intel.

Intel® TDX Module Architecture Specification: TD
Migration

DRAFT FOR COMMUNITY REVIEW - WORK IN PROGRESS

348550-008US (draft)
December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS Copyright © 2025 Intel Corporation. All rights reserved.

10

15

20

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

Notices and Disclaimers

|II

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 2 of 83

Introduction and Overview

Section 1:

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

Table of Contents

LIS L1 Lo 0 1= N 3

SECTION 1: TD MIGRATION INTRODUCTION AND OVERVIEW......cccciteeiiiienniiiienniciinenieinssieisssieisssssissssssissssssssnssssssnnnss 7

1. Y T T UL 4 T To T oW T 1= | 8
O BN Yoo Yo =B) i 41K D YoV 4 =3 ¢ 1 AR 8
N 0 To YotV 104 [=1 o1 A O o To [1740 | 1 o] o H PSSR SRRN 8
0 T € [0 XY 1Y/ SR 9
i, INOTQLION ..eeeaeeeeeeee ettt ettt ettt e e e ettt e e e ettt e e e e e e e s bttt e e e e e s sastteeaaeesaaassbaenaaaeeesssbbaneaaeenaas 9
L. 5. RESOIEINCES. ..ottt ettt ettt sttt s et e e et e e e n e et e et e e bt e e te e steeenee s

1.5.1. Intel Public Documents..............
1.5.2. Intel TDX Public Documents
1.5.3. Non-Intel Public Documents

2. TD MIBration OVEIVIEWcceeeeueiiiiiiiiiienniiiiiiireennesiisestisessnssssssssssssnnssssssssssssnnsssssssssssssnnssssssssssssnnnsssssssssssnnnnssssss 11
2.1 INEFOAUCTION oottt ettt ettt e et e e e sttt e e et e e et e e e st e e e ataeeenasteesanusesesaatneseaasneas 11
2.2. WD Y o Tgo k(o] BN Yol=1 ¢ Lo [[X TN 11

2.2.1. (6e] [o [4o 1= = 4 o o FHU OO OO T PO OPORUP R PPPRRUUPUPPRRPRO 12
2.2.2. Y AV = d - | Ao o PP PP OPPRPPOPPRNt 12
2.2.3. Image Snapshot and Jumpstart (NOt SUPPOITE)cccuerieiiiiieieeee e 12
2.3. Components INVOIVE iN TD MIGIATION.........c.ueeeeersieeeiieeitieesiieesiteesteestteesitesstteesttesstsessseesstsessseesssssssssassssssnsneenns 12
B Y, [0 o =To [XY= SR URUPRNE 13
2.5. Guest TD Migration Life CYCIE OVEIVIEWccueecuveeiieesiiiesieesiisesieesissesitesstssssstsssisssssssssssssssssssssssssssssssssssssnns 14
- 12.15.1. ReServation and SESSION SETUD ...uiii ittt ettt ettt e e e sttt e s e abe e e s bt e e s sabeeessabeeesabaeesaabeeeenans 14
2512, Guest TD Build, Migration TD Binding and TD Execution on the Source Platformccccecenni. 14
2.5.1.3. Guest TD Initial Build on the Destination Platformccccooiieiiiiie e
25.14. Migration TDs Session EStabliSAMENTc.cvevieueueeeeeeeeeeeeeeeeeeeeeeeeee e eeseeeenene
2521 Migration Session Key and Protocol Version Exchange
25.235.2. In-Order Memory Migration Phase........cccccoveiiiiieiei e
i:ii TD-Scope Immutable Metadata (Non-Memory State) Migration
T [terative Pre-Copy OF MEMOIY STALEo.o.iuiueeeeeeeeeeeeeeeeeeeeee e ses et et et e s st st s ses st esennnan e
2531 Source TD Pause and Final Non-Memory State Migrationcccccceeeeiieiiicieeeesiee e ereee e
2532 TD-Scope and VCPU-Scope Mutable Non-Memory State Migrationccceceeeevcieeeeviieeesciee e, 17
2.5.3. Out-Of-Order Memory Migration PRase.......c.ciiiiiiieieiiireciieeesiee et seee e tae e et e e saaee e e snbaeeesnseeeennnes 17
Migration of Memory State and Commitment of IMPOrt.......cccvviviieeecciie e 17
POSt-COPY Of MEMOIY STat.....ueiiiiieiii et e e e et e e e e e e e bt e e e e e e s esantaaeeeeeeeenannes 17
2.5.4. MIration COMMIEMENT ..o 18
2.5.5. Y T =d = A o] AN o Yo o AU PUPURRRN 18
2.6. Impact of Migration on Measurement and AttESTALIONocueeeeecuieieeiiiieeeiie ettt e st 18
2.7. Intel TDX Module TD Migration Interface FUNCLIONS OVEIVIEWcceeeuvveeeieeaesiiieeesisiseesiieaesssesessssssesennees 18

