For each TDCX page, the host VMM calls the TDH.MNG.ADDCX function
(passing HPA of TDCX) to add the page to the TD.

The host VMM builds a TD_PARAMS structure. For example, the TD
configuration parameters can be obtained from a TD manifest supplied
by the TD owner.

The host VMM calls the TDH.MNG.INIT function (passing the
TD_PARAMS structure) to initialize the TD.

TDH.MNG.ADDCX
TDH.MNG.INIT
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Step

Description

SEAMCALL Leaf
Functions

Virtual
Processor
Creation and
Configuration
(Executed per
each VCPU)

The host VMM allocates target pages for the VCPU’s TDVPR and TDCX
pages in TDMR in the context of a TD. The number of required TDCX
pages is enumerated by TDH.SYS.RD* or TDH.SYS.INFO. If any
MODIFIED cache lines may exist for these pages, the host VMM flushes
them to memory using, e.g., CLFLUSHOPT or
TDH.PHYMEM.PAGE.WBINVD.

The host VMM creates a new TD virtual CPU by calling the
TDH.VP.CREATE function (passing the HPA of the new TDVPR page and
its owner TDR page).

For each TDCX page, the TDRM calls the TDH.VP.ADDCX function
(passing the HPA of the new TDCX page and its parent TDVPR page).

The host VMM initializes the TD VCPU by calling the TDH.VP.INIT
function (passing the HPA of its TDVPR page). It also passes a single 64b
parameter that is later passed to the VBIOS in the initial value of RCX.
This parameter can be used as a pointer to a configuration structure in
shared memory.

The host VMM allocates Shared EPT for each VP.

The host VMM uses the TDH.VP.WR function to write to the TD VMCS
Shared EPTP field.

The host VMM may modify a few TD VMCS execution control fields
using TDH.VP.WR.

TDH.VP.CREATE
TDH.VP.ADDCX
TDH.VP.INIT
TDH.VP.WR

TD Boot
Memory
Setup

The host VMM loads the TD boot image to its memory. The boot image
contains code and data pages that typically include a virtual BIOS, OS
boot loader, configuration, etc.

The host VMM builds the TD Secure EPT by allocating physical pages
and calling the TDH.MEM.SEPT.ADD function multiple times. If any
MODIFIED cache lines may exist for these pages, the host VMM flushes
them to memory using, e.g., CLFLUSHOPT or
TDH.PHYMEM.PAGE.WBINVD.

The host VMM allocates the initial set of physical pages for the TD boot
image and maps them into host address space. If any MODIFIED cache
lines may exist for these pages, the host VMM flushes them to memory
using, e.g., CLFLUSHOPT or TDH.PHYMEM.PAGE.WBINVD.

For each TD page:

1. The host VMM specifies a TDR as a parameter and calls the
TDH.MEM.PAGE.ADD function. It copies the contents from the TD
image page into the target TD page which is encrypted with the TD
ephemeral key. TDH.MEM.PAGE.ADD also extends the TD
measurement with the page GPA.

2. The host VMM extends the TD measurement with the contents of
the new page by calling the TDH.MR.EXTEND function on each 256-
byte chunk of the new TD page.

TDH.MEM.SEPT.ADD
TDH.MEM.PAGE.ADD

TDH.MR.EXTEND

D
Measurement

The host VMM calls the TDH.MR.FINALIZE function, which finalizes the
TD measurement.

Finalization

At this point, the TD is finalized.

e |ts measurement cannot be modified anymore (except the run-time
measurement registers).

e TD VCPUs can be entered using SEAMCALL(TDH.VP.ENTER).

TDH.MR.FINALIZE
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3.3. TD Run Time

3.3.1. Private Memory Management

3.3.1.1. Dynamic Page Addition (Shared to Private Conversion)

The following sequence is intended to be used by the host VMM to dynamically add a page to a guest TD.

Intel TDX
Module

.

Request GPA Range Allocation

Guest TD

TDG.VP.VMCALL | |

I
¢ TD Exit: I |
I I
TDH.MEM .SEPT.ADD(TDR, GPA, level) | |
I Build S-EPT tree as required |
1l — - - - I
I I
I I
TDH.MEM.PAGE.AUG(TDR, GPA) |
I Add one or more 4KB pages as requested I
- ———————————————— |
I I
TDH.VP.ENTER | |
| Return TDVMCALL output > |
| VM entry Pl
I I
I I
| TDG.MEM.PAGE.ACCEPT(GPA)
I For every 4KB page that was added I
G- >
I I
I I
Figure 3.1: Typical Dynamic Page Addition Sequence
Table 3.4: Typical Dynamic Page Addition (Shared to Private Conversion) Sequence
Phase Side | Intel TDX Function Scope | Execute | Description
On
Allocation 1|TD TDG.VP.VMCALL D Any LP Optional software protocol: Request
Request GPA range allocation.
Page 2 | VMM | TDH.MEM.SEPT.ADD D Any LP If required, update the Secure EPT.
Addition
3 | VMM | TDH.MEM.PAGE.AUG TD Any LP Add one or more new 4KB or 2MB
(multiple) private pages.
At this point, the new page is pending acceptance by the guest TD and cannot be accessed by it yet.
4 | VMM | TDH.VP.ENTER TD Any LP Optional software protocol: Return
TDG.VP.VMCALL result.
Page 5| TD TDG.MEM.PAGE.ACCEPT D Any LP | Accept the new pending page(s).

Acceptance

(multiple)

Content of each page is zeroed out.

At this point, the new page can be accessed by the guest TD.

10
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3.3.1.2.

The following sequence is intended to be used by the host VMM to dynamically remove a page from a guest TD. Dynamic

Dynamic Page Removal (Private to Shared Conversion)

page removal is detailed in 9.14.

Intel TDX
Module
T

Guest TD

i

TDG.VP.VMCALL
Release GPA Range
]4—7TD Exit (TDVMCALL)

TLB Tracking Seq uence)

TDH.VP.ENTER
Return TDG.VP.VMCALL output
I VM Entry
I

1

| | TDH.MEM.RANGE.BLOCK(TDR, GPA, level) |
For every page to be removed

I

I

VM Exit (external interrupt)
l{iTD Exit (external interrupt)
<

T TDH.VP.ENTER
[ VM Entry

I
!
TDH.MEM.PAGE.REMOVE(TDR, GPA, level) |
I For every page to be removed
1l -
I
I
TDH.PHYMEM.PAGE.WBINVD(HPA, HKID)
I For every page, beforeitis re-allocated to any s/w
|
5 Figure 3.2: Typical Dynamic Page Removal Sequence
Table 3.5: Typical Dynamic Page Removal (Private to Shared Conversion) Sequence
Phase Side Intel TDX Function Scope Execute | Description
On
Ballooning 1 | TD TDG.VP.VMCALL D Any LP Optional software protocol: Release
Notification GPA range.
2 VMM | TDH.VP.ENTER TD Any LP Optional software protocol: Return
TDG.VP.VMCALL result.
TLB 3 | VMM | TDH.MEM.RANGE.BLOCK D Any LP Block private pages from further address
Tracking (multiple) translation.
Sequence
4 | VMM | TDH.MEM.TRACK D Any one | Increment the TD’s TLB epoch.
LP
5 VMM | N/A TD Multiple | Send an IPI, causing TD exit on any
LPs remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.
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Phase Side Intel TDX Function Scope Execute | Description
On
Page 6 | VMM | TDH.MEM.PAGE.REMOVE D Any LP Clear Secure EPT entry, and mark the
Removal (multiple) physical page as free.
Cache Before re-allocating any of the removed pages to any use, the host VMM must assure none of the cache lines
Flushing of the removed pages are in the MODIFIED state to avoid corruption due to cache line aliasing. This is done
using one of the following methods:
7a | VMM | TDH.PHYMEM.PAGE.WBINVD D Any one | Flush the cache lines of the removed
(multiple) LP page(s).
7b | VMM | WBNOINVD Platform | One LP Globally write back all caches.
per
package?
7¢ | VMM | WBINVD Platform | One LP Globally write back and invalidate all
per caches.
package?
3.3.1.3. Page Promotion (Mapping Merge)

Page size promotion is intended to be used by the host VMM to merge 512 pages mapped as 4KB or 2MB into a single
page mapped as 2MB or 1GB, respectively. Itis detailed in 9.11.

Intel TDX

Module Guest TD

TLB Tracking Sequence (not detailed here))

T TDH.MEM.PAGE.PROMOTE(TDR, GPA, level)

J_< __________________
|

TDH.PHYMEM.PAGE.WBINVD(HPA, HKID) |
For the removed S-EPT page, before itis

! f_ _ _ _ _ reallocatedtoanys/w_ _ _ _ _
5 |

Figure 3.3: Typical Page Promotion Sequence

2 Some CPUs may require running WBNOINVD per core.

3 Some CPUs may require running WBINVD per core.
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Table 3.6: Typical Page Promotion (Mapping Merge) Sequence

Phase Intel TDX Function Scope Execute On Description
TLB TDH.MEM.RANGE.BLOCK TD Any LP Block the GPA range to be merged from
Tracking further address translation.
Sequence
TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
N/A TD Multiple LPs Send an IPI, causing TD exit on any remote
LP associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.
Promotion TDH.MEM.PAGE.PROMOTE TD Any LP Merge small pages in the GPA range into a
large page.
Cache TDH.PHYMEM.PAGE.WBINVD | TD Any LP Flush the removed Secure EPT page’s cache
Flushing lines.
3.3.1.4. Page Demotion (Mapping Split)

Page size demotion is intended to be used by the host VMM to split a page mapped as 1GB or 2MB into 512 pages mapped
5 as 2MB or 4KB, respectively. It is detailed in 9.12.

Intel TDX
Module

Guest TD

TLB Tracking Sequence (not detailed here))

TDH.MEM.PAGE.DEMOTE(

TDR, GPA, level, new S-EPT page)

Figure 3.4: Typical Page Demotion Sequence

Table 3.7: Typical Page Demotion (Mapping Split) Sequence

Phase Intel TDX Function Scope Execute On Description
TLB TDH.MEM.RANGE.BLOCK TD Any LP Block private large page from further
Tracking address translation.
Sequence
TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
N/A TD Multiple LPs Send an IPI, causing TD exit on any
remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.
Demotion TDH.MEM.PAGE.DEMOTE TD Any LP Split the large page into multiple small
pages.

10
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3.3.1.5.

GPA Range Unblock

GPA range unblock is intended to be used when a range has been blocked, for example, for page removal, but the host
VMM decides to cancel the operation. Unblock is detailed in 9.16.

Intel TDX
Module

Guest TD

TLB Tracking Sequence (not detailed here))

|J_r<_

TDH.MEM.RANGE.UNBLOCK(TDR, GPA, Ievel)—t|:|

Figure 3.5: Typical GPA Range Unblock Sequence

Table 3.8: Typical GPA Range Unblock Sequence

Phase Intel TDX Function Scope Execute On Description
TLB TDH.MEM.RANGE.BLOCK TD Any LP Block private GPA range from further address
Tracking (multiple) translation.
Sequence
TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
N/A TD Multiple LPs Send an IPI, causing TD exit on any remote LP
associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.
Unblocking TDH.MEM.RANGE.UNBLOCK | TD Any LP Remove the private GPA range blocking.
3.3.2. Guest TD Execution
3.3.2.1. TD VCPU First-Time Invocation
Table 3.9: Typical TD VCPU First-Time Invocation Sequence
Phase Side | Intel TDX Scope Execute | Description
Function On

Entering TD 1| VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
VCPU (First to TD exit.
Time)

2 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore initial LP state, as set by TDH.VP.INIT, from

TDVPS and enter TDX non-root mode.

TD VCPU TD software (VBIOS) starts execution in 32-bit protected mode with no paging.
Initial
Execution 31D N/A VCPU/LP | LP x TD software parses initial information in GPR,

builds page tables and switches to 64-bit mode.

TD software (VBIOS) now executes in 64-bit mode.

Enumeration

4

TD

TDG.VP.INFO

VCPU/LP

LP x

TD software retrieves basic TD and execution
environment information.
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Phase Side | Intel TDX Scope Execute | Description
Function On
5| TD TDG.MR.REPORT | VCPU/LP | LP x TD software retrieves additional TD information.

TD continues execution in TDX non-root mode.

3.3.2.2. TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-Entry

Table 3.10: Typical TD Entry, Exit on TDG.VP.VMCALL and Re-Entry Sequence

Phase Side | Intel TDX Scope Execute | Description
Function On
TD Entry 1| VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.
2 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore LP state from TDVPS and enter TDX non-
root mode.

TD executes in TDX non-root mode.

Software 3| TD TDG.VP.VMCALL | VCPU/LP | LP x Exit TDX non-root mode, save LP state to TDVPS,
Protocol over and set synthetic state (except most GPRs and all
TDG.VP.VMCALL XMMs).

4 | VMM | N/A LP LP x Optionally: Restore VMM LP state saved before

TDH.VP.ENTER.

5| VMM | N/A LP LP x Perform TDG.VP.VMCALL function, as determined
by the TD-VMM software contract (out of the
scope for this document).

Introduction and Overview

6 | VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.
7 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore LP state from TDVPS (except most GPRs

and all XMMs), and enter TDX non-root mode.

Section 1:

8| TD N/A VCPU/LP | LP x Parse TDG.VP.VMCALL output operands as
determined by TD — VMM software contract.

TD Execution TD continues execution in TDX non-root mode.

5 3.3.2.3. TD VCPU Entry, Exit on Asynchronous Event and Re-Entry

Table 3.11: Typical TD Entry, Exit on Asynchronous Event and Re-Entry Sequence

Phase Side Intel TDX Scope Execute | Description
Function On
TD Entry 1| VMM | N/A LP LP x Save LP state not preserved across TD Entry to TD exit.
2 | VMM | TDH.VP.ENTER | VCPU/LP | LP x Restore LP state from TDVPS, and enter TDX non-root
mode.
TD executes in TDX non-root mode.
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Phase Side | Intel TDX Scope Execute | Description
Function On
Async. TD 3|TD N/A VCPU/LP | LP x Asynchronous event (interrupt, exception, EPT
Exit and Re- violation, etc.) causes TD exit. Save LP state to TDVPS,
Entry and set synthetic state.
4 | VMM | N/A LP LP x Restore any required LP state saved by the VMM
before TDH.VP.ENTER.
5| VMM | N/A LP LP x Handle the asynchronous event.
6 | VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry to
TD exit.
7 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore LP state from TDVPS and enter TDX non-root
mode.
D TD continues execution in TDX non-root mode.
Execution
3.3.2.4. Guest-Side Functions

Async. TD Ex

Intel TDX
Module
T

Guest TD

’J-riTDG,M R.REPORT

T VM entry

fTD G.MR.REPORT:
it (EPT Violation)

TDH.VP.ENTER—},J-‘

T VM entry
I

Figure 3.6: Typical Guest-Side Function Sequences

g

5
Table 3.12: Typical Guest-Side Functions Sequences
Case Side Intel TDX Scope Execute | Description
Function On

Guest-Side | TD executes in TDX non-root mode
Function
Returns to 1|TD TDG.MR.REPORT | VCPU/LP | LPx The guest TD VM exits to the Intel TDX module, which
Guest TD handles the guest-side function and re-enters the TD.

TD continues execution in TDX non-root mode
Guest-Side 2| TD TDG.MR.REPORT | VCPU/LP | LP x The guest TD exits to the Intel TDX module, which
Function handles the guest-side function, but an asynchronous
Causes event (e.g., EPT violation, etc.) causes TD exit.
Async. TD
Exit 3 | VMM | N/A LP LP x Optional: The host VMM restores the VMM LP state

saved before TDH.VP.ENTER.
4 | VMM | N/A LP LP x The host VMM handles the asynchronous event.
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Case Side | Intel TDX Scope Execute | Description
Function On

5| VMM | N/A LP LP x The host VMM saves any VMM LP state not preserved
across TD Entry to TD exit.

6 | VMM | TDH.VP.ENTER VCPU/LP | LP x The Intel TDX module restores LP state from TDVPS
and enters TDX non-root mode.

TD continues execution in TDX non-root mode.

3.3.2.5. TD VCPU Rescheduling (Migration to Another LP)

The Intel TDX module is designed to allow a TD VCPU to be associated with at most one LP at any time. The host VMM
must explicitly break this association in order to migrate the VCPU to another LP.

Table 3.13: Typical VCPU Migration to Another LP Sequence

Phase Intel TDX Scope Execute On Description
Function

Old 1 | Any VCPU-specific | VCPU Oold LP Any VCPU-specific SEAMCALL leaf (e.g., TDH.VP.INIT,
VCPUDLP SEAMCALL leaf TDH.VP.ENTER, TDH.VP.RD, etc.) creates an
Association association between the current LP and the VCPU.
Breaking 2 | TDH.VP.FLUSH VCPU Old LP Break the VCPU-LP association: flush the VCPU’s TD
Old VMCS to TDVPS memory and flush the VCPU’s TLB
VCPUDLP ASID.
Association

At this point the VCPU is not associated with any LP.
New 3 | Any VCPU-specific | VCPU New LP Create a new VCPU-LP association.
VCPU>LP SEAMCALL leaf
Association
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3.4. TD Destruction

The following sequence is intended to be used by the host VMM to destroy a TD and reclaim all its resources.

Intel TDX
Guest TD
|
I
I
I IPI
VM Exit (external interrupt)
—€—— 7D Exit (external interrupt) ———— |
e
I I
TDH.VP.FLUSH(TDVPR) I
On all LPs associated with the TD |
< --—-——-——-———"—"—"—"—"—"—"—"—"——— |
< ——————— = |
I I
I I
TDH.M NG.VPFLUSHDONE(TDR)—tD |
I<: —————————————————— |
I I
I I
TDH.PHYMEM.CACHE.WB(START) I
I
<4 —————— Interrupted— — — — — — — |
I I
I I
TDH.PHYMEM.CACHE.WB(RESUM E)—j] |
G+ —-——————— Success= — — — — — — — I :
| |
Figure 3.7: Typical TD Destruction Sequence Step A: Stopping and Flushing Out
Intel TDX
Guest TD
Module
| |
|
I
-0 I
f f
| |
I I
For each private page, S-EPT page and control structure page except TDR |
I
TDH.PHYMEM.PAGE.RECLAIM (Page HPA) |
1l - I
I I
I I
I I
I I
I TDH.PHYMEM.PAGE.RECLAIM(TDR)—tD |
1l - I
I I
I I
I TDH.PHYMEM.PAGE.WBINVD(TDR, HKlD)—tlj :
i i
Figure 3.8: Typical TD Destruction Sequence Step B: Resource Reclamation
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Table 3.14: Typical TD Destruction Sequence

Step

Description

SEAMCALL Leaf Functions

TD Stopping
and Flushing

The host VMM selects a TD to destroy. It sends a virtual
interrupt to the TD to shut down gracefully.

Out

The host VMM broadcasts inter-processor interrupts (IPIs) and
must ensure TD exit on all logical processors.

The host VMM calls the TDH.VP.FLUSH function on all LPs
associated with a TD VCPU to flush the TLBs and cached TD VMCS
associated with a TD VCPU on those LPs.

The host VMM calls the TDH.MNG.VPFLUSHDONE function. It
checks that above step executed for all the TD’s VCPUs are
associated with an LP.

The host VMM calls the TDH.PHYMEM.CACHE.WB function on
each package to write back to memory the TD contents from all
caches.

TDH.PHYMEM.CACHE.WB is interruptible by external events. The
host VMM should restart it if it indicates it was interrupted, until
successfully completed.

At this point, no address translations or cache lines may exist for
this TD except for the TDR page.

TDH.VP.FLUSH
TDH.MNG.VPFLUSHDONE
TDH.PHYMEM.CACHE.WB

Resource
Reclamation

The host VMM calls the TDH.MNG.KEY.FREEID function. It marks
the HKID used by the TD as available for other TDs.

For each physical page in TDMR allocated to the TD (TD private
pages, Secure EPT pages, and control structures except TDR), the
host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the page as free.

The host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the TDR page as free. The function checks that all other TD
physical pages have been reclaimed before.

Before allocating the reclaimed TDR physical page to any use, the
host VMM calls TDH.PHYMEM.PAGE.WBINVD to flush its cache
lines.

TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM
TDH.PHYMEM.PAGE.WBINVD
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SECTION 2:

INTEL TDX MODULE ARCHITECTURE SPECIFICATION
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4. UPDATED: Intel TDX Module Lifecycle: Enumeration, Initialization and
Shutdown

This chapter discusses the design of the Intel TDX module life cycle: how its capabilities are enumerated by the host

VMM, how it is initialized, how it is configured and how it is shut down.

4.1.

4.1.1.

UPDATED: Overview

UPDATED: Initialization and Configuration Flow

The Intel TDX module initialization and configuration typically happens as described below:

Table 4.1: UPDATED: Typical Intel TDX Module Enumeration, Initialization and Configuration Sequence

Step Intel TDX Function Description

1 | CMR Configuration N/A BIOS configures convertible memory regions (CMRs);

& Checking MCHECK checks them and securely stores the information.

2 | Intel TDX Module N/A 0S/VMM launches the NP-SEAMLDR ACM to load the P-

Loading SEAMLDR, and then calls the P-SEAMLDR module to install
the Intel TDX module.

2 | Intel TDX Module N/A 0S/VMM launches the SEAMLDR ACM which loads the Intel

Loading TDX module.

3 | Global Initialization | TDH.SYS.INIT The host VMM calls TDH.SYS.INIT once. This function
performs global initialization of the Intel TDX module.

4 | LP Initialization TDH.SYS.LP.INIT The host VMM calls TDH.SYS.LP.INIT once on each logical

(each LP) processor. This function performs LP-scope, core-scope
and package-scope initialization, checking and
configuration of the platform and the Intel TDX module.

5 | Enumeration TDH.SYS.RD/RDALL The host VMM calls TDH.SYS.RD/RDALL or TDH.SYS.INFO to

or TDH.SYS.INFO retrieve Intel TDX module information and convertible
memory (CMR) information.

6 | Global Configuration | TDH.SYS.CONFIG The host VMM calls TDH.SYS.CONFIG once, providing a set
of configuration parameters including a table of TDMRs.
This function performs global configuration of the Intel TDX
module.

7 | Cache Flush N/A The host VMM flushes any MODIFIED cache lines that may
exist for the PAMT ranges, using, e.g., WBINVD on each
package.

8 | Key Configuration TDH.SYS.KEY.CONFIG | The host VMM calls TDH.SYS.KEY.CONFIG once on each

(each package) package. This function configures the Intel TDX global
private key on the hardware.

9 | Intel TDX module is Any Once TDH.SYS.KEY.CONFIG has executed successfully on all

available packages, any Intel TDX function may be executed on any
LP.
10 | TDMR and PAMT TDH.SYS.TDMR.INIT | The host VMM calls TDH.SYS.TDMR.INIT in a loop, gradually
Initialization (multiple) initializing the PAMT structure for each TDMR.
11 | Memory is available | Any Once each 1GB block of TDMR has been initialized by
TDH.SYS.TDMR.INIT, it can be used to hold TD-private
pages.
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4.1.2. UPDATED: Intel TDX Module Lifecycle State Machine

The Intel TDX lifecycle state machine helps track the module’s life cycle through the initialization sequence and shutdown.

TDH.SYS.KEY.CONFIG

[Non-last package]
TDH.SYS.LP.INIT TDH.SYS.INFO or
TDH.SYS.RD/RDM
y [LPinitialized]
\ 4 \
SYSINIT_DONE SYSCONFIG_DONE
Intel TDX module is Intel TDX module TDH.SYS.CONFIG Intel TDX module
pending global global initialization ' : global configuration
initalization TDH.SYS.INIT—» done . [,A,” I,‘PS > done
initialized]
| J/ | J

TDH.SYS.LP.SHUTDOWN TDH.SYS.KEY.CONFIG

TDH.SYS.LP.SHUTDOWN [Last package]

TDH.SYS.LP.SHUTDOWN

Intel TDX module

Intel TDX module is
has been shut down. | ready

TDH.SYS.LP.
SHUTDOWN

TDH.SYS.TDMR.INIT

< TDH.SYS.LP.SHUTDOWN L

All other
SEAMCALL
leaf functions

Figure 4.1: Intel TDX Module Lifecycle State Machine

5 4.1.3. Platform Compatibility and Configuration Checking

4.1.3.1. Overview

The Intel TDX module is built assuming a certain set of core and platform features. Most platform configuration required
to support the Intel TDX module is checked by MCHECK. However, some configuration is designed to be checked by the
Intel TDX module. During the initialization process, the Intel TDX module is designed to check that the platform on which

10 it is running is compatible with this core and platform feature set and/or that the same set of features is provided across
the platform. Some of the checks are done per core, and some are done per package. Most of the details are part of the
Intel TDX module detailed design.

4.1.3.2. MSR Sampling and Checks

TDH.SYS.INIT reads and checks the contents of some MSRs. In many cases, the MSR value read by TDH.SYS.INIT is also
15 checked for consistency (i.e., having the same values) by TDH.SYS.LP.INIT. In other cases, TDH.SYS.LP.INIT may perform
additional checks.

4.1.3.3. UPDATED: CPUID Sampling, Checks and Enumeration

Note: CPUID virtualization is described in 11.8.

The TDH.SYS.INIT and TDH.SYS.LP.INIT functions sample CPUID leaf and sub-leaf return values. This is intended to check
20 compatibility with the Intel TDX module and with any guest TD operation. If any of these checks fail, Intel TDX module
initialization is designed to fail.

The TDH.SYS.RD, TDH.SYS.RDALL and TDH.SYS.INFO functions may be called by the host VMM to enumerate the directly
configurable and allowable CPUID fields.
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4.1.4. Physical Memory Configuration Overview

Configuration of the physical memory available to the Intel TDX module (TDMRs) and its associated metadata (PAMT
arrays) is done using the TDH.SYS.CONFIG function.

4,1.4.1. Intel TDX ISA Background: Convertible Memory Ranges (CMRs)

A 4KB memory page is defined as convertible if it can be used to hold an Intel TDX private memory page or any Intel TDX
control structure pages while helping guarantee Intel TDX security properties (i.e., if it can be converted from a Shared
page to a Private page).

Convertible Memory Ranges (CMRs) are defined as physical address ranges that are declared by BIOS, and checked by
MCHECK, to hold only convertible memory pages.

CMRs have the following characteristics:

e CMR configuration is “soft” —no hardware range registers are used.

e Each CMR defines a single contiguous physical address range.

e All the memory within each CMR is convertible, and it must comply with the rules checked by MCHECK.

e  Each CMR has its own size. CMR size is a multiple of 4KB, and it is not required to be a power of two.

e CMRs cannot overlap with each other.

e CMRs must reside within the effective physical address range of the platform (after taking into account the most
significant PA bits stolen for Key IDs).

e CMRs are configured at platform scope (no separate configuration per package).

e The maximum number of CMRs is implementation specific. It is not explicitly enumerated; it is deduced from
Family/Model/Stepping information provided by CPUID.
o  The maximum number of CMRs is 32.

e CMRs are available on systems with TDX ISA capabilities as enumerated by the IA32_MTRRCAP.SEAMRR bit.

e  CMR configuration is checked by MCHECK and cannot be modified afterwards.

MCHECK stores the CMR table in a pre-defined location in SEAMRR’s SEAMCFG region so it can be read later and trusted
by the Intel TDX module.

4.1.4.2. TDMRs and PAMT Arrays Configuration

TDMRs and PAMTs are described in 8.1. This section provides an overview of their configuration and their relationships
to CMRs.

4.1.4.2.1. Background: Reserved Areas within TDMRs

As described in 8.1, the Intel TDX module physical memory management is done using PAMT Blocks — each holding the
metadata of a 1GB block of TDMR. This implies that TDMR granularity must be 1GB.

However, there is a requirement for the host VMM to be able to allocate memory at granularities smaller than 1GB. This
is especially important in systems that have a relatively small amount of memory.

To support the two requirements above, the Intel TDX module’s design allows arbitrary reserved areas within TDMRs.
Reserved areas are still covered by PAMT. However, during initialization their respective PAMT entries are marked with
a PT_RSVD page type, so pages in reserved areas are not used by the Intel TDX module for allocating privately encrypted
memory pages (but they can be used for PAMT areas, see below).

Only the non-reserved parts of a TDMR are required to be inside CMRs.

4.1.4.2.2. Background: Three PAMT Areas

As described in 8.1, a logical PAMT Block is composed of 1 PAMT_1G entry, 512 PAMT_2M entries and 5122 PAMT_4K
entries. Thus, the overall size of a PAMT Block, and as a result of the whole PAMT, is not a power of 2.

However, the host VMM may only be able to allocate memory buffers for PAMT in sizes that are a power of 2.

To enable this, buffers for PAMT_1G entries, PAMT_2M entries and PAMT_4K entries are allocated separately. As a
result, if the host VMM allocates a TDMR whose size is a power of 2, its three respective PAMT areas will also have sizes
that are a power of 2.

PAMT areas are required to be inside CMRs because PAMT is encrypted with a private HKID.
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Physical Memory Space

PAMT_1G 1
PAMT 2M 1

1GB-Aligned
Reserved

TDMR 2
CMR 3 Available

1GB-Aligned

TDMR 1 Available

Reserved

***** - 1GB-Aligned

| PAMT_1G 0 |

PAMT_2M 0
PAMT_4KO0

CMR 2

1GB-Aligned
Available

PAMT_1G 2
CMR 1 PAMT_4K 1

Reserved

TDMR O Available

CMR O [ PAMT 2M2 |
| PAMT 4K2 |

Reserved

1GB-Aligned
Figure 4.2: Example of Convertible Memory Ranges (CMRs) vs. Trust Domain Memory Regions (TDMRs)

4.1.4.2.3. UPDATED: Configuration Rules
In addition to the rules described in 8.1, the following rules apply to TDMR configuration as related to CMRs:

e Any non-reserved 4KB page within a TDMR must be convertible —i.e., it must be within a CMR.
e Reserved areas within a TDMR need not be within a CMR.

