

. Copyright © 2024 Intel Corporation. All rights reserved.

Intel® Trust Domain Extensions (Intel® TDX) Module
Base Architecture Specification

348549-005US

October 2024

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 2 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Notices and Disclaimers

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps. 5

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure. 10

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided 15

here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others. 20

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 3 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Table of Contents

SECTION 1: INTRODUCTION AND OVERVIEW ... 12

1. About this Document ... 13

1.1. Scope of this Document .. 13

1.2. Document Organization .. 13 5

1.3. Glossary... 14

1.4. Notation .. 17
1.4.1. Requirement and Definition Commitment Levels .. 17

1.5. References ... 17
1.5.1. Intel Public Documents ... 17 10

1.5.2. Intel TDX Public Documents .. 18

2. Overview of Intel® Trust Domain Extensions .. 20

2.1. Intel TDX Module Lifecycle .. 20
2.1.1. Boot-Time Configuration and Intel TDX Module Loading ... 20
2.1.2. Intel TDX Module Initialization, Enumeration and Configuration ... 20 15

2.2. Guest TD Life Cycle Overview .. 21
2.2.1. Guest TD Build... 21
2.2.2. Guest TD Execution ... 21
2.2.3. Guest TD Management during its Run-Time ... 21

2.3. Intel TDX Operation Modes and Transitions ... 22 20

2.4. Guest TD Private Memory Protection ... 23
 Memory Encryption .. 23

2.4.2. Address Translation .. 23

2.5. Guest TD State Protection ... 24

2.6. Intel TDX I/O Model (w/o TDX Connect) ... 24 25

2.7. Measurement and Attestation .. 25

2.8. Intel TDX Managed Control Structures ... 25

2.9. Intel TDX Interface Functions .. 26
2.9.1. Host-Side (SEAMCALL Leaf) Interface Functions ... 26
2.9.2. Guest-Side (TDCALL Leaf) Interface Functions .. 28 30

3. Software Use Cases .. 30

3.1. Intel TDX Module Lifecycle .. 30
3.1.1. Intel TDX Module Platform-Scope First-Time Initialization ... 30
3.1.2. Intel TDX Module Shutdown and Update ... 30

 Intel TDX Module Reload .. 31 35

 Intel TDX Module Update ... 31

3.2. TD Build ... 31

3.3. TD Run Time .. 33
3.3.1. Private Memory Management .. 33

 Dynamic Page Addition (Shared to Private Conversion) ... 33 40

 Dynamic Page Removal (Private to Shared Conversion) ... 34
 Page Promotion (Mapping Merge) ... 36
 Page Demotion (Mapping Split) .. 36
 GPA Range Unblock... 37

3.3.2. Guest TD Execution ... 38 45

 TD VCPU First-Time Invocation ... 38
 TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-Entry ... 38

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 4 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 TD VCPU Entry, Exit on Asynchronous Event and Re-Entry .. 39
 Guest-Side Functions .. 40
 TD VCPU Rescheduling (Migration to Another LP) .. 40

3.4. TD Destruction .. 41

SECTION 2: INTEL TDX MODULE ARCHITECTURE SPECIFICATION ... 44 5

4. Intel TDX Module Lifecycle: Enumeration, Initialization and Shutdown .. 45

4.1. Overview ... 45
4.1.1. Intel TDX Module Lifecycle State Machine ... 45
4.1.2. Platform Compatibility and Configuration Checking .. 46

 Overview ... 46 10

 CPU Configuration ... 46
 MSR Sampling and Checks .. 46
 CPUID Sampling, Checks and Enumeration ... 46

4.1.3. Physical Memory Configuration Overview.. 46
 Intel TDX ISA Background: Convertible Memory Ranges (CMRs) .. 47 15

 TDMRs and PAMT Arrays Configuration ... 47

4.2. Intel TDX Module Initialization Interface .. 49
4.2.1. Global Initialization: TDH.SYS.INIT ... 49
4.2.2. LP-Scope Initialization: TDH.SYS.LP.INIT .. 49
4.2.3. TDX Module Enumeration: TDH.SYS.RD/RDALL and TDH.SYS.INFO ... 49 20

4.2.4. TDH.SYS.CONFIG: TDX Module Global Configuration .. 49
4.2.5. TDH.SYS.KEY.CONFIG: Key Configuration (per Package) .. 50
4.2.6. State Restoration after TD-Preserving TDX Module Update: TDH.SYS.UPDATE .. 50

4.3. TDMR and PAMT Initialization .. 50

4.4. Intel TDX Module Shutdown ... 50 25

4.4.1. Shutdown Initiated by the Host VMM (as Part of Module Update) ... 50
4.4.2. Shutdown Initiated by a Fatal Error .. 51

4.5. Intel TDX Module Handoff Data .. 51

5. Memory Encryption Key Management ... 53

5.1. Objectives .. 53 30

5.2. Background: HKID Space Partitioning .. 53

5.3. WBINVD Domains ... 54
5.3.1. Overview ... 54
5.3.2. Host VMM Enumeration of WBINVD Domains ... 54
5.3.3. Enumerating Non-Package WBINVD Domains Support .. 54 35

5.4. Key Management Tables .. 54

5.5. Combined Key Management State ... 55

5.6. Key Management Sequences .. 57
5.6.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data 57
5.6.2. TD Creation, Keys Assignment and Configuration .. 57 40

5.6.3. TD Keys Reclamation, TLB and Cache Flush .. 57

6. TD Non-Memory State (Metadata) and Control Structures .. 59

6.1. Overview ... 59
6.1.1. Opaque vs. Private vs. Shared Control Structures .. 59
6.1.2. Scope of Control Structures .. 59 45

6.2. TD-Scope Control Structures ... 60
6.2.1. TDR (Trust Domain Root) .. 60
6.2.2. TDCS (Trust Domain Control Structure) .. 60

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 5 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

6.3. TD VCPU-Scope Control Structures ... 60
6.3.1. Trust Domain Virtual Processor State (TDVPS) ... 60

 Physical View of TDVPS: TDVPR/TDCX ... 61
 Logical View of TDVPS ... 61

6.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structures 62 5

6.4. TD Non-Memory State (Metadata) Access Functions ... 62

6.5. Concurrency Restrictions and Enforcement .. 62

7. TD Life Cycle Management ... 63

7.1. TD Life Cycle State Machine .. 63

7.2. OP_STATE: TD Operation Secondary-Level State Machine .. 63 10

7.3. TD Creation and Configuration Sequence ... 64

7.4. VCPU Creation and Initialization Sequence ... 65

7.5. TD Teardown Sequence ... 66

8. Physical Memory Management .. 67

8.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTs)............................... 67 15

8.2. TDMR Details .. 67

8.3. PAMT Details ... 67
8.3.1. PAMT Entry ... 67
8.3.2. PAMT Blocks and PAMT Arrays ... 68
8.3.3. PAMT Page Types .. 69 20

8.3.4. PAMT Hierarchy .. 70

8.4. Overview of Memory Protection using Access Control Table (ACT) .. 71

8.5. Adding Physical Pages ... 71
8.5.1. Future Platforms: Preventing Cache Line Aliasing by Flushing Cache Lines... 71
8.5.2. Adding Pages not Mapped to the Guest TD .. 71 25

8.5.3. Adding Pages and Mapping to the Guest TD’s GPA .. 71

8.6. Reclaiming Physical Pages .. 72
8.6.1. Platforms not Using ACT: Required Cache Flush and Initialization by the Host VMM 72
8.6.2. Platforms Using ACT: Required Cache Flush, Initialization and ACT Update ... 72

 ACT Platforms: Overview of the Host VMM Operation .. 72 30

 ACT Platforms: Overview of the TDX Module Operation .. 72
 ACT Platforms: Page Reclamation Sequence for Large Pages ... 72

8.6.3. Reclaiming Pages not Mapped to the Guest TD’s GPA Space ... 73
 Reclaiming TD Pages in TD_TEARDOWN State ... 73
 Reclaiming PT_TR Pages in the TD_KEYS_CONFIGURED State ... 73 35

8.6.4. Reclaiming Physical Pages as Part of TD Private Memory Management .. 73

9. TD Private Memory Management .. 74

9.1. Overview ... 74

9.2. Secure EPT Entry ... 75
9.2.1. Overview ... 75 40

9.2.2. SEPT Entry State Diagrams .. 76

9.3. Secure EPT Walk .. 77

9.4. Secure EPT Induced TD Exits .. 77

9.5. Secure EPT Induced Exceptions ... 78
9.5.1. #PF Exceptions Related to GPA Reserved Bits .. 78 45

9.5.2. EPT Violation Mutated into #VE .. 78

9.6. Secure EPT Concurrency .. 79

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 6 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

9.7. Introduction to TLB Tracking ... 79

9.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD .. 80

9.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD ... 81

9.10. Dynamically Adding TD Private Pages .. 82
9.10.1. Overview ... 82 5

9.10.2. PENDING Page Addition by the Host VMM: TDH.MEM.PAGE.AUG ... 83
9.10.3. PENDING Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT .. 84

 Description .. 84
 TDG.MEM.PAGE.ACCEPT Concurrency ... 85

9.10.4. Guest TD (L1) Access to a PENDING Page ... 86 10

9.11. Page Mapping Resize: Merge and Split .. 86
9.11.1. Overview: Non-Blocking Mapping Resize .. 86
9.11.2. Page Merge: TDH.MEM.PAGE.PROMOTE .. 86
9.11.3. Page Split: TDH.MEM.PAGE.DEMOTE .. 88

9.12. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE .. 90 15

9.13. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE .. 90

9.14. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE ... 91

9.15. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK .. 91

10. TD VCPU ... 92

10.1. VCPU Transitions ... 92 20

10.1.1. Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entry .. 92
10.1.2. Synchronous TD Exit and Subsequent TD Entry .. 93
10.1.3. VCPU Activity State Machine .. 93

10.2. TD VCPU TLB Address Space Identifier (ASID) ... 95
10.2.1. TD ASID Components .. 95 25

10.2.2. INVEPT by the Host VMM for Managing the Shared EPT ... 95

10.3. VCPU-to-LP Association ... 96
10.3.1. Non-Coherent Caching .. 96
10.3.2. Intel TDX Functions for VCPU-LP Association and Dis-Association ... 96
10.3.3. Performance Considerations .. 96 30

11. CPU Virtualization (Non-Root Mode Operation) ... 97

11.1. Overview: Virtualization vs. Paravirtualization of CPU Features and #VE ... 97
11.1.1. Architectural x86 Virtualization .. 97
11.1.2. Paravirtualization and #VE .. 97
11.1.3. #VE for x86 Behavior not Supported by TDX .. 97 35

11.1.4. #VE for TDX-Specific Behavior ... 97

11.2. CPU Virtualization Configuration and Control .. 97
11.2.1. Host VMM Configuration of CPU Virtualization .. 97
11.2.2. Guest TD Control of CPU Virtualization .. 98

11.3. Initial Virtual CPU State... 99 40

11.3.1. Overview ... 99
11.3.2. Initial State of Guest TD GPRs ... 99
11.3.3. Initial State of CRs ... 100
11.3.4. Initial State of Segment Registers ... 100
11.3.5. Initial State of MSRs .. 100 45

11.4. Guest TD Run Time Environment Enumeration ... 100

11.5. CPU Mode Restrictions .. 101

11.6. Instructions Restrictions .. 102
11.6.1. Unconditionally Blocked Instructions ... 102

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 7 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Instructions that Cause a #UD Unconditionally .. 102
 Instructions that Cause a #VE Unconditionally to Allow Paravirtualization 102
 Instructions that Cause a #UD or #VE Depending on Feature Enabling, to Allow Paravirtualization 103
 Other Cases of Unconditionally Blocked Instructions ... 103

11.6.2. Conditionally Blocked Instructions.. 103 5

11.6.3. Other Exception Cases .. 103

11.7. Extended Feature Set .. 103
11.7.1. Allowed Extended Features Control ... 103
11.7.2. Extended State Isolation ... 103
11.7.3. Extended Features Execution Control ... 104 10

11.8. CR Handling ... 106
11.8.1. CR0 .. 106
11.8.2. CR4 .. 107

 CR4 Bits which are Architecturally Virtualized .. 107
 CR4.MCE (Bit 6) Virtualization .. 107 15

 CR4 Bits which are Non-Architecturally Virtualized .. 108

11.9. MSR Virtualization .. 108
11.9.1. Overview ... 108
11.9.2. MSR Virtualization Configuration by the Host VMM .. 108
11.9.3. MSR Virtualization Control by the Guest TD ... 109 20

11.10. CPUID Virtualization .. 109
11.10.1. CPUID Configuration by the Host VMM .. 109

 Fine Grained Control of CPU Extended Features Enumeration .. 110
 Configurable Family/Model/Stepping (CPUID(1).EAX) Enumeration ... 110

11.10.2. Guest TD Control of CPUID Virtualization ... 110 25

 Guest TD Control of Specific CPUID Leaves and Sub-Leaves Virtualization 110
 Per-VCPU Guest TD Control of #VE on CPUID ... 111

11.10.3. CPUID Configuration & Checks at Guest TD Migration ... 111

11.11. Platform Topology Virtualization .. 112
11.11.1. Configuration by the Host VMM ... 112 30

11.11.2. Enabling by the Guest TD .. 112
11.11.3. Virtual Topology Information Provided to the Guest TD .. 112

 Derivation of CPUID(0xB) Virtual Values from CPUID(0x1F) Configuration 113

11.12. Interrupt Handling and APIC Virtualization... 113
11.12.1. Virtual APIC Mode ... 113 35

11.12.2. Virtual APIC Access by Guest TD ... 113
11.12.3. Implicit APIC Write #VE ... 115
11.12.4. Posted Interrupts .. 115
11.12.5. Pending Virtual Interrupt Delivery Indication ... 116
11.12.6. Cross-TD-VCPU IPI ... 116 40

11.12.7. Virtual NMI Injection ... 116

11.13. Virtualization Exception (#VE) ... 117
11.13.1. Virtualization Exception Information .. 117
11.13.2. Architectural #VE Injection due to EPT Violations .. 118
11.13.3. Non-Architectural #VE Injected by the Intel TDX Module .. 119 45

11.14. GPA Space, Secure and Shared Extended Page Tables (EPTs) ... 119
11.14.1. GPA Space Size Configuration and Virtualization .. 119

 Overview of the GPA Space Size Virtualization Modes ... 119
 MAXPA (CPUID(0x80000008).EAX[7:0]) Virtualization ... 120
 MAXGPA (CPUID(0x80000008).EAX[23:16]) Virtualization ... 120 50

 GPA Space Implications of MAXPA and MAXGPA Virtualization .. 121
 Exceptions Related to GPA Reserved Bits ... 121

11.14.2. EPT Violation Mutated into #VE .. 121

11.15. Prevention of TD-Induced Denial of Service .. 121
11.15.1. Bus Lock Detection by the TD OS .. 121 55

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 8 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

11.15.2. Impact of MSR_MEMORY_CTRL (MSR 0x33) .. 122
11.15.3. Bus Lock TD Exit .. 122
11.15.4. Instruction Timeout TD Exit .. 122

11.16. Time Stamp Counter (TSC) .. 122
11.16.1. TSC Virtualization .. 122 5

11.16.2. TSC Deadline ... 123

11.17. KeyLocker (KL) ... 123
11.17.1. KeyLocker Virtualization ... 123
11.17.2. Host VMM KeyLocker State Restoration after TDH.VP.ENTER ... 124

11.18. Software Code Prefetch .. 124 10

11.19. User MSR ... 124

11.20. FRED .. 124

11.21. Supervisor Protection Keys (PKS) ... 124

11.22. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption (MKTME) 125
11.22.1. TME Virtualization ... 125 15

11.22.2. MKTME Virtualization ... 125

11.23. Virtualization of Machine Check Capabilities and Controls .. 125

11.24. Transactional Synchronization Extensions (TSX) ... 126

11.25. Management of Idle and Blocked Conditions ... 126
11.25.1. HLT Instruction .. 126 20

11.25.2. PAUSE Instruction and PAUSE-Loop Exiting .. 126
11.25.3. MONITOR and MWAIT Instructions .. 127
11.25.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT Instructions .. 127

11.26. Other Changes in SEAM Non-Root Mode .. 127
11.26.1. CET .. 127 25

11.26.2. Tasking .. 127

12. Measurement and Attestation ... 128

12.1. Overview of the Attested Measurements and Configuration Information ... 128

12.2. TD Measurement .. 128
12.2.1. MRTD: Build-Time Measurement Register .. 128 30

12.2.2. RTMR: Run-Time Measurement Registers ... 129
12.2.3. SERVTD_HASH: Service TDs Measurement Register .. 129

12.3. TD Measurement Reporting .. 129

12.4. Local Report Verification ... 130

12.5. Creating Attestations .. 130 35

12.5.1. Overview ... 130
12.5.2. Intel SGX-Based Attestation .. 131

 Quote Signing Key for SGX-Based Attestation .. 132

12.6. TCB Recovery ... 132
12.6.1. TD Preserving TDX Module Update Implications .. 132 40

13. Service TDs ... 133

13.1. Overview ... 133

13.2. Service TD Binding ... 133
13.2.1. Service TD Binding Table in the Target TD’s TDCS .. 133
13.2.2. SERVTD_BINDING_STATE: Service TD Binding State .. 134 45

13.2.3. SERVTD_TYPE: Service TD Binding Type ... 134
13.2.4. SERVTD_ATTR: Service TD Binding Attributes .. 134

 INSTANCE_BINDING: Class vs. Instance Binding .. 134

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 9 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 MIGRATABLE_BINDING: Binding Migratability .. 134
 IGNORE_TDINFO: TDINFO Component Filtering .. 135

13.2.5. SERVTD_UUID: Service TD Instance Identifier ... 135
13.2.6. Service TD’s Binding SERVTD_INFO_HASH Calculation ... 135
13.2.7. Target TD’s SERVTD_HASH Calculation ... 135 5

 SERVTD_HASH Calculation on Finalization of TD Build ... 135
 SERVTD_HASH Calculation on TD Import .. 135
 SERVTD_HASH Calculation Method .. 136

13.2.8. TDH.SERVTD.PREBIND: Pre-Binding a Service TD ... 136
13.2.9. TDH.SERVTD.BIND: Binding a Service TD ... 136 10

13.2.10. Binding Handle .. 137

13.3. Target TD Metadata Access by a Service TD ... 137
13.3.1. TDG.SERVTD.RD/WR: Metadata Read/Write Interface Functions ... 137
13.3.2. Metadata Access Error Handling ... 138
13.3.3. Cross-TD Concurrency Handling: Maintaining Host-Side Priority .. 138 15

 Problem Description ... 138
 Solution ... 138

14. I/O Support (without TDX Connect) ... 139

14.1. Overview ... 139

14.2. Paravirtualized I/O .. 139 20

14.3. MMIO Emulation and Emulated Devices .. 139

14.4. Direct Device Assignment (DDA) and SRIOV ... 139

14.5. IOMMU – DMA Remapping .. 139

14.6. Shared Virtual Memory (SVM) .. 140

15. Debug and Profiling Architecture ... 141 25

15.1. On-TD Debug ... 141
15.1.1. Overview ... 141
15.1.2. Generic Debug Handling ... 141

 Context Switch .. 141
 IA32_DEBUGCTL (MSR 0x1D9) Virtualization ... 141 30

15.1.3. Debug Feature-Specific Handling .. 142

15.2. On-TD Performance Monitoring ... 143
15.2.1. Overview ... 143
15.2.2. Performance Monitoring CPUID Virtualization ... 143
15.2.3. Performance Monitoring MSRs... 144 35

 Overview ... 144
15.2.4. Performance Monitoring Interrupts (PMIs) .. 144
15.2.5. Perfmon Events Filtering ... 145

 Enumeration ... 145
 Background ... 145 40

 Event Filtering Configuration and the Filtering Algorithm .. 145
 Guest TD Perspective .. 146
 Statistics .. 146

15.3. Off-TD Debug .. 146
15.3.1. Modifying Debuggable TD’s State, Controls and Memory .. 147 45

15.3.2. Preventing Guest TD Corruption of DRs .. 147

15.4. Platform-Level Profiling .. 147
15.4.1. Profiling by IA32_FIXED_CTR1 and IA32_FIXED_CTR2 .. 148

15.5. Uncore Performance Monitoring Interrupts (Uncore PMIs) .. 148

16. Memory Integrity Protection and Machine Check Handling ... 149 50

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 10 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

16.1. Overview ... 149

16.2. TDX Memory Integrity Protection Background ... 149
16.2.1. Platforms not Using ACT for Memory Protection ... 149

 Non-ACT Platforms Memory Integrity Protection .. 149
 Non-ACT Platforms Memory Writes: No Integrity nor TD Owner Bit Checks 151 5

16.2.2. Platforms Using ACT for Memory Integrity Protection ... 152
 ACT Platforms: Logical Integrity (Li) Provided by an Access Control Table (ACT) 152
 ACT Platforms: TD Owner Bit Update on Page Conversion between Shared and Private 152
 ACT Platforms Memory Access: TD Owner Bit Checks, Poison Generation and Poison Consumption

 152 10

16.2.3. Memory Integrity Error Logging, Machine Checks and Unbreakable Shutdowns 153

16.3. Machine Check Architecture (MCA) Background .. 154
16.3.1. Uncorrected Machine Check Error .. 154
16.3.2. Corrected Machine Check Interrupt (CMCI) ... 154
16.3.3. Machine Check System Management Interrupt (MSMI) .. 154 15

16.3.4. Local Machine Check Event (LMCE) .. 154

16.4. Recommended MCA Platform Configuration for TDX ... 154

16.5. Handling Machine Check Events during Guest TD Operation ... 155
16.5.1. Machine Check Events Delivered as an #MC Exception.. 155
16.5.2. EMCA2: Machine Check Events Delivered as an MSMI.. 156 20

 Determining CPU Support ... 156
 Pending MSMI Causing a TD Exit .. 156
 Operation Following TD Exit ... 156

16.5.3. LMCE Disabled (Not Recommended) .. 157
16.5.4. Machine Check Events Delivered as a CMCI ... 157 25

16.6. Handling MCE during Intel TDX Module Operation .. 157

17. Side Channel Attack Mitigation Mechanisms ... 158

17.1. Checking and Virtualization of CPU Side Channel Protection Mechanisms Enumeration 158
17.1.1. IA32_ARCH_CAPABILITIES (MSR 0x10A) ... 158
17.1.2. CPUID .. 159 30

17.2. Branch Prediction Side Channel Attacks Mitigation Mechanisms .. 159

17.3. Single-Step and Zero-Step Attacks Mitigation Mechanisms ... 160
17.3.1. Attacks Description ... 160
17.3.2. Mitigation by the TDX Module .. 160

 Single-Step Attack Detection and Mitigation .. 160 35

 Zero-Step Attack Detection and Mitigation .. 161
17.3.3. Host VMM Expected Behavior .. 161
17.3.4. Guest TD Interface and Expected Guest TD Operation ... 161

18. General Aspects of the Intel TDX Interface Functions ... 163

18.1. Concurrency Restrictions and Enforcement .. 163 40

18.1.1. Explicit Concurrency Restrictions .. 163
18.1.2. Implicit Concurrency Restrictions ... 163
18.1.3. Transactions .. 164
18.1.4. Concurrency Restrictions with Host Priority ... 164

 Overview ... 164 45

 Host-Side (SEAMCALL) Operation ... 164
 Guest-Side (TDCALL) Operation .. 164
 Host Priority Busy Timeout ... 164

18.2. Memory and Resource Operands Access .. 165
18.2.1. Overview ... 165 50

 Access Semantics .. 165
 Explicit vs. Implicit Access ... 165
 Memory Operand Address Specification .. 166

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 11 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Memory Type .. 166
 Actual Memory Access vs. Memory Reference .. 166
 Summary Table ... 167

18.3. Register Operands and CPU State Convention .. 167
18.3.1. Overview: Regular vs. Transition Leaf Functions ... 167 5

18.3.2. Interface Function Leaf and Version Numbers ... 167
18.3.3. CPU State Preservation Convention .. 168

 TDH.VP.ENTER ... 168
 Other Interface Functions ... 168

18.3.4. Transition Cases: TD Entry and Exit .. 168 10

 TD Entry: TDH.VP.ENTER ... 168
 TD Synchronous Exit: TDG.VP.VMCALL .. 169

18.4. Interface Function Completion Status ... 169
18.4.1. Least Detailed Level: Success/Warning/Error .. 169
18.4.2. Medium Detailed Level: Class, Recoverability and Fatality .. 169 15

18.4.3. Most Detailed Level .. 170

18.5. TD, VM and VCPU Identification ... 170

18.6. Metadata Access Interface ... 170
18.6.1. Introduction .. 170
18.6.2. Metadata Fields and Elements.. 171 20

18.6.3. Arrays of Metadata Fields ... 171
18.6.4. Metadata Field Sequences .. 172
18.6.5. Metadata Lists ... 173

18.7. Interrupt Latency... 174
18.7.1. Introduction .. 174 25

18.7.2. Latency of the Intel TDX Interface Functions .. 174
18.7.3. Interruptible Host-Side Interface Functions ... 175
18.7.4. Interruptible Guest-Side Interface Functions ... 175

18.8. DRNG Entropy Errors ... 177

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 12 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

SECTION 1:
INTRODUCTION AND OVERVIEW

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 13 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

1. About this Document

1.1. Scope of this Document

This document describes the architecture of the Intel® Trust Domain Extensions (Intel® TDX) module, implemented using
the Intel TDX Instruction Set Architecture (ISA) extensions, for confidential execution of Trust Domains in an untrusted
hosted cloud environment. 5

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

 Document Name Reference Description

→

TDX Module
Base Architecture Specification

[TDX Module Base
Spec]

Base TDX module architecture overview
and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

TDX Module
TD Migration Architecture Specification

[TD Migration Spec] Architecture overview and specification for
TD migration

TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for
TD Partitioning

TDX Module
TDX Connect Specification

[TDX Connect Spec] Architecture overview and specification for
TDX Connect

TDX Module
ABI Reference Specification

[TDX Module ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the entire TDX module
architecture

TDX Module
TDX Connect ABI Reference
Specification

[TDX Connect ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the TDX connect architecture

TDX Module ABI Reference Tables [TDX Module ABI

Tables]
A set of JSON format files detailing TDX
module Application Binary Interface (ABI)

TDX Module ABI Incompatibilities [TDX Module ABI

Incompatibilities]
Description of the incompatibilities
between TDX 1.0 and TDX 1.4/1.5 that may
impact the host VMM and/or guest TDs

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors. 10

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.

1.2. Document Organization 15

The document has the following main sections:

• Section 1 contains an introduction to the document and an overview of the Intel TDX module.

• Section 2 contains the Intel TDX module architecture specification.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 14 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

1.3. Glossary

Table 1.2: Intel TDX Glossary

Acronym Full Name New
for
TDX

Description

ABI Application
Binary
Interface

No A programming interface defined at the binary level (i.e., instruction opcode and
CPU registers). The Intel TDX module interface is specified as an ABI.

ACM Authenticated
Code Module

No A code module that is designed to be loaded, verified and executed by the CPU in
on-chip memory (CRAM).

ACT Access Control
Table

Yes A table in memory which controls memory access. Each bit in the table represents
the state of a 4K memory page: shared or private.

N/A Accessible
(Memory)

No Memory whose content is readable and/or writeable (e.g., TD private memory is
accessible to the guest TD).

N/A Addressable
(Memory)

No Memory that can be referred to by its address. The content of addressable
memory might not necessarily be accessible (e.g., TDCS is not accessible to the
host VMM).

CMR Convertible
Memory Range

Yes A range of physical memory configured by BIOS and verified by MCHECK. MCHECK
verification is intended to help ensure that a CMR may be used to hold TDX
memory pages encrypted with a private HKID.

N/A Enlightened
OS

No A TD OS is considered enlightened if it is aware that it is running as a TD (see
Paravirtualization).

EPxE Extended
Paging
Structures
Cache

No The CPU’s cache of EPT intermediate translations (as opposed to TLB, which
caches full LA or GPA to HPA translations).

GPA Guest Physical
Address

No An address viewed as a physical address, from a guest VM’s point of view. A GPA
is subject to further translation (by EPT) to produce an HPA.

N/A Hidden No A resource or a data structure that is not directly addressable by software (except
the Intel TDX module).

HKID Host Key ID Yes When MKTME is activated, HKID is a key identifier for an encryption key used by
one or more memory controllers on the platform.

N/A Host VMM Yes The VMM that serves as a host to guest TDs. The term “host” is used to
differentiate between the “host VMM” and future VMMs that may be nested
within TDs.

HPA Host Physical
Address

No A physical address at the host VMM level. This is the actual physical address used
by the hardware (e.g., caches). See also PA.

KD Key Domain Yes Represents the control state associated with an ephemeral TDX key resource. Key
domains are managed as a resource by the host VMM with the security attributes
of the lifecycle of a key domain for Trust Domains (TDs) is enforced by the Intel
TDX Module. A TD is assigned to a single Key Domain.

KET Key Encryption
Table

Yes A table held by each MKTME encryption engine, intended for holding encryption
key information, indexed by HKID.

KOT Key Ownership
Table

Yes An internal, hidden table held by the Intel TDX module, intended for controlling
the assignment of HKIDs to TDs.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 15 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Acronym Full Name New
for
TDX

Description

MBZ Must Be Zero No Normally used to indicate that reserved fields must contain 0.

MKTME Multi-Key TME No This SoC capability adds support to the TME to allow software to use one or more
separate keys for encryption of volatile or persistent memory encryption. When
used with TDX, it can provide confidentiality via separate keys for memory used by
TDs. MKTME can be used with and without TDX extensions.1

MRTD Measurement
of Trust
Domain

Yes The SHA-384 measurement of a TD accumulated during TD build.

NP-
SEAMLDR

Non-Persistent
SEAM Loader

Yes An ACM intended to load an Intel P-SEAMLDR module into the SEAM range.

P-
SEAMLDR

Persistent
SEAM Loader

Yes A SEAM module intended to install (load or update) Intel TDX modules into SEAM
range.

PA Physical
Address

No The physical address used by the hardware (e.g., caches). See also HPA.

PAMT Physical
Address
Metadata
Table

Yes An internal, hidden data structure used by the Intel TDX module, which is intended
to hold the metadata of physical pages.

PV Para-
Virtualization

No A virtualization technique where the VM can be aware it is being virtualized (as
opposed to running directly on hardware).

RTMR Run-Time
Measurement
Register

Yes A SHA-384 measurement register that can be updated during TD run-time.

SEAM Secure
Arbitration
Mode

Yes See TDX ISA.

SEAMRR SEAM Range
Register

Yes A range register used by the BIOS to help configure the SEAM memory range,
where the Intel TDX module is loaded and executed.

Service
TD

Service TD Yes A Trust Domain (TD) VM used to provide a dedicated service/utility. Extends the
TCB of the tenant TD it provides the service to. Migration TD (MigTD) is an
example Service TD.

SEPT Secure EPT Yes An Extended Page Table for GPA-to-HPA translation of TD private HPA. A Secure
EPT is designed to be encrypted with the TD’s ephemeral private key. SEPT pages
are allocated by the host VMM via Intel TDX functions, but their content is
intended to be hidden and is not architectural.

Intel®
SGX

Intel®
Software
Guard
Extensions

No An Intel CPU mode and ISA extensions that support operation and management of
Intel® SGX enclaves.

SoC System on
Chip

No A whole system, including cores, uncore, interconnects etc., packaged as a single
device.

1 In this document, the term “MK-TME” is used to mean both the feature and the encryption engine itself.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 16 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Acronym Full Name New
for
TDX

Description

SPA System
Physical
Address

No The physical address used by the hardware (e.g., caches). See also HPA.

TD Trust Domain Yes Trust Domains (TDs) are designed to be hardware isolated Virtual Machines (VMs)
deployed using Intel® Trust Domain Extensions (Intel® TDX).

TD OS Trust Domain
Operating
System

Yes The guest operating system that runs in a TD.

TD VM TD Virtual
Machine

Yes Same as TD

N/A TD Private
Memory
(Access)

Yes TD Private Memory is designed to hold TD private content, encrypted by the CPU
using the TD ephemeral key.

N/A TD Shared
Memory
(Access)

Yes TD Shared memory is designed to hold content accessible to the TD and the host
software (and/or other TDs). TD shared memory may be encrypted using MKTME
keys managed by the VMM.

TDCS Trust Domain
Control
Structure

Yes Multi-page control structure for a TD. TDCS pages are allocated by the host VMM
via Intel TDX functions, but their content is intended to be non-architectural and
not directly accessible to software.

TDCX Trust Domain
Control
Extension

Yes 4KB physical pages that are intended to hold parts of a multi-page control
structure.

TDR Trust Domain
Root

Yes The root control structure for a TD. The TDR page is allocated by the host VMM
via Intel TDX functions, but its content is intended to be non-architectural and not
directly accessible to software.

TDMR Trust Domain
Memory Range

Yes A range of memory, configured by the host VMM, that is covered by PAMT and is
intended to hold TD private memory and TD control structures.

TDVPS Trust Domain
Virtual
Processor
State

Yes A multi-page structure for holding a TD Virtual CPU (VCPU) state. TDVPS pages are
allocated by the host VMM via Intel TDX functions, but their content is intended to
be non-architectural and not directly accessible to software.

TDVPR Trust Domain
Virtual
Processor Root

Yes A 4KB physical page that is intended to be the root (first) page of a TDVPS.

Intel®
TDX

Intel® Trust
Domain
Extensions

Yes An architecture, based on the TDX Instruction Set Architecture (ISA) extensions
and the Intel TDX module, which supports operation and management of Trust
Domains.

TDX ISA Intel® TDX
Instruction Set
Architecture

Yes Intel CPU Instruction Set Architecture (ISA) extensions that support the Intel TDX
module: an isolated software module that facilitates the operation and
management of Trust Domains.

TEE Trusted
Execution
Environment

No An isolated processing environment in which software can be securely executed
irrespective of the rest of the system.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 17 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Acronym Full Name New
for
TDX

Description

TME Intel® Total
Memory
Encryption

No A memory encryption/decryption engine using an ephemeral platform key
designed to encrypt memory contents exposed externally from the SOC.

N/A WBINVD
Domain

No A set of LPs for which a single WBINVD or WBNOINVD instruction, and the
TDH.PHYMEM.CACHE.WB interface function, apply.

XFAM Extended
Features
Allowed Mask

Yes A mask of CPU extended features (in XCR0 format) that the TD is allowed to use.

1.4. Notation

This section describes the notation used in this document.

1.4.1. Requirement and Definition Commitment Levels

When specifying requirements or definitions, the level of commitment is specified following the convention of RFC 2119:
Key words for use in RFCs to indicate Requirement Levels, as described in the following table: 5

Table 1.3: Requirement and Definition Commitment Levels

Keyword Description

Must “Must”, "Required" or "Shall" means that the definition is an absolute requirement of the
specification.

Must Not “Must Not” or "Shall Not" means that the definition is an absolute prohibition of the
specification.

Should “Should”, or the adjective "Recommended", means that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

Should Not “Should Not”, or the phrase "Not Recommended" means that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood, and the case must be carefully weighed before
implementing any behavior described with this label.

May “May”, or the adjective "Optional", means that an item is discretionary. An implementation
may choose to include the item, while another may omit the same item, because of various
reasons.

1.5. References

1.5.1. Intel Public Documents

Table 1.4: Intel Public Documents 10

Reference Document Version & Date

Intel SDM Intel® 64 and IA-32 Architectures
Software Developer’s Manual

325462-078US,
December 2022

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 18 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Reference Document Version & Date

ISA Extensions Intel® Architecture
Instruction Set Extensions and Future Features
Programming Reference

319433-047,
December 2022

Error Reporting
through EMCA2

RAS Integration and Validation Guide for the Intel Xeon
Processor – Error Reporting through EMCA Gen 2

April 2015

Key Locker Spec Intel Key Locker Specification Sept 2020

FRED Flexible Return and Event Delivery (FRED) May 2022

Processor Topology
Enumeration

Intel® 64 Architecture Processor Topology Enumeration 337015-002, April
2023

1.5.2. Intel TDX Public Documents

Table 1.5: Intel TDX Public Documents

Reference Document Version & Date

TDX Web Page Intel® Trust Domain Extensions (Intel® TDX)

Note: Most documents below are on this web page

TDX Overview An introductory overview of the Intel TDX technology February 2023

TDX Arch Extensions
Spec

A specification of Intel CPU architectural support for Intel TDX May 2021

TDX Loader Spec A specification of how a VMM loads the Intel TDX Module on a
platform

March 2022

MKTMEi Spec Intel® Architecture Memory Integrity Specification Rev. 1.0, March 2020

TDX Module Base
Spec

Overview and base architecture specification of the Intel TDX
Module version 1.5

March 2023

TD Migration Spec Overview and architecture specification of the TD Migration
feature of the Intel TDX Module version 1.5

March 2023

TD Partitioning Spec Overview and Architecture Specification for TD partitioning of
the TDX Module version 1.5

March 2023

TDX Module ABI
Spec

Application Binary Interface (ABI) specification of the Intel TDX
Module version 1.5

March 2023

TDX Module ABI
Incompatibilities

Description of the incompatibilities between TDX 1.0 and TDX
1.4/1.5 that may impact the host VMM and/or guest TDs

March 2023

TDX GHCI Spec Specification of the software interface between the Guest OS
(Tenant and Service TD VMs) and the VMM required for
enabling Intel TDX version 1.5

July 2022

MigTD Design Guide A design guide on how to design and implement a Migration
TD for TDX 1.5 Live migration

October 2021

TDX Developers
Guide

Intel® TDX Guidance for Developers March 2023

TDX Guest Kernel
Hardening

Intel® TDX Guest Kernel Hardening Documentation March 2023

https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html
https://cdrdv2.intel.com/v1/dl/getContent/678938
https://cdrdv2.intel.com/v1/dl/getContent/775917
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://intel.github.io/ccc-linux-guest-hardening-docs/index.html

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 19 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 20 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

2. Overview of Intel® Trust Domain Extensions

Intel® Trust Domain Extensions (Intel® TDX) refers to an Intel technology that extends Virtual Machines Extensions (VMX)
and Multi-Key Total Memory Encryption (MKTME) with a new kind of virtual machine guest called a Trust Domain (TD).
A TD runs in a CPU mode that is designed to protect the confidentiality of its memory contents and its CPU state from
any other software, including the hosting Virtual Machine Monitor (VMM), unless explicitly shared by the TD itself. 5

The TDX solution is built using a combination of Intel® Virtual Machine Extensions (VMX) and Multi-Key Total Memory
Encryption (MK-TME), as extended by the Intel® Trust Domain Extensions Instruction Set Architecture (Intel TDX ISA).
An attested software module called the Intel TDX module is designed to implement the TDX architecture.

The platform is managed by a TDX-aware host VMM. As shown in Figure 2.1 below, a host VMM can launch and manage
both guest TDs and legacy guest VMs. The host VMM maintains all legacy functionality from the legacy VMs’ perspective; 10

it is restricted only with regard to the TDs it manages.

5

TDX-Aware Host VMM

Host VMM managed access
control, enhanced with MK-TME

Intel TDX module managed access control,
leveraging MK-TME and Secure EPT

Intel TDX Module
Running in SEAM Root Mode

Trust Domain

TDX-
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Intel TDX

Host-Side

Interface

Trust Domain

TDX-
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Intel TDX

Guest-Side Interface

Legacy VM

OS

Applications

Drivers

Legacy VM

OS

Applications

Drivers

Platform (Cores, Caches, Devices etc.)

Intel TDX

Guest-Side Interface

Figure 2.1: Intel® Trust Domain Extension Components Overview

2.1. Intel TDX Module Lifecycle

2.1.1. Boot-Time Configuration and Intel TDX Module Loading 15

1. BIOS should activate MKTME with TDX private key IDs, configure the SEAMRR registers and prepares a table of
Convertible Memory Regions (CMRs) – memory regions that can hold TD-private memory pages.

2. BIOS or OS should then install P-SEAMLDR by launching the NP-SEAMLDR ACM.
3. BIOS or OS can retrieve the trusted platform topology and CMR information, as previously checked by MCHECK, using

P-SEAMLDR’s SEAMINFO API. Based on the above, the host VMM should then decide on a set of Trust Domain 20

Memory Regions (TDMRs). TDMR is a region of convertible memory that may contain some reserved sub-regions.
4. The host VMM can then load the Intel TDX module using P-SEAMLDR’s INSTALL API.

2.1.2. Intel TDX Module Initialization, Enumeration and Configuration

1. After loading the Intel TDX module, the host VMM should call the TDH.SYS.INIT function to globally initialize the
module. 25

2. The host VMM should then call the TDH.SYS.LP.INIT function on each logical processor. TDH.SYS.LP.INIT is intended
to initialize the module within the scope of the Logical Processor (LP).

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 21 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

3. The host VMM should then call the TDH.SYS.RD/RDALL or TDH.SYS.INFO function to enumerate the Intel TDX module
functionality and parameters; it should retrieve the trusted platform topology and CMR information as previously
checked by MCHECK.

4. The host VMM should then call the TDH.SYS.RD/RDALL or TDH.SYS.INFO function to enumerate the Intel TDX module
functionality and parameters. If not done already, the host VMM can retrieve the trusted platform topology and 5

CMR information, as previously checked by MCHECK, and decide on the set of TDMRs.
5. The host VMM should then call the TDH.SYS.CONFIG function and pass TDMR information with other configuration

information. TDH.SYS.CONFIG is intended to check the configuration information vs. the Intel TDX module’s trusted
internal data.

6. The host VMM should then call the TDH.SYS.KEY.CONFIG function per package. TDH.SYS.KEY.CONFIG is intended to 10

configure a CPU-generated random key that is used as the Intel TDX module’s global private key. On platforms with
ACT-protected memory, TDH.SYS.KEY.CONFIG also enables ACT memory protection.

7. The host VMM should then use the TDH.SYS.TDMR.INIT function to initialize the TDMRs and their associated control
structures.

The Intel TDX module lifecycle is detailed in Chapter 4. 15

2.2. Guest TD Life Cycle Overview

2.2.1. Guest TD Build

The host VMM can create a new guest TD by allocating and initializing a TD Root (TDR) control structure using the
TDH.MNG.CREATE function. As an input to TDH.MNG.CREATE, the host VMM assigns the TD with a memory protection
key identifier, also known as a Host Key ID (HKID). The HKID can be used by the CPU to tag memory accesses done by the 20

TD and by the multi-key total memory encryption engines (MKTMEs) to select the encryption/decryption keys – the keys
themselves are designed to not be exposed to the host VMM. The VMM should then program the HKID and encryption
key into the MKTME encryption engines using the TDH.MNG.KEY.CONFIG function on each package.

Once the TD is assigned a key, the host VMM can build the TD Control Structure (TDCS) by adding control structure pages,
using the TDH.MNG.ADDCX function, and initialize using the TDH.MNG.INIT function. It can then build the Secure EPT 25

tree using the TDH.MEM.SEPT.ADD function and add the initial set of TD-private pages using the TDH.MEM.PAGE.ADD
function. These pages typically contain Virtual BIOS code and data along with some clear pages for stacks and heap.
Most of the guest TD code and data is dynamically loaded at a later stage. The guest TD can extend run-time
measurement registers, designed to be securely maintained by the Intel TDX module, for the added contents using the
TDG.MR.RTMR.EXTEND function. 30

The host VMM can then create and initialize TD Virtual CPUs (VCPUs). After creating each VCPU using the TDH.VP.CREATE
function, the VMM allocates a set of pages to hold the VCPU state (in a structure called TDVPS) using the TDH.VP.ADDCX
function. The host VMM can then initialize the VCPU using the TDH.VP.INIT function.

After the initial set of pages is added and extended, the VMM can finalize the TD measurement using the
TDH.MR.FINALIZE function. 35

2.2.2. Guest TD Execution

The host VMM may enter the TD (launch the TD for the first time or resume a previously intercepted TD execution) using
the TDH.VP.ENTER function. The Intel TDX module is designed to load CPU state from the TDVPS structure and perform
VM entry to go into SEAM non-root mode.

When TD exit is triggered, the Intel TDX module is designed to save CPU state into the TDVPS structure, load the CPU 40

state saved on TD entry, and switch back to non-SEAM root mode (SEAMRET) at the instruction following SEAMCALL. The
VMM can then inspect the TD exit information in General Purpose Registers (GPRs).

2.2.3. Guest TD Management during its Run-Time

During TD lifetime, the VMM might need to dynamically control the TD and manage the resources assigned to it. The
Intel TDX module provides the VMM with functions to support scenarios such as: 45

• Adding and removing TD pages.

• Changing page mapping sizes.

• Reclaiming the HKIDs from a TD and assigning them to another TD.

• Destroying an existing TD.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 22 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

2.3. Intel TDX Operation Modes and Transitions

The Intel TDX module is designed to provide two main new logical modes of operation built upon the new SEAM root
and non-root CPU modes added to the Intel VMX architecture: logical TDX Root Mode, and logical TDX Non-Root Mode.
Figure 2.2 below shows the Intel TDX logical modes and transitions (in red) on top of the CPU architectural modes.

Default

VMXOFFVMXON

Host VMM

Legacy VM

VM
Exit

Parallel VMM

Parallel VM

Opt-out SMM

Opt-in SMM

Opt-out SMM

Parallel VM Entry
Parallel VM Exit
(SMI, VMCALL) Intel

TDX Module

SEAMRET

SEAMCALL

VM
EntryVM

Entry

VM
Exit

VMX
Non-Root

VMX
Root

Out of
VMX

SMM SEAMLegacy VMX

VM
Exit

VM
Entry

TD Exit

TD
Entry

Host-Side
Function

Guest-Side
Function

Logical TDX Non-Root

Logical
TDX Root

TD

 5

Figure 2.2: Overview of Intel TDX Modes & Transitions based on VMX and SEAM Modes and Transitions

The following table adds more details.

Table 2.1: Overview of Intel TDX Modes

Intel TDX
Logical Mode

Intel VMX Mode SEAM Mode Description

Logical TDX
Root

VMX Root Non-SEAM
(mostly),
SEAM Root
Mode (during
host-side Intel
TDX functions
execution)

TDX root mode is mostly identical to the legacy VMX root operation
mode. It is generally used for host VMM operation.

Host-side Intel TDX functions, triggered by SEAMCALL, are provided
by the Intel TDX module. Logically, host-side functions run in TDX
root mode, though the CPU’s SEAM mode is on.

Logical TDX
Non-Root

VMX Non-Root
(mostly),
VMX Root
(during guest-
side Intel TDX
flows execution)

SEAM TDX non-root mode is used for TD guest operation. TDX non-root
operation is similar to legacy VMX non-root operation, with
changes and restrictions to better ensure that no other software or
hardware has direct visibility of the TD memory and state.

The changes in TDX non-root mode vs. legacy VMX non-root
operation are implemented by:

• The CPU running in SEAM non-root mode. This modifies the
address translation to support Secure EPT and usage of private
HKIDs, and it also modifies the VMX operation (entry, exit,
etc.).

• The Intel TDX module, acting as the root VMM for the guest
TD, using VMX and SEAM to virtualize the CPU behavior and
emulate the required TDX non-root behavior.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 23 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Intel TDX
Logical Mode

Intel VMX Mode SEAM Mode Description

Guest-side Intel TDX flows, triggered by a VM Exit, are provided by
the Intel TDX module. Logically, guest-side functions run in TDX
non-root mode, though the CPU runs VMX root mode.

TDX non-root operation is described in Chapter 11.

Intel TDX transitions between TDX root operation and TDX non-root operation include TD Entries, from logical TDX root
to logical TDX non-root mode, and TD Exits from logical TDX non-root to logical TDX root mode. A TD Exit might be
asynchronous, triggered by some external event (e.g., external interrupt or SMI) or an exception, or it might be
synchronous, triggered by a TDCALL(TDG.VP.VMCALL) function. 5

2.4. Guest TD Private Memory Protection

 Memory Encryption

The Intel TDX module helps protect guest TD private memory using memory encryption and integrity protection as
enabled by the CPU’s MKTME and TDX ISA features. The Intel TDX module adds key management functionality to help
enforce its security objectives. 10

Memory encryption is designed to be performed by encryption engines that reside at each memory controller. An
encryption engine holds a table of encryption keys, known as the Key Encryption Table (KET). An encryption key is
selected for each memory transaction based on a Host Key Identifier (HKID) that should be provided with the transaction.

In the first generation of MKTME, HKID is “stolen” from the physical address by allocating a configurable number of bits
from the top of the physical address. TDX ISA is designed to further partition the HKID space into shared HKIDs for legacy 15

MKTME accesses and private HKIDs for SEAM-mode-only accesses. Future generations might choose to express HKID
differently.

During SEAM non-root operation, memory accesses can be qualified as either shared or private, based on the value of a
new SHARED bit in the Guest Physical Address (GPA). Shared accesses are intended to behave as legacy memory accesses
and use the upper bits of the host physical address as an HKID, which must be from the range allocated to legacy MKTME. 20

Private accesses use the guest TD’s private HKID.

The host-side Intel TDX functions help provide the means for the host VMM to manage HKID assignment to guest TDs,
configure the memory encryption engines, etc., while better assuring proper operation to help maintain the TDX’s
security objectives. By design, the host VMM does not have access to the encryption keys.

Key management is described in Chapter 4. 25

2.4.2. Address Translation

Guest Physical Address (GPA) space is divided into private and shared sub-spaces, determined by the SHARED bit of GPA.

As designed, the CPU translates shared GPAs using the Shared EPT, which resides in host VMM memory. The Shared EPT
is directly managed by the host VMM – the same as with legacy VMX.

As designed, the CPU translates private GPAs using a separate Secure EPT. The Secure EPT pages are encrypted and 30

integrity-protected with the TD’s ephemeral private key. The Secure EPT is not intended to be directly accessible by any
software other than the Intel TDX module, nor by any devices. Secure EPT can be managed indirectly by the host VMM,
using Intel TDX functions. The Intel TDX module helps ensure that the Secure EPT security properties are kept. At the
end of translation, the CPU sets the HKID bits in the HPA to the TD’s assigned HKID.

TD private memory management is described in Chapter 9. 35

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 24 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

TD0

CR3 Private Code/data

Private Code/data

Guest Physical Address

Shared Data

CPU PMH

Extended
Page Tables
(Secure EPT)

Shared Extended
Page Tables
(Shared EPT)

Guest Physical Address (GPA)

Physical
Address +
HKID

TD Private
HKID

Shared GPA Space
Memory encrypted with a
key shared with VMM

Private GPA Space
Memory encrypted with a
TD private key

Yes No

GPA.SHARED

HPA Space
Physical Memory
Pages

Figure 2.3: Secure EPT Concept

2.5. Guest TD State Protection

Intel TDX helps protect the confidentiality and integrity of a guest TD and the state of its Virtual CPUs (VCPUs) with the
following mechanisms: 5

Protected Control
Structures

TD-scope and TD VCPU-scope control structures, which hold guest TD metadata and TD VCPU
state, are not directly accessible to any software (besides the Intel TDX module) or devices. As
designed, the control structures are encrypted and integrity-protected with a private key and
managed by Intel TDX functions. TD control structures are described in Chapter 6.

VCPU State on TD
Transitions

On asynchronous TD exits, which usually happen due to external events, the CPU state is saved
to the VCPU control structures, and a synthetic state is loaded into the CPU registers. On the
following TD Entry, the CPU state is restored from the protected control structures.

On synchronous TD-initiated exit, using the TDCALL(TDG.VP.VMCALL) function, selected GPR
and XMM state can be passed as-is to the host VMM. On the following TD entry, that state can
be passed back as-is to the guest TD.

2.6. Intel TDX I/O Model (w/o TDX Connect)

Note: This section describes I/O support without TDX Connect. For TDX Connect details, see the [TDX Connect Spec].

The TD guest can use the following I/O models:

• Paravirtualized devices

• Paravirtualized devices with MMIO emulation 10

• Direct assignment of devices to a TD

The Intel TDX architecture does not provide specific mechanisms for trusted I/O. Any integrity or confidentiality
protection of data submitted to or received from physical or emulated devices must be done by the guest software using
cryptography.

Intel TDX I/O is detailed in Chapter 13. 15

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 25 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

2.7. Measurement and Attestation

As designed, during TD launch, the initial contents and configuration of the TD are recorded by the Intel TDX module. In
addition, run-time measurement registers can be used by the guest TD software, e.g., to measure a boot process. At run-
time, the Intel TDX architecture reuses the Intel® Software Guard Extensions (Intel® SGX) attestation infrastructure to
provide support for attesting to these measurements as described below. 5

Intel TDX attestation is intended to be used in two phases:

1. Software within the guest TD can use the TDCALL(TDG.MR.REPORT) function to request the Intel TDX module to
generate an integrity protected TDREPORT structure. The Intel TDX ISA provides support for enabling the Intel TDX
module to create this structure that includes the TD’s measurements, the Intel TDX module’s measurements, and a
value provided by the guest TD software. This will typically be an asymmetric key that the attestation verifier can 10

use to establish a secure channel or protect sensitive data to be sent to the TD software.
2. An Intel SGX Quoting Enclave, written specifically to support quoting Intel TDX TDs, uses a new ENCLU instruction

leaf, EVERIFYREPORT2, to help check the integrity of the TDG.MR.REPORT. If it passes, the Quoting Enclave can use
a certified quote signing key to sign a quote containing the guest TD’s measurements and the additional data being
quoted. 15

The Quoting Enclave can run anywhere on the platform where Intel SGX is supported.

Note: Running Intel SGX enclaves within a guest TD is not supported.

3
Intel Confidential

3

TD Quoting EnclaveTrust Domain

1) TDREPORT

(TDCALL Leaf)

2) EVERIFYTDREPORT2

(Instruction)TDREPORT

(MAC)

TDQUOTE

(Signed)

TDCS

Quote Key

MAC Key MAC Key

VM

Data/Key

Figure 2.4: TD Attestation

TD measurement and attestation is described in Chapter 12. 20

2.8. Intel TDX Managed Control Structures

As designed, the Intel TDX module holds and manages a set of control structures that are not directly accessible to
software (except the Intel TDX module itself). The controls structures are encrypted with private keys and HKIDs, and
their content is only accessible in SEAM mode. Most control structures are addressable by the host VMM, which is
responsible for allocating the memory to hold them. 25

The Intel TDX module uses control structures to help manage TD-private memory, transitions into and out of logical TDX
non-root operation (TD entries and TD exits), as well as processor behavior in SEAM non-root operation.

Table 2.2: TDX-Managed Control Structures Overview

Scope Name Meaning Description

Platform KOT Key Ownership
Table

Designed to control private HKID assignment. KOT is internal to
the Intel TDX module, intended not to be directly accessible to
any other software.

PAMT Physical Address
Metadata Table

PAMT is designed to hold metadata of each page in a Trust
Domain Memory Range (TDMR). It controls assignment of
physical pages to guest TDs, etc. The PAMT is intended not to
be directly accessible to software. It resides in memory
allocated by the host VMM on TDX initialization.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 26 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Scope Name Meaning Description

Guest TD TDR Trust Domain
Root

TDR is intended to be the root control structure of a guest TD.
It controls the key management and build/teardown process.
The TDR is not intended to be directly accessible to software. It
resides in memory allocated by the host VMM, via Intel TDX

interface functions.

TDCS Trust Domain
Control Structure

TDCS is intended to control the operation of a guest TD as a
whole. The TDCS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via

Intel TDX interface functions.

SEPT Secure EPT Secure EPT is an Extended Page Table (EPT) tree, managed by
the TDX module, and used to help securely manage address
translation for the TD private pages. The SEPT is not intended
to be directly accessible to software. SEPT pages reside in

memory allocated by the host VMM via Intel TDX interface
functions.

Guest TD
VCPU

TDVPS Trust Domain
Virtual Processor
State

The TDVPS helps control the operation and hold the state of a
guest TD virtual processor. It holds the TD VMCS and its
auxiliary structures as well as other non-VMX control and state
fields. The TDVPS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via

Intel TDX interface functions.

Intel TDX control structures are described in Chapter 6.

2.9. Intel TDX Interface Functions

The Intel TDX module implements functions that are triggered by executing two TDX instructions:

SEAMCALL The instruction used by the host VMM to invoke host-side TDX interface functions. The desired interface 5

function is selected by an input operand (leaf number, in RAX). Host-side interface function names start
with TDH (Trust Domain Host).

TDCALL The instruction used by the guest TD software (in SEAM non-root mode) to invoke guest-side TDX
functions. The desired interface function is selected by an input operand (leaf number, in RAX). Guest-
side interface function names start with TDG (Trust Domain Guest). 10

Intel TDX interface function details are described in the [TDX Module ABI Spec].