3. TD Migration SOftWAre FIOWScccciiiiiiiiiiiiiiiiiiiiieieeieiieeeeeeeeseeeeeeseeeeeesessnsssnnns 19
3.1. Typical TD Migration Flow Overview (Write-Blocking Based EXPOIt)cccueevueeeieeeseeesieesieeeniieeseeesiieesieeenns 19
3.2. Typical TD Migration Flow Overview (Non-BIOCKING EXDOIT)cecueeiveeiiesiiieesiiassiiessiesssieeessesssssssssnsssssssnnenns 20
3.3. Successful Write-BloCKING BASEU EXPOILcccceeuuueeeeeieeeeeeeeeeie e e eeeet ettt e e e eeettttttaaaeeeasssssaaaaeesssssssesasaseessinsses 20
3.4, SUCCESSTUI NON-BIOCKING EXPOITcooeeeaneeeee ettt e e e e e ettt a e e e e ettt e e e e eeasassssseaaaeesassassssnaaaseessinsses 22
3.5, SUCCESSTUI IMPOIT ...ttt ettt e e e e ettt e e e e e ettt e e e e eessstsssaaaeeeasassssseaaaaeasassssssaaaseassissses 23
R T 0 N [1T Yo g i -V o Yo o SRS 24

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 3 of 83

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)
3.6.1. TD Import Abort During the In-Order IMPort PRase...........uuuiiiiiiie ettt e e e e e vaaae e e e e 24
3.6.2. TD Import Abort During the Out-Of-Order IMpPort PRase.......cccuuieeciieeiciiie et 25

2 A DN 5 (oY 0 -V o To L o SRR 25
3.7.1. Export Abort During the INn-Order EXPOrt PRASEuviiiiiie ittt tee e svee e stae e e ste e e seeaaeeesareaeenes 26
3.7.2. Export Abort During the Out-Of-Order EXPOrt PRaseeeiccuiiieiciiee ettt et e et e e svae e e saaeeeenes 26

SECTION 2: TD MIGRATION ARCHITECTURE SPECIFICATIONccettiiiiiiiinsnnenninnssssssssneensssssssssssssessssssssssssssssssssssssssnnsanss 27

4, Migration TD, Migration Policy and the Extended TCB...........cccovvvmreriiiiiiiiiieneeniiiiieseeessissssssssessssssssssssenes 28

4.1. Extended TCB and the MiGration POLICYc.cooueeeueiiieieieieieeeee ettt ettt 28

4.2. Attestation of the Migration TD and its Migration POIICYc..eueeeueeeesciiieeeiieeessieeeesiieeesiieeessiieeesssiieasssaeas 28

4.3. Inputs to the Migration TD’s Migration Policy EVAIUGLIONcccccveeeeeceiieeeiieeeesieeeeeieeeesiveaessseeeeeeaeaeenaes 29

4.4. Migrated TD Information Provided by TDG.SERVD.RDccoccueeeeeeiiaeeeiiieeecieaesteeeestaaaesissaasessesessssseaesnnes 29

4.5, Migration ProtOCO! VEISION SELUDcccvevviveeiieesiieeiieesitesiteesieessteessttessseestaessseasstsesssessabsssssessassssssssssssnsnsnsess 29

4.6. Migration Session Keys (MSKS) EXCRANGEcceevueeiieeeiieiieiiesiiesieesie et sttt et sata sttt e stestesaesane e 29

4.7. Example Migration Session ESEADIISAMENTcceecuieeeeeiieeeseieeeeseeeeeite e tea sttt e e e stta e sssteasssssesesssaeasssses 30

5. Common TD Migration MeChaniSMScciviiiiieeiiiiiiiiiiiiiiieiisree s sss e s s s sassss s s s s ssssssnes 31

5,10 MUGrOtion BUNGIES........c..oooeeieieeeeeeeeee ettt ettt ettt e bt e et a et e st e e st e st e e nseeenbneenaeeeans 31
5.1.1. OVBIVIBW ..ttt ettt e e e ettt et e e e st e e e e e e s e a e et et e e e se s nn b e e et e e e s eaaanbe e et e e e e e s s baneeeeesesannsnnaeeeeeesannnnraneeas 31
5.1.2. Y14 Y A (o] d W D] - [T T PP PP P PP PPPPPN 31
5.1.3. Migration Bundle Metadata (MBIMD)c.uieieiiiiiicieee e ciieeeeriee e eeitte e e st e e e e ata e e seabaeessataeeeenasaeessseeeesssseaennes 31
5.1.4. UNTruSted IMETATALA ..oooeeeeeeiieie ettt st e e st e e e b be e e seabb e e e sbbeeeesabaeesenreeesnreaenn 32