Three PAMT areas must be configured for each TMDR — one for each physical page size controlled by PAMT:

e Area for PAMT_4K entries
e Area for PAMT_2M entries
e Area for PAMT_1G entries

PAMT areas have the following attributes:

e A PAMT area size is directly proportional to the TDMR with which it is associated. The size ratio is enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO. Note that the size ratio may be different for each of the 3 PAMT array types.

e A PAMT area must reside in convertible memory —i.e., each PAMT area page must be a CMR page.

e  PAMT areas must not overlap with TDRM non-reserved areas; however, they may reside within TDMR reserved areas
(as long as these are convertible).

e  PAMT areas must not overlap with each other.
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4.2, Intel TDX Module Initialization Interface

4.2.1. Global Initialization: TDH.SYS.INIT

TDH.SYS.INIT is intended to globally initialize the Intel TDX module. It works as follows:

1. Initialize Intel TDX module global data.

2. Sample and check platform features that need to be checked for platform-wide compatibility — i.e., the Intel TDX
module supports several options, but they must be the same across platform. These are later checked on each LP.

3. Sample and check the platform configuration on the current LP. For example, TDH.SYS.INIT samples SMRR and
SMRR2, checks they are locked and do not overlap any CMR, and stores their values to be checked later on each LP.

4. Set the system state to SYSINIT_DONE.

For a detailed description of TDH.SYS.INIT, see the [TDX Module ABI].

4.2.2. LP-Scope Initialization: TDH.SYS.LP.INIT

TDH.SYS.LP.INIT is intended to perform LP-scope, core-scope and package-scope initialization of the Intel TDX module. It
can be called only after TDH.SYS.INIT completes successfully, and it can run concurrently on multiple LPs. At a high level,
TDH.SYS.LP.INIT works as follows:

1. Do aglobal EPT flush (INVEPT type 2).

2. Initialize Intel TDX module LP-scope data.

3. Check features and configuration compatibility and uniformity — once per LP, core or package, depending on the
scope of the checked feature or configuration:
3.1. Check features compatibility with the Intel TDX module.
3.2. Check configuration uniformity.

For a detailed description of TDH.SYS.LP.INIT, see the [TDX Module ABI].

4.2.3. UPDATED: TDX Module Enumeration: TDH.SYS.RD/RDALL and TDH.SYS.INFO

Once an LP has been initialized, the host VMM can call TDH.SYS.RD, TDH.SYS.RDALL or TDH.SYS.INFO on that LP to help
enumerate the Intel TDX module capabilities and platform configuration.

TDH.SYS.RD and TDH.SYS.RDALL are the recommended enumeration methods. They enable the host VMM to read the
values of TDX module global metadata fields, enumerating the TDX module capabilities. The list of fields is described in
the [TDX Module ABI].

To read all host readable TDX Module fields, the host VMM can invoke TDH.SYS.RDALL. This function returns the
information as a metadata list.

To read a single TDX Module field, TDH.SYS.RD can be invoked. It returns the next host-readable field identifier, thus it
can also be used to enumerate the TDX Module by calling it in a loop, starting from field identifier value of 0, until it
returns a next field identifier value of 0.

TDH.SYS.INFO is provided for backward compatibility with previous TDX module versions:

e Intel TDX module capabilities are enumerated in the returned TDSYSINFO_STRUCT (see the [TDX Module ABI]).
e Convertible Memory Ranges (CMRs), as previously set by BIOS and checked by MCHECK, are enumerated in the
returned CMR_INFO table.

For a detailed description of interface functions and metadata fields, see the [TDX Module ABI].

4.2.4. Global Configuration: TDH.SYS.CONFIG
After performing global and LP-scope initialization, the host VMM can call TDH.SYS.CONFIG to globally configure the Intel
TDX module, providing the following information:

e TDMR and PAMT Table, where each entry contains a TDMR base address, size and corresponding PAMT reserved
area base address and size. Refer to 8.1 for definition of TDMRs.
e The HKID to be used by the Intel TDX module for its global private key, used for encrypting PAMT and TDRs.

For a detailed description of the table format (TDMR_INFO) and TDH.SYS.CONFIG, see the [TDX Module ABI].
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4.2.5. Package-Scope Key Configuration: TDH.SYS.KEY.CONFIG

After performing global configuration, the host VMM calls TDH.SYS.KEY.CONFIG to perform package-scope configuration
of the Intel TDX module’s global private key on the hardware.

For a detailed description of TDH.SYS.KEY.CONFIG, see the [TDX Module ABI].
4.3. TDMR and PAMT Initialization

TDMR and PAMT initialization procedure is designed to be performed during VMM run-time, after VMM boot. The host
VMM should be able to work normally while initialization takes place, at any time using memory that has already been
initialized. At a high level, TDMR initialization has the following characteristics:

e Initialization is performed gradually.

e Initialization function TDH.SYS.TDMR.INIT adheres to the latency rules of most Intel TDX functions —i.e., they take
no more than a predefined number of clock cycles.

e |Initialization function TDH.SYS.TDMR.INIT can run concurrently on multiple LPs if each concurrent flow initializes a
different TDMR.

o After each 1GB page of a TDMR has been initialized, that 1GB page becomes available for use by any Intel TDX
function that creates a private TD page or a control structure page —e.g., TDH.MEM.PAGE.ADD, TDH.VP.ADDCX, etc.

For each TDMR, the VMM should execute a loop of TDH.SYS.TDMR.INIT providing the TDMR start address (at 1GB
granularity) as an input.

TDH.SYS.TDMR.INIT initializes an (implementation-defined) number of PAMT entries. The maximum number of PAMT
entries to be initialized is designed to avoid latency issues. Initialization uses direct writes (MOVDIR64B).

Once the PAMT for each 1GB block of TDMR has been fully initialized, TDH.SYS.TDMR.INIT marks that 1GB block as ready
for use; that means 4KB pages in this 1GB block may be converted to private pages —e.g., by TDH.MEM.PAGE.ADD. This
can be done concurrently with adding and initializing other TDMRs.

For a detailed description of TDH.SYS.TDMR.INIT, see the [TDX Module ABI].

4.4. Intel TDX Module Shutdown

4.4.1. Shutdown Initiated by the Host VMM (as Part of Module Update)

The host VMM can initiate Intel TDX module shutdown at any time by calling the TDH.SYS.LP.SHUTDOWN function. This
is intended for use as part of reloading the Intel TDX module without going through a warm or cold reset sequence.
TDH.SYS.LP.SHUTDOWN is designed to set state variables to block all SEAMCALLs on the current LP and all SEAMCALL leaf
functions except TDH.SYS.LP.SHUTDOWN on the other LPs. SEAMLDR, when instructed to reload a new Intel TDX module
image, can check that TDH.SYS.SHUTDOWN has been executed on all LPs.

4.4.2. Shutdown Initiated by a Fatal Error

By design, fatal errors during Intel TDX module execution cause an immediate SEAM shutdown. Subsequent SEAMCALLs
on any LP fail with a VMfaillnvalid indication (RFLAGS.CF set to 1). This situation can only be recovered by a platform
reset.
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5. Key Management

5.1. Objectives

The main goal of Intel TDX key management is to enable the VMM to perform the following:

e Manage HKID space as a limited platform resource, assigning HKIDs to TDs and reclaiming them as required.
e Enable the Intel TDX module to use a global ephemeral key for encrypting its data (e.g., PAMT).
e Enable each TD to use its own ephemeral key.

The Intel TDX interface functions are designed to provide the required building blocks and help assure that software
cannot perform operations that are not compliant with TDX security objectives, as follows:

1. Helpassure that only HKID values that have been configured for TDX private memory encryption keys can be assigned
to TDs, and that those HKID values cannot be used by non-TD software or devices.

2. Prevent assignment of the same HKID to more than one TD.

3. At the time an HKID is assigned to a TD, there must be no modified cache lines — at any level, for any core, on any
package — for that HKID. All such cache lines that may have held modified data have been written to memory (if
required). Note that this requirement applies only to TDX private HKID and not to legacy MKTME HKIDs.

4. TD memory may be accessed, and the TD may run, only when the following conditions are met:

4.1. An HKID has been assigned for the TD’s ephemeral key.
4.2. The encryption key has been configured for all the TD’s ephemeral HKID, on all crypto engines, on all packages.

5.2, Background: HKID Space Partitioning

Since the same MKTME encryption engines and the same set of encryption keys are used for legacy MKTME operation
and for TDX operation, TDX ISA enables the enumeration and partitioning of the activated HKID space between the two
technologies. As designed, the encryption keys and their associated HKIDs are divided into three ranges, as shown in
Table 5.1 below. The values of NUM_MKID_KEYS and NUM_TDX_PRIV_KEYS are read from the
IA32_MKTME_KEYID_PARTITIONING MSR (0x87).

Private HKIDs and private keys are designed to be fully controlled by the Intel TDX module and are the subject of this
chapter.

Table 5.1: HKID Space Partitioning

HKID Key
0 Legacy TME key, shared
1 Legacy MKTME key #1
Shared
HKIDs 2 Legacy MKTME key #2
NUM_MKID_KEYS Last legacy MKTME key
NUM_MKID_KEYS + 1 Private key of a specific TD
NUM_MKID_KEYS + 2 Private key of a specific TD
Private . ior
HKIDs NUM_MKID_KEYS + 3 Private key of a specific TD
NUM_MKID_KEYS + NUM_TDX_PRIV_KIDS | Private key of a specific TD
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5.3. Key Management Tables

The CPU and the Intel TDX module maintain several tables for key management. No table is intended to be directly
accessible by software; the tables are used by the Intel TDX functions. The tables help the Intel TDX module track the
proper operation of the software and help achieve the Intel TDX security objectives.

Table 5.2: Key Management Tables

Table Scope Description

Key Encryption Package | KET is an abstraction of the CPU micro-architectural hardware table for
Table (KET) configuring the memory encryption engines. The KET is indexed by HKID. All
crypto engines on a package are configured the same way.

KET is part of the legacy MKTME architecture. Intel TDX ISA partitions KET to
shared and private ranges, as described in 5.2 above.

e AKET entry in private HKIDs range is configured per package by the host
VMM using the SEAMCALL(TDH.MNG.KEY.CONFIG) function.

e AKET entry in the shared HKID range is configured by software per package
directly, using the PCONFIG instruction.

KeylID Platform | KOT is an Intel TDX module hidden table for managing the TDX HKIDs inventory.
Ownership It is used for assigning HKIDs to TDs, revoking HKIDs from TDs and controlling
Table (KOT) cache flush.

KOT is indexed by HKID.

TD Key D TD-scope key management fields are held in TDR. They include the key state,
Management ephemeral private HKID and key information, and a bitmap for tracking key
Fields configuration.

Figure 5.1 below provides an abstract, high-level picture of how the tables are related. Detailed discussion is provided in
the following sections.
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TD-Scope Key Information HKID
In TDR

8

Lifecycle State

TD1
Package-Scope
Key Encryption Tables (KET)
G|0ba|-$c0pe KeyID oWnerShlp Table (KOT) In each crypto engine’ per memory
Internal to the Intel TDX module Contro”er' mu|t|p|e per package
HKID State HKID Key e
TD-Scope Key Information 1
In TDR 0 N/A 0 TME Key i
Lifecycle State 1 N/A 1 MKTME Key A
TD 2 B
9 HKID_RECLAIMED 9 TDX Key (N/A) ‘
10 HKID_FREE 10 TDX Key (N/A) [H
TD-Scope Key Information L
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I I
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Figure 5.1: Overview of the Key Management State at TD-Scope, LP-Scope, Package-Scope and Global-Scope
5.4. Combined Key Management State

Key management state is composed of two state variables:

5 e  Per-HKID KOT Entry State is designed to control how the inventory of private HKIDs is managed using the KOT.
e Per-TD Life Cycle State is designed, among other things, to control how TD keys are configured on the hardware and
the process of shutting down a TD.

The combined key management state is intended to affect whether the TD private memory is accessible, whether its
contents may be cached, whether private GPA-to-HPA address translations are allowed and whether such translations
10 may be cached.

Table 5.3 below lists the designed combined key management state values and their meaning. Figure 5.2 below shows a
simplified diagram of the combined key state. Refer also to the key management sequences described in 5.5.

Table 5.3: Combined TD Key Management States

TD Life Cycle State KOT Entry (HKID) Private Memory | S-EPT Comments
State Access Translations

New Cached | New Cached

N/A HKID_FREE No No No No HKID not assigned to TD
TD_HKID_ASSIGNED HKID_ASSIGNED No No No No TD private key not configured
TD_BLOCKED HKID_FLUSHED No TD No No TD private memory access is

blocked, TD may not run

TD_TEARDOWN N/A (HKID_FREE) No No No No TD has no HKID
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(non-TDR)

TDH.PHYMEM.CACHE.WB:

Figure 5.2: Simplified Combined TD Key Management State Diagram

Chapter 7 discusses TD life cycle management and zooms-in into the TD_KEYS_CONFIGURED state, detailing its secondary
5 sub-states that control TD operation and TD migration.

5.5. Key Management Sequences

5.5.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data

This sequence is described as part of the Intel TDX module initialization sequence in 4.1.1.

5.5.2. TD Creation, Keys Assignment and Configuration

10 This sequence is intended to be used by the host VMM to create a new TD, select HKIDs from the global pool in KOT and
assign them to the TD, and configure the TD keys on the hardware.
Refer also to the software flow discussion in 3.2.

Table 5.4: Typical TD Creation, Keys Assignment and Configuration (TD-Scope and KOT-Scope) Sequence

Intel TDX Function Scope Execute On Description
1 | TDH.MNG.CREATE TD One LP Assign the TD’s private HKID.
2 | TDH.MNG.KEY.CONFIG | TD Each package Configure the TD’s random ephemeral key on the
and each TD package.
key
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5.5.3. TD Keys Reclamation, TLB and Cache Flush
This sequence is intended to be used by the host VMM to reclaim the HKIDs assigned to a TD and return them to the
global pool in KOT. At the end of this sequence, the HKIDs should be free to be assigned to another TD.

The cache flush operation is long. Since it is designed to run at global scope and is decoupled from any TD, the host VMM
may choose to implement it in a lazy fashion, i.e., wait until a certain number of HKIDs in the KOT pool become
RECLAIMED. This is especially important since TDH.PHYMEM.CACHE.WB operates on all cache lines regardless of HKID.

To avoid long latencies, TDH.PHYMEM.CACHE.WB is designed to be interruptible. The host VMM is expected to repeat
the execution of this instruction until it returns a success indication.

Refer also to the software flow discussion in 3.4.

Table 5.5: Typical TLB and Cache Flush (TD-Scope and KOT-Scope) Sequence

Intel TDX Function Scope Execute On Description

(%]

As a preparation, the host VMM avoids any VCPU-specific SEAMCALL function (i.e., TDH.VP.ENTER, TDH.VP.INIT,
TDH.VP.RD and TDH.VP.WR) and waits until no VCPU is running.

1 | TDH.VP.FLUSH TD One each LP Flush the VCPU’s TD VMCS to TDVPS memory, and
VCPU associated flush the VCPU’s TLB ASID.
with a TD
VCPU
2 | TDH.MNG.VPFLUSHDONE | TD, KOT | One LP Check all the VCPUs have been flushed.
3 | TDH.PHYMEM.CACHE.WB | KOT Each package Write back cache hierarchy, at least for the HKIDs
or core* marked as TLB_FLUSHED. The instruction

execution time is long; it is interruptible by
external events and may be restarted until
completed.

4 | TDH.MNG.KEY.FREEID TD, KOT | One LP Mark TD’s HKID as FREE.

4 Enumerated by CPU during Intel TDX module initialization, see 4.1.3.3.
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6. UPDATED: TD Non-Memory State (Metadata) and Control Structures

This chapter discusses the guest TD control structures that hold non-memory state (metadata) and how they are intended
to be used during the TD life cycle.

6.1. Overview

Opaque (Intel TDX Module Opaque (TD Private HKID): Shared:

Global Private HKID):
VMM Allocated,

VMM Allocated, Intel TDX Module Managed VMM-Managed, Shared HKID

| |
| |
| |
Intel TDX Module Managed, Tb-scope I

: TD-scope :

TD-scope 1 SEPT Page 1
1 TDCX Page — 1

TDR Page [~ [ T N / I
1 I * VMM ma

Secure EPT Tree y
1 TDCS 1 maintain a single
| L 1 copy per TD, shared
: STDBC Page : by all VCPUs
I e — I
I Service TD Binding Contexts |
| B |
I MIGSC Page I
| |
B ——
I I VCPU- *
I Migration Stream Contexts | scope
| |
I VCPU-scope I Shared
I ! EPT
I I Tree
I TDVPRPage |~ | 1pcx page I i
T I VCPU-scope

: TDVPS : VMCS Auxiliary
I I Control Structures

10

15

20

Figure 6.1: UPDATED: Guest TD Control Structures Overview

All guest TD control structures reside in memory pages that are allocated by the host VMM from the pre-configured
TDMRs. Guest TD control structure pages are addressable by the host VMM.

6.1.1. Opaque vs. Shared Control Structures

Control structures are divided to two classes:

e Shared control structures are intended to be directly managed by the host VMM and are encrypted with a shared
HKID. The Intel TDX module architecture only describes the shared control structures that might directly impact its
operation. The host VMM may hold additional control structures.

e Opaque control structures are not intended to be directly accessible to any software (except the Intel TDX module)
or DMA. They are intended to be managed via Intel TDX module functions. Generally speaking, the host VMM is not
aware of the exact format of opaque control structures. Opaque control structures’ memory pages are intended to
be encrypted with a private HKID.

6.1.2. Scope of Control Structures

Guest TD control structures have two possible scopes:

e TD-scope control structures are intended to apply for a guest TD as a whole.
e TD VCPU-scope control structures are intended to apply for a single virtual CPU of a guest TD.

6.2. TD-Scope Control Structures

TD-scope control structures include TDR and TDCS, discussed below, and Secure EPT, discussed in Chapter 9.
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6.2.1. TDR (Trust Domain Root)

TDR is the root control structure of a guest TD. As designed, TDR is encrypted using the Intel TDX global private HKID. It
holds a minimal set of state variables that enable guest TD control even during times when the TD’s private HKID is not
known, or when the TD’s key management state does not permit access to memory encrypted using the TD’s private key.

TDR occupies a single 4KB naturally aligned page of memory. It is designed to be the first TD page to be allocated and
the last to be removed. Its physical address serves as a unique identifier of the TD, as long as any TD page or control
structure resides in memory.

At a high level, TDR holds the following information:

e Fields designed to control guest TD build and teardown process.
e Fields designed to manage memory encryption keys.

6.2.2. UPDATED: TDCS (Trust Domain Control Structure)

TDCS is the main control structure of a guest TD. As designed, TDCS is encrypted using the guest TD’s ephemeral private
key. TDCS is a multi-page logical structure composed of multiple TDCX physical pages.

At a high level, TDCS holds the following information:

e Fields designed to control the TD operation as a whole (e.g., a counter of the number of VCPUs currently running).

e Fields designed to control the TD’s execution control (debuggability, CPU features available to the TD, etc.).

e  Fields related to TD measurement.

e EPTP: as designed, a pointer (HPA) to the TD’s secure EPT root page and EPT attributes.

e MSR bitmaps, designed to be used by all the TD’s VCPUs.

e Asdesigned, the secure EPT root page.

e A page filled with zeros, designed to be used in cases where the Intel TDX module needs a read-only constant-0 page
encrypted with the TD’s private key.

TDCS may hold forward links to the following control structures:

e  Secure EPT pages.
e Service TD Binding Context (STDBC) pages.
e  Migration Stream Context (MIGSC) pages.

6.3. TD VCPU-Scope Control Structures

6.3.1. Trust Domain Virtual Processor State (TDVPS)

Trust Domain Virtual Processor State (TDVPS) is the root control structure of a TD VCPU. It helps the Intel TDX module
control the operation of the VCPU, and holds the VCPU state while the VCPU is not running. TDVPS is a single logical
control structure composed of multiple physical 4KB pages.
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Figure 6.2: High Level Logical and Physical View of TDVPS

6.3.1.1. UPDATED: Physical View of TDVPS: TDVPR/TDCX

TDVPS is designed to be opaque to software and DMA access, accessible only by using the Intel TDX module functions.
From the VMM perspective, TDVPS is composed of multiple 4KB pages, where each page may reside in arbitrary locations
in convertible memory.

Trust Domain Virtual Processor Root (TDVPR) is the 4KB root page of TDVPS. Its physical address serves as a unique
identifier of the VCPU (as long as it resides in memory).

Trust Domain Control structure eXtension (TDCX) 4KB pages extend TDVPR to help provide enough physical space for
the logical TDVPS structure.

The TDVPR and TDCX pages are designed to be encrypted with the TD’s ephemeral private key. They are addressable by
the host VMM, which is responsible for allocating memory to hold them.

The required number of 4KB TDVPR/TDCX pages in TDVPS is enumerated to the VMM by the TDH.SYS.RD* or
TDH.SYS.INFO function (see 4.2.3).

6.3.1.2. Logical View of TDVPS

Logically, TDVPS is organized as a single large data structure. At a high level, it is composed of the following parts:

VMX (with TDX ISA Extensions) Standard Control Structures

e TDVMCS
e TD VMCS auxiliary structures, such as virtual APIC page, virtualization exception information, etc. Note that MSR
bitmaps are held as part of TDCS because they are meant to have the same value for all VCPUs of the same TD.

The TDX design does not require some of the VMX control structures (notably, the Shared EPT) to be protected. They are
described below.

Proprietary Fields

e TD VCPU Management fields designed to manage the operation of the VCPU
e TD VCPU State fields designed to hold most of the VPCU state (except state that is saved to the TD VMCS) when the
VCPU is not running

TDVPS organization and format are detailed in the [TDX Module ABI]..
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6.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structures

Several VMX control structures are directly managed and accessed by the host VMM. These control structures are
pointed to by fields in the TD VMCS. The Intel TDX module checks that the pointers conform to the shared-access HPA
semantics (see 18.2.1.1).

Non-protected control structures include:

e Shared EPT tree
e  Posted interrupt descriptor

6.4. UPDATED: TD Non-Memory State (Metadata) Access Functions

As set of interface functions is provided to enable host VMM and guest TD access to TD non-memory state (metadata).
These functions employ metadata abstraction, using field code to abstract the actual control structure format. The
generic metadata access interface mechanisms are described in 18.4.

Table 6.1: TD Non-Memory State (Metadata) Single Field Access Functions

Side Scope | Control Structures Intel TDX Functions

Host VMM TD TDR and TDCS TDH.MNG.RD, TDH.MNG.WR

(SEAMCALL) | ycpu | TDVPS (including TD VMCS) | TDH.VP.RD, TDH.VP.WR

Guest TD TD TDR and TDCS TDG.VM.RD, TDG.VM.WR

(TDCALL) VCPU | TDVPS (including TD VMCS) | TDG.VP.RD, TDG.VP.WR

Access to control structure fields using the provided interface functions (down to the bit granularity, if required) depends
on whether the TD is debuggable (ATTRIBUTES.DEBUG bit is 1) or not.

In many cases, control structure field access means more than just reading or writing the field content. For example:

e When a field that contains an HPA is written, its value is checked not to overlap the SEAMRR range.

e In some cases, there may be inter-dependency between fields. When such fields are written, multiple checks may
need to be done and some actions may need to be taken.

e For some fields, the internal format and/or value may be different than what is visible externally.

For details about the TDX module’s metadata access interface, see 18.4.
6.5. Concurrency Restrictions and Enforcement

A general description of concurrency restriction is provided in 18.1.

Normally, exclusive or shared access is acquired, if needed, for the typically short duration of function flows. A TD VCPU
execution is an exception case. Shared access to TDCS and TDVPS is acquired on TD Entry and released on TD Exit. This
implies that SEAMCALL(TDH.VP.ENTER) function, all TDCALL functions, and asynchronous TD Exit have implicit shared
access to TDCS and TDVPS.

This mechanism helps protect running VCPUs against concurrent functions that may try to change their governing control
structures.
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7. UPDATED: TD Life Cycle Management

This chapter discusses guest TD life cycle management.
7.1. TD Life Cycle State Machine

The TD Life Cycle state machine controls the overall TD build, run-time and destruction process. It operates in conjunction
5 with the HKID state machine, as described in 5.4. Figure 7.1 below shows the TD Life Cycle state diagram.

TD private key is configured

TD private key not

TDH.MNG.

KEY.CONFIG configured TDH.MNG.KEY.CONFIG
[non-last [last package]
package]

TD Operation 6_@
Sub-State

. J

TDH.MNG.KEY.FREEID
TDH.MNG.VPFLUSHDONE
[no associated VCPUs]

TD_BLOCKED

TD has no HKID TD private memory
access is blocked
and caches are
getting flushed

TDH.PHYMEM.
PAGE.RECLAIM
[non-TDR]

TDH.MNG.KEY.FREEID——

. J

TDH.PHYMEM.PAGE.RECLAIM[TDR]

Figure 7.1: High-Level TD Life Cycle State Diagram

Most of the TD lifetime is spent in the TD_KEYS_CONFIGURED state. Within that state, a secondary-level state machine
controls the overall TD operation and migration.

10 7.2 UPDATED: OP_STATE: TD Operation Secondary-Level State Machine

The TD Operation state machine controls sub-states of the TD Life Cycle’s TD_KEYS_CONFIGURED state. It shown in
Figure 7.2 below. This document describes the baseline states: UNALLOCATED, UNINITIALIZED, INITIALIZED and
RUNNABLE. Other states and transitions highlighted in red lines support TD migration and are described in the [TD
Migration Spec].
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Figure 7.2: TD Operation State Machine (Sub-States of TD_KEYS_CONFIGURED)

TD Creation Sequence

The following sequence is intended to be used by the host VMM to create a new TD. Note that only the general aspects
5 of TD creation are described here. Other aspects, such as key management, are described in other chapters.

Refer also to the software flow discussion in 3.2.
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Table 7.1: Typical TD Creation Sequence

Intel TDX Function

Inputs

Description

1 | N/A

N/A

If any MODIFIED cache lines may exist for the
physical pages to be written below (TDR, TDCS,
Secure EPT root page), flush them to memory
using, e.g., CLFLUSH (possibly on multiple LPs).
This is required to avoid corruption due to cache
line aliasing.

2 | TDH.MNG.CREATE

TDR page PA

Create the TDR and generate the TD’s random
ephemeral key.

3 | Multiple

See 5.5.2

Assign an HKID, and configure the TD’s random
ephemeral key on all packages, as described in
5.5.2.

4 | TDH.MNG.ADDCX
(multiple)

e Owner TDR PA
e TDCX page PA

Run multiple times to add the required number of
TDCX pages.

5 | TDH.MNG.INIT

e Owner TDR PA

e TDinitialization parameters

Initialize the TD state in TDR and TDCS.

At this point the TD is initialized. Private memory pages can be added as described in Chapter 9. VCPUs can be
created and initialized as described below.

74. VCPU Creation and Initialization Sequence

VCPU creation and initialization is only allowed during TD build time.

The following sequence is intended to be used by the host VMM to create a new TD VCPU. After this sequence is done,
the TD VCPU may be entered on an LP (assuming other conditions are met).

Refer also to the software flow discussion in 3.2.

Table 7.2: Typical TD VCPU Creation and Initialization Sequence

Intel TDX Function

Inputs

Description

1 | N/A

N/A

If any MODIFIED cache lines may exist for the
physical pages to be written below (TDVPR, TDCX),
flush them to memory (e.g., using CLFLUSH —
possibly on multiple LPs). This is required to avoid
corruption from cache line aliasing.

2 | TDH.VP.CREATE

e TDVPR page PA
e Owner TDR PA

Create the VCPU and its TDVPR page.

3 | TDH.VP.ADDCX
(multiple)

e TDCX page PA
e Parent TDVPR PA

Run multiple times to add the required number of
TDCX pages as an extension to a parent TDVPR.

4 | TDH.VP.INIT

e TDVPRPA
e VMM-provided identifier

Initialize the VCPU state.
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Intel TDX Function

Inputs

Description

TDH.VP.WR i

TDVPR page PA

Field code
New field value ®
Write mask .

The host VMM typically writes one or more of the
following TD VCPU’s VMCS controls:

Shared EPTP

Posted-interrupts descriptor address, posted-
interrupts notification vector and process
posted interrupt

bus-lock detection

notification exiting and notify window

For details, see the [TDX Module ABI].

7.5. TD Teardown Sequence

The following sequence is intended to be used by the host VMM to tear down a TD. Note that only the general aspects
of TD teardown are described here. Other aspects, such as key management, are described in other chapters. See also
the discussion of physical page reclamation in 8.5.

Refer also to the software flow discussion in 3.4.

Table 7.3: Typical TD Teardown Sequence

Intel TDX Function Inputs Description
1 | Multiple See 5.5.3 Reclaim the HKID, and flush TLB and cache,
as described in 5.5.3.
2 | TDH.PHYMEM.PAGE.RECLAIM | TD page or control structure Remove all TD private pages and control
(multiple) PA :C,tructure pages, and mark them as PT_NDA
in the PAMT.
3 | TDH.PHYMEM.PAGE.RECLAIM | TDR PA Remove the TDR page, and mark it as
PT_NDA in the PAMT.
4 | TDH.PHYMEM.PAGE.WBINVD | TDR PA Flush MODIFIED cache lines: this is required

to avoid corruption due to cache line
aliasing. Note that all cache lines for all
other TD pages must have been flushed
before the TDR page was reclaimed.
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8. Physical Memory Management

This chapter describes how the Intel TDX module manages memory as a set of physical pages.

8.1. UPDATED: Trust Domain Memory Regions (TDMRs) and Physical Address Metadata
Tables (PAMTs)

Trust Domain Memory Region (TDMR) is defined as a range of convertible memory pages. TDMRs are set by the host
VMM, based on the CMR information previously checked by MCHECK.