2.9.1. Host-Side (SEAMCALL Leaf) Interface Functions

Table 2.3: Host-Side (SEAMCALL Leaf) Interface Functions

Class Interface Function Name Leaf

Description

Intel TDX Module Management TDH.SYS.CONFIG 45 Globally configure the Intel TDX module

Intel TDX Module Management TDH.SYS.INFO 32 Get Intel TDX module information

Intel TDX Module Management TDH.SYS.INIT 33 Globally initialize the Intel TDX module

Intel TDX Module Management TDH.SYS.KEY.CONFIG 31 Configure the Intel TDX global private key on the
current package

Intel TDX Module Management TDH.SYS.LP.INIT 35 Initialize the Intel TDX module per logical processor

Intel TDX Module Management TDH.SYS.LP.SHUTDOWN 44 Does nothing; provided for backward compatibility

Intel TDX Module Management TDH.SYS.RD 34 Read a TDX Module global-scope metadata field

Intel TDX Module Management TDH.SYS.RDALL 37 Read all host-readable TDX Module global-scope
metadata fields

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 27 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Class Interface Function Name Leaf

Description

Intel TDX Module Management TDH.SYS.SHUTDOWN 52 Shutdown the Intel TDX module and prepare handoff
data

Intel TDX Module Management TDH.SYS.TDMR.INIT 36 Partially initialize a Trust Domain Memory Region
(TDMR)

Intel TDX Module Management TDH.SYS.UPDATE 53 Populate Intel TDX module state from handoff data

TD Management TDH.MNG.ADDCX 1 Add a control structure page to a TD

TD Management TDH.MNG.CREATE 9 Create a guest TD and its TDR root page

TD Management TDH.MNG.INIT 21 Initialize per-TD control structures

TD Management TDH.MNG.KEY.CONFIG 8 Configure the TD private key on a single package

TD Management TDH.MNG.KEY.FREEID 20 Mark the guest TD’s HKID as free

TD Management TDH.MNG.KEY.RECLAIMID 27 Does nothing; provided for backward compatibility

TD Management TDH.MNG.RD 11 Read TD metadata

TD Management TDH.MNG.VPFLUSHDONE 19 Check all of a guest TD’s VCPUs have been flushed by
TDH.VP.FLUSH

TD Management TDH.MNG.WR 13 Write TD metadata

VCPU Scope TDH.VP.ADDCX 4 Add a control structure page to a TD VCPU

VCPU Scope TDH.VP.CREATE 10 Create a guest TD VCPU and its TDVPR root page

VCPU Scope TDH.VP.ENTER 0 Enter TDX non-root operation

VCPU Scope TDH.VP.FLUSH 18 Flush the address translation caches and cached TD
VMCS associated with a TD VCPU

VCPU Scope TDH.VP.INIT 22 Initialize the per-VCPU control structures

VCPU Scope TDH.VP.RD 26 Read VCPU metadata

VCPU Scope TDH.VP.WR 43 Write VCPU metadata

Physical Memory Management TDH.PHYMEM.CACHE.WB 40 Write back the contents of the cache on a package

Physical Memory Management TDH.PHYMEM.PAGE.RDMD 24 Read the metadata of a page in a TDMR

Physical Memory Management TDH.PHYMEM.PAGE.RECLAIM 28 Reclaim a physical memory page owned by a TD (i.e.,
TD private page, Secure EPT page or a control structure
page)

Physical Memory Management TDH.PHYMEM.PAGE.WBINVD 41 Write back and invalidate all cache lines associated
with the specified memory page and HKID

Private Memory Management TDH.MEM.PAGE.ADD 2 Add a 4KB private page to a TD during TD build time

Private Memory Management TDH.MEM.PAGE.AUG 6 Dynamically add a 4KB private page to an initialized TD

Private Memory Management TDH.MEM.PAGE.DEMOTE 15 Split a 2MB or a 1GB private TD page mapping into 512
4KB or 2MB page mappings respectively

Private Memory Management TDH.MEM.PAGE.PROMOTE 23 Merge 512 consecutive 4KB or 2MB private TD page
mappings into one 2MB or 1GB page mapping
respectively

Private Memory Management TDH.MEM.PAGE.RELOCATE 5 Relocate a 4KB mapped page from its HPA to another

Private Memory Management TDH.MEM.PAGE.REMOVE 29 Remove a private page from a guest TD

Private Memory Management TDH.MEM.RANGE.BLOCK 7 Block a TD private GPA range

Private Memory Management TDH.MEM.RANGE.UNBLOCK 39 Remove the blocking of a TD private GPA range

Private Memory Management TDH.MEM.RD 12 Read from private memory of a debuggable guest TD

Private Memory Management TDH.MEM.SEPT.ADD 3 Add and map a 4KB Secure EPT page to a TD

Private Memory Management TDH.MEM.SEPT.RD 25 Read a Secure EPT entry

Private Memory Management TDH.MEM.SEPT.REMOVE 30 Remove a Secure EPT page from a TD

Private Memory Management TDH.MEM.TRACK 38 Increment the TD’s TLB tracking counter

Private Memory Management TDH.MEM.WR 14 Write to private memory of a debuggable guest TD

Measurement and Attestation TDH.MR.EXTEND 16 Extend the guest TD measurement register during TD
build

Measurement and Attestation TDH.MR.FINALIZE 17 Finalize the guest TD measurement register

Service TD TDH.SERVTD.BIND 48 Bind a service TD to a target TD

Service TD TDH.SERVTD.PREBIND 49 Pre-bind a service TD to a target TD

Migration TDH.MIG.STREAM.CREATE 96 Create a migration stream

Migration Export TDH.EXPORT.ABORT 64 Abort an export session

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 28 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Class Interface Function Name Leaf

Description

Migration Export TDH.EXPORT.BLOCKW 65 Block a TD private page for writing

Migration Export TDH.EXPORT.MEM 68 Export a list of TD private pages contents and/or
cancellation requests

Migration Export TDH.EXPORT.PAUSE 70 Pause the exported TD

Migration Export TDH.EXPORT.RESTORE 66 Restore a list of TD private 4KB pages’ Secure EPT entry
states after an export abort

Migration Export TDH.EXPORT.STATE.IMMUTABLE 72 Start an export session and export the TD's immutable
state

Migration Export TDH.EXPORT.STATE.TD 73 Export the TD's mutable state

Migration Export TDH.EXPORT.STATE.VP 74 Export a VCPU mutable state

Migration Export TDH.EXPORT.TRACK 71 End the current in-order export phase epoch and either
start a new epoch or start the out-of-order export
phase

Migration Export TDH.EXPORT.UNBLOCKW 75 Unblock a page that has been blocked for writing

Migration Import TDH.IMPORT.ABORT 80 Abort an import session

Migration Import TDH.IMPORT.COMMIT 82 Commit the import session and allow the imported TD
to run

Migration Import TDH.IMPORT.END 81 End an import session

Migration Import TDH.IMPORT.MEM 83 Import a list of TD private pages contents and/or
cancellation requests based on a migration bundle in
shared memory

Migration Import TDH.IMPORT.STATE.IMMUTABLE 85 Start an import session and import the TD's immutable
state

Migration Import TDH.IMPORT.STATE.TD 86 Import the TD's mutable state

Migration Import TDH.IMPORT.STATE.VP 87 Import a VCPU mutable state

Migration Import TDH.IMPORT.TRACK 84 End the current in-order import phase epoch and either
start a new epoch or start the out-of-order import
phase

2.9.2. Guest-Side (TDCALL Leaf) Interface Functions

Table 2.4: Guest-Side (TDCALL Leaf) Interface Functions

Class Interface Function Name Leaf

Description

Intel TDX Module Management TDG.SYS.RD 11 Read a TDX Module global-scope metadata field

Intel TDX Module Management TDG.SYS.RDALL 12 Read all gust-readable TDX Module global-scope
metadata fields

TD Management TDG.VM.RD 7 Read a TD-scope metadata field

TD Management TDG.VM.WR 8 Write a TD-scope metadata field

VCPU Scope TDG.VP.CPUIDVE.SET 5 Control delivery of #VE on CPUID instruction execution

VCPU Scope TDG.VP.ENTER 25 Enter L2 VCPU operation

VCPU Scope TDG.VP.INFO 1 Get TD execution environment information

VCPU Scope TDG.VP.INVEPT 26 Invalidate cached EPT translations for selected L2 VMs

VCPU Scope TDG.VP.INVGLA 27 Invalidate cached translations for selected pages in an
L2 VM

VCPU Scope TDG.VP.RD 9 Read a VCPU-scope metadata field

VCPU Scope TDG.VP.VEINFO.GET 3 Get Virtualization Exception Information for the recent
#VE exception

VCPU Scope TDG.VP.VMCALL 0 Call a host VM service

VCPU Scope TDG.VP.WR 10 Write a VCPU-scope metadata field

Private Memory Management TDG.MEM.PAGE.ACCEPT 6 Accept a pending private page into the TD

Private Memory Management TDG.MEM.PAGE.ATTR.RD 23 Read the GPA mapping and attributes of a TD private
page

Private Memory Management TDG.MEM.PAGE.ATTR.WR 24 Write the attributes of a private page

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 29 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Class Interface Function Name Leaf

Description

Measurement and Attestation TDG.MR.REPORT 4 Creates a cryptographic report of the TD

Measurement and Attestation TDG.MR.RTMR.EXTEND 2 Extend a TD run-time measurement register

Measurement and Attestation TDG.MR.VERIFYREPORT 22 Verify a cryptographic report of a TD, generated on the
current platform

Service TD TDG.SERVTD.RD 18 Read a target TD metadata field

Service TD TDG.SERVTD.WR 20 Write a target TD metadata field

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 30 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

3. Software Use Cases

This chapter summarizes the software use cases (also known as software flows) used with the Intel TDX module.

3.1. Intel TDX Module Lifecycle

3.1.1. Intel TDX Module Platform-Scope First-Time Initialization

This sequence is intended to be used by the host VMM to initialize the Intel TDX module at the platform scope. 5

Table 3.1: Typical Intel TDX Module Platform-Scope First-Time Initialization Sequence

Phase Intel TDX Function Scope Execute On Description

Boot 1 N/A Platform Each core BIOS configures Convertible Memory Regions
(CMRs) and activates MKTME; MCHECK checks
them and securely stores the information.

P-SEAMLDR
Loading

2 N/A Platform One of the
BSPs

BIOS or OS launches the NP-SEAMLDR ACM,
which loads the Intel P-SEAMLDR module.

Intel TDX
Module
Loading

3 SEAMLDR.INSTALL Platform Each LP,
serially

VMM calls the Intel P-SEAMLDR module with
“load” scenario to install the first TDX module.
The TDX module is installed when
SEAMLDR.INSTALL is called on the last LP.

Intel TDX
Module
Initialization

4 TDH.SYS.INIT Platform Any one LP Perform global initialization of the Intel TDX
module.

5 TDH.SYS.LP.INIT LP Each LP Perform LP-scope, core-scope and package-
scope initialization, checking and configuration
of the platform and the Intel TDX module.

Enumeration
and
Configuration

6 TDH.SYS.RD* or
TDH.SYS.INFO

Platform Any
initialized LP

Retrieve Intel TDX module information and
convertible memory (CMR) information.

7 TDH.SYS.CONFIG Platform Any one LP Configure the Intel TDX module with TDMR and
PAMT setup.

8 N/A Package Each Package If any MODIFIED cache lines may exist for the
PAMT ranges, flush them to memory using, e.g.,
WBINVD.

9 TDH.SYS.KEY.CONFIG Package Each Package Configure the Intel TDX global private key used
for encrypting PAMT and TDR on the hardware
(other TD-scope control structures are
encrypted with their respective TD’s ephemeral
private keys).

At this point any Intel TDX function may be executed on any LP.

Memory
Initialization

10 TDH.SYS.TDMR.INIT

(multiple)

Platform One or more
LPs

Called multiple times to gradually initialize the
PAMT structure for each TDMR.

Once each 1GB block of TDMR has been initialized by TDH.SYS.TDMR.INIT, it can be used to hold TD -
private pages.

3.1.2. Intel TDX Module Shutdown and Update

This sequence is intended to be used by the host VMM to gracefully shut down the Intel TDX module and install a new
Intel TDX module. There are 2 scenarios: 10

• Reload scenario – guest TDs’ context and memory are lost.

• Update scenario - guest TDs’ context and memory are preserved.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 31 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Intel TDX Module Reload

In the reload scenario, the previous TDX module in SEAM range is erased when the next TDX module is installed. Since
in this scenario the previous module can’t pass any information to the next TDX module, the next TDX module starts
afresh, and all guest TDs’ context and memory out of SEAM range becomes effectively inaccessible.

Table 3.2: TDX Module Reload Sequence 5

Phase Intel TDX Function Scope Execute On Description

P-SEAMLDR 1 SEAMLDR.INSTALL with
“load” scenario

Platform All LPs Installs the next TDX module, regardless of the
previous TDX module.

Next TDX
module

The initialization sequence continues in the same way as described in 3.1.1 above, steps 3 to 8.

 Intel TDX Module Update

In the update scenario, the previous TDX module in SEAM range is not fully erased; the previous TDX module can be asked
to leave “handoff data” in a specific location of the SEAM range, so that the next TDX module would be able to initialize
itself from this handoff data. The next TDX module can thus keep supporting guest TDs’ context and memory. 10

Table 3.3: TDX Module TD-Preserving Update Sequence

Phase Intel TDX Function Scope Execute On Description

Previous
TDX
Module

1 TDH.SYS.SHUTDOWN Platform Selected LP Prepare handoff data and mark the TDX
module’s global state as “shutdown”.

P-SEAMLDR 2 SEAMLDR.INSTALL with
“update” scenario

Platform All LPs,
serially

Install the next TDX module without clearing the
handoff data.

Next TDX
Module

3 TDH.SYS.INIT Platform Selected LP Perform global initialization of the Intel TDX
module.

4 TDH.SYS.LP.INIT LP All LPs Perform LP-scope, core-scope and package-
scope initializations, checking and configuration
of the platform and the Intel TDX module.

5 TDH.SYS.UPDATE Platform Selected LP Populate internal variables from handoff data.
Mark the TDX module’s global state as “ready”.

At this point any Intel TDX function may be executed on any LP (don’t call TDH.SYS.CONFIG,
TDH.SYS.KEY.CONFIG and TDH.SYS.TDMR.INIT).

In particular, TDs created by previous TDX modules can be re-entered.

3.2. TD Build

The following sequence is intended to be used by the host VMM to build a TD.

Table 3.4: Typical TD Build Sequence 15

 Step Description SEAMCALL Leaf
Functions

A TD Creation
and Key
Resource
Assignment

1 The host VMM finds/allocates a free HKID for the new TD. TDH.MNG.CREATE

TDH.MNG.KEY.CONFIG 2 The host VMM allocates a 4KB page for the TDR in TDMR.

3 The host VMM creates the new TD by calling the TDH.MNG.CREATE
function (passing HPA of the TDR page). This initializes the target TDR
page.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 32 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Step Description SEAMCALL Leaf
Functions

4 The TD host VMM configures the MKTME hardware with the TD’s
private key by calling the TDH.MNG.KEY.CONFIG function on each
package.

5 At this point, the TD private memory is accessible. The VMM can use
Intel TDX interface functions to create control structures and TD private
pages as described below.

B TDCS
Memory
Allocation
and TD
Initialization

1 The host VMM allocates multiple 4KB TDCX pages for TDCS. The
number of required TDCX pages is enumerated by TDH.SYS.RD* or
TDH.SYS.INFO.

TDH.MNG.ADDCX

TDH.MNG.INIT

2 For each TDCX page, the host VMM calls the TDH.MNG.ADDCX function
(passing HPA of TDCX) to add the page to the TD.

3 The host VMM builds a TD_PARAMS structure. For example, the TD
configuration parameters can be obtained from a TD manifest supplied
by the TD owner.

4 The host VMM calls the TDH.MNG.INIT function (passing the
TD_PARAMS structure) to initialize the TD.

C Virtual
Processor
Creation and
Configuration
(Executed per
each VCPU)

1 The host VMM allocates target pages for the VCPU’s TDVPR and TDCX
pages in TDMR in the context of a TD. The number of required TDCX
pages is enumerated by TDH.SYS.RD* or TDH.SYS.INFO.

TDH.VP.CREATE

TDH.VP.ADDCX

TDH.VP.INIT

TDH.VP.WR 2 The host VMM creates a new TD virtual CPU by calling the
TDH.VP.CREATE function (passing the HPA of the new TDVPR page and
its owner TDR page).

3 For each TDCX page, the host VMM calls the TDH.VP.ADDCX function
(passing the HPA of the new TDCX page and its parent TDVPR page).

4 The host VMM initializes the TD VCPU by calling the TDH.VP.INIT
function (passing the HPA of its TDVPR page). It also passes a single 64b
parameter that is later passed to the VBIOS in the initial value of RCX.
This parameter can be used as a pointer to a configuration structure in
shared memory.

5 The host VMM allocates Shared EPT for each VP.

6 The host VMM uses the TDH.VP.WR function to write to the TD VMCS
Shared EPTP field.

7 The host VMM may modify a few TD VMCS execution control fields
using TDH.VP.WR.

D TD Boot
Memory
Setup

1 The host VMM loads the TD boot image to its memory. The boot image
contains code and data pages that typically include a virtual BIOS, OS
boot loader, configuration, etc.

TDH.MEM.SEPT.ADD

TDH.MEM.PAGE.ADD

TDH.MR.EXTEND

2 The host VMM builds the TD Secure EPT by allocating physical pages
and calling the TDH.MEM.SEPT.ADD function multiple times.

3 The host VMM allocates the initial set of physical pages for the TD boot
image and maps them into host address space.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 33 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Step Description SEAMCALL Leaf
Functions

4 For each TD page:

1. The host VMM specifies a TDR as a parameter and calls the
TDH.MEM.PAGE.ADD function. It copies the contents from the TD
image page into the target TD page which is encrypted with the TD
ephemeral key. TDH.MEM.PAGE.ADD also extends the TD
measurement with the page GPA.

2. The host VMM extends the TD measurement with the contents of
the new page by calling the TDH.MR.EXTEND function on each 256-
byte chunk of the new TD page.

E TD
Measurement
Finalization

1 The host VMM calls the TDH.MR.FINALIZE function, which finalizes the
TD measurement.

TDH.MR.FINALIZE

2 At this point, the TD is finalized.

• Its measurement cannot be modified anymore (except the run-time
measurement registers).

• TD VCPUs can be entered using SEAMCALL(TDH.VP.ENTER).

3.3. TD Run Time

3.3.1. Private Memory Management

 Dynamic Page Addition (Shared to Private Conversion)

The following sequence is intended to be used by the host VMM to dynamically add a page to a guest TD. 5

Host VMM
Intel TDX
Module

Guest TD

TDG.VP.VMCALL
Request GPA Range Allocation

TD Exit

TDH.MEM.SEPT.ADD(TDR, GPA, level)
Build S-EPT tree as required

TDH.MEM.PAGE.AUG(TDR, GPA)
Add one or more 4KB pages as requested

TDH.VP.ENTER
Return TDVMCALL output

VM entry

TDG.MEM.PAGE.ACCEPT(GPA)
For every 4KB page that was added

Figure 3.1: Typical Dynamic Page Addition Sequence

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 34 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Table 3.5: Typical Dynamic Page Addition (Shared to Private Conversion) Sequence

Phase Side Intel TDX Function Scope Execute
On

Description

Allocation
Request

1 TD TDG.VP.VMCALL TD Any LP Optional software protocol: Request
GPA range allocation.

Page
Addition

2 VMM TDH.MEM.SEPT.ADD TD Any LP If required, update the Secure EPT.

3 VMM TDH.MEM.PAGE.AUG
(multiple)

TD Any LP Add one or more new 4KB or 2MB
private pages.

At this point, the new page is pending acceptance by the guest TD and cannot be accessed by it yet.

4 VMM TDH.VP.ENTER TD Any LP Optional software protocol: Return
TDG.VP.VMCALL result.

Page
Acceptance

5 TD TDG.MEM.PAGE.ACCEPT
(multiple)

TD Any LP Accept the new pending page(s).
Content of each page is zeroed out.

At this point, the new page can be accessed by the guest TD.

 Dynamic Page Removal (Private to Shared Conversion)

The following sequence is intended to be used by the host VMM to dynamically remove a page from a guest TD.

Intel TDX
Module

Host VMM Guest TD

TDG.VP.VMCALL
Release GPA Range

TD Exit (TDVMCALL)
TDH.VP.ENTER

Return TDG.VP.VMCALL output
VM Entry

TDH.MEM.RANGE.BLOCK(TDR, GPA, level)
For every page to be removed

TDH.MEM.TRACK(TDR)

IPI

VM Exit (external interrupt)

TD Exit (external interrupt)

TDH.VP.ENTER

VM Entry

TDH.MEM.PAGE.REMOVE(TDR, GPA, level)
For every page to be removed

TDH.PHYMEM.PAGE.WBINVD(HPA, HKID)
For every page, before it is re-allocated to any s/w

TLB Tracking Sequence

 5

Figure 3.2: Typical Dynamic Page Removal Sequence

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 35 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Table 3.6: Typical Dynamic Page Removal (Private to Shared Conversion) Sequence

Phase Side Intel TDX Function Scope Execute
On

Description

Ballooning
Notification

1 TD TDG.VP.VMCALL TD Any LP Optional software protocol: Release
GPA range.

2 VMM TDH.VP.ENTER TD Any LP Optional software protocol: Return
TDG.VP.VMCALL result.

TLB
Tracking
Sequence

3 VMM TDH.MEM.RANGE.BLOCK
(multiple)

TD Any LP Block private pages from further address
translation.

4 VMM TDH.MEM.TRACK TD Any one
LP

Increment the TD’s TLB epoch.

5 VMM N/A TD Multiple
LPs

Send an IPI, causing TD exit on any
remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.

Page
Removal

6 VMM TDH.MEM.PAGE.REMOVE
(multiple)

TD Any LP Clear Secure EPT entry.

Non-ACT platforms: Mark the physical
page as free.

ACT platforms: Flush cache lines of the
removed page(s) and fill them with
random encrypted data. Then mark the
physical page(s) as free and set the ACT
bit(s) to shared.

Cache
Flushing &
Content Init

Before re-allocating any of the removed pages to any use, the host VMM should ensure none of the cache
lines of the removed pages are in the MODIFIED state to avoid corruption due to cache line aliasing. This is
done using one of the following methods:

7a VMM Non-ACT platforms:
TDH.PHYMEM.PAGE.WBINVD
(multiple)

TD Any one
LP

Flush the cache lines of the removed
page(s).

7b VMM WBNOINVD Platform One LP
per
WBINVD
domain2

Globally write back all caches.

7c VMM WBINVD Platform One LP
per
WBINVD
domain3

Globally write back and invalidate all
caches.

8 VMM MOVDIR64B Page Any LP Initialize the physical page content for
use with a new shared HKID.

2 Some CPUs may require running WBNOINVD per a set of LPs that is smaller than the set of all LPs in a package.

3 Some CPUs may require running WBINVD per a set of LPs that is smaller than the set of all LPs in a package.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 36 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Page Promotion (Mapping Merge)

Page size promotion is intended to be used by the host VMM to merge 512 pages mapped as 4KB or 2MB into a single
page mapped as 2MB or 1GB, respectively. It is detailed in 9.11.2.

Intel TDX
Module

Host VMM Guest TD

TDH.MEM.PAGE.PROMOTE(TDR, GPA, level)

TDH.PHYMEM.PAGE.WBINVD(HPA, HKID)
For the removed S-EPT page, before it is

 re-allocated to any s/w

TLB Tracking Sequence (not detailed here)

Figure 3.3: Typical Page Promotion Sequence 5

Table 3.7: Typical Page Promotion (Mapping Merge) Sequence

Phase Intel TDX Function Scope Execute On Description

TLB
Tracking
Sequence

1 TDH.MEM.RANGE.BLOCK TD Any LP Block the GPA range to be merged from
further address translation.

2 TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.

3 N/A TD Multiple LPs Send an IPI, causing TD exit on any remote
LP associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.

Promotion 4 TDH.MEM.PAGE.PROMOTE TD Any LP Merge small pages in the GPA range into a
large page.

Cache
Flushing &
Content
Init

5 Non-ACT platforms:
TDH.PHYMEM.PAGE.WBINVD

TD Any LP Flush the removed Secure EPT page’s cache
lines.

ACT platforms: This operation is performed by the TDX
module

6 MOVDIR64B Page Any LP Initialize the physical page content for use
with a new shared HKID.

 Page Demotion (Mapping Split)

Page size demotion is intended to be used by the host VMM to split a page mapped as 1GB or 2MB into 512 pages mapped
as 2MB or 4KB, respectively. It is detailed in 9.11.3. 10

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 37 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Intel TDX
Module

Host VMM Guest TD

TDH.MEM.PAGE.DEMOTE(
TDR, GPA, level, new S-EPT page)

TLB Tracking Sequence (not detailed here)

Figure 3.4: Typical Page Demotion Sequence

Table 3.8: Typical Page Demotion (Mapping Split) Sequence

Phase Intel TDX Function Scope Execute On Description

TLB
Tracking
Sequence

1 TDH.MEM.RANGE.BLOCK TD Any LP Block private large page from further
address translation.

2 TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.

3 N/A TD Multiple LPs Send an IPI, causing TD exit on any
remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.

Demotion 4 TDH.MEM.PAGE.DEMOTE TD Any LP Split the large page into multiple small
pages.

 5

 GPA Range Unblock

GPA range unblock is intended to be used when a range has been blocked, for example, for page removal, but the host
VMM decides to cancel the operation. Unblock is detailed in 0.

Intel TDX
Module

Host VMM Guest TD

TDH.MEM.RANGE.UNBLOCK(TDR, GPA, level)

TLB Tracking Sequence (not detailed here)

Figure 3.5: Typical GPA Range Unblock Sequence 10

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 38 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Table 3.9: Typical GPA Range Unblock Sequence

Phase Intel TDX Function Scope Execute On Description

TLB
Tracking
Sequence

1 TDH.MEM.RANGE.BLOCK
(multiple)

TD Any LP Block private GPA range from further address
translation.

2 TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.

3 N/A TD Multiple LPs Send an IPI, causing TD exit on any remote LP
associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.

Unblocking 4 TDH.MEM.RANGE.UNBLOCK TD Any LP Remove the private GPA range blocking.

3.3.2. Guest TD Execution

 TD VCPU First-Time Invocation

Table 3.10: Typical TD VCPU First-Time Invocation Sequence 5

Phase Side Intel TDX
Function

Scope Execute
On

Description

Entering TD
VCPU (First
Time)

1 VMM N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.

2 VMM TDH.VP.ENTER VCPU/LP LP x Restore initial LP state, as set by TDH.VP.INIT, from
TDVPS and enter SEAM non-root mode.

TD VCPU
Initial
Execution

TD software (VBIOS) starts execution in 32-bit protected mode with no paging.

3 TD N/A VCPU/LP LP x TD software parses initial information in GPR,
builds page tables and switches to 64-bit mode.

TD software (VBIOS) now executes in 64-bit mode.

Enumeration 4 TD TDG.VP.INFO VCPU/LP LP x TD software retrieves basic TD and execution
environment information.

5 TD TDG.MR.REPORT VCPU/LP LP x TD software retrieves additional TD information.

TD continues execution in SEAM non-root mode.

 TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-Entry

Table 3.11: Typical TD Entry, Exit on TDG.VP.VMCALL and Re-Entry Sequence

Phase Side Intel TDX
Function

Scope Execute
On

Description

TD Entry 1 VMM N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.

2 VMM TDH.VP.ENTER VCPU/LP LP x Restore LP state from TDVPS and enter SEAM
non-root mode.

TD executes in TDX non-root mode.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 39 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Phase Side Intel TDX
Function

Scope Execute
On

Description

Software
Protocol over
TDG.VP.VMCALL

3 TD TDG.VP.VMCALL VCPU/LP LP x Exit SEAM non-root mode, save LP state to TDVPS,
and set synthetic state (except most GPRs and all
XMMs).

4 VMM N/A LP LP x Optionally: Restore VMM LP state saved before
TDH.VP.ENTER.

5 VMM N/A LP LP x Perform TDG.VP.VMCALL function, as determined
by the TD-VMM software contract (out of the
scope for this document).

6 VMM N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.

7 VMM TDH.VP.ENTER VCPU/LP LP x Restore LP state from TDVPS (except most GPRs
and all XMMs). Enter SEAM non-root mode.

8 TD N/A VCPU/LP LP x Parse TDG.VP.VMCALL output operands as
determined by TD – VMM software contract.

TD Execution TD continues execution in SEAM non-root mode.

 TD VCPU Entry, Exit on Asynchronous Event and Re-Entry

Table 3.12: Typical TD Entry, Exit on Asynchronous Event and Re-Entry Sequence

Phase Side Intel TDX
Function

Scope Execute
On

Description

TD Entry 1 VMM N/A LP LP x Save LP state not preserved across TD Entry to TD exit.

2 VMM TDH.VP.ENTER VCPU/LP LP x Restore LP state from TDVPS. Enter SEAM non-root
mode.

TD executes in TDX non-root mode.

Async. TD
Exit and Re-
Entry

3 TD N/A VCPU/LP LP x Asynchronous event (interrupt, exception, EPT
violation, etc.) causes TD exit. Save LP state to TDVPS
and set synthetic state.

4 VMM N/A LP LP x Restore any required LP state saved by the VMM
before TDH.VP.ENTER.

5 VMM N/A LP LP x Handle the asynchronous event.

6 VMM N/A LP LP x Save VMM LP state not preserved across TD Entry to
TD exit.

7 VMM TDH.VP.ENTER VCPU/LP LP x Restore LP state from TDVPS and enter SEAM non-root
mode.

TD
Execution

TD continues execution in SEAM non-root mode.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 40 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Guest-Side Functions

Host VMM
Intel TDX
Module

Guest TD

TDG.MR.REPORT

TDH.VP.ENTER

VM entry

VM entry

TDG.MR.REPORT

Async. TD Exit (EPT Violation)

Figure 3.6: Typical Guest-Side Function Sequences

Table 3.13: Typical Guest-Side Functions Sequences 5

Case Side Intel TDX
Function

Scope Execute
On

Description

Guest-Side
Function
Returns to
Guest TD

TD executes in SEAM non-root mode

1 TD TDG.MR.REPORT VCPU/LP LP x The guest TD VM exits to the Intel TDX module, which
handles the guest-side function and re-enters the TD.

TD continues execution in SEAM non-root mode

Guest-Side
Function
Causes
Async. TD
Exit

2 TD TDG.MR.REPORT VCPU/LP LP x The guest TD exits to the Intel TDX module, which
handles the guest-side function, but an asynchronous
event (e.g., EPT violation, etc.) causes TD exit.

3 VMM N/A LP LP x Optional: The host VMM restores the VMM LP state
saved before TDH.VP.ENTER.

4 VMM N/A LP LP x The host VMM handles the asynchronous event.

5 VMM N/A LP LP x The host VMM saves any VMM LP state not preserved
across TD Entry to TD exit.

6 VMM TDH.VP.ENTER VCPU/LP LP x The Intel TDX module restores LP state from TDVPS
and enters SEAM non-root mode.

TD continues execution in SEAM non-root mode.

 TD VCPU Rescheduling (Migration to Another LP)

The Intel TDX module is designed to allow a TD VCPU to be associated with at most one LP at any time. The host VMM
must explicitly break this association in order to migrate the VCPU to another LP.

Table 3.14: Typical VCPU Migration to Another LP Sequence 10

Phase Intel TDX
Function

Scope Execute On Description

Old
VCPU→LP
Association

1 Any VCPU-specific
SEAMCALL leaf

VCPU Old LP Any VCPU-specific SEAMCALL leaf (e.g., TDH.VP.INIT,
TDH.VP.ENTER, TDH.VP.RD, etc.) creates an
association between the current LP and the VCPU.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 41 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Phase Intel TDX
Function

Scope Execute On Description

Breaking
Old
VCPU→LP
Association

2 TDH.VP.FLUSH VCPU Old LP Break the VCPU-LP association: flush the VCPU’s TD
VMCS to TDVPS memory and flush the VCPU’s TLB
ASID.

At this point the VCPU is not associated with any LP.

New
VCPU→LP
Association

3 Any VCPU-specific
SEAMCALL leaf

VCPU New LP Create a new VCPU-LP association.

3.4. TD Destruction

The following sequence is intended to be used by the host VMM to destroy a TD and reclaim all its resources.

Intel TDX
Module

Host VMM Guest TD

IPI

VM Exit (external interrupt)

TD Exit (external interrupt)

TDH.PHYMEM.CACHE.WB(RESUME)

Success

TDH.VP.FLUSH(TDVPR)
On all LPs associated with the TD

TDH.MNG.VPFLUSHDONE(TDR)

TDH.PHYMEM.CACHE.WB(START)

Interrupted

Figure 3.7: Typical TD Destruction Sequence Step A: Stopping and Flushing Out 5

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 42 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Intel TDX
Module

Host VMM Guest TD

TDH.MNG.KEY.FREEID(TDR)

loop

For each private page, S-EPT page and control structure page except TDR

TDH.PHYMEM.PAGE.RECLAIM(Page HPA)

TDH.PHYMEM.PAGE.RECLAIM(TDR)

TDH.PHYMEM.PAGE.WBINVD(TDR, HKID)

Figure 3.8: Typical TD Destruction Sequence Step B: Resource Reclamation

Table 3.15: Typical TD Destruction Sequence

 Step Description SEAMCALL Leaf Functions

A TD Stopping
and Flushing
Out

1 The host VMM selects a TD to destroy. It sends a virtual
interrupt to the TD to shut down gracefully.

TDH.VP.FLUSH

TDH.MNG.VPFLUSHDONE

TDH.PHYMEM.CACHE.WB 2 The host VMM broadcasts inter-processor interrupts (IPIs) and
must ensure TD exit on all logical processors.

3 The host VMM calls the TDH.VP.FLUSH function on all LPs
associated with a TD VCPU to flush the TLBs and cached TD VMCS
associated with a TD VCPU on those LPs.

4 The host VMM calls the TDH.MNG.VPFLUSHDONE function. It
checks that above step executed for all the TD’s VCPUs are
associated with an LP.

5 Note: This step may be skipped if
TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit 34),
readable by TDH.SYS.RD, is 1.

The host VMM calls the TDH.PHYMEM.CACHE.WB function on
each WBINVD domain to write back to memory the TD contents
from all caches.

TDH.PHYMEM.CACHE.WB is interruptible by external events. The
host VMM should restart it if it indicates it was interrupted, until
successfully completed.

6 At this point, no address translations or cache lines may exist for
this TD except for the TDR page.

B Resource
Reclamation

1 The host VMM calls the TDH.MNG.KEY.FREEID function. It marks
the HKID used by the TD as available for other TDs.

TDH.MNG.KEY.FREEID

TDH.PHYMEM.PAGE.RECLAIM

TDH.PHYMEM.PAGE.WBINVD

2 For each physical page in TDMR allocated to the TD (TD private
pages, Secure EPT pages, and control structures except TDR), the
host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the page as free and initializes its content using
MOVDIR64B.

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-005US

October 2024 . Page 43 of 177

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Step Description SEAMCALL Leaf Functions

3 The host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the TDR page as free. The function checks that all other TD
physical pages have been reclaimed before.

4 Before allocating the reclaimed TDR physical page to any use, the
host VMM calls TDH.PHYMEM.PAGE.WBINVD to flush its cache
lines and initializes its content using MOVDIR64B.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 44 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

SECTION 2:
INTEL TDX MODULE ARCHITECTURE SPECIFICATION

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 45 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

4. Intel TDX Module Lifecycle: Enumeration, Initialization and Shutdown

This chapter discusses the design of the Intel TDX module life cycle: how its capabilities are enumerated by the host
VMM, how it is initialized, how it is configured and how it is shut down.

4.1. Overview

TDX module lifecycle use cases are described in 3.1. 5

4.1.1. Intel TDX Module Lifecycle State Machine

The Intel TDX lifecycle state machine helps track the module’s life cycle through the initialization sequence and shutdown.

SYSINIT_PENDING

Intel TDX module is

pending global

initalization

SYS_READY

Intel TDX module is

ready

SYSINIT_DONE

Intel TDX module

global initialization

done

TDH.SYS.CONFIG

[All LPs

initialized]

TDH.SYS.INIT

TDH.SYS.LP.INIT TDH.SYS.INFO or

TDH.SYS.RD/RDM

[LP initialized]

SYS_SHUTDOWN

Intel TDX module

has been shut down.

TDH.SYS.SHUTDOWN

TDH.SYS.TDMR.INIT

TDH.SYS.KEY.CONFIG

[Non-last package]

All other

 SEAMCALL

leaf functions

SYSCONFIG_DONE

Intel TDX module

global configuration

done

TDH.SYS.KEY.CONFIG

[Last package]

TDH.SYS.UPDATE

[All LPs initialized]

Figure 4.1: Intel TDX Module Lifecycle State Machine

 10

Table 4.1: Intel TDX Module Lifecycle States

State Name Description Allowed SEAMCALL Leaf Functions

SYSINIT_PENDING TDH.SYS.INIT has not been called
yet.

TDH.SYS.INIT

SYSINIT_DONE TDH.SYS.INIT has completed
successfully. TDH.SYS.LP.INIT must
be called on each LP.

TDH.SYS.LP.INIT

TDH.SYS.RD* (if current LP has been initialized)

TDH.SYS.INFO (if current LP has been initialized)

TDH.SYS.CONFIG (if all LPs have been initialized)

TDH.SYS.UPDATE (if all LPs have been initialized)

SYSCONFIG_DONE TDH.SYS.CONFIG has completed
successfully.
TDH.MNG.KEY.CONFIG must be
called on each package.

TDH.SYS.KEY.CONFIG

TDH.SYS.RD*

TDH.SYS.INFO

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 46 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

State Name Description Allowed SEAMCALL Leaf Functions

SYS_READY The Intel TDX module is ready for
use.

Any

SYS_SHUTDOWN Shutdown operation has been
initiated. No new host-side
interface functions can be called.

None

4.1.2. Platform Compatibility and Configuration Checking

 Overview

The Intel TDX module is built assuming a certain set of core and platform features. Most platform configuration required
to support the Intel TDX module is checked by MCHECK. However, some configuration is designed to be checked by the 5

Intel TDX module. During the initialization process, the Intel TDX module is designed to check that the platform on which
it is running is compatible with this core and platform feature set and/or that the same set of features is provided across
the platform. Some of the checks are done per core, and some are done per package. Most of the details are part of the
Intel TDX module detailed design.

 CPU Configuration 10

During platform boot, MCHECK verifies all logical CPUs to ensure they meet TDX’s security and certain functionality
requirements, and MCHECK passes the following CPU configuration information to the NP-SEAMLDR, P-SEAMLDR and
the TDX Module:

• Total number of logical processors in the platform.

• Total number of installed packages in the platform. 15

• A table of per-package CPU family, model and stepping etc. identification, as enumerated by CPUID(1).EAX.

The above information is static and does not change after platform boot and MCHECK run.

Note: TDX doesn’t support adding or removing CPUs from TDX security perimeter, as checked my MCHECK. BIOS
should prevent CPUs from being hot-added or hot-removed after platform boots.

The TDX module performs additional checks of the CPU’s configuration and supported features, by reading MSRs and 20

CPUID information as described in the following sections.

 MSR Sampling and Checks

TDH.SYS.INIT reads and checks the contents of some MSRs. In many cases, the MSR value read by TDH.SYS.INIT is also
checked for consistency (i.e., having the same values) by TDH.SYS.LP.INIT. In other cases, TDH.SYS.LP.INIT may perform
additional checks. 25

 CPUID Sampling, Checks and Enumeration

Note: CPUID virtualization is described in 11.10.

The TDH.SYS.INIT and TDH.SYS.LP.INIT functions sample CPUID leaf and sub-leaf return values. This is intended to check
compatibility with the Intel TDX module and with any guest TD operation. If any of these checks fail, Intel TDX module
initialization is designed to fail. 30

The TDH.SYS.RD, TDH.SYS.RDALL and TDH.SYS.INFO functions may be called by the host VMM to enumerate the directly
configurable and allowable CPUID fields.

4.1.3. Physical Memory Configuration Overview

Configuration of the physical memory available to the Intel TDX module (TDMRs) and its associated metadata (PAMT
arrays) is done using the TDH.SYS.CONFIG function. 35

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 47 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 Intel TDX ISA Background: Convertible Memory Ranges (CMRs)

A 4KB memory page is defined as convertible if it can be used to hold an Intel TDX private memory page or any Intel TDX
control structure pages while helping guarantee Intel TDX security properties (i.e., if it can be converted from a Shared
page to a private page).

Convertible Memory Ranges (CMRs) are defined as contiguous convertible physical address ranges, declared by BIOS. 5

CMRs are checked by MCHECK during platform boot to help ensure their configuration matches TDX security. All memory
within each CMR must be convertible and must be present when checked by MCHECK during platform boot. CMRs are
static and do not change after platform boot and checking by MCHECK.

Note: The above definition implies that TDX does not support hot-plugin or hot-removal of convertible memory. BIOS
should prevent hot removal of convertible memory after platform boot. 10

CMRs have the following characteristics:

• CMR configuration is “soft” – no hardware range registers are used.

• Each CMR defines a single contiguous physical address range.

• All the memory within each CMR is convertible, and it must comply with the rules checked by MCHECK.

• Each CMR has its own size. CMR size is a multiple of 4KB, and it is not required to be a power of two. 15

• CMRs cannot overlap with each other.

• CMRs must reside within the effective physical address range of the platform (after considering the most significant
PA bits stolen for Key IDs).

• CMRs are configured at platform scope (no separate configuration per package).

• The maximum number of CMRs is implementation specific. It is not explicitly enumerated; it is deduced from 20

Family/Model/Stepping information provided by CPUID. The current maximum number of CMRs is 32.

• CMRs are available on systems with TDX ISA capabilities, as enumerated by bit 5 of the
IA32_VMX_PROCBASED_CTLS3 MSR.

• CMR configuration is checked by MCHECK and cannot be modified afterwards.

MCHECK stores the CMR table, and other platform topology information, in a pre-defined location in SEAM range, so it 25

can be read later and trusted by the P-SEAMLDR module. On TDX module installation, P-SEAMLDR copies MCHECK data
to another page in the SEAM range, which is accessible by the Intel TDX module.

 TDMRs and PAMT Arrays Configuration

TDMRs and PAMTs are described in 8.1. This section provides an overview of their configuration and their relationships
to CMRs. 30

4.1.3.2.1. Background: Reserved Areas within TDMRs

As described in 8.1, the Intel TDX module physical memory management is done using PAMT Blocks – each holding the
metadata of a 1GB block of TDMR. This implies that TDMR granularity must be 1GB.

However, there is a requirement for the host VMM to be able to allocate memory at granularities smaller than 1GB. This
is especially important in systems that have a relatively small amount of memory. 35

To support the two requirements above, the Intel TDX module’s design allows arbitrary reserved areas within TDMRs.
Reserved areas are still covered by PAMT. However, during initialization their respective PAMT entries are marked with
a PT_RSVD page type, so pages in reserved areas are not used by the Intel TDX module for allocating privately encrypted
memory pages (but they can be used for PAMT areas, see below).

Only the non-reserved parts of a TDMR are required to be inside CMRs. 40

4.1.3.2.2. Background: Three PAMT Areas

As described in 8.1, a logical PAMT Block is composed of 1 PAMT_1G entry, 512 PAMT_2M entries and 5122 PAMT_4K
entries. Thus, the overall size of a PAMT Block, and as a result of the whole PAMT, is not a power of 2.

However, the host VMM may only be able to allocate memory buffers for PAMT in sizes that are a power of 2.

To enable this, buffers for PAMT_1G entries, PAMT_2M entries and PAMT_4K entries are allocated separately. As a 45

result, if the host VMM allocates a TDMR whose size is a power of 2, its three respective PAMT areas will also have sizes
that are a power of 2.

PAMT areas are required to be inside CMRs because PAMT is encrypted with a private HKID.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 48 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Physical Memory Space

CMR 1

CMR 0

CMR 3

CMR 2

TDMR 0

Reserved

Reserved

TDMR 1

Reserved

TDMR 2

Reserved

1GB-Aligned

1GB-Aligned

1GB-Aligned

1GB-Aligned

1GB-Aligned

PAMT_4K 0

PAMT_4K 1

PAMT_4K 2

PAMT_2M 0

PAMT_1G 0

PAMT_2M 1
PAMT_1G 1

PAMT_1G 2

PAMT_2M 2

Available

Available

Available

Available

Figure 4.2: Example of Convertible Memory Ranges (CMRs) vs. Trust Domain Memory Regions (TDMRs)

4.1.3.2.3. Configuration Rules

In addition to the rules described in 8.1, the following rules apply to TDMR configuration as related to CMRs:

• Any non-reserved 4KB page within a TDMR must be convertible – i.e., it must be within a CMR. 5

• Reserved areas within a TDMR need not be within a CMR.

Three PAMT areas must be configured for each TMDR – one for each physical page size controlled by PAMT:

• Area for PAMT_4K entries

• Area for PAMT_2M entries

• Area for PAMT_1G entries 10

PAMT areas have the following attributes:

• A PAMT area size is directly proportional to the TDMR with which it is associated. The size ratio is enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO. Note that the size ratio may be different for each of the 3 PAMT array types.

• A PAMT area must reside in convertible memory – i.e., each PAMT area page must be a CMR page.

• PAMT areas must not overlap with TDMR non-reserved areas; however, they may reside within TDMR reserved areas 15

(as long as these are convertible).

• PAMT areas must not overlap with each other.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 49 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

4.2. Intel TDX Module Initialization Interface

4.2.1. Global Initialization: TDH.SYS.INIT

TDH.SYS.INIT is intended to globally initialize the Intel TDX module. It works as follows:

1. Initialize Intel TDX module global data.
2. Sample and check platform features that need to be checked for platform-wide compatibility – i.e., the Intel TDX 5

module supports several options, but they must be the same across platform. These are later checked on each LP.
3. Sample and check the platform configuration on the current LP. For example, TDH.SYS.INIT samples SMRR and

SMRR2, checks they are locked and do not overlap any CMR, and stores their values to be checked later on each LP.
4. Set the system state to SYSINIT_DONE.

For a detailed description of TDH.SYS.INIT, see the [TDX Module ABI Spec]. 10

4.2.2. LP-Scope Initialization: TDH.SYS.LP.INIT

TDH.SYS.LP.INIT is intended to perform LP-scope, core-scope and package-scope initialization of the Intel TDX module. It
can be called only after TDH.SYS.INIT completes successfully, and it can run concurrently on multiple LPs. At a high level,
TDH.SYS.LP.INIT works as follows:

1. Do a global EPT flush (INVEPT type 2). 15

2. Initialize Intel TDX module LP-scope data.
3. Check features and configuration compatibility and uniformity – once per LP, core or package, depending on the

scope of the checked feature or configuration:
3.1. Check features compatibility with the Intel TDX module.
3.2. Check configuration uniformity. 20

For a detailed description of TDH.SYS.LP.INIT, see the [TDX Module ABI Spec].

4.2.3. TDX Module Enumeration: TDH.SYS.RD/RDALL and TDH.SYS.INFO

Once an LP has been initialized, the host VMM can call TDH.SYS.RD, TDH.SYS.RDALL or TDH.SYS.INFO on that LP to help
enumerate the Intel TDX module capabilities and platform configuration.

TDH.SYS.RD and TDH.SYS.RDALL are the recommended enumeration methods. They enable the host VMM to read the 25

values of TDX module global metadata fields, enumerating the TDX module capabilities. The list of fields is described in
the [TDX Module ABI Spec].

To read all host readable TDX Module fields, the host VMM can invoke TDH.SYS.RDALL. This function returns the
information as a metadata list.

To read a single TDX Module field, TDH.SYS.RD can be invoked. It returns the next host-readable field identifier, thus it 30

can also be used to enumerate the TDX Module by calling it in a loop, starting from field identifier value of 0, until it
returns a next field identifier value of 0.

TDH.SYS.INFO is provided for backward compatibility with previous TDX module versions:

• Intel TDX module capabilities are enumerated in the returned TDSYSINFO_STRUCT (see the [TDX Module ABI Spec]).

• Convertible Memory Ranges (CMRs), as previously set by BIOS and checked by MCHECK, are enumerated in the 35

returned CMR_INFO table.

For a detailed description of interface functions and metadata fields, see the [TDX Module ABI Spec].

4.2.4. TDH.SYS.CONFIG: TDX Module Global Configuration

After performing global and LP-scope initialization, the host VMM can call TDH.SYS.CONFIG to globally configure the Intel
TDX module, providing the following information: 40

• TDMR and PAMT Table, where each entry contains a TDMR base address, size and corresponding PAMT reserved
area base address and size. Refer to 8.1 for definition of TDMRs.

• The HKID to be used by the Intel TDX module for its global private key, used for encrypting PAMT and TDRs.

For a detailed description of the table format (TDMR_INFO) and TDH.SYS.CONFIG, see the [TDX Module ABI Spec].

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 50 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

4.2.5. TDH.SYS.KEY.CONFIG: Key Configuration (per Package)

After performing global configuration, the host VMM calls TDH.SYS.KEY.CONFIG to perform package-scope configuration
of the Intel TDX module’s global private key on the hardware.

For a detailed description of TDH.SYS.KEY.CONFIG, see the [TDX Module ABI Spec].

4.2.6. State Restoration after TD-Preserving TDX Module Update: TDH.SYS.UPDATE 5

When updating the TDX module, the host VMM can calls TDH.SYS.UPDATE after initializing the new TDX module on all
LPs, so that the new TDX module will update itself with the handoff data prepared by a call to the TDH.SYS.SHUTDOWN
API on the previous TDX module. This allows “old” TDs, which were created by previous TDX module(s), to keep running
under the supervision of the new TDX module.

If TDH.SYS.UPDATE returns successfully, the TDX module is ready, and TDH.SYS.CONFIG and TDH.SYS.KEY.CONFIG cannot 10

(and need not) be called anymore.

If TDH.SYS.UPDATE returns error, then the host VMM can continue with the non-update sequence (TDH.SYS.CONFIG,
TDH.SYS.KEY.CONFIG etc.). In this case all existing TDs are lost. Alternatively, the host VMM can request the P-SEAMLDR
to update to another TDX module. If that update is successful, existing TDs are preserved.

For a detailed description of TDH.SYS.UPDATE, see the [TDX Module ABI Spec]. 15

4.3. TDMR and PAMT Initialization

TDMR and PAMT initialization procedure is designed to be performed during VMM run-time, after VMM boot. The host
VMM should be able to work normally while initialization takes place, at any time using memory that has already been
initialized. At a high level, TDMR initialization has the following characteristics:

• Initialization is performed gradually. 20

• Initialization function TDH.SYS.TDMR.INIT adheres to the latency rules of most Intel TDX functions – i.e., they take
no more than a predefined number of clock cycles.

• Initialization function TDH.SYS.TDMR.INIT can run concurrently on multiple LPs if each concurrent flow initializes a
different TDMR.

• After each 1GB page of a TDMR has been initialized, that 1GB page becomes available for use by any Intel TDX 25

function that creates a private TD page or a control structure page – e.g., TDH.MEM.PAGE.ADD, TDH.VP.ADDCX, etc.

For each TDMR, the VMM should execute a loop of TDH.SYS.TDMR.INIT providing the TDMR start address (at 1GB
granularity) as an input.

TDH.SYS.TDMR.INIT initializes an (implementation-defined) number of PAMT entries. The maximum number of PAMT
entries to be initialized is designed to avoid latency issues. Initialization uses direct writes (MOVDIR64B). 30

Once the PAMT for each 1GB block of TDMR has been fully initialized, TDH.SYS.TDMR.INIT marks that 1GB block as ready
for use; that means 4KB pages in this 1GB block may be converted to private pages – e.g., by TDH.MEM.PAGE.ADD. This
can be done concurrently with adding and initializing other TDMRs.

For a detailed description of TDH.SYS.TDMR.INIT, see the [TDX Module ABI Spec].

4.4. Intel TDX Module Shutdown 35

4.4.1. Shutdown Initiated by the Host VMM (as Part of Module Update)

The host VMM can initiate Intel TDX module shutdown at any time by calling the TDH.SYS.SHUTDOWN function. This is
intended for use as part of updating the Intel TDX module without going through a warm or cold reset sequence.
TDH.SYS.SHUTDOWN is designed to set state variables to block all SEAMCALL leaf functions.

TDH.SYS.SHUTODWN also prepares handoff data in a designated area in SEAM range called handoff data range. The 40

handoff data contains any TDX module state (in SEAM range) required to preserve old TDs across TDX module updates.
This includes (but not limited to) Key Ownership Table (KOT) and TDMR management table. When a new TDX module is
installed using the “update” scenario, the P-SEAMLDR module preserves (doesn’t wipe-out) the handoff data range. The
new TDX module can then update itself (when the TDH.SYS.UPDATE function is called) from that handoff data.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 51 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

4.4.2. Shutdown Initiated by a Fatal Error

By design, fatal errors during Intel TDX module execution cause an immediate SEAM shutdown. Subsequent SEAMCALLs
on any LP fail with a VMfailInvalid indication (RFLAGS.CF set to 1). This situation can only be recovered by a platform
reset.

4.5. Intel TDX Module Handoff Data 5

In order to preserve TDs across Intel TDX module updates, the old TDX module’s TDH.SYS.SHUTDOWN function prepares
handoff data in the handoff data region, to be consumed by the new TDX module’s TDH.SYS.UPDATE function. The
handoff data contains all variables maintained inside SEAM range (i.e., module’s global and local data) related to TD
management. Note that TD code, data and metadata pages residing out of SEAM range need not be passed, since the
DRAM contents and MKTME state are not impacted. 10

Since it’s possible – and normally expected – that the new TDX module would differ from the old TDX module it’s
replacing, it’s necessary that the new TDX module will understand the syntax and semantics of all TD metadata – either
in the handoff data range and out of SEAM range – that the old TDX module left behind, including PAMT, Secure EPTs,
TDRs, TDCS and TDVPS pages. To support that, a handoff protocol is needed.

The handoff protocol is based on the notion of Handoff Version (HV) – an unsigned 16-bit number which identifies the 15

contents, syntax and semantics of all TD metadata fields, in the handoff data region and out of SEAM range, that the old
TDX module passes to the new TDX module. The TDX module may understand one or more HVs. This allows the new
module to consume handoff data prepared by an older TD module and “upgrade” it with new contents (e.g., put data in
TDVPS fields that were previously reserved).

In preparation to TD-preserving TDX module update, the host VMM calls the TDH.SYS.SHUTDOWN function with 20

“requested HV” parameter. If the TDX module understands the requested HV and was not built as “non-downgradable”
(see below), then the TDH.SYS.SHUTDOWN prepares handoff data with the requested syntax and semantics in the
handoff data region; it marks the handoff data region as valid with the requested HV (see [P-SEAMLDR FAS] for the
structure of the 64-bit handoff data region’s header that contains this information).

After P-SEAMLDR updated the TDX module in SEAM range, the host VMM initializes the new TDX module, and calls its 25

TDH.SYS.UPDATE function which consumes the handoff data and marks it as invalid.

Specifically, each TDX module is built with the following constants:

Table 4.2: TDX Module Handoff Constants

Name Meaning Description

MODULE_HV Module Handoff Version Handoff version that this TDX module works with

MIN_UPDATE_HV Minimum Updatable
Handoff Version

The “oldest” HV this TDX module understands

NO_DOWNGRADE No-Downgrade Flag A non-zero value indicates that this TDX module cannot
“downgrade” the data is leaves behind to a lower handoff
version

The above constants must satisfy the inequality 0 <= MIN_UPDATE_HV <= MODULE_HV. If 30

MIN_UPDATE_HV < MODULE_HV, then this TDX module can consume (in TDH.SYS.UPDATE) older handoff data (i.e., data
whose syntax/semantics has lower HV than the syntax/semantics this TDX module was built to work with). In addition,
if the NO_DOWNGRADE flag is zero, them this TDX module can generate (in TDH.SYS.SHUTDOWN) older handoff data.

The following table illustrates this protocol with several examples.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 52 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 4.3: TDX Module Handoff Protocol Examples

Old TDX Module’s
Parameters

New TDX Module’s
Parameters

Requested HV
to Old TDX
Module’s
TDH.SYS.
SHUDOWN

HV of Handoff
Data Prepared
by Old TDX
Module

Module Update by P-
SEAMLDR

New TDX Module’s
TDH.SYS.UPDATE
Action

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

10 10 Installed Consume as is

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

11 None
(shutdown
failed –
requested HV
is too large)

Not installed (invalid
handoff data)

Note: the host VMM
can install using
“Load” scenario

Fail (invalid handoff
data)

Note: the host VMM
should re-configure
the new TDX module
(TDs are not
preserved)

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

9 None
(shutdown
failed –
requested HV
is too small)

Not installed (invalid
handoff data)

Note: the host VMM
can install using
“Load” scenario

Fail (invalid handoff
data)

Note: the host VMM
should re-configure
the new TDX module
(TDs are not
preserved)

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

MODULE_HV=11
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

10 10 Installed Upgrade to 11 and
consume

MODULE_HV=11
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

10 10
(downgraded)

Installed Consume as is

MODULE_HV=11
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

11 11 Not installed (HV-
incompatible module)

Note: the host VMM
can install using
“Load” scenario.

Fail (invalid handoff
data)

Note: the host VMM
should re-configure
the new TDX module
(TDs are not
preserved).

MODULE_HV=11
MIN_UPDATE_HV=10
NO_DOWNGRADE=1

MODULE_HV=10
MIN_UPDATE_HV=10
NO_DOWNGRADE=0

10 Shutdown
failure (can’t
downgrade)

Not installed (invalid
handoff data)

Note: the host VMM
can install using
“Load” scenario.

Fail (invalid handoff
data)

Note: the host VMM
should re-configure
the new TDX module
(TDs are not
preserved).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 53 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

5. Memory Encryption Key Management

5.1. Objectives

The main goal of Intel TDX key management is to enable the VMM to perform the following:

• Manage HKID space as a limited platform resource, assigning HKIDs to TDs and reclaiming them as required.

• Enable the Intel TDX module to use a global ephemeral key for encrypting its data (e.g., PAMT). 5

• Enable each TD to use its own ephemeral key.

The Intel TDX interface functions are designed to provide the required building blocks and help ensure that software
cannot perform operations that are not compliant with TDX security objectives, as follows:

1. Help ensure that only HKID values that have been configured for TDX private memory encryption keys can be
assigned to TDs, and that those HKID values cannot be used by non-TD software or devices. 10

2. Prevent assignment of the same HKID to more than one TD.
3. At the time an HKID is assigned to a TD, there must be no modified cache lines – at any level, for any core – for that

HKID. All such cache lines that may have held modified data have been written to memory (if required). Note that
this requirement applies only to TDX private HKID and not to legacy MKTME HKIDs.

4. TD memory may be accessed, and the TD may run, only when the following conditions are met: 15

4.1. An HKID has been assigned for the TD’s ephemeral key.
4.2. The encryption key has been configured for all the TD’s ephemeral HKID, on all crypto engines, on all packages.

5.2. Background: HKID Space Partitioning

Since the same MKTME encryption engines and the same set of encryption keys are used for legacy MKTME operation
and for TDX operation, TDX ISA enables the enumeration and partitioning of the activated HKID space between the two 20

technologies. As designed, the encryption keys and their associated HKIDs are divided into three ranges, as shown in
Table 5.1 below. The values of NUM_HKID_KEYS and NUM_TDX_PRIV_KEYS are read from the
IA32_MKTME_KEYID_PARTITIONING MSR (0x87).

Private HKIDs and private keys are designed to be fully controlled by the Intel TDX module and are the subject of this
chapter. 25

Table 5.1: HKID Space Partitioning

 HKID Key

Shared
HKIDs

0 Legacy TME key, shared

1 Legacy MKTME key #1

2 Legacy MKTME key #2

… …

NUM_HKID_KEYS Last legacy MKTME key

Private
HKIDs

NUM_HKID_KEYS + 1 Private key of a specific TD

NUM_HKID_KEYS + 2 Private key of a specific TD

NUM_HKID_KEYS + 3 Private key of a specific TD

… …

NUM_HKID_KEYS + NUM_TDX_PRIV_KIDS Private key of a specific TD

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 54 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

5.3. WBINVD Domains

Enumeration: TDH.PHYMEM.CACHE.WB is not required if TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit 34),
readable by TDH.SYS.RD, is 1.