5.2, Export and IMpPort FUNCLIONS INTEITACEc..ueveeeeeeeeesiiieeeeie e eetee e stte e e tte e e te e e sttt e e e atta e s asteasssseaesssaeaesnsaees 32
5.2.1. Migrating @ Multi-Page Migration BUNGIEcoiveiiiiiiiiie ettt e see e st e e e sate e e s aaee e e snaeeeenes 32
5.2.2. Migration FUNCLions INTErrUPtibDilitycooicieeieiiii e e e e e e e ae e e e sbaeeeeaes 33

5.3. Cryptographic Protection Of Migration DALQcccueeeeeeuveeeeeiieeeesiieeeesseeeeetteaeesttasaeestsesessssaeesisssaeasssasanaaes 33
5.3.1. Y ool oYy oY uToT o 1A\ F=doT 1 o1 s PSSR UPRRN 33
5.3.2. MIZration SESSION KBYS .. 33

5.4. Migration Streams and Migration QUEUESceeeueeeeeeueteesiieeeesiieeeeeite e esite e e sttt e e e stee e essteeesiseeessasnesessaes 34

5.5, Measurement QN ALEESTALION.............eeeueeiueeeeeeseeeee ettt ettt e et et e e e st e s st e st e e saeessbseenseeensneenseeenns 36
5.5.1. TD Measurement REZISTErs IMIZrationcciiiiieiiiiiiieri ittt e e s s e e e e s s s saabeeeeeessesssbanaeeeesesas 36
5.5.2. TD Measurement REPOIrting ChanGEScccccuiiiiieiiie ettt eee e e e e e e e sae e e e srae e e snteeesenseeesenseeean 36
5.5.3. TD Measurement QUOLING ChaNnES.......couiiiiiiiiiie ittt ettt e ittt e e s st e e e sabeeessaneeeesnreeens 36
5.5.4. TCB RECOVEIY aNd IMIZIatioN ...cccccuuieiiiiiieieiieteeitee ettt e ettt e sbe e e e sab e e e s e abe e e sabteessabbeesennbaeessaneeeesnreeenn 36

5.6. TDX Control Structures SUpport Of TD MiGIQUIONcccceeeeuueeeeieeeeeeiiceieeee e eeesecttaaa e e e esssastaaaaeeeessissesasaaeeesiannes 36
5.6.1. MIGSC: Migration STream CoONtEXE....cciiiiii i, 36

6.6.1.3.1.Migration Session Control and State MacChinesccceeeeeciiiiiiiiiecc it se e e e s e e e nens e e s s s e s e nnnsssssssnenes 38

6.1.3.2.

Lo B 01 1= PSP PPPPRRPPPRRN 38
6.1.1. Y 1= 42 4 o [P PTPPUPPPRN 38
6.1.2. SUCCESSTUI MIGIation SESSIONeeiiieiiieieiiee ettt ettt e et e s e e e st e e e et e e e sneeeeesstaeeeesseeesnsaeeeansseesannseeesnnnees 38
.6.1.3 FiNoJo] g d=Te WY/ IT=0g 1 o] g YT (o] o HA USSP UUPRRRRt 40

Abort DUriNg the IN-0Order PRASEuuiiiiiee ettt e e e e e et r e e e e e e s e anraeeeas 40

6.24.1. AbOort dUuring the OUL-Of-Order PRASEccuiviieeeeeeieeeeeeeeeee et sttt sttt st ese e s saene e s 41
6.1.4. YT d T To T T = o ol o -3 SRR 42

6.2 MiGration SESSION CONTIONcccuueeeueesieeeiiesieeeee sttt s et e st s e st e st e st e sase e sbtesaseesbeessessseesasees 42
6.2.1. Migration TD Binding and Migration Key ASSISNMENTc.cceiiiriiiiiiieiiieeiee sttt s 42
6.2.2. EXport Side (SOUICE PIAatfOrM)uuei ettt e e s e e e et e e st e e e st e e e e nteeesnsaeeeanseeaeanes 42
6.2.3. Import Side (Destination PIatfOrmm).........cocuuiiiiiiii ettt e ettt e e et e e e eate e e eearaeeeetaeaeeaes 43
6.2.4. Details: Migration State@ MaChineooiii i et e e e e e et ae e e e e e e e e anraeaeeeeeeenanees 43