Each TDMR is defined as controlled by a (logically) single Physical Address Metadata Table (PAMT). The PAMT structure
is discussed in 8.3 below. PAMT tables reside in VMM-allocated memory, and they are designed to be encrypted with
the Intel TDX global private HKID. The required size of PAMT memory, as a function of TDMR size, is enumerated to the
VMM by TDH.SYS.RD/RDALL or TDH.SYS.INFO.

Typically, after the host VMM initializes the Intel TDX module (TDH.SYS.INIT and TDH.SYS.LP.INIT), it configures the TDMRs
and their respective PAMTs using TDH.SYS.CONFIG. It then would gradually initialize the TDMRs using
TDH.SYS.TDMR.INIT. For a detailed description of the typical Intel TDX module initialization and configuration sequence,
see Chapter 4.

8.2. UPDATED: TDMR Details

The following list includes definitions of the characteristics of a TDMR:

e TDMR configuration is "soft" — no hardware range registers are used.

e Each TDMR defines a single physical address range.

e Each TDMR has its own size which must be a multiple of 1GB. TDMR size is not required to be a power of two.

e A TDMR must be aligned on 1GB.

e TDMRs cannot overlap with each other.

e TDMRs may contain reserved areas. This effectively allows the host VMM to flexibly configure TDMRs based on the
VMM'’s own consideration of system memory allocation — without being impacted by the 1GB granularity of the
TDMR size.

o Areserved area must be aligned on 4KB, and its size must be a multiple of 4KB.
o The number of reserved areas that may be configured per TDMR is enumerated by TDH.SYS.RD/RDALL or
TDH.SYS.INFO.

e TDMR memory, except for reserved areas, must be convertible as checked by MCHECK (i.e., every TDMR page must
reside within a CMR).

e There is no requirement for TMDRs to cover all CMRs.

e TDMRs are configured at platform scope (no separate configuration per package).

e The maximum number of TDMRs is Intel TDX module implementation specific. It is enumerated to the host VMM
using the TDH.SYS.RD/RDALL or TDH.SYS.INFO function, as described below.

8.3. PAMT Details

The Physical Address Metadata Table (PAMT) is designed to track the metadata of every physical page in TDMR. A page
metadata includes page type, page size, assighment to a TD, and other attributes.

The PAMT is used by the Intel TDX module to help enforce the following properties:
Page Attributes A physical page in TDMR has a well-defined set of attributes, such as page type and page size.
Single TD Assignment A physical page in TDMR can be assigned to at most one TD.

Secure EPT Consistency The page size of any private TD page, mapped in Secure EPT, matches its page size attribute in
PAMT.

8.3.1. PAMT Entry

Note: The description below is provided at a high level. Implementation details may differ.

A PAMT entry is designed to hold metadata for a single physical page. The page size may be 4KB, 2MB or 1GB depending
on the PAMT level (see 8.3.2 below).
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Table 8.1: High-Level View of a PAMT Entry

Field Description

PT PT indicates the type of page intended to be associated with this PAMT
entry. See Table 8.3 below for details.

OWNER OWNER is designed to contain bits 51:12 of the physical address of the
TD’s TDR page.
This field can be applicable in all cases when a page is assigned to the
Intel TDX module at this PAMT level or at a higher level. See Table 8.3
below for details.

BEPOCH By design, the value of TDCS.TD_EPOCH as sampled by
TDH.MEM.RANGE.BLOCK
This field is intended to be applicable only if PT is PT_REG or PT_EPT. See
9.7 for a detailed discussion.

8.3.2.

For each 1GB of TDMR physical memory, there is a corresponding PAMT Block. A PAMT Block is logically arranged in a
three-level tree structure of PAMT Entries, as shown in Figure 8.1 below. Levels 0 through 2 (PAMT_4K, PAMT_2M and

PAMT Blocks and PAMT Arrays

PAMT_1G) correspond to 4KB, 2MB and 1GB physical TDMR pages, respectively.

Physically, for each TDMR the design includes three arrays of PAMT entries, one for each PAMT level. This aims to simplify

VMM memory allocation. A logical PAMT Block has one entry from the PAMT_1G array, 512 entries from the PAMT_2M
array, and 5122 entries from the PAMT_4K array.

Level 2 Level 1 Level O
PAMT_1G PAMT_2M PAMT_4K

0x00000000 [ O | 0x00000000 | O 0x00000000 | 0 |
0x00200000 | 1 h §

O0x3FE00000". | 511 0X°01FF050~\ 511 |

'0x00200000 [ 512 |

0xoo§;ﬁfooo\j 1,023 ‘

OX3FE00000 | 261,632 |

OX3FFFFO00 | 262,143 |
Figure 8.1: Typical Example of a PAMT Block Hierarchy for a 1GB TDMR Block
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8.3.3. PAMT Page Types

Table 8.2 below describes the PAMT page types:

Table 8.2: PAMT Page Types

Page Type PAMT Associated TDX Description
Level Page
PT_NDA Any Depending on PT | The physical page is Not Directly Assigned to the Intel TDX
at higher PAMT module at this size (4K, 2M or 1G) and PAMT level.
level, if any This page may be part of a larger page that is assigned to the
Intel TDX module at a higher level, or this page may contain
smaller pages that are assigned to the Intel TDX module at lower
levels. See Table 8.3 below for details.

PT_RSVD PAMT_4K None The physical page is reserved for non-TDX usage. The Intel TDX
module will not allow converting this page to any other page
type. The page can be used by the host VMM for any purpose.
PT_RSVD is used for implementing reserved areas within TDMRs.
See 4.1.4.2.1 for details.

PT_REG Any TD private page The physical page at this PAMT level (4K, 2M or 1G) holds TD
private memory and is mapped in the guest TD GPA space by the
Secure EPT.

PT_TDR PAMT_4K TDR TDR control structure page

PT_TDCX PAMT_4K | TDCX One 4KB physical page of a multi-page control structure

PT_TDVPR PAMT_4K | TDVPR Root page of the multi-page TDVPS control structure

PT_EPT PAMT_4K Secure EPT Secure EPT page

8.3.4. PAMT Hierarchy

Table 8.3 below shows the page type (PT) of PAMT entries at the three levels of hierarchy, depending on whether the
page is assigned to the Intel TDX module manages the page, whether the page is mapped in secure EPT, and the mapping

size.
Table 8.3: PAMT Hierarchy and Page Types
Intel TDX Module Management PAMT Entry Page Type

Assigned | Physical GPA Mapping Size | PAMT_1G (Level 2) PAMT_2M (Level 1) PAMT_4K (Level 0)

to TDX? Page Size | (Secure EPT Level)

No 4KB N/A PT_NDA PT_NDA PT_RSVD

No 4KB N/A PT_NDA PT_NDA PT_NDA

Yes 4KB None PT_NDA PT_NDA PT_TDR, PT_TDCX,
PT_TDVPR, PT_EPT

Yes 4KB 4KB (Level 0) PT_NDA PT_NDA PT_REG

Yes 2MB 2MB (Level 1) PT_NDA PT_REG PT_NDA

Yes 1GB 1GB (Level 2) PT_REG PT_NDA PT_NDA

Note the following:

e A 4KB page is considered free (i.e., not assigned to TDX) if its PAMT.PT at all three PAMT levels is PT_NDA. Any
function that attempts to assigns an HPA to TDX (e.g., TDH.MEM.PAGE.ADD) is designed to check this.
e Inall other cases, PAMT.PT is different than PT_NDA in only one of the three PAMT levels.
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e When a page is mapped by Secure EPT at 4KB, 2MB or 1GB GPA mapping size, it is managed by the Intel TDX module
as a physical page of the same size. Secure EPT is described in Chapter 9.

e PT_RSVD pages cannot be used by the Intel TDX module. They are used for implementing reserved areas within
TDMRs. See 4.1.4.2.1 for details.

8.4. Adding Physical Pages

8.4.1. Preventing Cache Line Aliasing

Before adding a physical page, the host VMM is responsible for making sure no MODIFIED cache lines exist for that page.
The host VMM can flush cache lines to memory — e.g., using CLFLUSH (only for pages containing data encrypted with a
shared HKID — the VMM cannot directly use an HPA with a private HKID), or TDH.PHYMEM.PAGE.WBINVD (for pages
containing data encrypted with any HKID, as long as the page is within a TDMR). Flushing cache lines to memory is
required to avoid corruption due to cache line aliasing.

8.4.2. Adding Pages not Mapped to the Guest TD

By design, TD control structure pages TDR, TDCX and TDVPR are not mapped to the guest TD’s GPA space, and they are
only managed using their HPA. The functions TDH.MNG.CREATE, TDH.MNG.ADDCX, TDH.VP.CREATE and TDH.VP.ADDCX
are designed to add 4KB control structure pages PT_TDR, PT_TDCX and PT_TDVPR, respectively. The overall process is
described in 7.3 and 7.4.

8.4.3. Adding Pages and Mapping to the Guest TD’s GPA

The following page types are associated with a guest TD’s GPA:

e  Guest TD private pages
e Secure EPT pages are mapped to the guest TD’s GPA space.

Those pages are added given their HPA and the required GPA. The functions TDH.MEM.PAGE.ADD, TDH.MEM.PAGE.AUG,
TDH.MEM.PAGE.RELOCATE and TDH.IMPORT.MEM add a PT_REG page, and the functions TDH.MEM.SEPT.ADD and
TDH.MEM.PAGE.DEMOTE add a 4KB PT_EPT page. TD private memory management functions are described in Chapter
9. This section describes only their physical page management aspects.

8.5. Reclaiming Physical Pages

8.5.1. Reclaiming Pages not Mapped to the Guest TD

There are two cases where pages are not considered as mapped to the guest TD:

e  Control structure pages are not mapped to the guest TD.
e In TD_TEARDOWN state, as described below, no mapping is in effect.

8.5.2. Reclaiming TD Pages in TD_TEARDOWN State

As part of the TD teardown process, the VMM needs to put the TD into a TD_TEARDOWN state, as described in 7.4. This
is a non-recoverable state where TD keys have been reclaimed, all address translations and caches have been flushed,
and the TD private memory and control structures (except TDR) are no longer accessible.

By design, in the TD_TEARDOWN state, all TD pages are effectively unmapped. Secure EPT is not accessible, and no GPA-
to-HPA mapping can be used. The host VMM must treat all the TD private pages and control structure pages as physical
memory and reclaim them using the TDH.PHYMEM.PAGE.RECLAIM function in any order, as long as the TDR page is the
last one to be reclaimed.

For TDR page, the intention is for the host VMM to call TDH.PHYMEM.PAGE.WBINVD after calling
TDH.PHYMEM.PAGE.RECLAIM. This is required to avoid corruption due to cache line aliasing because the TDR page has
still been accessed and modified, even when the TD was in TD_TEARDOWN state.

8.5.3. Reclaiming Physical Pages as Part of TD Private Memory Management

Functions such as TDH.MEM.PAGE.REMOVE and TDH.MEM.PAGE.PROMOTE are designed to remove TD private pages
and Secure EPT pages, respectively. By design, they first make sure the pages are no longer accessible using a GPA, then
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they mark the physical page as free. This is described in Chapter 9; this section only highlights the physical page
reclamation.
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9. TD Private Memory Management

This chapter described how the Intel TDX module helps manage TD private memory and guest-physical address (GPA)
translation.

9.1. Overview
Intel TDX ISA introduced the concept of private GPA vs. shared GPA, depending on the GPA.SHARED bit. In SEAM non-

root mode, the controlling VMCS has two EPT pointer fields:

e The legacy EPT pointer is used for translating the guest TD’s memory accesses using a private GPA (i.e.,
GPA.SHARED ==0).

e A new Shared EPT pointer is used for translating the guest TD’s memory accesses using shared GPAs (i.e.,
GPA.SHARED ==1).

A new GPAW execution control determines the position of the SHARED bit in the GPA, and a new HKID execution control
defines the HKID used for accessing TD private memory.
Private GPA Space

TDO /{ Guest Physical Address }
— Memory encrypted with a

CR3 Private Code/data TD private key

T Private Code/data ‘

}—+ Shared Data ‘

lGuest Physical Address (GPA)

Shared GPA Space
— Memory encrypted with a
key shared with VMM

Lt

CPU PMH
. HPA Space
TD Privat —) ;
Hl?l\s c GPA.SHARED ) Physical Memory
Physical Pages
No Address +
YeSl HKID

[—
Shared Extended Extended
Page Tables Page Tables
(Shared EPT) (Secure EPT)

Figure 9.1: Secure EPT Concept

The Intel TDX module maintains a single Secure EPT structure per TD. Secure EPT pages are designed to be opaque; they
reside in ordinary memory, and they are encrypted and integrity-protected with the TD’s ephemeral private key. The
Intel TDX module does not map Secure EPT pages to the guest TD GPA space. Thus, Secure EPT is effectively not accessible
by any software besides the Intel TDX module, nor by any devices. Any such access using shared HKID to Secure EPT can
lead to data corruption that triggers integrity check failure leading to a machine check fault.

Secure EPT is intended to be managed indirectly by the host VMM using Intel TDX functions. The Intel TDX module helps
ensure that the Secure EPT is managed correctly.

The CPU translates shared GPAs using the Shared EPT which resides in host VMM memory. The translation uses a shared
HKID, and it is directly managed by the host VMM, just as with legacy VMX.
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9.2 Secure EPT Entry

9.2.1. UPDATED: Overview

From the CPU perspective, Secure EPT has the same structure as a legacy VMX EPT.

For the purpose of private memory management, the Intel TDX module hold a state value in each Secure EPT entry. This
state value is encoded by multiple bits.

Table 9.1: UPDATED: Secure EPT Entry State High Level Description

State Name Public Description
State
Number
FREE 0 | Secure EPT entry does not map a GPA range.
REMOVED 5 | Secure EPT entry is of a removed page
MAPPED 4 | Secure EPT entry maps a private GPA range which is accessible
by the guest TD.
BLOCKED 1 | Secure EPT entry maps a private GPA range, but new address
translations to that range are blocked.
BLOCKEDW 8 | Secure EPT entry maps a private GPA range, but new address
translations for write operations to that range are blocked.
EXPORTED_BLOCKEDW 9 | Secure EPT entry maps a private page that has been blocked
for writing and exported.
EXPORTED_DIRTY 11 | Secure EPT entry maps a private page that was exported, but is

not blocked for writing and its content and/or attributes may
have since been modified.

EXPORTED_DIRTY_BLOCKEDW 12 | Secure EPT entry maps a private page that was previously
exported, its content and/or attributes may have since been
modified and then it was blocked for writing.

PENDING 2 | Secure EPT entry maps a 4KB or a 2MB page that has been
dynamically added to the guest TD using TDH.MEM.PAGE.AUG
and is pending acceptance by the guest TD using
TDG.MEM.PAGE.ACCEPT. This page is not yet accessible by the

guest TD.
PENDING_BLOCKED 3 | Secure EPT entry is both pending and blocked.
PENDING_BLOCKEDW 16 | Secure EPT entry is both pending and blocked for writing.
PENDING_EXPORTED_BLOCKEDW 17 | Secure EPT entry is both pending and exported.
PENDING_EXPORTED_DIRTY 19 | Secure EPT entry is both pending and exported, and is not
blocked for writing.
PENDING_EXPORTED_DIRTY_BLOCKEDW 20 | Secure EPT entry is both pending and exported, and is blocked
for writing.

Secure EPT entry is opaque; the host VMM may not access it directly. The host VMM may read a Secure EPT entry
information using the TDH.MEM.SEPT.RD interface function. In addition, multiple other interface functions return the
same information in case of an error that is related to a Secure EPT entry. For details, see the [TDX Module ABI].

9.2.2. UPDATED: SEPT Entry State Diagrams

The figures below show partial state diagrams for the basic memory management operation for a leaf and a non-leaf
SEPT entry.

Additional SEPT entry state diagrams for TD migration are provided in the [TD Migration Spec].
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TDH.MEM.PAGE.DEMOTE /
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accessible to guest new translations are
TD blocked
TDH.MEM.PAGE.ADD—— TDH.MEM.RANGE.
UNBLOCK TDH.MEM.PAGE.PROMOTE
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;|—/

Figure 9.2: Secure EPT Leaf Entry Basic Operation Partial State Diagram
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State Diagram
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TDH.MEM.PAGE.DEMOTE /
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TDH.MEM.RANGE. State Diagram
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UNBLOCK
—
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| |
|
o TDH.MEM.SEPT.REMOVE _ |
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TDH.MEM.SEPT.REMOVE
5 Figure 9.3: Secure EPT Non-Leaf Entry Basic Operation Partial State Diagram
9.3. Secure EPT Walk

Host-side (SEAMCALL) Intel TDX functions that manage TD private memory usually accept GPA and Level parameters.
They perform a Secure EPT walk which locates the target Secure EPT entry.

If the Secure EPT walk is completed successfully, the Intel TDX function may operate on the located Secure EPT entry.

10

Otherwise, the function typically returns the last visited EPT entry and its level to the host VMM.
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Guest-side (TDCALL) Intel TDX functions typically perform an EPT walk similar to the EPT walk done by the CPU. Only the
GPA is provided as an input, and the function may walk the Shared EPT or the Secure EPT, depending on the specific
function and the GPA’s SHARED bit.

9.4. Secure EPT Induced TD Exits

Guest TD memory access to a non-present private GPA causes an asynchronous TD exit with an EPT Violation exit reason.
As discussed in 9.2 above, a non-present GPA is any private GPA for which there is either no Secure EPT entry, or the
Secure EPT entry is not in the MAPPED state. There is no TD exit with an EPT Misconfiguration on the Secure EPT.

On EPT violation TD exit, the content of the Secure EPT entry is provided to the host VMM to avoid the need for explicitly
reading it using TDH.MEM.SEPT.RD.

Secure EPT-induced TD exits may also be triggered during a guest-side local flow, performing some function on behalf of
the guest TD, and executed by the Intel TDX module.

9.5. Secure EPT Induced Exceptions

Guest TD memory access to a private GPA for which the Secure EPT entry state is PENDING causes a #VE.
Guest TD memory access with any GPA bit higher than the SHARED bit set to 1 causes a #PF exception. See 11.11.1.

9.6. UPDATED: Secure EPT Concurrency

Secure EPT concurrency rules are designed to allow concurrent operations on multiple Secure EPT entries.

Host-Side (SEAMCALL) Interface Functions

e TDX module interface functions that use GPA as an input acquire a shared lock on the whole Secure EPT tree of the
target TD to help prevent changes to the tree while they execute.

e Most interface functions that use GPA as an input acquire an exclusive host-side lock on the Secure EPT entry or
entries which they use. An exception to this is TDH.MEM.SEPT.RD, which just reads a Secure EPT entry and does not
use it to actually access memory.

e In specific cases where a Secure EPT entry update may collide with a concurrent update done by the guest TD, host-
side interface functions update the Secure EPT entry as a transaction, using atomic compare and exchange operation.

Guest-Side (TDCALL) Interface Functions

Guest-side TDX module interface functions that need to translate a GPA to an HPA emulate the CPU’s top-down EPT walk
operation.

e  Guest-side interface functions have no concurrency restrictions on the whole Secure EPT tree.

e  Guest-side interface functions that need to update a Secure EPT entry (currently, only TDG.MEM.PAGE.ACCEPT)
acquire an exclusive guest-side lock on that entry. This lock is only checked by other similar guest-side functions,
but not by host-side functions. Thus, Secure EPT entry update is done as a transaction, using atomic compare and
exchange operation.

9.7. Introduction to TLB Tracking

The goal of TLB tracking is to be able to prove (when needed) that no logical processor holds any cached Secure EPT
address translations to a given TD private GPA range. TLB tracking is required when removing a mapped TD private page
(TDH.MEM.PAGE.REMOVE) or when changing the page mapping size (TDH.MEM.PAGE.PROMOTE), etc.

September 2021 Page 67 of 133

Introduction and Overview

Section 2:



10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Introduction and Overview 348549-001US

GPA Range TLB Tracking Sequence

This sequence is intended to be used by the host VMM to help guarantee no EPT TLB entries exist to a set of GPA ranges.

Intel TDX

Module Guest TD

TDH.MEM.RANGE.BLOCK(TDR, GPA, level)
|
e — — —
T TDH.M EM.TRACK(TDR)4t|:|
J_< __________________

IPI

VM Exit (external interrupt)
[ﬁTD Exit (external interrupt)

———— TDH.VP.ENTER
| VM Entry ?—‘-h

Figure 9.4: Typical TLB Tracking Sequence
The sequence typically includes five steps:

1. Execute TDH.MEM.RANGE.BLOCK on each GPA range, blocking subsequent creation of TLB translation to that range.
Note that cached translations may still exist at this stage.

2. Execute TDH.MEM.TRACK, advancing the TD’s epoch counter.

3. Send an Inter-Processor Interrupt (IPl) to each Remote Logical Processor (RLP) on which any of the TD’s VCPUs is
currently scheduled.

4. Upon receiving the IPIl, each RLP will TD exit to the host VMM.

At this point the target GPA ranges are considered tracked. Even though some LPs may still hold TLB entries to the target
GPA ranges, the following TD entry is designed to flush them.

5. Normally, the host VMM on each RLP will treat the TD exit as spurious and will immediately re-enter the TD.
9.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD

The host VMM can use the TDH.MEM.SEPT.ADD function to add a Secure EPT page to a guest TD. TDH.MEM.SEPT.ADD
inputs are:

e Target TD, identified by its TDR HPA
e Destination physical page for the new Secure EPT table
e  Mapping information: GPA and EPT level

At a high level, TDH.MEM.SEPT.ADD works as follows:

1. Check the TD keys are configured.

2. Check the destination physical page is marked as free in the PAMT.

3. Perform a Secure EPT walk to locate the Secure EPT non-leaf entry which will become the parent entry that maps
the new Secure EPT page. To help prevent re-maps, TDH.MEM.SEPT.ADD checks the mapping does not already exist,
else it aborts the operation.

4. Initialize the target page to zero using the target TD’s private HKID and direct writes (MOVDIR64B).

5. Update the parent Secure EPT entry to map the page as MAPPED.

6. Update the page’s PAMT entry with the PT_EPT page type and the TDR PA as the OWNER.

The Secure EPT’s root page (EPML4 or EPML5, depending on whether the host VMM uses 4-level or 5-level EPT) does not
need to be explicitly added. It is created during TD initialization (TDH.MNG.INIT) and is stored as part of TDCS. On each
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VCPU initialization, TDH.VP.INIT copies the address of the Secure EPT root page to the VCPU’s TD VMCS’s EPTP field
clearing the HKID bits to 0°.

The following example illustrates the build process of a 4-level Secure EPT hierarchy:

1. The host VMM calls TDH.MNG.CREATE(TDR_PA = TDRo) to create the TD.

2. The host VMM calls TDH.MNG.ADDCX(TDR_PA = TDRo, DST_PA = TDCX_PAGE_PA) multiple times to allocate pages
for TDCS. One of those pages will be used to host the Secure EPT root page Do.

3. Host VMM calls TDH.MNG.INIT(TDR_PA = TDRo) to initialize the TD and set an EPML4 page in one of the previously
added TDCX pages as the Secure EPT root page. This updates TDCS.EPTP.

4. TDH.VP.INIT of each VPCU copies TDCS.EPTP to the TD VMCS’s EPTP field.
5. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D1, GPA = Gy, LVL= 3) to add an EPDPT page.
6. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D, GPA = Gy, LVL= 2) to add an EPD page.
7. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D3, GPA = Gy, LVL= 1) to add an EPT page.
Step 3 TDCS
TDH.MNG.INIT Step 5 Step 6 Step 7
EPTP = Do TDH.MEM.SEPTADD TDH.MEM.SEPT.ADD TDH.MEM.SEPT.ADD
Step 4 EPML4 EPDPT EPD EPT
TDH.VP.INIT
PA = D3
TD VMCS PA = D2 MAPPED
PA = D1 MAPPED
EPTP = Do MAPPED ||

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for Dy

OWNER = TDR,
PT = PT_TDCX

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

Figure 9.5: Typical Secure EPT Hierarchy Build Process

To help avoid stability issues caused by cache line aliasing, the VMM should assure that no cache lines associated with
the added physical SEPT page are in a Modified state, before calling TDH.MEM.PAGE.AUG. This is typically done by calling
TDH.PHYMEM.PAGE.WBINVD.

9.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD

Adding TD private pages with arbitrary content is allowed only during TD build time (before TDH.MR.FINALIZE). The host
VMM adds and maps 4KB private pages to a guest TD using TDH.MEM.PAGE.ADD with the following inputs:

Target TD, identified by its TDR physical address
Source page physical address

e Destination page physical address

e Destination page GPA

At a high level, TDH.MEM.PAGE.ADD works as follows:

1. Check the TD has not been initialized.
2. Check the TD keys are configured.
3. Check the destination physical page is marked as free in the PAMT.

5 The CPU adds the TD's private HKID on EPT walks. Having HKID as 0 allows the host VMM to use INVEPT, for managing the usage of
shared EPT which shares the ASID with the TD’s secure EPT (see @).
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4. Perform a pseudo Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private
page. To help prevent re-maps, TDH.MEM.PAGE.ADD checks the mapping does not already exist, else it aborts the
operation.

5. Copy the source page to the destination page using the target TD’s private HKID and direct writes (MOVDIR64B).
6. Update the previously located parent Secure EPT leaf entry to map the page as MAPPED.
7. Update the TD measurement with the new page GPA (as described in 12.1.1).
8. Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.
TDH.MEM.PAGE.ADD
EPML4 EPDPT EPD EPT New 4KB TD Private
Page
PA = D3
PA = D2 MAPPED PA = D4
PA = D1 MAPPED MAPPED
MAPPED

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_REG

Figure 9.6: Typical Sequence for Adding a TD Private Page during TD Build Time

To help avoid stability issues caused by cache line aliasing, the VMM should assure that no cache lines associated with
the added physical page are in a Modified state, before calling TDH.MEM.PAGE.AUG. This is typically done by calling
TDH.PHYMEM.PAGE.WBINVD.

9.10. Dynamically Adding TD Private Pages

9.10.1. Overview

Dynamically adding TD private pages after the guest TD has been initialized is typically done as a three-step process:

e The host VMM can update Secure EPT using TDH.MEM.SEPT.ADD and TDH.MEM.SEPT.REMOVE.

e The host VMM adds and maps a 4KB or a 2MB TD private page using TDH.MEM.PAGE.AUG. This page is not
measured. The Secure EPT entry state for that added page is PENDING.

e The guest TD must accept the page before it can access it, using TDG.MEM.PAGE.ACCEPT. The page content is zeroed
out.

This process is designed to help prevent attacks where the host VMM could remove arbitrary pages from the guest TD’s
GPA space (using TDH.MEM.PAGE.REMOVE) and replace them with zeroed-out pages.

A guest TD attempt to access a page that has been dynamically added by TDH.MEM.PAGE.AUG but has not yet been
accepted by TDH.MEM.PAGE.ACCEPT results in a #VE exception.

Refer also to the software flow described in 3.3.1.1.

9.10.2. Page Addition by the Host VMM: TDH.MEM.PAGE.AUG

The host VMM can add and map 4KB and 2MB private pages to a guest TD in a non-present and pending state using
TDH.MEM.PAGE.AUG, with the following inputs:

e Target TD, identified by its TDR physical address
e Destination page physical address
e Destination page GPA
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At a high level, TDH.MEM.PAGE.AUG works as follows:

1. Check the TD keys are configured.

2. Check that the TD has either been initialized (by TDH.MNG.INIT) and no migration session is in progress, or that
migration is in progress, but the TD is runnable (live export or import).

3. Check the destination physical page is marked as free in the PAMT.

4. Perform a pseudo Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private
page. To help prevent re-maps, TDH.MEM.PAGE.AUG checks the mapping does not already exist, else it aborts the
operation.

5. Update the previously located parent Secure EPT leaf entry to map the page as PENDING.

6. Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.

Note that TDH.MEM.PAGE.AUG does not need to access the destination page itself; the page is initialized later on by
TDG.MEM.PAGE.ACCEPT.

TDH.MEM.PAGE.AUG

(2MmMB)
New 2B 1D : - -
PrivatePage. * . * .
{Non-Initfalized)” . *
EPML4 EPDPT EPD
15802520920 TDH.MEM.PAGE.AUG
PA = D3 I (4KB)
PENDING ! A
PA=D2 | |00 Q| e 4 +
PA =D1 MAPPED PA = D4 EPT ‘New #KB TD"Private
MAPPED MAPPED Page, L vl
((Non:Inifialized), = ©
PA = Ds B Lt
PENDING ! Dot L
| el
1 L !
2MB PAMT Entry for D,
PAMT Entry for D, PAMT Entry for D, PAMT Entry for D, OWNER =TDR,
PT = PT_REG
OWNER = TDR, OWNER =TDR, OWNER =TDR, Entrvfor D ;
PT = PT_EPT PT = PT_EPT PT = PT_EPT PAMT Entry for D, 4KB PAMT Entry for D
OWNER =TDR, OWNER =TDR,
PT = PT_EPT PT = PT_REG

Figure 9.7: Host VMM Adding a 4KB or a 2MB TD Private Page

To help avoid stability issues caused by cache line aliasing, the VMM should assure that no cache lines associated with
the added physical page are in a Modified state, before calling TDH.MEM.PAGE.AUG. This can be done be calling
TDH.PHYMEM.PAGE.WBINVD.

9.10.3. Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT
9.10.3.1. Description

The guest TD can accept a dynamically added 4KB or 2MB page using TDG.MEM.PAGE.ACCEPT with the page GPA and
size inputs.
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At a high level, TDG.MEM.PAGE.ACCEPT works as follows:

1. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page, and handle the

walk results as described in the table below.