5.3.1. Overview

TDX memory encryption key management requires flushing caches. The TDH.PHYMEM.CACHE.WB interface function (as 5

well as the CPU instructions WBINVD and WBNOINVD) flush caches in the WBINVD domain associated with the LP on
which they execute. The extent of each WBINVD domain, i.e., which LPs belong to it, depends on the CPU architecture.
For older processors, a WBINVD domains includes all LPs single package. For newer processors, a WBINVD domain may
include a group of LPs within a package. TDX operations that involve TDH.PHYMEM.CACHE.WB requires it to be executed
on one LP per WBINVD domain in the platform. 10

5.3.2. Host VMM Enumeration of WBINVD Domains

The host VMM can use the algorithm described in [Processor Topology Enumeration] to enumerate the WBINVD domain
on the platform. The following description summarizes the operation.

Do detect the WBINVD domains on the platform, do the following for each LP, identified by its x2APIC ID:

1. Find the last cache level for this LP, by iterating on CPUID(4,N) starting from N=0 until the Cache Type returned in 15

EAX[4:0] is Null (0).
2. If L if the last cache level, then LogicalProcessorsSharingCacheP2, the maximum number of x2APIC IDs sharing this

cache is provided in CPUID(4,L).EAX[25:14], rounded up to the nearest power of 2.
3. Calculate CACHE_MASK by ~(LogicalProcessorsSharingCacheP2-1).
4. CACHE_ID is calculated by bitwise-and the current LP’s x2APIC ID with CACHE_MASK. 20

5. If CACHE_ID is new, add it and the associated CACHE_MASK to the list of WBINVD domains.

For any given LP, to determine the associated WBINVD domain, scan the WBINVD domains list, and for each entry:

1. Bitwise-and the current LP’s x2APIC ID with CACHE_MASK.
2. If the result equals CACHE_ID, then the current LP belong to this WBINVD domain.

5.3.3. Enumerating Non-Package WBINVD Domains Support 25

The TDX module indicates that it supports multiple WBINVD domains per package and is running on a CPU where this is
indeed the case, by TDX_FEATURES0.WBINVD_DOMAINS (bit 15), readable by the host VMM using TDH.SYS.RD*.

Note that if TDH.PHYMEM.CACHE.WB is not required, as indicated by TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit
34), then TDX_FEATURES0.WBINVD_DOMAINS (bit 15) is 0.

5.4. Key Management Tables 30

The CPU and the Intel TDX module maintain several tables for key management. No table is intended to be directly
accessible by software; the tables are used by the Intel TDX functions. The tables help the Intel TDX module track the
proper operation of the software and help achieve the Intel TDX security objectives.

Table 5.2: Key Management Tables

Table Scope Description

Key Encryption
Table (KET)

Package KET is an abstraction of the CPU micro-architectural hardware table for
configuring the memory encryption engines. The KET is indexed by HKID. All
crypto engines on a package are configured the same way.

KET is part of the legacy MKTME architecture. Intel TDX ISA partitions KET to
shared and private ranges, as described in 5.2 above.

• A KET entry in private HKIDs range is configured per package by the host
VMM using the SEAMCALL(TDH.MNG.KEY.CONFIG) function.

• A KET entry in the shared HKID range is configured by software per package
directly, using the PCONFIG instruction.

https://cdrdv2.intel.com/v1/dl/getContent/775917

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 55 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table Scope Description

KeyID
Ownership
Table (KOT)

Platform KOT is an Intel TDX module hidden table for managing the TDX HKIDs inventory.
It is used for assigning HKIDs to TDs, revoking HKIDs from TDs and controlling
cache flush.

KOT is indexed by HKID. Only the KOT entries in the configured TDX HKIDs range
are meaningful.

TD Key
Management
Fields

TD TD-scope key management fields are held in TDR. They include the key state,
ephemeral private HKID and key information, and a bitmap for tracking key
configuration.

Figure 5.1 below provides an abstract, high-level picture of how the tables are related. Detailed discussion is provided in
the following sections.

HKID

8

HKID Key

0 TME Key

1 MKTME Key

… …

8 TDX Key

9 TDX Key

10 TDX Key (N/A)

11 TDX Key (N/A)

… …

64 TDX Key (N/A)

HKID

8

Package-Scope
Key Encryption Tables (KET)

In each crypto engine, per memory
controller, multiple per package

Global-Scope KeyID Ownership Table (KOT)
Internal to the Intel TDX module

Lifecycle State HKID

TD_KEYS_CONFIGURED 8

TD-Scope Key Information
In TDR

TD 1

VCPU-Scope Private KeyID
In TD VMCS

CPU uses this value to setup h/w on TD entry

HKID State

0 N/A

1 N/A

… …

8 HKID_ASSIGNED

9 HKID_FLUSHED

10 HKID_FREE

11 HKID_FREE

… …

64 HKID_ASSIGNED

Lifecycle State HKID

TD_HKID_ASSIGNED 64

TD-Scope Key Information
In TDR

TD 2

Lifecycle State HKID

TD_BLOCKED 9

TD-Scope Key Information
In TDR

TD 3

HKID Key

0 TME Key

1 MKTME Key

… …

8 TDX Key

9 TDX Key

10 TDX Key (N/A)

11 TDX Key (N/A)

… …

64 TDX Key (N/A)

HKID Key

0 TME Key

1 MKTME Key

… …

8 TDX Key

9 TDX Key

10 TDX Key (N/A)

11 TDX Key (N/A)

… …

64 TDX Key (N/A)

HKID

8

Figure 5.1: Overview of the Key Management State at TD-Scope, LP-Scope, Package-Scope and Global-Scope 5

5.5. Combined Key Management State

Key management state is composed of two state variables:

• Per-HKID KOT Entry State is designed to control how the inventory of private HKIDs is managed using the KOT.

• Per-TD Life Cycle State is designed, among other things, to control how TD keys are configured on the hardware and
the process of shutting down a TD. 10

The combined key management state is intended to affect whether the TD private memory is accessible, whether its
contents may be cached, whether private GPA-to-HPA address translations are allowed and whether such translations
may be cached.

Table 5.3 below lists the designed combined key management state values and their meaning. Figure 5.2 below shows a
simplified diagram of the combined key state. Refer also to the key management sequences described in 5.6. 15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 56 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 5.3: Combined TD Key Management States

TD Life Cycle State KOT Entry (HKID)
State

Private Memory
Access

S-EPT
Translations

Comments

New Cached New Cached

N/A HKID_FREE No No No No HKID not assigned to TD

TD_HKID_ASSIGNED HKID_ASSIGNED No No No No TD private key not configured

TD_KEYS_CONFIGURED TD TD TD TD TD build and execution

TD_BLOCKED HKID_FLUSHED No TD No No TD private memory access is
blocked, TD may not run

TD_TEARDOWN N/A (HKID_FREE) No No No No TD has no HKID

N/A HKID_RESERVED Global Global N/A N/A HKID for Intel TDX global data

HKID_ASSIGNEDHKID_FREE

HKID_FLUSHED

TDH.MNG.CREATE

TD_HKID_
ASSIGNED

TD private key not
configured

TD_KEYS_
CONFIGURED

TD build and
execution

TDH.MNG.KEY.CONFIG
[last package]

TDH.MNG.KEY.CONFIG
[non-last package]

TDH.PHYMEM.PAGE.RECLAIM(TDR)

TDH.MNG.VPFLUSHDONE

TD_TEARDOWN

TD has no HKID

TDH.MNG.KEY.FREEID

TDH.PHYMEM.PAGE.RECLAIM
(non-TDR)

TD doesn't exist

TD_BLOCKED

TD may not run, TD
private memory
access blocked

TDH.PHYMEM.CACHE.WB*

TDH.VP.ENTER
TDH.VP.FLUSH

* TDH.PHYMEM.CACHE.WB is not required if
TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB
(bit 34), readable by TDH.SYS.RD, is 1.

Figure 5.2: Simplified Combined TD Key Management State Diagram 5

Chapter 7 discusses TD life cycle management and zooms-in into the TD_KEYS_CONFIGURED state, detailing its secondary
sub-states that control TD operation and TD migration.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 57 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

5.6. Key Management Sequences

5.6.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data

This sequence is described as part of the Intel TDX module initialization sequence in 3.1.

5.6.2. TD Creation, Keys Assignment and Configuration

This sequence is intended to be used by the host VMM to create a new TD, select HKIDs from the global pool in KOT and 5

assign them to the TD, and configure the TD keys on the hardware.

Refer also to the software flow discussion in 3.2.

Table 5.4: Typical TD Creation, Keys Assignment and Configuration (TD-Scope and KOT-Scope) Sequence

 Intel TDX Function Scope Execute On Description

1 TDH.MNG.CREATE TD One LP Assign the TD’s private HKID.

2 TDH.MNG.KEY.CONFIG TD Each package Configure the TD’s random ephemeral key on the
package.

5.6.3. TD Keys Reclamation, TLB and Cache Flush 10

This sequence is intended to be used by the host VMM to reclaim the HKIDs assigned to a TD and return them to the
global pool in KOT. At the end of this sequence, the HKIDs should be free to be assigned to another TD.

The cache flush operation is long. Since it is designed to run at global scope and is decoupled from any TD, the host VMM
may choose to implement it in a lazy fashion, i.e., wait until a certain number of HKIDs in the KOT pool become
RECLAIMED. This is especially important since TDH.PHYMEM.CACHE.WB operates on all cache lines regardless of HKID. 15

To avoid long latencies, TDH.PHYMEM.CACHE.WB is designed to be interruptible. The host VMM is expected to repeat
the execution of this instruction until it returns a success indication.

Refer also to the software flow discussion in 3.4.

Table 5.5: Typical TLB and Cache Flush (TD-Scope and KOT-Scope) Sequence

 Intel TDX Function Scope Execute On Description

As a preparation, the host VMM avoids any VCPU-specific SEAMCALL function (i.e., TDH.VP.ENTER, TDH.VP.INIT,
TDH.VP.RD and TDH.VP.WR) and waits until no VCPU is running.

1 TDH.VP.FLUSH TD
VCPU

One each LP
associated
with a TD
VCPU

Flush the VCPU’s TD VMCS to TDVPS memory and
flush the VCPU’s TLB ASID.

2 TDH.MNG.VPFLUSHDONE TD,
KOT

One LP Check all the VCPUs have been flushed.

3 TDH.PHYMEM.CACHE.WB KOT Each WBINVD
domain4

Note: TDH.PHYMEM.CACHE.WB is not required if
TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB
(bit 34), readable by TDH.SYS.RD, is 1.

Write back cache hierarchy, at least for the HKIDs
marked as TLB_FLUSHED. The instruction execution
time is long; it is interruptible by external events
and may be restarted until completed.

4 Enumerated by CPU during Intel TDX module initialization, see 4.1.2.4.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 58 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 Intel TDX Function Scope Execute On Description

4 TDH.MNG.KEY.FREEID TD,
KOT

One LP Mark TD’s HKID as FREE.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 59 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

6. TD Non-Memory State (Metadata) and Control Structures

This chapter discusses the guest TD control structures that hold non-memory state (metadata) and how they are intended
to be used during the TD life cycle.

6.1. Overview

TDCS

TDCSTDX

TD-scope

TDCX Page

* VMM may
maintain a single
copy per TD, shared
by all VCPUs

Shared
EPT
Tree

VCPU-scope*

VMCS Ancillary
Control Structures

VCPU-scope*

VMCS Auxiliary
Control Structures

Shared:
VMM-Managed, Shared HKID

Opaque (TD Private HKID):
VMM Allocated, Intel TDX Module Managed

TD-scope

TDR Page

Opaque (Intel TDX Module
Global Private HKID):

VMM Allocated,
Intel TDX Module Managed

TDVPS

VCPU-scope

TDVPRTDVPRTDCX PageTDVPR Page

Secure EPT Tree

TD-scope

SEPT_PAGE
SEPT_PAGE
SEPT Page

TDVPRTDVPRMIGSC Page

Migration Stream Contexts

TDVPR
PERFMON_EVENTS_

BITMAP Page

Perfmon Events Bitmap

 5

Figure 6.1: Guest TD Control Structures Overview (Not Including TD Partitioning and TDX Connect)

All guest TD control structures reside in memory pages that are allocated by the host VMM from the pre-configured
TDMRs. Guest TD control structure pages are addressable by the host VMM.

6.1.1. Opaque vs. Private vs. Shared Control Structures

Control structures are divided to two classes: 10

• Shared control structures are intended to be directly managed by the host VMM and are encrypted with a shared
HKID. The Intel TDX module architecture only describes the shared control structures that might directly impact its
operation. The host VMM may hold additional control structures.

• Private control structures are mapped to the guest TD’s GPA space and are directly accessible by it.

• Opaque control structures are not intended to be directly accessible to any software (except the Intel TDX module) 15

or DMA. They are intended to be managed via Intel TDX module functions. Generally speaking, the host VMM is not
aware of the exact format of opaque control structures. Opaque control structures’ memory pages are intended to
be encrypted with a private HKID.

6.1.2. Scope of Control Structures

Guest TD control structures have two possible scopes: 20

• TD-scope control structures are intended to apply for a guest TD as a whole.

• TD VCPU-scope control structures are intended to apply for a single virtual CPU of a guest TD.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 60 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

6.2. TD-Scope Control Structures

TD-scope control structures include TDR and TDCS, discussed below, and Secure EPT, discussed in Chapter 9.

6.2.1. TDR (Trust Domain Root)

TDR is the root control structure of a guest TD. As designed, TDR is encrypted using the Intel TDX global private HKID. It
holds a minimal set of state variables that enable guest TD control even during times when the TD’s private HKID is not 5

known, or when the TD’s key management state does not permit access to memory encrypted using the TD’s private key.

TDR occupies a single 4KB naturally aligned page of memory. It is designed to be the first TD page to be allocated and
the last to be removed. Its physical address serves as a unique identifier of the TD, as long as any TD page or control
structure resides in memory.

At a high level, TDR holds the following information: 10

• Fields designed to control guest TD build and teardown process.

• Fields designed to manage memory encryption keys.

6.2.2. TDCS (Trust Domain Control Structure)

TDCS is the main control structure of a guest TD. As designed, TDCS is encrypted using the guest TD’s ephemeral private
key. TDCS is a multi-page logical structure composed of multiple TDCX physical pages. 15

At a high level, TDCS holds the following information:

• Fields designed to control the TD operation as a whole (e.g., a counter of the number of VCPUs currently running).

• Fields designed to control the TD’s execution control (debuggability, CPU features available to the TD, etc.).

• Fields related to TD measurement.

• EPTP: as designed, a pointer (HPA) to the TD’s secure EPT root page and EPT attributes. 20

• MSR bitmaps, designed to be used by all the TD’s VCPUs.

• As designed, the secure EPT root page.

• A page filled with zeros, designed to be used in cases where the Intel TDX module needs a read-only constant-0 page
encrypted with the TD’s private key.

TDCS may hold forward links to the following control structures: 25

• Secure EPT pages.

• Migration Stream Context (MIGSC) pages.

6.3. TD VCPU-Scope Control Structures

6.3.1. Trust Domain Virtual Processor State (TDVPS)

Trust Domain Virtual Processor State (TDVPS) is the root control structure of a TD VCPU. It helps the Intel TDX module 30

control the operation of the VCPU and holds the VCPU state while the VCPU is not running. TDVPS is a single logical
control structure composed of multiple physical 4KB pages.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 61 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

TDVPS TDVPS

TD VCPU
Management Fields
(mapped to TDVPR

page)

TD VMCS
(not mapped in linear

address space)

TD VMCS Auxiliary Info

• Virtual APIC Page
• VE Info

TD VCPU State

• GPRs
• CRs, DRs, MSRs
• Extended State

TDVPR Page

TDCX Page

TDCX Page

TDCX Page

TDCX Page

Logical View Physical View

Figure 6.2: High Level Logical and Physical View of TDVPS

 Physical View of TDVPS: TDVPR/TDCX

TDVPS is designed to be opaque to software and DMA access, accessible only by using the Intel TDX module functions.
From the VMM perspective, TDVPS is composed of multiple 4KB pages, where each page may reside in arbitrary locations 5

in convertible memory.

Trust Domain Virtual Processor Root (TDVPR) is the 4KB root page of TDVPS. Its physical address serves as a unique
identifier of the VCPU (as long as it resides in memory).

Trust Domain Control structure eXtension (TDCX) 4KB pages extend TDVPR to help provide enough physical space for
the logical TDVPS structure. 10

The TDVPR and TDCX pages are designed to be encrypted with the TD’s ephemeral private key. They are addressable by
the host VMM, which is responsible for allocating memory to hold them.

The required number of 4KB TDVPR/TDCX pages in TDVPS is enumerated to the VMM by the TDH.SYS.RD* or
TDH.SYS.INFO function (see 4.2.3).

 Logical View of TDVPS 15

Logically, TDVPS is organized as a single large data structure. At a high level, it is composed of the following parts:

VMX (with TDX ISA Extensions) Standard Control Structures

• TD VMCS

• TD VMCS auxiliary structures, such as virtual APIC page, virtualization exception information, etc. Note that MSR
bitmaps are held as part of TDCS because they are meant to have the same value for all VCPUs of the same TD. 20

The TDX design does not require some of the VMX control structures (notably, the Shared EPT) to be protected. They are
described below.

Proprietary Fields

• TD VCPU Management fields designed to manage the operation of the VCPU

• TD VCPU State fields designed to hold most of the VPCU state (except state that is saved to the TD VMCS) when the 25

VCPU is not running

TDVPS organization and format are detailed in the [TDX Module ABI Spec].

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 62 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

6.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structures

Several VMX control structures are directly managed and accessed by the host VMM. These control structures are
pointed to by fields in the TD VMCS. The Intel TDX module checks that the pointers conform to the shared-access HPA
semantics (see 18.2.1.1).

Non-protected control structures include: 5

• Shared EPT tree

• Posted interrupt descriptor

6.4. TD Non-Memory State (Metadata) Access Functions

As set of interface functions is provided to enable host VMM and guest TD access to TD non-memory state (metadata).
These functions employ metadata abstraction, using field code to abstract the actual control structure format. The 10

generic metadata access interface mechanisms are described in 18.6.

Table 6.1: TD Non-Memory State (Metadata) Single Field Access Functions

Side Scope Control Structures Intel TDX Functions

Host VMM

(SEAMCALL)

TD TDR and TDCS TDH.MNG.RD, TDH.MNG.WR

VCPU TDVPS (including TD VMCS) TDH.VP.RD, TDH.VP.WR

Guest TD

(TDCALL)

TD TDR and TDCS TDG.VM.RD, TDG.VM.WR

VCPU TDVPS (including TD VMCS) TDG.VP.RD, TDG.VP.WR

Access to control structure fields using the provided interface functions (down to the bit granularity, if required) depends
on whether the TD is debuggable (ATTRIBUTES.DEBUG bit is 1) or not. 15

In many cases, control structure field access means more than just reading or writing the field content. For example:

• When a field that contains an HPA is written, its value is checked not to overlap the SEAMRR range.

• In some cases, there may be inter-dependency between fields. When such fields are written, multiple checks may
need to be done and some actions may need to be taken.

• For some fields, the internal format and/or value may be different than what is visible externally. 20

For details about the TDX module’s metadata access interface, see 18.6.

6.5. Concurrency Restrictions and Enforcement

A general description of concurrency restriction is provided in 18.1.

Normally, exclusive or shared access is acquired, if needed, for the typically short duration of function flows. A TD VCPU
execution is an exception case. Shared access to TDCS and TDVPS is acquired on TD Entry and released on TD Exit. This 25

implies that SEAMCALL(TDH.VP.ENTER) function, all TDCALL functions, and asynchronous TD Exit have implicit shared
access to TDCS and TDVPS.

This mechanism helps protect running VCPUs against concurrent functions that may try to change their governing control
structures.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 63 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

7. TD Life Cycle Management

This chapter discusses guest TD life cycle management.

7.1. TD Life Cycle State Machine

The TD Life Cycle state machine controls the overall TD build, run-time and destruction process. It operates in conjunction
with the HKID state machine, as described in 5.5. Figure 7.1 below shows the TD Life Cycle state diagram. 5

TDH.MNG.CREATE

TD_HKID_ASSIGNED

TD private key not
configured TDH.MNG.KEY.CONFIG

[last package]

TDH.MNG.
KEY.CONFIG

[non-last
package]

TDH.PHYMEM.PAGE.RECLAIM[TDR]

TDH.MNG.VPFLUSHDONE
[no associated VCPUs]

TD_TEARDOWN

TD has no HKID

TDH.MNG.KEY.FREEID
TDH.PHYMEM.
PAGE.RECLAIM

[non-TDR]

TD_BLOCKED

TD private memory
access is blocked
and caches are
getting flushed

TD_KEYS_CONFIGURED

TD private key is configured

TD Operation
Sub-State

Figure 7.1: High-Level TD Life Cycle State Diagram

Most of the TD lifetime is spent in the TD_KEYS_CONFIGURED state. Within that state, a secondary-level state machine
controls the overall TD operation and migration.

7.2. OP_STATE: TD Operation Secondary-Level State Machine 10

The TD Operation state machine controls sub-states of the TD Life Cycle’s TD_KEYS_CONFIGURED state. It shown in
Figure 7.2 below. This document describes the baseline states: UNALLOCATED, UNINITIALIZED, INITIALIZED and
RUNNABLE. Other states and transitions highlighted in red lines support TD migration and are described in the [TD
Migration Spec].

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 64 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

UNALLOCATED

TDCS memory
allocation

TDH.MNG.ADDCX
[non-last page]

INITIALIZED

TD memory
allocation and
measurement,
VCPU creation

TDH.MNG.INIT

TDH.VP.CREATE,
TDH.VP.ADDCX,

TDH.VP.INIT

TDH.MEM.*,
TDH.MR.EXTEND

TDH.MR.FINALIZE

MEMORY_IMPORT

TD memory import

STATE_IMPORT

TD memory and
non-memory state
import

TDH.IMPORT.
STATE.IMMUTABLE

TDH.IMPORT.STATE.TD

TDH.IMPORT.
TRACK

[in-order done]

PAUSED_EXPORT

TD memory export,
non-memory state
export

POST_EXPORT

TD memory post-
copy export

TDH.EXPORT.ABORT
[good abort token]

TDH.EXPORT.
TRACK

[in-order done]

TDH.EXPORT.PAUSE

TDH.EXPORT.MEM

TDH.EXPORT.MEM,
TDH.EXPORT.
STATE.TD/VP

TDH.IMPORT.STATE.VP,
TDH.IMPORT.MEM

TDH.IMPORT.MEM

TDH.IMPORT.ABORT /
Generate abort token

TDH.EXPORT.
ABORT

FAILED_IMPORT

Destination TD can
only be destroyed

TDH.MNG.KEY.CONFIG
[last package]

UNINITIALIZED

TDCS memory has
been allocatedTDH.MNG.ADDCX

[last page]

TDH.SERVTD.BIND
(MigTD)

TDH.SERVTD.BIND
(MigTD)

TDH.IMPORT.
TRACK

[in-order
not done]

TDH.EXPORT.
TRACK

[in-order
not done]

POST_IMPORT

Post-copy TD
memory import

TDH.IMPORT.
COMMIT

TDH.IMPORT.
MEM

TDH.MEM.*

RUNNABLE

TD is runnable

LIVE_EXPORT

TD is runnable, live
memory export can
be done

LIVE_IMPORT

TD is runnable,
post-copy memory
import can be done

TDH.MEM.*

TDH.IMPORT.ABORT /
Generate abort token

TDH.IMPORT.*
[import failed]

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.MEM.*

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.IMPORT.
MEM

TDH.EXPORT.
ABORT

TDH.IMPORT.MEM
[import failed]

TDH.IMPORT.
END TDH.IMPORT.END

TDH.EXPORT.
TRACK

[in-order
not done]

TDH.IMPORT.
TRACK

[in-order
not done]

TDH.EXPORT.MEM

Figure 7.2: TD Operation State Machine (Sub-States of TD_KEYS_CONFIGURED)

7.3. TD Creation and Configuration Sequence

The following sequence is intended to be used by the host VMM to create a new TD. Note that only the general aspects
of TD creation are described here. Other aspects, such as key management, are described in other chapters. 5

TD configuration is done by TDH.MNG.INIT. This interface function receives a TD_PARAMS input structure, which
contains the following main sections:

• ATTRIBUTES and XFAM, which specify the set of TD attributes (e.g., whether the TD is debuggable) and CPU features
the TD may use (e.g., whether AVX2 is available to the TD).

• Other TD configuration parameters, such as the number of L2 VMs the TD contains. 10

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 65 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• A set of user-provided measurement fields that will appear in the TD’s TDREPORT_STRUCT.

• Virtual CPUID and virtual MSR configuration for the TD.

For a detailed description of TD_PARAMS and its fields, see the [ABI Spec].

Refer also to the software flow discussion in 3.2.

Table 7.1: Typical TD Creation Sequence 5

 Intel TDX Function Inputs Description

1 N/A N/A If any MODIFIED cache lines may exist for the
physical pages to be written below (TDR, TDCS,
Secure EPT root page), flush them to memory
using, e.g., CLFLUSH (possibly on multiple LPs).
This is required to avoid corruption due to cache
line aliasing.

2 TDH.MNG.CREATE TDR page PA Create the TDR and generate the TD’s random
ephemeral key.

3 Multiple See 5.6.2 Assign an HKID and configure the TD’s random
ephemeral key on all packages, as described in
5.6.2.

4 TDH.MNG.ADDCX
(multiple)

• Owner TDR PA

• TDCX page PA

Run multiple times to add the required number of
TDCX pages.

5 TDH.MNG.INIT • Owner TDR PA

• TD initialization parameters

Initialize the TD state in TDR and TDCS.

At this point the TD is initialized. Private memory pages can be added as described in Chapter 9. VCPUs can be
created and initialized as described below.

7.4. VCPU Creation and Initialization Sequence

VCPU creation and initialization is only allowed during TD build time.

The following sequence is intended to be used by the host VMM to create a new TD VCPU. After this sequence is done,
the TD VCPU may be entered on an LP (assuming other conditions are met). 10

Refer also to the software flow discussion in 3.2.

Table 7.2: Typical TD VCPU Creation and Initialization Sequence

 Intel TDX Function Inputs Description

1 N/A N/A If any MODIFIED cache lines may exist for the
physical pages to be written below (TDVPR, TDCX),
flush them to memory (e.g., using CLFLUSH –
possibly on multiple LPs). This is required to avoid
corruption from cache line aliasing.

2 TDH.VP.CREATE • TDVPR page PA

• Owner TDR PA

Create the VCPU and its TDVPR page.

3 TDH.VP.ADDCX

(multiple)

• TDCX page PA

• Parent TDVPR PA

Run multiple times to add the required number of
TDCX pages as an extension to a parent TDVPR.

4 TDH.VP.INIT • TDVPR PA

• VMM-provided identifier

Initialize the VCPU state.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 66 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 Intel TDX Function Inputs Description

5 TDH.VP.WR • TDVPR page PA

• Field code

• New field value

• Write mask

The host VMM typically writes one or more of the
following TD VCPU’s VMCS controls:

• Shared EPTP

• Posted-interrupts descriptor address, posted-
interrupts notification vector and process
posted interrupt

• bus-lock detection

• notification exiting and notify window

For details, see the [TDX Module ABI Spec].

7.5. TD Teardown Sequence

The following sequence is intended to be used by the host VMM to tear down a TD. Note that only the general aspects
of TD teardown are described here. Other aspects, such as key management, are described in other chapters. See also
the discussion of physical page reclamation in 8.6. 5

Refer also to the software flow discussion in 3.4.

Table 7.3: Typical TD Teardown Sequence

 Intel TDX Function Inputs Description

1 Multiple See 5.6.3 Reclaim the HKID, and flush TLB and cache,
as described in 5.6.3.

2 TDH.PHYMEM.PAGE.RECLAIM

(multiple)

TD page or control structure
PA

Remove all TD private pages and control
structure pages and mark them as PT_NDA
in the PAMT.

3 TDH.PHYMEM.PAGE.RECLAIM TDR PA Remove the TDR page and mark it as
PT_NDA in the PAMT.

4 TDH.PHYMEM.PAGE.WBINVD TDR PA Flush MODIFIED cache lines: this is required
to avoid corruption due to cache line
aliasing. Note that all cache lines for all
other TD pages must have been flushed
before the TDR page was reclaimed.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 67 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

8. Physical Memory Management

This chapter describes how the Intel TDX module manages memory as a set of physical pages.

8.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTs)

Trust Domain Memory Region (TDMR) is defined as a range of convertible memory pages. TDMRs are set by the host
VMM, based on the CMR information previously checked by MCHECK. 5

Each TDMR is defined as controlled by a (logically) single Physical Address Metadata Table (PAMT). The PAMT structure
is discussed in 8.3 below. PAMT tables reside in VMM-allocated memory, and they are designed to be encrypted with
the Intel TDX global private HKID. The required size of PAMT memory, as a function of TDMR size, is enumerated to the
VMM by TDH.SYS.RD/RDALL or TDH.SYS.INFO.

Typically, after the host VMM initializes the Intel TDX module (TDH.SYS.INIT and TDH.SYS.LP.INIT), it configures the TDMRs 10

and their respective PAMTs using TDH.SYS.CONFIG. It then would gradually initialize the TDMRs using
TDH.SYS.TDMR.INIT. For a detailed description of the typical Intel TDX module initialization and configuration sequence,
see Chapter 4.

8.2. TDMR Details

The following list includes definitions of the characteristics of a TDMR: 15

• TDMR configuration is "soft" – no hardware range registers are used.

• Each TDMR defines a single physical address range.

• Each TDMR has its own size which must be a multiple of 1GB. TDMR size is not required to be a power of two.

• A TDMR must be aligned on 1GB.

• TDMRs cannot overlap with each other. 20

• TDMRs may contain reserved areas. This effectively allows the host VMM to flexibly configure TDMRs based on the
VMM’s own consideration of system memory allocation – without being impacted by the 1GB granularity of the
TDMR size.
o A reserved area must be aligned on 4KB, and its size must be a multiple of 4KB.
o The number of reserved areas that may be configured per TDMR is enumerated by TDH.SYS.RD/RDALL or 25

TDH.SYS.INFO.

• TDMR memory, except for reserved areas, must be convertible as checked by MCHECK (i.e., every TDMR page must
reside within a CMR).

• There is no requirement for TMDRs to cover all CMRs.

• TDMRs are configured at platform scope (no separate configuration per package). 30

• The maximum number of TDMRs is Intel TDX module implementation specific. It is enumerated to the host VMM
using the TDH.SYS.RD/RDALL or TDH.SYS.INFO function, as described below.

8.3. PAMT Details

The Physical Address Metadata Table (PAMT) is designed to track the metadata of every physical page in TDMR. A page
metadata includes page type, page size, assignment to a TD, and other attributes. 35

The PAMT is used by the Intel TDX module to help enforce the following properties:

Page Attributes A physical page in TDMR has a well-defined set of attributes, such as page type and page size.

Single TD Assignment A physical page in TDMR can be assigned to at most one TD.

Secure EPT Consistency The page size of any private TD page, mapped in Secure EPT, matches its page size attribute in
PAMT. 40

8.3.1. PAMT Entry

Note: The description below is provided at a high level. Implementation details may differ.

A PAMT entry is designed to hold metadata for a single physical page. The page size may be 4KB, 2MB or 1GB depending
on the PAMT level (see 8.3.2 below).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 68 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 8.1: High-Level View of a PAMT Entry

Field Description

PT PT indicates the type of page intended to be associated with this
PAMT entry. See Table 8.3 below for details.

OWNER OWNER is designed to contain bits 51:12 of the physical address of the
TD’s TDR page.

This field can be applicable in all cases when a page is assigned to the
Intel TDX module at this PAMT level or at a higher level. See Table 8.3
below for details.

BEPOCH By design, the value of TDCS.TD_EPOCH as sampled by
TDH.MEM.RANGE.BLOCK

This field is intended to be applicable only if PT is PT_REG or PT_EPT.
See 0 for a detailed discussion.

MIG_EPOCH Migration epoch at the time this page was imported

This field is used only during TD migration, and is intended to be
applicable only if PT is PT_REG. For details, see the TD Migration Spec
and the [ABI Spec].

EXPORT_COUNT TDCS.MIG_COUNT at the time this page was imported

This field is used only during TD migration, and is intended to be
applicable only if PT is PT_REG. For details, see the TD Migration Spec
and the [ABI Spec].

8.3.2. PAMT Blocks and PAMT Arrays

For each 1GB of TDMR physical memory, there is a corresponding PAMT Block. A PAMT Block is logically arranged in a
three-level tree structure of PAMT Entries, as shown in Figure 8.1 below. Levels 0 through 2 (PAMT_4K, PAMT_2M and 5

PAMT_1G) correspond to 4KB, 2MB and 1GB physical TDMR pages, respectively.

Physically, for each TDMR the design includes three arrays of PAMT entries, one for each PAMT level. This aims to simplify
VMM memory allocation. A logical PAMT Block has one entry from the PAMT_1G array, 512 entries from the PAMT_2M
array, and 5122 entries from the PAMT_4K array.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 69 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

511

0

1,023

512

262,143

261,632

…

511

0
1

0

0x001FF000

0x00000000

0x00200000

0x003FF000

0x3FE00000

0x3FFFF000

0x00000000 0x00000000

0x00200000

0x3FE00000

Level 2
PAMT_1G

Level 1
PAMT_2M

Level 0
PAMT_4K

Figure 8.1: Typical Example of a PAMT Block Hierarchy for a 1GB TDMR Block

8.3.3. PAMT Page Types

Table 8.2 below describes the PAMT page types:

Table 8.2: PAMT Page Types 5

Page Type PAMT
Level

Associated TDX
Page

Description

PT_NDA Any Depending on PT
at higher PAMT
level (if any)

The physical page is Not Directly Assigned to the Intel TDX
module at this size (4K, 2M or 1G) and PAMT level.

This page may be part of a larger page that is assigned to the
Intel TDX module at a higher level, or this page may contain
smaller pages that are assigned to the Intel TDX module at lower
levels. See Table 8.3 below for details.

PT_RSVD PAMT_4K None The physical page is reserved for non-TDX usage. The Intel TDX
module will not allow converting this page to any other page
type. The page can be used by the host VMM for any purpose.

PT_RSVD is used for implementing reserved areas within TDMRs.
See 4.1.3.2.1 for details.

PT_REG Any TD private page The physical page at this PAMT level (4K, 2M or 1G) holds TD
private memory and is mapped in the guest TD GPA space by the
Secure EPT.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 70 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Page Type PAMT
Level

Associated TDX
Page

Description

PT_PR PAMT_2M,
PAMT_1G

TD private page The physical page at this PAMT level (2M or 1G) holds a
removed TD private memory that is waiting for the completion
of page removal (by TDH.MEM.PAGE.REMOVE) or reclamation
(by TDH.PHYMEM.PAGE.RECLAIM).

Enumeration: PT_PR applies only for platforms which protect
TDX memory using ACT, as enumerated by
TDX_FEATURES0.ACT (bit 14).

PT_TDR PAMT_4K TDR TDR control structure page

PT_TDCX PAMT_4K TDCX One 4KB physical page of a multi-page control structure

PT_TDVPR PAMT_4K TDVPR Root page of the multi-page TDVPS control structure

PT_EPT PAMT_4K Secure EPT Secure EPT page

PT_TR PAMT_4K - A physical page which has no current GPA mapping but must be
TLB tracked before it can be assigned for any usage

Enumeration: PT_TR applies only for TDX modules which
implement page resize without tracking, as
enumerated by TDX_FEATURES0.
NON_BLOCKING_RESIZE (bit 35).

TDX
Connect
Types

- - TDX Connect page types are defined in the [TDX Connect Spec]

8.3.4. PAMT Hierarchy

Table 8.3 below shows the page type (PT) of PAMT entries at the three levels of hierarchy, depending on whether the
page is assigned to the Intel TDX module manages the page, whether the page is mapped in secure EPT, and the mapping
size. 5

Table 8.3: PAMT Hierarchy and Page Types

Intel TDX Module Management PAMT Entry Page Type

Assigned to
TDX?

Physical Page
Size

GPA Mapping
Size (Secure
EPT Level)

PAMT_1G
(Level 2)

PAMT_2M
(Level 1)

PAMT_4K
(Level 0)

No 4KB N/A PT_NDA PT_NDA PT_RSVD

No 4KB N/A PT_NDA PT_NDA PT_NDA

Yes 4KB None PT_NDA PT_NDA PT_TDR,
PT_TDCX,
PT_TDVPR,
PT_EPT

Yes 4KB 4KB (Level 0) PT_NDA PT_NDA PT_REG

Yes 2MB 2MB (Level 1) PT_NDA PT_REG PT_NDA

Yes 1GB 1GB (Level 2) PT_REG PT_NDA PT_NDA

Note the following:

• A 4KB page is considered free (i.e., not assigned to TDX) if its PAMT.PT at all three PAMT levels is PT_NDA. Any
function that attempts to assigns an HPA to TDX (e.g., TDH.MEM.PAGE.ADD) is designed to check this. 10

• In all other cases, PAMT.PT is different than PT_NDA in only one of the three PAMT levels.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 71 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• When a page is mapped by Secure EPT at 4KB, 2MB or 1GB GPA mapping size, it is managed by the Intel TDX module
as a physical page of the same size. Secure EPT is described in Chapter 9.

• PT_RSVD pages cannot be used by the Intel TDX module. They are used for implementing reserved areas within
TDMRs. See 4.1.3.2.1 for details.

8.4. Overview of Memory Protection using Access Control Table (ACT) 5

Enumeration: Usage of ACT is enumerated by TDX_FEATURES0.ACT (bit 14), readable by TDH.SYS.RD*.

On certain platforms, an Access Control Table (ACT) is used by memory controllers to help protect physical memory
marked as TD private from being accessed using shared HKIDs. ACT resides in memory, inside the SEAM range, and thus
is protected from software access, except for the TDX module. Each bit in ACT is associated with a 4KB physical memory
page: 10

0: Shared page – memory that can be accessed using shared HKIDs.

1: Private page – memory that can only be accessed by TDs and the TDX module, using private HKIDs.

ACT data is duplicated per memory controller.

The TDX module is responsible for managing the ACT, as follows:

• Initialize the ACT tables. 15

• Enable the ACT lookup feature in the memory controller.

• Update the table bits whenever a memory page is converted from private to shared and vice versa.
o When PAMT.PT moves from PT_NDA to any TD private page states, update the ACT page bit to private (1)
o When PAMT.PT moves from TD private page states to PT_NDA, the update ACT page bit to shared (0)

8.5. Adding Physical Pages 20

8.5.1. Future Platforms: Preventing Cache Line Aliasing by Flushing Cache Lines

Future platforms may require that, before adding a physical page, the host VMM will ensure no MODIFIED cache lines
exist for that page. The host VMM can flush cache lines to memory – e.g., using CLFLUSH (only for pages containing data
encrypted with a shared HKID – the VMM cannot directly use an HPA with a private HKID), or
TDH.PHYMEM.PAGE.WBINVD (for pages containing data encrypted with any HKID, as long as the page is within a TDMR). 25

Flushing cache lines to memory is required to avoid corruption due to cache line aliasing.

Enumeration: The need for flushing cache lines is enumerated by TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23),
readable by TDH.SYS.RD. If that bit is 0, no flushing is required.

8.5.2. Adding Pages not Mapped to the Guest TD

By design, TD control structure pages TDR, TDCX and TDVPR are not mapped to the guest TD’s GPA space, and they are 30

only managed using their HPA. The functions TDH.MNG.CREATE, TDH.MNG.ADDCX, TDH.VP.CREATE and TDH.VP.ADDCX
are designed to add 4KB control structure pages PT_TDR, PT_TDCX and PT_TDVPR, respectively. The overall process is
described in 7.3 and 7.4.

8.5.3. Adding Pages and Mapping to the Guest TD’s GPA

The following page types are associated with a guest TD’s GPA: 35

• Guest TD private pages

• Secure EPT pages are mapped to the guest TD’s GPA space.

Those pages are added given their HPA and the required GPA. The functions TDH.MEM.PAGE.ADD, TDH.MEM.PAGE.AUG,
TDH.MEM.PAGE.RELOCATE and TDH.IMPORT.MEM add a PT_REG page, and the functions TDH.MEM.SEPT.ADD and
TDH.MEM.PAGE.DEMOTE add a 4KB PT_EPT page. TD private memory management functions are described in Chapter 40

9. This section describes only their physical page management aspects.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 72 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

8.6. Reclaiming Physical Pages

8.6.1. Platforms not Using ACT: Required Cache Flush and Initialization by the Host VMM

Once a physical page is reclaimed from a TD, it should be free for use by the host VMM for any purpose, provided that
the operations described below are done.

Cache Flush (Future Platforms) 5

The following may be required on future platforms. It will be enumerated by TDX_FEATURES.CLFLUSH_BEFORE_ALLOC
(bit 23), readable by TDH.SYS.RD.

To help avoid stability issues caused by cache line aliasing, the host VMM should also ensure that no cache lines
associated with the removed page are in a Modified state, before the page is reused for any purpose.

• During the TD’s lifetime, this can be done by calling TDH.PHYMEM.PAGE.WBINVD. 10

• If the TD has been torn down and is in the in TD_TEARDOWN state, cache has already been flushed by
TDH.PHYMEM.CACHE.WB as part of the teardown sequence, so no further operation is required – except for the TDR
page as descried below.

Page Initialization

Before the physical page is used for anything except TD private memory page or TDX control structure page, the host 15

VMM should initialize it using MOVDIR64B. This helps ensure that no content encrypted with a private HKID remains for
that physical page, which may result in an integrity violation or TD bit mismatch detection when later being read using a
shared HKID.

If the page is to be used as a new TD private memory page or TDX control structure page, this initialization is not required
since the TDX module will initialize the page. 20

8.6.2. Platforms Using ACT: Required Cache Flush, Initialization and ACT Update

 ACT Platforms: Overview of the Host VMM Operation

Reclaiming large pages, as part of TDH.MEM.PAGE.REMOVE and TDH.PHYMEM.PAGE.RECLAIM is a long and interruptible
operation. See below for details.

 ACT Platforms: Overview of the TDX Module Operation 25

On platforms which use ACT for memory protection, reclaiming physical pages requires cache lines flushing, page write
over and ACT bit clearing. These operations are done by the TDX module as part of the page reclamation sequence.

8.6.2.2.1. Page Write Over and Cache Flush

To help avoid stability issues caused by cache line aliasing, the TDX module is designed to ensure that no cache lines
associated with the reclaimed page are in a Modified state, before the page is reused for any purpose. In addition, the 30

TDX module writes over the page content with a per-TD random value. This value is generated when the TD is created
(TDH.MNG.CREATE). This helps ensure that no cyphertext of known cleartext content is revealed after the page becomes
shared.

8.6.2.2.2. Marking the Page as Shared

The TDX module clears the applicable ACT bits to mark the page as shared. 35

 ACT Platforms: Page Reclamation Sequence for Large Pages

4KB pages are reclaimed directly by the applicable interface functions (e.g., TDH.MEM.PAGE.REMOVE), as discussed in
the following sections.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 73 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

For 2MB and 1GB physical pages, page reclamation may take a long time to run, thus this operation is interruptible and
resumable. For backward compatibility, such interface functions (e.g., TDH.MEM.PAGE.REMOVE) have two usage modes,
selected by their version number input parameter:

Backward Compatible Mode: Upon detecting a pending interrupt, the function returns to the host VMM without
incrementing RIP. The host VMM is expected to handle the interrupt; typically, when 5

done the interface function natively gets called again.

Explicit Mode: Upon detecting a pending interrupt, the function returns to the host VMM with a
TDX_INTERRUTED_RESUMABLE status. The host VMM is expected to handle the
interrupt and then call the interface function again to complete the page.

In both cases, once interrupted the interface functions change the page type to Pending Release (PT_PR). This indicates 10

that the page can no longer be used for its original purpose but has not yet been fully reclaimed.

Once a physical page is reclaimed from a TD, it should be free for use by the host VMM for any purpose.

8.6.3. Reclaiming Pages not Mapped to the Guest TD’s GPA Space

There are several cases where pages are not considered as mapped to the guest TD:

• Control structure pages are not mapped to the guest TD. 15

• In TD_TEARDOWN state, as described below, no mapping is in effect.

• If the TDX module supports non-blocking mapping resize, PT_TR is a special case. It is not mapped in the TD’s GPA
space, but there may still be TLB entries associated with it.

 Reclaiming TD Pages in TD_TEARDOWN State

As part of the TD teardown process, the host VMM needs to put the TD into a TD_TEARDOWN state, as described in 7.4. 20

This is a non-recoverable state where TD keys have been reclaimed, all address translations and caches have been flushed,
and the TD private memory and control structures (except TDR) are no longer accessible.

By design, in the TD_TEARDOWN state, all TD pages are effectively unmapped. Secure EPT is not accessible, and no GPA-
to-HPA mapping can be used. The host VMM must treat all the TD private pages and control structure pages as physical
memory and reclaim them using the TDH.PHYMEM.PAGE.RECLAIM function in any order, as long as the TDR page is the 25

last one to be reclaimed.

For TDR page, the intention is for the host VMM to call TDH.PHYMEM.PAGE.WBINVD after calling
TDH.PHYMEM.PAGE.RECLAIM. This is required to avoid corruption due to cache line aliasing because the TDR page has
still been accessed and modified, even when the TD was in TD_TEARDOWN state.

 Reclaiming PT_TR Pages in the TD_KEYS_CONFIGURED State 30

If the TDX module supports non-blocking mapping resize, as enumerated by TDX_FEATURES0.NON_BLOCKING_RESIZE
(bit 35), then PT_TR pages can be reclaimed while the TD’s lifecycle state is TD_KEYS_CONFIGURED, its normal state while
operating. PT_TR pages are former SEPT pages released by TDH.MEM.PAGE.PROMOTE.

In this state, the CPU might hold stale TLB entries associated with the PT_TR page. Thus, the VMM is expected to perform
TLB tracking and TDH.PHYMEM.PAGE.RECLAIM checks this. 35

8.6.4. Reclaiming Physical Pages as Part of TD Private Memory Management

Functions such as TDH.MEM.PAGE.REMOVE and TDH.MEM.PAGE.PROMOTE are designed to remove TD private pages
and Secure EPT pages, respectively. By design, they first make sure the pages are no longer accessible using a GPA, then
they mark the physical page as free. This is described in Chapter 9; this section only highlights the physical page
reclamation. 40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 74 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

9. TD Private Memory Management

This chapter described how the Intel TDX module helps manage TD private memory and guest-physical address (GPA)
translation.

9.1. Overview

Intel TDX ISA introduced the concept of private GPA vs. shared GPA, depending on the GPA.SHARED bit. In SEAM non-5

root mode, the controlling VMCS has two EPT pointer fields:

• The legacy EPT pointer is used for translating the guest TD’s memory accesses using a private GPA (i.e.,
GPA.SHARED == 0).

• A new Shared EPT pointer is used for translating the guest TD’s memory accesses using shared GPAs (i.e.,
GPA.SHARED == 1). 10

A new GPAW execution control determines the position of the SHARED bit in the GPA, and a new HKID execution control
defines the HKID used for accessing TD private memory.

TD0

CR3 Private Code/data

Private Code/data

Guest Physical Address

Shared Data

CPU PMH

Extended
Page Tables
(Secure EPT)

Shared Extended
Page Tables
(Shared EPT)

Guest Physical Address (GPA)

Physical
Address +
HKID

TD Private
HKID

Shared GPA Space
Memory encrypted with a
key shared with VMM

Private GPA Space
Memory encrypted with a
TD private key

Yes No

GPA.SHARED

HPA Space
Physical Memory
Pages

Figure 9.1: Secure EPT Concept

The Intel TDX module maintains a single Secure EPT structure per TD. Secure EPT pages are designed to be opaque; they 15

reside in ordinary memory, and they are encrypted and integrity-protected with the TD’s ephemeral private key. The
Intel TDX module does not map Secure EPT pages to the guest TD GPA space. Thus, Secure EPT is effectively not accessible
by any software besides the Intel TDX module, nor by any devices. Any such access using shared HKID to Secure EPT can
lead to data corruption that triggers integrity check failure leading to a machine check fault.

Secure EPT is intended to be managed indirectly by the host VMM using Intel TDX functions. The Intel TDX module helps 20

ensure that the Secure EPT is managed correctly.

The CPU translates shared GPAs using the Shared EPT which resides in host VMM memory. The translation uses a shared
HKID, and it is directly managed by the host VMM, just as with legacy VMX.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 75 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

9.2. Secure EPT Entry

9.2.1. Overview

From the CPU perspective, Secure EPT has the same structure as a legacy VMX EPT.

For the purpose of private memory management, the Intel TDX module hold a state value in each Secure EPT entry. This
state value is encoded by multiple bits. 5

Table 9.1: Secure EPT Entry State High Level Description

State Name Description

FREE Secure EPT entry does not map a GPA range.

REMOVED Secure EPT entry is of a removed page

NL_MAPPED Secure EPT entry maps a private GPA range which is accessible by
the guest TD.

NL_BLOCKED Secure EPT entry maps a private GPA range, but new address
translations to that range are blocked.

MAPPED Secure EPT entry maps a private GPA page which is accessible by
the guest TD.

BLOCKED Secure EPT entry maps a private GPA page but new address
translations to that range are blocked.

BLOCKEDW Secure EPT entry maps a private GPA page, but new address
translations for write operations to that range are blocked.

EXPORTED_BLOCKEDW Secure EPT entry maps a private page that has been blocked for
writing and exported.

EXPORTED_DIRTY Secure EPT entry maps a private page that was exported but is not
blocked for writing and its content and/or attributes may have since
been modified.

EXPORTED_DIRTY_BLOCKEDW Secure EPT entry maps a private page that was previously exported,
its content and/or attributes may have since been modified and
then it was blocked for writing.

PENDING Secure EPT entry maps a 4KB or a 2MB page that has been
dynamically added to the guest TD using TDH.MEM.PAGE.AUG and
is pending acceptance by the guest TD using
TDG.MEM.PAGE.ACCEPT. This page is not yet accessible by the
guest TD.

PENDING_BLOCKED Secure EPT entry is both pending and blocked.

PENDING_BLOCKEDW Secure EPT entry is both pending and blocked for writing.

PENDING_EXPORTED_BLOCKEDW Secure EPT entry is both pending and exported.

PENDING_EXPORTED_DIRTY Secure EPT entry is both pending and exported and is not blocked
for writing.

PENDING_EXPORTED_DIRTY_BLOCKEDW Secure EPT entry is both pending and exported and is blocked for
writing.

Secure EPT entry is opaque; the host VMM may not access it directly. The host VMM may read a Secure EPT entry
information using the TDH.MEM.SEPT.RD interface function. In addition, multiple other interface functions return the
same information in case of an error that is related to a Secure EPT entry. For details, see the [TDX Module ABI Spec]. 10

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 76 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

9.2.2. SEPT Entry State Diagrams

The figures below show partial state diagrams for the basic memory management operation for a leaf and a non-leaf
SEPT entry.

Note: The diagrams below are partial. SEPT entry state diagrams for TD migration are provided in the [TD Migration
Spec]. SEPT entry state diagrams for TD partitioning are provided in the [TD Partitioning Spec]. 5

TDH.MEM.PAGE.REMOVE

FREE

SEPT entry is not
mapped to a physical
page

MAPPED

Page is mapped and
accessible to guest
TD

PENDING

Page is pending guest
TD acceptance

TDH.MEM.PAGE.ADD

TDH.MEM.PAGE.AUG

TDH.MEM.PAGE.DEMOTE /
PINNED_BLOCKED_COUNT--,
Entry becomes NL_MAPPED

TDH.MEM.PAGE.PROMOTE[non-leaf NL_MAPPED entry] /
Previous non-leaf entry becomes MAPPED

From Non-Leaf
Entry State
Diagram

TDH.MEM.PAGE.DEMOTE /
New leaf, MAPPED

TDH.MEM.PAGE.DEMOTE /
Entry becomes NL_MAPPED

TDH.MEM.PAGE.DEMOTE /
New leaf, PENDING

To Non-Leaf
Entry State
Diagram

To Non-Leaf
Entry State
Diagram

TDH.MEM.PAGE.REMOVE /
PINNED_BLOCKED_COUNT--

BLOCKED

Page is mapped but
new translations are
blocked

TDH.MEM.RANGE.BLOCK /
PINNED_BLOCKED_COUNT++

PENDING_BLOCKED

Page is pending but
guest TD acceptance
is blocked

TDH.MEM.RANGE.
BLOCK

TDH.MEM.PAGE.PROMOTE /
PINNED_BLOCKED_COUNT--

TDH.MEM.PAGE.REMOVE
[TD is paused]

TDH.MEM.PAGE.DEMOTE [TD is paused] /
Entry becomes NL_MAPPED

TDH.MEM.PAGE.PROMOTE
[TD is paused]

TDH.MEM.PAGE.DEMOTE [TD is paused] /
Entry becomes NL_MAPPED

TDH.MEM.RANGE.UNBLOCK /
PINNED_BLOCKED_COUNT--

TDH.MEM.RANGE.
UNBLOCK

TDG.MEM.PAGE.ACCEPT

Figure 9.2: Secure EPT Leaf Entry Basic Operation Partial State Diagram

FREE

SEPT entry is not
mapped to a physical
page

NL_MAPPED

SEPT page is mapped
and new SEPT walks
to GPA range are
permitted

TDH.MEM.SEPT.ADD

TDH.MEM.PAGE.PROMOTE /
IO_BLOCKED_COUNT--,
Non-leaf entry becomes

leaf, MAPPED

TDH.MEM.PAGE.DEMOTE /
Previous leaf entry becomes NL_MAPPED

From Leaf Entry
State Diagram

To Leaf Entry
State Diagram

TDH.MEM.SEPT.REMOVE[all entries are FREE] /
PINNED_BLOCKED_COUNT--

NL_BLOCKED

SEPT page is mapped
but new SEPT walks
to GPA range are
blocked

TDH.MEM.RANGE.BLOCK /
PINNED_BLOCKED_COUNT++

TDH.MEM.SEPT.REMOVE
[all entries are FREE && [TD is paused]

TDH.MEM.PAGE.PROMOTE [TD is paused] /
Non-leaf entry becomes leaf, MAPPED

TDH.MEM.RANGE.UNBLOCK /
PINNED_BLOCKED_COUNT--

Figure 9.3: Secure EPT Non-Leaf Entry Basic Operation Partial State Diagram 10

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 77 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

9.3. Secure EPT Walk

Host-side (SEAMCALL) Intel TDX functions that manage TD private memory usually accept GPA and Level parameters.
They perform a Secure EPT walk which locates the target Secure EPT entry.

If the Secure EPT walk is completed successfully, the Intel TDX function may operate on the located Secure EPT entry.
Otherwise, the function typically returns the last visited EPT entry and its level to the host VMM. 5

Guest-side (TDCALL) Intel TDX functions typically perform an EPT walk similar to the EPT walk done by the CPU. Only the
GPA is provided as an input, and the function may walk the Shared EPT or the Secure EPT, depending on the specific
function and the GPA’s SHARED bit.

9.4. Secure EPT Induced TD Exits

Intel SDM, Vol. 3, 26.2.1 Basic VM-Exit Information 10

Guest TD memory access to a non-present private GPA causes, in most cases, an asynchronous TD exit with an EPT
Violation exit reason. As discussed in 9.2 above, a non-present GPA is any private GPA for which there is either no Secure
EPT entry, or the Secure EPT entry is not in the MAPPED state.

Secure EPT-induced TD exits may also be triggered during a guest-side local flow, performing some function on behalf of
the guest TD, and executed by the Intel TDX module. 15

On EPT violation TD exit, VM exit information is provided to the host VMM. This helps the VMM analyze the reason for
the EPT violation and take proper action.

Table 9.2: EPT Violation TD Exit Cases and Possible Host VMM Actions

Reason May be Indicated by Possible Host VMM Action

Page is not mapped to the
TD GPA space

• Exit qualification bits 6:3 value is
0.

• Extended exit qualification TYPE
(bits 3:0) value is NULL (0).

• The host VMM knows, based on
its internal data, that either the
page or a Secure EPT page that
maps it has not been allocated to
the TD.

The host VMM may use this as a trigger for
dynamic memory allocation
(TDH.MEM.PAGE.AUG) or for a post-copy
migration import (see [TD Migration Spec]).

Page is BLOCKED or GPA
range is NL_BLOCKED

• Exit qualification bits 6:3 value is
0.

• Extended exit qualification TYPE
(bits 3:0) value is NULL (0).

• The host VMM knows, based on
its internal data, that the page or
a Secure EPT page that maps it
has been blocked.

The host VMM may resume the TD
(TDH.VP.ENTER), possibly after taking some
action (e.g., TDH.MEM.PAGE.PROMOTE) for
which the page has been blocked.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 78 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Reason May be Indicated by Possible Host VMM Action

Page is PENDING or
PENDING_EXPORTED_DIRTY

• Exit qualification bits 6:3 value is
0.

• Extended exit qualification TYPE
(bits 3:0) value is
PENDING_EPT_VIOLATION (6).5

• The host VMM knows, based on
its internal data, that the page
has been assigned to the TD using
TDH.MEM.PAGE.AUG.

This happens if the TD is configured to TD-exit
(instead of a #VE) on an EPT violation due to
accessing a PENDING page. It normally
indicates an error condition; the host VMM
may decide to tear the TD down.

Configuration is by
ATTRIBUTES.SEPT_VE_DISABLE.

If CONFIG_FLAGS.FLEXIBLE_PENDING_VE is 1,
then the guest TD may select the desired
behavior.

Page is blocked for writing
(*BLOCKEDW)

• Exit qualification bit 1 value is 1,
indicating a write access, and bit
4 is 0, indicating write blocking.

• The host VMM knows, based on
its internal data, that the page
has been blocked for writing using
TDH.EXPORT.BLOCKW

The host VMM may unblock the page
(TDH.EXPORT.UNBLOCKW). for details, see
[TD Migration Spec].

EPT violation during
PENDING page acceptance
(TDG.MEM.PAGE.ACCEPT)

• Extended exit qualification TYPE
(bits 3:0) value is ACCEPT (1).

• See the discussion in 9.10 below
and the [ABI Spec] for details.