Details: Reminder: TD Lifecycle State Machine..........oooi i 44

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 4 of 83

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

50

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

Details: OP_STATE: TD Operation State Machingcooooiiiiiiiiiiiciiee e e 44
Details: OP_STATE SUMMIAIY ...iiiiiiitiieieeeestteeeeieteeesetteeeestteessssseeesasseeeasssseesassssesasseesesssssesssssneesssseeenn 46
LG 1Y [To T Lo I o] (=3 ¢ X3RS 47
6.4. Migration ProtoCOI VEISIONINGccuueeeecueeeeeeiieeeeeteeeteeeeette e e st eesttea e et tsteeeatstaessssasassasassssssaesssnasasssenannnns 47

6.4.1. T Ao o [V ot 4o H OO 47

6.4.2. Enumeration of Supported Migration VErSiONS.......c.ueiiiiiieiiiiiie ittt stte e see e s e stee e ssaaaeessbaeeesaes 47

6.4.3. Setting the Migration Protocol Version for a Migration SESSIONccuveeecieiiiiieeieniiee et esiiee e 48
6.2.4.2.

&28.3. Migration Session Control FUNCLIONS SUMMQIYcc.coeuieiieiniieiieeeieeseese ettt sttt 48
TD Non-Memory State Migrationceeeeeeeeeeiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiiieeeieiiisisesssssssssssssssssssssssssssss 50
7.1. TD Non-Memory State Migration OPEIATIONuuuuuuuuuuuuuuuiuisisisisssssisssssssssssssssssssrsrsmsssrsrsrs—————————————————— 50

7.1.1. Non-Memory State Migration Dataccceeeieiiiiieieeee e 50

7.1.2. NON-MEMOTIY STAte IMBIMID ... e e e e e e e e e e e e e e e e e 50

7.1.3. IMMutable vS. MULABIE TD STAtE ...cccciiei ettt cree e e e e st e e s aae e e s s ba e e e e nteeessseeesanseeeennns 50
7.2. Expected Configuration by the HOSt VIMIIML...........ccc.uieieeeiuiieeeeiet ettt ettt ettt saee st eenaee e 50
7.3. Non-Memory State Migration FUNCLIONS SUMMGIYcccoccueiiiiiueiiniiieeeeiete ettt e s 51

TD Private Memory MigratioN........civeuuuiiiiiiiiiniiniiiiiiiiiiiiimiiiiimmmsiiismmmssssiimmsssssssssimasssssssssssssssssssssssss 52
8.1. OVBIVIBW ...ttt ettt e e ettt e e e ettt e e e e et e e e e e e s s s et e e e e e a s ss e e e e e e e aaastnneeeeeaesnnnsnneeeens 52

8.1.1. In-Order and OUt-0f-Order MIGIatioN........c..cciciiiie e ciee et eette e e st e e e e rtte e e setbeeessabaeeeensseeessseeesassseaeanes 52

8.1.2. Write-Blocking Export vs. Non-Blocking LIVE EXPOIt......c.uuiiicuiieiiiiieeeciiiecciiee e ectvee e e svee e eetae e e seivaeeeevveeeenes 52
8.2. Conventions: SEPT Entry State Diagrams COIOr COAING...........cccuierueeiviesieesiiesisesiieesieessiteesieessiieesiseesisssniseens 53
8.3. GPA Lists and Private Memory Migration BUNGIEScceecueeeeecuiieeeeiieeesiieeesiieeeseieeesstieessssteeesessaessseeeeas

8.3.1. OVEIVIBW .ttt e ettt et e e ettt e e e e e s b e bt ee e e e e s e aa b et e e eeeseaaa b b aaeeeesesasabbaaeaeesesansbabaaaeesesanssbaaaeeessasnsnrananas

8.3.2. GPA LISE 1eiitieetee ettt ettt ettt ettt ettt e b e st e et st e et e st e e et e e s a bt e e bt e sa b e e et e e s beeeabeesabeeenbee s beeebeesbeeeareenas