Table 9.2: TDG.MEM.PAGE.ACCEPT SEPT Walk Cases

SEPT Walk Terminal Entry

TDG.MEM.PAGE.ACCEPT
Operation

Typical Software Handling

Level Leaf or | State
Non-
Leaf
Higher Leaf Guest-accessible, i.e., Return a status code indicating a Option 1: This is OK, the host VMM
than MAPPED or success, with a warning that the did not use the memory released
requested EXPORTED_DIRTY (e.g., page is already present and by the TD.
2MB PTE present for a 4KB mapped at a level higher than Option 2: This is a guest bug; the
request). requested. status code helps debugging it.
Not guest-accessible and TD exit with EPT violation The host VMM demotes the page
not FREE (e.g., 2MB PTE indicating the error SEPT entry to match the requested accept size.
pending for a 4KB request). | level and state, and the guest-
requested accept level. See the
[TDX Module ABI].
Non- Not guest-accessible TD exit with EPT violation This may be used as a guest TD
leaf (e.g. blocked PDE for a 4KB | indicating the error SEPT entry request from the host VMM to add
request). level and state, and the guest- a page. The host VMM adds SEPT
requested accept level. See the pages (TDH.MEM.SEPT.ADD) and
[TDX Module ABI]. the requested page
(TDH.MEM.PAGE.AUG), and
resumes the guest.
Same as Non- Other than FREE (e.g., Return a status code indicating a The guest falls back to accept the

requested | leaf requested 2MB entry is
mapped to a EPT page

instead of being a leaf)

size mismatch error.

range using 4K size.

Leaf Guest-accessible, i.e., Return a status code indicating a Option 1: This is OK, the host VMM
MAPPED or success, with a warning that the did not use the memory released
EXPORTED_DIRTY page is already present. by the TD.

Option 2: This is a guest bug; the
status code helps debugging it.

Not PENDING nor TD exit with EPT violation The host VMM resolves the

PENDING_EXPORTED_DIRTY | indicating the error SEPT entry blocking (e.g., completes the
level and state, and the guest- memory management operation
requested accept level. See the that required blocking) and
[TDX Module ABI]. resumes the guest.

FREE TD exit with EPT violation This may be used as a guest TD
indicating the error SEPT entry request from the host VMM to add
level and state, and the guest- a page. The hosts VMM adds the
requested accept level. See the requested page
[TDX Module ABI]. (TDH.MEM.PAGE.AUG) and

resumes the guest.

PENDING Complete the operation as Success
described below.

5
If passed:
Note: Since initializing a 2MB page may take a long time, TDG.MEM.PAGE.ACCEPT is interruptible and resumable.
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2. If all the above checks pass, loop until done or interrupted:
2.1. Initialize the next 4KB chunk of the page to zero using the target TD’s private HKID and direct writes
(MOVDIR64B).
2.2. Ifthe whole page has been initialized, update the parent Secure EPT entry to set its state to SEPT_PRESENT.
2.3. Else, if there is a pending interrupt, resume the guest TD without updating RIP and any GPR. The CPU may
handle the interrupt, causing a TD exit. When the TD is resumed, TDH.MEM.PAGE.ACCEPT will re-invoked.

TDG.MEM.PAGE.ACCEPT
(2MmB)

\ 4

2MB TD Private
Page
(Initialized to 0)

EPMLA EPDPT EPD
TDG.MEM.PAGE.ACCEPT
MAPPED T
PA = D2 *
PA = D1 MAPPED PA = D4 EPT 4KB TD Private Page
MAPPED MAPPED | | (Initialized to 0)
PA = Ds
MAPPED

Figure 9.8: Guest TD Accepting a 4KB or 2MB Pending TD Private Page

9.10.3.2. TDG.MEM.PAGE.ACCEPT Concurrency

Guest-Side

TDG.MEM.PAGE.ACCEPT prevents the guest TD from concurrently accepting the same page by multiple threads.
TDG.MEM.PAGE.ACCEPT may also encounter a concurrent host-side operation, such as TDH.MEM.RANGE.BLOCK, that
attempts to update the same Secure EPT entry. In such cases, an error is returned to the guest TD, indicating that the
Secure EPT entry is busy.

Host-Side

TDG.MEM.PAGE.ACCEPT does not prevent host-side operation, such as TDH.MEM.RANGE.BLOCK, from concurrently
modifying the Secure EPT entry. TDG.MEM.PAGE.ACCEPT updates the entry using a locked compare and exchange
operation. If the update failed, a TD Exit is caused, with an EPT Violation exit reason and an indication that the violation
is due to TDG.MEM.PAGE.ACCEPT. For details, see the TDH.VP.ENTER definition in the [TDX Module ABI].

9.11. Page Merge: TDH.MEM.PAGE.PROMOTE

The host VMM can merge the mapping of 512 consecutive 4KB or 2MB pages to a single 2MB or 1GB page, respectively.
To do that, the host VMM should first perform the TLB tracking protocol on the large (2MB or 1GB) GPA range.

The host VMM should first call TDH.MEM.RANGE.BLOCK which operates on the EPT page for the large range (EPT for
2MB, EPD for 1GB). TDH.MEM.RANGE.BLOCK marks the parent EPT entry for that EPT page as BLOCKED and records the
TD epoch in the PAMT entry of the EPT page. Figure 9.9 below shows the situation after TDH.MEM.RANGE.BLOCK blocked
a 2MB GPA range.
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EPT 512 Consecutive 4KB TD Private Pages
EPD PA = X 2MB Range 4KB TD Private Page |
MAPPED 1 @PAX | @ PAX
: i i 4KB TD Private Page
i i @ PA X + 511*4K
MAPPED o ' 1
| PA=X+511%4K | | i
: MAPPED : E
x eI )
PAMT_4K Entry PAMT_4K Entry PAMT_2M Entry 512 Consecutive PAMT_4K Entries
OWNER =TDR, O\;\_ll_l\l_EE: ETPDTRO OWNER =TDR, OWNER =TDR,
PT = PT_EPT - - PT = PT_NODE PT=PT_R
BEPOCH set OWNER = TDR,
PT = PT_REG
PAMT 2MB Sub-Block

Figure 9.9: Typical State after Blocking a Range of 512 Consecutive 4KB TD Private Pages

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPls. After that, there should be no active
address translation to the large (2MB or 1GB) GPA range.

The actual merge is done by TDH.MEM.PAGE.PROMOTE which has the following inputs:

e The large range GPA
e The large page level (2MB or 1GB)

At a high level, TDH.MEM.PAGE.PROMOTE works as follows:

1. Check the TLB tracking condition for the large range GPA (i.e., the EPT or EPD page for that range).
2. Check that all 512 entries of that EPT or EPD page are in the MAPPED state and point to leaf pages whose physical
address is contiguous within the same 2MB or 1GB range.

If all checks pass, TDH.MEM.PAGE.PROMOTE does the following:

1. Mark all the PAMT_4K or PAMT_2M entries of the small leaf pages (4KB or 2MB, respectively) as PT_NDA.

2. Mark the PAMT_2M or PAMT_1G entry of the merged large (2MB or 1GB, respectively) pages as PT_REG.

3. Set the parent EPT entry to point to the merged large page, and mark it as present.

4. Mark the original EPT or EPD page’s PAMT entry as PT_NDA, effectively removing this for any use by the host VMM.

Once complete, the former EPT or EPD physical page should be free for use by the host VMM for any purpose. To help
avoid stability issues caused by cache line aliasing, the host VMM should also assure that no cache lines associated with
the page are in a Modified state. This is done be calling TDH.PHYMEM.PAGE.WBINVD.

Figure 9.10 below shows a typical 2MB merged page after TDH.MEM.PAGE.PROMOTE.
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EPD i Former EPT E 2MB TD Private 15 4KB Unmapped E

| ; Page | Page :_______l_________:l‘::~=,l
H : @ PAX E @ PAX 1 4KB Unmapped '
MAPPED ! E | Page 5
' ' ' E @ PA X + 511*4K :
""""""""""""""" i | |

PAMT_4K Entry PAMT_4K Entry PAMT_2M Entry 512 Consecutive PAMT_4K Entries
OWNER =TDR, OWNER = N/A OWNER =TDR, i OWNER = N/A___i _______________
PT = PT_EPT PT = PT_FREE PT = PT_REG i PT=PT_Fi i
! i OWNER =N/A !
T | PT=PT_FREE |
PAMT 2MB Sub-Block P

Figure 9.10: Typical State of a 2MB TD Private Page after TDH.MEM.PAGE.PROMOTE

Refer also to the software flow described in 3.3.1.3.
9.12. Page Split: TDH.MEM.PAGE.DEMOTE

The host VMM can split the mapping of a single 2MB or 1GB page to 512 consecutive 4KB or 2MB pages, respectively. To
do that, the host VMM should first perform the TLB tracking protocol on the large (2MB or 1GB) page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the large page. TDH.MEM.RANGE.BLOCK marks the parent
EPT entry for that page as BLOCKED and records the TD epoch in the PAMT entry of the page. Figure 9.11 below shows
the typical situation after TDH.MEM.RANGE.BLOCK blocked a 1GB large page.

EPDPT 1GB TD Private Page 2MB Unmapped 5
@ PA X Page e b T,
@ PAX 2MB Unmapped
Page

SEPT_BLOCKED @ PA X +511*2M

e L :
PAMT_4K Entry PAMT_1G Entry 512 Consecutive PAMT_2M Entries
OWNER = TDR, OF\’I\T/'\iEFf{TerEDGRO | OWNER= N/A_ .. R
PT = PT EPT - i\ PT=PT_NC i
- BEPOCH set i ~ 1 OWNER=N/A
TN PT=PT_NODE |
PAMT 1GB Block e ;

Figure 9.11: Typical State after Blocking a 1GB Page

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to the large (2MB or 1GB) page.

The actual split is done by TDH.MEM.PAGE.DEMOTE which has the following inputs:

e The large page GPA
e The large page level (2MB or 1GB)
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e The physical address of a free page that will be used for a new EPT or EPD page
At a high level, TDH.MEM.PAGE.DEMOTE works as follows:

1. Check the TLB tracking condition for the large page.
2. Check that the physical page for the new EPT or EPD is marked as free in the PAMT.

If all checks pass, TDH.MEM.PAGE.DEMOTE does the following:

3. Mark the PAMT_2M or PAMT_1G entry of the large (2MB or 1GB respectively) page as PT_NDA.

Mark all the PAMT_4K or PAMT_2M entries of the small (4KB or 2MB respectively) consecutive leaf pages as PT_REG.
Initialize the new EPT or EPD page with 512 EPT entries pointing to the 512 consecutive leaf pages.

Mark the new EPT or EPD page’s PAMT entry as PT_EPT.

Set the parent EPT entry to point to the new EPT or EPD page.

No vk

Figure 9.12 below shows the typical state of a 1GB GPA range after TDH.MEM.PAGE.DEMOTE.

EPD 512 Consecutive 2MB TD Private Pages
EPDPT PA =X | 1 1GBRange { [ 2B TD Private
MAPPED | @PAX E Page
: 1 | @ PAX 2MB TD Private
E E Page
MAPPED : @ PAX+511*2M
PA =X +511*2M i i
MAPPED T
PAMT_4K Entry PAMT_4K Entry PAMT_1G Entry 512 Consecutive PAMT_2M Entries
OWNER =TDR, OWNER =TDR, OWNER = N/A OWNER =TDR,
PT = PT_EPT PT = PT_EPT PT = PT_NODE PT =PT_R
OWNER =TDR,
PT = PT_REG

PAMT 1GB Block

Figure 9.12: Typical State of a 1GB TD Private Range after TDH.MEM.PAGE.DEMOTE
TDH.MEM.PAGE.DEMOTE supports demotion of PENDING pages.

Refer also to the software flow described in 3.3.1.4.
9.13. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE

The host VMM can relocate a 4KB TD private page to another HPA using TDH.MEM.PAGE.RELOCATE. This is useful for,
e.g., physical address space de-fragmentation. The host VMM must first perform the TLB tracking protocol on the page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the target page. TDH.MEM.RANGE.BLOCK marks the parent
EPT entry for that page as BLOCKED (if it was MAPPED) or PENDING_BLOCKED (if it was PENDING) and records the TD
epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to target page.

The actual relocation is done by TDH.MEM.PAGE.RELOCATE which has the following inputs:

e The page GPA
e The target HPA to which the page will be relocated

At a high level, TDH.MEM.PAGE.RELOCATE works as follows:

1. Check the TD keys are configured.
2. Check the TD has been initialized.
3. Check the target physical page is marked as free in the PAMT.
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4. Perform a pseudo Secure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page. Check
that the entry has been blocked and get the current HPA.
5. Check the TLB tracking condition for the page.

If all checks pass, TDH.MEM.PAGE.RELOCATE does the following:

6. Copy the current physical page to the target physical page using direct writes (MOVDIR64B).

Mark the PAMT entry of the old physical page as PT_NDA.

Mark the PAMT entry of the target page as PT_REG.

Update the Secure EPT entry with the new physical page HPA. Set its state to MAPPED or PENDING depending on
whether its previous state was BLOCKED or PENDING_BLOCKED, respectively.

o 00 N

Once complete, the old physical page should be free for use by the VMM for any purpose. To help avoid stability issues
caused by cache line aliasing, the VMM should also assure that no cache lines associated with the old page are in a
Modified state. This is typically done by calling TDH.PHYMEM.PAGE.WBINVD.

9.14. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE

The host VMM can remove TD private pages using TDH.MEM.PAGE.REMOVE, freeing them for any use. 4KB, 2MB and
1MB pages can be removed — no demotion is required for large pages. The host VMM should first perform the TLB
tracking protocol on the page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the target page. TDH.MEM.RANGE.BLOCK marks the parent
EPT entry for that page as BLOCKED (if it was MAPPED) or PENDING_BLOCKED (if it was PENDING) and records the TD
epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to target page.

The actual removal is done by TDH.MEM.PAGE.REMOVE which has the following inputs:

e The page GPA
e The page level (4KB, 2MB or 1GB)

At a high level, TDH.MEM.PAGE.REMOVE works as follows:

1. Check the TLB tracking condition for the page.
2. Check that the mapping size of the page fits the input parameter.

If all checks pass, TDH.MEM.PAGE.REMOVE does the following:

3. Mark the EPT entry for the target page as FREE.
4. Mark the PAMT entry of the page as PT_NDA.

Once complete, the physical page should be free for use by the VMM for any purpose. To help avoid stability issues
caused by cache line aliasing, the VMM should also assure that no cache lines associated with the removed page are in a
Modified state. This is typically done by calling TDH.PHYMEM.PAGE.WBINVD.

Refer also to the software flow described in 3.3.1.2.
9.15. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE

The host VMM can remove a Secure EPT page using TDH.MEM.SEPT.REMOVE, freeing it for any use, provided all its
entries are FREE. The host VMM should first perform the TLB tracking protocol on the page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the Secure EPT page. TDH.MEM.RANGE.BLOCK marks the
parent EPT entry for that page as BLOCKED and records the TD epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPls. After that, there should be no active
address translation to GPA range presented by the Secure EPT page to be removed.

The actual removal is done by TDH.MEM.SEPT.REMOVE which has the following inputs:

e The Secure EPT page GPA
e The EPT level

At a high level, TDH.MEM.SEPT.REMOVE works as follows:

1. Check the TLB tracking condition for the page.
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2. Check that the mapping size of the page fits the input parameter.
3. Check that all 512 entries of the Secure EPT page are PT_NDA.

If all checks pass, TDH.MEM.SEPT.REMOVE does the following:

4. Mark the EPT entry for the Secure EPT page as FREE.
5. Mark the PAMT entry of the Secure EPT page as PT_NDA.

Once complete, the physical page should be free for use by the VMM for any purpose. To help avoid stability issues
caused by cache line aliasing, the VMM should also assure that no cache lines associated with the page are in a Modified
state. This is typically done by calling TDH.PHYMEM.PAGE.WBINVD.

9.16. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK

The host VMM can unblock previously blocked TD private GPA ranges using TDH.MEM.RANGE.UNBLOCK, returning them
to their original state. 4KB, 2MB and 1MB GPA ranges can be unblocked.

The host VMM should first complete the TLB tracking protocol on the GPA range. It typically calls TDH.MEM.TRACK and
performs a round of IPIs. After that, there should be no active address translation to target page.

The actual unblocking is done by TDH.MEM.RANGE.UNBLOCK which has the following inputs:

e The GPA
e The GPA range level (4KB, 2MB or 1GB)

At a high level, TDH.MEM.RANGE.UNBLOCK works as follows:

1. Check the TLB tracking condition for the GPA range.
2. Check that the mapping size of the GPA range fits the input parameter.

If all checks pass, TDH.MEM.RANGE.UNBLOCK does the following:
3. Mark the EPT entry for the target GPA as MAPPED (if it was BLOCKED) or PENDING (if it was PENDING_BLOCKED).

Refer also to the software flow described in 3.3.1.5.
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10.TD VCPU
This chapter discusses multiple items related to TD VCPUs.
10.1. VCPU Transitions
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Figure 10.1: TD VCPU Transitions Overview

10.1.1. |Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entry

On the initial TD entry to a TD VCPU, the TDX module restores the initial TD VCPU state from TDVPS (including TD VMCS).

Following a successful TDH.VP.ENTER, asynchronous TD exit may happen as a result of events such as interrupts, EPT
violations etc. In such case, the TDX module saves the TD VCPU state into TDVPS (including TD VMCS). Most of the host
VMM VCPU state that may have been used by the TD is initialized. For a detailed description of VMM state following
TDH.VP.ENTER, see the [TDX Module ABI].

On the subsequent TD entry following an asynchronous TD exit, the TDX module restores the TD VCPU state from TDVPS
(including TD VMCS). The host VMM does not impact the VCPU state except in one case: a trap-like asynchronous TD
exit from a guest-side interface function may indicate that the host VMM can apply a recoverability hint in the following
TD entry. In this case, the host VMM provides a recoverability hist to the guest TD, which is combined into the guest-side
interface function’s completion status returned in RAX.
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TD VCPU
M M
exit entry
1. Examine exit reason, decide . Save selected host VMM CPU
on async TD exit state
TDX 2. Save non-VMCS CPU state in . Associate VCPU
Module TDVPS . Restore non-VMCS CPU state
3. Init or restore host VMM from TDVPS
CPU state . VMLAUNCH/VMRESUME

SEAMRET

Figure 10.2: Example of Asynchronous TD Exit and TD Resumption

10.1.2. Synchronous TD Exit and Subsequent TD Entry

TDG.VP.VMCALL provides a channel for the guest TD to communicate with the host VMM.

5 The guest TD can initiate a synchronous TD exit by invoking TDG.VP.VMCALL. The RCX input parameter of selects the
GPRs (from RBX, RDX, RBP, RDI, RSl and R8 through R15) and XMM registers whose value is passed through to the host
VMM as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER. Other CPU state
components, including GPRs and XMM registers not selected by RCX, are saved in TDVPS and set to fixed values.

On the subsequent TDH.VP.ENTER, the RCX value that was used for TDG.VP.VMCALL selects the GPRs (from RBX, RDX,
10 RBP, RDI, RSI and R8 through R15) and XMM registers whose value is passed through to the guest TD. Other CPU state
components, including GPRs and XMM registers not selected by RCX, are restored from RCX.
For details, see the TDH.VP.ENTER and TDG.VP.VMCALL definitions in the [TDX Module ABI].
Prepare a Handle VMM
TD VCPU Request TDG.VP.VMCALL
VM
4, exit
1. Examine exit reason, decide 1. Save selected host VMM CPU
on synchronous TD exit state
TDX 2. Save non-VMCS CPU state in . Associate VCPU
Module TDVPS, pass through . Restore non-VMCS CPU state
selected GPRs and XMMs from TDVPS, pass through
3. Init or restore host VMM selected GPRs and XMMs
CPU state . VMLAUNCH/VMRESUME

15

20

SEAMRET

Figure 10.3: Example of Synchronous TD Exit and TD Resumption

10.1.3. UPDATED: VCPU Activity State Machine

The VCPU activity state machine, controlled by TDVPS.VCPU_STATE as shown in Table 10.1 below and shown in Figure

10.4 below, helps assure the following:

e A VCPU can be entered only when its logical TDVPS control structure, composed of TDVPR and TDCX pages, is
available in memory and has been initialized by TDH.VP.INIT or successfully imported by TDH.IMPORT.STATE.VP.

e AVCPU can be entered only if its state is consistent (no non-recoverable TD exit happened).
e TD entry is done properly, depending on whether it is the first entry or on the last TD exit type.
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Table 10.1: TDVPS.VCPU_STATE Definition

State Name

Description

VCPU_UNINITIALIZED

VCPU has not been initialized yet by TDH.VP.INIT.

VCPU_IMPORT The VCPU state has been incompletely imported.
VCPU_READY The VCPU is ready to be executed.
VCPU_ACTIVE VCPU is active (TDX non-root mode) on some LP.

VCPU_DISABLED

VCPU is being torn down.

TD Entry and TD Exit transitions normally toggle between the VCPU_READY state and the VCPU_ACTIVE state, except
when a non-recoverable VCPU TD Exit (due to a Triple Fault) transitions to a VCPU_DISABLED state.

TDH.VP.ADDCX

TDH.VP.CREATE

TD VCPU has not been
initialized

( VCPU_READY

TD VCPU may be entered

TDH.VP.ENTER TD VCPU running on an LP

TDH.IMPORT.STATE.VP
[interrupted]

TD VCPU is being imported

TDH.IMPORT.STATE.VP
[success]

TD Exit
[non-recoverable
VCPU state]

TD VCPU is disabled

5
Figure 10.4: VCPU Activity State Machine
In the VCPU_READY and VCPU_IMPORT states, a LAST_TD_EXIT sub-state indicates what was the last TD exit and how a
subsequent TD entry should be done.
Table 10.2: TDVPS.LAST_TD_EXIT Definition
Name Description
ASYNC_FAULT | Last TD exit was due to an asynchronous event (non-TDG.VP.VMCALL) which caused a fault-
like exit, i.e., the VCPU state is as if the guest instruction has not been executed. VCPU
state has been fully saved on TD exit and will be restored on the next TD entry.
ASYNC_TRAP Last TD exit was due to an asynchronous event that happen as part of a guest-side interface
function (non-TDG.VP.VMCALL) which caused a trap-like exit, i.e., the VCPU state is as if the
guest instruction has been executed. VCPU state has been fully saved on TD exit and will be
restored on the next TD entry. On the next TD entry, the host VMM provides the guest with
a recoverability hint.
TDVMCALL Last TD exit was due to a TDG.VP.VMCALL. On the next TD entry, most GPR and all XMM
state will be forwarded to the guest TD from the host VMM.
10
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10.2. TD VCPU TLB Address Space Identifier (ASID)

Non-root mode cached address translations are tagged with unique Address Space Identifiers (ASIDs). The goal of TD
ASIDs is to reduce the need to flush TLB entries on TD Entry and TD Exit due the associated performance costs as a result

of the flushing.

10.2.1. TD ASID Components

Table 10.3 below shows a high-level view of the components of the TD ASID. The exact structure is micro-architectural.

Table 10.3: TD ASID

Field Size Description and TDX Usage
(Bits)

SEAM 1 This is an implicit bit 16 of VPID not directly visible to software. It is set to 1 by the
CPU in SEAM mode. This bit prevents overlap with legacy (non-TDX) ASIDs.

VPID 16 Set by the Intel TDX module to VCPU_INDEX, a unique index of a VCPU in a TD, plus 1
(since VCPU_INDEX starts with 0 which is not a value VPID number for non-root
mode)

EPTP 40 Bits [51:12] of the EPTP, which for a TD points to the Secure EPT root — HKID bits are
cleared to 0
Note that EPTP is unique per TD and is used as an ASID component for both Secure
EPT and Shared EPT translations caching.

PCID 16 Same as legacy PCID

10.2.2. INVEPT by the Host VMM for Managing the Shared EPT

The same ASID based on the TD’s EPTP is used for caching both secure and shared EPT translations (remember: EPTP is
the HPA of the secure EPT root page). Thus, to flush shared EPT translations, the host VMM uses INVEPT specifying the
TD’s EPTP, not its Shared EPTP. The host VMM can obtain the value of EPTP from the TD VMCSs using TDH.VP.RD.

10.3. VCPU-to-LP Association

10.3.1. Non-Coherent Caching

Some TD VCPU state is non-coherently cached. This includes:

e Address translations (TLB/PxE entries) must be explicitly flushed in case they may be stale.

e TDVMCS s cached by the CPU. VMX architecture requires making a VMCS current by VMPTRLD before using it with
most VMX instructions, and then explicitly writing it to memory and making it non-current by VMCLEAR before the
VMCS memory image can be handled (e.g., by making it current on another LP).

This non-coherent caching implies that some explicit and/or implicit operations are done to help guarantee correctness.
This is described in the following sections.
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10.3.2. Intel TDX Functions for VCPU-LP Association and Dis-Association

TDH.VP.CREATE

TDH.VP.ENTER TDH.VP.ENTER

onLP1 TDH.VP.INIT TDH.VP.INIT on LP2
X on LP1 X on LP2
e LP1's current/working e VCPUXx VMCS is not LP2's current/working
VMCS is VCPU x VMCS current/working VMCS VMCS is VCPU x VMCS
e Cached address TDH.VP.ENTER on any LP TDH.VP.ENTER e Cached address
translations & paging onLP1 e No VCPU x cached on LP2 translations & paging
structures may exist Any other address translations & Any other structures may exist
e TD's HKID may not be VCPU-specific paging structures on VCPU-specific TD's HKID may not be
Any other L freed interface function any LP interface function freed ) Any other
VCPU-specific 7'y on LP1 7'y 7 on LP2 r'y VCPU-specific
interface function interface function
onLP1 on LP2
B — ‘——TDH.VP.FLUSH——F— ———TDH.VP.FLUSH——— e

Figure 10.5: VCPU Association State Machine
The following Intel TDX module mechanisms are designed to help assure correct and secure operation:

5 e TD VCPU to LP association is many-to-one. A TD VCPU can be associated with at most one LP at any given time. An
LP may be associated with multiple VCPUs.
e  VCPU to LP association is implicitly done by any VCPU-specific SEAMCALL flow, including TDH.VP.ENTER. Those flows
check that the VCPU is either already associated with the current LP or is not associated with any LP.
e Ifthe host VMM wishes to associate a VCPU with another LP, it must explicitly flush the VCPU state on the LP currently
10 associated with it using TDH.VP.FLUSH. This function performs TD ASID, and extended paging structure (EPxE) caches
TLB flush and VMCLEAR. For details, see the [TDX Module ABI].
e If the VMM wishes to reclaim the TD’s private HKID, thus making the TDVPS memory inaccessible, it must explicitly
flush the VCPU state on the LP currently associated with it. This is described in 5.4.

10.3.3. Performance Considerations

15 e  Migrating VCPUs between LPs is costly. As described above, it involves flushing address translation caches, paging
structure caches and VMCS cache. The host VMM should minimize that for best performance.
e Address translation and paging structure caches are flushed at TD-scope on the current LP. This flushing impacts the
(possibly non-typical) case where multiple VCPUs of the same TD are associated with a single LP.
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11.UPDATED: CPU Virtualization (Non-Root Mode Operation)

This chapter describes how the Intel TDX module virtualizes the CPU to a guest TD.
11.1. Initial State

Intel SDM, Vol. 3,9.1.1 Processor State after Reset
11.1.1. Overview

As designed, most of the TD VCPU initial state is the same as the processor architectural state after INIT. However, there
are some differences:

e The TD VCPU starts its life in protected (32-bit) non-paged mode, not in real mode. It is allowed only to switch to
64b mode. This impacts the initial state of segment registers, CRs and MSRs. Mode restrictions in TDX non-root
mode are described in 11.1.

e ThelA32_EFER MSR is initialized to support the CPU modes described in 11.1.

e The initial values of some GPRs provide some basic information to the guest TD as described in 11.1.2 below. This
information should be sufficient for the vBIOS to set up paging tables and switch as soon as possible to 64b mode,
where it can use the TDCALL leaf functions.

See also the TDVPS fields and TD VMCS guest state area in the [TDX Module ABI].

11.1.2. |Initial State of Guest TD GPRs

As designed, the following initial state is different than the architectural INIT state:

Table 11.1: Initial Values of GPRs Different from their Architectural INIT Values

Register | Bits Initial Value

RBX 5:0 GPAW, the effective GPA width (in bits) for this TD (do not confuse with MAXPA) —
SHARED bit is at GPA bit GPAW-1

Only GPAW values 48 and 52 are possible.

63:6 Reserved: setto 0

RCX, R8 63:0 | The value of RCX and R8 is provided as an input to TDH.VP.INIT (the same value in both
GPRs). No checking is done on this value; the intention is for vBIOS to read RCX
immediately after the first TDH.VP.ENTER, and use the RCX value appropriately as set by
software convention.

RDX 31:0 Set to the virtualized Family/Model/Stepping returned by CPUID(1).EAX. The value is
calculated by TDH.SYS.INIT as to have the minimum Stepping ID across all packages.

63:32 | Reserved: setto 0

RSI 31:0 | Virtual CPU index, starting from 0 and allocated sequentially on each successful
TDH.VP.INIT

63:32 | Reserved: setto 0

RIP 63:0 | Set to OXFFFFFFFO (i.e., 4GB - 16B)

11.1.3. |Initial State of CRs

As designed, the following initial state is different than the architectural INIT state:

e CROis initialized to 0x0021 — bits PE (0) and NE (5) are set to 1, and all other bits are cleared to 0. See 11.6.1 for
details.

e CR4 is initialized to 0x2040 — bits MCE (6) and VMXE (13) are set to 1, and all other bits are cleared to 0. Note that
the virtualized value of VMXE is 0, due to the setting of the TD VMCS “CR4 guest/host mask” and “CR4 read shadow”
controls. See 11.6.2 for details.
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11.1.4. |Initial State of Segment Registers

As designed, the following initial state is different than the architectural INIT state:

e (S, DS, ES, FS, GS and SS are initialized with a base of 0 and limit of OXFFFFFFFF.
e LDTR, TR and GDTR are initialized with a base of 0 and limit of OxFFFF.
5 e |IDTRis initialized as invalid (limit of 0).

For details, see the [TDX Module ABI].