Depending on the information provided in the
extended exit qualification, the host VMM
may demote the page, add an SEPT page, add
a page or retry the operation after the page is
not blocked.

See the discussion in 9.10 below and the [ABI
Spec] definition of TDG.MEM.PAGE.ACCEPT
for details.

EPT violation during
TDG.MEM.PAGE.ATTR.WR

• Extended exit qualification TYPE
(bits 3:0) value is ATTR_WR (5).

Depending on the information provided in the
extended exit qualification, the host VMM
may demote the page or add an L2 SEPT page.

See the [ABI Spec] definition of
TDG.MEM.PAGE.ATTR.WR for details.

EPT violation caused by
guest-side interface
function failure of
GPA→HPA translation

• Extended exit qualification TYPE
(bits 3:0) value is GPA_DETAILS
(2).

Similar to the above cases where the page is
not mapped, is blocked or is blocked for
writing, except that more information is
provided in the extended exit qualification.

By design, since secure EPT is fully controlled by the TDX module, an EPT misconfiguration on a private GPA indicates a
TDX module bug and is handled as a fatal error.

9.5. Secure EPT Induced Exceptions

9.5.1. #PF Exceptions Related to GPA Reserved Bits

Guest TD memory access, with any reserved GPA bit set to 1, causes a #PF exception. See 11.14.1.5 for details. 5

9.5.2. EPT Violation Mutated into #VE

See 0 below for details of handling guest TD memory access to a private GPA for which the Secure EPT entry state is
PENDING or PENDING_EXPORTED_DIRTY.

For shared GPA, see 11.14.2 for details.

5 Availability of this indication is enumerated by TDX_FEATURES0.PENDING_EPT_VIOLATION_V2 (bit 16), readable by TDH.SYS.RD*.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 79 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

9.6. Secure EPT Concurrency

Secure EPT concurrency rules are designed to allow concurrent operations on multiple Secure EPT entries. Secure EPT
concurrency is controlled by the following mechanisms:

• An exclusive/shared lock on the whole Secure EPT tree.

• A host-priority mutex on each Secure EPT entry. 5

Host-Side (SEAMCALL) Interface Functions

• TDX module interface functions that use GPA as an input acquire a lock on the whole Secure EPT tree of the target
TD to help prevent changes to the tree while they execute.
o Interface functions that may impact a whole sub tree of the Secure EPT tree acquire an exclusive lock on the

Secure EPT tree. These include TDH.MEM.RANGE.BLOCK, TDH.MEM.RANGE.UNBLOCK and 10

TDH.MEM.SEPT.REMOVE.
o Other interface functions acquire a shared lock on the Secure EPT tree.

• Most interface functions that use GPA as an input acquire an exclusive host-priority lock on the Secure EPT entry or
entries which they use. An exception to this is TDH.MEM.SEPT.RD, which just reads a Secure EPT entry and does not
use it to actually access memory. 15

• Host-side interface functions that obtain exclusive access to the TDR page (and thus, to the whole TD), such as
TDH.MEM.PAGE.ADD, are considered as implicitly having exclusive access to the Secure EPT tree and each of its
entries.

Guest-Side (TDCALL) Interface Functions

Guest-side TDX module interface functions that need to translate a GPA to an HPA emulate the CPU’s top-down EPT walk 20

operation.

• Guest-side interface functions have no concurrency restrictions on the whole Secure EPT tree.

• Guest-side interface functions that need to manage a Secure EPT entry acquire an exclusive host-priority lock on
that entry. These include TDH.MEM.PAGE.ACCEPT, TDH.MEM.PAGE.ATTR.RD and TDH.MEM.PAGE.ATTR.WR.

For details on host-priority concurrency enforcement, see 18.1.4. 25

9.7. Introduction to TLB Tracking

The goal of TLB tracking is to be able to prove (when needed) that no logical processor holds any cached Secure EPT
address translations to a given TD private GPA range. TLB tracking is required when removing a mapped TD private page
(TDH.MEM.PAGE.REMOVE) or when changing the page mapping size (TDH.MEM.PAGE.PROMOTE), etc.

Cached address translations include implicit address translations (TLB) and paging structure translations (PxE) held by the 30

CPU. In addition, GPAs that are translated by the TDX module to HPA and written to VMX control structure fields, to be
read by the CPU, are also considered cached address translation.

Conditions when TLB Tracking is not Required

TLB tracking is not required when the TD’s OP_STATE implies that no TD VCPU may run at the time GPA mapping
operation modification (e.g., TDH.MEM.PAGE.REMOVE) is done. The only OP_STATE values when TD VCPUs may run are 35

the following:

• RUNNABLE

• LIVE_EXPORT

• LIVE_IMPORT

In addition, TLB tracking is not required if the GPA range’s Secure EPT entry state implies that no cached address 40

translations may exist for that Secure EPT entry. This applies to the following SEPT entry states (see the [TDX Module ABI
Spec] for details):

• EXPORTED_BLOCKEDW, PENDING_EXPORTED_BLOCKEDW: The page has been exported by TDH.EXPORT.MEM and
it is blocked for writing.

• FREE, REMOVED: The page has been removed (e.g., by TDH.MEM.PAGE.REMOVE). 45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 80 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

GPA Range TLB Tracking Sequence

This sequence is intended to be used by the host VMM to help guarantee no EPT TLB entries exist to a set of GPA ranges.

Intel TDX
Module

Host VMM Guest TD

TDH.MEM.RANGE.BLOCK(TDR, GPA, level)

TDH.MEM.TRACK(TDR)

IPI

VM Exit (external interrupt)

TD Exit (external interrupt)

TDH.VP.ENTER

VM Entry

Figure 9.4: Typical TLB Tracking Sequence

The sequence typically includes five steps: 5

1. Execute TDH.MEM.RANGE.BLOCK on each GPA range, blocking subsequent creation of TLB translation to that range.
Note that cached translations may still exist at this stage.

2. Execute TDH.MEM.TRACK, advancing the TD’s epoch counter.
3. Send an Inter-Processor Interrupt (IPI) to each Remote Logical Processor (RLP) on which any of the TD’s VCPUs is

currently scheduled. 10

4. Upon receiving the IPI, each RLP will TD exit to the host VMM.

When each of the TD VCPUs has been inactive at least once following TDH.MEM.TRACK, the target GPA ranges are
considered tracked. Even though some LPs may still hold TLB entries to the target GPA ranges, the following TD entry to
each of the TD VCPUs is designed to flush them.

Note: If the host VMM counts the number of active VCPUs, and following TDH.MEM.TRACK this number is 0, the host 15

VMM may skip the IPIs – all VCPUs are already considered tracked.

5. Normally, the host VMM on each RLP will treat the TD exit as spurious and will immediately re-enter the TD.

9.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD

The host VMM can use the TDH.MEM.SEPT.ADD function to add a Secure EPT page to a guest TD. TDH.MEM.SEPT.ADD
inputs are: 20

• Target TD, identified by its TDR HPA

• Destination physical page for the new Secure EPT table

• Mapping information: GPA and EPT level

At a high level, TDH.MEM.SEPT.ADD works as follows:

1. Check the TD keys are configured. 25

2. Check the destination physical page is marked as free in the PAMT.
3. Perform a Secure EPT walk to locate the Secure EPT non-leaf entry which will become the parent entry that maps

the new Secure EPT page. To help prevent re-maps, TDH.MEM.SEPT.ADD checks the mapping does not already exist,
else it aborts the operation.

4. On platforms using ACT-protected memory, mark the new SEPT page’s ACT bit(s) as private. 30

5. Initialize the target page to zero using the target TD’s private HKID and direct writes (MOVDIR64B).
6. Update the parent Secure EPT entry to map the page as MAPPED.
7. Update the page’s PAMT entry with the PT_EPT page type and the TDR PA as the OWNER.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 81 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

The Secure EPT’s root page (EPML4 or EPML5, depending on whether the host VMM uses 4-level or 5-level EPT) does not
need to be explicitly added. It is created during TD initialization (TDH.MNG.INIT) and is stored as part of TDCS. On each
VCPU initialization, TDH.VP.INIT copies the address of the Secure EPT root page to the VCPU’s TD VMCS’s EPTP field
clearing the HKID bits to 06.

The following example illustrates the build process of a 4-level Secure EPT hierarchy: 5

1. The host VMM calls TDH.MNG.CREATE(TDR_PA = TDR0) to create the TD.
2. The host VMM calls TDH.MNG.ADDCX(TDR_PA = TDR0, DST_PA = TDCX_PAGE_PA) multiple times to allocate pages

for TDCS. One of those pages will be used to host the Secure EPT root page D0.
3. Host VMM calls TDH.MNG.INIT(TDR_PA = TDR0) to initialize the TD and set an EPML4 page in one of the previously

added TDCX pages as the Secure EPT root page. This updates TDCS.EPTP. 10

4. TDH.VP.INIT of each VPCU copies TDCS.EPTP to the TD VMCS’s EPTP field.
5. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDR0, DST_PA = D1, GPA = G0, LVL= 3) to add an EPDPT page.
6. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDR0, DST_PA = D2, GPA = G0, LVL= 2) to add an EPD page.
7. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDR0, DST_PA = D3, GPA = G0, LVL= 1) to add an EPT page.

TDCS

EPML4 EPDPT

PA = D1

NL_MAPPED

EPD EPT

EPTP = D0

PA = D2

NL_MAPPED

PA = D3

NL_MAPPED

OWNER = TDR0

PT = PT_TDCX

PAMT Entry for D0

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D1

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D2

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D3

Step 3
TDH.MNG.INIT

Step 5
TDH.MEM.SEPT.ADD

Step 6
TDH.MEM.SEPT.ADD

Step 7
TDH.MEM.SEPT.ADD

TD VMCS

EPTP = D0

TD VMCS

EPTP = D0

TD VMCS

EPTP = D0

Step 4
TDH.VP.INIT

 15

Figure 9.5: Typical Secure EPT Hierarchy Build Process

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES.CLFLUSH_BEFORE_ALLOC (bit 23), then to help avoid stability issues
caused by cache line aliasing, the VMM should ensure that no cache lines associated 20

with the added physical SEPT page are in a Modified state, before calling
TDH.MEM.PAGE.AUG. This is typically done by calling TDH.PHYMEM.PAGE.WBINVD.

9.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD

Adding TD private pages with arbitrary content is allowed only during TD build time (before TDH.MR.FINALIZE). The host
VMM adds and maps 4KB private pages to a guest TD using TDH.MEM.PAGE.ADD with the following inputs: 25

• Target TD, identified by its TDR physical address

• Source page physical address

• Destination page physical address

6 The CPU adds the TD’s private HKID on EPT walks. Having HKID as 0 allows the host VMM to use INVEPT, for managing the usage of
shared EPT which shares the ASID with the TD’s secure EPT (see).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 82 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• Destination page GPA

At a high level, TDH.MEM.PAGE.ADD works as follows:

1. Check the TD has not been initialized.
2. Check the TD keys are configured.
3. Check the destination physical page is marked as free in the PAMT. 5

4. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private page.
To help prevent re-maps, TDH.MEM.PAGE.ADD checks the mapping does not already exist, else it aborts the
operation.

5. On platforms using ACT-protected memory, mark the new private page’s ACT bit(s) as private.
6. Copy the source page to the destination page using the target TD’s private HKID and direct writes (MOVDIR64B). 10

7. Update the previously located parent Secure EPT leaf entry to map the page as MAPPED.
8. Update the TD measurement with the new page GPA (as described in 12.2.1).
9. Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.

EPML4 EPDPT

PA = D1

NL_MAPPED

EPD EPT

PA = D2

NL_MAPPED

PA = D3

NL_MAPPED

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D0

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D1

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D2

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D3

New 4KB TD Private
Page

PA = D4

MAPPED

OWNER = TDR0

PT = PT_REG

PAMT Entry for D4

TDH.MEM.PAGE.ADD

Figure 9.6: Typical Sequence for Adding a TD Private Page during TD Build Time 15

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES.CLFLUSH_BEFORE_ALLOC (bit 23), then to help avoid stability issues
caused by cache line aliasing, the VMM should ensure that no cache lines associated
with the added physical page are in a Modified state, before calling
TDH.MEM.PAGE.ADD. This is typically done by calling TDH.PHYMEM.PAGE.WBINVD. 20

9.10. Dynamically Adding TD Private Pages

9.10.1. Overview

Dynamically adding TD private pages after the guest TD has been initialized is typically done as a three-step process:

• The host VMM can update Secure EPT using TDH.MEM.SEPT.ADD and TDH.MEM.SEPT.REMOVE.

• The host VMM adds and maps a 4KB or a 2MB TD private page using TDH.MEM.PAGE.AUG. This page is not 25

measured. The Secure EPT entry state for that added page is PENDING.

• The guest TD must accept the page before it can access it, using TDG.MEM.PAGE.ACCEPT. The page content is zeroed
out.

This process is designed to help prevent attacks where the host VMM could remove arbitrary pages from the guest TD’s
GPA space (using TDH.MEM.PAGE.REMOVE) and replace them with zeroed-out pages. 30

A guest TD attempt to access a page that has been dynamically added by TDH.MEM.PAGE.AUG but has not yet been
accepted by TDH.MEM.PAGE.ACCEPT results in either a #VE exception or a TD exit, depending on configuration. See
below for details.

Refer also to the software flow described in 3.3.1.1.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 83 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

9.10.2. PENDING Page Addition by the Host VMM: TDH.MEM.PAGE.AUG

The host VMM can add and map 4KB and 2MB private pages to a guest TD in a non-present and pending state using
TDH.MEM.PAGE.AUG, with the following inputs:

• Target TD, identified by its TDR physical address

• Destination page physical address 5

• Destination page GPA

At a high level, TDH.MEM.PAGE.AUG works as follows:

1. Check the TD keys are configured.
2. Check that the TD has either been initialized (by TDH.MNG.INIT) and no migration session is in progress, or that

migration is in progress, but the TD is runnable (live export or import). 10

3. Check the destination physical page is marked as free in the PAMT.
4. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private page.

To help prevent re-maps, TDH.MEM.PAGE.AUG checks the mapping does not already exist, else it aborts the
operation.

5. Update the previously located parent Secure EPT leaf entry to map the page as PENDING. 15

6. On platforms using ACT-protected memory, mark the new private page’s ACT bit(s) as private.
7. Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.

Note that TDH.MEM.PAGE.AUG does not need to access the destination page itself; the page is initialized later on by
TDG.MEM.PAGE.ACCEPT.

EPML4 EPDPT

PA = D1

NL_MAPPED

EPD

EPT

PA = D2

NL_MAPPED PA = D4

NL_MAPPED

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D0

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D1

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D2

OWNER = TDR0

PT = PT_EPT

PAMT Entry for D4

New 4KB TD Private
Page
(Non-Initialized)

PA = D5

PENDING

OWNER = TDR0

PT = PT_REG

4KB PAMT Entry for D5

TDH.MEM.PAGE.AUG
(4KB)

New 2MB TD
Private Page
(Non-Initialized)

TDH.MEM.PAGE.AUG
(2MB)

PA = D3

PENDING

OWNER = TDR0

PT = PT_REG

2MB PAMT Entry for D3

 20

Figure 9.7: Host VMM Adding a 4KB or a 2MB TD Private Page

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES.CLFLUSH_BEFORE_ALLOC (bit 23), then to help avoid stability issues

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 84 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

caused by cache line aliasing, the VMM should ensure that no cache lines associated
with the added physical page are in a Modified state, before calling
TDH.MEM.PAGE.AUG. This can be done be calling TDH.PHYMEM.PAGE.WBINVD.

9.10.3. PENDING Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT

 Description 5

The guest TD can accept a dynamically added 4KB or 2MB page using TDG.MEM.PAGE.ACCEPT with the page GPA and
size inputs.

At a high level, TDG.MEM.PAGE.ACCEPT works as follows:

1. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page, and handle the
walk results as described in the table below. 10

Table 9.3: TDG.MEM.PAGE.ACCEPT SEPT Walk Cases

SEPT Walk Terminal Entry TDG.MEM.PAGE.ACCEPT
Operation

Typical Software Handling

Level Leaf or
Non-
Leaf

State

Higher
than
requested

Leaf Guest-accessible, i.e.,
MAPPED or
EXPORTED_DIRTY (e.g.,
2MB PTE present for a 4KB
request).

Return a status code indicating a
success, with a warning that the
page is already present and
mapped at a level higher than
requested.

Option 1: This is OK, the host VMM
did not use the memory released
by the TD.

Option 2: This is a guest bug; the
status code helps debugging it.

Not guest-accessible and
not FREE (e.g., 2MB PTE
pending for a 4KB request).

TD exit with EPT violation
indicating the error SEPT entry
level and state, and the guest-
requested accept level. See the
[TDX Module ABI Spec].

The host VMM demotes the page
to match the requested accept size,
It then re-enters the guest TD.
TDG.MEM.PAGE.ACCEPT is re-
invoked.

Non-
Leaf

Not guest-accessible
(e.g., blocked PDE for a 4KB
request).

TD exit with EPT violation
indicating the error SEPT entry
level and state, and the guest-
requested accept level. See the
[TDX Module ABI Spec].

This may be used as a guest TD
request from the host VMM to add
a page. The host VMM adds SEPT
pages (TDH.MEM.SEPT.ADD) and
the requested page
(TDH.MEM.PAGE.AUG). It then
resumes the guest.

Same as
requested

Non-
Leaf

Other than FREE (e.g.,
requested 2MB entry is
mapped to a EPT page
instead of being a leaf)

Return a status code indicating a
size mismatch error.

The guest falls back to accept the
range using 4K size.

Leaf Guest-accessible, i.e.,
MAPPED or
EXPORTED_DIRTY

Return a status code indicating a
success, with a warning that the
page is already present.

Option 1: This is OK, the host VMM
did not use the memory released
by the TD.

Option 2: This is a guest bug; the
status code helps debugging it.

Not PENDING nor
PENDING_EXPORTED_DIRTY

TD exit with EPT violation
indicating the error SEPT entry
level and state, and the guest-
requested accept level. See the
[TDX Module ABI Spec].

The host VMM resolves the
blocking (e.g., completes the
memory management operation
that required blocking) and
resumes the guest.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 85 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

SEPT Walk Terminal Entry TDG.MEM.PAGE.ACCEPT
Operation

Typical Software Handling

Level Leaf or
Non-
Leaf

State

FREE TD exit with EPT violation
indicating the error SEPT entry
level and state, and the guest-
requested accept level. See the
[TDX Module ABI Spec].

This may be used as a guest TD
request from the host VMM to add
a page. The hosts VMM adds the
requested page
(TDH.MEM.PAGE.AUG) and
resumes the guest.

PENDING Complete the operation as
described below.

Success

If passed:

Note: Since initializing a 2MB page may take a long time, TDG.MEM.PAGE.ACCEPT is interruptible and resumable.

2. If all the above checks pass, loop until done or interrupted:
2.1. Initialize the next 4KB chunk of the page to zero using the target TD’s private HKID and direct writes 5

(MOVDIR64B).
2.2. If the whole page has been initialized, update the parent Secure EPT entry to set its state to SEPT_PRESENT.
2.3. Else, if there is a pending interrupt, resume the guest TD without updating RIP and any GPR. The CPU may

handle the interrupt, causing a TD exit. When the TD is resumed, TDH.MEM.PAGE.ACCEPT will re-invoked.

EPML4 EPDPT

PA = D1

NL_MAPPED

EPD

EPT

PA = D2

NL_MAPPED PA = D4

NL_MAPPED

4KB TD Private Page
(Initialized to 0)

PA = D5

MAPPED

TDG.MEM.PAGE.ACCEPT
(4KB)

2MB TD Private
Page
(Initialized to 0)

TDG.MEM.PAGE.ACCEPT
(2MB)

PA = D3

MAPPED

 10

Figure 9.8: Guest TD Accepting a 4KB or 2MB Pending TD Private Page

 TDG.MEM.PAGE.ACCEPT Concurrency

Guest-Side

TDG.MEM.PAGE.ACCEPT prevents the guest TD from concurrently accepting the same page by multiple threads.
TDG.MEM.PAGE.ACCEPT may also encounter a concurrent host-side operation, such as TDH.MEM.RANGE.BLOCK, that 15

attempts to update the same Secure EPT entry. In such cases, an error is returned to the guest TD, indicating that the
Secure EPT entry is busy.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 86 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Host-Side

TDG.MEM.PAGE.ACCEPT prevents host-side operations, such as TDH.MEM.RANGE.BLOCK, from concurrently modifying
the Secure EPT entry. This is implemented using a host-priority lock, preventing the guest TD from denying service to the
host VMM. If a host-side operation fails with a busy indication, the host VMM should retry the operation. For details on
host-priority concurrency enforcement, see 18.1.4. 5

9.10.4. Guest TD (L1) Access to a PENDING Page

The behavior in case of guest TD access to a page in a PENDING or PENDING_EXPORTED_DIRTY page is summarized in
the table below. This only applies to L1. L2 VM access to a PENDING page always results in an L2→L1 exit.

• #VE is useful for implementing an accept-on-demand policy. It can be used by the guest TD to trigger a
TDG.MEM.PAGE.ACCEPT of the PENDING page. 10

• TD Exit is useful for guest TD implementations that only map memory that has been accepted into the linear address
spaces. For such implementations, an access to a PENDING page indicates a fatal error. The host VMM typically
tears the TD down when this happens.

The combinations of configuration flags allow the host VMM to establish a static policy or allow the guests TD to decide
on the policy. 15

Enumeration: Availability of CONFIG_FLAGS.FLEXIBLE_PENDING_VE and TDCS.TD_CTLS.PENDING_VE_DISABLE is
enumerated by TDX_FEATURES0.PENDING_EPT_VIOLATION_V2 (bit 16), readable by TDH.SYS.RD*.

Table 9.4: Guest TD (L1) Access to a PENDING Page

Configuration by the Host VMM (TD_PARAMS Input
to TDH.MNG.INIT)

Configuration by the
Guest TD

Behavior on Guest TD
Access of a PENDING
Page

ATTRIBUTES.
SEPT_VE_DISABLE

CONFIG_FLAGS.
FLEXIBLE_PENDING_VE

TDCS.TD_CTLS.
PENDING_VE_DISABLE

0 0 0 #VE

1 0 #VE

1 TD Exit (EPT Violation)

1 0 1 TD Exit (EPT Violation)

1 0 #VE

1 TD Exit (EPT Violation)

9.11. Page Mapping Resize: Merge and Split 20

Merging and splitting of the SEPT mapping of 1GB or 2MB GPA ranges is done by TDH.MEM.PAGE.PROMOTE and
TDH.MEM.PAGE.DEMOTE.

9.11.1. Overview: Non-Blocking Mapping Resize

If the TDX module supports non-blocking mapping resize, as enumerated by TDX_FEATURES0.NON_BLOCKING_RESIZE
(bit 35), then the following usage model, which eliminates the need to block GPA ranges, is supported: 25

• No blocking and TLB tracking of the large GPA range to be merged or split is required.

• SEPT pages that are released by TDH.MEM.PAGE.PROMOTE have a new page type: PT_TR.

• The host VMM can keep a pool of such PT_TR pages and use them as inputs to TDH.MEM.PAGE.DEMOTE. TLB track
checking of such pages is done when they are used.

• Alternatively, the host VMM can reclaim those pages and use them for any purpose. 30

9.11.2. Page Merge: TDH.MEM.PAGE.PROMOTE

The host VMM can merge the mapping of 512 consecutive 4KB or 2MB pages to a single 2MB or 1GB page, respectively.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 87 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Blocking and TLB Tracking

If the TDX module does not support non-blocking mapping resize, as enumerated by
TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35), the host VMM should first perform the TLB tracking protocol on the
large (2MB or 1GB) GPA range.

• The host VMM should first call TDH.MEM.RANGE.BLOCK which operates on the EPT page for the large range (EPT for 5

2MB, EPD for 1GB). TDH.MEM.RANGE.BLOCK marks the parent EPT entry for that EPT page as BLOCKED and records
the TD epoch in the PAMT entry of the EPT page.

• Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no
active address translation to the large (2MB or 1GB) GPA range.

Even if the TDX module supports non-blocking mapping resize, the host VMM can choose to first perform the TLB tracking 10

protocol, since this impacts the operation of TDH.MEM.PAGE.PROMOTE as described below.

Promotion

The actual merge is done by TDH.MEM.PAGE.PROMOTE. Figure 9.9 below shows the typical situation before
TDH.MEM.PAGE.PROMOTE is called.

Note: For details on TDH.MEM.PAGE.PROMOTE support of partitioned TDs, see the [TD Partitioning Spec]. 15

TDH.MEM.PAGE.PROMOTE has the following inputs:

• The large range GPA

• The large page level (2MB or 1GB)

• If the TDX module supports non-blocking mapping resize, a flag indicating whether TLB tracking check is to be
skipped. 20

EPD

NL_MAPPED

OWNER = TDR0

PT = PT_EPT

PAMT_4K Entry

OWNER = TDR0

PT = PT_EPT
BEPOCH set

PAMT_4K Entry

4KB TD Private Page
@ PA X

PA = X
MAPPED

OWNER = TDR0

PT = PT_REG

512 Consecutive PAMT_4K Entries

4KB TD Private Page
@ PA X + 511*4K

EPT

PA = X + 511*4K
MAPPED

OWNER = TDR0

PT = PT_REG

512 Consecutive 4KB TD Private Pages

PAMT 2MB Sub-Block

OWNER = TDR0

PT = PT_NODE

PAMT_2M Entry

2MB Range
@ PA X

Figure 9.9: Typical State before TDH.MEM.PAGE.PROMOTE of a Range of 512 Consecutive 4KB TD Private Pages

At a high level, TDH.MEM.PAGE.PROMOTE works as follows:

1. If the TDX module does not support non-blocking mapping resize, or the host VMM did not indicate that TLB tracking
check should be skipped, check the TLB tracking condition for the large range GPA (i.e., the EPT or EPD page for that 25

range).
2. Check that all 512 entries of that EPT or EPD page are in the MAPPED state and point to leaf pages whose physical

address is contiguous within the same 2MB or 1GB range.

If all checks pass, TDH.MEM.PAGE.PROMOTE does the following:

3. Mark all the PAMT_4K or PAMT_2M entries of the small leaf pages (4KB or 2MB, respectively) as PT_NDA. 30

4. Mark the PAMT_2M or PAMT_1G entry of the merged large (2MB or 1GB, respectively) pages as PT_REG.
5. Set the parent EPT entry to point to the merged large page and mark it as present.
6. If TLB tracking has been done, reclaim the original SEPT physical page as described in 8.6.4.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 88 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

6.1. Platforms not using ACT: The host VMM should initialize the former EPT or EPD physical page’s content before
it is reused as a non-private page, as described in 8.6.1.

7. Else (TLB tracking has not been done), mark the original SEPT physical page as PT_TR and record the TD’s TD_EPOCH
in its PAMT entry. This page can be later reclaimed or used as a new SEPT page input to TDH.MEM.PAGE.DEMOTE.

Figure 9.10 below shows a typical 2MB merged page after TDH.MEM.PAGE.PROMOTE. 5

PAMT 2MB Sub-Block

EPD Former EPT Page

MAPPED

OWNER = TDR0

PT = PT_EPT

PAMT_4K Entry

OWNER = TDR0

PT = PT_REG

PAMT_2M Entry

4KB Unmapped
Page
@ PA X

OWNER = N/A
PT = PT_NDA

512 Consecutive PAMT_4K Entries

4KB Unmapped
Page
@ PA X + 511*4K

OWNER = N/A
PT = PT_NDA

2MB TD Private
Page
@ PA X

OWNER = N/A
PT = PT_NDA2

PAMT_4K Entry

OWNER = TDR0

PT = PT_TR1

BEPOCH set

1 If non-blocking resize is supported and selected
2 If non-blocking resize is not supported or not selected

Ei
th

er

Figure 9.10: Typical State of a 2MB TD Private Page after TDH.MEM.PAGE.PROMOTE

Refer also to the software flow described in 3.3.1.3.

9.11.3. Page Split: TDH.MEM.PAGE.DEMOTE

The host VMM can split the mapping of a single 2MB or 1GB page to 512 consecutive 4KB or 2MB pages, respectively. 10

Blocking and TLB Tracking

If the TDX module does not support non-blocking mapping resize, as enumerated by
TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35), the host VMM should first perform the TLB tracking protocol on the
large (2MB or 1GB) page:

• The host VMM should first call TDH.MEM.RANGE.BLOCK on the large page. TDH.MEM.RANGE.BLOCK marks the 15

parent EPT entry for that page as BLOCKED and records the TD epoch in the PAMT entry of the page.

• Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no
active address translation to the large (2MB or 1GB) page.

Demotion

The actual split is done by TDH.MEM.PAGE.DEMOTE. Figure 9.11 below shows the typical situation before 20

TDH.MEM.PAGE.DEMOTE is called.

Note: For details on TDH.MEM.PAGE.DEMOTE support of partitioned TDs, see the [TD Partitioning Spec].

TDH.MEM.PAGE.DEMOTE has the following inputs:

• The large page GPA

• The large page level (2MB or 1GB) 25

• The physical address of a page that will be used for a new EPT or EPD page. If the TDX module does not support non-
blocking mapping resize, this page must be free. Else, the page may also be a PT_TR page, i.e., a former SEPT page
converted by TDH.MEM.PAGE.PROMOTE.

• If the TD is partitioned, up to 3 physical addresses of pages that will be used for new L2 EPT or EPD pages.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 89 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

PAMT 1GB Block

EPDPT

BLOCKED2

OWNER = TDR0

PT = PT_EPT

PAMT_4K Entry

OWNER = TDR0

PT = PT_REG
BEPOCH set2

PAMT_1G Entry

2MB Unmapped
Page
@ PA X

OWNER = N/A
PT = PT_NDA

512 Consecutive PAMT_2M Entries

2MB Unmapped
Page
@ PA X + 511*2M

OWNER = N/A
PT = PT_NDA

1GB TD Private Page
@ PA X

New page to be
used as EPD

OWNER = N/A
PT = PT_NDA

PAMT_4K Entry

OWNER = TDR0

PT = PT_TR1

1 If non-blocking resize is supported
2 If non-blocking resize is not supported

Ei
th

er

Figure 9.11: Typical State before Calling TDH.MEM.PAGE.DEMOTE on a 1GB Page

At a high level, TDH.MEM.PAGE.DEMOTE works as follows:

1. Check the TLB tracking condition for the large page.
2. Check that the physical page for the new EPT or EPD is either marked as free in the PAMT, or if the TDX module 5

supports non-blocking mapping resize, it is marked as PT_TR and its TLB tracking conditions are met.

If all checks pass, TDH.MEM.PAGE.DEMOTE does the following:

3. Mark the PAMT_2M or PAMT_1G entry of the large (2MB or 1GB respectively) page as PT_NDA.
4. Mark all the PAMT_4K or PAMT_2M entries of the small (4KB or 2MB respectively) consecutive leaf pages as PT_REG.
5. On platforms using ACT-protected memory, mark the new SEPT page’s ACT bit(s) as private. 10

6. Initialize the new SEPT page with 512 EPT entries pointing to the 512 consecutive leaf pages.
7. Mark the new SEPT page’s PAMT entry as PT_EPT.
8. Set the parent EPT entry to point to the new EPT or EPD page.

Figure 9.12 below shows the typical state of a 1GB GPA range after TDH.MEM.PAGE.DEMOTE.

EPDPT

NL_MAPPED

OWNER = TDR0

PT = PT_EPT

PAMT_4K Entry

OWNER = TDR0

PT = PT_EPT

PAMT_4K Entry

2MB TD Private
Page
@ PA X

PA = X
MAPPED

OWNER = TDR0

PT = PT_REG

512 Consecutive PAMT_2M Entries

2MB TD Private
Page
@ PA X + 511*2M

New EPD Page

PA = X + 511*2M
NL_MAPPED

OWNER = TDR0

PT = PT_REG

512 Consecutive 2MB TD Private Pages

PAMT 1GB Block

OWNER = N/A
PT = PT_NODE

PAMT_1G Entry

1GB Range
@ PA X

 15

Figure 9.12: Typical State of a 1GB TD Private Range after TDH.MEM.PAGE.DEMOTE

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 90 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

TDH.MEM.PAGE.DEMOTE supports demotion of PENDING pages.

Refer also to the software flow described in 3.3.1.4.

9.12. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE

The host VMM can relocate a 4KB TD private page to another HPA using TDH.MEM.PAGE.RELOCATE. This is useful for,
e.g., physical address space de-fragmentation. 5

If the guest TD’s OP_STATE is such that the TD may be running, the host VMM should first perform the TLB tracking
protocol on the page. The host VMM should first call TDH.MEM.RANGE.BLOCK on the page. TDH.MEM.RANGE.BLOCK
marks the parent EPT entry for that page as BLOCKED (if it was MAPPED) or PENDING_BLOCKED (if it was PENDING) and
records the TD epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active 10

address translation to target page.

The actual relocation is done by TDH.MEM.PAGE.RELOCATE which has the following inputs:

• The page GPA

• The target HPA to which the page will be relocated

At a high level, TDH.MEM.PAGE.RELOCATE works as follows: 15

1. Check the TD keys are configured.
2. Check the TD has been initialized.
3. Check the target physical page is marked as free in the PAMT.
4. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page. Check that the

entry has been blocked and get the current HPA. 20

5. If TLB tracking is required, check the TLB tracking condition for the page.

If all checks pass, TDH.MEM.PAGE.RELOCATE does the following:

6. On platforms using ACT-protected memory, mark the target private page’s ACT bit as private.
7. Copy the current physical page to the target physical page using direct writes (MOVDIR64B).
8. Reclaim the old physical page as described in 8.6.4. 25

9. Mark the PAMT entry of the target page as PT_REG.
10. Update the Secure EPT entry with the new physical page HPA. Set its state to MAPPED or PENDING depending on

whether its previous state was BLOCKED or PENDING_BLOCKED, respectively.

Non-ACT Platforms: The host VMM should initialize the old physical page’s content before it is reused as a non-private
page, as described in 8.6.1. 30

9.13. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE

The host VMM can remove TD private pages using TDH.MEM.PAGE.REMOVE, freeing them for any use. 4KB, 2MB and
1MB pages can be removed – no demotion is required for large pages.

If the guest TD’s OP_STATE is such that the TD may be running, the host VMM should first perform the TLB tracking
protocol on the page. The host VMM should first call TDH.MEM.RANGE.BLOCK on the target page. 35

TDH.MEM.RANGE.BLOCK marks the parent Secure EPT entry for that page as BLOCKED (if it was MAPPED) or
PENDING_BLOCKED (if it was PENDING) and records the TD epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to target page.

The actual removal is done by TDH.MEM.PAGE.REMOVE which has the following inputs: 40

• The page GPA

• The page level (4KB, 2MB or 1GB)

At a high level, TDH.MEM.PAGE.REMOVE works as follows:

1. If TLB tracking is required, check the TLB tracking condition for the page.
2. Check that the mapping size of the page fits the input parameter. 45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 91 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

If all checks pass, TDH.MEM.PAGE.REMOVE does the following:

3. Mark the Secure EPT entry for the target page as FREE.
4. Reclaim the physical page as described in 8.6.4.

Non-ACT Platforms: The host VMM should initialize the physical page’s content before it is reused as a non-private
page, as described in 8.6.1. 5

Refer also to the software flow described in 3.3.1.2.

9.14. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE

The host VMM can remove a Secure EPT page using TDH.MEM.SEPT.REMOVE, freeing it for any use, provided all its
entries are FREE.

If the guest TD’s OP_STATE is such that the TD may be running, the host VMM should first perform the TLB tracking 10

protocol on the GPA range mapped by the Secure EPT page. The host VMM should first call TDH.MEM.RANGE.BLOCK.
TDH.MEM.RANGE.BLOCK marks the parent EPT entry for that page as BLOCKED and records the TD epoch in the PAMT
entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to GPA range represented by the Secure EPT page to be removed. 15

The actual removal is done by TDH.MEM.SEPT.REMOVE which has the following inputs:

• The Secure EPT page GPA

• The Secure EPT level

At a high level, TDH.MEM.SEPT.REMOVE works as follows:

1. If TLB tracking is required, check the TLB tracking condition for the page. 20

2. Check that the mapping size of the page fits the input parameter.
3. Check that all 512 entries of the Secure EPT page are PT_NDA.

If all checks pass, TDH.MEM.SEPT.REMOVE does the following:

4. Reclaim the physical page as described in 8.6.4.
5. Mark the Secure EPT entry for the Secure EPT page as FREE. 25

Non-ACT Platforms: The host VMM should initialize the physical page’s content before it is reused as a non-private
page, as described in 8.6.1.

9.15. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK

The host VMM can unblock previously blocked TD private GPA ranges using TDH.MEM.RANGE.UNBLOCK, returning them
to their original state. 4KB, 2MB and 1MB GPA ranges can be unblocked. 30

The host VMM should first complete the TLB tracking protocol on the GPA range. It typically calls TDH.MEM.TRACK and
performs a round of IPIs. After that, there should be no active address translation to target page.

The actual unblocking is done by TDH.MEM.RANGE.UNBLOCK which has the following inputs:

• The GPA

• The GPA range level (4KB, 2MB or 1GB) 35

At a high level, TDH.MEM.RANGE.UNBLOCK works as follows:

1. Check the TLB tracking condition for the GPA range.
2. Check that the mapping size of the GPA range fits the input parameter.

If all checks pass, TDH.MEM.RANGE.UNBLOCK does the following:

3. Mark the EPT entry for the target GPA as MAPPED (if it was BLOCKED) or PENDING (if it was PENDING_BLOCKED). 40

Refer also to the software flow described in 3.3.1.5.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 92 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

10. TD VCPU

This chapter discusses multiple items related to TD VCPUs.

10.1. VCPU Transitions

This section describes transitions between running in the host VMM, TDX module and guest TD VCPU.

Note: Additional transitions that are applicable to partitioned TDs are discussed in the [TD Partitioning Spec]. 5

TDX Non-Root Mode
(Logical)

TDX Root Mode
(Logical)

VCPU

Intel TDX Module
Host VMM

Host-Side
API Function

Other

L1 VM Exit
Handler

SEAMCALL
Entry
Point

SEAMRET

VMLAUNCH/
VMRESUME

TDH.VP.ENTER
(Normal)

VM Exit
Entry Point

TDG.VP.VMCALL

Save all TD State
to TDVPS & Init

Async
TD Exit

VM Entry

Trap-Like
VM Exit

Fault-Like
VM Exit

Instruction

Next Instruction

SEAMCALL

Next Instruction

Restore TD State
from TDVPS

(Selected GPR/
XMM)

TDH.VP.ENTER
(after

TDG.VP.VMCALL)

Restore all
TD State

from TDVPS

Normal

TDVPS
(incl.

 TD VMCS)

LP-Scope
State (incl.

SEAM VMCS)

V
M

X
N

on
-R

o
o

t
M

o
d

e
V

M
X

R
oo

t
M

o
de

Save TD State to
TDVPS and Init
(Selected GPR/

XMM)

Figure 10.1: TD VCPU Transitions Overview

10.1.1. Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entry

On the initial TD entry to a TD VCPU, the TDX module restores the initial TD VCPU state from TDVPS (including TD VMCS).

Following a successful TDH.VP.ENTER, asynchronous TD exit may happen as a result of events such as interrupts, EPT 10

violations etc. In such case, the TDX module saves the TD VCPU state into TDVPS (including TD VMCS). Most of the host
VMM VCPU state that may have been used by the TD is initialized. For a detailed description of VMM state following
TDH.VP.ENTER, see the [TDX Module ABI Spec].

On the subsequent TD entry following an asynchronous TD exit, the TDX module restores the TD VCPU state from TDVPS
(including TD VMCS). The host VMM does not impact the VCPU state except in one case: a trap-like asynchronous TD 15

exit from a guest-side interface function may indicate that the host VMM can apply a recoverability hint in the following
TD entry. In this case, the host VMM provides a recoverability hist to the guest TD, which is combined into the guest-side
interface function’s completion status returned in RAX.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 93 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

TDX
Module

TD VCPU

Host
VMM

1. Save selected host VMM CPU
state

2. Associate VCPU
3. Restore non-VMCS CPU state

from TDVPS
4. VMLAUNCH/VMRESUME

1. Examine exit reason, decide
on async TD exit

2. Save non-VMCS CPU state in
TDVPS

3. Init or restore host VMM
CPU state

VM
exit

VM
entry

SEAMRET

TDH.VP.ENTER
Handle TD Exit
(e.g., interrupt)

Figure 10.2: Example of Asynchronous TD Exit and TD Resumption

10.1.2. Synchronous TD Exit and Subsequent TD Entry

TDG.VP.VMCALL provides a channel for the guest TD to communicate with the host VMM. 5

The guest TD can initiate a synchronous TD exit by invoking TDG.VP.VMCALL. The RCX input parameter of selects the
GPRs (from RBX, RDX, RBP, RDI, RSI and R8 through R15) and XMM registers whose value is passed through to the host
VMM as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER. Other CPU state
components, including GPRs and XMM registers not selected by RCX, are saved in TDVPS and set to fixed values.

On the subsequent TDH.VP.ENTER, the RCX value that was used for TDG.VP.VMCALL selects the GPRs (from RBX, RDX, 10

RBP, RDI, RSI and R8 through R15) and XMM registers whose value is passed through to the guest TD. Other CPU state
components, including GPRs and XMM registers not selected by RCX, are restored from RCX.

For details, see the TDH.VP.ENTER and TDG.VP.VMCALL definitions in the [TDX Module ABI Spec].

TDX
Module

TD VCPU

Host
VMM

1. Save selected host VMM CPU
state

2. Associate VCPU
3. Restore non-VMCS CPU state

from TDVPS, pass through
selected GPRs and XMMs

4. VMLAUNCH/VMRESUME

1. Examine exit reason, decide
on synchronous TD exit

2. Save non-VMCS CPU state in
TDVPS, pass through
selected GPRs and XMMs

3. Init or restore host VMM
CPU state

VM
exit

VM
entry

SEAMRET

TDH.VP.ENTER

Handle TD
Request and

Prepare a
Response

TDG.VP.VMCALL
Handle VMM

Response

Prepare a
Request

 15

Figure 10.3: Example of Synchronous TD Exit and TD Resumption

10.1.3. VCPU Activity State Machine

The VCPU activity state machine, controlled by TDVPS.VCPU_STATE as shown in Table 10.1 below and shown in Figure
10.4 below, helps ensure the following:

• A VCPU can be entered only when its logical TDVPS control structure, composed of TDVPR and TDCX pages, is 20

available in memory and has been initialized by TDH.VP.INIT or successfully imported by TDH.IMPORT.STATE.VP.

• A VCPU can be entered only if its state is consistent (no non-recoverable TD exit happened).

• TD entry is done properly, depending on whether it is the first entry or on the last TD exit type.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 94 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 10.1: TDVPS.VCPU_STATE Definition

State Name Description

VCPU_UNINITIALIZED VCPU has not been initialized yet by TDH.VP.INIT.

VCPU_IMPORT The VCPU state has been incompletely imported.

VCPU_READY The VCPU is ready to be executed.

VCPU_ACTIVE VCPU is active (logical TDX non-root mode) on some LP.

For a partitioned TD, a VCPU is considered active regardless of
whether it executes in the L1 VM or one of the L2 VMs. For details,
see the [TD Partitioning Spec].

VCPU_DISABLED VCPU is being torn down.

TD Entry and TD Exit transitions normally toggle between the VCPU_READY state and the VCPU_ACTIVE state, except
when a non-recoverable VCPU TD Exit (due to a Triple Fault) transitions to a VCPU_DISABLED state.

TDH.VP.CREATE

VCPU_READY

TD VCPU may be entered

VCPU_ACTIVE

TD VCPU running on an LPTDH.VP.ENTER

TDH.VP.ADDCX TDH.VP.INIT

TD Exit

TD Exit
 [non-recoverable

VCPU state]

VCPU_DISABLED

TD VCPU is disabled

VCPU_UNINITIALIZED

TD VCPU has not been
initialized

VCPU_IMPORT

TD VCPU is being imported

TDH.IMPORT.STATE.VP
[interrupted]

TDH.IMPORT.STATE.VP
[success]

Partitioned TD:
L1→L2 VM Entry,

L2→L1 VM Exit

TDH.IMPORT.STATE.VP
[VCPU_DISABLED]

 5

Figure 10.4: VCPU Activity State Machine

LAST_TD_EXIT

In the VCPU_READY and VCPU_IMPORT states, a LAST_TD_EXIT sub-state indicates what was the last TD exit and how a
subsequent TD entry should be done.

Table 10.2: TDVPS.LAST_TD_EXIT Definition 10

Name Description

ASYNC_FAULT Last TD exit was due to an asynchronous event (non-TDG.VP.VMCALL) which caused a fault-
like exit, i.e., the VCPU state is as if the guest instruction has not been executed. VCPU
state has been fully saved on TD exit and will be restored on the next TD entry.

ASYNC_TRAP Last TD exit was due to an asynchronous event that happen as part of a guest-side interface
function (non-TDG.VP.VMCALL) which caused a trap-like exit, i.e., the VCPU state is as if the
guest instruction has been executed. VCPU state has been fully saved on TD exit and will be
restored on the next TD entry. On the next TD entry, the host VMM provides t he guest with
a recoverability hint.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 95 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Name Description

TDVMCALL Last TD exit was due to a TDG.VP.VMCALL. On the next TD entry, most GPR and all XMM
state will be forwarded to the guest TD from the host VMM.

CURR_VM

For a partitioned TD, CURR_VM indicates the current VM index for the VCPU. For details, see the [TD Partitioning Spec].

10.2. TD VCPU TLB Address Space Identifier (ASID)

Non-root mode cached address translations are tagged with unique Address Space Identifiers (ASIDs). The goal of TD 5

ASIDs is to reduce the need to flush TLB entries on TD Entry and TD Exit due the associated performance costs as a result
of the flushing.

10.2.1. TD ASID Components

Table 10.3 below shows a high-level view of the components of the TD ASID. The exact structure is micro-architectural.

Table 10.3: TD ASID 10

Field Size
(Bits)

Description and TDX Usage

SEAM 1 This is an implicit bit 16 of VPID not directly visible to software. It is set to 1 by the
CPU in SEAM mode. This bit prevents overlap with legacy (non-TDX) ASIDs.

VPID 16 The TDX module assigns a platform unique VPID for each TD.

If a TD is partitioned, the TDX module assigns a platform unique VPID for each VM in
that TD. See the [TD Partitioning Spec] for details.

EPTP 40 Bits [51:12] of the EPTP, which for a TD points to the Secure EPT root – HKID bits are
cleared to 0

Note that EPTP is unique per TD and is used as an ASID component for both Secure
EPT and Shared EPT translations caching.

PCID 16 Same as legacy PCID

Note: All VCPUs of the same TD share the same ASID. Consequently, whenever TDH.VP.ENTER is invoked on a certain
LP, with a VCPU that is different than the last one that executed on that LP, the TDX module flushed cached TLB
translations for the TD, using INVEPT.

10.2.2. INVEPT by the Host VMM for Managing the Shared EPT 15

The same ASID based on the TD’s EPTP is used for caching both secure and shared EPT translations (remember: EPTP is
the HPA of the secure EPT root page). Thus, to flush shared EPT translations, the host VMM uses INVEPT specifying the
TD’s EPTP, not its Shared EPTP. The host VMM can obtain the value of EPTP from the TD VMCSs using TDH.VP.RD.

If a TD is partitioned, then to flush shared EPT translations for each L2 VM, the host VMM uses INVEPT specifying that L2
VM’s EPTP, not its Shared EPTP. The host VMM can obtain the value of EPTP from the L2 VMCSes using TDH.VP.RD. 20

An alternative method the host VMM may use is to do TLB tracking similar to how it’s done for Secure EPT, i.e., execute
TDH.MEM.TRACK and a round of IPI. Contrary to Secure EPT, this is not enforced by the TDX module.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 96 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

10.3. VCPU-to-LP Association

10.3.1. Non-Coherent Caching

Some TD VCPU state is non-coherently cached. This includes:

• Address translations (TLB/PxE entries) must be explicitly flushed in case they may be stale.

• TD VMCS is cached by the CPU. VMX architecture requires making a VMCS current by VMPTRLD before using it with 5

most VMX instructions, and then explicitly writing it to memory and making it non-current by VMCLEAR before the
VMCS memory image can be handled (e.g., by making it current on another LP).

This non-coherent caching implies that some explicit and/or implicit operations are done to help guarantee correctness.
This is described in the following sections.

10.3.2. Intel TDX Functions for VCPU-LP Association and Dis-Association 10

TDH.VP.CREATE

ASSOC_LPID = LP2

• LP2's current/working

VMCS is VCPU x VMCS

• Cached address

translations & paging

structures may exist

• TD's HKID may not be

freed

TDH.VP.INIT

on LP2

TDH.VP.FLUSH

ASSOC_LPID = None

• VCPU x VMCS is not

current/working VMCS

on any LP

• No VCPU x cached

address translations &

paging structures on

any LP

ASSOC_LPID = LP1

• LP1's current/working

VMCS is VCPU x VMCS

• Cached address

translations & paging

structures may exist

• TD's HKID may not be

freed

TDH.VP.ENTER

on LP2

Any other

VCPU-specific

interface function

on LP2

TDH.VP.INIT

on LP1

TDH.VP.ENTER

on LP1

Any other

VCPU-specific

interface function

on LP1

TDH.VP.FLUSH

TDH.VP.ENTER

on LP2

Any other

VCPU-specific

interface function

on LP2

Any other

VCPU-specific

interface function

on LP1

TDH.VP.ENTER

on LP1

Figure 10.5: VCPU Association State Machine

The following Intel TDX module mechanisms are designed to help ensure correct and secure operation:

• TD VCPU to LP association is many-to-one. A TD VCPU can be associated with at most one LP at any given time. An
LP may be associated with multiple VCPUs. 15

• VCPU to LP association is implicitly done by any VCPU-specific SEAMCALL flow, including TDH.VP.ENTER. Those flows
check that the VCPU is either already associated with the current LP or is not associated with any LP.

• If the host VMM wishes to associate a VCPU with another LP, it must explicitly flush the VCPU state on the LP currently
associated with it using TDH.VP.FLUSH. This function flushes TLB for the TD ASID and extended paging structure
(EPxE) caches using INVEPT. It flushes the VMCS cache using VMCLEAR. For details, see the [TDX Module ABI Spec]. 20

• If the VMM wishes to reclaim the TD’s private HKID, thus making the TDVPS memory inaccessible, it must explicitly
flush the VCPU state on the LP currently associated with it. This is described in 5.5.

10.3.3. Performance Considerations

• Migrating VCPUs between LPs is costly. As described above, it involves flushing address translation caches, paging
structure caches and VMCS cache. The host VMM should minimize that for best performance. 25

• Address translation and paging structure caches are flushed at TD-scope on the current LP. This flushing impacts the
(possibly non-typical) case where multiple VCPUs of the same TD are associated with a single LP.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 97 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

11. CPU Virtualization (Non-Root Mode Operation)

This chapter describes how the Intel TDX module virtualizes the CPU to a guest TD.

11.1. Overview: Virtualization vs. Paravirtualization of CPU Features and #VE

This section provides an overview of #VE and paravirtualization. The mechanics of #VE are described in 11.13.

11.1.1. Architectural x86 Virtualization 5

In most cases, TDX is designed to emulate the x86 architectural behavior of the CPU. Many CPU features are configurable
by the host VMM as either available (if the CPU actually supports them) or unavailable. That configuration is reflected
to the guest TD by values returned by the CPUID and RDMSR instructions, and the emulated CPU behavior is designed to
reflect the architectural CPU behavior – e.g., inject a #GP(0) exception on WRMSR of an MSR that is enumerated by the
virtual CPUID values as non-existent. 10

11.1.2. Paravirtualization and #VE

In many cases, TDX can’t emulate some x86 functionality. In such cases, the guest TD may implement that functionality
using paravirtualization, possibly in cooperation with the host VMM. To do that, the guest TD is required to implement
a paravirtualization agent as part of a #VE exception handler. On execution of, e.g., an instruction that can’t be emulated
by the TDX module, a #VE exception is injected to the guest TD. The #VE paravirtualization agent may request information 15

from the host VMM (noting that this information is untrusted) and/or emulate the desired behavior.

If the TDX module supports #VE reduction, then the guest TD may configure CPU virtualization to greatly reduce the
number of cases where #VE is injected and needs to be handled by the TD’s #VE handler. The guest TD can control this,
if desired, for each of multiple CPU features. For details, see 11.2.2 and the [ABI Spec].

11.1.3. #VE for x86 Behavior not Supported by TDX 20

TDX imposes some restrictions that are not x86-architectural. In such cases, if the guest TD attempts to use a restricted
feature, there is no architectural way (such as #GP(0)) to notify it, thus #VE is injected. This typically indicates a guest TD
misbehavior.

For example, a TD is not allowed to run in 32-bit protected mode with paging. When a guest TD attempts to set CR0.PE
or IA32_EFER.LME to 0, the TDX module injects a #VE. 25

11.1.4. #VE for TDX-Specific Behavior

#VE is also used by the TDX module to alert the guest TD to some TDX-specific cases, such as an access attempt to a
PENDING page. See 0 for details.

11.2. CPU Virtualization Configuration and Control

11.2.1. Host VMM Configuration of CPU Virtualization 30

The host VMM configures CPU virtualization at TD initialization time (TDH.MNG.INIT). The table below shows the
configurable parameters. For details, see the [ABI Spec] definition of TDH.MNG.INIT and TD_PARAMS.

Table 11.1: Host Configuration of CPU Virtualization

Name Description Included in the
TD’s Attestation

ATTRIBUTES TD attributes: a bitmap of configurable TD attributes Yes

XFAM Extended Features Available Mask: indicates the extended state
features allowed for the TD. See 11.7 for details of extended
features virtualization.

Yes

Non-Attested
Configuration

A set of TD configuration parameters No

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 98 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Name Description Included in the
TD’s Attestation

MSR Configuration Configuration of specific MSRs’ virtual values No

CPUID Configuration Direct configuration of CPUID leaves/sub-leaves virtualization. See
11.10 for a discussion of CPUID virtualization.

No

11.2.2. Guest TD Control of CPU Virtualization

The guest TD can control some aspects of CPU virtualization, by setting bits in the TDCS.TD_CTLS field using TDG.VM.WR.
The table below lists the configurable virtualization features. In some cases, this overrides the host VMM’s configuration
done at TD initialization time. Availability of each control bit depends on the features supported by the TDX module. For 5

more details, see the definition of TDCS.TD_CTLS in the [ABI Spec].

Table 11.2: Guest TD Control of CPU Virtualization

Name Description

PENDING_VE_DISABLE Controls the way guest TD access to a PENDING page is processed

ENUM_TOPOLOGY Controls the enumeration of virtual platform topology

VIRT_CPUID2 Controls the virtualization of CPUID(2)

REDUCE_VE Allows the guest TD to control the way #VE is injected by the TDX module on guest
TD execution of CPUID, RDMSR/WRMSR and other instructions

LOCK Controls locking of TD-writable virtualization controls

If the TDX module supports #VE reduction, the guest TD can individually control the virtualization of some CPU features,
by setting bits in the TDCS.FEATURE_PARAVIRT_CTRL field using TDG.VM.WR. The guest TD can configure each feature 10

to be emulated as non-supported, or as supported by a paravirtualization agent implemented by the TD (as part of its
#VE handler). The table below lists the configurable CPU features. For more details, see the definition of
TDCS.FEATURE_PARAVIRT_CTRL in the [ABI Spec].

Table 11.3: Configurable Paravirtualized CPU Feature

Paravirtualized Feature Name &
Applicable Linux Kernel Feature Name

Description

CORE_CAPABILITIES

(X86_FEATURE_CORE_CAPABILITIES)

Controls IA32_CORE_CAPABILITIES paravirtualization, enumerated by
virtual CPUID(7,0).EDX[30] (support IA32_CORE_CAPABILITIES)

DCA

(X86_FEATURE_DCA)

Controls Direct Cache Access paravirtualization, enumerated by virtual
CPUID(1).ECX[18] (DCA)

EST

(X86_FEATURE_EST)

Controls Enhanced Intel SpeedStep technology paravirtualization,
enumerated by Virtual CPUID(1).ECX[7] (Enhanced Intel SpeedStep
technology)

MCA

(X86_FEATURE_MCA)

Controls Machine Check Architecture paravirtualization, enumerated
by virtual CPUID(1).EDX[7] (Machine Check Exception) and virtual
CPUID(1).EDX[14] (Machine Check Architecture)

MTRR

(X86_FEATURE_MTRR)

Controls Memory Type Range Registers paravirtualization, enumerated
by virtual CPUID(1).EDX[12] (Memory Type Range Registers)

PCONFIG

(X86_FEATURE_PCONFIG)

Controls PCONFIG paravirtualization, enumerated by virtual
CPUID(7,0).EDX[18] (PCONFIG)

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 99 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Paravirtualized Feature Name &
Applicable Linux Kernel Feature Name

Description

RDT_A

(X86_FEATURE_RDT_A)

Controls RDT-A paravirtualization, enumerated by virtual
CPUID(7,0).EBX[15] (RDT-A)

RDT_M

(X86_FEATURE_CQM)

Controls RDT-M paravirtualization, enumerated by virtual
CPUID(7,0).EBX[12] (RDT-M)

ACPI

(X86_FEATURE_ACPI)

Controls Thermal Monitor and Software Controlled Clock Facilities
paravirtualization, enumerated by virtual CPUID(1).EDX[22] (ACPI)

TM2

(X86_FEATURE_TM2)

Controls MSR_THERM2_CTL paravirtualization, enumerated by virtual
CPUID(1).ECX[8] (TM2)

TME

(X86_FEATURE_TME)

Controls Total Memory Encryption paravirtualization, enumerated by
virtual CPUID(7,0).ECX[13] (TME_EN)

TSC_DEADLINE

(X86_FEATURE_TSC_DEADLINE_TIMER)

Controls IA32_TSC_DEADLINE MSR paravirtualization, enumerated by
virtual CPUID(1).ECX[24] (TSC deadline)

The guest TD can also control CPUID virtualization for each VCPU and CPUID leaf/sub-leaf. For details, see 11.10.2.

11.3. Initial Virtual CPU State

Intel SDM, Vol. 3, 9.1.1 Processor State after Reset

11.3.1. Overview 5

As designed, most of the TD VCPU initial state is the same as the processor architectural state after INIT. However, there
are some differences:

• The TD VCPU starts its life in protected (32-bit) non-paged mode, not in real mode. It is allowed only to switch to
64b mode. This impacts the initial state of segment registers, CRs and MSRs. Mode restrictions in SEAM non-root
mode are described below. 10

• The IA32_EFER MSR is initialized to support the CPU modes described below.