8.3.3. Page Attributes List (Required for Partitioned TDs)

8.3.4. Private Memory Migration BUFfEr..........ooi ittt e ettt e e et e e e st e e e e sate e e stbaeeeeabreaeenes
8.4. Write-Blocking BaSed MEMOIY EXPOITouueeeeeiiiiieieeeeeeeteete e e eeet ettt e e e e e s teaaaeaa e e e ssssassseaaaeessssssssassaaseessnsses 55
:-2-?34.1. HOSE VIMIME PEISPECEIVE «.vevvviiveeiteeete ettt ettt e et ettt eteeaaesaaesteesteeeaeeaeenteeaveeseeeteeebeenbeenseenssensesaeesaeesseenreenns
8413 Typical Write-BloCKiNg EXPOIrt SESSION ...ecieuiiiiiiiieeeciieeeeiiee e cette e stee e e et eeseeaeessnteeeesntaeessnsneessnseeeas
8.4.14. Live Export: Blocking for Writing, TLB Tracking and EXporting @ Page.......cccccccvevcveeeenieeececveee s,
:-j-i:- Exporting a Page after the Source TD is Pausedccccoeveeverreveneerenene.

8417 Unblocking for Write, Tracking Dirty Pages and Re-Exporting

8.4.1.8. Using the same GPA List for TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM

8.4.18. Prohibited Operations on Exported Pages and EXport Cancellation.............oeeeeeveveeeeerreereseerenenn.
8.4.2.1. EXPOrtiNG PeNOING PageS...ciiiiiiieiiit ettt ettt ettt e sttt e e ettt e e sttt e e s sabt e e s e ate e e sbbeeeesabaeeseneaeesnreeenn
8.4.2.2. RE-EXPOrting @ NON-Dirty Pcceiiiiiiiiiiiieiee ittt e e s e st e s e e s sebarr e e e e s e sessanraeeeeessssnannes
8.4.23. SEPT Cleanup after EXPOrt ADOITuiiiiiee ettt e s e e et e e e s nee e e snaeeeesnraeeeanns

8.4.2. Details of Write-Blocking Based EXPOItceieciiiiieiieeesieeeeiee e seteeeestre e e e ete e e snaeeessntaeesenneeesnnsneessnsneananns
8511, Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export
8.5.1.2. Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export
g;ii Details: TDCS.DIRTY_COUNT: TD-5cOPE Dirty PABE COUNTETvvrvreeeeeeeeeereeeeeeeeerereeeeeeeeeseseeeeseenenenn.
ﬁ%zg' NON-BIOCKING MEMOIY EXPOITcooveeeneieeeee et e e e e et e e e e ettt e e e e e ettt aaaaeeassstssaeaaaeesssssssasaaaesssssssenaans 61
85 B75. 1. HOSE VIMIM PEISPECLIVE ...vvieeeeieectetceeececte ettt st s st s st s et as st te st st te st st ete e saetessstenesssteressesesens 61
8.5.18. EPT Access and Dirty Bits BACKZIOUNGooiieiiiiiiiiee ettt e e etee et e e nae e e snaeeeas 62
8591, Memory Export Concept: SCan and EXPOItccccieiiiciieeeiiieeeeiier e sieeeesieeeesee e e snteeeestaeeseneeeesnneeeas 62

Conceptual, Simplified Page State Diagramccccuiieccceeeiiiie e e e s e e et e e e 62
Scanning for Candidate Pages to EXPOrt OF RE-EXPOrt.......ccciiiiciiiiiieeiieiiiiiieeeeeeeeeirreee e e e e seiraneeeeaeeean 64
Typical Non-Blocking EXPOrt SESSIONuueiiiiiiiiiiiiiiiee ettt e e ettt e e e e e e s e eatre e e e e e s e anraaneas 65
Interaction with Memory Management Operationsccccuveeeeiieiciiiiieee et eerreee e e e e e e
Exporting Pending Pages........cccccceeeeeennn.
SEPT Cleanup after Export Abort

8.5.2. Details of NON-BIOCKING EXPOItvviiiiieeeiiiie ettt tte et s et e e s e e e st e e saea e e e sntaeeeenseeeensneeeansseananes
Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page EXport........ccccceevvvveieceveeesnnennn. 68

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 5 of 83

Introduction and Overview

Section 1:

10

15

25

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page EXportcccccoeeeiciiiieieeeeecnnns 69
Details: TD Partitioning Considerations for Dirty Bit Operations.......cccccccceeecverevciieeesciee e 70
Details: Pending Pages CoNSIAEIratioNSuiiieciiieiciieeesiieeeeree e eee e e e e eee e e sare e e e s ata e e e enaaeeenneeeas 71
Details: Blocked Pages CoNSIAEratioNnsS.......c.uuiiecuiiiiiciieeeciieeeeciee e eee e e e e ee e e e e e e sata e e e enaaeesnneeeas 71
Details: Memory Management CONSIAErationsccceeeicuieeeeiiereiiiie e eeere e sre e e e setee e e e eeeeesaneeeas 71
Details: TLB Tracking CONSIAEIrationscoevueeiieeiiieiieiniee ettt ettt st et s 73
Details: Export Completeness TraCkiNg......cuuiieiiiiiiiiee ettt e e st e s aae e e saaeee s 74
Details: Shared EPT Considerations

8.5.2.2.