11.1.5. |Initial State of MSRs

As designed, the following initial state is different than the architectural INIT state:

e |A32_EFER is initialized to 0x901 — SCE (bit 0), LME (bit 8) and NXE (bit 11) are set to 1, and all other bits are
10 cleared to 0.

11.2. UPDATED: Guest TD Run Time Environment Enumeration

Guest software can be designed to run either as a TD, as a legacy virtual machine, or directly on the CPU, based on
enumeration of its run-time environment. Figure 11.1 below shows a typical flow used by guest software.

CPUID(0) Legend

Legacy |:|

Y
N
Y
v

v

A

Get vendor ID (EBX:EDX:ECX)

CPUID(1) CPUID(0x21, 0x0) and max sub-leaf (EAX)

Y

Vendor ID ==
“IntelTDX " ?

> Not Intel TDX

Y
Not Para- | 0
Virtualized
1

Y

CPUID(0).EAX >= 0x21

TDCALL(TDG.VP.INFO)

A — f‘ s 0
! i DEALLTDE SR Enumerate TD configuration |
| ! TDCALL(TDG.VM.RD*)

TDCALL(TDG.VP.RD*)

15 Figure 11.1: UPDATED: Typical Run-Time Environment Enumeration by a Guest TD

CPUID leaf 0x21 emulation is done by the Intel TDX module. Sub-leaf 0 returns the values shown below. Other sub-
leaves return 0 in EAX/EBX/ECX/EDX.

Table 11.2: TDX Enumeration by CPUID(0x21,0)

GPR | Value (Hex) Description

EAX 0x00000000 Maximum sub-leaf number

EBX | Ox65746E49 “Inte”

ECX | 0x20202020 “ “

EDX | 0x5844546C “1TDX”
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Once the guest software discovers that it runs as a TD, it can use TDG.VP.INFO to get basic information. It can also use
the metadata read functions TDG.SYS.RD*, TDG.VM.RD* and TDG.VP.RD*.

11.3. CPU Mode Restrictions

Intel SDM, Vol. 3, 2.2 Modes of Operation

Intel SDM, Vol. 3, 9.8.5 Initializing IA-32e Mode

Intel SDM, Vol. 3, 11.5.1 Cache Control Registers and Bits

Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

A TD OS running in TDX non-root mode is required to be a 64-bit OS. The Intel TDX module helps enforce this with the
restrictions described below.

Table 11.3: CPU Mode Restrictions in TDX Non-Root Mode

Restriction Description
CPU and Paging In TDX non-root mode, the CPU is allowed to run in the following modes:
Modes e Protected mode (32-bit) with no paging (CRO.PG == 0)

e |A-32e mode with 4-level or 5-level paging (CR0.PG == 1), with the sub-modes
controlled by CS.L:

o 64-bit mode
o Compatibility (32-bit) mode

To achieve this, CRO.PE and IA32_EFER.LME are enforced to 1, as described in the
following sections.

Execute Disable When running in IA-32e mode, the PT Execute Disable bit (63) is always enabled.
To achieve this, IA32_EFER.NXE is enforced to 1, as described in the following sections.

Caching is Always The guest TD runs in Normal Cache Mode.
Enabled To achieve this, CRO.CD and CRO.NW are enforced to 0, as described in the following
sections.

11.4. Instructions Restrictions

The Intel TDX module is designed to block certain instructions from executing in TDX non-root mode. Execution of those
instructions results in a VM exit to the Intel TDX module, which then injects either a #UD or a #VE to the guest TD, as
described in 11.10.

Execution of other instructions may be conditionally blocked, depending on feature enabling, as described in the
following sections.

11.4.1. Instructions that Cause a #UD Unconditionally

e  ENCLS, ENCLV

e Most VMX instructions: [INVEPT, INVVPID, VMCLEAR, VMFUNC, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, VMXON

e RSM

e GETSEC

e SEAMCALL, SEAMRET

11.4.2. Instructions that Cause a #VE Unconditionally

e String I/O (INS*, OUTS*), IN, OUT
e HLT

e MONITOR, MWAIT

e WBINVD, INVD

e VMCALL
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11.4.3. |Instructions that Cause a #UD or #VE Depending on Feature Enabling

e PCONFIG (see 11.15)

11.4.4. Other Cases

e  Guest TD execution of ENQCMD results in a #GP(0).
e  Guest TD execution of ENQCMDS when CPL is O results in a #UD. Otherwise it results in a #GP(0).

11.5. Extended Feature Set

Intel SDM, Vol. 1, 13 Managing State Using the XSAVE Feature Set
Intel SDM, Vol. 3, 13 System Programming for Instruction Set Extensions and Processor Extended State

11.5.1. Allowed Extended Features Control

At the guest TD scope, TDCS.XFAM (Extended Features Allowed Mask) is provided as an input during guest TD build
process. XFAM is a 64b mask, using the state-component bitmap format used by extended state ISA (XSAVE, XRSTOR,
XCRO, IA32_XSS etc.), which specifies the set of extended features the TD is allowed to use.

XFAM is checked to be compliant with the set of extended features supported by the CPU, as enumerated by CPUID and
the allowed bit combinations, as shown in Table 11.4 below.

11.5.2. Extended State Isolation

The Intel TDX module helps assure that any guest TD extended state is saved and isolated from the host VMM across TD
exit and entry. It is the VMM'’s responsibility to save its own extended state across TD entry and exit.

e Before TDH.VP.ENTER, the host VMM should save (e.g., using XSAVES) any extended state that the guest TD VCPU is
allowed to use (per XFAM) and the host VMM expects to need after TDH.VP.ENTER is complete.

e The TDH.VP.ENTER function loads the extended state that the TD VCPU is allowed to use, per XFAM, from the VCPU’s
TDVPS. An exception to this is when TDH.VP.ENTER follows a previous TDG.VP.VMCALL —in the case TDH.VP.ENTER
does not load the XMM state (corresponding to XFAM bit 1) from TDVPS, but passes it directly from the host VMM.

e On an asynchronous TD exit, the Intel TDX module saves the extended state that the TD VCPU was allowed to use,
per XFAM, to the VCPU’s TDVPS. It then clears the extended state.

e OnTDG.VP.VMCALL, the Intel TDX module works similarly, but it selectively does not clear some of the XMM register
state (corresponding to XFAM bit 1). That XMM state is passed directly to the host VMM.

e On completion of TDH.VP.ENTER (following TD exit), the VMM may restore any extended state that it saved before
TDH.VP.ENTER.

11.5.3. Extended Features Execution Control

The Intel TDX module is designed to prohibit the guest TD from using any extended feature not allowed by XFAM. Many
extended state features are controlled by XCRO and IA32_XSS MSR. Other features are controlled by CR4 or by specific
MSRs.

XCRO and On XSETBV, which attempts to write to XCRO, and on WRMSR of IA32_XSS, the TDX module emulates
1A32_XSS MSR the architectural behavior of the CPU. The following cases cause a #GP(0):

e The new value is not natively valid for XCRO or IA32_XSS (it sets reserved bits, sets bits for
features not recognized by the Intel TDX module, or uses illegal bit combinations).

e The new value has any bits set that are not allowed by XFAM.

CR4 On MOV to CR4, the guest TD attempts to set bits not allowed according to XFAM will cause a #GP(0).

Other MSRs The guest TD attempts to write or read certain MSRs that are not enabled according to XFAM can
cause a #GP(0) or a #VE, as described below.
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The following table describes how a guest TD executes each of the extended features.

Table 11.4: Extended Features Enumeration and Execution Control

Bits U/S | Feature Enumeration® XFAM | Description
Value
0 u FP Always available 1 Always enabled
1 u SSE Always available 1 Always enabled
2 u AVX CPUID(0xD,0x0).EAX[2] Oor1l | Execution is directly controlled by XCRO.
CPUID(0x7,0x0).EBX[2]
CPUID(0x7,0x0).ECX[10:9]
CPUID(0x7,0x1).EAX[5]
CPUID(0xD, 0x2).*
4:3 U MPX CPUID(0xD,0x0).EAX[4:3] 00 MPX is being deprecated.
CPUID(0x7,0x0).EBX[14]
CPUID(0xD, 0x3).*
CPUID(0xD, Ox4).*
7:5 U AVX512 CPUID(0xD,0x0).EAX[7:5] 000 or | Execution is directly controlled by XCRO. AVX512
CPUID(0x7,0x0).EBX[31:30, 111 may be enabled only if AVX is enabled —i.e.,
28:26, 21, 17:16] XFAM[7:5] may be set to 111 only when XFAM[2] is
CPUID(0x7,0x0).ECX[14, setto 1.
12:11, 6, 1]
CPUID(0x7,0x0).EDX[8]
CPUID(0x7,0x1).EAX[5]
CPUID(0xD, 0x5).*
CPUID(0xD, 0x6).*
CPUID(0xD, 0x7).*
8 S PT (RTIT) | CPUID(0OxD,0x1).ECX[8] Oor1l Execution is controlled by IA32_RTIT_CTL. If PTis
CPUID(0x7,0x0).EBX[25] enabled by XFAM, the guest TD is allowed access to
* .
CPUID(0x14).* all IA32_RTIT_* MSRs. Otherwise, any access causes
#GP(0).
CPUID(0xD, 0x8).*
9 u PK CPUID(0xD,0x0).EAX[9] Oor1l Execution is controlled by CR4.PKE (bit 22). If PK is
CPUID(0xD, 0x9).* disabled by XFAM, the guest TD is disallowed from
setting CR4.PKE. An attempt to set this bit causes a
#GP(0).
10 S ENQCMD | CPUID(0xD,0x1).ECX[10] 0 Execution is controlled by 1A32_PASID MSR.
(PASID) CPUID(0xD, OxA).* There is no direct I/O from guest TDs. ENQCMD and
ENQCMDS from the guest TD are not supported and
cause a #UD. Access to IA32_PASID causes a #GP(0).
12:11 | S CET CPUID(0xD,0x1).ECX[12:11] | 00 or Execution is controlled by CR4.CET (bit 23). If CET is
11 disabled by XFAM, the guest TD is disallowed from

CPUID(0OxD, OxB).*
CPUID(0xD, 0xC).*

setting CR4.CET. An attempt to set this bit causes a
#GP(0).

6 An extended feature controlled by bits N:M is available if all bits in the range N:M returned by CPUID are set to 1.
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Bits U/S | Feature Enumeration® XFAM | Description
Value
13 S HDC CPUID(0xD,0x1).ECX[13] 0 Hardware Duty Cycle is controlled by package-scope
CPUID(0OxD, OxD).* IA32_PKG_HDC_CTL and LP-scope IA32_PM_CTL1
MSRs.
HDC is disabled. Any guest TD access to the above
MSRs causes a #VE.
14 S uLl CPUID(0xD,0x1).ECX[14] Oor1l Execution is controlled by CR4.UINT (bit 25). If ULl is
CPUID(0x7,0x0).EDX[5] disabled by XFAM, then:
CPUID(0xD, OXE).* e The guest TD is disallowed from setting CR4.ULI.
An attempt to set this bit causes a #GP(0).
e The guest TD is disallowed access to all
IA32_UINT_* MSRs. Any access causes a #GP(0).
15 S LBR CPUID(0xD,0x1).ECX[15] Oorl Execution is controlled by IA32_LBR_CTL. If LBR is
CPUID(0x7,0x0).EDX[19] disabled by XFAM, the guest TD is disallowed access
*
CPUID(OXD, OxF).* to all IA32_LBR_* MSRs. Any access causes a #GP(0).
CPUID(0x1C).*
16 S HWP CPUID(0xD,0x1).ECX[16] 0 Execution of Hardware-Controlled Performance State
CPU|D(0XD, 0X10)* is controlled by |A32_HWP MSRs.
This feature is disabled. Access to any of the above
MSRs causes a #VE.
18:17 | U AMX CPUID(0xD,0x0).EAX[18:17] | 00 or Advanced Matrix Extensions (AMX) is directly
CPU|D(0XD, 0X11)* 11 controlled by XCRO.
CPUID(0xD, 0x12).*
11.6. UPDATED: CR Handling
11.6.1. CRO
Intel SDM, Vol. 3, 2.5 Control Registers
5 Intel SDM, Vol. 3, 23.8 Restrictions on VMX Operation
Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4
Intel SDM, Vol. 3, 25.6 Unrestricted Guests
31 3025 28 1918 17 16 15 654 3210
PIC|N A W NIE|T[(E|M|P
G|D (W M| [P elTls|m|ple| CRO
Figure 11.2: CRO
10 From the guest TD’s point of view, as virtualized by the Intel TDX module, CRO bits PE (0) and NE (5) are always set to 1,

15

and bits NW (29) and CD (30) are always cleared to 0.

Guest TD writes to CRO are handled by the Intel TDX module as follows:

Writes to CRO that are architecturally illegal (such as attempts to set bits that must be 0), or writes to CRO that set
architecturally illegal bit combinations, result in a #GP(0).
Writes to CRO that are architecturally illegal, but not permitted by the TDX architecture (such as clearing CR0.CD)
result in a #VE.
Other writes are allowed.

For TD migration, the same rules are used for checking the imported value of guest CRO. Any violation results in a failed
import.
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11.6.2. UPDATED: CR4
Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

If a CPU feature is not enabled for the guest TD, the guest TD’s attempt to set the corresponding CR4 bit can result in a
#GP(0):

1. Depending on the TD’s XFAM, guest TD modification of CR4 bits PKE (22), CET (23) and UINT (25) is prevented. Any
guest TD attempt to change those bits results in a #GP(0).

2. Ifthe TD’s ATTRIBUTES.KL is 0, guest TD attempts to set bit KL (19) results in a #GP(0).

3. Ifthe TD’s ATTRIBUTES.PKS is 0, guest TD attempts to set bit PKS (24) results in a #GP(0). See 11.14 below.

4. Ifthe TD’s ATTRIBUTES.PERFMON is 0, guest TD attempts to set bit PCE (8) results in a #GP(0). See 15.2.

In addition, any guest TD attempts to modify any of the architecturally reserved CR4 bits, or to set architectural-illegal bit
combinations, can result in a #GP(0).

From the guest TD’s point of view, the following bits are virtualized as fixed by Intel TDX module. Guest TD attempts to
modify their values result in a #VE:

e  CR4 bit MCE (6) is fixed to 1.
e  CRA4 bits VMXE (13) and SMXE (14) are fixed to 0.

For TD migration, the same rules are used for checking the imported value of guest CR4. Any violation results in a failed

import.

11.7. MSR Handling

11.7.1. Overview

From the guest TD’s point of view, as virtualized by the Intel TDX module, MSRs are divided into the following categories:

e MSRs that are context-switched on TD entry and exit — guest TD access to such MSRs may be full, partial or none
e MSRs that are not context-switched, but guest TD access is read-only
e MSRs that are not context-switched, and are inaccessible to the guest TD

MSR behavior can be either fixed or dependent on the TD configuration via the XFAM, ATTRIBUTES and CPUID
configuration parameters. The host VMM has no direct interface to configure specific MSR behavior (e.g., it cannot set
a specific MSR to TD exit on write). Instead, guest TD access violations to MSRs can cause a #GP(0) in most cases where
the MSR is enumerated as inaccessible by the Intel TDX module via CPUID virtualization. In other cases, guest TD access
violations to MSRs can cause a #VE. A guest TD that wishes to access an MSR that is not allowed by the Intel TDX module
should do so via explicit requests from the host VMM using TDCALL(TDG.VP.VMCALL).

A detailed list of MSR virtualization is provided in the [TDX Module ABI].

11.8. UPDATED: CPUID Virtualization

11.8.1. UPDATED: CPUID Configuration by the Host VMM

For some CPUID leaves and sub-leaves, the virtualized bit fields of CPUID return values (in guest EAX/EBX/ECX/EDX) are
configurable by the host VMM. For such cases, the Intel TDX module architecture defines two virtualization types:

Table 11.5: Host VMM Configurable CPUID Field Virtualization

CPUID Field Description Comments
Virtualization

As Bit fields for which the host VMM

Configured configures the value seen by the guest TD.

Configuration is done on TDH.MNG.INIT.
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CPUID Field Description Comments

Virtualization

As Bit fields for which the host VMM If a CPUID bit enumerates a CPU feature, and the

Configured (if | configures the value such that the guest feature is natively supported, then the feature can

Native) TD either sees their native value or a either be allowed by the host VMM, or it will be
value of 0. Configuration is done on effectively deprecated for the guest TD.
TDH.MNG.INIT.

The above CPUID fields can be specified by the host VMM at guest TD initialization time TDH.MNG.INIT using the
TD_PARAMS input structure of TDH.MNG.INIT. TDH.MNG.INIT and its input TD_PARAMS structure are described in the
[TDX Module ABI]. Configuration is further classified as follows:

Table 11.6: CPUID Configuration by the TD_PARAMS Input of TDH.MNG.INIT

TD_PARAMS Description Notes

Section

CPUID_CONFIG Bit fields configurable directly based on a configuration Some bit fields are
table configurable by both

CPUID_CONFIG and XFAM.

XFAM Bit fields configurable based on the guest TD’s XFAM See the discussion below.

XFAM control of extended features virtualization is
described in 11.5.

ATTRIBUTES Bit fields configurable based on the guest TD’s ATTRIBUTES
Other Bits fields configurable based on some other field of
TD_PARAMS

Some CPUID bit fields are configurable based on both XFAM and CPUID_CONFIG sections of TD_PARAMS. This is intended
to support fine-grained virtualization of sub-features of extended features. E.g., it allows the host VMM to virtualize
some AVX512 as available, but to virtualize some AVX512 instructions as unavailable. This is useful for TD migration, as
it allows the host VMM to configure a common subset of supported sub-features.

A detailed list of CPUID virtualization is provided in the [TDX Module ABI]. For any valid CPUID leaf / sub-leaf combination
that is not listed, the Intel TDX module injects a #VE.

The host VMM should always consult the list of directly configurable CPUID leaves and sub-leaves, as enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO, described in 4.1.3.3.

11.8.2. Guest TD Control of CPUID Virtualization

11.8.2.1. Unconditional #VE for all CPUID Leaves and Sub-Leaves

The guest TD may toggle on or off the unconditional injection of #VE on all CPUID leaves and sub-leaves, per VCPU. That
can be done in supervisor mode (CPL == 0) and/or user mode (CPL > 0). For example, this enables the TD OS to control
CPUID as seen by drivers or by user-level code.

The guest TD may do this by writing to the VCPU-scope metadata fields CPUID_SUPERVISOR_VE and CPUID_USER_VE
using TDG.VP.WR.

For backward compatibility, the guest TD may use TDG.VP.CPUIDVE.SET, described in the [TDX Module ABI].

11.8.2.2. NEW: Leaf/Sub-leaf Specific Control
A finer grained control is provided per CPUID leaf and sub-leaf that is virtualized by the TDX module. The guest TD may
configure the following, per VCPU:

e  H#VE injection instead of the normal CPUID virtualization is the guest executed CPUID in supervisor mode (CPL == 0).
e #VE injection instead of the normal CPUID virtualization is the guest executed CPUID in user mode (CPL > 0).

The guest TD may do this by writing to the VCPU-scope metadata field array CPUID_CONTROL using TDG.VP.WR.
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11.8.3. NEW: CPUID configuration & Checks at Guest TD Migration
The CPUID virtualization configuration stored in TDCS is exported by TDH.EXPORT.STATE.IMMUTABLE and checked on
import to the destination TD by TDH.IMPORT.STATE.IMMUTABLE to be compatible with the destination platform.

CPUID fields that are virtualized as fixed values (defined as “FIXED”), are based on some calculation (defined as
“ASSIGNED”) or that their value depends on the underlying CPU capabilities (defined as “ALLOWED” or “DIRECT”) must
retain the same value across migration.

CPUID fields that are virtualized as pass-through (defined as “NATIVE”) are considered fixed once exported and are
checked for compatibility on import.

11.9. Interrupt Handling and APIC Virtualization

Intel SDM, Vol. 3, 24.6.8 Controls for APIC Virtualization
Intel SDM, Vol. 3, 29 APIC Virtualization and Virtual Interrupts

11.9.1. Virtual APIC Mode

e  Guest TDs must use virtualized x2APIC mode. xAPIC mode (using memory mapped APIC access) is not allowed.
e  Guest TD attempts to RDMSR or WRMSR the IA32_APIC_BASE MSR cause a #VE to the guest TD. The guest TD cannot
disable the APIC.

11.9.2. Virtual APIC Access by Guest TD
Intel SDM, Vol. 3, 29.5 Virtualizing MSR-Based APIC Access
Guest TDs are allowed access to a subset of the virtual APIC registers, which are virtualized by the CPU as described in

[Intel SDM, Vol. 3, 29.5]. Access to other registers can cause a #VE. The guest TD is expected to use a software protocol
over TDG.VP.VMCALL to request such operations from the host VMM.

DATA/ADDR
A
#VE Version Register = EOI Register
Current Count VAPIC Access
Register
> Processor Priority
el Coun -
#HVE 3 ! egister INTA From
Register cpU
Divide Configuration Y fER Cote
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e Timer
ool In-Service Register (ISR)
LINTO/1 — > D |
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Figure 11.3: Virtual APIC Access by Guest TD
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Table 11.7: x2APIC MSRs Access

MSR Range MSR Name(s) Description Operation

0x802 IA32_X2APIC_APICID APIC ID HVE

0x803 IA32_X2APIC_VERSION APIC version HVE

0x80D IA32_X2APIC_LDR Local destination H#VE
register

O0x80F IA32_X2APIC_SIVR Spurious interrupt vector | #VE

0x828 IA32_X2APIC_ESR Error status #VE

0x830 IA32_X2APIC_ICR Interrupt command #VE

Ox82F, 0x837-0x832, 0x83A IA32_X2APIC_LVT_* Local vector table #VE
registers

0x838, 0x839, Ox83E IA32_X2APIC_*_COUNT, | APIC timer registers HVE

IA32_X2APIC_DCR
0x801-0x800, 0x807-0x804, Reserved #GP(0)

0x82E-0x829, 0x831, Ox8FF-0x840

Other MSR in the range Ox8FF-
0x800

Access to VAPIC page (see
[Intel SDM, Vol. 3, 29.5])

11.9.3. UPDATED: Posted Interrupts

Intel SDM, Vol. 3, 29.6

Posted-Interrupt Processing

Non-NMl interrupt injection into the guest TD by the host VMM or the IOMMU can be done through the posted-interrupt
mechanism. If there are pending interrupts in the posted-interrupt descriptor (PID), the VMM can post a self IPI with the

notify vector prior to TD entry.

e The posted-interrupt descriptor (PID) resides in a shared page, directly accessible by the host VMM. The VMM must
set the TD VMCS'’s “posted-interrupt descriptor address” control (using the TDH.VP.WR function) to the PA and
shared HKID of the posted-interrupt descriptor.

e The host VMM must set the TD VMCS’s “posted-interrupt notification vector” control using the TDH.VP.WR function.

e To post pending interrupts in the PID, the host VMM can generate a self IPl with the notification vector prior to TD

entry.

When a posted-interrupt notification vector is recognized in TDX non-root mode, the CPU processes the posted-interrupt
descriptor as described in the [Intel SDM].

If needed, the guest TD may use a software protocol over TDCALL(TDG.VP.VMCALL) to ask the VMM to stop interrupt

delivery through the PID.

The TD VMCS posted interrupt execution controls are reset to their initial values when the TD is migrated. The host VMM
on the destination platform must set them in order to use posted interrupts.
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Posted interrupt
vector PV handling

Interrupt
Guest TD @ A Handler
i Notification VM entry
Interrupt (RFLAGS.IF = 1)
: vector NV
Intel
TDX H
Module : A

Figure 11.4: Typical Sequence for Posted Interrupt Injection to the Current LP

11.9.4. Pending Virtual Interrupt Delivery Indication

The host VMM can detect whether there is a pending virtual interrupt delivery to a VCPU, using TDH.VP.RD to read the
VCPU_STATE_DETAILS TDVPS field.

The typical use case is when the guest TD VCPU indicates to the host VMM, using TDG.VP.VMCALL, that it has no work to
do and can be halted. The guest TD is expected to pass an “interrupt blocked” flag. The guest TD is expected to set this
flag to 0 if and only if RFLAGS.IF is 1 or the TDCALL instruction that invokes TDG.VP.VMCALL immediately follows an STI
instruction. If the “interrupt blocked” flag is 0, the host VMM can determine whether to re-schedule the guest TD VCPU
based on VCPU_STATE_DETAILS.

For further details, see the TDVPS definition in the [TDX Module ABI].

11.9.5. Cross-TD-VCPU IPI

To perform a cross-VCPU IPI, the guest TD ILP should request an operation from the host VMM using TDG.VP.VMCALL.
The VMM can then inject an interrupt into the guest TD’s RLPs using the posted interrupt mechanism, as described in
11.9.3 above. This is an untrusted operation; thus, the TD needs to track its completion.

11.9.6. Virtual NMI Injection

The host VMM can request the Intel TDX module to inject an NMI into a guest TD VCPU using the TDH.VP.WR function,
by setting the PEND_NMI TDVPS field to 1. This can be done only when the VCPU is not active (a VCPU can be associated
with at most one LP). Following that, the host VMM can call TDH.VP.ENTER to run the VCPU; the Intel TDX module will
attempt to inject the NMI as soon as possible.

The host VMM can use TDH.VP.RD to read PEND_NMI and get the status of NMI injection. A value of O indicates that
NMI has been injected into the guest TD VCPU. The host VMM also may choose to clear PEND_NMI before it is injected.

11.10. Virtualization Exception (#VE)

Intel SDM, Vol. 3, 24.9.4 Information for VM Exits Due to Instruction Execution
Intel SDM, Vol. 3, 25.5.6 Virtualization Exceptions
Intel SDM, Vol. 3, 27.2.5 Information for VM Exits Due to Instruction Execution

The Intel TDX module extends the VMX architectural usage of #VE to para-virtualize memory address translation. It
injects #VE into the guest TD in multiple cases where an operation is not allowed by TDX, but an architectural exception
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is not applicable (e.g., #GP(0)). Such cases include disallowed instruction executions, disallowed MSR accesses, many
CPUID leaves, etc.

The intended usage is for the TDX-enlightened guest TD OS to have a #VE handler. By analyzing the #VE information, the
handler would be able to virtualize the requested operation for non-enlightened parts of the guest TD — e.g. drivers and

5 applications.
11.10.1. Virtualization Exception Information
The virtualization-exception information area (VE_INFO) is maintained as part of TDVPS. It is not intended to be directly
accessible to the guest TD. Instead, the information can be retrieved using the TDG.VP.VEINFO.GET function (see the
[TDX Module ABI]). This is a simple way to help assure the availability and privacy of this area.
10 Table 11.8: Virtualization Exception Information Area (VE_INFO), based on [Intel SDM, Vol. 3, Table 24-1]
Section Field Offset | Size Description
(Bytes) | (Bytes)

Architectural | EXIT_REASON 0 4 The value that would have been saved into the VMCS as an exit
reason if a VM exit had occurred instead of the virtualization
exception.

VALID 4 4 0 indicates that VE_INFO has no valid contents.

The CPU and the Intel TDX module will not update VE_INFO if
VALID is not 0.

After updating VE_INFO, the CPU and the Intel TDX module write
OxFFFFFFFF to the VALID field.

EXIT_ 8 8 The value that would have been saved into the VMCS as an exit

QUALIFICATION qualification if a VM exit had occurred instead of the
virtualization exception.

GLA 16 8 The value that would have been saved into the VMCS as a guest-
linear address if a VM exit had occurred instead of the
virtualization exception.

GPA 24 8 The value that would have been saved into the VMCS as a guest-
physical address if a VM exit had occurred instead of the
virtualization exception.

EPTP_INDEX 32 2 The current value of the EPTP index VM-execution control

Non- INSTRUCTION_ Non- 4 The 32-bit value that would have been saved into the VMCS as

Architectural | LENGTH arch. VM-exit instruction length if a legacy VM exit had occurred
instead of the virtualization exception.

INSTRUCTION_ Non- 4 The 32-bit value that would have been saved into the VMCS as

INFORMATION arch. VM-exit instruction information if a legacy VM exit had occurred
instead of the virtualization exception.

15

20

The architectural section format for VE_INFO is as defined in the [Intel SDM], and it is used directly by the CPU when it
injects a #VE (see 11.10.2 below). VE_INFO can also be used for #VE injected by the Intel TDX module. Some VE_INFO
fields are applicable only for some exit reasons.

VE_INFO.VALID is initialized to 0, and it is set to OXFFFFFFFF when a #VE is injected to the guest TD. When handling a
HVE, the guest TD retrieves the #VE information using the TDG.VP.VEINFO.GET function (see the [TDX Module ABI]).
TDG.VP.VEINFO.GET checks that VE_INFO.VALID is OxFFFFFFFF. After reading the information, it sets VE_INFO.VALID to
0.

11.10.2. #VE Injection by the CPU due to EPT Violations

#VE is enabled unconditionally for TDX non-root operation. The Intel TDX module sets the TD VMCS EPT-violation #VE
VM-execution control to 1.
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For shared memory accesses (i.e., when GPA.SHARED == 1), as with legacy VMX, the VMM can choose which pages are
eligible for #VE mutation based on the value of the Shared EPTE bit 63.

For private memory accesses (GPA.SHARED == 0), an EPT Violation causes a TD Exit in most cases, except when the Secure
EPT entry state is PENDING (an exception to this is described in 11.11.1 below). The Intel TDX module sets the Secure
EPT entry’s Suppress VE bit (63) to 0 if the entry’s state is PENDING. It sets that bit to 1 for all other entry states.

11.10.3. #VE Injected by the Intel TDX Module

#VE may be injected by the Intel TDX module in several cases:

e Emulation of the architectural #VE injection on EPT violation, done by a guest-side Intel TDX module flow that
performs an EPT walk.

e As aresult of guest TD execution of a disallowed instruction (see 11.4 above), a disallowed MSR access (see 11.7
above), or CPUID virtualization (see 11.8 above).

e A notification to the guest TD about anomalous behavior (e.g., too many EPT violations reported on the same TD
VCPU instruction without making progress). This kind of #VE is raised only if the guest TD enabled the specific
notification (using TDG.VM.WR to write the TDCS.NOTIFY_ENABLES field) and when a #VE can be injected. See 17.3
for details.