• The initial values of some GPRs provide some basic information to the guest TD as described in 11.3.2 below. This
information should be sufficient for the vBIOS to set up paging tables and switch as soon as possible to 64b mode,
where it can use the TDCALL leaf functions.

See also the TDVPS fields and TD VMCS guest state area in the [TDX Module ABI Spec]. 15

11.3.2. Initial State of Guest TD GPRs

As designed, the following initial state is different than the architectural INIT state:

Table 11.4: Initial Values of GPRs Different from their Architectural INIT Values

Register Bits Initial Value

RBX 5:0 GPAW, the effective GPA width (in bits) for this TD (do not confuse with MAXPA) –
SHARED bit is at GPA bit GPAW-1

Only GPAW values 48 and 52 are possible.

63:6 Reserved: set to 0

RCX, R8 63:0 The value of RCX and R8 is provided as an input to TDH.VP.INIT (the same value in both
GPRs). No checking is done on this value; the intention is for vBIOS to read RCX
immediately after the first TDH.VP.ENTER and use the RCX value appropriately as set by
software convention.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 100 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Register Bits Initial Value

RDX 31:0 Set to the virtualized Family/Model/Stepping returned by CPUID(1).EAX. The value is
calculated by TDH.SYS.INIT as to have the minimum Stepping ID across all packages.

63:32 Reserved: set to 0

RSI 31:0 Virtual CPU index, starting from 0 and allocated sequentially on each successful
TDH.VP.INIT

63:32 Reserved: set to 0

RIP 63:0 Set to 0xFFFFFFF0 (i.e., 4GB - 16B)

11.3.3. Initial State of CRs

As designed, the following initial state is different than the architectural INIT state:

• Virtual CR0 is initialized to 0x0021 – bits PE (0) and NE (5) are set to 1, and all other bits are cleared to 0. See 11.8.1
for details. 5

• Virtual CR4 is initialized to 0x0040 – bits MCE (6) is set to 1, and all other bits are cleared to 0.

11.3.4. Initial State of Segment Registers

As designed, the following initial state is different than the architectural INIT state:

• CS, DS, ES, FS, GS and SS are initialized with a base of 0 and limit of 0xFFFFFFFF.

• LDTR, TR and GDTR are initialized with a base of 0 and limit of 0xFFFF. 10

• IDTR is initialized as invalid (limit of 0).

For details, see the [TDX Module ABI Spec].

11.3.5. Initial State of MSRs

As designed, the following initial state is different than the architectural INIT state:

• IA32_EFER is initialized to 0x901 – SCE (bit 0), LME (bit 8) and NXE (bit 11) are set to 1, and all other bits are 15

cleared to 0.

11.4. Guest TD Run Time Environment Enumeration

Guest software can be designed to run either as a TD, as a legacy virtual machine, or directly on the CPU, based on
enumeration of its run-time environment. Figure 11.1 below shows a typical flow used by guest software.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 101 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

TDX-Specific

CPUID(0).EAX >= 0x21

Vendor ID ==
“IntelTDX ” ?

Y

Continue as a Legacy Guest

CPUID(0x400000xx)

N

Not Intel TDX
N

CPUID(0)

CPUID(1)

Intel?

ECX[31]

Y

1

Non-Intel
N

0Not Para-
Virtualized

Legacy

Legend

TDCALL(TDG.VP.INFO)
TDCALL(TDG.SYS.RD*)
TDCALL(TDG.VM.RD*)
TDCALL(TDG.VP.RD*)

CPUID(0x21, 0x0)
Get vendor ID (EBX:EDX:ECX)
and max sub-leaf (EAX)

TDX

Y

Enumerate TD configuration

All-0?

Figure 11.1: Typical Run-Time Environment Enumeration by a Guest TD

CPUID leaf 0x21 emulation is done by the Intel TDX module. Sub-leaf 0 returns the values shown below. Other sub-
leaves return 0 in EAX/EBX/ECX/EDX.

Table 11.5: TDX Enumeration by CPUID(0x21,0) 5

GPR Value (Hex) Description

EAX 0x00000000 Maximum sub-leaf number

EBX 0x65746E49 “Inte”

ECX 0x20202020 “ “

EDX 0x5844546C “lTDX”

Once the guest software discovers that it runs as a TD, it can use TDG.VP.INFO to get basic information. It can also use
the metadata read functions TDG.SYS.RD*, TDG.VM.RD* and TDG.VP.RD*.

11.5. CPU Mode Restrictions

Intel SDM, Vol. 3, 2.2 Modes of Operation 10

Intel SDM, Vol. 3, 9.8.5 Initializing IA-32e Mode
Intel SDM, Vol. 3, 11.5.1 Cache Control Registers and Bits
Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4

A TD OS running in SEAM non-root mode is required to be a 64-bit OS. The Intel TDX module helps enforce this with the
restrictions described below. 15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 102 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 11.6: CPU Mode Restrictions in SEAM Non-Root Mode

Restriction Description

CPU and Paging
Modes

In SEAM non-root mode, the CPU is allowed to run in the following modes:

• Protected mode (32-bit) with no paging (CR0.PG == 0)

• IA-32e mode with 4-level or 5-level paging (CR0.PG == 1), with the sub-modes
controlled by CS.L:

o 64-bit mode

o Compatibility (32-bit) mode

To achieve this, CR0.PE and IA32_EFER.LME are enforced to 1, as described in the
following sections.

Execute Disable When running in IA-32e mode, the PT Execute Disable bit (63) is always enabled.

To achieve this, IA32_EFER.NXE is enforced to 1, as described in the following sections.

Caching is Always
Enabled

The guest TD runs in Normal Cache Mode.

To achieve this, CR0.CD and CR0.NW are enforced to 0, as described in the following
sections.

11.6. Instructions Restrictions

The Intel TDX module is designed to block certain instructions from executing in TDX non-root mode. Execution of those
instructions results in a VM exit to the Intel TDX module, which then injects an exception to the guest TD. This exception 5

can be #UD, a #GP(0) or, in case where no Intel64 architectural exception can be used, a #VE (described in 11.13).

11.6.1. Unconditionally Blocked Instructions

 Instructions that Cause a #UD Unconditionally

• ENCLS, ENCLV

• Most VMX instructions: INVEPT, INVVPID, VMCLEAR, VMFUNC, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, 10

VMRESUME, VMWRITE, VMXOFF, VMXON

• RSM

• GETSEC

• SEAMCALL, SEAMRET

 Instructions that Cause a #VE Unconditionally to Allow Paravirtualization 15

Guest TD (L1) execution of the following instructions always results in a #VE(NON_CONFIG_PARAVIRT). A #VE handler is
expected to paravirtualize the instruction.

Table 11.7: Instructions that Cause a #VE Unconditionally

Instruction Details

String I/O (INS*,
OUTS*), IN, OUT

There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

HLT There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

WBINVD There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

WBNOINVD Availability of WBNOINVD is enumerated by virtual CPUID(0x80000008).EBX[9], which is
host configurable. However, TDX never allows WBNOINVD be executed by guest TDs.
WBNOINVD causes #VE regardless of virtual CPUID(0x80000008).EBX[9], to allow
paravirtualization similar to WBINVD.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 103 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Instruction Details

INVD There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

VMCALL There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

 Instructions that Cause a #UD or #VE Depending on Feature Enabling, to Allow Paravirtualization

• PCONFIG (see 11.22)

 Other Cases of Unconditionally Blocked Instructions

• Guest TD execution of ENQCMD results in a #GP(0). 5

• Guest TD execution of ENQCMDS when CPL is 0 results in a #UD. Otherwise, it results in a #GP(0).

11.6.2. Conditionally Blocked Instructions

Execution of some instructions may be conditionally blocked, depending on which CPU features are configured and
available for the TD, as described in the following sections.

11.6.3. Other Exception Cases 10

In many cases, instructions are not blocked but yet may cause exceptions due to other conditions. For example, following
is a very partial list:

• CPUID may cause a #VE if the CPUID leaf and sub-leaf are not virtualized by the TDX module.

• RDMSR and WRMSR may cause a #GP(0) if an MSR is virtualized as non-existing, or a #VE if an MSR is not virtualized.

11.7. Extended Feature Set 15

Intel SDM, Vol. 1, 13 Managing State Using the XSAVE Feature Set
Intel SDM, Vol. 3, 13 System Programming for Instruction Set Extensions and Processor Extended State

11.7.1. Allowed Extended Features Control

At the guest TD scope, TDCS.XFAM (Extended Features Allowed Mask) is provided as an input during guest TD build
process. XFAM is a 64b mask, using the state-component bitmap format used by extended state ISA (XSAVE, XRSTOR, 20

XCR0, IA32_XSS etc.), which specifies the set of extended features the TD is allowed to use.

XFAM is checked to be compliant with the set of extended features supported by the CPU, as enumerated by CPUID and
the allowed bit combinations, as shown in Table 11.8 below.

11.7.2. Extended State Isolation

The Intel TDX module helps ensure that any guest TD extended state is saved and isolated from the host VMM across TD 25

exit and entry. It is the VMM’s responsibility to save its own extended state across TD entry and exit.

• Before TDH.VP.ENTER, the host VMM should save (e.g., using XSAVES) any extended state that the guest TD VCPU is
allowed to use (per XFAM) and the host VMM expects to need after TDH.VP.ENTER is complete.

• The TDH.VP.ENTER function loads the extended state that the TD VCPU is allowed to use, per XFAM, from the VCPU’s
TDVPS. An exception to this is when TDH.VP.ENTER follows a previous TDG.VP.VMCALL – in the case TDH.VP.ENTER 30

does not load the XMM state (corresponding to XFAM bit 1) from TDVPS; it passes it directly from the host VMM.

• On an asynchronous TD exit, the Intel TDX module saves the extended state that the TD VCPU was allowed to use,
per XFAM, to the VCPU’s TDVPS. It then clears the extended state.

• On TDG.VP.VMCALL, the Intel TDX module works similarly, but it selectively does not clear some of the XMM register
state (corresponding to XFAM bit 1). That XMM state is passed directly to the host VMM. 35

• On completion of TDH.VP.ENTER (following TD exit), the VMM may restore any extended state that it saved before
TDH.VP.ENTER.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 104 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

11.7.3. Extended Features Execution Control

The Intel TDX module is designed to prohibit the guest TD from using any extended feature not allowed by XFAM. Many
extended state features are controlled by XCR0 and IA32_XSS MSR. Other features are controlled by CR4 or by specific
MSRs.

XCR0 and
IA32_XSS MSR

On XSETBV, which attempts to write to XCR0, and on WRMSR of IA32_XSS, the TDX module emulates
the architectural behavior of the CPU. The following cases cause a #GP(0):

• The new value is not natively valid for XCR0 or IA32_XSS (it sets reserved bits, sets bits for
features not recognized by the Intel TDX module, or uses invalid bit combinations).

• The new value has any bits set that are not allowed by XFAM.

CR4 On MOV to CR4, the guest TD attempts to set bits not allowed according to XFAM will cause a #GP(0).

Other MSRs The guest TD attempts to write or read certain MSRs that are not enabled according to XFAM can
cause a #GP(0) or a #VE, as described below.

The following table describes how a guest TD executes each of the extended features. 5

Table 11.8: Extended Features Enumeration and Execution Control

Bits U/S Feature Enumeration7 XFAM
Value

Description

0 U FP Always available 1 Always enabled

1 U SSE Always available 1 Always enabled

2 U AVX CPUID(0xD, 0x0).EAX[2]

CPUID(0x7, 0x0).EBX[2]

CPUID(0x7, 0x0).ECX[10:9]

CPUID(0x7, 0x1).EAX[5]

CPUID(0xD, 0x2).*

Specific AVX instructions
support is enumerated by
other CPUID bits.

0 or 1 Execution is directly controlled by XCR0.

4:3 U MPX CPUID(0xD, 0x0).EAX[4:3]

CPUID(0x7, 0x0).EBX[14]

CPUID(0xD, 0x3).*

CPUID(0xD, 0x4).*

00 MPX is being deprecated.

7 An extended feature controlled by bits N:M is available if all bits in the range N:M returned by CPUID are set to 1.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 105 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Bits U/S Feature Enumeration7 XFAM
Value

Description

7:5 U AVX512 CPUID(0xD, 0x0).EAX[7:5]

CPUID(0x7, 0x0).EBX[31:30,
28:26, 21, 17:16]

CPUID(0x7, 0x0).ECX[14,
12:11, 6, 1]

CPUID(0x7, 0x0).EDX[8]

CPUID(0x7, 0x1).EAX[5]

CPUID(0xD, 0x5).*

CPUID(0xD, 0x6).*

CPUID(0xD, 0x7).*

Specific AVX512 instructions
support is enumerated by
other CPUID bits.

000 or
111

Execution is directly controlled by XCR0. AVX512
may be enabled only if AVX is enabled – i.e.,
XFAM[7:5] may be set to 111 only when XFAM[2] is
set to 1.

8 S PT (RTIT) CPUID(0xD, 0x1).ECX[8]

CPUID(0x7, 0x0).EBX[25]

CPUID(0x14,*).*

CPUID(0xD, 0x8).*

0 or 1 Execution is controlled by IA32_RTIT_CTL. If PT is
enabled by XFAM, the guest TD is allowed access to
all IA32_RTIT_* MSRs. Otherwise, any access causes
#GP(0).

9 U PK CPUID(0xD, 0x0).EAX[9]

CPUID(0xD, 0x9).*

0 or 1 Execution is controlled by CR4.PKE (bit 22). If PK is
disabled by XFAM, the guest TD is disallowed from
setting CR4.PKE. An attempt to set this bit causes a
#GP(0).

10 S ENQCMD
(PASID)

CPUID(0xD, 0x1).ECX[10]

CPUID(0xD, 0xA).*

0 Execution is controlled by IA32_PASID MSR.

There is no direct I/O from guest TDs. ENQCMD and
ENQCMDS from the guest TD are not supported and
cause a #UD or #GP(0) (see 11.6.1.4). Access to
IA32_PASID causes a #GP(0).

12:11 S CET CPUID(0xD, 0x1).ECX[12:11]

CPUID(0xD, 0xB).*

CPUID(0xD, 0xC).*

00 or
11

Execution is controlled by CR4.CET (bit 23). If CET is
disabled by XFAM, the guest TD is disallowed from
setting CR4.CET. An attempt to set this bit causes a
#GP(0).

13 S HDC CPUID(0xD, 0x1).ECX[13]

CPUID(0xD, 0xD).*

0 Hardware Duty Cycle is controlled by package-scope
IA32_PKG_HDC_CTL and LP-scope IA32_PM_CTL1
MSRs.

HDC is disabled. If the TDX module supports #VE
reduction and the guest TD has set
TDCS.TD_CTLS.REDUCE_VE, guest TD access to the
above MSRs causes a #GP(0). Else, it causes
#VE(CONFIG_PARAVIRT).

14 S ULI CPUID(0xD, 0x1).ECX[14]

CPUID(0x7, 0x0).EDX[5]

CPUID(0xD, 0xE).*

0 or 1 Execution is controlled by CR4.UINTR (bit 25). If ULI
is disabled by XFAM, then the guest TD is not allowed
the following:

• Setting CR4.ULI. An attempt to set this bit
causes a #GP(0).

• Access to all IA32_UINTR_* MSRs. Any access
causes a #GP(0).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 106 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Bits U/S Feature Enumeration7 XFAM
Value

Description

15 S LBR CPUID(0xD, 0x1).ECX[15]

CPUID(0x7, 0x0).EDX[19]

CPUID(0xD, 0xF).*

CPUID(0x1C).*

0 or 1 Execution is controlled by IA32_LBR_CTL. If LBR is
disabled by XFAM, the guest TD is not allowed the
following:

• Access to all IA32_LBR_* MSRs. Any access
causes a #GP(0).

16 S HWP CPUID(0xD, 0x1).ECX[16]

CPUID(0xD, 0x10).*

0 Execution of Hardware-Controlled Performance State
is controlled by IA32_HWP MSRs.

This feature is disabled. If the TDX module supports
#VE reduction and the guest TD has set
TDCS.TD_CTLS.REDUCE_VE, guest TD access to the
above MSRs causes a #GP(0). Else, it causes
#VE(CONFIG_PARAVIRT).

18:17 U AMX CPUID(0xD, 0x0).EAX[18:17]

CPUID(0xD, 0x11).*

CPUID(0xD, 0x12).*

Specific AMX instructions
support is enumerated by
other CPUID bits.

00 or
11

Advanced Matrix Extensions (AMX) is directly
controlled by XCR0.

19 U APX CPUID(0x7, 0x1).EDX[21]

CPUID(0xD,0).EAX[19]

0 or 1 Execution is controlled by CR4.APX (bit 19). If APX is
disabled by XFAM, the guest TD is disallowed from
setting CR4.APX. An attempt to set this bit causes a
#GP(0).

11.8. CR Handling

11.8.1. CR0

Intel SDM, Vol. 3, 2.5 Control Registers
Intel SDM, Vol. 3, 23.8 Restrictions on VMX Operation 5

Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
Intel SDM, Vol. 3, 25.6 Unrestricted Guests

Figure 11.2: CR0

From the guest TD’s point of view, as virtualized by the Intel TDX module, CR0 bits PE (0) and NE (5) are always set to 1, 10

and bits NW (29) and CD (30) are always cleared to 0.

Guest TD writes to CR0 are handled by the Intel TDX module as follows:

• Writes to CR0 that are architecturally invalid (such as attempts to set bits that must be 0) or writes to CR0 that set
architecturally invalid bit combinations, result in a #GP(0).

• Writes to CR0 that are architecturally invalid, but not permitted by the TDX architecture (such as clearing CR0.CD) 15

result in a #VE(UNSUPPORTED_FEATURE).

• Other writes are allowed.

For TD migration, the same rules are used for checking the imported value of guest CR0. Any violation results in a failed
import.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 107 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

11.8.2. CR4

Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4

 CR4 Bits which are Architecturally Virtualized

For most CR4 bits, the TDX module emulates the x86 architectural behavior of the CPU. If a certain CPU feature is not
enabled for the guest TD, the guest TD’s attempt to set the corresponding CR4 bit can result in a #GP(0): 5

1. Depending on the TD’s XFAM, guest TD modification of CR4 bits PKE (22), CET (23) and UINTR (25) is prevented. Any
guest TD attempt to change those bits results in a #GP(0).

2. If the TD’s ATTRIBUTES.KL is 0, guest TD attempts to set bit KL (19) results in a #GP(0). See 11.17 below.
3. If the TD’s ATTRIBUTES.PKS is 0, guest TD attempts to set bit PKS (24) results in a #GP(0). See 11.21 below.
4. If the TD’s virtual value of CPUID(7,1).EAX[6] (LASS) is 0, the TD is not allowed to use LASS, and guest TD attempts to 10

set bit LASS (27) results in a #GP(0).
5. If the TD’s virtual value of CPUID(0x7,1).EAX[17] is 0 (either configured by the host VMM or the CPU does not

support FRED), the TD is not allowed to use FRED, and guest TD attempts to set bit FRED (32) results in a #GP(0).
See 11.20 below.

In addition, any guest TD attempts to modify any of the architecturally reserved CR4 bits, or to set architectural-invalid 15

bit combinations, can result in a #GP(0).

For TD migration, the same rules are used for checking the imported value of guest CR4. Any violation results in a failed
import.

 CR4.MCE (Bit 6) Virtualization

The guest TD’s ability to modify the virtual value of CR4.MCE depends on the configuration set by the host VMM and the 20

guest TD. There are multiple configurations, described below.

Note: The real value of CR4.MCE is always set to 1, to allow proper TDX operation, but the guest TD never handles
#MC. Machine check events always cause a VM exit to the TDX module and are handled by it. For details, see
Ch. 16.

Default Virtualization as Fixed-1 25

By default, virtual CR4.MCE is fixed at 1, and the guest TD is not allowed to modify it. A guest TD attempt to modify
CR4.MCE results in a #VE(CONFIG_PARAVIRT).

Note: If the TD sets TDCS.TD_CTLS.REDUCE_VE to 1, then clears CR4.MCE as described below, then clears
TDCS.TD_CTLS.REDUCE_VE, the TD-visible value of CR4.MCE will still be 0.

Architectural, Non-Paravirtualized Virtualization 30

If the TDX module supports #VE reduction, and the guest TD enables it (by setting TDCS.TD_CTLS.REDUCE_VE to 1) but
does not enable MCA paravirtualization (TDCS.FEATURE_PARAVIRT_CTLS.MCA is 0), then the virtual value of
CPUID(1).EDX[7] is 0, meaning MCE is disabled. The guest TD is not allowed to modify the value of virtual CR4.MCE from
0 to 1; a guest TD attempt to do so results in a #GP(0).

Note: Virtual CR4.MCE’s value is initialized to 1, which is the default value as described above. The guest TD may clear 35

this bit but not set it back to 1 as long as TDCS.TD_CTLS.REDUCE_VE is 1.

Architectural, Paravirtualized Virtualization

If the TDX module supports #VE reduction, and the guest TD enables it (by setting TDCS.TD_CTLS.REDUCE_VE to 1) and
enables MCA paravirtualization (by setting TDCS.FEATURE_PARAVIRT_CTLS.MCA to 1), then virtual CPUID(1).EDX[7] is
configured by the host VMM. 40

• If virtual CPUID(1).EDX[7] is 0, meaning MCE is disabled, the behavior is the same as with the non-paravirtualized
configuration above. The guest TD is not allowed to modify the value of virtual CR4.MCE from 0 to 1; a guest TD
attempt to do so results in a #GP(0).

• Else (virtual CPUID(1).EDX[7] is 1, meaning MCE is enabled), the guest TD is allowed to modify CR4.MCE.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 108 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 CR4 Bits which are Non-Architecturally Virtualized

From the guest TD’s point of view, the following bits are virtualized as fixed-0 by Intel TDX module. Guest TD attempts
to modify their values result in a #VE(UNSUPPORTED_FEATURE):

• CR4.VMXE (bit 13)

• CR4.SMXE (bit 14) 5

11.9. MSR Virtualization

11.9.1. Overview

From the guest TD’s point of view, as virtualized by the Intel TDX module, MSRs are divided into the following categories:

• MSRs that are context-switched on TD entry and exit – guest TD access to such MSRs may be full, partial or none

• MSRs that are not context-switched, but guest TD access is read-only 10

• MSRs that are not context-switched, and are inaccessible to the guest TD

MSR behavior can be either fixed or dependent on the TD configuration via the XFAM, ATTRIBUTES and CPUID
configuration parameters. The host VMM has no direct interface to configure specific MSR behavior (e.g., it cannot set
a specific MSR to TD exit on write). Instead, guest TD access violations to MSRs can cause a #GP(0) in most cases where
the MSR is enumerated as inaccessible by the Intel TDX module via CPUID virtualization. In other cases, guest TD access 15

violations to MSRs can cause a #VE. A guest TD that wishes to access an MSR that is not allowed by the Intel TDX module
should do so via explicit requests from the host VMM using TDCALL(TDG.VP.VMCALL).

A detailed list of MSR virtualization is provided in the [TDX Module ABI Spec].

11.9.2. MSR Virtualization Configuration by the Host VMM

For a few MSRs, the virtualized values of some bit field returned to the guest TD when executing RDMSR can be configured 20

by the host VMM. Configuration is done as an input to TDH.MNG.INIT.

Table 11.9: Host VMM Configurable MSR Field Virtualization

MSR Bit
Configuration

Description

ALLOW_DIRECT An MSR bit’s virtual value can be configured as follows:

• Allowed by the host VMM, i.e., reflects the native value returned by the CPU.

• Forced to 0 by the host VMM, regardless of its native values.

FORCE_DIRECT An MSR bit’s virtual value can be configured as follows:

• Forced to 1 by the host VMM, regardless of whether or not supported by the CPU.

• Allowed by the host VMM, i.e., reflects the native value returned by the CPU.

For details, see the TD_PARAMS definition in the [ABI Spec].

Implication on TD Migration 25

The virtual MSR values calculated on TDH.MNG.INIT are stored in TDCS. If the TD is migrated, the values are exported by
TDH.EXPORT.STATE.IMMUTABLE and checked on import to the destination TD by TDH.IMPORT.STATE.IMMUTABLE to be
compatible with the destination platform.

For MSR bits that are configurable as ALLOW_DIRECT, an imported value of 0 is always allowed, regardless of the
destination CPU’s native value. 30

For MSR bits that are configurable as FORCE_DIRECT, an imported value of 1 is always allowed, regardless of the
destination CPU’s native value.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 109 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

11.9.3. MSR Virtualization Control by the Guest TD

Depending on the TDX features supported by the TDX module, the guest TD may control the virtualization of specific
MSRs. Refer to 11.1 for an overview of virtualization and paravirtualization, and to 11.2 for an overview of guest TD
controls.

#VE Reduction and Feature Paravirtualization Control 5

By default, guest TD MSR access of many MSRs results in #VE. The guest TD is expected to implement a paravirtualization
agent as part of its #VE exception handler (see 11.1 for an overview).

If the TDX module supports #VE reduction, as indicated by TDX_FEATURES0.VE_REDUCTION (bit 30), readable by
TDG.SYS.RD*, the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1. This greatly reduces the number of cases
where an MSR access results in a #VE, by virtualizing many CPU features as unsupported and eliminating the need to 10

paravirtualize them. The guest TD may also control specific CPU features paravirtualization by setting bits in
TDCS.FEATURE_PARAVIRT_CTRL.

For details, see 11.1 and the [ABI Spec] definition of TDCS.TD_CTLS, TDCS.FEATURE_PARAVIRT_CTRL and of CPUID
virtualization.

11.10. CPUID Virtualization 15

11.10.1. CPUID Configuration by the Host VMM

For some CPUID leaves and sub-leaves, the virtualized bit fields of CPUID return values (in guest EAX/EBX/ECX/EDX) are
configurable by the host VMM. For such cases, the Intel TDX module architecture defines two virtualization types:

Table 11.10: Host VMM Configurable CPUID Field Virtualization

CPUID Field
Virtualization

Description Comments

As
Configured

Bit fields for which the host VMM
configures the value seen by the guest TD.
Configuration is done on TDH.MNG.INIT.

As
Configured (if
Native)

Bit fields for which the host VMM
configures the value such that the guest
TD either sees their native value or a
value of 0. Configuration is done on
TDH.MNG.INIT.

If a CPUID bit enumerates a CPU feature, and the
feature is natively supported, then the feature can
either be allowed by the host VMM, or it will be
effectively deprecated for the guest TD.

 20

The above CPUID fields can be specified by the host VMM at guest TD initialization time TDH.MNG.INIT using the
TD_PARAMS input structure of TDH.MNG.INIT. TDH.MNG.INIT and its input TD_PARAMS structure are described in the
[TDX Module ABI Spec]. Configuration is further classified as follows:

Table 11.11: CPUID Configuration by the TD_PARAMS Input of TDH.MNG.INIT

TD_PARAMS
Section

Description Notes

CPUID_CONFIG Bit fields configurable directly based on a configuration
table

Some bit fields are
configurable by both
CPUID_CONFIG and either
XFAM or ATTRIBUTES. See
the discussion below.

XFAM Bit fields configurable based on the guest TD’s XFAM

XFAM control of extended features virtualization is
described in 11.7.

ATTRIBUTES Bit fields configurable based on the guest TD’s ATTRIBUTES

Other Bits fields configurable based on some other field of
TD_PARAMS

 25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 110 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

A detailed list of CPUID virtualization is provided in the [TDX Module ABI Spec]. For any valid CPUID leaf / sub-leaf
combination that is not listed, the Intel TDX module injects a #VE.

The host VMM should always consult the list of directly configurable CPUID leaves and sub-leaves, as enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO, described in 4.1.2.4.

 Fine Grained Control of CPU Extended Features Enumeration 5

Some CPUID bit fields are configurable based on both CPUID_CONFIG and either XFAM or ATTRIBUTES sections of
TD_PARAMS. This is intended to support fine-grained virtualization of sub-features of extended features. For example:

• The host VMM can configure the TDX module to virtualize some AVX512 as available, but to virtualize other AVX512
instructions as unavailable.

• The host VMM can configure the TDX module to virtualize the Perfmon architectural events support. 10

This is useful for TD migration, as it allows the host VMM to configure a common subset of supported sub-features.

 Configurable Family/Model/Stepping (CPUID(1).EAX) Enumeration

By default, the CPU’s Family/Model/Stepping value, as enumerated to the guest TD by CPUID(1).EAX, is set to the native
value of the platform. In a multi-package platform, the stepping value is the minimum of all the packages’ native values.
If CPUID(1).EAX is enumerated by the TDX module as configurable, then the host VMM can select the default native 15

configuration by setting CPUID(1).EAX in TD_PARAMS.CPUD_CONFIG input to TDH.MNG.INIT to all-0.

If supported by the TDX module, then if the is migratable (ATTRIBUTES.MIGRATABLE is 1), the value of CPUID(1).EAX may
be configured by the host VMM as described below. This allows the host VMM to create migration pools containing
multiple CPU types. As with all configurable features, the host VMM would need to be careful an configure the migratable
TDs virtual Family/Model/Stepping values to be recognizable by all platforms in the migration pool. 20

Enumeration TDX module support of CPUID(1).EAX configuration is enumerated by the global metadata field
TDX_FEATURES0.FMS_CONFIG (bit 17), which is readable by the host VMM using TDH.SYS.RD*. For
details, see the [ABI Spec].

The TDX module allows the host VMM to configure Family/Model/Stepping to one of a specific set of values. Those
values are known to the TDX module as CPUs, each conforming to the following criteria: 25

• There’s a TDX module version that support the CPU denoted by the Family/Model/Stepping value.

• The CPU denoted by the Family/Model/Stepping value is “not newer” than the current (native) CPU at the time of
TD initialization, in a sense that it does not implement any security feature that is not implemented by the current
CPU. E.g., that CPU does not implement some side channel mitigation that the current CPU does not implement.

The specific list of family/model/stepping values is provided by the following global metadata fields), readable by the 30

host VMM using TDH.SYS.RD*:

ALLOWED_FMS A list of 32-bit values in CPUID(1).EAX Family/Model/Stepping format. For each, the allowed Family
and Model fields are specified. The Stepping value is the maximum allowed value.

DISALLOWED_FMS A list of 32-bit fields in CPUID(1).EAX Family/Model/Stepping format, listing explicitly disallowed
F/M/S settings. 35

For details, see the [ABI Spec].

11.10.2. Guest TD Control of CPUID Virtualization

 Guest TD Control of Specific CPUID Leaves and Sub-Leaves Virtualization

Depending on the TDX features supported by the TDX module, the guest TD may control the virtualization of specific
CPUID leaves and sub-leaves. Refer to 11.1 for an overview of virtualization and paravirtualization, and to 11.2 for an 40

overview of guest TD controls.

11.10.2.1.1. #VE Reduction and Feature Paravirtualization Control

By default, guest TD execution of CPUID with many leaf and sub-leaf numbers result in #VE. The guest TD is expected to
implement a paravirtualization agent as part of its #VE exception handler (see 11.1 for an overview).

If the TDX module supports #VE reduction, as indicated by TDX_FEATURES0.VE_REDUCTION (bit 30), readable by 45

TDG.SYS.RD*, the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1. This greatly reduces the number of cases

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 111 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

where a CPUID results in a #VE, by virtualizing many CPU features as unsupported and eliminating the need to
paravirtualize them. The guest TD may also control specific CPU features paravirtualization by setting bits in
TDCS.FEATURE_PARAVIRT_CTRL.

Guest TD execution of CPUID with a leaf number in the range 0x40000000 - 0x4FFFFFFF always results in a
#VE(NON_CONFIG_PARAVIRT). This CPUID leaf range is typically used for guest-host communication by multiple host 5

VMM types; the guest’s #VE handler may paravirtualize the host VMM response (e.g., using a hypercall over
TDG.VP.VMCALL).

For details, see 11.1 and the [ABI Spec] definition of TDCS.TD_CTLS, TDCS.FEATURE_PARAVIRT_CTRL and of CPUID
virtualization.

11.10.2.1.2. Topology Virtualization 10

Note: Topology virtualization control is a subset of the #VE reduction control described above, which was implemented
in earlier TDX module versions. It is available as a separate control for backward compatibility.

By default, virtual topology enumeration by CPUID(0x1F) and CPUID(0xB) is disabled. If the TDX module supports
topology virtualization, as indicated by TDX_FEATURES0.TOPOLOGY_ENUM, readable by TDG.SYS.RD*, the guest TD may
enable it by setting TDCS.TD_CTLS.ENUM_TOPOLOGY (bit 1) to 1. If the TDX module supports #VE reduction, as indicated 15

by TDX_FEATURES0.VE_REDUCTION (bit 30), the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1; this will also
implicitly set ENUM_TOPOLOGY (bit 1). See 11.11 below for details.

11.10.2.1.3. CPUID(2) (Cache and TLB Information) Virtualization

Note: CPUID(2) virtualization control is a subset of the #VE reduction control described above, which was implemented
in earlier TDX module versions. It is available as a separate control for backward compatibility. 20

By default, cache and TLB enumeration by CPUID(0x2) is disabled. If the TDX module supports CPUID(2) virtualization, as
indicated by TDX_FEATURES0.CPUID2_VIRT (bit 29), readable by TDG.SYS.RD*, the guest TD may enable it by setting
TDCS.TD_CTLS.VIRT_CPUID2 (bit 2) to 1. If the TDX module supports #VE reduction, as indicated by
TDX_FEATURES0.VE_REDUCTION (bit 30), the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1; this will also
implicitly set VIRT_CPUID2 (bit 2). 25

 Per-VCPU Guest TD Control of #VE on CPUID

11.10.2.2.1. Per-VCPU #VE for all CPUID Leaves and Sub-Leaves

The guest TD may toggle on or off the unconditional injection of #VE(CONFIG_PARAVIRT) on all CPUID leaves and sub-
leaves, per VCPU. That can be done in supervisor mode (CPL == 0) and/or user mode (CPL > 0). For example, this enables
the TD OS to control CPUID as seen by drivers or by user-level code. 30

The guest TD may do this by writing to the VCPU-scope metadata fields CPUID_SUPERVISOR_VE and CPUID_USER_VE
using TDG.VP.WR.

For backward compatibility, the guest TD may use TDG.VP.CPUIDVE.SET, described in the [TDX Module ABI Spec].

11.10.2.2.2. Per-VCPU #VE for Specific CPUID Leaves and Sub-Leaves

A finer grained control is provided per CPUID leaf and sub-leaf that is virtualized by the TDX module. The guest TD may 35

configure the following, per VCPU:

• #VE(CONFIG_PARAVIRT) injection instead of the normal CPUID virtualization is the guest executed CPUID in
supervisor mode (CPL == 0).

• #VE(CONFIG_PARAVIRT) injection instead of the normal CPUID virtualization is the guest executed CPUID in user
mode (CPL > 0). 40

The guest TD may do this by writing to the VCPU-scope metadata field array CPUID_CONTROL using TDG.VP.WR.

Note: This feature is only available for CPUID leaves and sub-leaves that do not inject a #VE if
TDCS.TD_CTLS.REDUCE_VE is 0.

11.10.3. CPUID Configuration & Checks at Guest TD Migration

The CPUID virtualization configuration stored in TDCS is exported by TDH.EXPORT.STATE.IMMUTABLE and checked on 45

import to the destination TD by TDH.IMPORT.STATE.IMMUTABLE to be compatible with the destination platform.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 112 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

CPUID fields that are virtualized as fixed values (defined as “FIXED”), are based on some calculation (defined as
“ASSIGNED”) or that their value depends on the underlying CPU capabilities (defined as “ALLOWED” or “DIRECT”) must
retain the same value across migration.

CPUID fields that are virtualized as pass-through (defined as “NATIVE”) are considered fixed once exported and are
checked for compatibility on import. 5

11.11. Platform Topology Virtualization

If supported by the TDX module, it provides the guest TD with virtual platform topology information, configured by the
host VMM.

Enumeration: TDX module support for virtual platform topology enumeration is enumerated by
TDX_FEATURES0.TOPOLOGY_ENUM, readable by the host VMM and the guest TD using TDH.SYS.RD or 10

TDG.SYS.RD respectively. For details see the [ABI Spec].

11.11.1. Configuration by the Host VMM

As an input to TD initialization (TDH.MNG.INIT), the host VMM can configure the values of the CPUID extended topology
leaf (0x1F) and its sub-leaves. Alternatively, the host VMM can configure the CPUID(0x1F) values as all 0; in this case, the
virtual values are set to the native CPUID(0x1F) values. 15

The following conditions must be met:

• CPUID(0x1F) sub-leaves must specify level types (CPUID(0x1F, *).ECX[15:8]) in an ascending order, except the last
one.

• The last CPUID(0x1F) sub-leaf must specify level type 0 (INVALID).

• The host VMM must provide configuration for the core level (2). 20

As an input to each VCPU initialization (TDG.VP.INIT), the host VMM must specify a virtual x2APIC ID for that VCPU. That
value must be unique across all VCPUs of the current TD.

The virtual values of CPUID(0xB) are calculated by the TDX module from the configured virtual values of CPUID(0x1F), as
described below.

For details, see the [ABI Spec]. 25

11.11.2. Enabling by the Guest TD

See also 11.10.2 for a generic discussion of guest TD control of CPUID virtualization.

By default, virtual topology enumeration is disabled. The guest TD may enable virtual topology enumeration by setting
TDCS.TD_CTLS.ENUM_TOPOLOGY (bit 1) to 1 or by setting TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1, if supported. This
depends on the following conditions: 30

• TDX module enumerates this feature as supported, as described above.

• The host VMM properly configured the virtual x2APIC ID for each VCPU. This is indicated by
TDCS.TOPOLOGY_ENUM_CONFIGURED, which may be read using TDG.VM.RD.

For details, see the [ABI Spec].

11.11.3. Virtual Topology Information Provided to the Guest TD 35

The table below shows the virtual topology information, depending on enabling by the guest TD.

Table 11.12: Virtual Topology Information Provided to the Guest TD

CPUID or MSR TD_CTLS.ENUM_TOPOLOGY = 0 TD_CTLS.ENUM_TOPOLOGY = 1

CPUID(0x1F) (V2 Extended
Topology Enumeration)

#VE(CONFIG_PARAVIRT) EAX, EBX, ECX: Host VMM configured platform
topology values

EDX: Current VCPU’s host VMM configured
x2APIC ID

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 113 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

CPUID or MSR TD_CTLS.ENUM_TOPOLOGY = 0 TD_CTLS.ENUM_TOPOLOGY = 1

CPUID(0xB) (Extended
Topology Enumeration)

#VE(CONFIG_PARAVIRT) EAX, EBX, ECX: Derived from the CPUID(0x1F)
values – see below.

EDX: Current VCPU’s host VMM configured
x2APIC ID

CPUID(1).EBX[31:24] least significant 8 bits of the
VCPU’s sequential index

Least significant 8 bits of the VCPU’s x2APIC ID

MSR 0x802
(IA32_X2APIC_APICID)

#VE(CONFIG_PARAVIRT) Current VCPU’s host VMM configured x2APIC ID

 Derivation of CPUID(0xB) Virtual Values from CPUID(0x1F) Configuration

Intel SDM, Vol. 2 CPUID

CPUID(0x1F) can enumerate multiple domain levels (Logical Processor, Core, Module, etc.) while CPUID(0xB) can only
enumerate the Logical Processor and Core level. The TDX module derives the virtual values of CPUID(0xB) from the 5

configured virtual values of CPUID(0x1F) as follows:

• If a Logical Processor domain has been configured for CPUID(0x1F), then the same values are used as CPUID(0xB)’s
Logical Processor domain.

• CPUID(0xB)’s Core domain value is set to the CPUID(0x1F)’s highest configured domain value.

11.12. Interrupt Handling and APIC Virtualization 10

Intel SDM, Vol. 3, 24.6.8 Controls for APIC Virtualization
Intel SDM, Vol. 3, 29 APIC Virtualization and Virtual Interrupts

11.12.1. Virtual APIC Mode

• Guest TDs must use x2APIC mode. xAPIC mode (using memory mapped APIC access) is not allowed.

• Guest TD attempts to RDMSR or WRMSR the IA32_APIC_BASE MSR cause a #VE(NON_CONFIG_PARAVIRT) to the 15

guest TD. The guest TD cannot disable the APIC.

11.12.2. Virtual APIC Access by Guest TD

Intel SDM, Vol. 3, 30.5 Virtualizing MSR-Based APIC Access

Guest TDs are allowed access to a subset of the virtual APIC registers, which are virtualized by the CPU as described in
[Intel SDM, Vol. 3, 30.5]. Access to other registers can cause a #VE. The guest TD is expected to use a software protocol 20

over TDG.VP.VMCALL to request such operations from the host VMM.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 114 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

#VE

#VE

#VE

#VE
#VE

VAPIC Access

VAPIC Access

Virtual APIC ID / #VE

Figure 11.3: Virtual APIC Access by Guest TD

Table 11.13: x2APIC MSRs (0x800 – 0x8FF) Processing

MSR
Range

MSR Name(s) Description Access On RDMSR On WRMSR

0x802 IA32_X2APIC_APICID APIC ID RO If TD_CTLS.ENUM_TOPOLOGY
is set, return the virtual
x2APIC ID, as configured (see
11.11.3 above)

Else, #VE(CONFIG_PARAVIRT)

#GP(0)

0x803 IA32_X2APIC_VERSION APIC Version RO #VE(NON_CONFIG_PARAVIRT) #GP(0) or #VE8

0x808 IA32_X2APIC_TPR Task Priority RW Read from VAPIC page Write to VAPIC page, TPR
virtualization

0x80A IA32_X2APIC_PPR Processor
Priority

RO Read from VAPIC page #GP(0)

0x80B IA32_X2APIC_EOI End Of
Interrupt

WO Read from VAPIC page Write to VAPIC page, EOI
virtualization

0x80D IA32_X2APIC_LDR Local
Destination

RO #VE(NON_CONFIG_PARAVIRT) #GP(0) or #VE8

0x80F IA32_X2APIC_SIVR Spurious
Interrupt
Vector

RW #VE(NON_CONFIG_PARAVIRT) #VE

8 If the TDX module supports #VE reduction, as enumerated by TDX_FEATTURES0.VE_REDUCTION (bit 30), then this MSR access results
in a #GP(0). Else, it results in a #VE.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 115 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

MSR
Range

MSR Name(s) Description Access On RDMSR On WRMSR

0x810-
0x817

IA32_X2APIC_ISR0-
IA32_X2APIC_ISR7

In-Service RO Read from VAPIC page #GP(0)

0x818-
0x81F

IA32_X2APIC_TMR0-
IA32_X2APIC_TMR7

Trigger Mode RO Read from VAPIC page #GP(0)

0x820-
0x827

IA32_X2APIC_IRR0-
IA32_X2APIC_IRR7

Interrupt
Request

RO Read from VAPIC page #GP(0)

0x828 IA32_X2APIC_ESR Error Status RW #VE(NON_CONFIG_PARAVIRT) #VE(NON_CONFIG_PARAVIRT)

0x830 IA32_X2APIC_ICR Interrupt
Command

RW #VE(NON_CONFIG_PARAVIRT) #VE(NON_CONFIG_PARAVIRT)

0x82F,
0x832-
0x837,
0x83A

IA32_X2APIC_LVT_* Local Vector
Table

RW #VE(NON_CONFIG_PARAVIRT) #VE(NON_CONFIG_PARAVIRT)

0x838 IA32_X2APIC_INIT_COUNT APIC Timer RW #VE(NON_CONFIG_PARAVIRT) #VE(NON_CONFIG_PARAVIRT)

0x839 IA32_X2APIC_CUR_COUNT RO #VE(NON_CONFIG_PARAVIRT) #GP(0) or #VE8

0x83E IA32_X2APIC_DIV_CONF RW #VE(NON_CONFIG_PARAVIRT) #VE(NON_CONFIG_PARAVIRT)

0x83F IA32_X2APIC_SELF_IPI Self IPI WO Read from VAPIC page Write to VAPIC page, self-IPI
virtualization

0x83B-
0x83D

Reserved N/A None #GP(0) or #VE8 #GP(0) or #VE8

Other Reserved N/A None #GP(0) #GP(0)

11.12.3. Implicit APIC Write #VE

The following guest operations result in an APIC write VM exit to the TDX module. The VM exit is trap-like, i.e., it happens
after the instruction has been executed:

• WRMSR of IA32_X2APIC_SELF_IPI with EAX[7:4] set to 0, i.e., an interrupt vector value smaller than 16. 5

• Executing SENDUIPI to send a user-level interrupt.

In all such cases, the TDX module injects a #VE(NON_CONFIG_PARAVIRT) exception back to the guest TD, with the exit
reason indicating an APIC write and bits 11:0 of the exit qualification set to the page offset of the write access.

11.12.4. Posted Interrupts

Intel SDM, Vol. 3, 29.6 Posted-Interrupt Processing 10

Non-NMI interrupt injection into the guest TD by the host VMM or the IOMMU can be done through the posted-interrupt
mechanism. If there are pending interrupts in the posted-interrupt descriptor (PID), the VMM can post a self IPI with the
notify vector prior to TD entry.

• The posted-interrupt descriptor (PID) resides in a shared page, directly accessible by the host VMM. The VMM must
set the TD VMCS’s “posted-interrupt descriptor address” control (using the TDH.VP.WR function) to the PA and 15

shared HKID of the posted-interrupt descriptor.

• The host VMM must set the TD VMCS’s “posted-interrupt notification vector” control using the TDH.VP.WR function.

• To post pending interrupts in the PID, the host VMM can generate a self IPI with the notification vector prior to TD
entry.

When a posted-interrupt notification vector is recognized in SEAM non-root mode, the CPU processes the posted-20

interrupt descriptor as described in the [Intel SDM].

If needed, the guest TD may use a software protocol over TDCALL(TDG.VP.VMCALL) to ask the VMM to stop interrupt
delivery through the PID.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 116 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Security Implications of Posted Interrupts

A malicious host VMM or a device may post any virtual interrupt vector in the range 255:31 at any time. The guest TD
should be able to process such interrupts without confusing it with a software interrupt that uses the same vector
number. The TD’s interrupt handler for vector V, which expects a software interrupt, can read the virtual APIC's ISR
register by reading the applicable IA32_X2APIC_ISRx MSRs (0x817:0x810). It can check that ISR[V] is indeed 0 for the 5

specific vector.

TD Migration Implications of Posted Interrupts

The TD VMCS posted interrupt execution controls are reset to their initial values when the TD is migrated. The host VMM
on the destination platform must set them in order to use posted interrupts.

Intel
TDX

Module

Guest TD

Host VMM TDH.VP.
ENTER

VM entry
(RFLAGS.IF = 1)

Write notification
vector NV to x2APIC

Self IPI MSR

Post Interrupt
Vector PV:

Set PID.PIR[PV]
and PID.ON

Notification
Interrupt
vector NV

Posted interrupt
vector PV handling

Assumption:
RFLAGS.IF = 0

Interrupt
Handler

 10

Figure 11.4: Typical Sequence for Posted Interrupt Injection to the Current LP

TD Partitioning Implications of Posted Interrupts

Posted interrupts handling for partitioned TDs is discussed in the [TD Partitioning Spec].

11.12.5. Pending Virtual Interrupt Delivery Indication

The host VMM can detect whether a virtual interrupt is pending delivery to a VCPU in the Virtual APIC page, using 15

TDH.VP.RD to read the VCPU_STATE_DETAILS TDVPS field.

The typical use case is when the guest TD VCPU indicates to the host VMM, using TDG.VP.VMCALL, that it has no work to
do and can be halted. The guest TD is expected to pass an “interrupt blocked” flag. The guest TD is expected to set this
flag to 0 if and only if RFLAGS.IF is 1 or the TDCALL instruction that invokes TDG.VP.VMCALL immediately follows an STI
instruction. If the “interrupt blocked” flag is 0, the host VMM can determine whether to re-schedule the guest TD VCPU 20

based on VCPU_STATE_DETAILS.

For further details, see the TDVPS definition in the [TDX Module ABI Spec].

11.12.6. Cross-TD-VCPU IPI

To perform a cross-VCPU IPI, the guest TD ILP should request an operation from the host VMM using TDG.VP.VMCALL.
The VMM would then inject the requested virtual interrupt into the guest TD’s RLPs using the posted interrupt 25

mechanism, as described in 11.12.4 above. This is an untrusted operation; thus, the TD needs to track its completion.

11.12.7. Virtual NMI Injection

The host VMM can request the Intel TDX module to inject a virtual NMI into a guest TD VCPU using the TDH.VP.WR
function, by setting the PEND_NMI TDVPS field to 1. This can be done only when the VCPU is not active (a VCPU can be

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 117 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

associated with at most one LP). Following that, the host VMM can call TDH.VP.ENTER to run the VCPU; the Intel TDX
module will attempt to inject the NMI as soon as possible.

The host VMM can use TDH.VP.RD to read PEND_NMI and get the status of virtual NMI injection. A value of 0 indicates
that virtual NMI has been injected into the guest TD VCPU. The host VMM also may choose to clear PEND_NMI before it
is injected. 5

11.13. Virtualization Exception (#VE)

Intel SDM, Vol. 3, 24.9.4 Information for VM Exits Due to Instruction Execution
Intel SDM, Vol. 3, 25.5.6 Virtualization Exceptions
Intel SDM, Vol. 3, 27.2.5 Information for VM Exits Due to Instruction Execution

The Intel TDX module extends the VMX architectural definition of #VE. It injects #VE into the guest TD in multiple cases 10

where an operation is not allowed by TDX, but an architectural exception (e.g., #GP(0)) is not applicable. Such cases
include disallowed instruction executions, disallowed MSR accesses, many CPUID leaves, etc.

The intended usage is for the TDX-enlightened guest TD OS to have a #VE handler. By analyzing the #VE information, the
handler would be able to emulate the requested operation for non-enlightened parts of the guest TD – e.g., drivers and
applications. 15

11.13.1. Virtualization Exception Information

The virtualization-exception information area (VE_INFO) is maintained as part of TDVPS. It is not intended to be directly
accessible by the guest TD. Instead, the #VE information can be retrieved using the TDG.VP.VEINFO.GET function (see
the [TDX Module ABI Spec]). This is a simple way to help ensure the availability and privacy of this area.

Table 11.14: Virtualization Exception Information Area (VE_INFO), based on [Intel SDM, Vol. 3, Table 24-1] 20

Section Field Offset
(Bytes)

Size
(Bytes)

Description

Architectural EXIT_REASON 0 4 The value that would have been saved into the VMCS as an exit
reason if a VM exit had occurred instead of the virtualization
exception.

VALID 4 4 0 indicates that VE_INFO has no valid contents.

The CPU and the Intel TDX module will not update VE_INFO if
VALID is not 0.

After updating VE_INFO, the CPU and the Intel TDX module
write 0xFFFFFFFF to the VALID field.

EXIT_
QUALIFICATION

8 8 The value that would have been saved into the VMCS as an exit
qualification if a VM exit had occurred instead of the
virtualization exception.

GLA 16 8 The value that would have been saved into the VMCS as a
guest-linear address if a VM exit had occurred instead of the
virtualization exception.

GPA 24 8 The value that would have been saved into the VMCS as a
guest-physical address if a VM exit had occurred instead of the
virtualization exception.

EPTP_INDEX 32 2 The current value of the EPTP index VM-execution control

Non-
Architectural

(EXIT_REASON is
not EPT
Violation)

INSTRUCTION_
LENGTH

Non-
arch.

4 The 32-bit value that would have been saved into the VMCS as
VM-exit instruction length if a legacy VM exit had occurred
instead of the virtualization exception.

INSTRUCTION_
INFORMATION

Non-
arch.

4 The 32-bit value that would have been saved into the VMCS as
VM-exit instruction information if a legacy VM exit had occurred
instead of the virtualization exception.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 118 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Section Field Offset
(Bytes)

Size
(Bytes)

Description

EXTENDED_
INSTRUCTION_
INFORMATION

Non-
arch.

8 The 64-bit value that would have been saved into the VMCS as
VM-exit extended instruction information if a legacy VM exit
had occurred instead of the virtualization exception.

This field is only applicable for TDX Modules and CPUs which
support the VM-exit extended instruction information VMCS
field.

VE_INFO
Category

CATEGORY Non-
arch.

1 Category of the VE_INFO – intended to help the guest TD decide
how to handle the #VE exception. See the table below for
details.

Enumeration: CATEGORY information is supported if the TDX
module supports #VE reduction, as enumerated
by TDX_FEATURES0.VE_REDUCTION (bit 30).

The architectural section format for VE_INFO is as defined in the [Intel SDM], and it is used directly by the CPU when it
injects a #VE (see 11.13.2 below). VE_INFO can also be used for #VE injected by the Intel TDX module. Some VE_INFO
fields are applicable only for some exit reasons.

VE_INFO’s non-architectural section is only applicable for TDX-extended #VE (injected by the TDX module), where 5

EXIT_REASON is not EPT violation (48). It should be ignored for EPT violations converted by the CPU to #VE. See below
for details.

VE_INFO.VALID is initialized to 0, and it is set to 0xFFFFFFFF when a #VE is injected to the guest TD. When handling a
#VE, the guest TD retrieves the #VE information using the TDG.VP.VEINFO.GET function (see the [TDX Module ABI Spec]).
TDG.VP.VEINFO.GET checks that VE_INFO.VALID is 0xFFFFFFFF. After reading the information, it sets VE_INFO.VALID to 10

0.

Table 11.15: #VE Category Information

Value Category Description Expected Guest TD Behavior

0x00 ARCH #VE which has been converted from
an EPT Violation

Handle the #VE

0x01 PENDING #VE which has been converted from
an EPT Violation on a PENDING page

Handle the #VE, e.g., by calling
TDG.MEM.PAGE.ACCEPT

0x02 RESERVED_GPA_BITS #VE which has been converted from
an EPT Violation due to GPA bits
above the MAXGPA range (except
the SHARED bit) being set to 1

Handle this as a guest TD error

0x10 CONFIG_PARAVIRT CPU feature configured by the host
VMM (via CPUID configuration) to be
paravirtualized by the guest TD

Either be prepared to handle the
paravirtualization case (triggered by
#VE) or treat it as error resulting from
incorrect configuration by VMM.

0x11 NON_CONFIG_PARAVIRT CPU feature that must be
paravirtualized by the guest TD

Handle the paravirtualization case in
#VE handler.

0x80 UNSUPPORTED_FEATURE Guest TD attempted to use an x86
feature which is not supported by
TDX

Indicates a bug in guest TD software –
not allowed values should not be
written

11.13.2. Architectural #VE Injection due to EPT Violations

EPT Violation mutation to #VE is enabled unconditionally for SEAM non-root operation. The Intel TDX module sets the 15

TD VMCS EPT-violation #VE VM-execution control to 1.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 119 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

For shared memory accesses (i.e., when GPA.SHARED == 1), as with legacy VMX, the VMM can choose which pages are
eligible for #VE mutation based on the value of the Shared EPTE bit 63.

For private memory accesses (GPA.SHARED == 0), an EPT Violation causes a TD Exit in most cases, except when the Secure
EPT entry state is PENDING (an exception to this is described in 11.14.1.5). Secure EPT entry bit 63 is always set to 1; the
CPU never directly mutates EPT violations to #VE. However, EPT violations on PENDING pages may be mutated by the 5

TDX module to #VE(PENDING); this is described in 9.5.2 and 0.

11.13.3. Non-Architectural #VE Injected by the Intel TDX Module

#VE may be injected by the Intel TDX module in several cases:

• Emulation of the architectural #VE injection on EPT violation, done by a guest-side Intel TDX module flow that
performs an EPT walk. 10

• As a result of guest TD execution of a disallowed instruction (see 11.6 above), a disallowed MSR access (see 11.9
above), or CPUID virtualization (see 11.10 above).

• A notification to the guest TD about anomalous behavior (e.g., too many EPT violations reported on the same TD
VCPU instruction without making progress). This kind of #VE is raised only if the guest TD enabled the specific
notification (using TDG.VM.WR to write the TDCS.NOTIFY_ENABLES field) and when a #VE can be injected. See 17.3 15

for details.

If, when attempting to inject a #VE, the Intel TDX module discovers that the guest TD has not yet retrieved the information
for a previous #VE (i.e., VE_INFO.VALID is not 0), the TDX module injects a #DF into the guest TD to indicate a #VE overrun.

11.14. GPA Space, Secure and Shared Extended Page Tables (EPTs)

EPT is enabled in SEAM non-root mode. SEAM non-root mode uses two EPTs: Secure EPT and Shared EPT. 20

EPT level is the same for both Secure and Shared EPT. If the guest TD’s GPA width is greater than 48 bits (TDCS.GPAW is
1), then 5-level EPT trees are used. Otherwise, 4-level EPT trees can be used.

For further Secure EPT details, refer to Chapter 9.

EPT violations and misconfigurations generally cause a TD Exit, except for the cases described below.

11.14.1. GPA Space Size Configuration and Virtualization 25

 Overview of the GPA Space Size Virtualization Modes

The host VMM can configure one of the TDX module’s options for configuring and virtualizing the GPA space size available
to guest TDs:

• No virtualization (native values are used)

• MAXPA (CPUID(0x80000008).EAX[7:0]) virtualization 30

• MAXGPA (CPUID(0x80000008).EAX[23:16]) virtualization

Specific TDX module releases may not support all the above features; note the enumeration of each feature support as
documented below.

In all cases, the TDX module calculates an internal value TDCS.VIRT_MAXPA, which is used for virtualizing the GPA space
size; see more details below. 35

The following table compares the GPA space virtualization modes.

Table 11.16: GPA Space Size Virtualization Modes Comparison

 GPA Space Virtualization Mode

None MAXPA Virtualization MAXGPA Virtualization

Virtual
CPUID(0x80000008).EAX[7:0]

Native value Directly configured by
the host VMM

Native value

Virtual
CPUID(0x80000008).EAX[23:16]

0 0 Configured by the host
VMM’s GPAW setting

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 120 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 GPA Space Virtualization Mode

None MAXPA Virtualization MAXGPA Virtualization

TDCS.VIRT_MAXPA Used by the
TDX Module

Native
CPUID(0x80000008).
EAX[7:0] value

Set to the configured
virtual
CPUID(0x80000008).
EAX[7:0] value

Set to the configured
virtual
CPUID(0x80000008).
EAX[23:16] value

Exception on GPA bits above
physical MAXPA (excl. SHARED
bit) being set

#PF(RSVD) #PF(RSVD) #PF(RSVD)

Exception on GPA bits above
TDCS.VIRT_MAXPA (excl.
SHARED bit) being set

#PF(RSVD) #PF(RSVD) #VE(RESERVED_GPA_BITS)

 MAXPA (CPUID(0x80000008).EAX[7:0]) Virtualization

Enumeration: TDX module’s support of this feature is enumerated by TDX_FEATURES0.MAXPA_VIRT (bit 27), readable
using TDH.SYS.RD*.