T 0 RV [= oo To T A [0 4] o Lo L AT PP

22?261 HOST VIMIM PEISPECTIVE ...t eeeeeeeeeeeee e esesseses s eseseeseseeseseseenesesesstesesesessesseseseseesesesnenenseseseesenanes

8596 IN-Order IMPOFt PRESEcuiieieiiieieeiieieisesieseste e seste e st e e sesessetesess st ssessesesessssesessesesessesensssesensssesens

8.5.27. (00 re) ST o [T g Ta o oY) ol o T 1Y PSS

::?i:g: IN-Place IMPOIE. ..ttt e st e it e st e s bt e st e e bt e e s ab e e bt e e sabeeneeesnneeneeas

8.6.2. Details Of MEMOIY IMPOIt c...eiiiieeeeee ettt sttt e st s bt e st e e bt e s beeesneesbeeeneesanee

Details: In-Order Import Phase................

8.6.1.1. Details: Out-of-Order import Phase

8.6.1.2.

&.2.3. Secure EPT Concurrency Considerations

- 28171 OVBIVIBW ..ttt e ettt e e ettt e e e e e sttt e e e e e s ae e et et e e e seane b e e et eeeaaaannbe e et eeeaesansbeeeeeeesesannsnnaeeeeeesannnraneees

2.6.8:27.2. GPA List Processing Implications....

8.8. Security Analysis: Achieving Memory Migration Security OBJECtiVescccueeeevueeeecieeeesiieeeesiieeeeeieeeesiseean,
8.8.1. LCT=T 1T = RSO S
8.8.2. Preventing Usage of Stale Memory Copies due to Mis-Orderingccceeveerieeeneeniieeeneenieeeseesiee e
8.8.3. Enforcing Export of the Entire Memory IMageco.vieiieeiiieiiienieeeiee sttt ettt
8.8.4. Non-Blocking Export: Detecting Memory State Changec..ueeocvieeiiiiie e evee e e

8.8.5. Preventing Usage of Stale Memory Copies due to Failure to Re-export
8.8.6. Preventing Usage of Missing or Stale Memory Copies due to Failure to Import
8.8.7. Preventing Usage of Stale Memory GPA Mapping and Attributes
8.8.8. Out-Of-Order Phase and 1ts Usage for POST COPY ...viiieiuririiiiieeeiiieeeeiiee e sseteeeestveesseree e snveeeeseseesesnseeesnnnees

8.9. Memory Migration Interface FUNCLIONS SUMIMQIYcccueeeeeueeeeeiieeeeeiieeesieaeesetteaeseaeaesssteasssssesessseassssenaeas 82

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 6 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

SECTION 1:

TD MIGRATION INTRODUCTION AND OVERVIEW

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 7 of 83

Section 1: Introduction and Overview

10

15

20

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

1. About this Document

1.1. Scope of this Document

This document describes the architecture and the external Application Binary Interface (ABI) of the Intel® Trust Domain
Extensions (Intel® TDX) module’s Live Migration feature, implemented using the Intel TDX Instruction Set Architecture

(ISA) extensions, for cold or live migration of Trust Domains in an untrusted hosted cloud environment.

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

Document Name

Reference

Description

TDX Module
Base Architecture Specification

[TDX Module Base
Spec]

Base TDX Module architecture overview
and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

TDX Module
TD Migration Architecture Specification

[TD Migration Spec]

Architecture overview and specification for
TD migration

TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for
TD Partitioning

TDX Module Interrupt Virtualization
Architecture Specification

[Interrupt
Virtualization Spec]

Architecture overview and specification for
interrupt virtualization

TDX Module
TDX Connect Specification

[TDX Connect Spec]

Architecture overview and specification for
TDX Connect

TDX Module ABI Reference Tables

[TDX Module ABI
Tables]

A set of files detailing TDX Module
Application Binary Interface (ABI)

TDX Module
TDX Connect ABI Reference
Specification

[TDX Connect ABI
Spec]

Detailed TDX Module Application Binary
Interface (ABI) reference specification,
covering the TDX connect architecture

TDX Module
ABI Reference Specification

[TDX Module ABI
Spec]

Detailed TDX Module Application Binary
Interface (ABI) reference specification,
covering the entire TDX Module
architecture

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors.

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.