If, when attempting to inject a #VE, the Intel TDX module discovers that the guest TD has not yet retrieved the information
for a previous #VE (i.e., VE_INFO.VALID is not 0), the TDX module injects a #DF into the guest TD to indicate a #VE overrun.

11.11. Secure and Shared Extended Page Tables (EPTs)

EPT is enabled in TDX non-root mode. TDX non-root mode uses two EPTs: Secure EPT, and Shared EPT.

EPT level is the same for both Secure and Shared EPT. If the guest TD’s GPA width is greater than 48 bits (TDCS.GPAW is
1), then 5-level EPT trees are used. Otherwise, 4-level EPT trees can be used.

For further Secure EPT details, refer to Chapter 9.

EPT violations and misconfigurations generally cause a TD Exit, except for the cases described below.

11.11.1. GPAW-Relate EPT Violations

GPA bits higher than the SHARED bit are considered reserved and must be 0. Address translation with any of the reserved
bits set to 1 cause a #PF with PFEC (Page Fault Error Code) RSVD bit set.

11.11.2. EPT Violation Mutated into #VE

An EPT violation is converted into #VE in the following cases:

e  For Secure EPT, if the EPT entry state is PENDING.
e  For Shared EPT, if the EPT entry has been configured by host VMM deliver EPT violations to the guest TD as #VE
exceptions for usages such as MMIO, as described in 11.10 above.

11.12. Prevention of TD-Induced Denial of Service

VMs, including TDs, can exploit Intel ISA characteristics to cause performance and functional Denial of Service (DOS) to
the VMM. The Intel architecture has several mechanisms that help prevent such DOS cases. This section describes how
those mechanisms are used in the context of TDX.

11.12.1. Bus Lock Detection by the TD OS

The guest TD OS can enable debug exception traps due to bus locks by setting 1A32_DEBUGCTL.BUS_LOCK_DETECT bit
(2), which is disabled by default. When enabled, the feature works identically to how it functions in legacy VMX non-root
mode or in non-VMX mode. The IA32_DEBUGCTL MSR and DR6 are part of the state that is saved and restored on VM
exit and VM entry, respectively. If the delivery of #DB was pre-empted by a trap-like VM exit, then the pending debug
exceptions (including due to BUS_LOCK_DETECT if pending) are saved in TD VMCS and restored on subsequent VM Entry.
For fault-like VM Exit due to conditions such as EPT violation and EPT misconfiguration that are encountered during
execution of an instruction, there is no pending debug exception recorded, including the bus lock debug exception.
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11.12.2. Impact of MSR_TEST_CTRL (MSR 0x33)

The host VMM can set bits in MSR_TEST_CTRL (MSR 0x33) to cause exceptions in VMs (including TDs) in case of bus locks:

e  Bit 28 (UC_LOCK_DISABLE): If set to 1, a UC load lock will trigger a #GP(0) fault.
e  Bit 29 (SPLIT_LOCK_DISABLE): If set to 1, a split lock will trigger an #AC fault.

MSR 0x33 is not virtualizable; it is a core-scope MSR and may be modified by the host VMM on one SMT thread while
another SMT thread is running a TD VCPU. The TDX module does not allow a guest TD to access this MSR (a #VE is
generated).

To avoid any security issues, a correctly written TD OS should always be ready to handle #AC and #GP(0) faults if the TD
software might cause UC locks or split locks.

11.12.3. Bus Lock TD Exit

Bus lock TD exit is disabled by default. The host VMM can enable the TD VMCS “bus-lock detection” VM execution control
using the TDH.VP.WR function. If enabled, the processor generates a bus lock VM exit (exit reason 74) following execution
of an instruction (or an iteration of a REP prefixed instruction) if the processor detects that one or more bus locks were
caused by the instruction that was executed. The Intel TDX module then completes a TD exit.

e Ifaninstruction (or an iteration of a REP prefixed string instruction) that successfully caused a bus lock subsequently
faults, then a bus lock VM exit (exit reason 74) occurs on the instruction boundary following delivery of the fault
(including any nested faults).

o If delivery of bus lock VM exit was pre-empted by a higher priority VM exit (e.g., EPT Misconfiguration, EPT Violation,
etc.), then a “bus lock detected” notification bit (bit 26) is set in the exit reason to indicate that one or more bus
locks were successfully acquired prior to this VM Exit. The Intel TDX module reflects this to the host VMM on TD
exit.

e If the delivery of bus lock VM exit was pre-empted by an EPT Violation and that EPT Violation was mutated into a
HVE, then the bus lock VM exit is pending at the EOM of the delivery of the #VE.

11.12.4. Notification TD Exit

Notification TD exit is disabled by default. The host VMM can write the TD VCMS “notify window” and “notification
exiting” execution controls using the TDH.VP.WR function. If enabled and configured, then if the processor detects a no-
commit case, the processor causes a notification VM exit (exit reason 75) which the Intel TDX module converts to the TD
exit.

The conditions that cause a notification TD exit are the same as those in legacy VMX non-root mode. An example of such
a case is the nested #AC exception. If an #AC exception occurs during the delivery of a previous #AC exception, then the
CPU may get into an endless loop of #AC without responding to external events.

Bit 0 (VM context invalid) of the exit qualification indicates whether the guest TD context is corrupted and not valid in
the TD VMCS. If this bit is set to 1, then it is a non-recoverable situation; thus, the Intel TDX module marks the TD as
disabled to help prevent further TD entry. If no TD context corruption occurred (exit qualification bit O is cleared to 0),
then the TD may be resumed normally.

11.13. Time Stamp Counter (TSC)

Intel SDM, Vol. 3, 10.5.4.1 TSC-Deadline Mode
Intel SDM, Vol. 3, 24.6.5 Time-Stamp Counter Offset and Multiplier
Intel SDM, Vol. 3, 25.3 Changes to Instruction Behavior in VMX Non-Root Operation

11.13.1. TSC Virtualization

For virtual time stamp counter (TSC) values read by guest TDs, the Intel TDX module is designed to achieve the following:

e  Virtual TSC values are consistent among all the TD’s VCPUs at the level supported by the CPU, see below.
e The virtual TSC value for any single VCPU is monotonously incrementing (except roll over from 2%-1 to 0).
e The virtual TSC frequency is determined by TD configuration.

The host VMM is required to do the following:
e Set up the same IA32_TSC_ADJUST values on all LPs before initializing the Intel TDX module.
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e  Make sure IA32_TSC_ADJUST is not modified from its initial value before calling SEAMCALL.
The Intel TDX module checks the above as part of TDH.VP.ENTER and any other SEAMCALL leaf function that reads TSC.
The virtualized TSC is designed to have the following characteristics:

e The virtual TSC frequency is specified by the host VMM as an input to TDH.MNG.INIT in units of 25MHz — it can be
between 4 and 400 (corresponding to a range of 100MHz to 10GHz).

e  The virtual TSC starts counting from 0 at TDH.MNG.INIT time.

e  TSC parameters are enumerated to the guest TD by CPUID(0x15).

e  Guest TDs are not allowed to modify the TSC. WRMSR attempts of IA32_TIME_STAMP_COUNTER result in a #VE.

e Guest TDs are not allowed to access IA32_TSC_ADJUST because its value is meaningless to them. WRMSR or RDMSR
attempts result in a #VE.

e RDTSCP is supported. This instruction returns the contents of the IA32_TSC_AUX MSR in RCX. the Intel TDX module
allows the guest TD to access that MSR and context-switches it on TD entry and exit as part of the VCPU state in
TDVPS.

e  Guest TDs are not allowed to access IA32_TSC_DEADLINE. WRMSR or RDMSR attempts result in a #VE.

11.14. Supervisor Protection Keys (PKS)

By design, guest TD usage of Supervisor Protection Keys (PKS) is controlled by the ATTRIBUTES.PKS bit (see the [TDX
Module ABI]). When PKS is supported by the CPU and ATTRIBUTES.PKS is set to 1, the following features are available to
the guest TD:

e CPUID virtualization enumerates PKS availability to the guest TD.
e  Guest TDs may enable PKS by setting CR4.PKS flag.
e  Guest TDs may access the PKS state using the IA32_PKRS MSR.

11.15. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption
(MKTME)

Guest TDs may not directly use the Intel TME and MKTME MSRs and the PCONFIG instruction. The Intel TDX module
supports para-virtualization of this ISA, as described below.

11.15.1. TME Virtualization

TME is enumerated by CPUID(0x7, 0x0).ECX[13]. The host VMM can configure the virtualization of this bit as enabled or
disabled on TDH.MNG.INIT. If enabled, then a guest TD access to the IA32_TME_* MSRs (0x981 — 0x984) causes a HVE,
allowing the guest TD’s #VE handler to emulate the desired operation. Else, guest TD access to those MSRs causes a
#GP(0).

11.15.2. MKTME Virtualization
MKTME is enumerated by CPUID(0x7, 0x0).EDX[18]. The host VMM can configure the virtualization of this bit as enabled

or disabled on TDH.MNG.INIT. If enabled, then the following operations cause a #VE (e.g., the guest TD #VE handler can
then communicate with the host VMM over TDG.VP.VMCALL to request the desired operation):

e  Guest TD access to the IA32_ MKTME_PARTITIONING MSR (0x87)
e  PCONFIG execution by the guest TD

If the host VMM configured CPUID(0x7, 0x0).EDX[18] virtualized value as 0, then:

e  Guest TD access to the IA32_ MKTME_PARTITIONING MSR (0x87) causes a #GP(0).
e  PCONFIG execution by the guest TD causes a #UD.

11.16. Other Changes in TDX Non-Root Mode

11.16.1. Tasking

Any task switch results in a VM exit to the Intel TDX module (this is a fixed-1 exit) which then performs a TD exit to the
host VMM.
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The VMM is expected not to reenter the TD VCPU since this case is non-recoverable; the instruction that caused the task
switch (CALL, JMP or IRET) will re-execute and cause another VM exit. If the task switch was incidental to an exception
delivery, then the VM entry following TDH.VP.ENTER will reattempt the delivery and cause another task switch VM exit.
The expected response from the VMM is to terminate this TD.

11.16.2. PAUSE-Loop Exiting
Intel SDM, Vol. 3, 25.1.3 Instructions That Cause VM Exits Conditionally

The host VMM can only set the guest TD’s “PAUSE-loop exiting” VM-execution control if the guest TD runs in debug mode
(ATTRIBUTES.DEBUG is 1).

“PAUSE-loop exiting” allows the VMM to request an exit if the guest (in ring 0) executes PAUSE in a loop (e.g., busy-wait).
This is intended to help avoid cases where a guest thread loops, waiting for another thread that is not currently scheduled
by the VMM. However, modern enlightened guests use a VMM -provided service (hypercall) instead of PAUSE loops —
this is the expected usage for Intel TDX.
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12.Measurement and Attestation

12.1. TD Measurement

TDs have two types of measurement registers:
e MRTD helps provide static measurement of the TD build process and the initial contents of the TD.

e RTMRis an array of general-purpose measurement registers made available to the TD software to enable measuring
additional logic and data loaded into the TD at run-time.

All TD measurements are reflected in TD attestations.

12.1.1. MRTD: Build-Time Measurement Register

The Intel TDX module measures the TD during the build process. The measurement register TDCS.MRTD is a SHA384
digest of the build process, designed as follows:

e TDH.MNG.INIT begins the process by initializing the digest.

e TDH.MEM.PAGE.ADD adds a TD private page to the TD and inserts its properties (GPA) into the MRTD digest
calculation.

e  Control structure pages (TDR, TDCX and TDVPR) and Secure EPT pages are not measured.

e For pages whose data contribute to the TD, that data should be included in the TD measurement via
TDH.MR.EXTEND. TDH.MR.EXTEND inserts the data contained in those pages and its GPA, in 256-byte chunks, into
the digest calculation. If a page will be wiped and initialized by TD code, the loader may opt not to measure the
initial contents of the page with TDH.MR.EXTEND.

e The measurement is then completed by TDH.MR.FINALIZE. Once completed, further TDH.MEM.PAGE.ADDs or
TDEXTENDs will fail.

MRTD extension by GPA uses a 128B buffer which includes the GPA and the leaf function name for uniqueness.

12.1.2. RTMR: Run-Time Measurement Registers

The RTMR array is initialized to zero on build, and it can be extended at run-time by the guest TD using the
TDCALL(TDG.MR.RTMR.EXTEND) leaf. The syntax of the RTMR registers is designed to be similar to that of TPM PCRs,
where a register’s value after TDG.MR.RTMR.EXTEND(index=i, value=x) is:

RTMR[i] = SHA384(RTMR[i] || x);
Four RTMR registers are provided.

Typical expected usage is for TPM emulation during guest TD OS secure boot by the VBIOS.

12.2. UPDATED: TD Measurement Reporting

TD attestation is initiated from inside the TD by calling TDG.MR.REPORT and specifying a REPORTDATA value.
TDG.MR.REPORT creates a TDREPORT_STRUCT structure containing the TD measurements, initial configuration of the TD
that was locked at finalization (TDH.MR.FINALIZE), the Intel TDX module measurements, and the REPORTDATA value.
TDREPORT_STRUCT structure and TDG.MR.REPORT are detailed in the [TDX Module ABI].

TDREPORT_STRUCT is HMAC ed using an HMAC key that is designed to be accessible only to the CPU. This helps protect
the integrity of the structure and, by design, can only be verified on the local platform via the SGX
ENCLU(EVERIFYREPORT?2) instruction. By design, TDREPORT_STRUCT cannot be verified off platform; it first must be
converted into signed Quotes, as described in 12.3 below.
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TDREPORT_STRUCT
TEE_TCB_INFO REPORTMACSTRUCT

MRSEAM TYPE = TDX
MRSEAMSIGNER CPUSVN
SHA384
TEE_TCB_SVNs —{ TEE_TCB_INFO_HASH
ATTRIBUTES TD_INFO_HASH
REPORTDATA
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TDINFO_STRUCT

ATTRIBUTES Quote
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MRCONFIGID » TEE_TCB_INFO_HASH

MROWNER » TD_INFO_HASH
SHA384
RTMRO REPORTDATA

RTMR1 SIGNATURE

RTMR2
RTMR3
SERVTD_HASH

Figure 12.1: UPDATED: TD Measurement Reporting
12.3. TD Measurement Quoting

To create a remotely verifiable attestation, the TDREPORT_STRUCT should be converted into a Quote signed by a certified
Quote signing key.

12.3.1. Intel SGX-Based Attestation

The Intel SGX attestation architecture is designed to provide facilities for multiple Quoting Enclaves from multiple
providers. This is intended to allow the host to instantiate a Quoting Enclave for Intel SGX attestations and another
Quoting Enclave for TD attestation without interference — i.e., each provider can supply its own quoting enclave, and
the quoting enclave for Intel SGX and for Intel TDX may be separate; the design does not require the quoting enclave to
run inside the TD.
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Figure 12.2: High-Level View of the Intel SGX-Based TD Attestation
Quote generation using a quoting enclave is typically performed as follows:

1. Guest TD invokes the TDCALL(TDG.MR.REPORT) function.

2. The Intel TDX module uses the SEAMREPORT instruction to create MAC’'ed TDREPORT_STRUCT with the Intel TDX

module measurements from CPU and TD measurements from TDCS.

Guest TD uses TDCALL(TDG.VP.VMCALL) to request that TDREPORT_STRUCT be converted into Quote.

4. The TD Quoting enclave uses EVERIFYREPORT2 to check the TDREPORT_STRUCT. This allows the Quoting Enclave to
check the report without requiring direct access to the CPU’s HMAC key. Once the integrity of the
TDREPORT_STRUCT has been verified, the TD Quoting Enclave signs the TDREPORT_STRUCT body with an ECDSA 384
signing key.

w

12.4. Quote Signing Key

The Intel SGX infrastructure provides primitives and a certificate infrastructure to allow Quoting Enclaves to certify their
own Quoting Keys. The Intel SGX Provisioning Certification Enclave (PCE) uses an Intel-Certified ECDSA-256 signing key
to issue certificates to Quoting Enclaves for their attestation keys. Intel offers a service to allow third parties to download
these certificates.

Typically, on first launch, the TD Quoting Enclave generates a random ECDSA 384-bit quoting key. It then contacts the
Provisioning Certification Enclave which uses its signing key to sign the new quoting key’s public key.

Note that the TD Quoting Enclave uses an ECDSA 384 bit key, while the PCE certifies it with an ECDSA-256 key. This is
due to limitations of the SPR platform.

12.5. TCB Recovery

The Intel TDX architecture has several levels of TCB:

e CPUHW level, which includes microcode patch, ACMs and PFAT
e Intel TDX module software
e  Attestation Enclaves which include the TD Quoting Enclave and Provisioning Certification Enclave
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The TCB Recovery story is different for each level. The existing SGX TCB Recovery model for CPU level items applies in
the same way with TDX and SGX. The model requires a restart of the platform to take effect. The Intel TDX module can
be unloaded and reloaded to reflect an upgraded Intel TDX module. The enclaves can be upgraded at run-time, but if the
PCE is upgraded, the design requires a new certificate to be downloaded.
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13.New: Service TDs

13.1. Overview

One or more service TDs may be bound to a target TD. Service TD binding relationship has the following characteristics:

e Aservice TD has a type (SERVTD_TYPE).
e A service TD may read and/or write certain target TD metadata. Access permission to target TD metadata fields
depends on SERVTD_TYPE.
e Unsolicited service TD binding is done without target TD approval. The target TD needs not be aware of the binding.
e Thetarget TD’s TDREPORT indicates binding to service TDs.
e The service TD protocol consists of:
o Binding
o Metadata access
e  Service TD to target TD binding relationship is many-to-many
o Multiple service TDs of different types may be bound to a single target TD.
o Multiple target TDs may be bound to a single service TD.
e Aservice TD may itself be a target TD to other service TDs.

Typical Unsolicited Service TD Binding and Metadata Access Use Case

1. Optional Pre-Binding: During target TD build, before calling TDH.MR.FINALIZE, the host VMM calls
TDH.SERVTD.PREBIND to write the binding fields (SERVTD_HASH etc.) in the target TD’s service TD table.

2. Binding: Sometime later, the host VMM calls TDH.SERVTD.BIND to bind the service TD. It gets back a binding handle.
The VMM communicates the binding handle, target TD_UUID and other binding parameters to the service TD.

3. Metadata Access: The service TD uses TDG.SERVTD.RD/WR* to access target TD metadata.

4. Rebinding: May be required due to, e.g., both target TD and service TD have been migrated or a new service TD
instance replaces the original one. The host VMM calls TDH.SERVTD.BIND to rebind the service TD. It gets back a
binding handle. The VMM communicates the binding handle, target TD_UUID and other binding parameters to the
service TD.

13.2. Service TD Binding

NOT BOUND | (" PRE_BOUND

TDH.SERVTD.PREBIND
[OP_STATE in {UNINITIALIZED, INITIALIZED}]

TDH.SERVTD.BIND

TDH.SERVTD.BIND [SERVTD_INFO_HASH, SERVTD_TYPE
and SERVTD_ATTR match

BOUND (per SERVTD_ATTR)]

A

. J/

Figure 13.1: Service TD Binding State Machine

13.2.1. Service TD Binding Table in the Target TD’s TDCS

The target TD’s TDCS holds a service TD binding table. Each row (binding slot) in the table contains the following fields,
which are detailed in the following sections:

e SERVTD_BINDING_STATE
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e SERVTD_INFO_HASH
e SERVTD_TYPE
e SERVTD_ATTR
e SERVTD_UUID

The available number of slots in the table is enumerated by TDH.SYS.RD*.

13.2.2. SERVTD_BINDING_STATE: Service TD Binding State

SERVTD_BINDING_STATE indicates the state of the service TD binding slot. It has the following values:
Table 13.1: SERVTD_BINDING_STATE Definition

Value | Name Meaning
0 NOT_BOUND | No service TD is bound. The binding fields in this slot are N/A.
1 PRE_BOUND No service TD is bound. SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR have

been set. They will be included in SERVTD_HASH calculation and be checked on any
following binding.

2 BOUND A service TD is bound. SERVTD_UUID, SERVTD_INFO_HASH, SERVTD_TYPE and
SERVTD_ATTR have been set and be checked on any following binding.
SERVTD_INFO_HASH, SERVTD_TYPE will be included in SERVTD_HASH calculation
and be checked on any following binding.

13.2.3. SERVTD_TYPE: Service TD Binding Type

A service TD implements one or more SERVTD_TYPEs. A specific SERVTD_TYPE is specified per binding; the same service
TD may be bound multiple times if it implements more than one SERVTD_TYPE.

SERVTD_TYPE controls the following:

e The target TD metadata fields that the service TD may read and/or write.
e  Whether or not multiple bindings of this SERVTD_TYPE can exist at the same time for a specific target TD.

SERVTD_TYPE values supported by the TDX module are defined in the [TDX Module ABI].

13.2.4. SERVTD_ATTR: Service TD Binding Attributes

SERVTD_ATTR is a set of service TD binding attributes. It includes the following fields:

13.2.4.1. INSTANCE_BINDING: Class vs. Instance Binding

Specifies whether a specific Service TD instance or a class of a service TD is bound.

With class binding, rebinding can be done with any TD with the same SERVTD_INFO_HASH (unless PLATFORM_BINDING
is 1), SERVTD_TYPE and SERVTD_ATTR as the original binding. Those parameters are migrated when the target TD is
migrated.

With instance binding, rebinding can be done with the same TD instance (same SERVTD_UUID), using the same
SERVTD_TYPE and SERVTD_ATTR as the original binding. SERVTD_INFO_HASH is not checked; instead, it is updated. This
allows the service TD instance to be migrated together with the target TD; the service TD may itself bind with a different
Migration TD at the destination.

13.2.4.2. MIGRATABLE_BINDING: Binding Migratability

Specifies whether a service TD binding can be migrated.

With non-migratable binding, SERVTD_INFO_HASH is not migrated, but other binding attributes
(SERVTD_BINDING_STATE, SERVTD_TYPE, SERVTD_ATTR) are migrated together with the target TD’s mutable state. A
service TD with the same SERVTD_TYPE and SERVTD_ATTR may be bound at the destination platform. If binding on the
service platform happens before import begins, and the imported SERVTD_BINDING_STATE is not NOT_BOUND, then the
imported SERVTD_TYPE and SERVTD_ATTR are checked to be the same as the existing values. This is the case used for
Migration TD.
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13.2.4.3. IGNORE_TDINFO: TDINFO Component Filtering

A bit array determines which component of the service TD’s TDINFO_STRUCT field is included in the calculation of
SERVTD_INFO_HASH. For details see 13.2.6 below.

13.2.5. SERVTD_UUID: Service TD Instance Identifier

TD_UUID is a 256-bit random number that serves as a universally unique identifier of a TD. TD_UUID is created by
TDH.MNG.CREATE and is stored in the TD’s TDR. When a service TD is bound to a target TD, its TD_UUID is stored in the
target TD’s service TD table slot’s SERVTD_UUID field.

13.2.6. Service TD’s Binding SERVTD_INFO_HASH Calculation

For the purpose of service TD binding, a SHA384 hash of the service TD’s measurable attribute is calculated in a similar
way to the calculation done by TDG.MR.REPORT (see 12.2), except that filtering is applies based on the binding
SERVTD_ATTR:

e The SERVTD_ATTR.IGNORE_TDINFO selects which TDINFO_STRUCT field is ignored (a value of 0 is used in the

calculation).
Filter by
Service TD’s SERVTD_ATTR
TDINFO_STRUCT  IGNORE
ATTRIBUTES >
XFAM > Service TD Binding Table in Ta CS
MRTD > SERVTD_ | SERVTD_ | SERVTD_ E\R&D_
ONTI . BINDING_,{=NFO_ TYPE TT|
MRCONFIGID > Filter by s o
MROWNER >
— | SHA384 SIET\A/IEC_):HR. -
RTMRO > — 1
BINDING

RTMR1 >
RTMR2 >
RTMR3 » =
SERVTD_HASH >

Figure 13.2: SERVTD_INFO_HASH Calculation

13.2.7. Target TD’s SERVTD_HASH Calculation

SERVTD_HASH is a single field that summarizes all the service TDs bound or pre-bound to the target TD in an unsolicited
mode. On TD build, SERVTD_HASH is calculated at TDH.MR.FINALIZE time. At that time, the binding information for all
bound or pre-bound service TDs is known. On import, SERVTD_HASH is re-calculated at TDH.IMPORT.STATE.IMMUTABLE
time, because it may change due to non-migratable service TD binding (at least the Migration TD).

Calculation is done as follows:

1. Get all service TD binding slots whose SERVTD_BINDING_STATE is not NOT_BOUND.

2. Sort by SERVTD_TYPE as the primary key, SERVTD_INFO_HASH as a secondary key (if multiple service TDs of the same
type are bound).

Concatenate SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR of each slot, and concatenate all slots.

4. Calculate SHA384.

w
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Target TD’s
TDINFO_STRUCT
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v
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> SERVTD_ SHA384 RTMRO

TYPE
RTMR1

RTMR2

N-1 RTMR3

SERVTD_HASH

Figure 13.3: SERVTD_HASH Calculation

13.2.8. TDH.SERVTD.PREBIND: Pre-Binding a Service TD

TDH.SERVTD.BIND is used by the host VMM to bind a service TD. It is detailed in the [TDX Module ABI].

Inputs

e Target TD’s TDR HPA

e SERVTD_INFO_HASH

e SERVTD_TYPE

e SERVTD_ATTR

e Service TD Index (slot number in the target TD’s binding table)

Operation

e  Check that the target TD’s measurements have not been finalized (by TDH.MR.FINALIZE).
e  Check that no service TD is already bound in the given slot number.
e Store the service TD’s SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR.

13.2.9. TDH.SERVTD.BIND: Binding a Service TD

TDH.SERVTD.BIND is used by the host VMM to bind a service TD. It is detailed in the [TDX Module ABI].

Binding Scenarios

Initial Binding: No pre-binding has been done; initial service TD binding can only be done before TDH.MR.FINALIZE
of the target TD.

Late Initial Binding: Pre-binding has been done; initial service TD binding can be done at any time.
SERVTD_INFO_HASH and SERVTD_ATTR must match.

Rebinding: Binding has been done; rebinding conditions depend on SERVTD_ATTR as described before.

Inputs

e Target TD’s TDR HPA

e Service TD’s TDR HPA — NULL_PA (-1) if pre-binding is requested
e SERVTD_TYPE

e SERVTD_ATTR

e Service TD Index (slot number in the target TD’s binding table)

Outputs
e Binding Handle (described below)

Operation

e  (Calculate the service TD’s SERVTD_INFO_HASH.
e Check binding conditions vs. the target TD’s binding table.
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e Store the service TD’s SERVTD_INFO_HASH, SERVTD_TYPE, SERVTD_ATTR and SERVTD_UUID in the target TD’s
binding table.
e  (Calculate the binding handle as f(service TD’s TD_UUID, target TD’s TDR HPA, slot number).

13.2.10. Binding Handle

The binding handle is used as a shortcut, to quickly identify both the target TD and the binding slot. It should be noted
that the target TD identity is verified by its TD_UUID; the binding handle does not replace it. The binding handle is not a
secret.

The binding handle is calculated from the following variables, using a simple addition:

e Least significant 64 bits of SERVTD_UUID — this serves to obfuscate the handle, so the service TD does not use HPA
or slot number directly.

e Target TD’s TDR HPA (platform-specific unique identifier of the target TD)

e Target TD’s binding slot number

Given the handle, the TDX module can reconstruct TDR_HPA and binding slot number.

The binding handle is platform-specific and must be recreated after migration. This may be triggered when the service
TD attempts to access target TD metadata using TDG.SERVTD.RD/WR* and an error is returned.

13.3. Target TD Metadata Access by a Service TD

13.3.1. TDG.SERVTD.RD/WR*: Metadata Read/Write Interface Functions

TDG.SERVTD.RD, TDG.SERVTD.WR, TDG.SERVTD.RDM, TDG.SERVTD.WRM are similar to other metadata access functions,
e.g.:

e Host-side: TDH.MNG.RD/WR
e Guest-side: TDG.VM.RD/WR
Refer to 18.4 for a description of the TDX module metadata interface.

Inputs

e Target TD_UUID, uniquely identifying the target TD
e Binding handle, identifies the binding slot and a shortcut for identifying the target TD
e Asingle metadata field ID or metadata field list

Output

e  For asingle field access: Field value

Operation

1. Calculate the target TD’s TDR HPA and binding slot number from the binding handle.
2. Check that the target TD_UUID is the same as specified.
2.1. A special case (used by Migration TDs) is when the binding had been done on destination platform before the

TD was imported. In this case the target TD_UUID is overwritten at the beginning of import, as part of the TD’s
immutable state import by TDH.IMPORT.STATE.IMMUTABLE. The pre-import TD_UUID is saved in the target
TD’s TDCS. If the specified target TD_UUID doesn’t match the actual value, but matches the pre-import value,
a status code is returned to the service TD, with the updated TD_UUID.

3. Get the binding parameters from the target TD’s service TD table binding slot.

4. Check that the service TD’s TD_UUID is equal to the target TD’s bind slot’s SERVTD_UUID.

5. Access the metadata (similar to other metadata access operations).

13.3.2. Metadata Access Error Handling

TDG.SERVTD.RD/WR* interface functions run in the context of the service TD, but access the target TD’s control
structures. This introduces an opportunity for the service TD to create a denial-of-service to the host VMM, which is
handled as described below.
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Local Errors (in the Service TD Context)

Local errors that only impact the service TD context are normally, as in other TDCALL flows. These include, e.g., the
following cases:

e Errors such as incorrect service TD state result in an error code returned to the caller service TD.
e EPTviolations when accessing the service TD’s memory cause a fault-like TD exit ; The VMM may resolve the situation
(e.g., TDH.EXPORT.UNBLOCKW if the service TD is being live-migrated) and resume the service TD.