MAXPA, the number of physical address bits, is enumerated to the guest TD by the virtual value of 5

CPUID(0x80000008).EAX[7:0]. That value can be configured by the host VMM as follows:

• If the host VMM sets TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3) to 0, as an input to TDH.MNG.INIT, then
MAXPA virtualization is disabled:
o Virtual CPUID(0x80000008).EAX[7:0] is set to the native value at the time of TD initialization by TDH.MNG.INIT.
o TDCS.VIRT_MAXPA (the value used by the TDX module) and virtual CPUID(0x80000008).EAX[23:16] are set 10

depending on the value of TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4), as described below.

• Else (TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3) is set to 1), then:
o TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4) must be 0.
o If the host VMM configured a virtual CPUID(0x80000008).EAX[7:0] value of 0:

▪ TDCS.VIRT_MAXPA (the value used by the TDX module) is set to the smaller value between the native 15

MAXPA value and of the TD’s configured GPAW (which can be either 52 or 48).
o Else, the configured virtual CPUID(0x80000008).EAX[7:0] value is checked as detailed below:

▪ The value must not be higher than the native MAXPA (native CPUID(0x80000008).EAX[7:0]).
▪ The value must not be higher than the TD’s configured GPAW (which can be either 52 or 48).
▪ The value must not be lower than the supported minimum value. The host VMM can read that value by 20

reading field MIN_VIRT_MAXPA using TDH.SYS.RD*.
If all checks pass, the configured virtual CPUID(0x80000008).EAX[7:0] value is used as TDCS.VIRT_MAXPA.

 MAXGPA (CPUID(0x80000008).EAX[23:16]) Virtualization

Enumeration: TDX module’s support of this feature is enumerated by TDX_FEATURES0.MAXGPA_VIRT (bit 33),
readable using TDH.SYS.RD*. 25

MAXGPA, the number of guest physical address bits, is enumerated to the guest TD by virtual value of
CPUID(0x80000008).EAX[23:16]. That value can be configured by the host VMM as follows:

• If the host VMM sets TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4) to 0, as an input to TDH.MNG.INIT, then
MAXGPA virtualization is disabled:
o TDCS.VIRT_MAXPA (the value used by the TDX module) and virtual CPUID(0x80000008).EAX[7:0] are set 30

depending on the value of TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3), as described above.
o Virtual CPUID(0x80000008).EAX[23:16] is set to 0.

• Else (TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4) is set to 1), then:
o TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3) must be 0.
o Virtual CPUID(0x80000008).EAX[7:0] is set to the native value at the time of TD initialization by TDH.MNG.INIT. 35

o TDCS.VIRT_MAXPA (the value used by the TDX module) and virtual CPUID(0x80000008).EAX[23:16] are set to
the smaller value between the native MAXPA value (native CPUID(0x80000008).EAX[7:0]) and of the TD’s
configured GPAW (which can be either 52 or 48).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 121 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 GPA Space Implications of MAXPA and MAXGPA Virtualization

TDCS.VIRT_MAXPA, the value used by the TDX module, is set as described above. The TDX module considers any GPA
parameter where bit TDCS.VIRT_MAXPA or higher is 1 as illegal. Among other things, this prevents the host VMM from
building Secure EPT with entries associated with a GPA that is above the range allowed by the TDCS.VIRT_MAXPA.

For shared GPA, the host VMM manages the Shared EPT; it is expected to properly virtualize the shared GPA space size. 5

It should never map pages in a GPA range that is not allowed by the TDCS.VIRT_MAXPA setting.

If the TDX module supports TDX Connect, then TDH.MEM.SHARED.SEPT.WR is used by the host VMM to set shared GPA
entries in Secure EPT pages. The TDX module enforces TDCS.VIRT_MAXPA for the requested shared GPA.

 Exceptions Related to GPA Reserved Bits

Address translation with any of the reserved bits of GPA set to 1 causes an exception injection to the guest TD. This 10

includes the following cases:

• GPA bits higher than the SHARED bit are considered reserved and must be 0.

• GPA bits higher than the virtual value of MAXPA, as enumerated to the guest TD by CPUID(0x80000008).EAX[7:0],
are considered reserved and must be 0. An exception to this case is the SHARED bit which is never reserved; if
TDCS.VIRT_MAXPA is lower than GPAW, e.g., TDCS.VIRT_MAXPA is 46 and the configured GPAW is 48, then the 15

SHARED bit (at position 47) may be set to 1 indicate a shared GPA.

• For L1, the behavior is as follows:
o If MAXGPA virtualization, as described above, is configured, then:

▪ TDCS.VIRT_MAXPA is enumerated to the guest TD by virtual CPUID(0x80000008).EAX[23:16].
▪ If any GPA bit not lower than the physical MAXPA, as enumerated by CPUID(0x80000008).EAX[7:0] but 20

excluding the SHARED bit, is set to 1, the injected exception is a #PF with PFEC (Page Fault Error Code) RSVD
bit set.

▪ Else (GPA bit not lower than the TDCS.VIRT_MAXPA but lower than the physical MAXPA is set to 1), then
the injected exception is #VE(RESERVED_GPA_BITS).

o Else: 25

▪ TDCS.VIRT_MAXPA is enumerated to the guest TD by virtual CPUID(0x80000008).EAX[7:0].
▪ The injected exception is a #PF with PFEC (Page Fault Error Code) RSVD bit set.

• For L2, a reserved bits violation causes an L2→L1 exit with an EPT Violation exit reason.

11.14.2. EPT Violation Mutated into #VE

An EPT violation is converted into #VE in the following cases: 30

• For Secure EPT, see 9.5.2 for details.

• For Shared EPT, if the EPT entry has been configured by host VMM deliver EPT violations to the guest TD as #VE(ARCH)
exceptions for usages such as MMIO, as described in 11.13 above.

• On reserved bits violation, if the MAXGPA virtualization mode is configured, as described in 11.14 above.

11.15. Prevention of TD-Induced Denial of Service 35

VMs, including TDs, can exploit Intel ISA characteristics to cause performance and functional Denial of Service (DOS) to
the VMM. The Intel architecture has several mechanisms that help prevent such DOS cases. This section describes how
those mechanisms are used in the context of TDX.

11.15.1. Bus Lock Detection by the TD OS

The guest TD OS can enable debug exception traps due to bus locks by setting IA32_DEBUGCTL.BUS_LOCK_DETECT bit 40

(2), which is disabled by default. When enabled, the feature works identically to how it functions in legacy VMX non-root
mode or in non-VMX mode. The IA32_DEBUGCTL MSR and DR6 are part of the state that is saved and restored on VM
exit and VM entry, respectively. If the delivery of #DB was pre-empted by a trap-like VM exit, then the pending debug
exceptions (including due to BUS_LOCK_DETECT if pending) are saved in TD VMCS and restored on subsequent VM Entry.
For fault-like VM Exit due to conditions such as EPT violation and EPT misconfiguration that are encountered during 45

execution of an instruction, there is no pending debug exception recorded, including the bus lock debug exception.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 122 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

11.15.2. Impact of MSR_MEMORY_CTRL (MSR 0x33)

The host VMM can set bits in MSR_MEMORY_CTRL (MSR 0x33, formerly named MSR_TEST_CTRL) to cause exceptions in
VMs (including TDs) in case of bus locks:

• Bit 28 (UC_LOCK_DISABLE): If this bit is set to 1, a UC load lock will trigger a fault which depends on the CPU:
o Older CPUs will generate a #GP(0) fault. This is enumerated by IA32_CORE_CAPABILITIES[4] value of 1 and 5

CPUID(7,2).EDX[6] value of 0.
o Newer CPUs will generate an #AC(0) fault. This is enumerated by IA32_CORE_CAPABILITIES[4] value of 0 and

CPUID(7,2).EDX[6] value of 1.

• Bit 29 (SPLIT_LOCK_DISABLE): If set to 1, a split lock will trigger an #AC fault.

MSR 0x33 is not virtualizable; it is a core-scope MSR and may be modified by the host VMM on one SMT thread while 10

another SMT thread is running a TD VCPU. The TDX module does not allow a guest TD to access this MSR (a
#VE(NON_CONFIGURABLE_PARAVIRT) is generated).

To avoid any security issues, a correctly written TD OS should always be ready to handle #AC and #GP(0) faults if the TD
software might cause UC locks or split locks.

11.15.3. Bus Lock TD Exit 15

Bus lock TD exit is disabled by default. The host VMM can enable the TD VMCS “bus-lock detection” VM execution control
using the TDH.VP.WR function.

Bus Lock VM Exit Reason (74)

If “bus-lock detection” is enabled, then if the processor detects that one or more bus locks were caused by the instruction
that was executed, then the processor generates a bus lock VM exit (exit reason 74). This VM exit is trap-like, i.e., it is 20

delivered following the execution of that instruction that caused it. The Intel TDX module then completes a TD exit with
the exit information provided in the VM exit.

Bus Lock Detected Bit (26) in VM Exit Reason

If delivery of bus lock VM exit was pre-empted by a higher priority VM exit (e.g., EPT Misconfiguration, EPT Violation,
etc.), then the procession sets a “bus lock detected” notification bit (bit 26) in the exit reason. The Intel TDX module 25

reflects this bit to the host VMM on TD exit.

11.15.4. Instruction Timeout TD Exit

Instruction Timeout TD exit is disabled by default. The host VMM can write the TD VCMS “Instruction Timeout Control”
and “Instruction Timeout” execution controls using the TDH.VP.WR function. If enabled and configured, then if the
processor detects a no-commit case, the processor causes a notification VM exit (exit reason 75) which the Intel TDX 30

module converts to the TD exit.

The conditions that cause an instruction timeout TD exit are the same as those in legacy VMX non-root mode. An example
of such a case is the nested #AC exception. If an #AC exception occurs during the delivery of a previous #AC exception,
then the CPU may get into an endless loop of #AC without responding to external events.

Bit 0 (VM context invalid) of the exit qualification indicates whether the guest TD context is corrupted and not valid in 35

the TD VMCS. If this bit is set to 1, then it is a non-recoverable situation; thus, the Intel TDX module marks the TD as
disabled to help prevent further TD entry. If no TD context corruption occurred (exit qualification bit 0 is cleared to 0),
then the TD may be resumed normally.

11.16. Time Stamp Counter (TSC)

Intel SDM, Vol. 3, 10.5.4.1 TSC-Deadline Mode 40

Intel SDM, Vol. 3, 18.17 Time-Stamp Counter
Intel SDM, Vol. 3, 24.6.5 Time-Stamp Counter Offset and Multiplier
Intel SDM, Vol. 3, 25.3 Changes to Instruction Behavior in VMX Non-Root Operation

11.16.1. TSC Virtualization

For virtual time stamp counter (TSC) values read by guest TDs, the Intel TDX module is designed to achieve the following: 45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 123 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• Virtual TSC values are consistent among all the TD’s VCPUs at the level supported by the CPU, see below.

• The virtual TSC value for any single VCPU is monotonously incrementing (except roll over from 264-1 to 0).

• The virtual TSC frequency is determined by TD configuration.

The host VMM is required to do the following:

• Set up the same IA32_TSC_ADJUST values on all LPs before initializing the Intel TDX module. 5

• Make sure IA32_TSC_ADJUST is not modified from its initial value before calling SEAMCALL.

The Intel TDX module checks the above as part of TDH.VP.ENTER and any other SEAMCALL leaf function that reads TSC.

The virtualized TSC is designed to have the following characteristics:

• The virtual TSC frequency is specified by the host VMM as an input to TDH.MNG.INIT in units of 25MHz – it can be
between 4 and 400 (corresponding to a range of 100MHz to 10GHz). 10

• The virtual TSC starts counting from 0 at TDH.MNG.INIT time.

• TSC parameters are enumerated to the guest TD by CPUID(0x15).

• Guest TDs are not allowed to modify the TSC. WRMSR attempts of IA32_TIME_STAMP_COUNTER result in a
#VE(NON_CONFIGURABLE_PARAVIRT).

• Guest TDs are not allowed to access IA32_TSC_ADJUST because its value is meaningless to them. If the TDX module 15

supports #VE reduction, as enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30), and the guest TD has set
TD_CTLS.REDUCE_VE to 1, then WRMSR or RDMSR attempts result in a #GP(0). Else, WRMSR or RDMSR attempts
result in a #VE(CONFIGURABLE_PARAVIRT).

• RDTSCP is supported. This instruction returns the contents of the IA32_TSC_AUX MSR in RCX. the Intel TDX module
allows the guest TD to access that MSR and context-switches it on TD entry and exit as part of the VCPU state in 20

TDVPS.

11.16.2. TSC Deadline

Guest TDs are not allowed to access the IA32_TSC_DEADLINE MSR directly. Virtualization of IA32_TSC_DEADLINE
depends on the virtual value of CPUID(1).ECX[24] bit (TSC Deadline). The host VMM may configure (as an input to
TDH.MNG.INIT) virtual CPUID(1).ECX[24] to be a constant 0 or allow it to be 1 if the CPU’s native value is 1. 25

If the TDX module supports #VE reduction, as enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the value of virtual CPUID(1).ECX[24] by writing
TDCS.FEATURE_PARAVIRT_CTRL.TSC_DEADLINE. See 11.2.2 for details.

• If the virtual value of CPUID(1).ECX[24] is 0, IA32_TSC_DEADLINE is virtualized as non-existent. WRMSR or RDMSR
attempts result in a #GP(0). 30

• If the virtual value of CPUID(1).ECX[24] is 1, WRMSR or RDMSR attempts result in a #VE(CONFIG_PARAVIRT). This
enables the TD’s #VE handler to para-virtualize the TSC deadline functionality, e.g., by requesting an (untrusted)
service from the host VMM.

11.17. KeyLocker (KL)

Enumeration: TDX module support of KeyLocker is enumerated by the KL bit (31) of ATTRIBUTES_FIXED0/1 fields, 35

readable by TDH.SYS.RD*.

11.17.1. KeyLocker Virtualization

Guest TDs usage of KeyLocker (KL) is controlled by the ATTRIBUTES.KL bit (see the [TDX Module ABI Spec]). When KL is
supported by the CPU and ATTRIBUTES.KL is set to 1, the following KL features are available to the guest TD:

• CPUID virtualization enumerates KeyLocker availability to the guest TD. Virtual CPUID(0x19) values can be configured 40

by the host VMM.

• Guest TDs may enable KeyLocker by setting CR4.KL flag.

• Guest TDs may create KL handles using the ENCODEKEY* instructions, use them using AES*KL instructions, and load
Internal Wrapping Keys (IWKs) using the LOADIWKEY instruction.

The following KeyLocker features are not supported: 45

• Guest TDs may not use the KeyLocker backup MSRs.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 124 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

11.17.2. Host VMM KeyLocker State Restoration after TDH.VP.ENTER

If the host VMM is using KL and the guest TD’s ATTRIBUTES.KL is set to 1, the host VMM must restore its own IWK after
every TDH.VP.ENTER if the IWK has changed. To avoid unnecessary IWK restore, the host VMM can check if IWK has
been changed, as follows:

1. After loading a new IWK, encode key 0 and save the resulting handle H. 5

2. After successful TDH.VP.ENTER to a guest TD which is allowed to use KeyLocker, encode key 0 again.
2.1. If the resulting handle is the same as H, then the VMM does not need to reload its IWK.
2.2. Else, the host VMM needs to restore IWK, depending on its type:

2.2.1. If the IWK is "direct", then IWK restore can be done using LOADIWKEY instruction.
2.2.2. If the IWK is "randomized", then IWK restore is done using KL backup MSRs. 10

11.18. Software Code Prefetch

SW code prefetch is enumerated by CPUID(0x7,0x1).EDX[14]. If c it, the host VMM can configure the virtual value of
CPUID(0x7,0x1).EDX[14] to be 1, as part of the CPUID configuration parameters of TDH.MNG.INIT.

Note: It is the TD’s responsibility to execute PREFETCHIT0 and PREFETCHIT1 only if the virtual value of
CPUID(0x7,0x1).EDX[14] is 1. This in not enforced by TDX. 15

11.19. User MSR

Intel Extended Inst. URDMSR and UWRMSR instruction specifications

CPU support of User MSRs is enumerated by CPUID(0x7,0x1).EDX[15]. If both the TDX module and the CPU support it,
the host VMM can configure the virtual value of CPUID(0x7,0x1).EDX[15] to be 1, as part of the CPUID configuration
parameters of TDH.MNG.INIT. 20

• When the User MSR feature is enabled for a guest TD, it can access the IA32_USER_MSR_CTL MSR (0x1C).

• IA32_USER_MSR_CTL is always cleared on TD exit, regardless of whether this feature is enabled for the guest TD.

11.20. FRED

The host VMM can configure FRED as available to the TD, if both the TDX module and the CPU support FRED, by
configuring both applicable CPUID bits (CPUID(7, 1).EAX[17] (FRED) and CPUID(7, 1).EAX[18] (LKGS), as 1 as part of the 25

CPUID configuration during TDH.MNG.INIT.

If the virtual values of CPUID(7, 1).EAX[17] (FRED) and CPUID(7, 1).EAX[18] (LKGS) are both 1, then:

• Virtual CPUID values enumerate FRED & LKGS availability to the guest TD.

• Guest TDs may enable FRED by setting CR4[32] (FRED).

• Guest TDs may access FRED MSRs. 30

• Guest TDs may execute FRED & LKGS ISA.

11.21. Supervisor Protection Keys (PKS)

By design, guest TD usage of Supervisor Protection Keys (PKS) is controlled by the ATTRIBUTES.PKS bit (see the [TDX
Module ABI Spec]). When PKS is supported by the CPU and ATTRIBUTES.PKS is set to 1, the following features are
available to the guest TD: 35

• CPUID virtualization enumerates PKS availability to the guest TD.

• Guest TDs may enable PKS by setting CR4.PKS flag.

• Guest TDs may access the PKS state using the IA32_PKRS MSR.

Note: Enumeration of User Mode Protection Keys (PKU) availability to the guest TD is configured as part of the
configuration of virtual CPUID(7,0).ECX[3]. 40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 125 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

11.22. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption

(MKTME)

Guest TDs may not directly use the Intel TME and MKTME MSRs and the PCONFIG instruction. The Intel TDX module
supports para-virtualization of this ISA, as described below.

11.22.1. TME Virtualization 5

TME is enumerated by CPUID(0x7, 0x0).ECX[13]. The host VMM can configure the virtualization of this bit as enabled or
disabled on TDH.MNG.INIT.

If the TDX module supports #VE reduction, as enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the value of virtual CPUID(0x7, 0x0).ECX[13] by writing
TDCS.FEATURE_PARAVIRT_CTRL.TME. See 11.2.2 for details. 10

If enabled, then a guest TD access to the IA32_TME_* MSRs (0x981 – 0x984) causes a #VE, allowing the guest TD’s #VE
handler to emulate the desired operation. Else, guest TD access to those MSRs causes a #GP(0).

11.22.2. MKTME Virtualization

MKTME is enumerated by CPUID(0x7, 0x0).EDX[18]. The host VMM can configure the virtualization of this bit as enabled
or disabled on TDH.MNG.INIT. 15

If the TDX module supports #VE reduction, as enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the value of virtual CPUID(0x7, 0x0).EDX[30] by writing
TDCS.FEATURE_PARAVIRT_CTRL.PCONFIG. See 11.2.2 for details.

If enabled, then the following operations cause a #VE(CONFIG_PARAVIRT). The guest TD’s #VE handler may then
communicate with the host VMM over TDG.VP.VMCALL to request the desired operation. 20

• Guest TD access to the IA32_MKTME_PARTITIONING MSR (0x87)

• PCONFIG execution by the guest TD

If the host VMM or guest TD configured CPUID(0x7, 0x0).EDX[18] virtualized value as 0, then:

• Guest TD access to the IA32_MKTME_PARTITIONING MSR (0x87) causes a #GP(0).

• PCONFIG execution by the guest TD causes a #UD. 25

11.23. Virtualization of Machine Check Capabilities and Controls

Although the guest TD is not allowed to handle machine check event, the following virtualization is used in order to allow
possible pare-virtualization behavior, e.g., future handling of MCE by the TD.

By default, the behavior is as follows:

• The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are 1. 30

• The value of CR4[6] (MCE), as seen by the guest TD, is 1. Guest TD attempt to set this bit to 0 results in a #VE.

• Guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4D0 (IA32_MCG_*), MSRs 0x281 through
0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result in a #VE(CONFIG_PARAVIRT).

If the TDX module supports #VE reduction, as enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the behavior by writing TDCS.FEATURE_PARAVIRT_CTRL.MCA. See 35

11.2.2 for details.

If TDCS.FEATURE_PARAVIRT_CTRL.MCA is 0 (default), then:

• The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are 0.

• The value of CR4[6] (MCE), as seen by the guest TD, is initialized to 1. The guest TD may clear CR4.MCE but not set
it back to 1; an attempt to do so results in a #GP(0). 40

• Guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4D0 (IA32_MCG_*), MSRs 0x281 through
0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result in a #GP(0).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 126 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

If TDCS.FEATURE_PARAVIRT_CTRL.MCA is 1, then:

• The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are configured by the
host VMM.

• The value of CR4[6] (MCE), as seen by the guest TD, is initialized to 1. If virtual CPUID(1).EDX[7] is 0, the guest TD
may clear CR4.MCE but not set it back to 1; an attempt to do so results in a #GP(0. Else, guest TD is allowed to modify 5

CR4.MCE.

• If virtual CPUID(1).EDX[14] is 0, guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4D0
(IA32_MCG_*), MSRs 0x281 through 0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result
in a #GP(0). Else, such accesses result in a #VE(CONFIG_PARAVIRT).

11.24. Transactional Synchronization Extensions (TSX) 10

Intel SDM, Vol. 1, 16 Programming with Intel TSX

The host VMM can enable TSX for a TD by configuring the following CPUID bits as enabled in the TD_PARAMS input to
TDH.MNG.INIT:

• CPUID(7,0).EBX[4] (HLE)

• CPUID(7,0).EBX[11] (RTM) 15

The virtual values of the above bits, as seen by the guest TD, are the bitwise AND of the real values enumerated by the
CPU and of the configuration values. To enable TSX for guest TDs, TDX requires the following conditions to be true:

• The virtual values of the HLE and the RTM bits are the same, either 0 or 1.

• The CPU supports the IA32_TSX_CTRL MSR (as enumerated by IA32_ARCH_CAPABILITIES[7]).

Note: If the real value of the HLE bit and the RTM bit are different, the host VMM must configure both virtual values 20

as 0.

If TSX is enabled for the guest TD:

• IA32_TSX_CTRL is accessible by the TD.

• On TD exit:
o IA32_TSX_CTRL is cleared to 0. 25

o On CPUs that support IA32_TSX_STORE_ADDRESS (MSR 0xF3D), as indicated by
IA32_PERF_CAPABILITIES.TSX_ADDRESS[18], if the TD’s ATTRIBUTES.PERFMON is 1 then
IA32_TSX_STORE_ADDRESS is cleared to 0.

The host VMM is responsible for restoring these MSRs to their desired values, if applicable.

If TSX is disabled for the guest TD: 30

• CPUID(7,0).EBX bits 4 and 11 are virtualized as 0.

• IA32_TSX_CTRL is virtualized as non-existent: IA32_ARCH_CAPABILITIES bit 7 is virtualized as 0, and TD access results
in a #GP(0).

• If IA32_TSX_CTRL is supported by the CPU, then XBEGIN, XEND and XABORT instructions execution by the TD cause
a #UD. 35

11.25. Management of Idle and Blocked Conditions

Intel SDM, Vol. 3, 9.10 Management of Idle and Blocked Conditions

11.25.1. HLT Instruction

HLT executed by a guest TD results in a #VE(NON_CONFIG_PARAVIRT). The TD’s #VE handler may notify the host VMM
(using TDG.VP.VMCALL), which may schedule other software to execute on the current LP. 40

11.25.2. PAUSE Instruction and PAUSE-Loop Exiting

Intel SDM, Vol. 3, 25.1.3 Instructions That Cause VM Exits Conditionally

Guest TDs can execute PAUSE. However, modern enlightened guests use a VMM-provided service (hypercall) instead of
PAUSE loops – this is the expected usage for Intel TDX.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 127 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

For TDs running in debug mode (ATTRIBUTES.DEBUG is 1), the host VMM may set the guest TD’s “PAUSE-loop exiting”
VM-execution control, using TDH.VP.WR.

“PAUSE-loop exiting” allows the VMM to request an exit if the guest (in ring 0) executes PAUSE in a loop (e.g., busy-wait).
This is intended to help avoid cases where a guest thread loops, waiting for another thread that is not currently scheduled
by the VMM. 5

11.25.3. MONITOR and MWAIT Instructions

By default, guest TDs are expected not to use MONITOR/MWAIT. The virtual value of CPUID(1).ECX[3] is, by default, 0.
Execution of MONITOR or MWAIT by a guest TD results in a #UD exception.

However, the host VMM may configure the guest TD to allow MONITOR/MWAIT, using the CPUID configuration table
which is part the TD_PARAMS input to TDH.MNG.INIT. Configuring the virtual value of CPUID(1).ECX[3] to 1 also enables 10

the TD to execute MONITOR and MWAIT.

11.25.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT Instructions

The host VMM may allow guest TDs to use the TPAUSE, UMONITOR and UMWAIT instructions, if the CPU supports them,
by configuring the virtual value of CPUID(7,0).ECX[5] (WAITPKG) to 1 using the CPUID configuration table which is part
the TD_PARAMS input to TDH.MNG.INIT. Enabling CPUID(7,0).ECX[5] also enables TD access to IA32_UMWAIT_CONTROL 15

(MSR 0xE1).

If not allowed, then TD execution of TPAUSE, UMONITOR or UMWAIT results in a #UD, and access to
IA32_UMWAIT_CONTROL results in a #GP(0).

11.26. Other Changes in SEAM Non-Root Mode

11.26.1. CET 20

Intel SDM, Vol. 1, 17.2.3 Supervisor Shadow Stack Token

Guest TDs should execute CPUID(7,1) and use the CET_SSS bit value returned in EDX[18] as an indication of whether
supervisor shadow stack can be enabled. The TDX module virtualizes CPUID(7,1).EDX[18] as 0 if certain supervisor
shadow-stack pushes might cause VM exits, indicating to the guest TD that it should refrain from enabling supervisor
shadow stack. For details, see the [Intel SDM]. 25

11.26.2. Tasking

Any task switch results in a VM exit to the Intel TDX module (this is a fixed-1 exit) which then performs a TD exit to the
host VMM.

The VMM is expected not to reenter the TD VCPU since this case is non-recoverable; the instruction that caused the task
switch (CALL, JMP or IRET) will re-execute and cause another VM exit. If the task switch was incidental to an exception 30

delivery, then the VM entry following TDH.VP.ENTER will reattempt the delivery and cause another task switch VM exit.
The expected response from the VMM is to terminate this TD.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 128 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

12. Measurement and Attestation

12.1. Overview of the Attested Measurements and Configuration Information

The table below summarizes the attested TD measurements and configuration information. For details, see the following
sections and the TDINFO_STRUCT definition in the [ABI Spec].

Table 12.1: Attested Measurements and Configuration Information 5

Field Class Name Description

Parameters configured by the host
VMM at TD initialization time

ATTRIBUTES TD’s ATTRIBUTES

XFAM TD’s XFAM

MRCONFIGID Software-defined ID for non-owner-defined
configuration of the guest TD – e.g., run-time or OS
configuration

MROWNER Software-defined ID for the guest TD’s owner

MROWNERCONFIG Software-defined ID for owner-defined configuration
of the guest TD – e.g., specific to the workload rather
than the run-time or OS

Build-time measurement, finalized
at the end of TD build

MRTD Measurement of the initial contents of the TD

Build/migration-time measurement
register, finalized at the end of TD
build and updated on migration

SERVTD_HASH Measurement of the bound service TDs, if any

Run-time measurement registers,
updated at run time by the guest
TD using TDG.MR.RTMR.EXTEND

RTMR Run-time extendable measurement registers

12.2. TD Measurement

12.2.1. MRTD: Build-Time Measurement Register

The Intel TDX module measures the TD during the build process. The measurement register TDCS.MRTD is a SHA384
digest of the build process, designed as follows: 10

• TDH.MNG.INIT begins the process by initializing the digest.

• TDH.MEM.PAGE.ADD adds a TD private page to the TD and inserts its properties (GPA) into the MRTD digest
calculation.

• Control structure pages (TDR, TDCX and TDVPR) and Secure EPT pages are not measured.

• For pages whose data contribute to the TD, that data should be included in the TD measurement via 15

TDH.MR.EXTEND. TDH.MR.EXTEND inserts the data contained in those pages and its GPA, in 256-byte chunks, into
the digest calculation. If a page will be wiped and initialized by TD code, the loader may opt not to measure the
initial contents of the page with TDH.MR.EXTEND.

• The measurement is then completed by TDH.MR.FINALIZE. Once completed, further TDH.MEM.PAGE.ADDs or
TDEXTENDs will fail. 20

MRTD extension by GPA uses a 128B buffer which includes the GPA and the leaf function name for uniqueness.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 129 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

12.2.2. RTMR: Run-Time Measurement Registers

The RTMR array is initialized to zero on build, and it can be extended at run-time by the guest TD using the
TDCALL(TDG.MR.RTMR.EXTEND) leaf. The syntax of the RTMR registers is designed to be similar to that of TPM PCRs,
where a register’s value after TDG.MR.RTMR.EXTEND(index=i, value=x) is:

RTMR[i] = SHA384(RTMR[i] || x); 5

Four RTMR registers are provided.

Typical expected usage is for TPM emulation during guest TD OS secure boot by the VBIOS.

12.2.3. SERVTD_HASH: Service TDs Measurement Register

See the discussion in 13.2.7 for details.

12.3. TD Measurement Reporting 10

TD attestation is initiated from inside the TD by calling TDG.MR.REPORT and specifying a REPORTDATA value.
TDG.MR.REPORT creates a TDREPORT_STRUCT structure containing the following fields:

CPUSVN: Current SVN of the CPU running the TD.

TEE_TCB_INFO: Information about the TDX module running the TD:

• SVN and measurement of the TDX module at the time of TD creation on the current platform.

• SVN of the current TDX module on the current platform.

TDINFO_STRUCT: Information about the guest TD:

• TD measurements and initial configuration of the TD, calculated at TD build finalization time
(TDH.MR.FINALIZE).

• Hash of service TDs, calculated at TD build finalization time (TDH.MR.FINALIZE) but updated on
TD migration.

• Run-time measurement registers, updated by the guest TD using TDG.MR.RTMR.EXTEND.

REPORTDATA: The caller provided REPORTDATA value.

TDREPORT_STRUCT structure and TDG.MR.REPORT are detailed in the [TDX Module ABI Spec].

TDREPORT_STRUCT is HMAC’ed using an HMAC key that is designed to be accessible only to the CPU. This helps protect
the integrity of the structure and, by design, can only be verified on the local platform via the TDG.MR.VERIFYREPORT 15

interface function or the SGX ENCLU(EVERIFYREPORT2) instruction. By design, TDREPORT_STRUCT cannot be verified off
platform; it first must be converted into signed Quotes, as described in 12.5 below.

TDREPORT_STRUCT Version 0 or 1

ATTRIBUTES

XFAM

MRTD

MRCONFIGID

MROWNER

RTMR0..RTMR3 1

SERVTD_HASH

TDINFO_STRUCT

MRSEAM

MRSEAMSIGNER

TEE_TCB_SVNs

ATTRIBUTES

TEE_TCB_INFO

REPORTTYPE(TDX)

CPUSVN

TEE_TCB_INFO_HASH

TD_INFO_HASH

REPORTDATA

MAC

REPORTMACSTRUCT

SHA384

SHA384

Quote

1 Updated by the guest TD, using TDG.MR.RTMR.EXTEND

Figure 12.1: TD Measurement Reporting

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 130 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

The REPORTYPE field of REPORTMACSTRUCT indicates that this is a TDX report (TYPE == 0x81) and whether
SERVTD_HASH contains a valid hash of service TDs (VERSION == 1) or 0 (VERSION == 0). For details, see Ch. 13 and the
[ABI Spec].

12.4. Local Report Verification

A TD can verify a report generated by another TD on the same platform using the TDG.MR.VERIFYREPORT interface 5

function. Internally, TDG.MR.VERIFYREPORT executes the SEAMVERIFYREPORT instruction, which uses the same HMAC
key, accessible only to the CPU, that was used for generating TDREPORT_STRUCT.

Reporting Trust DomainVerifying Trust Domain

CPU
MAC Key

Intel TDX
Module

SEAMDB_REPORT
Instruction

SEAM
Measurements

DataTDREPORT
(SEAM Report

+ TD Info)

TDCS

SEAM
REPORT
(MACed)

TDG.MR.REPORT
Function

TDREPORT
(SEAM Report

+ TD Info)

TDG.MR.VERIFYREPORT
Function

SEAMVERIFYREPORT
Instruction

REPORTMAC
STRUCT

Figure 12.2: High-Level View of Local Report Verification

Local Report Verification Failure 10

Local report verification may fail in cases where the MAC key, held by the CPU, has changed between the generation of
the TDREPORT by TDG.MR.REPORT and its verification by TDG.MR.VERIFYREPORT. Some examples are:

• After report generation by TDG.MR.REPORT, both the reporting TD and the verifying TD have been migrated to a
different platform. Both TDs are not directly aware of the migration.

• After report generation by TDG.MR.REPORT, either the CPU microcode has been updated or the TDX module has 15

been updated using the TD-preserving update process. Both TDs are not directly aware of the TDX module update.

To account for the above cases, the following is recommended in case of local report verification failure. The verifying
TD should ask for a fresh report to be generated. The reporting TD should then generate a new report, using
TDG.MR.REPORT, and send it to the verifying TD to be verified using TDG.MR.VERIFYREPORT. This can be repeated
several times (e.g., 3 – 5 times) and/or coordinated with the host VMM. 20

12.5. Creating Attestations

12.5.1. Overview

To create a remotely verifiable attestation, the TDREPORT_STRUCT should be converted into a Quote signed by a certified
Quote signing key. The following models are supported from creating a Quote:

• Platforms that support Intel SGX can support Quoting Enclaves producing either TDX or SGX Quotes. A TD Quoting 25

Enclave, when available, will produce legacy quotes for TDX.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 131 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

12.5.2. Intel SGX-Based Attestation

The Intel SGX attestation architecture is designed to provide facilities for multiple Quoting Enclaves from multiple
providers. This is intended to allow the host to instantiate a Quoting Enclave for Intel SGX attestations and another
Quoting Enclave for TD attestation without interference — i.e., each provider can supply its own quoting enclave, and
the quoting enclave for Intel SGX and for Intel TDX may be separate; the design does not require the quoting enclave to 5

run inside the TD.

Trust Domain

Host VMM

Host or Dom 0

CPU

MAC Key

TD Quoting Enclave

EVERIFYREPORT
Instruction

Attest Key

Quote
(Signed)

Intel TDX
Module

SEAMDB_REPORT
Instruction

SEAM
Measurements

DataTDREPORT
(SEAM Report

+ TD Info)

TDCS

SEAM
REPORT
(MACed)

TDG.MR.REPORT
Function

TDREPORT
(SEAM Report

+ TD Info)

Figure 12.3: High-Level View of the Intel SGX-Based TD Attestation

Quote generation using a quoting enclave is typically performed as follows:

1. Guest TD invokes the TDCALL(TDG.MR.REPORT) function. 10

2. If the TDX module supports TD-preserving updates, it uses the SEAMOPS(SEAMDB_REPORT) instruction to create
MAC’ed TDREPORT_STRUCT with the Intel TDX module measurements from CPU and TD measurements from TDCS.
Else, it uses the SEAMOPS(SEAMREPORT) instruction for the same purpose.

3. Guest TD uses TDCALL(TDG.VP.VMCALL) to request that TDREPORT_STRUCT be converted into Quote.
4. The TD Quoting enclave uses EVERIFYREPORT2 to check the TDREPORT_STRUCT. This allows the Quoting Enclave to 15

check the report without requiring direct access to the CPU’s HMAC key. Once the integrity of the
TDREPORT_STRUCT has been verified, the TD Quoting Enclave signs the TDREPORT_STRUCT body with an ECDSA 384
signing key.

EVERIFYREPORT Failure

Report verification may fail is cases where the MAC key, held by the CPU, has changed between the generation of the 20

TDREPORT by TDG.MR.REPORT and its verification by EVERIFYREPORT. Some examples are:

• After report generation by TDG.MR.REPORT, the reporting TD has been migrated to a different platform. The
reporting TD is not directly aware of the migration.

• After report generation by TDG.MR.REPORT, either the CPU microcode has been updated or the TDX module has
been updated using the TD-preserving update process. The reporting TD is not directly aware of the TDX module 25

update.

To account for the above cases, the following is recommended in case of report verification failure. The Quoting Enclave
should ask for a fresh report to be generated. The reporting TD should then generate a new report, using

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 132 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

TDG.MR.REPORT, and send it to the Quoting Enclave to be verified using EVERIFYREPORT. This can be repeated several
times (e.g., 3 – 5 times) and/or coordinated with the host VMM.

 Quote Signing Key for SGX-Based Attestation

The Intel SGX infrastructure provides primitives and a certificate infrastructure to allow Quoting Enclaves to certify their
own Quoting Keys. The Intel SGX Provisioning Certification Enclave (PCE) uses an Intel-Certified ECDSA-256 signing key 5

to issue certificates to Quoting Enclaves for their attestation keys. Intel offers a service to allow third parties to download
these certificates.

Typically, on first launch, the TD Quoting Enclave generates a random ECDSA 384-bit quoting key. It then contacts the
Provisioning Certification Enclave which uses its signing key to sign the new quoting key’s public key.

Note that the TD Quoting Enclave uses an ECDSA 384 bit key, while the PCE certifies it with an ECDSA-256 key. This is 10

due to limitations of the SPR platform.

12.6. TCB Recovery

The Intel TDX architecture has several levels of TCB:

• CPU HW level, which includes microcode patch, ACMs and PFAT

• Intel TDX module software 15

• Attestation Enclaves which include the TD Quoting Enclave and Provisioning Certification Enclave

The TCB Recovery story is different for each level. The existing SGX TCB Recovery model for CPU level items applies in
the same way with TDX and SGX. The model requires a restart of the platform to take effect. The Intel TDX module can
be unloaded and reloaded to reflect an upgraded Intel TDX module. The enclaves can be upgraded at run-time, but if the
PCE is upgraded, the design requires a new certificate to be downloaded. 20

12.6.1. TD Preserving TDX Module Update Implications

TEE_TCB_INFO fields TEE_TCB_SVN and MRSEAM reflect the TDX module at the time of TD creation.
TEE_TCB_INFO.TEE_TCB_SVN2 reflects the current TDX module at the time TDG.MR.REPORT is called.

The underlying assumptions are:

• TD preserving update can only happen to a more secure TDX module. 25

• Microcode updates can only happen to a more secure microcode.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 133 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

13. Service TDs

13.1. Overview

One or more service TDs may be bound to a target TD. Service TD binding relationship has the following characteristics:

• A service TD has a type (SERVTD_TYPE).

• A service TD may read and/or write certain target TD metadata. Access permission to target TD metadata fields 5

depends on SERVTD_TYPE.

• Unsolicited service TD binding is done without target TD approval. The target TD needs not be aware of the binding.

• The target TD’s TDREPORT indicates binding to service TDs.

• The service TD protocol consists of:
o Binding 10

o Metadata access

• Service TD to target TD binding relationship is many-to-many
o Multiple service TDs of different types may be bound to a single target TD.
o Multiple target TDs may be bound to a single service TD.

• A service TD may itself be a target TD to other service TDs. 15

Typical Unsolicited Service TD Binding and Metadata Access Use Case

1. Optional Pre-Binding: During target TD build, before calling TDH.MR.FINALIZE, the host VMM calls
TDH.SERVTD.PREBIND to write the binding fields (SERVTD_HASH etc.) in the target TD’s service TD table.

2. Binding: Sometime later, the host VMM calls TDH.SERVTD.BIND to bind the service TD. It gets back a binding handle.
The VMM communicates the binding handle, target TD_UUID and other binding parameters to the service TD. 20

3. Metadata Access: The service TD uses TDG.SERVTD.RD/WR* to access target TD metadata.
4. Rebinding: May be required due to, e.g., both target TD and service TD have been migrated or a new service TD

instance replaces the original one. The host VMM calls TDH.SERVTD.BIND to rebind the service TD. It gets back a
binding handle. The VMM communicates the binding handle, target TD_UUID and other binding parameters to the
service TD. 25

13.2. Service TD Binding

NOT_BOUND PRE_BOUND

TDH.SERVTD.PREBIND
[OP_STATE in {UNINITIALIZED, INITIALIZED}]

BOUND

TDH.SERVTD.BIND
[SERVTD_INFO_HASH, SERVTD_TYPE

and SERVTD_ATTR match
(per SERVTD_ATTR)]

TDH.SERVTD.BIND

TDH.SERVTD.PREBIND
[OP_STATE in

{UNINITIALIZED, INITIALIZED}]

Figure 13.1: Service TD Binding State Machine

13.2.1. Service TD Binding Table in the Target TD’s TDCS

The target TD’s TDCS holds a service TD binding table. Each row (binding slot) in the table contains the following fields, 30

which are detailed in the following sections:

• SERVTD_BINDING_STATE

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 134 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• SERVTD_INFO_HASH

• SERVTD_TYPE

• SERVTD_ATTR

• SERVTD_UUID

The available number of slots in the table is enumerated by TDH.SYS.RD*. 5

13.2.2. SERVTD_BINDING_STATE: Service TD Binding State

SERVTD_BINDING_STATE indicates the state of the service TD binding slot. It has the following values:

Table 13.1: SERVTD_BINDING_STATE Definition

Value Name Meaning

0 NOT_BOUND No service TD is bound. The binding fields in this slot are N/A.

1 PRE_BOUND No service TD is bound. SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR have
been set. They will be included in SERVTD_HASH calculation and be checked on any
following binding.

2 BOUND A service TD is bound. SERVTD_UUID, SERVTD_INFO_HASH, SERVTD_TYPE and
SERVTD_ATTR have been set and be checked on any following binding.
SERVTD_INFO_HASH, SERVTD_TYPE will be included in SERVTD_HASH calculation
and be checked on any following binding.

13.2.3. SERVTD_TYPE: Service TD Binding Type 10

A service TD implements one or more SERVTD_TYPEs. A specific SERVTD_TYPE is specified per binding; the same service
TD may be bound multiple times if it implements more than one SERVTD_TYPE.

SERVTD_TYPE controls the following:

• The target TD metadata fields that the service TD may read and/or write.

• Whether or not multiple bindings of this SERVTD_TYPE can exist at the same time for a specific target TD. 15

SERVTD_TYPE values supported by the TDX module are defined in the [TDX Module ABI Spec].

13.2.4. SERVTD_ATTR: Service TD Binding Attributes

SERVTD_ATTR is a set of service TD binding attributes. It includes the following fields:

 INSTANCE_BINDING: Class vs. Instance Binding

Specifies whether a specific Service TD instance or a class of a service TD is bound. Currently, only Class Binding is 20

supported.

Class Binding (INSTANCE_BINDING == 0)

With class binding, rebinding can be done with any TD with the same SERVTD_INFO_HASH, SERVTD_TYPE and
SERVTD_ATTR as the original binding. Those parameters are migrated when the target TD is migrated. SERVTD_UUID is
not checked; it is updated by rebinding. 25

 MIGRATABLE_BINDING: Binding Migratability

Specifies whether a service TD binding can be migrated. Currently, only non-migratable binding is supported.

Non-Migratable Binding (MIGRATABLE_BINDING == 0)

With non-migratable binding, only some of the binding state of the service TD is migrated. A different service TD may be
bound at the destination platform, subject to the conditions described below. 30

SERVTD_BINDING_STATE, SERVTD_TYPE and SERVTD_ATTR are exported as part of the TD’s immutable state.

When importing the target TD’s mutable state to the destination platform:

1. If the imported SERVTD_BINDING_STATE is PRE_BOUND or BOUND:

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 135 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

1.1. If there is already a PRE_BOUND or BOUND service TD at this binding slot, then the SERVTD_TYPE and must
match. The other imported fields for that binding slot are ignored.

Note: This is the case for Migration TD, which is currently the only supported service TD type.

If the imported SERVTD_TYPE allows only a single instance of that type, no other service TD slot may have a PRE_BOUND
or BOUND service TD of the same SERVTD_TYPE. 5

SERVTD_HASH is recalculated after all service TD bindings have been imported as part of the immutable TD state.

 IGNORE_TDINFO: TDINFO Component Filtering

IGNORE_TDINFO is a bit array which determines which component of the service TD’s TDINFO_STRUCT field is included
in the calculation of SERVTD_INFO_HASH. For details see 13.2.6 below.

13.2.5. SERVTD_UUID: Service TD Instance Identifier 10

TD_UUID is a 256-bit random number that serves as a universally unique identifier of a TD. TD_UUID is created by
TDH.MNG.CREATE and is stored in the TD’s TDR. When a service TD is bound to a target TD, its TD_UUID is stored in the
target TD’s service TD table slot’s SERVTD_UUID field.

13.2.6. Service TD’s Binding SERVTD_INFO_HASH Calculation

For the purpose of service TD binding, a SHA384 hash of the service TD’s measurable attribute is calculated in a similar 15

way to the calculation done by TDG.MR.REPORT (see 12.3), except that filtering is applies based on the binding
SERVTD_ATTR:

• The SERVTD_ATTR.IGNORE_TDINFO selects which TDINFO_STRUCT field is ignored (a value of 0 is used in the
calculation).

ATTRIBUTES

XFAM

MRTD

MRCONFIGID

MROWNER

RTMR0

RTMR1

RTMR2

RTMR3

SERVTD_HASH

Service TD’s
TDINFO_STRUCT

SHA384

Slot SERVTD_
BINDING_
STATE

SERVTD_
INFO_
HASH

SERVTD_
TYPE

SERVTD_
ATTR

0

1

…

N-1

Service TD Binding Table in Target TD’s TDCS

Filter by
SERVTD_ATTR.

IGNORE_TDINFO

Filter by
SERVTD_ATTR.

PLATFORM_
BINDING

 20

Figure 13.2: SERVTD_INFO_HASH Calculation

13.2.7. Target TD’s SERVTD_HASH Calculation

SERVTD_HASH is a single field that summarizes all the service TDs bound or pre-bound to the target TD in an unsolicited
mode. SERVTD_HASH is calculated at the end of TD build (by TDH.MR.FINALIZE) and on TD import (by
TDH.IMPORT.STATE.IMMUTABLE). 25

 SERVTD_HASH Calculation on Finalization of TD Build

On TD build, SERVTD_HASH is calculated by TDH.MR.FINALIZE. At that time, the binding information for all bound or pre-
bound service TDs is known.

 SERVTD_HASH Calculation on TD Import

On TD import, SERVTD_HASH is recalculated by TDH.IMPORT.STATE.IMMUTABLE. In case of non-migratable service TD 30

binding, the imported binding information is checked but does not replace the existing binding information. E.g., the
Migration TD bound on the source platform may have a different INFO_HASH than that of the Migration TD bound on
the destination platform. The recalculated SERVTD_HASH reflects the service TDs bound on the destination platform.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 136 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

The reason for this recalculation is to narrow down the TCB for the migrated TD attestation. E.g., suppose the Migration
TD on either or both sides are malicious and can forge any migration information. Even in this case the target TD’s
attestation is based on information collected by the TDX module. It is independent on any TD and reflects the true
identity of the service TDs bound to the target TD.

 SERVTD_HASH Calculation Method 5

SERVTD_HASH is calculated as follows:

1. Get all service TD binding slots whose SERVTD_BINDING_STATE is not NOT_BOUND.
2. Sort by SERVTD_TYPE as the primary key, SERVTD_INFO_HASH as a secondary key (if multiple service TDs of the same

type are bound).
3. Concatenate SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR of each slot 10

4. Concatenate all slots.
5. Calculate SHA384.

Slot SERVTD_
BINDING_
STATE

SERVTD_
INFO_
HASH

SERVTD_
TYPE

SERVTD_
ATTR

0

1

…

N-1

Sort by
SERVTD_

TYPE
SHA384

ATTRIBUTES

XFAM

MRTD

MRCONFIGID

MROWNER

RTMR0

RTMR1

RTMR2

RTMR3

SERVTD_HASH

Target TD’s
TDINFO_STRUCT

Service TDs Binding Table in Target TD’s TDCS

Figure 13.3: SERVTD_HASH Calculation

13.2.8. TDH.SERVTD.PREBIND: Pre-Binding a Service TD 15

TDH.SERVTD.BIND is used by the host VMM to bind a service TD. It is detailed in the [TDX Module ABI Spec].

Inputs

• Target TD’s TDR HPA

• SERVTD_INFO_HASH

• SERVTD_TYPE 20

• SERVTD_ATTR

• Service TD Index (slot number in the target TD’s binding table)

Operation

• Check that the target TD’s measurements have not been finalized (by TDH.MR.FINALIZE).

• Check that no service TD is already bound in the given slot number. 25

• Store the service TD’s SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR.

13.2.9. TDH.SERVTD.BIND: Binding a Service TD

TDH.SERVTD.BIND is used by the host VMM to bind a service TD. It is detailed in the [TDX Module ABI Spec].

Binding Scenarios

Initial Binding: No pre-binding has been done; initial service TD binding can only be done before TDH.MR.FINALIZE 30

of the target TD.

Late Initial Binding: Pre-binding has been done; initial service TD binding can be done at any time.
SERVTD_INFO_HASH and SERVTD_ATTR must match.

Rebinding: Binding has been done; rebinding conditions depend on SERVTD_ATTR as described before.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 137 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Inputs

• Target TD’s TDR HPA

• Service TD’s TDR HPA – NULL_PA (-1) if pre-binding is requested

• SERVTD_TYPE

• SERVTD_ATTR 5

• Service TD Index (slot number in the target TD’s binding table)

Outputs

• Binding Handle (described below)

Operation

• Calculate the service TD’s SERVTD_INFO_HASH. 10

• Check binding conditions vs. the target TD’s binding table.

• Store the service TD’s SERVTD_INFO_HASH, SERVTD_TYPE, SERVTD_ATTR and SERVTD_UUID in the target TD’s
binding table.

• Calculate the binding handle as f(service TD’s TD_UUID, target TD’s TDR HPA, slot number).

13.2.10. Binding Handle 15

The binding handle is used as a shortcut, to quickly identify both the target TD and the binding slot. It should be noted
that the target TD identity is verified by its TD_UUID; the binding handle does not replace it. The binding handle is not a
secret.

The binding handle is calculated from the following variables, using a simple addition:

• Least significant 64 bits of SERVTD_UUID – this serves to obfuscate the handle, so the service TD does not use HPA 20

or slot number directly.

• Target TD’s TDR HPA (platform-specific unique identifier of the target TD)

• Target TD’s binding slot number

Given the handle, the TDX module can reconstruct TDR_HPA and binding slot number.

The binding handle is platform-specific and must be recreated after migration. This may be triggered when the service 25

TD attempts to access target TD metadata using TDG.SERVTD.RD/WR* and an error is returned.

13.3. Target TD Metadata Access by a Service TD

13.3.1. TDG.SERVTD.RD/WR: Metadata Read/Write Interface Functions

TDG.SERVTD.RD and TDG.SERVTD.WR are similar to other metadata access functions, e.g.:

• Host-side: TDH.MNG.RD/WR 30

• Guest-side: TDG.VM.RD/WR
Refer to 18.6 for a description of the TDX module metadata interface.

Inputs

• Target TD_UUID, uniquely identifying the target TD

• Binding handle, identifies the binding slot and a shortcut for identifying the target TD 35

• A single metadata field ID or metadata field list

Output

• For a single field access: Field value

Operation

1. Calculate the target TD’s TDR HPA and binding slot number from the binding handle. 40

2. Check that the target TD_UUID is the same as specified.
2.1. A special case (used by Migration TDs) is when the binding had been done on destination platform before the

TD was imported. In this case the target TD_UUID is overwritten at the beginning of import, as part of the TD’s
immutable state import by TDH.IMPORT.STATE.IMMUTABLE. The pre-import TD_UUID is saved in the target

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 138 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

TD’s TDCS. If the specified target TD_UUID doesn’t match the actual value, but matches the pre-import value,
a status code is returned to the service TD, with the updated TD_UUID.

3. Get the binding parameters from the target TD’s service TD table binding slot.
4. Check that the service TD’s TD_UUID is equal to the target TD’s bind slot’s SERVTD_UUID.
5. Access the metadata (similar to other metadata access operations). 5

13.3.2. Metadata Access Error Handling

TDG.SERVTD.RD/WR interface functions run in the context of the service TD but access the target TD’s control structures.
This introduces an opportunity for the service TD to create a denial-of-service to the host VMM, which is handled as
described below.

Local Errors (in the Service TD Context) 10

Local errors that only impact the service TD context are normally, as in other TDCALL flows. These include, e.g., the
following cases:

• Errors such as incorrect service TD state result in an error code returned to the caller service TD.

• EPT violations when accessing the service TD’s memory cause a fault-like TD exit ; The VMM may resolve the situation
(e.g., TDH.EXPORT.UNBLOCKW if the service TD is being live-migrated) and resume the service TD. 15

Cross-TD Errors

Cross-TD errors impact the target TD. For example, errors may happen due to target TD state, e.g., the target TD may be
migrated or may be torn down. The service TD may not be aware of the target TD state when invoking the interface
function.

Cross-TD errors cause a trap-like TD exit: 20

1. TDG.SERVTD.RD/WR* flow sets output operands (e.g., completion status returned in RAX) and advances the virtual
CPU state to the next service TD guest instruction, but TD-exits immediately before resuming the guest TD.

2. The host VMM may take action to detect denial of service, e.g., the guest calling TDG.SERVTD.RD/WR* in a tight loop.
3. The host VMM may let the service TD resolve the situation by resuming it, using TDH.VP.ENTER. On TD entry, the

service TD gets the status code as returned by TDG.SERVTD.RD*/WR*. 25

13.3.3. Cross-TD Concurrency Handling: Maintaining Host-Side Priority

 Problem Description

Host VMM access to the target TD have a higher priority than service TD access to that target TD. This helps mitigate
denial-of-service cases such as when the service TD loops on TDG.SERV.RD/WR*, locking target TD resources and
preventing the host VMM from doing host-side operations that require access to such resources. 30

Applicable target TD resources are, e.g.:

• TDG.SERV.RD/WR locks the target TD’s TDR in a shared mode, to help ensure that the target TD is available
throughout the guest-side flow. This may interfere with critical host-side operations (e.g., disabling a TD) that require
locking that target TD’s TDR in an exclusive mode.

• TDG.SERV.RD/WR locks the target TD’s TDCS.OP_STATE to help ensure that OP_STATE doesn’t change in a way that 35

prevents access during the guest-side flow. This may interfere with critical host-side operations (e.g., pausing a TD
during export) that require locking that target TD’s OP_STATE in an exclusive mode.

We currently assume that guest-side flows can only acquire locks in shared mode; thus, they only compete with the host-
side flows acquiring locks in exclusive mode.

 Solution 40

A new HOST_PRIORITY flag is added to shared/exclusive locks protecting resources that may be accessed by the host
VMM and a guest service TD. For details, see 18.1.4.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 139 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

14. I/O Support (without TDX Connect)

This chapter specifies the Intel TDX I/O model (for TDX Module versions and platforms that don’t support TDX Connect).

14.1. Overview

Intel TDX architecture does not prescribe a specific software convention to perform I/O from the guest TD. Guest TD
providers have many choices to provide I/O to the guest. The common I/O models are emulated devices, para-virtualized 5

devices, SRIOV devices and Direct Device assignments. Guest TD providers can choose to offer the combinations of I/O
models based on the workload and use case. To virtualize MMIO, the following options can be utilized:

• Para-Virtualized Drivers can replace MMIO accesses with TDG.VP.VMCALL to invoke VMM provided MMIO
emulation functions.

• MMIO Emulation by #VE Handlers can use non-para-virtualized drivers in the guest TD, with the emulation
performed by the #VE handler. EPT and #VE mechanisms can be used to reflect violations to the #VE handler in
the guest TD on access to virtual MMIO ranges. These violations can invoke VMM-provided MMIO emulation
functions through TDG.VP.VMCALL. In this model, the #VE handler is expected to emulate the faulting instruction
in the guest TD.

14.2. Paravirtualized I/O

Para-virtualization (e.g., using virtio APIs in KVM, etc.) helps provide a mechanism for the guest TD to use devices on the
host machine that are owned and managed by the VMM. The guest TD drivers can use the TDG.VP.VMCALL function to 10

invoke the functions provided by the VMM to perform I/O. The TD drivers must ensure that the data buffers passed
to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

14.3. MMIO Emulation and Emulated Devices

An alternate technique that the guest TD may employ to invoke VMM functions for I/O is to emulate MMIO access from
legacy device drivers. To support this use model, the VMM may enable reflection of EPT violation to emulated MMIO 15

guest physical addresses as virtualization exceptions (#VE), as described in 11.13. A #VE exception handler in the guest
TD OS can emulate the instruction causing the #VE, and as part of the emulation, it can invoke the I/O functions provided
by the VMM using TDCALL(TDG.VP.VMCALL). Similar to the paravirtualized I/O model, the TD software must ensure that
the data buffers passed to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

14.4. Direct Device Assignment (DDA) and SRIOV 20

The VMM may assign devices directly to the guest TD. The addresses mapping the MMIO resources of such devices must
be mapped in the shared memory space of the TD. When submitting data buffers to these devices, the guest TD must
locate the data buffers in shared memory such that the directly assigned device can move data in/out of such buffers
using DMA. The data buffers placed in shared memory should be programmed in IOMMU page tables.

The SRIOV virtual function devices assigned to guest TD also follow the DDA guidelines stated above with respect to 25

MMIO and data buffers. The control plane of the virtual function would use the soft or hard mechanism to configure the
virtual functions:

• The soft mechanism would use para-virtualization to configure the virtual function.