1.2. Document Organization

The document has two main sections:

e Section 1 contains an introduction to the document, overview of TD Migration, scenarios and requirements.
e Section 2 contains the Intel TDX Module Migration architecture

The detailed reference specification of TD Migration data structures and interface functions is provided in the [TDX
Module ABI Spec].

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 8 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1: Introduction and Overview 348550-008US (draft)

1.3. Glossary

For a complete TDX Module glossary, see the [TDX Module Base Spec].

Table 1.2: Intel TDX Module Glossary for TD Migration

Control
Protocol

Acronym | Full Name New | Description
for
TDX
Blackout No The period when the guest TD does not run anymore on the source platform and
Period does not run yet on the destination platform.
Cold Migration | No Migration usage mode where the TD does not run during the migration session.
In-Order Phase | Yes The first phase of the TD migration session, where a strict order of memory export
vs. memory import is maintained.
Live Migration | No Migration usage mode where the TD runs during most of the migration session.
Migration Yes The basic unit of migrated information, composed of headers, metadata and/or
Bundle migrated data.
Migration Yes The act of committing the migration, disallowing the TD from running on the
Commitment source platform and allowing it to run on the destination platform.
Migration Yes A mechanism used to enforce ordering across multiple concurrent streams. Any
Epoch specific page can be migrated only once per epoch.
Migration No Policy enforced by the Migration TDs, e.g., based on the source and destination
Policy platform properties.
Migration Yes A sequential stream of migration bundles, where order is enforced.
Stream
MigTD Migration TD Yes A specific type of Service TD, used to provide Live Migration capability for TD VMs.
A Migration TD extends the TCB of the serviced tenant TD.
MSK Migration Yes AES-GCM-256 key generated by the source MigTD and shared with the destination
Session Key MigTD (protected by the Migration Transport key). This key helps protect the TD
private data and is used for export and import of the TD confidential assets.
MTK Migration Yes Authenticated Diffie-Helman negotiated symmetric key generated after mutual
Transport Key attestation of the MigTDs and is used to help protect the transport of the
Migration Session Key from the source to the destination platform.
Out-Of-Order Yes The last phase of the TD migration session, where a strict order of memory export
Phase vs. memory import is not maintained.
Post-Copy No Migration usage mode where part of the TD memory image is migrated after the
TD is allowed to run on the destination platform.
Pre-Copy No Migration usage mode where (most of) the TD memory image is migrated before
the TD is allowed to run on the destination platform.
TCP Transmission No Transmission Control Protocol (TCP) is a communications standard that enables

application programs and computing devices to exchange messages over a
network. It is designed to send packets across the internet and ensure the
successful delivery of data and messages over networks.

1.4. Notation

5 See the [TDX Module Base Spec].

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS Page 9 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec Section 1: Introduction and Overview

348550-008US (draft)

1.5. References

1.5.1. Intel Public Documents

See the [TDX Module Base Spec].

1.5.2. Intel TDX Public Documents

See the [TDX Module Base Spec].

1.5.3. Non-Intel Public Documents

Table 1.3: Non-Intel Public Documents

Reference Document Version & Date
AES-256-GCM NIST Special Publication 800-38D: Recommendation for Block November 2007
Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC
December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 10 of 83

Introduction and Overview

Section 1:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

10

15

20

25

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

2. TD Migration Overview

Unreleased Feature: Some of the text in this section is related to Non-Blocking Export, a feature which has not been
released yet at the time of writing of this document. Details related to that feature serve as a
preview and are subject to change.

For an overview of TDX, refer to the [TDX Module Base Spec].

2.1. Introduction

Source Platform Destination Platform
Legacy VM Trust Domain Legacy VM Trust Domain
Application Unmodified Aoplication Unmodified
pplications Applications pplications Applications
. Unmodified . Unmodified
Drivers . Drivers .
Drivers Drivers
TDX- TDX-
(0 Enlightened oS Enlightened
(N oS
7 t
Guest-Side Guest-Side
Interface Interface
) 4
Interface Interface
host VMM Root Mode host VMM Root Mode
Platform (Cores, Caches, Devices etc.) Platform (Cores, Caches, Devices etc.)

Figure 2.1: TD Migration

Analogous to legacy VM migration, a cloud-service provider (CSP) may want to relocate/migrate an executing Trust
Domain from a source TDX platform to a destination TDX platform in the cloud environment. A cloud provider may use
TD migration to meet customer SLA, while balancing cloud platform upgradability, patching and other serviceability
requirements. Since a TD runs in a CPU mode which helps protect the confidentiality of its memory contents and its CPU
state from any other platform software, including the hosting Virtual Machine Monitor (VMM), this primary security
objective must be maintained while allowing the TD resource manager, i.e., the host VMM to migrate TDs across
compatible platforms. The TD is configured with an HKID on the destination platform which is independent of its HKID
on the source platform and is associated with a different ephemeral key.