Cross-TD Errors:

Cross-TD errors impact the target TD. For example, errors may happen due to target TD state, e.g., the target TD may be
migrated or may be torn down. The service TD may not be aware of the target TD state when invoking the interface
function.

Cross-TD errors cause a trap-like TD exit:

1. TDG.SERVTD.RD/WR* flow sets output operands (e.g., completion status returned in RAX) and advances the virtual
CPU state to the next service TD guest instruction, but TD-exits immediately before resuming the guest TD.

2. The host VMM may take action to detect denial of service, e.g., the guest calling TDG.SERVTD.RD/WR* in a tight loop.

3. The host VMM may let the service TD resolve the situation by resuming it, using TDH.VP.ENTER. On TD entry, the
service TD gets the status code as returned by TDG.SERVTD.RD*/WR*.

13.3.3. Cross-TD Concurrency Handling: Maintaining Host-Side Priority

13.3.3.1. Problem Description

Host VMM access to the target TD have a higher priority than service TD access to that target TD. This helps mitigate
denial-of-service cases such as when the service TD loops on TDG.SERV.RD/WR*, locking target TD resources and
preventing the host VMM from doing host-side operations that require access to such resources.

Applicable target TD resources are, e.g.:

e TDG.SERV.RD/WR* locks the target TD’s TDR in a shared mode, to help assure that the target TD is available
throughout the guest-side flow. This may interfere with critical host-side operations (e.g., disabling a TD) that require
locking that target TD’s TDR in an exclusive mode.

e TDG.SERV.RD/WR* locks the target TD’s TDCS.OP_STATE to help assure that OP_STATE doesn’t change in a way that
prevents access during the guest-side flow. This may interfere with critical host-side operations (e.g., pausing a TD
during export) that require locking that target TD’s OP_STATE in an exclusive mode.

We currently assume that guest-side flows can only acquire locks in shared mode; thus, they only compete with the host-
side flows acquiring locks in exclusive mode.

13.3.3.2. Solution

A new HOST_PRIORITY flag is added to shared/exclusive locks protecting resources that may be accessed by the host
VMM and a guest service TD. For details, see 18.1.4.
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14.1/0 Support

This chapter specifies the Intel TDX I/0 model.
14.1. Overview

Intel TDX architecture does not prescribe a specific software convention to perform I/O from the guest TD. Guest TD
providers have many choices to provide I/O to the guest. The common I/O models are emulated devices, para-virtualized
devices, SRIOV devices and Direct Device assignments. Guest TD providers can choose to offer the combinations of 1/0
models based on the workload and use case. To virtualize MMIO, the following options can be utilized:

e Para-Virtualized Drivers can replace MMIO accesses with TDG.VP.VMCALL to invoke VMM provided MMIO
emulation functions.

e MMIO Emulation by #VE Handlers can use non-para-virtualized drivers in the guest TD, with the emulation
performed by the #VE handler. EPT and #VE mechanisms can be used to reflect violations to the #VE handler in
the guest TD on access to virtual MMIO ranges. These violations can invoke VMM-provided MMIO emulation
functions through TDG.VP.VMCALL. In this model, the #VE handler is expected to emulate the faulting instruction
in the guest TD.

14.2. Paravirtualized I/0

Para-virtualization (e.g., using virtio APIs in KVM, etc.) helps provide a mechanism for the guest TD to use devices on the
host machine that are owned and managed by the VMM. The guest TD drivers can use the TDG.VP.VMCALL function to
invoke the functions provided by the VMM to perform 1/0. The TD drivers must ensure that the data buffers passed
to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

14.3. MMIO Emulation and Emulated Devices

An alternate technique that the guest TD may employ to invoke VMM functions for 1/0 is to emulate MMIO access from
legacy device drivers. To support this use model, the VMM may enable reflection of EPT violation to emulated MMIO
guest physical addresses as virtualization exceptions (#VE), as described in 11.10. A #VE exception handler in the guest
TD OS can emulate the instruction causing the #VE, and as part of the emulation, it can invoke the 1/0 functions provided
by the VMM using TDCALL(TDG.VP.VMCALL). Similar to the paravirtualized /O model, the TD software must ensure that
the data buffers passed to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

14.4. Direct Device Assignment (DDA) and SRIOV

The VMM may assign devices directly to the guest TD. The addresses mapping the MMIO resources of such devices must
be mapped in the shared memory space of the TD. When submitting data buffers to these devices, the guest TD must
locate the data buffers in shared memory such that the directly assigned device can move data in/out of such buffers
using DMA. The data buffers placed in shared memory should be programmed in IOMMU page tables.

The SRIOV virtual function devices assigned to guest TD also follow the DDA guidelines stated above with respect to
MMIO and data buffers. The control plane of the virtual function would use the soft or hard mechanism to configure the
virtual functions:

e  The soft mechanism would use para-virtualization to configure the virtual function.
e  The hard mechanism would use hardware mailboxes accessed using MMIO in the shared memory region.

14.5. IOMMU - DMA Remapping

The IOMMU uses the VT-d remapping tables to translate GPA in the DMA from device to an HPA. The VT-d remapping
tables will reflect the mapping of memory used by I/0O devices in the guest TD. The programming of the VT-d remapping
tables and management will be done by the VMM.

Only shared GPA memory should be mapped in the VT-d tables:

e If the result of the translation results in a physical address with a TD private key ID, then the IOMMU will abort the
transaction and report a VT-d DMA remapping failure.
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e Ifthe GPA in the transaction that is input to the IOMMU is private (SHARED bit is 0), then the IOMMU may abort the
transaction and report a VT-d DMA remapping failure, even if the translated physical address is with a non-private
HKID. This is intended to support debug wherein a TD or VMM could program a bad GPA into the device.

14.6. Shared Virtual Memory (SVM)

Shared Virtual Memory enables applications to access buffers directly accessed by the devices. The VT-d tables help
provide the mechanism to map application buffers using the first-level and second-level page tables to provide
applications access to the same memory accessed by devices.

SVM should be avoided because VT-d tables can only map shared memory.
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15.Debug and Profiling Architecture

The Intel TDX module debug architecture includes the following debug facilities:
On-TD Debug: Facilities for debugging a guest TD using software that runs inside the TD

Off-TD Debug: Facilities for debugging a guest TD, configured in debug mode, using software that runs outside the TD
15.1. On-TD Debug

Intel SDM, Vol. 3, 17 Debug, Branch Profile, TSC and Intel Resource Director Technology (Intel RDT) Features
15.1.1. Overview

On-TD debug is the normal mode used to debug guest TD software. A debug agent resides inside the guest TD, and it can
interact with external entities (e.g., a debugger) via standard I/O interfaces. The Intel TDX module is designed to virtualize
and isolate TD debug capabilities from the host VMM and other guest TDs or legacy VMs. On-TD debug can be used for
production or debug TDs —i.e., regardless of the guest TD’s ATTRIBUTES.DEBUG state.

Guest TDs are allowed to use almost all architectural debug features supported by the processor, e.g.:

e Single stepping

e Code, data and I/O breakpoints
e INT3

e  Bus lock detection

e DR access detection

e TSX debug

However, the TDX architecture does not allow guest TDs to toggle IA32_DEBUGCTL uncore PMI enabling bit (13).
Guest TDs are allowed to use almost all architectural tracing features, e.g.:

e LBR (if allowed by the TD’s XFAM, see 11.5)
e PT(if allowed by the TD’s XFAM, see 11.5)
e BTS

However, the TDX architecture does not allow guest TDs to use BTM.

15.1.2. Generic Debug Handling

15.1.2.1. Context Switch

By design, the Intel TDX module context-switches all debug/tracing state that the guest TD is allowed to use.

e DRO-3, DR6 and IA32_DS_AREA MSR are context-switched in TDH.VP.ENTER and TD exit flows.

e RFLAGS, IA32_DEBUGCTL MSR and DR7 are saved and cleared on VM exits from the guest TD and restored on VM
entry to the guest TD.

e Pending debug traps are natively saved on VM exits from the guest TD and reloaded on VM entries using the TD
VMCS PDE field.

15.1.2.2. IA32_DEBUGCTL MSR Virtualization
Intel SDM, Vol. 3, 17.4.1 IA32_DEBUGCTL MSR

By design, IA32_DEBUGCTL access by the guest TD is restricted as follows:

e  Guest TD attempts to set any of the architecturally-reserved bits 63:15 and 5:2 result in a #GP(0).
e  Guest TD attempts to set TDX-disallowed values result in a #VE. This includes the following cases:
o Enable Uncore PMI by setting bit 13 to 1 (see 15.4 below).
o Enable BTM by setting bits 7:6 to Ox1 (see details in 15.1.3 below).
e Uncore PMl is virtualized as disabled; bit 13 is read as 0 (see 15.4 below).
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15.1.3. Debug Feature-Specific Handling

The following table discusses how specific debug features are handled.

Table 15.1: Debug Feature-Specific Handling

Debug Feature

How the Feature is Controlled

Handling

Hardware
Breakpoints

e DR7, DRO-3 and DR6

No special handling: DRs are context-switched.

General Detect

e DR7 bit 13 (GD)

No special handling: DR7 is context-switched.

TSX Debug

e DR7bit 11 (RTM)
e IA32_DEBUGCTL bit 15 (RTM)

No special handling: DR7 and IA32_DEBUGCTL are
context-switched.

Single Stepping

e  RFLAGS bits 18 (Trap Flag) and

16 (Resume Flag)
e |A32_DEBUGCTL bit 1 (BTF)

No special handling: RFLAGS and IA32_DEBUGCTL are
context-switched.

Bus-Lock e |A32_DEBUGCTL bit 2 No special handling: IA32_DEBUGCTL is context-
Detection (BUS_LOCK_DETECT) switched.
Software None No special handling: software breakpoints are stateless.

Breakpoints (INT1,
INT3)

Branch Trace
Message (BTM)

e |A32 DEBUGCTL bits 6 (TR)
and 7 (BTS)

Not allowed: when a guest TD attempts to set
IA32_DEBUGCTL[7:6] to 0x1, the Intel TDX module injects
a #VE (see 15.1.2 above).

In debug mode (ATTRIBUTES.DEBUG == 1), the host VMM
is allowed to activate BTM by setting the above bits to
0x1.

Branch Trace Store
(BTS)

e IA32_DEBUGCTL bits 6 (TR), 7
(BTS), 8 (BTINT), 9
(BTS_OFF_0S) and 10
(BTS_OFF_USR)

No special handling: 1A32_DEBUGCTL and IA32_DS_AREA
are context-switched.

Notes:

e The guest TD can configure BTS to raise PMI on buffer
overflow (by setting BTINT = 1). However, since PMIs
are virtualized by the host VMM, the guest TD should
be ready to handle spurious, delayed and dropped
PMls. See Perfmon discussion in 15.2 below.

e  BTS may allow the guest TD to hang the machine if
BTS record generation causes a #PF or a #GP(0),
because the act of getting to the exception handler
may deliver another BTS. It is highly recommended
that the host VMM enables notification TD exit, as
described in 11.12.4.

Processor Trace
(PT)

e |A32_RTIT_CONTROL
e Requires VMM’s consent on

TD initialization by setting
TD_PARAMS.XFAM[8] to 1

PT state handling as part of the extended feature set
state is discussed in 11.5.

Architectural Last
Branch Records
(LBRs)

e |A32_LBR_CONTROL
e Requires VMM’s consent on

TD initialization by setting
TD_PARAMS.XFAM[15] to 1

LBR state handling as part of the extended feature set
state is discussed in 11.5.

Non-Architectural
LBRs

e 1A32_DEBUGCTL bit O (LBR)

Guest TD attempt to set IA32_DEBUGCTL[O] is ignored by
the CPU.
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15.2.  On-TD Performance Monitoring

Intel SDM, Vol. 3, 18 Performance Monitoring

15.2.1. Overview

The host VMM controls whether a guest TD can use the performance monitoring ISA using the TD’s
ATTRIBUTES.PERFMON bit — part of the TD_PARAMS input to TDH.MNG.INIT (see the [TDX Module ABI]).

By design, if a guest TD is allowed to use performance monitoring:

e The guest TD enumerates native Perfmon capabilities via CPUID leaf Ox0A.

e The guest TD is allowed to use all Perfmon ISA. This includes CR4.PCE, the RDPMC instruction and the Perfmon MSRs

(see 15.2.2 below).
e  Perfmon state is context-switched by the Intel TDX module across TD entry and exit transitions.

Context-switching the Perfmon state has a performance impact. TD entry and exit latencies are longer than when a guest

TD is not allowed to use Perfmon.
By design, if a guest TD is not allowed to use performance monitoring:

e The guest TD enumerates no Perfmon capabilities. CPUID leaf Ox0A returns all Os.
e Theguest TD is not allowed to use Perfmon ISA.
e  Perfmon state is not context-switched across TD entry and exit transitions.

Regardless of Perfmon enabling, per the design:

e |A32_DS_AREA MSR is context-switched across TD entry and exit transitions.

e Counter freeze control (IA32_DEBUGCTL bit 12) is context-switched across TD entry and exit transitions.
e The uncore PMI enable bit (IA32_DEBUGCTL bit 13) is preserved during SEAM mode execution, including Intel TDX
module and guest TD execution. This bit is virtualized to the guest TD as 0, and the TD is prevented from setting it.

See 15.4 below for details.
See also 15.1 above.
The Intel TDX module is designed to support the following performance monitoring capabilities:

e Architectural performance monitoring version 5, described in [Intel SDM, Vol. 3, 18.2.5)
Exactly 8 performance monitoring counters (IA32_PMCO through IA32_PMC7)

Exactly 4 fixed counters (IA32_FIXED_CTRO through IA32_FIXED_CTR3)

e Some non-architectural MSRs (see 15.2.2 below)

15.2.2. Performance Monitoring MSRs

Perfmon uses the following MSRs:

Table 15.2: Performance Monitoring MSRs

MSR Comments Enumeration Reference
1A32_PMCx multiple MSRs CPUID(0x0A).EAX[15:8]
The Intel TDX module requires the CPU to
support 8 counters.
IA32_PERFEVTSELx multiple MSRs CPUID(0x0A).EAX[15:8]
MSR_OFFCORE_RSPx 2 MSRs, model-
specific
I1A32_FIXED_CTRXx multiple MSRs IA32_FIXED_CTRx is supported if [Intel SDM,
(x < CPUID(0x0A).EDX[4:0]) or if Vol. 3,
(CPUID(0x0A).ECX[x] == 1). 18.2.5.2]
The Intel TDX module requires the CPU to
support counters 0 through 3.
IA32_PERF_METRICS IA32_PERF_CAPABILITIES[15]
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MSR Comments Enumeration Reference

IA32_PERF_CAPABILITIES

IA32_FIXED_CTR_CTRL

IA32_PERF_GLOBAL_STATUS

IA32_PERF_GLOBAL_CTRL

IA32_PERF_GLOBAL_STATUS_RESET

IA32_PERF_GLOBAL_STATUS_SET

IA32_PERF_GLOBAL_INUSE

IA32_PEBS_ENABLE model-specific

MSR_PEBS_DATA_CFG model-specific

MSR_PEBS_LD_LAT model-specific

MSR_PEBS_FRONTEND model-specific

IA32_A_PMCx multiple MSRs CPUID(0x0A).EAX[15:8], [Intel SDM,
IA32_PERF_CAPABILITIES[13] Vol. 3,
The Intel TDX module requires the CPU to 18.2.6]
support 8 counters.

10

15

20

MBSR virtualization is described in 11.7.

15.2.3. Performance Monitoring Interrupts (PMls)

By design, when a guest TD is allowed to use Perfmon, it can also configure the counters to raise PMI on overflow. When
such a TD counter overflows, the physical interrupt or an NMI configured by the host VMM into the local APIC is delivered.
This interrupt or NMI causes a VM exit, and it is delivered as a TD exit to the host VMM. The host VMM is then expected
to inject the PMI into the guest TD, either as a virtual interrupt using the posted interrupt mechanism (see 11.9.3), or as
virtual NMI using the NMl injection interface (see 11.9.5).

Since the host VMM is not trusted, the guest TD must be ready to handle spurious, delayed or dropped PMls. Thus, it is
recommended for the guest TD to use PEBS instead of PMls in order to record TD state at counter overflows.

Uncore PMlIs are discussed in 15.4 below.

15.3. Off-TD Debug

A guest TD is defined as debuggable if its ATTRIBUTES.DEBUG bit is 1. In this mode, the host VMM can use Intel TDX
functions to read and modify TD VCPU state and TD private memory, which is not accessible when the TD is non-
debuggable.

A debuggable TD is, by nature, untrusted. Since the TD’s ATTRIBUTES are included in the TDREPORT_STRUCT, the TD’s
debuggability state is visible to any third party to which the TD attests.

A debuggable TD can’t be migrated; its ATTRIBUTES.MIGRATABLE bit must be 0.

The applicable Intel TDX functions are listed in Table 15.3 below. Note that some of the functions can access non-secret
guest TD state regardless of the DEBUG attribute. The lists of state information that can be read and/or written in non-
DEBUG and in DEBUG modes are detailed in the referenced sections.

Table 15.3: Off-TD Debug Interface

Intel TDX Function ATTRIBUTES.DEBUG =0 ATTRIBUTES.DEBUG =1

TDH.MNG.RD N/A Access secret and non-secret TD-scope
TDH.MNG.WR state in TDR and TDCS.
TDH.MEM.SEPT.RD Read Secure EPT entry Read Secure EPT entry
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Intel TDX Function ATTRIBUTES.DEBUG =0 ATTRIBUTES.DEBUG =1

TDH.VP.RD Access non-secret TD VCPU state in Access secret and non-secret TD VCPU

TDH.VP.WR TDVPS (including TD VMCS) state in TDVPS (including TD VMCS).

TDH.MEM.WR/ N/A Access TD-private memory.

TDH.MEM.RD

TDH.PHYMEM.PAGE.RDMD | Read page metadata (PAMT Read page metadata (PAMT
information) information).

15.3.1. Modifying Debuggable TD’s State, Controls and Memory

When the TD is debuggable, the off-TD debugger can:

e Read and modify TDVMCS fields that contain guest state, VM entry load controls, VM exit save controls, and VM
execution controls.

e Read and modify TDVPS fields that contain additional TD VCPU'’s state (e.g. extended register state).

e Read and modify a per-VCPU copy of the TD’s extended feature mask (XFAM), such that more extended register state
would be saved to TDVPS on TD exit and restore from TDVPS on TD entry.

This may cause the next VM entry into the TD VCPU to fail due to bad guest state. It may also generate VM exits that
wouldn’t have happened otherwise (e.g., VM exit due to a #PF within the TD). In non-debuggable TD such VM exits are
not expected, and thus treated as fatal TDX module error and lead to shutdown. In debuggable TDs, however, such VM
exits are expected and cause TD exit.

Specifically, the TDX module handling of TD VM exits is extended as follows:

1. If this TD VM exit might happen on non-debuggable TDs:
1.1. Do “standard” handling (may result a TD exit).
1.2. If an exception is pending to be injected into the TD:
1.2.1. If the TD is debuggable and its exception bitmap is programmed to intercept that exception:
1.2.1.1. TD exit to the VMM, as if the exception has been raised during TD execution.
1.3. Resume the TD (may inject an exception).
2. Else (an unexpected VM exit happened):
2.1. Ifthe TD is debuggable then TD exit.
2.2. Else handle this as a fatal error.

In any case, the security of other guest TDs running in production mode is not impacted.

15.3.2. Preventing Guest TD Corruption of DRs

The host-side debugger may need to have full control over guest DRs to help prevent their corruption by the guest TD.
To do so, the debugger can do the following:

e Use TDH.VP.WR to set the TD VMCS GUEST_DR?7 field’s Global Detect bit.

e Set the TD VMCS exception bitmap execution control to intercept debug exceptions.

15.4. Uncore Performance Monitoring Interrupts (Uncore PMls)

By design, neither the Intel TDX module itself not its guest TDs are allowed to use Uncore PMlIs. The state of
1A32_DEBUGCTL MSR bit 13 (ENABLE_UNCORE_PMI) is preserved across SEAMCALL, SEAM root and non-root mode and
SEAMRET, except for very short time periods immediately after SEAMCALL and VM exit.
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16.Machine Check Handling

16.1. Machine Check Architecture Background

The machine-check architecture (MCA) provides a mechanism for detecting and reporting hardware (machine) errors.
These include system bus errors, ECC errors, parity errors, cache errors and TLB errors. MCA consists of a set of model-
specific registers (MSRs) that are used to set up machine checking, and it includes additional banks of MSRs used for
recording errors that are detected. The processor signals the detection of an uncorrected machine-check error by
generating a machine-check exception (#MC), which is an abort class exception. The implementation of the machine-
check architecture does not ordinarily permit the processor to be restarted reliably after generating a machine-check
exception. However, the machine-check-exception handler can collect information about the machine-check error from
the machine-check MSRs.

In native virtualized platforms, this machine-check exception handler is expected to be implemented in the Virtual
Machine Monitor (VMM) or in a control-OS — both of which are considered to be outside the TCB for Trust Domains.
Processors on which TDX will be supported also can report information on corrected machine-check errors and deliver a
programmable interrupt for software to respond to MC errors — referred to as corrected machine-check error interrupt
(CMCI). Intel64 processors supporting MCA and CMCI also support an additional enhancement to support software
recovery from certain uncorrected recoverable machine check errors.

16.2. Security Objectives for Machine Check Handling

TDX architecture aims to provide resiliency against confidentiality and integrity attacks by software and limited hardware
attacks. Towards this goal, the TDX architecture helps enforce the enabling of memory integrity for all private HKIDs.
The CPU memory controller computes the integrity check value (MAC) for the data (cache line) during writes, and it stores
the MAC with the memory as meta-data. A 28-bit MAC is stored in the ECC bits

In addition to the MAC meta-data, the memory controller also maintains a 1-bit TD Owner meta-data for cache-lines
belonging to pages assigned to a TD for use as TD private memory. The TD Owner bit is set for TD cache lines and is clear
for non-TD cache lines, and it is also covered by ECC and included in MAC calculation.

By design, checking of memory integrity is performed during memory reads. Memory integrity errors on an integrity
checking failure, which can occur due to inadvertent corruption of data or due to malicious corruption, are logged by the
memory controller as UCNA (uncorrected no-action required) UCR errors — the cache line is poisoned, and a value of 0
is returned to the core. In addition, if the TD Owner bit was set, the memory controller marks the key itself as poisoned;
any subsequent reads using that key on the same memory controller also return a poisoned and zeroed data to the code.

On a subsequent consumption (read) of the poisoned data by software, there are two possible scenarios:

Scenario 1: Core determines that the execution can continue, and it treats poison with exception semantics signaled as
a #MCE (Machine Check Exception) or MSMI (Machine-check System Management Interrupt).

Scenario 2: Core determines execution cannot continue, and it does an unbreakable shutdown (e.g., long flows).
The Intel TDX module programs the logical processors to handle both scenarios for two cases:

e When a guest TD (in SEAM non-root mode) is executing on a logical processor
e  When the Intel TDX module (in SEAM root mode) is executing on a logical processor

This is described in the following sections.
Hence, the security objectives for the Intel TDX module for Machine Check handling are:

e  Corruption of TD private data or Intel TDX module memory must be detectable before the decrypted corrupted data
are consumed by the guest TD or the Intel TDX module.

e  Host software must not be able to repeatedly cause machine-checks during Intel TDX module or guest TD operation.

e Host software must not be able to speculatively or non-speculatively access TD private memory to detect if a prior
corruption attempt was successful in finding an integrity collision or failed and received zero-data.

e On an integrity violation machine-check, the affected guest TD and the key corresponding to its affected HKID must
be unusable for normal operation of the TD —i.e., the TD may only be torn down.
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16.3. Corrected Machine Check Interrupt (CMCI)

CMCl is delivered as a normal interrupt. If delivered during guest TD operation, this interrupt causes a VM exit, and Intel
TDX module performs a TD exit to the host VMM. If delivered during Intel TDX module operation, this interrupt remains
pending until either SEAMRET to the host VMM or until VM entry to a guest TD.

16.4. Handling #MC during Guest TD Operation

An MC HARD event results in an unbreakable shutdown.

An MC KIND event that occurs during guest TD operation (in SEAM non-root mode) cannot be delivered directly by the
CPU to the guest TD (as an #MC exception) for recovery attempts. That is because the guest TD software will have no
avenue to translate HPAs logged in MCA banks to GPAs needed for guest TD handling. Hence, an MC KIND event during
guest TD execution is considered a fatal event for that TD, and the Intel TDX module is designed to prohibit further TD
entry. The TD exits to the host VMM, indicating a TDH.VP.ENTER completion with a non-recoverable TD state. The exit
reason and exit qualification are reported in GPRs. The host VMM then can analyze the #MC details and reclaim the TD
memory, as described in 16.7 below.

16.5. Virtualization of Machine Check Capabilities and Controls to the Guest TD

Although the guest TD is not allowed to handle machine check event, the following virtualization is used in order to allow
possible pare-virtualization behavior, e.g., future handling of MC KIND event by the TD.

e The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are 1.

e The value of CR4[6] (MCE), as seen by the guest TD, is 1. Guest TD attempt to set this bit to 0 results in a #VE.

e  Guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4D0 (IA32_MCG_*), MSRs 0x281 through
0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result in a #VE.

16.6. Handling #MC during Intel TDX Module Operation

A machine check (kind) event that occurs during Intel TDX module operation (in SEAM root mode) forces a shutdown on
a current LP. Shutdown also prevents subsequent SEAMCALL on any LP.

16.7. Reclaiming Memory after a Machine Check Event

A machine check can occur due to non-malicious cases — e.g., due to a bit flip caused by cosmic rays. Hence, it is a
functional requirement to be able to reclaim memory for a guest TD that was stopped due to a machine check event.

16.4 above described how the Intel TDX module is designed to handle #MC during guest TD operation. At the same time,
the platform broadcasts the MC event to other LPs. Other TDs executing on other LPs will similarly be marked as FATAL.
Eventually, all LPs are executing in the host VMM’s #MC handler, where the VMM can interrogate the MC status registers.
The host VMM can reclaim memory assigned to TDs in a FATAL state using the normal TD teardown flow (TDH.VP.FLUSH,
TDH.PHYMEM.CACHE.WB, TDH.MNG.KEY.FREEID, TDH.PHYMEM.PAGE.RECLAIM).
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Figure 16.1: Example of Machine Check Handling and TD Memory Reclamation
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17.Side Channel Attack Mitigation Mechanisms

17.1. Checking CPU Vulnerabilities to Known Attacks

On TDX module initialization (TDH.SYS.INIT and TDH.SYS.LP.INIT), the TDX module reads the IA32_ARCH_CAPABILITIES
MSR to check that the following bits are set, indicating that the CPU is not vulnerable to a list of known attacks:

e Bit0(RDCL_NO)

e Bit1(IBRS_ALL)

e  Bit 3 (SKIP_L1DFL_VMENTRY)
e  Bit5(MDS_NO)

e Bit6 (IF_PSCHANGE_MC_NO)
e Bit8(TAA_NO)

17.2. Branch Prediction Side Channel Attacks Mitigation Mechanisms

Branch predictions cached by the CPU before entering a guest TD should not impact the behavior of that TD. The Intel
TDX module helps assure that by applying CPU mechanisms to isolate the branch predictions of each guest TD from
branch predication done outside its execution.

17.3. Single-Step and Zero-Step Attacks Mitigation Mechanisms

17.3.1. Description

Single-step attacks, zero-step attacks and EPT fault attacks are techniques that provide an adversary with access to a class
of powerful, low-noise side channel attacks. They do so by exploiting control over hardware such as fine resolution APIC
timers, and using TDX module memory management interface functions.

e Single-Step Attacks involve timing pin-based events such as interrupts, NMI, SMI and INIT to interrupt the guest TD
execution after every instruction executed in the guest TD. This allows the attacker to examine the state of the
machine following each instruction execution in interesting regions of code, and use side channels to leak
information used by that region of code.

e  EPT Fault Attacks involve causing EPT violations or EPT misconfigurations to infer the control flow of execution inside
a guest TD. Such control flow inference coupled with other side channel techniques, such as branch shadowing, can
be used as a side channel to leak information from the guest TD.

e  Zero-Step Attacks involve using an EPT fault on targeted instructions in a guest TD with an intent to glean side
channel information from speculative execution past the faulting instruction. Such instructions are called “replay
anchors”, as every resumption of the TD execution leads to the same EPT fault and thus the same speculative
execution with the same stimulus to be replayed repeatedly, such that noise in side-channel observation of that
speculative execution can be reduced.

The Intel TDX module provides mechanisms to help assist in mitigating single and zero step attacks. For single step
attacks, the TDX module detects when a TD VCPU gets interrupted soon (~4K cycles) after it was entered, and continues
to provide execution opportunities to the TD VCPU for a small random number of instructions before the interruption is
delivered to the host VMM. For zero step attacks, the Intel TDX module counts Secure EPT faults. After a pre-determined
number of such EPT violations occur on the same instruction, the TDX module starts tracking the GPAs that caused Secure
EPT faults and fails further host VMM attempts to enter the TD VCPU unless previously faulting private GPAs are properly
mapped in the Secure EPT.

17.3.2. Host VMM Expected Behavior

No change is required to the host VMM’s normal memory management behavior:

e The host VMM should block (TDH.MEM.RANGE.BLOCK) TD private pages and remove them
(TDH.MEM.PAGE.REMOVE) only after the guest TD has explicitly relinquished the ownership of that page through a
software protocol between the VMM and the TD. Such a protocol is implemented by the balloon driver mechanism
employed by guest Linux kernel to allow the host VMM to overcommit a guest VM assigned memory.

e The host VMM can block TD private pages and perform the following GPA-to-HPA mapping updates without
coordination with the guest TD:

o Physical page relocation (TDH.MEM.PAGE.RELOCATE)
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o Mapping merge or split (TDH.MEM.PAGE.PROMOTE, TDH.MEM.PAGE.DEMOTE)
o Unblock (TDH.MEM.RANGE.UNBLOCK)

A guest TD VCPU attempt to access such pages while they are blocked results in an EPT violation TD exit. A well-
behaved host VMM should not re-enter the TD until the mapping operation is done. Failing to do so will immediately
result in another EPT violation and the TD VCPU won’t make any progress.