• The hard mechanism would use hardware mailboxes accessed using MMIO in the shared memory region.

14.5. IOMMU – DMA Remapping 30

The IOMMU uses the VT-d remapping tables to translate GPA in the DMA from device to an HPA. The VT-d remapping
tables will reflect the mapping of memory used by I/O devices in the guest TD. The programming of the VT-d remapping
tables and management will be done by the VMM.

Only shared GPA memory should be mapped in the VT-d tables:

• If the result of the translation results in a physical address with a TD private key ID, then the IOMMU will abort the 35

transaction and report a VT-d DMA remapping failure.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 140 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• If the GPA in the transaction that is input to the IOMMU is private (SHARED bit is 0), then the IOMMU may abort the
transaction and report a VT-d DMA remapping failure, even if the translated physical address is with a non-private
HKID. This is intended to support debug wherein a TD or VMM could program a bad GPA into the device.

14.6. Shared Virtual Memory (SVM)

Shared Virtual Memory enables applications to access buffers directly accessed by the devices. The VT-d tables help 5

provide the mechanism to map application buffers using the first level and second-level page tables to provide
applications access to the same memory accessed by devices.

SVM should be avoided because VT-d tables can only map shared memory.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 141 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

15. Debug and Profiling Architecture

The Intel TDX module debug architecture includes the following debug facilities:

On-TD Debug: Facilities for debugging a guest TD using software that runs inside the TD

Off-TD Debug: Facilities for debugging a guest TD, configured in debug mode, using software that runs outside the TD

15.1. On-TD Debug 5

Intel SDM, Vol. 3, 17 Debug, Branch Profile, TSC and Intel Resource Director Technology (Intel RDT) Features

15.1.1. Overview

On-TD debug means that the TD software is using CPU debug capabilities. A debug agent inside the guest TD can use
available CPU debug features and – if needed – interact with external debug entities (e.g., a debugger running in a VM
on the same platform, or a debugger running on another platform) via standard I/O interfaces. The Intel TDX module is 10

designed to virtualize and isolate TD debug capabilities from the host VMM and software. On-TD debug can be used for
production or debug TDs – i.e., regardless of the guest TD’s ATTRIBUTES.DEBUG state.

Guest TDs are allowed to use almost all architectural debug features supported by the processor, e.g.:

• Single stepping

• Code, data and I/O breakpoints 15

• INT3

• Bus lock detection

• DR access detection

• TSX debug

However, the TDX architecture does not allow guest TDs to toggle IA32_DEBUGCTL uncore PMI enabling bit (13). 20

Guest TDs are allowed to use almost all architectural tracing features, e.g.:

• LBR (if allowed by the TD’s XFAM, see 11.7)

• PT (if allowed by the TD’s XFAM, see 11.7)

• BTS

• PEBS 25

• PERF_METRICS

However, the TDX architecture does not allow guest TDs to use BTM.

15.1.2. Generic Debug Handling

 Context Switch

By design, the Intel TDX module context-switches all debug/tracing state that the guest TD is allowed to use. The host 30

VMM’s state of those resources is either restored or initialized following a TD entry/exit. For details, see the [ABI Spec]
definition of TDH.VP.ENTER.

 IA32_DEBUGCTL (MSR 0x1D9) Virtualization

Intel SDM, Vol. 3, 17.4.1 IA32_DEBUGCTL MSR

By design, IA32_DEBUGCTL (MSR 0x1D9) access by the guest TD is restricted as follows: 35

• Guest TD attempts to set any of the architecturally reserved bits 63:16 and 5:3 result in a #GP(0).

• Guest TD attempts to set bit 14 (FREEZE_WHILE_SMM) to 1 when the virtual value of IA32_PERF_CAPABILITIES[12]
(FREEZE_WHILE_SMM_SUPPORTED) is 0 results in a #GP(0). See 15.2 below for Performance Monitoring details.

• Guest TD attempts to set bit 15 (RTM_DEBUG) to 1 when the virtual value of CPUID(7,0).EBX[11] (RTM) is 0 results
in a #GP(0). 40

• Guest TD attempts to set TDX-disallowed values result in a #VE(UNSUPPORTED_FEATURE). This includes the
following cases:
o Enable BTM by setting bits 7:6 to 0x1 (see details in 15.1.3 below).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 142 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• Uncore PMI is virtualized as disabled; bit 13 is read as 0 and ignored on write (see 15.5 below).

15.1.3. Debug Feature-Specific Handling

The following table discusses how specific debug features are handled.

Table 15.1: Debug Feature-Specific Handling

Debug Feature How the Feature is Controlled Handling

Hardware
Breakpoints

• DR7, DR0-3 and DR6 No special handling: DRs are context-switched.

General Detect • DR7 bit 13 (GD) No special handling: DR7 is context-switched.

TSX Debug • DR7 bit 11 (RTM)

• IA32_DEBUGCTL bit 15 (RTM)

No special handling: DR7 and IA32_DEBUGCTL are
context-switched.

Single Stepping • RFLAGS bits 18 (Trap Flag) and
16 (Resume Flag)

• IA32_DEBUGCTL bit 1 (BTF)

No special handling: RFLAGS and IA32_DEBUGCTL are
context-switched.

Bus-Lock
Detection

• IA32_DEBUGCTL bit 2
(BUS_LOCK_DETECT)

No special handling: IA32_DEBUGCTL is context-
switched.

Software
Breakpoints (INT1,
INT3)

None No special handling: software breakpoints are stateless.

Branch Trace
Message (BTM)

• IA32_DEBUGCTL bits 6 (TR)
and 7 (BTS)

Not allowed: when a guest TD attempts to set
IA32_DEBUGCTL[7:6] to 0x1, the Intel TDX module injects
a #VE(UNSUPPORTED_FEATURE) (see 15.1.2 above).

In debug mode (ATTRIBUTES.DEBUG == 1), the host VMM
is allowed to activate BTM by setting the above bits to
0x1.

Branch Trace Store
(BTS)

• IA32_DEBUGCTL bits 6 (TR), 7
(BTS), 8 (BTINT), 9
(BTS_OFF_OS) and 10
(BTS_OFF_USR)

No special handling: IA32_DEBUGCTL and IA32_DS_AREA
are context-switched.

Notes:

• The guest TD can configure BTS to raise PMI on buffer
overflow (by setting BTINT = 1). However, since PMIs
are virtualized by the host VMM, the guest TD should
be ready to handle spurious, delayed and dropped
PMIs. See Perfmon discussion in 15.2 below.

• BTS may allow the guest TD to hang the machine if
BTS record generation causes a #PF or a #GP(0),
because the act of getting to the exception handler
may deliver another BTS. It is highly recommended
that the host VMM enables instruction timeout TD
exit.

Processor Trace
(PT)

• IA32_RTIT_CONTROL

• Requires VMM’s consent on
TD initialization by setting
TD_PARAMS.XFAM[8] to 1

PT state handling as part of the extended feature set
state is discussed in 11.7.

Architectural Last
Branch Records
(LBRs)

• IA32_LBR_CONTROL

• Requires VMM’s consent on
TD initialization by setting
TD_PARAMS.XFAM[15] to 1

LBR state handling as part of the extended feature set
state is discussed in 11.7.

Non-Architectural
LBRs

• IA32_DEBUGCTL bit 0 (LBR) Guest TD attempt to set IA32_DEBUGCTL[0] is ignored by
the CPU.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 143 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

15.2. On-TD Performance Monitoring

Intel SDM, Vol. 3, 18 Performance Monitoring

15.2.1. Overview

If the TDX module supports on-TD performance monitoring, then the host VMM controls whether a guest TD can use the 5

performance monitoring ISA using the TD’s ATTRIBUTES.PERFMON bit – part of the TD_PARAMS input to TDH.MNG.INIT
(see the [TDX Module ABI Spec]).

By design, if a guest TD is allowed to use performance monitoring, then:

• The guest TD enumerates native architectural Perfmon capabilities via CPUID leaf 0x0A.

• The guest TD is allowed to use all Perfmon ISA. This includes executing the RDPMC instruction and accessing Perfmon 10

MSRs (see 15.2.3 below).

• Perfmon state is context-switched by the Intel TDX module across TD entry and exit transitions.

Context-switching the Perfmon state has a performance impact. TD entry and exit latencies are longer than when a guest
TD is not allowed to use Perfmon.

By design, if a guest TD is not allowed to use performance monitoring, then: 15

• The guest TD enumerates no architectural Perfmon capabilities. CPUID leaf 0x0A returns all 0s.

• The guest TD is not allowed to use Perfmon ISA, including RDPMC.

• Perfmon state is not context-switched across TD entry and exit transitions.

Regardless of Perfmon enabling, per the design:

• IA32_DS_AREA MSR is context-switched across TD entry and exit transitions. 20

• Counter freeze control (IA32_DEBUGCTL bit 12) is context-switched across TD entry and exit transitions.

• The uncore PMI enable bit (IA32_DEBUGCTL bit 13) is preserved during SEAM mode execution, including Intel TDX
module and guest TD execution. This bit is virtualized to the guest TD as 0, and the TD is prevented from setting it.
See 15.5 below for details.

See also 15.1 above. 25

The Intel TDX module is designed to support the following performance monitoring capabilities:

• Architectural performance monitoring version 5, described in [Intel SDM, Vol. 3, 18.2.5)

• Exactly 8 performance monitoring counters (IA32_PMC0 through IA32_PMC7)

• Up to 7 fixed counters (IA32_FIXED_CTR0 through IA32_FIXED_CTR7)

• Some non-architectural MSRs (see 15.2.3 below) 30

• Guest TDs are not allowed to use Architectural PEBS. On CPUs where Architectural PEBS is enabled, the host VMM
must reset all Arch PEBS configuration MSRs (see below) before calling TDH.VP.ENTER on a Perfmon-allowed TD.

15.2.2. Performance Monitoring CPUID Virtualization

CPUID(0xA) is the legacy Perfmon leaf. CPUID(0x23) is the new Perfmon leaf, supported if CPUID(7,1).EAX[8] is 1.

Both leaves are virtualized to the guest TD if ATTRIBUTES.PERFMON is 1. CPUID(0x23) is virtualized as 0 if the virtual 35

value of CPUID(7,1).EAX[8] is 0.

TDX does not allow the host VMM to directly configure the virtualization of CPUID(0xA) and CPUID(0x23).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 144 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

15.2.3. Performance Monitoring MSRs

 Overview

The following tables describes TDX handling of MSRs used by Perfmon:

Table 15.2: Performance Monitoring MSRs

MSR Comments Enumeration Reference

IA32_PMCx multiple MSRs (x < CPUID(0x0A).EAX[15:8])

The Intel TDX module requires the CPU to
support 8 counters.

IA32_A_PMCx multiple MSRs Same as IA32_PMCx [Intel SDM,
Vol. 3,
18.2.6]

IA32_PERFEVTSELx multiple MSRs Same as IA32_PMCx

IA32_FIXED_CTRx multiple MSRs ((x < CPUID(0x0A).EDX[4:0]) ||

 (CPUID(0x0A).ECX[x] == 1))

The Intel TDX module supports counters 0
through 6, if supported by the CPU.

[Intel SDM,
Vol. 3,
18.2.5.2]

IA32_FIXED_CTR_CTRL

IA32_PERF_METRICS IA32_PERF_CAPABILITIES[15]

IA32_PERF_CAPABILITIES

MSR_OFFCORE_RSPx 2 MSRs, non-
architectural

IA32_PERF_GLOBAL_STATUS

IA32_PERF_GLOBAL_CTRL

IA32_PERF_GLOBAL_STATUS_RESET

IA32_PERF_GLOBAL_STATUS_SET

Command MSRs
– not context-
switched

IA32_PERF_GLOBAL_INUSE

 5

Table 15.3: Legacy PEBS MSRs

MSR Comments Enumeration Reference

IA32_PEBS_ENABLE non-architectural IA32_MISC_ENABLE[12]

MSR_PEBS_DATA_CFG non-architectural IA32_MISC_ENABLE[12]

MSR_PEBS_LD_LAT non-architectural IA32_MISC_ENABLE[12]

MSR_PEBS_FRONTEND non-architectural IA32_MISC_ENABLE[12]

Not supported on E-cores

MSR virtualization is described in 11.9.

15.2.4. Performance Monitoring Interrupts (PMIs)

By design, when a guest TD is allowed to use Perfmon, it can also configure the counters to raise PMI on overflow. When 10

such a TD counter overflows, the physical interrupt or an NMI configured by the host VMM into the local APIC is delivered.
This interrupt or NMI causes a VM exit, and it is delivered as a TD exit to the host VMM. The host VMM is then expected
to inject the PMI into the guest TD, either as a virtual interrupt using the posted interrupt mechanism (see 11.12.4), or as
virtual NMI using the NMI injection interface (see 11.12.6).

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 145 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Since the host VMM is not trusted, the guest TD must be ready to handle spurious, delayed or dropped PMIs. Thus, it is
recommended for the guest TD to use PEBS instead of PMIs in order to record TD state at counter overflows.

Uncore PMIs are discussed in 15.5 below.

15.2.5. Perfmon Events Filtering

Perfmon event filtering, if supported by the TDX module, enables the host VMM to specify a set of Perfmon events which 5

the TD is allowed to use.

 Enumeration

Support of Perfmon events filtering is enumerated to the host VMM by TDX_FEATURES0, readable by TDH.SYS.RD*:

• EVENT_FILTERING (bit 24) enumerates support of basic event filtering.

• ENHANCED_EVENT_FILTERING (bit 31) enumerates support of enhanced event filtering. 10

 Background

Programmable Perfmon counters are configured by the guest TD, using their applicable IA32_PERFEVTSELx MSRs, to
counts specific events. An event is identified by the following fields:

Event Select: 8 bits

Unit Mask: 8 bits (UMASK) on CPUs that support Perfmon version 5 or lower, 16 bits (UMASK2/UMASK) on CPUs that 15

support Perfmon version 6.

Figure 15.1: Layout of IA32_PERFEVTSELx MSRs

Some of the Perfmon events are architectural; they are enumerated by CPUID(0xA) and CPUID(0x23), as follows:

• CPUID(0xA).EAX[31:24]: Number of events 20

• CPUID(0xA).EBX: Bitmap of unsupported events

• CPUID(0x23,3).EAX: Bitmap of supported events

Most events are non-architectural and may vary between CPU models. The list of supported events, per CPU model, is
provided by Intel in https://github.com/intel/perfmon.

 Event Filtering Configuration and the Filtering Algorithm 25

On TD initialization (TDH.MNG.INIT), the host VMM may optionally provide an array of PERFMON_EVENT entries.

https://github.com/intel/perfmon

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 146 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Basic Event Filtering

Each PERFMON_EVENT entry specifies Event Select and UMASK values. When the TD writes to an IA32_PERFEVTSELx
MSR, the requested Event Select and UMASK values are matched against all PERFMON_EVENT entries. If a match is
found, the IA32_PERFEVTSELx MSR is written. Else, the applicable Perfmon counter is disabled.

Enhance Event Filtering 5

With enhanced events filtering, if supported by the TDX module, each PERFMON_EVENT entry specifies an Event Select
and UMASK values to match, a bit mask to mask UMASK before matching, and a flag indicating that the match is negative.

When the TD writes to an IA32_PERFEVTSELx MSR, the TDX module first looks for a positive match, where:

• The requested Event Select is equal to the PERFMON_EVENT entry’s Event Select.

• The requested UMASK, bit-masked by the PERFMON_EVENT entry’s UMASK mask, is equal to the PERFMON_EVENT 10

entry’s UMASK.

• The PERFMON_EVENT entry’s negative flag is 0.

If a positive match is found, the TDX module first looks for a negative match, where:

• The requested Event Select is equal to the PERFMON_EVENT entry’s Event Select.

• The requested UMASK, bit-masked by the PERFMON_EVENT entry’s UMASK mask, is equal to the PERFMON_EVENT 15

entry’s UMASK.

• The PERFMON_EVENT entry’s negative flag is 1.

If no negative match is found, then the IA32_PERFEVTSELx MSR is written. Else, the applicable Perfmon counter is
disabled.

 Guest TD Perspective 20

If the guest TD executes WRMSR(IA32_PERFEVTSELx) with an EVENT_ID (UMASK and Event Select) value that has not
been configured as allowed, the operation appears to complete successfully; there is no error indication. However, the
TDX module disables the counter, and no events are counted. If the guest TD executes RDMSR(IA32_PERFEVTSELx), it
reads back the value that it wrote to that MSR before.

Perfmon event filtering affects the TD as a whole; L2 VMs are subject to the same restrictions as L1. If required, then L1 25

may implement additional logic by configuring the L2’s MSR bitmaps to cause an L2→L1 exit on L2 access to
IA32_PERFEVTSELx MSRs.

Perfmon event filtering has no impact on the fixed Perfmon counters. They may be used by the guest TD regardless of
the allowed events configuration.

 Statistics 30

The TDX module maintains FILTERED_EVENTS_COUNT, an array of 4 64-bit counters per TD and L1 or L2 VM, which count
the number of times the guest TD VM executed WRMSR(IA32_PERFEVTSELx) with an EVENT_ID (UMASK and Event Select)
value that has not been configured as allowed. The counters are readable by the host VMM using TDH.MNG.RD.

15.3. Off-TD Debug

A guest TD is defined as debuggable if its ATTRIBUTES.DEBUG bit is 1. In this mode, the host VMM can use Intel TDX 35

module functions to read and modify TD VCPU state and TD private memory, which are not accessible when the TD is
non-debuggable.

A debuggable TD is, by nature, untrusted. Since the TD’s ATTRIBUTES are included in the TDREPORT_STRUCT, the TD’s
debuggability state is visible to any third party to which the TD attests.

A debuggable TD can’t be migrated; its ATTRIBUTES.MIGRATABLE bit must be 0. 40

The applicable Intel TDX module functions are listed in Table 15.4 below. Note that some of the functions can access
non-secret guest TD state regardless of the DEBUG attribute. The lists of state information that can be read and/or
written in non-DEBUG and in DEBUG modes are detailed in the referenced sections.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 147 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 15.4: Off-TD Debug Interface

Intel TDX Function ATTRIBUTES.DEBUG = 0 ATTRIBUTES.DEBUG = 1

TDH.MNG.RD
TDH.MNG.WR

N/A Access secret and non-secret TD-scope
state in TDR and TDCS.

TDH.MEM.SEPT.RD Read Secure EPT entry Read Secure EPT entry

TDH.VP.RD
TDH.VP.WR

Access non-secret TD VCPU state in
TDVPS (including TD VMCS)

Access secret and non-secret TD VCPU
state in TDVPS (including TD VMCS).

TDH.MEM.WR
TDH.MEM.RD

N/A Access TD-private memory.

TDH.PHYMEM.PAGE.RDMD Read page metadata (PAMT
information)

Read page metadata (PAMT
information).

15.3.1. Modifying Debuggable TD’s State, Controls and Memory

When the TD is debuggable, the off-TD debugger can:

• Read and modify TDVMCS fields that contain guest state, VM entry load controls, VM exit save controls, and VM 5

execution controls.

• Read and modify TDVPS fields that contain additional TD VCPU’s state (e.g., extended register state).

• Read and modify a per-VCPU copy of the TD’s extended feature mask (XFAM), such that more extended register state
would be saved to TDVPS on TD exit and restore from TDVPS on TD entry.

This may cause the next VM entry into the TD VCPU to fail due to bad guest state. It may also generate VM exits that 10

wouldn’t have happened otherwise (e.g., VM exit due to a #PF within the TD). In non-debuggable TD such VM exits are
not expected, and thus treated as fatal TD errors that cause a TD exit with a TDX_NON_RECOVERABLE_TD status. In
debuggable TDs, however, such VM exits are expected and cause TD exit.

Specifically, the TDX module handling of TD VM exits works as follows:

1. If this TD VM exit might happen on non-debuggable TDs: 15

1.1. Do “standard” handling (may result a TD exit).
1.2. If an exception is pending to be injected into the TD:

1.2.1. If the TD is debuggable and its exception bitmap is programmed to intercept that exception:
1.2.1.1. TD exit to the VMM, as if the exception has been raised during TD execution.

1.3. Resume the TD (may inject an exception). 20

2. Else (an unexpected VM exit happened):
2.1. If the TD is debuggable then TD exit.
2.2. Else handle this as a fatal TD error. Do non-recoverable TD exit.

In any case, the security of other guest TDs running in production mode is not impacted.

15.3.2. Preventing Guest TD Corruption of DRs 25

The off-TD (host-side) debugger may need to have full control over guest DRs to help prevent their corruption by the
guest TD. To do so, the debugger can do the following:

• Use TDH.VP.WR to set the TD VMCS GUEST_DR7 field’s Global Detect bit.

• Set the TD VMCS exception bitmap execution control to intercept debug exceptions.

15.4. Platform-Level Profiling 30

This section discusses the interoperation of guest TD with platform-level profiling features.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 148 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

15.4.1. Profiling by IA32_FIXED_CTR1 and IA32_FIXED_CTR2

Intel SDM, Vol. 3, Table 20-2: Association of Fixed-Function Performance Counters with Architectural Performance Events

Enumeration: Availability of the following feature is enumerated by TDX_FEATURES0.FIXED_CTR12_PROF (bit 26),
readable by the host VMM using TDH.SYS.RD.

Two of the fixed-function performance monitoring counters continue counting while running in the TDX module. They 5

also continue counting while running is a guest TD, unless the TD is enabled for debugging (ATTRIBUTES.DEBUG is 1) or
for performance monitoring (ATTRIBUTES.PERFMON is 1).

The applicable counters are:

IA32_FIXED_CTR1 The number of clock cycles while the logical processor is not in a halt state

IA32_FIXED_CTR2 The number of TSC cycles while the logical processor is not in a halt state and not in a TM stop-10

clock state

15.5. Uncore Performance Monitoring Interrupts (Uncore PMIs)

By design, neither the Intel TDX module itself nor its guest TDs are allowed to use Uncore PMIs. The state of
IA32_DEBUGCTL MSR bit 13 (ENABLE_UNCORE_PMI) is preserved across SEAMCALL, SEAM root and non-root mode and
SEAMRET, except for very short time periods immediately after SEAMCALL and VM exit. 15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 149 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

16. Memory Integrity Protection and Machine Check Handling

16.1. Overview

The Intel TDX module’s memory integrity protection and machine check handling are designed to answer address the
following security objectives:

• Corruption of TD private data or Intel TDX module memory must be detectable before the decrypted corrupted data 5

are consumed by the guest TD or by the Intel TDX module.

• To help improve resistance to brute force attacks, software must not be able to repeatedly cause memory integrity
violations during Intel TDX module or guest TD operation. When an integrity violation is detected, the affected guest
TD and the key corresponding to its affected HKID must become unusable for normal operation of the TD – i.e., the
TD may only be torn down. 10

• Any software except guest TD or TDX module must not be able to speculatively or non-speculatively access TD private
memory, to detect if a prior corruption attempt was successful in finding an integrity collision or failed and received
zero-data.

As a best effort, the TDX module is designed to enable limiting the impact of memory integrity violations in a guest TD
context to that guest TD, i.e., requiring only that guest TD to be torn down. However, there are cases where memory 15

integrity violations result in an unbreakable shutdown of the LP.

16.2. TDX Memory Integrity Protection Background

16.2.1. Platforms not Using ACT for Memory Protection

 Non-ACT Platforms Memory Integrity Protection

16.2.1.1.1. Non-ACT Platforms: Cryptographic Integrity (Ci) vs. Logical Integrity (Li), MAC and TD Owner 20

TDX architecture aims to provide resiliency against confidentiality and integrity attacks by software. Towards this goal,
the TDX architecture helps enforce the enabling of memory integrity for all private HKIDs. It supports two memory
integrity modes that can be configured on the platform:

Cryptographic Integrity (Ci) Memory content is encrypted and protected by a MAC and a TD Owner bit.

Logical Integrity (Li) Memory content is encrypted and protected by a TD Owner bit. 25

In both Ci and Li modes, the memory controllers store a 1-bit TD Owner metadata each cache line. The TD Owner bit is
set to 1 for writes with a private HKID and is cleared to 0 for writes with a shared HKID. The TD Owner bit is covered by
ECC.

When Ci mode is enabled, the CPU’s memory controllers compute a 28-bit integrity check value (MAC) for the data (cache
line) during writes and store the MAC with the memory as meta-data. The MAC is calculated over the components 30

described in the table below. The MAC is covered by ECC.

Table 16.1: Components for MAC Calculation (Ci Mode)

Component Description

Ciphertext Data 512 bits of data being written to memory.

Encryption Tweak 128-bit encryption tweak, generated by encrypting the physical address with the 128 -bit
per-HKID ephemeral AES-XTS tweak key. The tweak key is generated on key
configuration (TDH.SYS.KEY.CONFIG and TDH.MNG.KEY.CONFIG).

TD Owner Bit Indicates that the data was written using a private HKID.

MAC Key 128-bit MAC key, generated by hardware on platform initialization, when BIOS
configures the IA32_TME_ACTIVATE MSR.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 150 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

16.2.1.1.2. Non-ACT Platforms: MAC and TD Owner Update on Memory Writes

The MAC and the TD Owner bit are updated on memory writes by the memory controller per the following criteria:

• If memory write is for a private HKID, the TD Owner bit is set, and integrity information (MAC) is computed and
stored as meta-data along with ciphertext in memory.

• Else (write is for a shared HKID), the TD Owner bit is clear, and based on the key configuration, integrity information 5

(MAC) may be stored along with ciphertext in memory.

The state diagram below shows the TD Owner bit state changes due to memory state changes.

Non-
TD

TD

Host VMM converts from private
HKID to shared HKID

(write using shared HKID)

TDX module converts from
shared HKID to private HKID

(write using private HKID)

Write using
shared HKID

TD or TDX module
write using private

HKID

Figure 16.1: Non-ACT Platforms: TD Owner Bit Setting on Write

16.2.1.1.3. Non-ACT Platforms Memory Reads: Integrity and TD Owner Bit Checks, Poison Generation and 10

Poison Consumption

On platforms not using ACT for memory protection, checks on memory reads depend on whether Cryptographic Integrity
(Ci) is enabled on the platform, or Logical Integrity (Li) is used. This is shown in the tables below.

• When the memory read transaction uses a private HKID, TD Owner bit mismatch and/or integrity check failure (for
Ci) result in a new poison generation. An all-0 data is returned, with a poison indication. 15

• The poison indication is sticky; it is stored back to memory. Subsequent read transactions that read a previously
poisoned memory line return a poison indication regardless of the TD Owner bit or integrity checks. A sticky poison
indication is cleared when the whole memory line is written; the correct way to do so is by using the MOVDIR64B
instruction.

• Any reads of TD private data (TD Owner is 1) done outside SEAM mode (i.e., with a shared HKID) return all-0. This is 20

intended to prevent the host VMM from testing malicious ciphertext for a MAC collision, since the VMM will
deterministically see zeroed data in the cache for speculative accesses. No new poison indication is returned;
however, a previous poison indication that has been stored in memory may be returned.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 151 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 16.2: Non-ACT Platforms Checks on Memory Reads in Ci Mode

HKID
Type

Integrity
Enabled
for HKID

TD
Owner
Bit

Integrity
Check

Returned
Data

New
Poison

Comments

Private Yes 0 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a shared HKID.

1 Pass Decrypted
data

None If the memory line has been previously
poisoned, the read transaction may return
a poison.

1 Fail 0 Poison Integrity check failure may be triggered if
the memory was previously written using
a different encryption key.

Shared Yes 0 Pass Decrypted
data

None If the memory line has been previously
poisoned, the read transaction may return
a poison.

0 Fail 0 Poison Integrity check failure may be triggered if
the memory was previously written using
a different encryption key.

1 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a private HKID.

Shared No 0 N/A Decrypted
data

None If the memory line has been previously
poisoned, the read transaction may return
a poison.

1 N/A 0 None If the memory line has been previously
poisoned, the read transaction may return
a poison.

Table 16.3: Non-ACT Platforms Checks on Memory Reads in Li Mode

HKID
Type

Integrity
Enabled
for HKID

TD
Owner
Bit

Integrity
Check

Returned
Data

New
Poison

Comments

Private No 0 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a shared HKID.

1 N/A Decrypted
data

None If the memory line has been previously
poisoned, the read transaction may return
a poison.

Shared No 0 N/A Decrypted
data

None If the memory line has been previously
poisoned, the read transaction may return
a poison.

1 N/A 0 None If the memory line has been previously
poisoned, the read transaction may return
a poison.

 Non-ACT Platforms Memory Writes: No Integrity nor TD Owner Bit Checks 5

On platforms not using ACT for memory protection, the TD Owner bit is not checked on memory writes. It is the
responsibility of the host VMM to prevent writing to memory that has been assigned as TD private memory. Failing to

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 152 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

do so will result in a memory corruption; such corruption will be detected when the guest TD or the TDX module attempts
to read that memory, as described above.

The host VMM should always initialize memory that has been used with a private HKID (i.e., TD private memory and TDX
control structures), and is about to be used with a shared HKID, using a full line write. The correct way to do so is by
using the MOVDIR64B instruction. This helps ensure that the TD Owner bit and any stored poison indication are cleared. 5

16.2.2. Platforms Using ACT for Memory Integrity Protection

 ACT Platforms: Logical Integrity (Li) Provided by an Access Control Table (ACT)

On platforms using ACT-protected memory, memory integrity protection is provided by a 1-bit TD Owner metadata for
each 4KB of physical memory. The TD owner bits are stored in Access Control Tables, separate from the memory lines
being protected. There is a separate ACT per memory controller; the content of all ACTs is the same, except for a short 10

time during transitions, where the TDX module sets the ACT bits as described below.

TD Owner bits in the ACTs are written by the TDX module on 4KB page conversion between shared and private. They are
read by the memory controllers during memory read and write transactions.

 ACT Platforms: TD Owner Bit Update on Page Conversion between Shared and Private

On platforms using ACT-protected memory, page ownership is updated explicitly by the TDX module. 15

• When the TDX module converts a page from being a shared page to being a private page, it sets the applicable ACT(s)’
TD Owner bits to 1.

• When the TDX module converts a page from being a private page to being a shared page, it sets the applicable ACT(s)’
TD Owner bits to 0.

Non-
TD

TD

TDX module converts page from
private to shared

TDX module converts page
from shared to private

 20

Figure 16.2: ACT TD Owner Bit Transition

 ACT Platforms Memory Access: TD Owner Bit Checks, Poison Generation and Poison Consumption

On platforms using ACT-protected memory, checks are done on both memory write and memory reads. This is shown in
the tables below.

• Any read of TD private data (TD Owner is 1) done outside SEAM mode (i.e., with a shared HKID) returns all-0. This is 25

intended to prevent the host VMM from testing malicious ciphertext for a MAC collision, since the VMM will
deterministically see zeroed data in the cache for speculative accesses.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 153 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 16.4: ACT Checks on Memory Reads

HKID
Type

Integrity
Enabled
for HKID

TD
Owner
Bit

Operation Returned
Data

New
Poison

Comments

Private No 0 Read Decrypted
data

None This case is prevented by the TDX
module’s control of Secure EPT

1 Read Decrypted
data

None

Shared No 0 Read Decrypted
data

None

1 Read 0 None

• When a memory write transaction uses a private HKID, no TD Owner bit check is performed. The data is encrypted
with the private key and written to memory.

• When a memory write transaction uses a shared HKID, the TD Owner bit is checked to be 0. If not 0, the write is 5

silently dropped.

Table 16.5: ACT Checks on Memory Writes

HKID
Type

Integrity
Enabled
for HKID

TD
Owner
Bit

Operation Saved
Data

New
Poison

Comments

Private No 0 Write Encrypted
data

None This case is prevented by the TDX
module’s control of Secure EPT

1 Write Encrypted
data

None

Shared No 0 Write Encrypted
data

None

1 Write Dropped None

16.2.3. Memory Integrity Error Logging, Machine Checks and Unbreakable Shutdowns

Memory integrity errors that result in poison generation are logged by the memory controller as UCNA (uncorrected no-10

action required) UCR errors which are signaled via CMCI (if CMCI is enabled) or CSMI (if enabled).

On a subsequent consumption (read) of the poisoned data by software, there are two possible scenarios:

Machine Check: In most cases, the core determines that the execution can continue, and it treats poison with
fault-like exception semantics signaled as an MCE (Machine Check Exception) or MSMI
(Machine-check System Management Interrupt). 15

 The poison memory address, at a granularity no finer than 32 bytes, is logged in
IA32_MCi_ADDRESS MSRs.

 Handling of machine check events (MCE or MSMI) when executing in a guest TD (in SEAM non-
root mode) and in the Intel TDX module (in SEAM root mode) is described in the following
sections. 20

Unbreakable Shutdown: In some cases, the core determines that execution cannot continue (e.g., long µCode flows),
and it goes into an unbreakable shutdown.

An unbreakable shutdown that happens while running in SEAM mode, either in a guest TD or
in the TDX module, globally marks TDX as disabled – all subsequent SEAMCALL invocations on
any logical processor of the platform lead to a VMfailInvalid error. 25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 154 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

16.3. Machine Check Architecture (MCA) Background

Intel SDM, Vol. 3, 15 Machine-Check Architecture

The machine-check architecture (MCA) provides a mechanism for detecting and reporting hardware (machine) errors.
These include system bus errors, ECC errors, parity errors, cache errors and TLB errors. MCA consists of a set of model-
specific registers (MSRs) that are used to set up machine checking, and it includes additional banks of MSRs used for 5

recording errors that are detected.

16.3.1. Uncorrected Machine Check Error

The processor signals the detection of an uncorrected machine-check error by generating a machine-check exception
(MCE), which is a fault-like exception. An MCA enhancement supports software recovery from certain uncorrected
recoverable machine check errors. Poisoned cache line consumption by the guest TD is considered such an error. The 10

machine-check exception handler is expected to be implemented in the VMM.

16.3.2. Corrected Machine Check Interrupt (CMCI)

Intel SDM, Vol. 3, 15.5 Corrected Machine Check Error Interrupt

Processors on which TDX will be supported can also report information on corrected machine-check errors and deliver a
programmable interrupt for software to respond to MC errors – referred to as corrected machine-check interrupt (CMCI). 15

CMCI is delivered as a normal interrupt. If delivered during guest TD operation, this interrupt causes a VM exit, and Intel
TDX module performs a TD exit to the host VMM. If delivered during Intel TDX module operation, this interrupt remains
pending until either SEAMRET to the host VMM or until VM entry to a guest TD.

16.3.3. Machine Check System Management Interrupt (MSMI)

MSMI is part of the Enhanced Machine Check Architecture, Gen. 2 (EMCA2). With EMCA2 enabled, each machine check 20

bank can be configured to assert SMI instead of MCE or CMCI. This is intended to allow the SMM handler to correct the
error when possible. For details, see [Error Reporting through EMCA2].

When the processor observes an SMI while a guest TD is running (i.e., SEAM non-root mode) it causes a VM exit to the
TDX module with exit reason set to “IO SMI” or “Other SMI” VM exit appropriately. The observed SMI remains pending
following the VM exit. The exit qualification bit 0 is set to 1 if the SMI is a machine check initiated SMI (MSMI). 25

The core ignores MSMI configuration for poison consumption error; they are always reported as MCE.

16.3.4. Local Machine Check Event (LMCE)

Intel SDM, Vol. 3, 15.3.1.5 Enabling Local Machine Check

When system software has enabled LMCE, then hardware will determine if a particular error can be delivered only to a
single logical processor, instead of being broadcast to all logical processors. This is the recommended configuration for 30

TDX.

16.4. Recommended MCA Platform Configuration for TDX

The following platform MCA configuration is recommended for TDX:

• LMCE should be enabled, so that machine check events that happen in the scope of a certain logical processor are
delivered only to that logical processor. 35

• EMCA2 should be enabled only if the CPU supports status indication of MCE during non-root SEAM mode execution.

The following sections provide additional details.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 155 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

16.5. Handling Machine Check Events during Guest TD Operation

16.5.1. Machine Check Events Delivered as an #MC Exception

If EMCA2 is not enabled, the machine check event is delivered as an #MC exception. With LMCE enabled, the MCE is
delivered only to the logical processor that consumed the poisoned cache line.

The Intel TDX module configures the MCE events when they occur in a TD guest to cause a VM exit to the Intel TDX 5

module. This includes the following cases:

• MCE during guest TD operation

• MCE during a successful VM entry to a guest TD

• MCE during a failed VM exit, where normally execution would remain in the guest TD

The Intel TDX module implements this as follows: 10

• The Intel TDX module enforces guest TD CR4.MCE to 1.

• The Intel TDX module sets bit 18 (MC) of the TD VMCS Exception Bitmap to 1.

On VM exit, if the exit reason is Exception or NMI (0), the Intel TDX module reads the TD VMCS’ VM-exit interruption
information to determine if the VM exit was caused by a #MC (18). If so, the Intel TDX module puts the TD in a FATAL
state, preventing further TD entries. The TDX module then completes the TD exit flow. The TDH.VP.ENTER outputs 15

indicate the status as TDX_NON_RECOVERABLE_TD_FATAL and provides the exit reason, exit qualification and exit
interruption information.

Note: The TDX module does not analyze the MCE to determine its source – whether it’s a memory integrity violation
or some other event. The TDX module does not read nor write the IA32_MC* MSRs.

Based on the TDH.VM.ENTER outputs (exit reason etc.), the host VMM is expected to understand that a Machine Check 20

event happened, and that the TD should be torn down.

The host VMM can reclaim memory assigned to TDs in a FATAL state using the normal TD teardown flow (TDH.VP.FLUSH,
TDH.MNG.VPFLUSHDONE, TDH.PHYMEM.CACHE.WB, TDH.MNG.KEY.FREEID, TDH.PHYMEM.PAGE.RECLAIM).

Note: The host VMM should not attempt to read the poisoned memory locations. Doing so results in a poison
consumption and an MCE in the VMM context. 25

TD Teardown

TDX
Module

TD VCPU

Host VMM

1. Examine exit reason (0: Exception
or NMI)

2. Examine interruption information
(vector 18: #MC)

3. Mark TD as FATAL

TDH.VP.FLUSH
TDH.MNG.VPFLUSHDONE
TDH.PHYMEM.CACHE.WB
TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM

TD exit

VM
exit

Write to TD
Private Page

Read attempt
from TD

Private Page

Integrity violation
detected, causing machine

check event

Determine that the
TD encountered a

machine check event

Figure 16.3: Example of Handling an MCE in a TD Context

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 156 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

16.5.2. EMCA2: Machine Check Events Delivered as an MSMI

 Determining CPU Support

Host VMM enabling of EMCA2 is only recommended with CPUs that support MCE during non-root SEAM mode, by
IA32_MCG_STATUS (MSR 0x17A) SEAM_NR bit (12). Support of this bit is enumerated by IA32_MCG_CAP (MSR 0x179)
bit 12. 5

 Pending MSMI Causing a TD Exit

If EMCA2 is enabled, the machine check event is delivered as an MSMI. With LMCE enabled, the MSMI is delivered only
to the logical processor that consumed the poisoned cache line.

Contrary to non-TDX operation, an SMI that occurs in a TD guest does not immediately invoke the SMM handler. Instead,
an SMI causes a VM exit to the Intel TDX module and remains pending. 10

On VM exit, if the exit reason is Other SMI (6), the Intel TDX module reads the TD VMCS’ exit qualification bit 0 to
determine if the VM exit was caused by a Machine Check that was mutated into an SMI. If so, the Intel TDX module puts
the TD in a FATAL state, preventing further TD entries. The TDX module then completes the TD exit flow. The
TDH.VP.ENTER outputs indicate the status as TDX_NON_RECOVERABLE_TD_FATAL and provides the exit reason and exit
qualification. 15

Note: The TDX module does not analyze the MCE to determine its source – whether it’s a memory integrity violation
or some other event.

 Operation Following TD Exit

Once TD exit has completed and the CPU is no longer in SEAM mode, the pending SMI event is taken and the platform’s
SMM handler is invoked. On RSM, the SMM handler injects an #MC to the host VMM. 20

If the CPU supports IA32_MCG_STATUS[SEAM_NR], the host VMM’s #MC handler can determine that the error happened
during guest TD execution if both conditions below are true:

• The error is recoverable, as indicated by IA32_MCi_STATUS[PCC] == 0, and

• The error happened while executing in a TD, as indicated by IA32_MCG_STATUS[SEAM_NR].

The #MC handler should then clear IA32_MCG_STATUS[SEAM_NR]; the CPU doesn’t clear it. 25

If the #MC handler determines that the error happen while executing in the guest TD, then based on the TD exit status
the host VMM can then tear down the affected guest TD.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 157 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

TD Teardown

TDX
Module

TD VCPU

Host VMM

1. Examine exit reason (6: Other SMI)
2. Examine exit qualification (bit 0: 1)
3. Mark TD as FATAL

TD exit

SMI converted to a
VM exit

Write to TD
Private Page

Read attempt
from TD

Private Page

Integrity violation
detected, causing MSMI

event

Read
IA32_MCG_STATUS[

SEAM_NR] to
determine if MCE

happened during TD
execution

SMM
Handler

Handle SMI,
inject #MC event

to host VMM

SMM
entry

RSM

#MC

SMI delivered immediately
following SEAMRET TDH.VP.FLUSH

TDH.MNG.VPFLUSHDONE
TDH.PHYMEM.CACHE.WB
TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM

Figure 16.4: Example of Handling an MSMI in a TD Context

16.5.3. LMCE Disabled (Not Recommended)

If LMCE is disabled, then an MCE or MSMI is broadcast to all logical processors on the platform. Any TD that happens to
be running will be put in a FATAL state. 5

Note: The TDX module does not check the MCE details. Any MCE that causes a VM exit from a guest TD is considered
fatal to that TD.

16.5.4. Machine Check Events Delivered as a CMCI

CMCI is treated as a normal interrupt, causing an asynchronous TD exit; there’s no special handling.

On VM exit, if the exit reason is Exception or NMI (0), the Intel TDX module reads the TD VMCS’ VM-exit interruption 10

information to determine if the VM exit was caused by a #MC (18). If not, the Intel TDX module completes the TD exit
flow. The TDH.VP.ENTER outputs indicate the status as TDX_SUCCESS and provides the exit reason, exit qualification and
exit interruption information.

Based on the TDH.VM.ENTER outputs, the host VMM is expected to process the CMCI interrupt.

16.6. Handling MCE during Intel TDX Module Operation 15

Any machine check event that occurs during Intel TDX module operation (in SEAM root mode) forces an unbreakable
shutdown on a current LP. Shutdown also globally marks TDX as disabled – all subsequent SEAMCALL invocations on any
logical processor of the platform lead to a VMfailInvalid error.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 158 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

17. Side Channel Attack Mitigation Mechanisms

17.1. Checking and Virtualization of CPU Side Channel Protection Mechanisms Enumeration

17.1.1. IA32_ARCH_CAPABILITIES (MSR 0x10A)

On TDX module initialization (TDH.SYS.INIT and TDH.SYS.LP.INIT), the TDX module reads the IA32_ARCH_CAPABILITIES
MSR to check the value of multiple bits, indicating whether the CPU is vulnerable to a list of known attacks. The TDX 5

module virtualizes the IA32_ARCH_CAPABILITIES MSR, as seen by guest TDs. Some of the bits are configurable, to allow
TD migration between dissimilar platforms. For more information , refer to 11.9.2 and to the [ABI Spec].

Table 17.1: IA32_ARCH_CAPABILITIES MSR Checks and Virtualization

Bit(s) Name Native Value
Checked on TDX
Module Init

Virtual Value as Seen by Guest
TDs

Virtual Value Checked on
Migration Import

0 RDCL_NO 1 1 Must be 1

1 IBRS_ALL 1 1 Must be 1

2 RSBA 0 0 Must be 0

3 SKIP_L1DFL_VMENTRY 1 1 Must be 1

4 SSB_NO Same on all LPs Configurable by the host VMM –
can allow to be 1

May be 1 only if native is 1

5 MDS_NO 1 1 Must be 1

6 IF_PSCHANGE_MC_NO 1 1 Must be 1

7 TSX_CTRL Same on all LPs Configurable by the host VMM –
allowed to be 1 only if CPUID
configuration enables TSX

Must be 1 if CPUID
configuration enables TSX

8 TAA_NO 1 1 Must be 1

9 RESERVED Same on all LPs 0 Must be 0

10 MISC_PACKAGE_CTRLS 1 0 Must be 0

11 ENERGY_FILTERING_CTL 1 0 Must be 0

12 DOITM 1 1 Must be 1

13 SBDR_SSDP_NO 1 1 Must be 1

14 FBSDP_NO 1 1 Must be 1

15 PSDP_NO 1 1 1

16 RESERVED Same on all LPs 0 0

17 FB_CLEAR Same on all LPs 0 0

18 FB_CLEAR_CTRL Same on all LPs 0 0

19 RRSBA Same on all LPs Configurable by the host VMM –
can force to 1

Must be 1 if native is 1

20 BHI_NO Same on all LPs Configurable by the host VMM –
can allow to be 1

May be 1 only if native is 1

21 XAPIC_DISABLE_STATUS 1 1 1

22 RESERVED Same on all LPs 0 0

23 OVERCLOCKING_STATUS Same on all LPs 0 0

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 159 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Bit(s) Name Native Value
Checked on TDX
Module Init

Virtual Value as Seen by Guest
TDs

Virtual Value Checked on
Migration Import

24 PBRSB_NO Same on all LPs Configurable by the host VMM –
can allow to be 1

May be 1 only if native is 1

63:25 RESERVED Same on all LPs 0 0

17.1.2. CPUID

On TDX module initialization (TDH.SYS.INIT and TDH.SYS.LP.INIT), the TDX module reads some CPUID fields to check the
value of multiple bits, indicating whether the CPU is vulnerable to a list of known attacks. The TDX module virtualizes the
CPUID values, as seen by guest TDs. Some of the bits are configurable, to allow TD migration between dissimilar 5

platforms. For more information, refer to 11.10 and to the [ABI Spec].

Table 17.2: Checks and Virtualization of Side Channel Related CPUID Fields

Leaf Sub-
Leaf

Reg. Bit Name Verified on TDX
Module Init

Virtual Value as Seen by Guest
TDs

7 0 EDX 9 MCU_OPT 0 0

10 MD_CLEAR 1 1

13 TSX_FORCE_ABORT 0 0

26 IBRS and IBPB support 1 1

27 STIBP support 1 1

28 L1D_FLUSH support 1 1

29 IA32_ARCH_CAPABILITIES 1 1

30 IA32_CORE_CAPABILITIES 1 1

31 SSBD supported 1 1

2 EDX 0 PSFD supported 1 1

1 IPRED_CTRL 1 1

2 RRSBA_CTRL 1 1

3 DDPD Same on all LPs Configurable by the host VMM –
can allow to be 1

4 BHI_NO 1

5 MCDT_NO Same on all LPs Configurable by the host VMM –
can allow to be 1

17.2. Branch Prediction Side Channel Attacks Mitigation Mechanisms

Branch predictions cached by the CPU before entering a guest TD should not impact the behavior of that TD. The Intel 10

TDX module helps ensure that by applying CPU mechanisms to isolate the branch predictions of each guest TD from
branch predication done outside its execution.

In a partitioned TD, the L1 VMM is responsible for isolating indirect branch predictors (IBPs) between the L1 VMM and
L2 VMMs. The L1 VMM should issue an indirect branch prediction barrier (IBPB) command to the CPU, by writing the
IA32_PRED_CMD MSR with the IBPB bit set, immediately before L1→L2 VM entry and immediately after L2→L1 VM exit. 15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 160 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

17.3. Single-Step and Zero-Step Attacks Mitigation Mechanisms

17.3.1. Attacks Description

Single-step attacks, zero-step attacks and EPT fault attacks are techniques that provide an adversary with access to a class
of powerful, low-noise side channel attacks. They do so by exploiting control over hardware such as fine resolution APIC
timers and using TDX module memory management interface functions. 5

• Single-Step Attacks involve timing pin-based events such as interrupts, NMI, SMI and INIT to interrupt the guest TD
execution after every instruction executed in the guest TD. This allows the attacker to examine the state of the
machine following each instruction execution in interesting regions of code and use side channels to leak information
used by that region of code.

• EPT Fault Attacks involve causing EPT violations or EPT misconfigurations to infer the control flow of execution inside 10

a guest TD. Such control flow inference coupled with other side channel techniques, such as branch shadowing, can
be used as a side channel to leak information from the guest TD.

• Zero-Step Attacks involve using an EPT fault on targeted instructions in a guest TD with an intent to glean side
channel information from speculative execution past the faulting instruction. Such instructions are called “replay
anchors”, as every resumption of the TD execution leads to the same EPT fault and thus the same speculative 15

execution with the same stimulus to be replayed repeatedly, such that noise in side-channel observation of that
speculative execution can be reduced.

17.3.2. Mitigation by the TDX Module

The Intel TDX module provides mechanisms to help assist in mitigating single and zero step attacks:

 Single-Step Attack Detection and Mitigation 20

To help mitigate single-step attacks, the TDX module attempts to detect when a TD VCPU interruption by an interrupt,
NMI, SMI or INIT event may indicate a single step attack. An attack is suspected if the interruption happens too soon
after TD entry. Two methods are available for detection: instruction counting or heuristics.

Suspected Attack Detection Using Instruction Counting

This attack detection method is applicable if the TDX module implements Instruction-Count Single-Step Defense (ICSSD), 25

as indicated by TDX_FEATURES0.ICSSD, readable by the host VMM using TDH.SYS.RD*. It is used only if the TD is not
Perfmon-enabled, i.e., ATTRIBUTES.PERFMON is 0. An interruption is considered far enough from the last TD entry if
either of the following conditions is true:

• More than one instruction has been retired since the last TD entry, or

• More than one round of a REP-prefixed instruction has been executed since the last TD entry. 30

Instruction counting is considered the better method of the two. If the TD’s ATTRIBUTES.ICSSD bit is set, then the TD will
only be allowed to execute if instruction counting can be used.

Suspected Attack Detection Using Heuristics

If the instruction counting method can’t be used, either because it is not supported by the TDX module or because the
TD is Perfmon-enabled (ATTRIBUTES.PERFMON is 1), then an interruption is considered far enough from the last TD entry 35

if either of the following conditions is true:

• More than enough time (around 2 to 3 usec) has passed since the last TD entry, or

• RIP has changed by more than 32 bytes since the last TD entry, indicating that at least 2 instructions have been
retired.

Attack Mitigation 40

If a suspected attack is detected, the TDX module doesn’t do an immediate asynchronous TD exit. Instead, it provides
execution opportunities to the TD VCPU for a small random number of instructions, and only then it delivers the
interruption to the host VMM as an asynchronous TD exit.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 161 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 Zero-Step Attack Detection and Mitigation

Suspected Attack Detection

For zero step attacks, the Intel TDX module counts Secure EPT faults that result in a TD exit. After a pre-determined
number of such EPT violations occur on the same instruction, the TDX module starts tracking the GPAs that caused Secure
EPT faults. 5

Note: For a partitioned TD, EPT violations that happen in the context of L2 VMs may result in a TD exit or in an
L2→L1 exit. Only the TD exit cases are counted for the purpose of zero step attack detection.

Attack Mitigation

Once faulting GPA tracking starts, the TDX module prevents TD entry attempts to the VCPU if the previously faulting
private GPAs are not properly mapped in the Secure EPT. 10

17.3.3. Host VMM Expected Behavior

No change is required to the host VMM’s normal memory management behavior:

• The host VMM should block (TDH.MEM.RANGE.BLOCK) TD private pages and remove them
(TDH.MEM.PAGE.REMOVE) only after the guest TD has explicitly relinquished the ownership of that page through a
software protocol between the VMM and the TD. Such a protocol is implemented by the balloon driver mechanism 15

employed by guest Linux kernel to allow the host VMM to overcommit a guest VM assigned memory.

• The host VMM can block TD private pages and perform the following GPA-to-HPA mapping updates without
coordination with the guest TD:
o Physical page relocation (TDH.MEM.PAGE.RELOCATE)
o Mapping merge or split (TDH.MEM.PAGE.PROMOTE, TDH.MEM.PAGE.DEMOTE) 20

o Unblock (TDH.MEM.RANGE.UNBLOCK)

A guest TD VCPU attempt to access such pages while they are blocked results in an EPT violation TD exit. A well-
behaved host VMM should not re-enter the TD until the mapping operation is done. Failing to do so will immediately
result in another EPT violation and the TD VCPU won’t make any progress.

• The host VMM can block TD private pages for writing (TDH.EXPORT.BLOCKW) as part of TD migration. A guest TD 25

VCPU attempt to write to such pages while they are blocked for writing results in an EPT violation TD exit. A well-
behaved host VMM should not re-enter the TD VCPU before unblocking the page (TDH.EXPORT.UNBLOCKW). Failing
to do so will immediately result in another EPT violation and the TD VCPU won’t make any progress.

17.3.4. Guest TD Interface and Expected Guest TD Operation

The TDX module provides the guest TD with a notification facility, by which the guest TD can get notified when excessive 30

Secure EPT violations are raised by the same TD instruction. This mechanism allows the guest TD to employ its own
policies. The guest TD enables this notification by setting bit 0 of TDCS.NOTIFY_ENABLES field, using TDG.VM.WR. If this
bit is set, then when more than a pre-determined number of Secure EPT violations are detected on the same instruction,

• If the EPT violation happened when L1 was running (i.e., the TD is not partitioned, or L1 VMM was running) the TDX
module injects a #VE(ARCH) exception, with the EPT violation details. 35

• If the TD is partitioned, and the EPT violation happened when an L2 VM was running, the TDX module induces an
L2→L1 exit. The EPT violation details are provided in the exit information.

As part of its normal memory management behavior, the guest TD should track its GPA space allocation and should only
accept (TDG.MEM.PAGE.ACCEPT) PENDING pages that it expects to be added (TDH.MEM.PAGE.AUG) by the host VMM.
Failing to do so would make the TD vulnerable to attacks, e.g., the host VMM could zero-out a page by removing it and 40

adding a new one at the same GPA.

Thus, when the guest TD attempts to access a page and a #VE is raised indicating an EPT violation, the expected guest
TD’s #VE handler behavior is as follows:

• If this page is not known to the guest TD as owned by it, i.e., it was not added at TD build time (TDH.MEM.PAGE.ADD)
and has not been added dynamically (TDH.MEM.PAGE.AUG) and accepted (TDG.MEM.PAGE.ACCEPT), the guest TD 45

can accept this page normally.

• Otherwise, this may indicate an attack and the guest TD can employ its own policy. For example, the guest TD may
halt if this page is one of the pages expected to be resident when a security critical workload is executing.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 162 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Alternatively, it may signal the current running application so that the application would employ application-specific
defenses.

The guest TD’s #VE handler, as well as its virtual NMI handler, should not have any secrets that are susceptible to leakage.

The Intel TDX module does not provide protection against attacks when accessing shared pages. The guest TD should
treat shared memory access as communicating with a potential attacker, and not do any secure processing while 5

accessing to shared memory.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 163 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

18. General Aspects of the Intel TDX Interface Functions

18.1. Concurrency Restrictions and Enforcement

18.1.1. Explicit Concurrency Restrictions

Intel TDX functions may specify concurrency restrictions on accessing one or more resources, as described below. In
most cases, the restriction applies for the duration of the instruction execution. However, in some cases, the restriction 5

applies for a longer duration. For example, TDH.VP.ENTER requires shared access to the TD-scope logical control
structures TDR and TDCS, and it also requires shared access to TDVPS – the VCPU-scope logical control structure which
applies during logical TDX non-root operation through TD Exit.

Table 18.1: Concurrency Restrictions of Intel TDX Functions or Flows

Concurrency
Restriction

Description Examples

Exclusive
Access

During the period when an LP has an exclusive access
to a certain resource, any attempt by another LP to
concurrently execute an instruction that requires
either an exclusive or a shared access to the same
resource will fail.

• TDH.VP.CREATE requires an
exclusive access to the TDVPR
page.

Shared
Access

During the period when an LP has a shared access to a
certain resource, any attempt by another LP to
concurrently execute an instruction that requires an
exclusive access to the same resource will fail. No
such restriction exists on another LP that attempts to
concurrently execute an instruction that requires a
shared access.

• TDH.VP.CREATE requires a shared
access to the TDR page.

• TDH.PHYMEM.CACHE.WB requires
a shared access to the KOT.

Software is expected to comply with the specified concurrency restrictions. The Intel TDX module helps enforce them 10

(using internal locks) for proper TDX operation.

Table 18.2: Concurrency Restrictions Cross-Table

 Logical Processor Y

 Concurrency
Restriction

Exclusive Shared None

Logical
Processor
X

Exclusive Not Allowed Not Allowed Allowed

Shared Not Allowed Allowed Allowed

None Allowed Allowed Allowed

Intel TDX functions do not wait on a resource that requires an exclusive or a shared access. If the resource is busy, the
function fails immediately. 15

18.1.2. Implicit Concurrency Restrictions

In some cases, Intel TDX functions and whole flows (e.g., TD Entry through TD Exit) may have implicit exclusive or shared
access to resources. This means that the access restriction is implied by the architecture, but no direct enforcement is
made by the flow itself.

An important case is logical TDX non-root mode. TDH.VP.ENTER acquires shared locks on the TD’s TDR and TDCS control 20

structures and on the VCPU’s TDVPS control structure. These shared locks are released only on TD exit. Thus, during all
the time the LP is in the logical TDX non-root mode, including during TDCALL leaf functions, the LP has implicit shared
access to TDVPS, TDR and TDCS.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 164 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

18.1.3. Transactions

In some cases, Intel TDX module flows update some state as a transaction. They first read the current state, then do
some calculations and eventually attempt to update the state using an atomic operation (e.g., LOCK CMPXCHG) to check
that the state has not changed and set its new value. If that check fails, an Intel TDX module interface function may fail
with a TDX_OPERAND_BUSY status. 5

18.1.4. Concurrency Restrictions with Host Priority

 Overview

Host priority is a variant on explicit concurrency restrictions, where the host VMM side is given priority over guest TD
side. A new HOST_PRIORITY flag is added to locks protecting resources that may be accessed by the host VMM and a
guest TD. Both mutexes and shared/exclusive locks can be enhanced with host priority. 10

 Host-Side (SEAMCALL) Operation

The host VMM is expected to retry host-side operations that fail with a TDX_OPERAND_BUSY status. The host priority
mechanism helps guarantee that at most after a limited time (the longest guest-side TDX module flow) there will be no
contention with a guest TD attempting to acquire access to the same resource.