17.3.3. Guest TD Interface and Expected Guest TD Operation

The TDX module provides the guest TD with a notification facility, by which the guest TD can get notified when excessive
Secure EPT violations are raised by the same TD instruction. This mechanism allows the guest TD to employ its own
policies. The guest TD enables this notification by setting bit 0 of TDCS.NOTIFY_ENABLES field, using TDG.VM.WR. When
this bit is set, the Intel TDX module raises #VE exception when more than a pre-determined number of Secure EPT
violations are detected on the same instruction, with #VE information containing EPT violation details. This allows the
guest TD to implement its advanced defenses beyond the basic defense done by the TDX module.

As part of its normal memory management behavior, the guest TD should track its GPA space allocation and should only
accept (TDG.MEM.PAGE.ACCEPT) PENDING pages that it expects to be added (TDH.MEM.PAGE.AUG) by the host VMM.
Failing to do so would make the TD vulnerable to attacks, e.g., the host VMM could zero-out a page by removing it and
adding a new one at the same GPA.

Thus, when the guest TD attempts to access a page and a #VE is raised indicating an EPT violation, the expected guest
TD’s #VE handler behavior is as follows:

e Ifthis page is not known to the guest TD as owned by it, i.e., it was not added at TD build time (TDH.MEM.PAGE.ADD)
and has not been added dynamically (TDH.MEM.PAGE.AUG) and accepted (TDG.MEM.PAGE.ACCEPT), the guest TD
can accept this page normally.

e  Otherwise, this may indicate an attack and the guest TD can employ its own policy. For example, the guest TD may
halt if this page is one of the pages expected to be resident when a security critical workload is executing, or signal
the current running application so that the application would employ application-specific defenses.

The guest TD’s #VE handler, as well as its virtual NMI handler, should not have any secrets that are susceptible to leakage.

The Intel TDX module does not provide protection against attacks when accessing shared pages. The guest TD should
treat shared memory access as communicating with a potential attacker, and not do any secure processing while
accessing to shared memory.
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18.UPDATED: General Aspects of the Intel TDX Interface Functions

18.1. Concurrency Restrictions and Enforcement

18.1.1. Explicit Concurrency Restrictions

Intel TDX functions may specify concurrency restrictions on accessing one or more resources, as described below. In
most cases, the restriction applies for the duration of the instruction execution. However, in some cases, the restriction
applies for a longer duration. For example, TDH.VP.ENTER requires shared access to the TD-scope logical control
structures TDR and TDCS, and it also requires shared access to TDVPS — the VCPU-scope logical control structure which
applies during TDX non-root operation through TD Exit.

Table 18.1: Concurrency Restrictions of Intel TDX Functions or Flows

Concurrency | Description Examples

Restriction

Exclusive During the period when an LP has an exclusive access | ¢ TDH.VP.CREATE requires an

Access to a certain resource, any attempt by another LP to exclusive access to the TDVPR
concurrently execute an instruction that requires page.

either an exclusive or a shared access to the same
resource will fail.

Shared During the period when an LP has a shared accesstoa | ¢ TDH.VP.CREATE requires a shared
Access certain resource, any attempt by another LP to access to the TDR page.
concurrently execute an instruction that requires an
exclusive access to the same resource will fail. No
such restriction exists on another LP that attempts to
concurrently execute an instruction that requires a
shared access.

e TDH.PHYMEM.CACHE.WB requires
a shared access to the KOT.

Software is expected to comply with the specified concurrency restrictions. The Intel TDX module helps enforce them
(using internal locks) for proper TDX operation.

Table 18.2: Concurrency Restrictions Cross-Table

Logical Processor Y
Concurrency | Exclusive Shared None
Restriction
Logical Exclusive Not Allowed | Not Allowed | Allowed
Processor
X Shared Not Allowed | Allowed Allowed
None Allowed Allowed Allowed

Intel TDX functions do not wait on a resource that requires an exclusive or a shared access. If the resource is busy, the
function fails immediately.

18.1.2. Implicit Concurrency Restrictions

In some cases, Intel TDX functions and whole flows (e.g., TD Entry through TD Exit) may have implicit exclusive or shared
access to resources. This means that the access restriction is implied by the architecture, but no direct enforcement is
made by the flow itself.

An important case is TDX non-root mode. TDH.VP.ENTER acquires shared locks on the TD’s TDR and TDCS control
structures and on the VCPU’s TDVPS control structure. These shared locks are released only on TD exit. Thus, during all
the time the LP is in the logical TDX non-root mode, including during TDCALL leaf functions, the LP has implicit shared
access to TDVPS, TDR and TDCS.
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18.1.3. Transactions

In some cases, Intel TDX module flows update some state as a transaction. They first read the current state, then do
some calculations and eventually attempt to update the state using an atomic operation (e.g., LOCK CMPXCHG) to check
that the state has not changed and set its new value. If that check fails, an Intel TDX module interface function may fail
with a TDX_OPERAND_BUSY status.

18.1.4. NEW: Concurrency Restrictions with Host Priority

This is a variant on explicit concurrency restrictions, where the host VMM side is given priority. A new HOST_PRIORITY
flag is added to locks protecting resources that may be accessed by the host VMM and a guest TD. Both mutexes and
shared/exclusive locks can be enhanced with host priority.

A new HOST_PRIORITY flag is added to shared/exclusive locks protecting resources that may be accessed by the host
VMM and a guest service TD.

18.1.4.1. Host-Side (Host VMM) Operation

Lock operations process the HOST_PRIORITY bit as follows:

e A SEAMCALL (host-side) function that fails to acquire a lock in exclusive mode sets the lock’s HOST_PRIORITY bit and
returns a TDX_OPERAND_BUSY status to the host VMM. It is the host VMM’s responsibility to re-attempt the
SEAMCALL function until is succeeds; otherwise, the HOST_PRIORITY bit remains set, preventing the guest TD from
acquiring the lock.

e A SEAMCALL (host-side) function that succeeds to acquire a lock in either exclusive or shared mode clears the lock’s
HOST_PRIORITY bit.

18.1.4.2. Guest-Side (Service TD) Operation
A TDCALL (guest-side) function that attempt to acquire a lock fails if HOST_PRIORITY is set to 1; a TDX_OPERAND_BUSY
status is returned to the guest.

Currently, all applicable guest-side flows are short; once a lock is acquired, the flow releases it after a short period.
18.2. Memory and Resource Operands Access

Intel SDM, Vol. 3, 11.5.2 Precedence of Cache Controls
Intel SDM, Vol. 3, 11.11 Memory Type Range Registers (MTRRs)
Intel SDM, Vol. 3, 11.12 Page Attribute Table (PAT)

18.2.1. Overview

In this section, we discuss Intel TDX functions” memory and resource operands access from the following perspectives:

e  Access semantics (shared, private, opaque and hidden)

Explicit vs. implicit accesses

Operand address specification (host-physical address, guest-physical address)
Actual memory access (read or write) vs. memory reference
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18.2.1.1. Access Semantics

Access semantics, as used in this document, convey the intended purpose of the access. Intel TDX functions are designed
to use one of the following access semantics when accessing their memory and/or platform resource parameters:

Table 18.3: Access Semantics Definition

the range 0 to MAX_MKTME_HKIDS - 1). This is mostly
used for memory parameters accessed by the VMM.

Access Description Intel TDX Module Usage
Semantics
Shared Memory is accessed using one of the shared HKIDs (in Source page of

TDH.MEM.PAGE.ADD

Memory operands of TDCALL leaf
functions

Private The memory is mapped in the TD’s private GPA space. TD private pages
Memory accessed using the target TD’s private HKID (in Secure EPT pages
the range MAX_MKTME_HKIDS - 1 to MAX_HKIDS - 1).
Such memory pages can be mapped in the TD’s private
GPA space.
Opaque Memory is addressable by the host VMM, but its content | ® TDR
is not directly accessible to software or devices. Memory | ¢ TDCX
is encrypted using either the Intel TDX global private key e TDVPR
(for TDR) or the TD’s ephemeral private key (for other
control structures).
Hidden Access is to an Intel TDX module internal resource. That | e KOT
resource is not directly addressable as a memory e WBT

operand to software or devices.

Note that on guest-side (TDCALL) functions, shared vs. private semantics is determined by the GPA provided as an
operand to the function. A specific TDCALL leaf function may or may not impose a private or a shared access — e.g.,
TDG.MEM.PAGE.ACCEPT requires a private GPA, while TDG.MR.REPORT may work with either a private GPA or a shared
GPA.

18.2.1.2. Explicit vs. Implicit Access

An explicit memory access is defined as an access where the memory location is provided as explicit operand to an Intel
TDX function. The address may be provided directly in a GPR or indirectly via some address field in a software-accessible
memory data structure.

The HKID for accessing the memory can be inferred by the instruction —implicitly or explicitly from the explicitly provided
access.

An implicit memory access is defined as an access to a platform physical memory address, or to some other resource,
that is not passed as an operand of an instruction (either directly or indirectly) but is implied by use of the Intel TDX
function. TDX architecture helps guarantee that an implicit access is performed correctly, or a proper error action is
taken.

18.2.1.3. Memory Operand Address Specification

Host-side Intel TDX functions (SEAMCALL leaf functions) memory operands are specified using their host-physical address
(HPA), their guest-physical address (GPA), or when a GPA-to-HPA mapping is done (e.g., TDH.MEM.PAGE.ADD) by both
HPA and GPA.

In most cases, HPA for private or opaque access semantics must specified with all HKID bits set to 0.

Guest-side Intel TDX functions (TDCALL leaf functions) memory operands are specified using their guest-physical address
(GPA).
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18.2.1.4.

18.2.1.4.1.

Memory Type

Memory Type for Private and Opaque Accesses

The memory type for private and opaque access semantics, which use a private HKID, is WB.

18.2.1.4.2.

Intel SDM, Vol. 3, 28.2.7.2 Memory Type Used for Translated Guest-Physical Addresses

Memory Type for Shared Accesses

The memory type for shared access semantics, which use a shared HKID, is determined as described below. Note that
this is different from the way memory type is determined by the hardware during non-root mode operation. Rather, it
is a best-effort approximation that is designed to still allow the host VMM some control over memory type.

e  For shared access during host-side (SEAMCALL) flows, the memory type is determined by MTRRs.
o  For shared access during guest-side flows (VM exit from the guest TD), the memory type is determined by a
combination of the Shared EPT and MTRRs.
o Ifthe memory type determined during Shared EPT walk is WB, then the effective memory type for the access is
determined by MTRRs.
o Else, the effective memory type for the access is UC.

18.2.1.5.

Actual Memory Access vs. Memory Reference

In some cases, Intel TDX functions only reference memory —i.e., use its address, but no actual access is done.

In other cases, Intel TDX functions access the memory —i.e., perform read or write (but not execute) operations.

18.2.1.6. Summary Table
Table 18.4: Memory Access Summary
Explicit/ | Intel TDX Access Address | HKID Derivation Memory Example
Implicit | Function Semantics | Operand Type
Explicit Host-Side Shared HPA Derived HPA From MTRR | SRCPAGE operand of
(SEAMCALL operand’s HKID TDH.MEM.PAGE.ADD
Leaf) bits
Private HPA TD’s HKID WB Target page of
TDH.PHYMEM.PAGE.RECLAIM
GPA TD’s HKID WB CHUNK operand of
TDH.MR.EXTEND
HPA and | TD’s HKID WB Target page of
GPA TDH.MEM.PAGE.ADD
Opaque HPA TD’s HKID or Intel | WB TDVPR operand of
TDX global HKID TDADDVPR
Guest-Side | Shared GPA From Shared EPT | From REPORTDATA operand of
(TDCALL Shared EPT | TDG.MR.REPORT
Leaf) and MTRR
Private GPA TD’s HKID WB Target page of
TDG.MEM.PAGE.ACCEPT
Implicit All Private/ N/A TD’s HKID or Intel | WB TDCS access by
Opaque TDX global HKID TDH.VP.ENTER
Hidden N/A N/A N/A KOT access by
TDH.MNG.KEY.CONFIG
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18.3. UPDATED: Register Operands and CPU State Convention

Intel SDM, Vol. 3, 24.9 VM-Exit Information Fields
Intel SDM, Vol. 3, App. C VMX Basic Exit Reasons

18.3.1. Overview: Regular vs. Transition Leaf Functions

Intel TDX functions can be divided into transition functions and non-transition functions.

The non-transition functions are where SEAMCALL and TDCALL leaf functions behave as emulated CPU instructions from
the perspective of the host VMM and the guest TD, respectively. In those cases, the meaning of input and output register
operands is straightforward — similar to CPU instructions.

Transition cases are SEAMCALL(TDH.VP.ENTER) and TDCALL(TDG.VP.VMCALL) leaf functions, where a full cycle (until start
of the next instruction) includes TD transitions to the guest TD or host VMM, respectively, and back to the host VMM or
guest TD, respectively. In those cases, we look at the functions from the point of view of the caller. The meaning of input
and output register operands is more complicated.

Both cases are explained in the following sections and in the function reference sections.

18.3.2. NEW: Interface Function Leaf and Version Numbers

Interface functions are selected by a leaf number, provided in RAX. A version number enables supporting multiple
versions of the same function, if required for backward compatibility. Unless otherwise specified, the default version
number is 0.

Table 18.5: Intel TDX Interface Functions Leaf and Version Numbers in RAX

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL or TDCALL interface function

23:16 Version Number Selects the SEAMCALL or TDCALL interface function version

63:24 Reserved Must be 0

18.3.3. UPDATED: Interface Function Completion Status

Intel TDX function completion status is returned in RAX. The status is structured to provide as many details to software
about error conditions as practically possible. At the same time, the status enables software to ignore details that it does
not need. Software may parse the completion status at three detail levels, as described below.

18.3.3.1. Least Detailed Level: Success/Warning/Error

At this simplest level, software can differentiate among three cases:

Table 18.6: Intel TDX Interface Functions Completion Status in RAX at the Least Detailed Level

RAX Value Meaning Description

0 Success Function completed successfully

Positive Informational / | Function completed successfully, but with some informational
(0x00000000_00000001 Warning or warnmg code — e.g., TDH.PHYMEM.PAGE.RECLAIM of a TDCX
— OX7FFFFFFF_FFFFFFFF) page that is already not VALID

Negative Error Function aborted due to some error

(0x80000000_00000000

— OXFFFFFFFF_FFFFFFFF)
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18.3.3.2.

UPDATED: Medium Detailed Level: Class, Recoverability and Fatality

At this level, software can understand the following information:

Class:

Recoverability Hint:

Fatality Hint:

18.3.3.3.

The class of error or warning — e.g., Resource Busy

Whether the function can be retried after some conditions have been corrected - e.g., if some

resource was busy due to a concurrency error, retrying the function may succeed.

Whether the TD has entered a state where it can only be torn down

UPDATED: Most Detailed Level

At this level, software can understand more details of an error that happened —e.g., if TDH.VP.ADDCX fails, software may
understand if it is due to a wrong number of TDCX pages or due to the VCPU already being initialized.

Table 18.7: Intel TDX Interface Functions Completion in RAX at the Most Detailed Level

Bits

Name

Description

63

ERROR

Instruction aborted due to error.

0: Indicates that the function completed successfully — possibly with
some warnings.

1: Indicates that the function aborted due to some error.

62

NON_RECOVERABLE

Recoverability hint — applicable only when ERROR is 1.

0: Indicates that the function may possibly be retried after some
conditions have been corrected.

1: Indicates that the error is probably not recoverable.

61

FATAL

Fatality hint — applicable only for SEAMCALL, if ERROR is 1.
0: Indicates that the TD can continue its normal lifecycle.

1. Indicates that the TD entered a state where it can only be torn
down.

60

HOST_RECOVERABILITY_HINT

As a TDH.VP.ENTER output, indicates a TDCALL that resulted in a trap-
like TD exit for which the host VMM needs to provide a recoverability
hint in the following TD entry.

On the following TDH.VP.ENTER, the host VMM provides a hint to the
guest TD, which is the output of the TDCALL:

0: The host VMM hints that the guest-side function may possibly be
retried (e.g., the host may have corrected some conditions).

1: The host VMM hints that the error is probably not recoverable.

59:48

RESERVED

Reserved —set to 0

47:40

CLASS

Class of the function completion status

39:32

DETAILS_L1

Details of the function completion status

31:0

DETAILS_L2

Additional details of the function completion status —e.g., includes:
e Implicit or explicit operand identifier

e CPUID leaf or sub-leaf

e MSRindex

e VMCS field code

e VM exit reason

e CMRindex

e TDMR index
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Refer to the [TDX Module ABI] for a list of function completion codes.

18.3.4. CPU State Preservation Convention

18.3.4.1. TDH.VP.ENTER
TDH.VP.ENTER is a special case. In addition to explicit output operands discussed in 0O below, TDH.VP.ENTER is not
designed to preserve the extended CPU state that the TD may use according to TDCS.XFAM.

The host VMM is expected to save any state it needs before calling TDH.VP.ENTER. Details are provided in the
TDH.VP.ENTER leaf function definition (see the [TDX Module ABI]).

18.3.4.2. Other Interface Functions

All Intel TDX functions except TDH.VP.ENTER are designed to preserve the CPU state not explicitly defined as output.

Most interface functions preserve the AVX, AVX2 and AVX512 state. There are some exceptions, as described in the
specific function definitions:

e TDG.VP.VMCALL may use some XMM registers to pass information to and from the host VMM.
e Some interface functions may reset AVX, AVX2 and AVX512 state to the architectural INIT state.

18.3.5. Transition Cases: TD Entry and Exit

18.3.5.1. TD Entry: TDH.VP.ENTER

Transfer of Host VMM State to TD Guest

By design, in the case of a TDH.VP.ENTER leaf function that follows a previous TDG.VP.VMCALL, the RCX input parameter
of the previous TDG.VP.VMCALL is used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSI and R8 through
R15) and XMM registers whose value is transferred to the guest TD as-is. RAX is set to 0. See the TDG.VP.VMCALL
description in the [TDX Module ABI].

The rest of the CPU state is restored from the TD VCPU state as saved on TDG.VP.VMCALL.

Output State (Back to the Host VMM)

On completion of TDH.VP.ENTER, a success — indicated by the ERROR bit (RAX[63]) being 0 — means that TD Entry into
the TD guest was successful. The TD guest ran for some time and then exited to the Intel TDX module. That exit can be
due to execution of TDG.VP.VMCALL) or due to an asynchronous exit (e.g., an EPT Violation). The Intel TDX module then
executes SEAMRET, transferring control to the instruction following TDH.VP.ENTER. In this case, the DETAILS field
(RAX[31:0]) format is designed to be the same as the VMX Exit reason.

If the completion of TDH.VP.ENTER (i.e., exit from the TD guest) was due to TDCALL(TDG.VP.VMCALL), then the RCX input
parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSl and
R8 through R15) and XMM registers whose value is passed to the host VMM as the output of TDH.VP.ENTER. RCX itself
is passed as-is to the output of TDH.VP.ENTER, and RAX[31:0] indicates the VMCALL exit reason (see below). See the
TDG.VP.VMCALL description in the [TDX Module ABI].

If the completion of TDH.VP.ENTER was due to another reason, then other VMX-like Exit Information fields are provided
in other GPRs. Details are provided in the TDH.VP.ENTER leaf function definition (see the [TDX Module ABI]).

By design, any GPRs and extended states that do not return values as described above are set to synthetic values. If the
VMM uses any of them, it must explicitly save them before TDH.VP.ENTER and restore them afterward.

18.3.5.2. TD Synchronous Exit: TDG.VP.VMCALL

Transfer of TD Guest State to Host VMM

In the case of a TDG.VP.VMCALL leaf function, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a
bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSl and R8 through R15) and XMM registers whose value is passed
to the host VMM as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER.
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RAX provides TDH.VP.ENTER completion status (see above). All other CPU state components, including GPRs and XMM
registers not selected by RCX, are saved in TDVPS and set to fixed values (see the [TDX Module ABI]). The value of RCX
itself is also saved to TDVPS.

Output State (Back to the Guest TD)

On completion of TDG.VP.VMCALL, a success — indicated by the ERROR bit (RAX[63]) being O — means that a SEAMRET
into the VMM was successful. The VMM ran for some and then executed TDH.VP.ENTER successfully (possibly on another
LP). The Intel TDX module executed VMRESUME successfully, transferring control to the instruction following TDCALL.

In this case, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from
RBX, RDX, RBP, RDI, RSl and R8 through R15) and XMM registers whose value reflects their state as input to
TDH.VP.ENTER. All other CPU states, including GPRs and XMM registers not selected by RCX, are restored from TDVPS.

18.4. UPDATED: Metadata Access Interface

18.4.1. Introduction

Metadata access interface is the architecture that allows representing TDX metadata, i.e., TD non-memory state and TDX
module control state, in a way that is independent of the way it is stored. It does this by hiding the memory format of
TDX control structures and allowing abstraction of data, as follows:

e The actual fields stored in the TD control structures may be different than their abstracted representation. E.g., a
TDVPS field may be provided as a GPA to TDH.VP.WR, while internally stored as an HPA.

e Access to a TD metadata field may trigger some operation. E.g., writing the TD VMCS’s “posted-interrupt descriptor
address” control triggers the verification of related control and may enable posted interrupt handling.

e TD metadata fields may be completely virtual, i.e., there may be no actual control structure fields represented by
them.

Metadata abstraction is used in the following cases:

e Read of TDX Module information by the host VMM and guest TD using the following SEAMCALL and TDCALL

functions:
o Single Field Read: TDH.SYS.RD, TDG.SYS.RD
o All Fields Read: TDH.SYS.RDALL, TDG.SYS.RDALL

e Read and write of TDR, TDCS and TDVPS control structures by the host VMM using the following SEAMCALL functions:
o Single Field Access: TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD, TDH.VP.WR
e Read and write of TDR, TDCS and TDVPS control structures by the guest TD using the following TDCALL functions:
o Single Field Access: TDG.VM.RD, TDG.VM.WR, TDG.VP.RD, TDG.VP.WR
e Read and write of TDR and TDCS a service TD using the following TDCALL functions:
o Single Field Access: TDG.SERVTD.RD, TDG. SERVTD.WR
e  For TD migration, export and import of TD metadata by the host VMM using the following SEAMCALL functions:
o State Export: TDH.EXPORT.STATE.IMMUTABLE, TDH.EXPORT.STATE.TD, TDH.EXPORT.STATE.VP
o State Import: TDH.IMPORT.STATE.IMMUTABLE, TDH.IMPORT.STATE.TD, TDH.IMPORT.STATE.VP

18.4.2. Metadata Fields and Elements

Metadata fields are identified by field identifiers (MD_FIELD_ID). A field identifier contains a FIELD_CODE and other
information. A detailed description and MD_FIELD_ID values are defined in tables provided in the [TDX Module ABI].
Metadata fields size may be up to 128 bytes.

For the purpose of metadata abstraction interface, fields are divided into multiple field elements; the size of each
element can be 1, 2, 4 or 8 bytes. Elements in a field have consecutive field codes, incremented by 1 or 2 as encoded in
by the field identifier’s INC_SIZE.
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Figure 18.1 below shows an example of a SHA384 fields (e.g., TDCS.MRCONFIGID), whose size is 48B. When access using

the metadata access functions, this field is divided into six 8-byte elements.

Element O Element 1 Element 2 Element 3 Element 4 Element 5
FIELD_CODE X X+1 X+2 X+3 X+4 X+5
Content Bytes 7:0 Bytes 15:8 Bytes 23:16 Bytes 31:24 Bytes 39:32 Bytes 47:40

Figure 18.1: Example of a 48 Byte TDCS.MRCONFIGID Field Composed of Six 8 Byte Elements
A detailed definition of a field identifier is provided in the [TDX Module ABI].

18.4.3. Arrays of Metadata Fields

Metadata fields can be organized in arrays. Figure 18.2 below shows an example of an array of 4 fields, each composed
of 1 element. In this case, fields in the array have consecutive field codes, incremented by 1 or 2 as encoded in by the
field identifier’s INC_SIZE field.

Array Field Content
Index Code

0 X+0 Array[0]
1 X+1 Array[1]
2 X+2 Array[2]
3 X+3 Array[3]

Figure 18.2: Example of an Array of 4 Single-Element Fields

Figure 18.3 below shows an example where each field is composed of multiple elements. TDCS.RTMR is such a case. The
base FIELD_ID of each field in the array is incremented by the number of elements in each field, multiplied by 1 or 2 as
encoded in by the field identifier’s INC_SIZE field.

Array|Base Element 0’s |Element 1’s |Element2’s |Element3’s |[Element4’s |Element5’s
Index |FIELD_ID |FIELD_ID FIELD_ID FIELD_ID FIELD_ID FIELD_ID FIELD_ID

0 X+0 X+0 X+1 X+2 X+3 X+4 X+5

1 X+6 X+6 X+7 X+8 X+9 X+10 X+11

2 X+ 12 X+12 X+13 X+14 X+ 15 X+ 16 X+17

3 X+ 18 X+ 18 X+19 X+ 20 X+21 X+22 X+ 23

Figure 18.3: Example of an Array of Four 48 Byte TDCS.RTMR Fields, Each Composed of 6 Elements

18.4.4. NEW: Metadata Field Sequences

Field sequences contain one or more whole metadata fields, each composed of one or more elements. A sequence is
composed of a sequence header and one or more values.

e All fields in a sequence have the same CONTEXT_CODE, CLASS_CODE and size.

e Each element is a sequence occupies 8 bytes, even if its size is 1, 2 or 4 bytes. When a sequence is used as an output
of the TDX module, the upper bytes beyond the element size are zeroed-out. When a sequence is used as an input
of the TDX module, the upper bytes are ignored.

e The FIELD_CODEs of each element in a sequence are consecutive.

o A field sequence may contain a write mask, which applies to each element value in the sequence. This is applicable
when the sequence is used for writing bit fields, e.g., VMCS execution controls.

e A sequence always contains whole fields, i.e., if a field is composed of multiple elements, the sequence contains all
of them.

A field sequence header contains the initial field code and other information — for a detailed description see the [TDX
Module ABI].
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SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 0)

FIELD[O] / ELEMENTIO]

FIELD[O] / ELEMENTI[1]

FIELD[O] / ELEMENT[LAST_ELEMENT_IN_FIELD]

Figure 18.4: Example of a Metadata Field Sequence with One Field Composed of Multiple Elements

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 1)

FIELD[O] / ELEMENTI[O]

FIELD[O] / ELEMENTI[1]

FIELD[O] / ELEMENT[LAST_ELEMENT_IN_FIELD]

FIELD[1] / ELEMENTI[O]

FIELD[1] / ELEMENTI[1]

FIELD[1] / ELEMENT[LAST_ELEMENT_IN_FIELD]

Figure 18.5: Example of a Metadata Field Sequence with 2 Fields Composed of Multiple Elements

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 7)

FIELD[O] / ELEMENTI[O]

FIELD[1] / ELEMENTI[O]

FIELD[2] / ELEMENTI[O]

FIELD[7] / ELEMENT[O]

Figure 18.6: Example of a Metadata Field Sequence with 7 Fields Composed of a Single Element
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SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 3,
WRITE_MASK_VALID = 1)

WRITE_MASK

FIELD[O] / ELEMENTIO]

FIELD[1] / ELEMENTI[O]

FIELD[2] / ELEMENTIO]

FIELD[3] / ELEMENTI[O]

Figure 18.7: Example of a Metadata Field Sequence with a Write Mask

18.4.5. NEW: Metadata Lists

A metadata list is composed of a list header and one or more field sequences. The list header specifies list buffer size in
bytes and the number of sequences. Metadata lists are used, e.g.,, for exporting VCPU metadata by
THD.EXPORT.STATE.VP.

List Header LIST_HEADER(SIZE =s, NUM_SEQUENCES = 3)

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 2)

FIELD[O] / ELEMENTI[O]

Multi-Field FIELD[O] / ELEMENT[1]

Sequence FIELD[1] / ELEMENT[O]

FIELD[1] / ELEMENT[1]

FIELD[2] / ELEMENT[O]

FIELD[2] / ELEMENTI[1]

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 0)

Single-Field
Sequence FIELD[O] / ELEMENT[O]
FIELD[O] / ELEMENTI[1]
SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 3,
WRITE_MASK_VALID = 1)
WRITE_MASK
Multi-Field
Sequence with a FIELD[O] / ELEMENTI[O]
Write Mask FIELD[1] / ELEMENT([O]

FIELD[2] / ELEMENTI[O]

FIELD[3] / ELEMENT[O]

Figure 18.8: Metadata List Example
The metadata list header format is defined in the [TDX Module ABI].

18.5. Latency of the Intel TDX Interface Functions

The Intel TDX module runs with interrupts disabled (including NMI and SMI). To support proper system responsiveness,
most TDX module interface functions are designed to have a short latency. However, there are infrequent cases where
the latency of some interface functions may be longer than normal, as listed below.
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Host-side interface functions that are invoked a limited number of times during TDX module lifecycle. The interface
functions below are known to have longer than normal latencies:

o TDH.SYS.INIT

o  TDH.SYS.LP.INIT

o TDH.SYS.KEY.CONFIG

Host-side interface functions that are invoked a limited number of times during TD . The interface functions below
are known to have longer than normal latencies:

o TDH.MNG.KEY.CONFIG

o TDH.MNG.INIT

o TDH.VP.INIT

TDH.VP.ENTER may have a long latency if the single/zero step attack mitigation (described in 17.3) is activated due
to a suspected attack.
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