Lock operations process the HOST_PRIORITY bit as follows: 15

• A SEAMCALL (host-side) function that fails to acquire a lock sets the lock’s HOST_PRIORITY bit and returns a
TDX_OPERAND_BUSY status to the host VMM. It is the host VMM’s responsibility to re-attempt the SEAMCALL
function until is succeeds; otherwise, the HOST_PRIORITY bit remains set, preventing the guest TD from acquiring
the lock.

• A SEAMCALL (host-side) function that succeeds to acquire a lock clears the lock’s HOST_PRIORITY bit. 20

 Guest-Side (TDCALL) Operation

A TDCALL (guest-side) function that attempt to acquire a lock fails if HOST_PRIORITY is set to 1; a TDX_OPERAND_BUSY
status is returned to the guest. The guest is expected to retry the operation.

Guest-side TDCALL flows that acquire a host priority lock have an upper bound on the host-side latency for that lock; once
a lock is acquired, the flow either releases within a fixed upper time bound, or periodically monitor the HOST_PRIORITY 25

flag to see if the host is attempting to acquire the lock.

 Host Priority Busy Timeout

Once a host-side operation failed with a TDX_OPERAND_BUSY status, the host VMM should retry this operation until it
no longer fails with the same TDX_OPERAND_BUSY status. Otherwise, the guest TD may be stuck trying to acquire a lock
where the HOST_PRIORITY bit is set. 30

The TDX module implements a timeout mechanism for guest-side host priority lock acquisition failures. If the guest TD
loops on a TDCALL (guest-side) function that fails with TDX_OPERAND_BUSY due to HOST_PRIORITY value of 1 for more
than a configurable timeout, the TDX module initiates a trap-like TD exit with a TDX_HOST_PRIORITY_BUSY_TIMEOUT
status. It is expected that this will never happen with a properly operating host VMM. However, it is still possible for the
host VMM to resolve the lock contention by calling the SEAMCALL function that previously failed with a 35

TDX_OPERAND_BUSY status until successful, and then re-entering the guest TD by calling TDH.VP.ENTER with the
HOST_RECOVERABILITY_HINT bit cleared to 0. For details, see the [TDX Module ABI Spec].

The host priority timeout’s default value is 1 second. It is configurable between 10 msec to 100 seconds by using
TDH.MNG.WR to update TDCS.HP_LOCK_TIMEOUT.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 165 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

18.2. Memory and Resource Operands Access

Intel SDM, Vol. 3, 11.5.2 Precedence of Cache Controls
Intel SDM, Vol. 3, 11.11 Memory Type Range Registers (MTRRs)
Intel SDM, Vol. 3, 11.12 Page Attribute Table (PAT)

18.2.1. Overview 5

In this section, we discuss Intel TDX functions’ memory and resource operands access from the following perspectives:

• Access semantics (shared, private, opaque and hidden)

• Explicit vs. implicit accesses

• Operand address specification (host-physical address, guest-physical address)

• Actual memory access (read or write) vs. memory reference 10

 Access Semantics

Access semantics, as used in this document, convey the intended purpose of the access. Intel TDX functions are designed
to use one of the following access semantics when accessing their memory and/or platform resource parameters:

Table 18.3: Access Semantics Definition

Access
Semantics

Description Intel TDX Module Usage

Shared Memory is accessed using one of the shared HKIDs (in
the range 0 to MAX_MKTME_HKIDS - 1). This is mostly
used for memory parameters accessed by the VMM.

• Source page of
TDH.MEM.PAGE.ADD

• Memory operands of TDCALL leaf
functions

Private The memory is mapped in the TD’s private GPA space.
Memory accessed using the target TD’s private HKID (in
the range MAX_MKTME_HKIDS - 1 to MAX_HKIDS - 1).

Such memory pages can be mapped in the TD’s private
GPA space.

• TD private pages

• Secure EPT pages

Opaque Memory is addressable by the host VMM, but its content
is not directly accessible to software or devices. Memory
is encrypted using either the Intel TDX global private key
(for TDR) or the TD’s ephemeral private key (for other
control structures).

• TDR

• TDCX

• TDVPR

Hidden Access is to an Intel TDX module internal resource. That
resource is not directly addressable as a memory
operand to software or devices.

• KOT

• WBT

 15

Note that on guest-side (TDCALL) functions, shared vs. private semantics is determined by the GPA provided as an
operand to the function. A specific TDCALL leaf function may or may not impose a private or a shared access – e.g.,
TDG.MEM.PAGE.ACCEPT requires a private GPA, while TDG.MR.REPORT may work with either a private GPA or a shared
GPA.

 Explicit vs. Implicit Access 20

An explicit memory access is defined as an access where the memory location is provided as explicit operand to an Intel
TDX function. The address may be provided directly in a GPR or indirectly via some address field in a software-accessible
memory data structure.

The HKID for accessing the memory can be inferred by the instruction – implicitly or explicitly from the explicitly provided
access. 25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 166 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

An implicit memory access is defined as an access to a platform physical memory address, or to some other resource,
that is not passed as an operand of an instruction (either directly or indirectly) but is implied by use of the Intel TDX
function. TDX architecture helps guarantee that an implicit access is performed correctly, or a proper error action is
taken.

 Memory Operand Address Specification 5

Host-side Intel TDX functions (SEAMCALL leaf functions) memory operands are specified using their host-physical address
(HPA), their guest-physical address (GPA), or when a GPA-to-HPA mapping is done (e.g., TDH.MEM.PAGE.ADD) by both
HPA and GPA.

In most cases, HPA for private or opaque access semantics must specified with all HKID bits set to 0.

Guest-side Intel TDX functions (TDCALL leaf functions) memory operands are specified using their guest-physical address 10

(GPA).

 Memory Type

18.2.1.4.1. Memory Type for Private and Opaque Accesses

The memory type for private and opaque access semantics, which use a private HKID, is WB.

18.2.1.4.2. Memory Type for Shared Accesses 15

Intel SDM, Vol. 3, 28.2.7.2 Memory Type Used for Translated Guest-Physical Addresses

The memory type for shared access semantics, which use a shared HKID, is determined as described below. Note that
this is different from the way memory type is determined by the hardware during non-root mode operation. Rather, it
is a best-effort approximation that is designed to still allow the host VMM some control over memory type.

• For shared access during host-side (SEAMCALL) flows, the memory type is determined by MTRRs. 20

• For shared access during guest-side flows (VM exit from the guest TD), the memory type is determined by a
combination of the Shared EPT and MTRRs.
o If the memory type determined during Shared EPT walk is WB, then the effective memory type for the access is

determined by MTRRs.
o Else, the effective memory type for the access is UC. 25

 Actual Memory Access vs. Memory Reference

In some cases, Intel TDX functions only reference memory – i.e., use its address, but no actual access is done.

In other cases, Intel TDX functions access the memory – i.e., perform read or write (but not execute) operations.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 167 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 Summary Table

Table 18.4: Memory Access Summary

Explicit/
Implicit

Intel TDX
Function

Access
Semantics

Address
Operand

HKID Derivation Memory
Type

Example

Explicit Host-Side
(SEAMCALL
Leaf)

Shared HPA Derived HPA
operand’s HKID
bits

From MTRR SRCPAGE operand of
TDH.MEM.PAGE.ADD

Private HPA TD’s HKID WB Target page of
TDH.PHYMEM.PAGE.RECLAIM

GPA TD’s HKID WB CHUNK operand of
TDH.MR.EXTEND

HPA and
GPA

TD’s HKID WB Target page of
TDH.MEM.PAGE.ADD

Opaque HPA TD’s HKID or Intel
TDX global HKID

WB TDVPR operand of
TDADDVPR

Guest-Side
(TDCALL
Leaf)

Shared GPA From Shared EPT From
Shared EPT
and MTRR

REPORTDATA operand of
TDG.MR.REPORT

Private GPA TD’s HKID WB Target page of
TDG.MEM.PAGE.ACCEPT

Implicit All Private/
Opaque

N/A TD’s HKID or Intel
TDX global HKID

WB TDCS access by
TDH.VP.ENTER

Hidden N/A N/A N/A KOT access by
TDH.MNG.KEY.CONFIG

18.3. Register Operands and CPU State Convention

Intel SDM, Vol. 3, 24.9 VM-Exit Information Fields 5

Intel SDM, Vol. 3, App. C VMX Basic Exit Reasons

18.3.1. Overview: Regular vs. Transition Leaf Functions

Intel TDX functions can be divided into transition functions and non-transition functions.

The non-transition functions are where SEAMCALL and TDCALL leaf functions behave as emulated CPU instructions from
the perspective of the host VMM and the guest TD, respectively. In those cases, the meaning of input and output register 10

operands is straightforward – similar to CPU instructions.

Transition cases are SEAMCALL(TDH.VP.ENTER) and TDCALL(TDG.VP.VMCALL) leaf functions, where a full cycle (until start
of the next instruction) includes TD transitions to the guest TD or host VMM, respectively, and back to the host VMM or
guest TD, respectively. In those cases, we look at the functions from the point of view of the caller. The meaning of input
and output register operands is more complicated. 15

Both cases are explained in the following sections and in the function reference sections.

18.3.2. Interface Function Leaf and Version Numbers

Interface functions are selected by a leaf number, provided in RAX. A version number enables supporting multiple
versions of the same function, if required for backward compatibility. Unless otherwise specified, the default version
number is 0. 20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 168 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Table 18.5: Intel TDX Interface Functions Leaf and Version Numbers in RAX

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL or TDCALL interface function

23:16 Version Number Selects the SEAMCALL or TDCALL interface function version

63:24 Reserved Must be 0

18.3.3. CPU State Preservation Convention

 TDH.VP.ENTER

TDH.VP.ENTER is a special case. In addition to explicit output operands discussed in 0 below, TDH.VP.ENTER is not 5

designed to preserve the extended CPU state that the TD may use according to TDCS.XFAM.

The host VMM is expected to save any state it needs before calling TDH.VP.ENTER. Details are provided in the
TDH.VP.ENTER leaf function definition (see the [TDX Module ABI Spec]).

 Other Interface Functions

All Intel TDX functions except TDH.VP.ENTER are designed to preserve the CPU state not explicitly defined as output. 10

Most interface functions preserve the AVX, AVX2 and AVX512 state. There are some exceptions, as described in the
specific function definitions (see the [ABI Spec]):

• TDG.VP.VMCALL may use some XMM registers to pass information to and from the host VMM.

• Some interface functions may reset AVX, AVX2 and AVX512 state and/or the APX state (if the CPU supports it) to the
architectural INIT state. 15

18.3.4. Transition Cases: TD Entry and Exit

 TD Entry: TDH.VP.ENTER

Transfer of Host VMM State to TD Guest

By design, in the case of a TDH.VP.ENTER leaf function that follows a previous TDG.VP.VMCALL, the RCX input parameter
of the previous TDG.VP.VMCALL is used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSI and R8 through 20

R15) and XMM registers whose value is transferred to the guest TD as-is. RAX is set to 0. See the TDG.VP.VMCALL
description in the [TDX Module ABI Spec].

The rest of the CPU state is restored from the TD VCPU state as saved on TDG.VP.VMCALL.

Output State (Back to the Host VMM)

On completion of TDH.VP.ENTER, a success – indicated by the ERROR bit (RAX[63]) being 0 – means that TD Entry into 25

the TD guest was successful. The TD guest ran for some time and then exited to the Intel TDX module. That exit can be
due to execution of TDG.VP.VMCALL) or due to an asynchronous exit (e.g., an EPT Violation). The Intel TDX module then
executes SEAMRET, transferring control to the instruction following TDH.VP.ENTER. In this case, the DETAILS field
(RAX[31:0]) format is designed to be the same as the VMX Exit reason.

If the completion of TDH.VP.ENTER (i.e., exit from the TD guest) was due to TDCALL(TDG.VP.VMCALL), then the RCX input 30

parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSI and
R8 through R15) and XMM registers whose value is passed to the host VMM as the output of TDH.VP.ENTER. RCX itself
is passed as-is to the output of TDH.VP.ENTER, and RAX[31:0] indicates the VMCALL exit reason (see below). See the
TDG.VP.VMCALL description in the [TDX Module ABI Spec].

If the completion of TDH.VP.ENTER was due to another reason, then other VMX-like Exit Information fields are provided 35

in other GPRs. Details are provided in the TDH.VP.ENTER leaf function definition (see the [TDX Module ABI Spec]).

By design, any GPRs and extended states that do not return values as described above are set to synthetic values. If the
VMM uses any of them, it must explicitly save them before TDH.VP.ENTER and restore them afterward.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 169 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

 TD Synchronous Exit: TDG.VP.VMCALL

Transfer of TD Guest State to Host VMM

In the case of a TDG.VP.VMCALL leaf function, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a
bitmap. It selects the GPRs (from RBX, RDX, RDI, RSI and R8 through R15) and XMM registers whose value is passed to
the host VMM as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER. 5

RAX provides TDH.VP.ENTER completion status (see above). All other CPU state components, including GPRs and XMM
registers not selected by RCX, are saved in TDVPS and set to fixed values (see the [TDX Module ABI Spec]). The value of
RCX itself is also saved to TDVPS.

Output State (Back to the Guest TD)

On completion of TDG.VP.VMCALL, a success – indicated by the ERROR bit (RAX[63]) being 0 – means that a SEAMRET 10

into the VMM was successful. The VMM ran for some and then executed TDH.VP.ENTER successfully (possibly on another
LP). The Intel TDX module executed VMRESUME successfully, transferring control to the instruction following TDCALL.

In this case, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from
RBX, RDX, RDI, RSI and R8 through R15) and XMM registers whose value reflects their state as input to TDH.VP.ENTER.
All other CPU states, including GPRs and XMM registers not selected by RCX, are restored from TDVPS. 15

18.4. Interface Function Completion Status

Intel TDX function completion status is returned in RAX. The status is structured to provide as many details to software
about error conditions as practically possible. At the same time, the status enables software to ignore details that it does
not need. Software may parse the completion status at three detail levels, as described below.

18.4.1. Least Detailed Level: Success/Warning/Error 20

At this simplest level, software can differentiate among three cases:

Table 18.6: Intel TDX Interface Functions Completion Status in RAX at the Least Detailed Level

RAX Value Meaning Description

0 Success Function completed successfully

Positive

(0x00000000_00000001
– 0x7FFFFFFF_FFFFFFFF)

Informational /
Warning

Function completed successfully, but with some informational
or warning code – e.g., TDH.PHYMEM.PAGE.RECLAIM of a TDCX
page that is already not VALID

Negative

(0x80000000_00000000
– 0xFFFFFFFF_FFFFFFFF)

Error Function aborted due to some error

18.4.2. Medium Detailed Level: Class, Recoverability and Fatality

At this level, software can understand the following information: 25

Table 18.7: Intel TDX Interface Functions Completion Status in RAX at the Medium Detailed Level

Name Description

CLASS Class of the function completion status

ERROR Indicates that the instruction was aborted due to error

NON_RECOVERABLE Recoverability hint – in case of error, indicates that the error is probably not
recoverable.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 170 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Name Description

FATAL Fatality hint – applicable only for SEAMCALL (TDH.*), indicates that the TD
entered a state where it can only be torn down.

HOST_RECOVERABILITY_HINT As a TDH.VP.ENTER output, indicates a TDCALL (TDG.*) that resulted in a trap-
like TD exit for which the host VMM needs to provide a recoverability hint in
the following TD entry.

As a TDCALL (TDG.*) output, indicates that the host VMM provided a hint that
the error is probably not recoverable.

18.4.3. Most Detailed Level

At this level, software can understand more details of an error that happened – e.g., if TDH.VP.ADDCX fails, software may
understand if it is due to a wrong number of TDCX pages or due to the VCPU already being initialized.

Refer to the [TDX Module ABI Spec] for a detailed definition of function completion status. 5

18.5. TD, VM and VCPU Identification

Table 18.8: TD and VCPU Identification

Identifier Format Details

TD Handle TDR HPA While residing in memory, a TD is uniquely identifier by the TDR page
HPA, serving as the TD handle input operand of TDX module host-side
interface functions. TDR HPA may change when, e.g., a TD is migrated.

TD Universally
Unique Identifier

256-bit
integer

TD_UUID serves as a globally unique TD identifier, randomly created
when the TD is created. TD_UUID survives migration.

VCPU Handle TDVPR HPA While residing in memory, an VCPU is uniquely identifier by the TDVPR
page HPA, serving as the VCPU handle input operand of TDX module
host-side interface functions. TDVPR HPA may change when, e.g., a TD
is migrated.

VCPU Index 16-bit integer A sequential VCPU index is assigned when the VCPU is created. VCPU
index survives migration.

VM Index 16-bit integer VM index identifies a VM within a TD.

• VM index 0 identifies the L1 VMM.

• VM indices higher than 0 identify L2 VMs.

18.6. Metadata Access Interface 10

18.6.1. Introduction

Metadata access interface is the architecture that allows representing TDX metadata, i.e., TD non-memory state and TDX
module control state, in a way that is independent of the way it is stored. It does this by hiding the memory format of
TDX control structures and allowing abstraction of data, as follows:

• The actual fields stored in the TD control structures may be different than their abstracted representation. E.g., a 15

TDVPS field may be provided as a GPA to TDH.VP.WR, while internally stored as an HPA.

• Access to a TD metadata field may trigger some operation. E.g., writing the TD VMCS’s “posted-interrupt descriptor
address” control triggers the verification of related control and may enable posted interrupt handling.

• TD metadata fields may be completely virtual, i.e., there may be no actual control structure fields represented by
them. 20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 171 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Metadata abstraction is used in the following cases:

• Read of TDX Module information by the host VMM and guest TD using the following SEAMCALL and TDCALL
functions:
o Single Field Read: TDH.SYS.RD, TDG.SYS.RD
o All Fields Read: TDH.SYS.RDALL, TDG.SYS.RDALL 5

• Read and write of TDR, TDCS and TDVPS control structures by the host VMM using the following SEAMCALL functions:
o Single Field Access: TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD, TDH.VP.WR

• Read and write of TDR, TDCS and TDVPS control structures by the guest TD using the following TDCALL functions:
o Single Field Access: TDG.VM.RD, TDG.VM.WR, TDG.VP.RD, TDG.VP.WR

• Read and write of TDR and TDCS a service TD using the following TDCALL functions: 10

o Single Field Access: TDG.SERVTD.RD, TDG.SERVTD.WR

• For TD migration, export and import of TD metadata by the host VMM using the following SEAMCALL functions:
o State Export: TDH.EXPORT.STATE.IMMUTABLE, TDH.EXPORT.STATE.TD, TDH.EXPORT.STATE.VP
o State Import: TDH.IMPORT.STATE.IMMUTABLE, TDH.IMPORT.STATE.TD, TDH.IMPORT.STATE.VP

18.6.2. Metadata Fields and Elements 15

Metadata fields are identified by field identifiers (MD_FIELD_ID). A field identifier contains a FIELD_CODE and other
information. A detailed description and MD_FIELD_ID values are defined in tables provided in the [TDX Module ABI Spec].
Metadata fields size may be up to 128 bytes.

For the purpose of metadata abstraction interface, fields are divided into multiple field elements; the size of each
element can be 1, 2, 4 or 8 bytes. Elements in a field have consecutive field codes, incremented by 1 or 2 as encoded in 20

by the field identifier’s INC_SIZE.

Figure 18.1 below shows an example of a SHA384 fields (e.g., TDCS.MRCONFIGID), whose size is 48B. When access using
the metadata access functions, this field is divided into six 8-byte elements.

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

FIELD_CODE X X + 1 X + 2 X + 3 X + 4 X + 5

Content Bytes 7:0 Bytes 15:8 Bytes 23:16 Bytes 31:24 Bytes 39:32 Bytes 47:40

Figure 18.1: Example of a 48 Byte TDCS.MRCONFIGID Field Composed of Six 8 Byte Elements

A detailed definition of a field identifier is provided in the [TDX Module ABI Spec]. 25

18.6.3. Arrays of Metadata Fields

Metadata fields can be organized in arrays. Figure 18.2 below shows an example of an array of 4 fields, each composed
of 1 element. In this case, fields in the array have consecutive field codes, incremented by 1 or 2 as encoded in by the
field identifier’s INC_SIZE field.

Array
Index

Field
Code

Content

0 X + 0 Array[0]

1 X + 1 Array[1]

2 X + 2 Array[2]

3 X + 3 Array[3]

Figure 18.2: Example of an Array of 4 Single-Element Fields 30

Figure 18.3 below shows an example where each field is composed of multiple elements. TDCS.RTMR is such a case. The
base FIELD_ID of each field in the array is incremented by the number of elements in each field, multiplied by 1 or 2 as
encoded in by the field identifier’s INC_SIZE field.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 172 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

Array
Index

Base
FIELD_ID

Element 0’s
FIELD_ID

Element 1’s
FIELD_ID

Element 2’s
FIELD_ID

Element 3’s
FIELD_ID

Element 4’s
FIELD_ID

Element 5’s
FIELD_ID

0 X + 0 X + 0 X + 1 X + 2 X + 3 X + 4 X + 5
1 X + 6 X + 6 X + 7 X + 8 X + 9 X + 10 X + 11
2 X + 12 X + 12 X + 13 X + 14 X + 15 X + 16 X + 17
3 X + 18 X + 18 X + 19 X + 20 X + 21 X + 22 X + 23

Figure 18.3: Example of an Array of Four 48 Byte TDCS.RTMR Fields, Each Composed of 6 Elements

18.6.4. Metadata Field Sequences

Field sequences contain one or more whole metadata fields, each composed of one or more elements. A sequence is
composed of a sequence header and one or more values.

• All fields in a sequence have the same CONTEXT_CODE, CLASS_CODE and field size (i.e., the same number of 5

elements and the same element size).

• Each element is a sequence occupies 8 bytes, even if its size is 1, 2 or 4 bytes. When a sequence is used as an output
of the TDX module, the upper bytes beyond the element size are zeroed out. When a sequence is used as an input
of the TDX module, the upper bytes are ignored.

• The FIELD_CODEs of each element in a sequence are consecutive. 10

• A field sequence may contain a write mask, which applies to each element value in the sequence. This is applicable
when the sequence is used for writing bit fields, e.g., VMCS execution controls.

• A sequence always contains whole fields, i.e., if a field is composed of multiple elements, the sequence contains all
of them.

A field sequence header contains the initial field code and other information – for a detailed description see the [TDX 15

Module ABI Spec].

←−−−−−−−−−−−−−−−−− 64 bits −−−−−−−−−−−−−−−−−→

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 0)

FIELD[0] / ELEMENT[0]

FIELD[0] / ELEMENT[1]

FIELD[0] / ELEMENT[LAST_ELEMENT_IN_FIELD]

Figure 18.4: Example of a Metadata Field Sequence with One Field Composed of Multiple Elements

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 173 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

←−−−−−−−−−−−−−−−−− 64 bits −−−−−−−−−−−−−−−−−→

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 1)

FIELD[0] / ELEMENT[0]

FIELD[0] / ELEMENT[1]

FIELD[0] / ELEMENT[LAST_ELEMENT_IN_FIELD]

FIELD[1] / ELEMENT[0]

FIELD[1] / ELEMENT[1]

FIELD[1] / ELEMENT[LAST_ELEMENT_IN_FIELD]

Figure 18.5: Example of a Metadata Field Sequence with 2 Fields Composed of Multiple Elements

←−−−−−−−−−−−−−−−−− 64 bits −−−−−−−−−−−−−−−−−→

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 7)

FIELD[0] / ELEMENT[0]

FIELD[1] / ELEMENT[0]

FIELD[2] / ELEMENT[0]

FIELD[7] / ELEMENT[0]

Figure 18.6: Example of a Metadata Field Sequence with 7 Fields Composed of a Single Element

←−−−−−−−−−−−−−−−−− 64 bits −−−−−−−−−−−−−−−−−→

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 3,
WRITE_MASK_VALID = 1)

WRITE_MASK

FIELD[0] / ELEMENT[0]

FIELD[1] / ELEMENT[0]

FIELD[2] / ELEMENT[0]

FIELD[3] / ELEMENT[0]

Figure 18.7: Example of a Metadata Field Sequence with a Write Mask 5

18.6.5. Metadata Lists

A metadata list is composed of a list header and one or more field sequences. The list header specifies list buffer size in
bytes and the number of sequences. Metadata lists are used, e.g., for exporting VCPU metadata by
THD.EXPORT.STATE.VP.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 174 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

List Header LIST_HEADER(SIZE = s, NUM_SEQUENCES = 3)

Multi-Field
Sequence

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 2)

FIELD[0] / ELEMENT[0]

FIELD[0] / ELEMENT[1]

FIELD[1] / ELEMENT[0]

FIELD[1] / ELEMENT[1]

FIELD[2] / ELEMENT[0]

 FIELD[2] / ELEMENT[1]

Single-Field
Sequence

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 0)

FIELD[0] / ELEMENT[0]

 FIELD[0] / ELEMENT[1]

Multi-Field
Sequence with a
Write Mask

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 3,
WRITE_MASK_VALID = 1)

WRITE_MASK

FIELD[0] / ELEMENT[0]

FIELD[1] / ELEMENT[0]

FIELD[2] / ELEMENT[0]

FIELD[3] / ELEMENT[0]

Figure 18.8: Metadata List Example

The metadata list header format is defined in the [TDX Module ABI Spec].

18.7. Interrupt Latency

18.7.1. Introduction

While the TDX module is running, no external events (interrupts, NMI, SMI, INIT) are recognized. To support proper 5

system responsiveness, the TDX module is designed to limit the latency from the time an external event occurs until the
host VMM gets control and may respond to that event.

Applicable cases are:

• Events that occur during local host-side flows (i.e., SEAMCALL interface functions except TDH.VP.ENTER).

• Events that occur during TD execution: from the beginning of TDH.VP.ENTER until completion of asynchronous TD 10

exit.

• Events that occur during local guest-side flows (i.e., TDCALL interface functions except TDG.VP.VMCALL).

• Events that occur during synchronous TD exit (i.e., TDG.VP.VMCALL).

18.7.2. Latency of the Intel TDX Interface Functions

There are infrequent cases where the latency of some interface functions may be longer than normal, as listed below. 15

• Host-side interface functions that are invoked a limited number of times during TDX module lifecycle. The interface
functions below are known to have longer than normal latencies:
o TDH.SYS.INIT
o TDH.SYS.LP.INIT
o TDH.SYS.KEY.CONFIG 20

• Host-side interface functions that are invoked a limited number of times during TD lifetime. The interface functions
below are known to have longer than normal latencies:
o TDH.MNG.KEY.CONFIG
o TDH.MNG.INIT

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 175 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

o TDH.VP.INIT

• TDH.VP.ENTER may have a long latency if the single/zero step attack mitigation (described in 17.3) is activated due
to a suspected attack.

18.7.3. Interruptible Host-Side Interface Functions

Some SEAMCALL flows, which have long execution times, are designed to be interruptible. Interruptible flows check for 5

pending events after doing some part of their work. E.g., TDH.EXPORT.MEM, which exports multiple 4KB pages, checks
for pending events after processing each page. Detection of pending interrupts, but not of other events (NMI, SMI, etc.),
is conditioned by the host VMM’s interrupt enabling status (i.e., RFLAGS.IF).

There are two types of interruptible host-side interface functions:

• Resumable functions store their intermediate state securely before returning to the host VMM on interruption. They 10

return a TDX_INTERRUPTED_RESUMABLE status. The host VMM is expected to call them again, indicating
resumption. Upon resumption, the resumable function continues from the point where it was interrupted.

• Restartable functions don’t store any intermediate state before returning to the host VMM on interruption. They
return a TDX_INTERRUPTED_RESTARTABLE status. The host VMM is expected to call them again. The resumable
function starts from scratch. 15

Intel Confidential – Disclosure under CITA #:INTC18010001_C (“CITA-C”)14

TDX
Module

Host
VMM

SEAMCALL
flow part 1

Check
pending
events

SEAMCALL
flow part 2

Check
pending
events

Interrupt
Handler

SEAMCALL
(resume)

Interrupt

Interrupt
latency

SEAMRET
Status =
TDX_INTERRUPTED_RESUMABLE

SEAMCALL Leaf Function

SEAMCALL

SEAMCALL
flow part

N-1

Check
pending
events

SEAMCALL
flow part

N

SEAMCALL Leaf Function

SEAMRET
Status =
TDX_SUCCESS

CPU delivers
the interrupt

Figure 18.9: Typical Interruptible & Resumable SEAMCALL Leaf Function

18.7.4. Interruptible Guest-Side Interface Functions

Description

Some TCALL flows, which have long execution times, are designed to be interruptible. Interruptible flows check for 20

pending events after doing some part of their work. E.g., TDG.MEM.PAGE.ACCEPT, which may need to initialize a 2MB
page, checks for pending events after initializing each 4KB block. Contrary to SEAMCALL flows, detection of pending
interrupts is not conditioned by the host VMM’s interrupt enabling status (i.e., RFLAGS.IF).

When a pending event is detected, the interruptible TDCALL flow stores its intermediate state securely and resumes the
guest TD. The guest virtual state, specifically RIP, is unmodified – except for the interruptibility state (STI Blocking and 25

MOVSS Blocking). Thus, upon resuming the guest TD, the CPU delivered the event. This causes an asynchronous TD exit.
The host VMM processes the TD exit information and processes the event, and then re-enters the TD. Since the guest
RIP has not changed, the same TDCALL is executed again and the interrupted TDCALL flow is resumed.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 176 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n
 Intel Confidential3

TDX
Module

Guest
TD

Host
VMM

TDCALL
flow

part 1

TDCALL

Check
pending
events

TDCALL
flow

part 2

Check
pending
events

Interrupt
Handler

TDH.VP.
ENTER

TD Entry
TDCALL

flow
part N-1

TDCALL

Check
pending
events

TDCALL
flow

part N

Async TD
Exit

VM Exit
(H/W
Interrupt)

VMRESUME VM Exit
(TDCALL)

VM Exit
(TDCALL)

VMRESUME
(advance RIP)

VMRESUME
(unmodified
RIP, STI and
MOVSS
blocking
cleared)

CPU delivers
the interrupt

Interrupt

Interrupt
latency

TD Exit
(H/W
Interrupt)

TDCALL Leaf Function TDCALL Leaf Function

Figure 18.10: Typical Interruptible TDCALL Leaf Function – Hardware Interrupt Example

Posted Interrupts

In case the pending event is a posted interrupt notification, the posted interrupt is delivered by CPU when the guest TD
is resumed, and the TD’s interrupt handler is called. 5

Note: Guest TD software should treat guest side interface functions as functions calls, not as a single TDCALL
instruction. The guest TD should not immediately precede an TDCALL to an interruptible leaf function with an
STI instruction or a MOV to SS instruction. If it does, it should be aware that virtual interrupts will not be blocked
until the completion of that TDCAL leaf function.

Intel Confidential17

TDX
Module

Guest
TD

Host
VMM

TDCALL Leaf Function

TDCALL

VM Exit
(TDCALL)

VMRESUME
(advance RIP)

VMRESUME
(unmodified RIP, STI
and MOVSS
Blocking cleared)

CPU delivers
posted interrupt

Notification
interrupt

Interrupt
Handler

TDCALL Leaf Function

Same
TDCALL

VM Exit
(TDCALL)

Interrupted Done

 10

Figure 18.11: Typical Interruptible TDCALL Leaf Function – Posted Interrupt Example

Guest-Visible State when a Guest-Side Function is Interrupted

Interruptible guest-side functions may be designed in either of the following ways:

• For some interface functions, their effect is not visible to the guest TD when the function is interrupted; it becomes
visible to the guest TD only when the whole function is completed. An example of such interface function is 15

TDG.MEM.PAGE.ACCEPT. An accepted 2MB page becomes accessible to the guest TD only when
TDG.MEM.PAGE.ACCEPT is successfully completed.

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-005US

October 2024 . Page 177 of 177

Se
ct

io
n

 2
:

In
te

l T
D

X
 M

o
d

u
le

 A
rc

h
it

ec
tu

re
 S

p
ec

if
ic

at
io

n

• Other interface functions are designed so they execute in parts, and each completed part is visible to the guest TD
as soon as it is completed. An example of such interface function is TDG.VP.INVGLA. It works on a list of GLAs; when
interrupted, is adjusts the list information provided in RDX to reflect the work completed so far.

18.8. DRNG Entropy Errors

Multiple TDX module interface functions may use the CPU’s digital random number generation (DRNG) facility, via the 5

RDSEED, RDRAND and PCONFIG instructions. Such interface functions may fail on entropy errors due to the inability of
the DRNG to generate random values at the requested rate, returning a TDX_RND_NO_ENTROPY or a similar status code.
This may happen where, e.g., software running on other LPs in the same package also executes RDSEED at a high rate.

 10

	Notices and Disclaimers
	Table of Contents
	SECTION 1: INTRODUCTION AND OVERVIEW
	1. About this Document
	1.1. Scope of this Document
	1.2. Document Organization
	1.3. Glossary
	1.4. Notation
	1.4.1. Requirement and Definition Commitment Levels

	1.5. References
	1.5.1. Intel Public Documents
	1.5.2. Intel TDX Public Documents

	2. Overview of Intel® Trust Domain Extensions
	2.1. Intel TDX Module Lifecycle
	2.1.1. Boot-Time Configuration and Intel TDX Module Loading
	2.1.2. Intel TDX Module Initialization, Enumeration and Configuration

	2.2. Guest TD Life Cycle Overview
	2.2.1. Guest TD Build
	2.2.2. Guest TD Execution
	2.2.3. Guest TD Management during its Run-Time

	2.3. Intel TDX Operation Modes and Transitions
	2.4. Guest TD Private Memory Protection
	2.4.1.1. Memory Encryption
	2.4.2. Address Translation

	2.5. Guest TD State Protection
	2.6. Intel TDX I/O Model (w/o TDX Connect)
	2.7. Measurement and Attestation
	2.8. Intel TDX Managed Control Structures
	2.9. Intel TDX Interface Functions
	2.9.1. Host-Side (SEAMCALL Leaf) Interface Functions
	2.9.2. Guest-Side (TDCALL Leaf) Interface Functions

	3. Software Use Cases
	3.1. Intel TDX Module Lifecycle
	3.1.1. Intel TDX Module Platform-Scope First-Time Initialization
	3.1.2. Intel TDX Module Shutdown and Update
	3.1.2.1. Intel TDX Module Reload
	3.1.2.2. Intel TDX Module Update

	3.2. TD Build
	3.3. TD Run Time
	3.3.1. Private Memory Management
	3.3.1.1. Dynamic Page Addition (Shared to Private Conversion)
	3.3.1.2. Dynamic Page Removal (Private to Shared Conversion)
	3.3.1.3. Page Promotion (Mapping Merge)
	3.3.1.4. Page Demotion (Mapping Split)
	3.3.1.5. GPA Range Unblock

	3.3.2. Guest TD Execution
	3.3.2.1. TD VCPU First-Time Invocation
	3.3.2.2. TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-Entry
	3.3.2.3. TD VCPU Entry, Exit on Asynchronous Event and Re-Entry
	3.3.2.4. Guest-Side Functions
	3.3.2.5. TD VCPU Rescheduling (Migration to Another LP)

	3.4. TD Destruction

	SECTION 2: INTEL TDX MODULE ARCHITECTURE SPECIFICATION
	4. Intel TDX Module Lifecycle: Enumeration, Initialization and Shutdown
	4.1. Overview
	4.1.1. Intel TDX Module Lifecycle State Machine
	4.1.2. Platform Compatibility and Configuration Checking
	4.1.2.1. Overview
	4.1.2.2. CPU Configuration
	4.1.2.3. MSR Sampling and Checks
	4.1.2.4. CPUID Sampling, Checks and Enumeration

	4.1.3. Physical Memory Configuration Overview
	4.1.3.1. Intel TDX ISA Background: Convertible Memory Ranges (CMRs)
	4.1.3.2. TDMRs and PAMT Arrays Configuration
	4.1.3.2.1. Background: Reserved Areas within TDMRs
	4.1.3.2.2. Background: Three PAMT Areas
	4.1.3.2.3. Configuration Rules

	4.2. Intel TDX Module Initialization Interface
	4.2.1. Global Initialization: TDH.SYS.INIT
	4.2.2. LP-Scope Initialization: TDH.SYS.LP.INIT
	4.2.3. TDX Module Enumeration: TDH.SYS.RD/RDALL and TDH.SYS.INFO
	4.2.4. TDH.SYS.CONFIG: TDX Module Global Configuration
	4.2.5. TDH.SYS.KEY.CONFIG: Key Configuration (per Package)
	4.2.6. State Restoration after TD-Preserving TDX Module Update: TDH.SYS.UPDATE

	4.3. TDMR and PAMT Initialization
	4.4. Intel TDX Module Shutdown
	4.4.1. Shutdown Initiated by the Host VMM (as Part of Module Update)
	4.4.2. Shutdown Initiated by a Fatal Error

	4.5. Intel TDX Module Handoff Data

	5. Memory Encryption Key Management
	5.1. Objectives
	5.2. Background: HKID Space Partitioning
	5.3. WBINVD Domains
	5.3.1. Overview
	5.3.2. Host VMM Enumeration of WBINVD Domains
	5.3.3. Enumerating Non-Package WBINVD Domains Support

	5.4. Key Management Tables
	5.5. Combined Key Management State
	5.6. Key Management Sequences
	5.6.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data
	5.6.2. TD Creation, Keys Assignment and Configuration
	5.6.3. TD Keys Reclamation, TLB and Cache Flush

	6. TD Non-Memory State (Metadata) and Control Structures
	6.1. Overview
	6.1.1. Opaque vs. Private vs. Shared Control Structures
	6.1.2. Scope of Control Structures

	6.2. TD-Scope Control Structures
	6.2.1. TDR (Trust Domain Root)
	6.2.2. TDCS (Trust Domain Control Structure)

	6.3. TD VCPU-Scope Control Structures
	6.3.1. Trust Domain Virtual Processor State (TDVPS)
	6.3.1.1. Physical View of TDVPS: TDVPR/TDCX
	6.3.1.2. Logical View of TDVPS
	VMX (with TDX ISA Extensions) Standard Control Structures
	Proprietary Fields

	6.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structures

	6.4. TD Non-Memory State (Metadata) Access Functions
	6.5. Concurrency Restrictions and Enforcement

	7. TD Life Cycle Management
	7.1. TD Life Cycle State Machine
	7.2. OP_STATE: TD Operation Secondary-Level State Machine
	7.3. TD Creation and Configuration Sequence
	7.4. VCPU Creation and Initialization Sequence
	7.5. TD Teardown Sequence

	8. Physical Memory Management
	8.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTs)
	8.2. TDMR Details
	8.3. PAMT Details
	8.3.1. PAMT Entry
	8.3.2. PAMT Blocks and PAMT Arrays
	8.3.3. PAMT Page Types
	8.3.4. PAMT Hierarchy

	8.4. Overview of Memory Protection using Access Control Table (ACT)
	8.5. Adding Physical Pages
	8.5.1. Future Platforms: Preventing Cache Line Aliasing by Flushing Cache Lines
	8.5.2. Adding Pages not Mapped to the Guest TD
	8.5.3. Adding Pages and Mapping to the Guest TD’s GPA

	8.6. Reclaiming Physical Pages
	8.6.1. Platforms not Using ACT: Required Cache Flush and Initialization by the Host VMM
	Cache Flush (Future Platforms)
	Page Initialization

	8.6.2. Platforms Using ACT: Required Cache Flush, Initialization and ACT Update
	8.6.2.1. ACT Platforms: Overview of the Host VMM Operation
	8.6.2.2. ACT Platforms: Overview of the TDX Module Operation
	8.6.2.2.1. Page Write Over and Cache Flush
	8.6.2.2.2. Marking the Page as Shared

	8.6.2.3. ACT Platforms: Page Reclamation Sequence for Large Pages

	8.6.3. Reclaiming Pages not Mapped to the Guest TD’s GPA Space
	8.6.3.1. Reclaiming TD Pages in TD_TEARDOWN State
	8.6.3.2. Reclaiming PT_TR Pages in the TD_KEYS_CONFIGURED State

	8.6.4. Reclaiming Physical Pages as Part of TD Private Memory Management

	9. TD Private Memory Management
	9.1. Overview
	9.2. Secure EPT Entry
	9.2.1. Overview
	9.2.2. SEPT Entry State Diagrams

	9.3. Secure EPT Walk
	9.4. Secure EPT Induced TD Exits
	9.5. Secure EPT Induced Exceptions
	9.5.1. #PF Exceptions Related to GPA Reserved Bits
	9.5.2. EPT Violation Mutated into #VE

	9.6. Secure EPT Concurrency
	Host-Side (SEAMCALL) Interface Functions
	Guest-Side (TDCALL) Interface Functions

	9.7. Introduction to TLB Tracking
	Conditions when TLB Tracking is not Required
	GPA Range TLB Tracking Sequence

	9.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD
	9.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD
	9.10. Dynamically Adding TD Private Pages
	9.10.1. Overview
	9.10.2. PENDING Page Addition by the Host VMM: TDH.MEM.PAGE.AUG
	9.10.3. PENDING Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT
	9.10.3.1. Description
	9.10.3.2. TDG.MEM.PAGE.ACCEPT Concurrency
	Guest-Side
	Host-Side

	9.10.4. Guest TD (L1) Access to a PENDING Page

	9.11. Page Mapping Resize: Merge and Split
	9.11.1. Overview: Non-Blocking Mapping Resize
	9.11.2. Page Merge: TDH.MEM.PAGE.PROMOTE
	Blocking and TLB Tracking
	Promotion

	9.11.3. Page Split: TDH.MEM.PAGE.DEMOTE
	Blocking and TLB Tracking
	Demotion

	9.12. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE
	9.13. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE
	9.14. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE
	9.15. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK

	10. TD VCPU
	10.1. VCPU Transitions
	10.1.1. Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entry
	10.1.2. Synchronous TD Exit and Subsequent TD Entry
	10.1.3. VCPU Activity State Machine
	LAST_TD_EXIT
	CURR_VM

	10.2. TD VCPU TLB Address Space Identifier (ASID)
	10.2.1. TD ASID Components
	10.2.2. INVEPT by the Host VMM for Managing the Shared EPT

	10.3. VCPU-to-LP Association
	10.3.1. Non-Coherent Caching
	10.3.2. Intel TDX Functions for VCPU-LP Association and Dis-Association
	10.3.3. Performance Considerations

	11. CPU Virtualization (Non-Root Mode Operation)
	11.1. Overview: Virtualization vs. Paravirtualization of CPU Features and #VE
	11.1.1. Architectural x86 Virtualization
	11.1.2. Paravirtualization and #VE
	11.1.3. #VE for x86 Behavior not Supported by TDX
	11.1.4. #VE for TDX-Specific Behavior

	11.2. CPU Virtualization Configuration and Control
	11.2.1. Host VMM Configuration of CPU Virtualization
	11.2.2. Guest TD Control of CPU Virtualization

	11.3. Initial Virtual CPU State
	11.3.1. Overview
	11.3.2. Initial State of Guest TD GPRs
	11.3.3. Initial State of CRs
	11.3.4. Initial State of Segment Registers
	11.3.5. Initial State of MSRs

	11.4. Guest TD Run Time Environment Enumeration
	11.5. CPU Mode Restrictions
	11.6. Instructions Restrictions
	11.6.1. Unconditionally Blocked Instructions
	11.6.1.1. Instructions that Cause a #UD Unconditionally
	11.6.1.2. Instructions that Cause a #VE Unconditionally to Allow Paravirtualization
	11.6.1.3. Instructions that Cause a #UD or #VE Depending on Feature Enabling, to Allow Paravirtualization
	11.6.1.4. Other Cases of Unconditionally Blocked Instructions

	11.6.2. Conditionally Blocked Instructions
	11.6.3. Other Exception Cases

	11.7. Extended Feature Set
	11.7.1. Allowed Extended Features Control
	11.7.2. Extended State Isolation
	11.7.3. Extended Features Execution Control

	11.8. CR Handling
	11.8.1. CR0
	11.8.2. CR4
	11.8.2.1. CR4 Bits which are Architecturally Virtualized
	11.8.2.2. CR4.MCE (Bit 6) Virtualization
	Default Virtualization as Fixed-1
	Architectural, Non-Paravirtualized Virtualization
	Architectural, Paravirtualized Virtualization

	11.8.2.3. CR4 Bits which are Non-Architecturally Virtualized

	11.9. MSR Virtualization
	11.9.1. Overview
	11.9.2. MSR Virtualization Configuration by the Host VMM
	Implication on TD Migration

	11.9.3. MSR Virtualization Control by the Guest TD
	#VE Reduction and Feature Paravirtualization Control

	11.10. CPUID Virtualization
	11.10.1. CPUID Configuration by the Host VMM
	11.10.1.1. Fine Grained Control of CPU Extended Features Enumeration
	11.10.1.2. Configurable Family/Model/Stepping (CPUID(1).EAX) Enumeration

	11.10.2. Guest TD Control of CPUID Virtualization
	11.10.2.1. Guest TD Control of Specific CPUID Leaves and Sub-Leaves Virtualization
	11.10.2.1.1. #VE Reduction and Feature Paravirtualization Control
	11.10.2.1.2. Topology Virtualization
	11.10.2.1.3. CPUID(2) (Cache and TLB Information) Virtualization

	11.10.2.2. Per-VCPU Guest TD Control of #VE on CPUID
	11.10.2.2.1. Per-VCPU #VE for all CPUID Leaves and Sub-Leaves
	11.10.2.2.2. Per-VCPU #VE for Specific CPUID Leaves and Sub-Leaves

	11.10.3. CPUID Configuration & Checks at Guest TD Migration

	11.11. Platform Topology Virtualization
	11.11.1. Configuration by the Host VMM
	11.11.2. Enabling by the Guest TD
	11.11.3. Virtual Topology Information Provided to the Guest TD
	11.11.3.1. Derivation of CPUID(0xB) Virtual Values from CPUID(0x1F) Configuration

	11.12. Interrupt Handling and APIC Virtualization
	11.12.1. Virtual APIC Mode
	11.12.2. Virtual APIC Access by Guest TD
	11.12.3. Implicit APIC Write #VE
	11.12.4. Posted Interrupts
	Security Implications of Posted Interrupts
	TD Migration Implications of Posted Interrupts
	TD Partitioning Implications of Posted Interrupts

	11.12.5. Pending Virtual Interrupt Delivery Indication
	11.12.6. Cross-TD-VCPU IPI
	11.12.7. Virtual NMI Injection

	11.13. Virtualization Exception (#VE)
	11.13.1. Virtualization Exception Information
	11.13.2. Architectural #VE Injection due to EPT Violations
	11.13.3. Non-Architectural #VE Injected by the Intel TDX Module

	11.14. GPA Space, Secure and Shared Extended Page Tables (EPTs)
	11.14.1. GPA Space Size Configuration and Virtualization
	11.14.1.1. Overview of the GPA Space Size Virtualization Modes
	11.14.1.2. MAXPA (CPUID(0x80000008).EAX[7:0]) Virtualization
	11.14.1.3. MAXGPA (CPUID(0x80000008).EAX[23:16]) Virtualization
	11.14.1.4. GPA Space Implications of MAXPA and MAXGPA Virtualization
	11.14.1.5. Exceptions Related to GPA Reserved Bits

	11.14.2. EPT Violation Mutated into #VE

	11.15. Prevention of TD-Induced Denial of Service
	11.15.1. Bus Lock Detection by the TD OS
	11.15.2. Impact of MSR_MEMORY_CTRL (MSR 0x33)
	11.15.3. Bus Lock TD Exit
	Bus Lock VM Exit Reason (74)
	Bus Lock Detected Bit (26) in VM Exit Reason

	11.15.4. Instruction Timeout TD Exit

	11.16. Time Stamp Counter (TSC)
	11.16.1. TSC Virtualization
	11.16.2. TSC Deadline

	11.17. KeyLocker (KL)
	11.17.1. KeyLocker Virtualization
	11.17.2. Host VMM KeyLocker State Restoration after TDH.VP.ENTER

	11.18. Software Code Prefetch
	11.19. User MSR
	11.20. FRED
	11.21. Supervisor Protection Keys (PKS)
	11.22. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption (MKTME)
	11.22.1. TME Virtualization
	11.22.2. MKTME Virtualization

	11.23. Virtualization of Machine Check Capabilities and Controls
	11.24. Transactional Synchronization Extensions (TSX)
	11.25. Management of Idle and Blocked Conditions
	11.25.1. HLT Instruction
	11.25.2. PAUSE Instruction and PAUSE-Loop Exiting
	11.25.3. MONITOR and MWAIT Instructions
	11.25.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT Instructions

	11.26. Other Changes in SEAM Non-Root Mode
	11.26.1. CET
	11.26.2. Tasking

	12. Measurement and Attestation
	12.1. Overview of the Attested Measurements and Configuration Information
	12.2. TD Measurement
	12.2.1. MRTD: Build-Time Measurement Register
	12.2.2. RTMR: Run-Time Measurement Registers
	12.2.3. SERVTD_HASH: Service TDs Measurement Register

	12.3. TD Measurement Reporting
	12.4. Local Report Verification
	Local Report Verification Failure

	12.5. Creating Attestations
	12.5.1. Overview
	12.5.2. Intel SGX-Based Attestation
	EVERIFYREPORT Failure
	12.5.2.1. Quote Signing Key for SGX-Based Attestation

	12.6. TCB Recovery
	12.6.1. TD Preserving TDX Module Update Implications

	13. Service TDs
	13.1. Overview
	Typical Unsolicited Service TD Binding and Metadata Access Use Case

	13.2. Service TD Binding
	13.2.1. Service TD Binding Table in the Target TD’s TDCS
	13.2.2. SERVTD_BINDING_STATE: Service TD Binding State
	13.2.3. SERVTD_TYPE: Service TD Binding Type
	13.2.4. SERVTD_ATTR: Service TD Binding Attributes
	13.2.4.1. INSTANCE_BINDING: Class vs. Instance Binding
	Class Binding (INSTANCE_BINDING == 0)

	13.2.4.2. MIGRATABLE_BINDING: Binding Migratability
	Non-Migratable Binding (MIGRATABLE_BINDING == 0)

	13.2.4.3. IGNORE_TDINFO: TDINFO Component Filtering

	13.2.5. SERVTD_UUID: Service TD Instance Identifier
	13.2.6. Service TD’s Binding SERVTD_INFO_HASH Calculation
	13.2.7. Target TD’s SERVTD_HASH Calculation
	13.2.7.1. SERVTD_HASH Calculation on Finalization of TD Build
	13.2.7.2. SERVTD_HASH Calculation on TD Import
	13.2.7.3. SERVTD_HASH Calculation Method

	13.2.8. TDH.SERVTD.PREBIND: Pre-Binding a Service TD
	Inputs
	Operation

	13.2.9. TDH.SERVTD.BIND: Binding a Service TD
	Binding Scenarios
	Inputs
	Outputs
	Operation

	13.2.10. Binding Handle

	13.3. Target TD Metadata Access by a Service TD
	13.3.1. TDG.SERVTD.RD/WR: Metadata Read/Write Interface Functions
	Inputs
	Output
	Operation

	13.3.2. Metadata Access Error Handling
	Local Errors (in the Service TD Context)
	Cross-TD Errors

	13.3.3. Cross-TD Concurrency Handling: Maintaining Host-Side Priority
	13.3.3.1. Problem Description
	13.3.3.2. Solution

	14. I/O Support (without TDX Connect)
	14.1. Overview
	14.2. Paravirtualized I/O
	14.3. MMIO Emulation and Emulated Devices
	14.4. Direct Device Assignment (DDA) and SRIOV
	14.5. IOMMU – DMA Remapping
	14.6. Shared Virtual Memory (SVM)

	15. Debug and Profiling Architecture
	15.1. On-TD Debug
	15.1.1. Overview
	15.1.2. Generic Debug Handling
	15.1.2.1. Context Switch
	15.1.2.2. IA32_DEBUGCTL (MSR 0x1D9) Virtualization

	15.1.3. Debug Feature-Specific Handling

	15.2. On-TD Performance Monitoring
	15.2.1. Overview
	15.2.2. Performance Monitoring CPUID Virtualization
	15.2.3. Performance Monitoring MSRs
	15.2.3.1. Overview

	15.2.4. Performance Monitoring Interrupts (PMIs)
	15.2.5. Perfmon Events Filtering
	15.2.5.1. Enumeration
	15.2.5.2. Background
	15.2.5.3. Event Filtering Configuration and the Filtering Algorithm
	Basic Event Filtering
	Enhance Event Filtering

	15.2.5.4. Guest TD Perspective
	15.2.5.5. Statistics

	15.3. Off-TD Debug
	15.3.1. Modifying Debuggable TD’s State, Controls and Memory
	15.3.2. Preventing Guest TD Corruption of DRs

	15.4. Platform-Level Profiling
	15.4.1. Profiling by IA32_FIXED_CTR1 and IA32_FIXED_CTR2

	15.5. Uncore Performance Monitoring Interrupts (Uncore PMIs)

	16. Memory Integrity Protection and Machine Check Handling
	16.1. Overview
	16.2. TDX Memory Integrity Protection Background
	16.2.1. Platforms not Using ACT for Memory Protection
	16.2.1.1. Non-ACT Platforms Memory Integrity Protection
	16.2.1.1.1. Non-ACT Platforms: Cryptographic Integrity (Ci) vs. Logical Integrity (Li), MAC and TD Owner
	16.2.1.1.2. Non-ACT Platforms: MAC and TD Owner Update on Memory Writes
	16.2.1.1.3. Non-ACT Platforms Memory Reads: Integrity and TD Owner Bit Checks, Poison Generation and Poison Consumption

	16.2.1.2. Non-ACT Platforms Memory Writes: No Integrity nor TD Owner Bit Checks

	16.2.2. Platforms Using ACT for Memory Integrity Protection
	16.2.2.1. ACT Platforms: Logical Integrity (Li) Provided by an Access Control Table (ACT)
	16.2.2.2. ACT Platforms: TD Owner Bit Update on Page Conversion between Shared and Private
	16.2.2.3. ACT Platforms Memory Access: TD Owner Bit Checks, Poison Generation and Poison Consumption

	16.2.3. Memory Integrity Error Logging, Machine Checks and Unbreakable Shutdowns

	16.3. Machine Check Architecture (MCA) Background
	16.3.1. Uncorrected Machine Check Error
	16.3.2. Corrected Machine Check Interrupt (CMCI)
	16.3.3. Machine Check System Management Interrupt (MSMI)
	16.3.4. Local Machine Check Event (LMCE)

	16.4. Recommended MCA Platform Configuration for TDX
	16.5. Handling Machine Check Events during Guest TD Operation
	16.5.1. Machine Check Events Delivered as an #MC Exception
	16.5.2. EMCA2: Machine Check Events Delivered as an MSMI
	16.5.2.1. Determining CPU Support
	16.5.2.2. Pending MSMI Causing a TD Exit
	16.5.2.3. Operation Following TD Exit

	16.5.3. LMCE Disabled (Not Recommended)
	16.5.4. Machine Check Events Delivered as a CMCI

	16.6. Handling MCE during Intel TDX Module Operation

	17. Side Channel Attack Mitigation Mechanisms
	17.1. Checking and Virtualization of CPU Side Channel Protection Mechanisms Enumeration
	17.1.1. IA32_ARCH_CAPABILITIES (MSR 0x10A)
	17.1.2. CPUID

	17.2. Branch Prediction Side Channel Attacks Mitigation Mechanisms
	17.3. Single-Step and Zero-Step Attacks Mitigation Mechanisms
	17.3.1. Attacks Description
	17.3.2. Mitigation by the TDX Module
	17.3.2.1. Single-Step Attack Detection and Mitigation
	Suspected Attack Detection Using Instruction Counting
	Suspected Attack Detection Using Heuristics
	Attack Mitigation

	17.3.2.2. Zero-Step Attack Detection and Mitigation
	Suspected Attack Detection
	Attack Mitigation

	17.3.3. Host VMM Expected Behavior
	17.3.4. Guest TD Interface and Expected Guest TD Operation

	18. General Aspects of the Intel TDX Interface Functions
	18.1. Concurrency Restrictions and Enforcement
	18.1.1. Explicit Concurrency Restrictions
	18.1.2. Implicit Concurrency Restrictions
	18.1.3. Transactions
	18.1.4. Concurrency Restrictions with Host Priority
	18.1.4.1. Overview
	18.1.4.2. Host-Side (SEAMCALL) Operation
	18.1.4.3. Guest-Side (TDCALL) Operation
	18.1.4.4. Host Priority Busy Timeout

	18.2. Memory and Resource Operands Access
	18.2.1. Overview
	18.2.1.1. Access Semantics
	18.2.1.2. Explicit vs. Implicit Access
	18.2.1.3. Memory Operand Address Specification
	18.2.1.4. Memory Type
	18.2.1.4.1. Memory Type for Private and Opaque Accesses
	18.2.1.4.2. Memory Type for Shared Accesses

	18.2.1.5. Actual Memory Access vs. Memory Reference
	18.2.1.6. Summary Table

	18.3. Register Operands and CPU State Convention
	18.3.1. Overview: Regular vs. Transition Leaf Functions
	18.3.2. Interface Function Leaf and Version Numbers
	18.3.3. CPU State Preservation Convention
	18.3.3.1. TDH.VP.ENTER
	18.3.3.2. Other Interface Functions

	18.3.4. Transition Cases: TD Entry and Exit
	18.3.4.1. TD Entry: TDH.VP.ENTER
	Transfer of Host VMM State to TD Guest
	Output State (Back to the Host VMM)

	18.3.4.2. TD Synchronous Exit: TDG.VP.VMCALL
	Transfer of TD Guest State to Host VMM
	Output State (Back to the Guest TD)

	18.4. Interface Function Completion Status
	18.4.1. Least Detailed Level: Success/Warning/Error
	18.4.2. Medium Detailed Level: Class, Recoverability and Fatality
	18.4.3. Most Detailed Level

	18.5. TD, VM and VCPU Identification
	18.6. Metadata Access Interface
	18.6.1. Introduction
	18.6.2. Metadata Fields and Elements
	18.6.3. Arrays of Metadata Fields
	18.6.4. Metadata Field Sequences
	18.6.5. Metadata Lists

	18.7. Interrupt Latency
	18.7.1. Introduction
	18.7.2. Latency of the Intel TDX Interface Functions
	18.7.3. Interruptible Host-Side Interface Functions
	18.7.4. Interruptible Guest-Side Interface Functions
	Description
	Posted Interrupts
	Guest-Visible State when a Guest-Side Function is Interrupted

	18.8. DRNG Entropy Errors