In this specification, the TD being migrated is called the source TD, and the TD created as a result of the migration is called
the destination TD. An extensible TD Migration Policy is associated with a TD that is used to maintain the TD’s security
posture. The TD Migration policy is enforced in a scalable and extensible manner using a specific type of Service TD called
the Migration TD (a.k.a. MigTD) (introduced in the Figure 2.2 below) — which is used to provide services for migrating
TDs.

The TD Live Migration process (and the Migration TD) does not depend on any interaction with the TD guest software
operating inside the TD being migrated.

2.2. TD Migration Scenarios

This section describes the usage scenarios addressed by this specification (and those explicitly out of scope). This
specification documents the TD Migration functionality from a Live Migration (scenario described below) perspective.
Cold Migration and other scenarios described below are effectively subset scenarios that are managed via the Intel TDX
Module interface functions in this specification.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 11 of 83

Introduction and Overview

Section 1:

10

15

20

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

2.2.1. Cold migration

e Both source and destination platforms must be alive during migration.
e The TD is suspended during migration. Blackout time is typically longer than TCP timeout, which may cause remote
connections to the TD to break up.

Cold migration may be useful for rolling upgrades or patches and rebooting servers (non-reboot patches can be done
without migrating the TD), capacity planning and load balancing.

A TD may be cold migrated more than once using multiple sessions.

2.2.2. Live Migration

e Both source and destination platforms must be alive during migration.
e The TD continues executing during migration. It is paused for a short blackout time, typically shorter than TCP
timeout, so remote connections to the TD should not break up.

Live migration may be useful for supporting customer SLA requirements, capacity planning and load balancing.

A TD may be live migrated more than once using multiple sessions.

2.2.3. Image Snapshot and Jumpstart (Not Supported)

e Destination need not be alive during export, when the migration image is prepared.
e Source need not be alive during import, when the migration image is loaded.
e The TD image may be stored for an indeterminate amount of time.

This usage has additional platform security requirements that are not comprehended in this specification. Example use
cases are saving checkpoints of TDs such that TD may be pre-loaded into memory. Alternate implementations to satisfy
this usage are possible. E.g., the TD could un-hibernate the image itself. This scenario/use case is out of scope for this
specification and is not supported by it.

2.3. Components Involved in TD Migration

Source Platform Destination Platform

Session Control,

Migration TD (< Keys Exchange » Migration TD
A 7'\ 7'y 7y
) > Migrated TD Migrated TD <)
Session , Session
Keys ' ! Keys
Exchange * , ! N Exchange
! 1
v v y ' H ' v v
1
Service TD ! i Service TD
Metadata ! : Metadata
API TDX Module i \ TDX Module API
1 1
TD Export AP | : TD Export API
7y H 7y
Session N J I i : T Session
Control : on- ! ‘
Session Memory Memory ! ! Non- . Control
Control State State ! ! Memory Memory Session
l ' ! State State Control
1
v v , E | v v
i Session Control, '
TD Non-Memory State, X
Host VMM —} 1D Private Memory, . ™ Host VMM
! Non-TDX Information E
: i
1

Figure 2.2: Components Involved in TD Migration

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 12 of 83

-

Introduction and Overview

Section 1:

10

15

20

25

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

Migrated TD

The migrated TD’s role is passive. It is not directly aware of it being migrated.

Migration TD (MigTD)

Migration TDs (MigTD) exist on the source and destination platforms. Their main role is to implement a migration policy
and evaluate migration sources and destinations for adherence to that policy. The migration policy may enumerate TDX
platform TCB requirements, platform features and acceptable destination Migration TD TCB requirements.

The MigTDs securely exchange unique per-session Migration Session Key (MSK) pair. The MSKs are used to migrate
assets of a specific TD. The MigTD on each side reads an encryption key generated by the TDX Module and securely
transfers it to the MigTD on the other side, where it is written as the decryption key for its side.

Migration TDs implement and use the TDX Module Service TD protocol (for details, see [TDX Module Base Spec]’s Service
TDs chapter). The host VMM may bind a MigTD to one or migrated TDs. The MigTD is in the TCB of the migrated TD
and its measurements are included in the migrated TD’s attestation information. Thus, the MigTD must be pre-bound to
the migrated TD before that TD’s measurement is finalized. The MigTD lifecycle does not have to be coincidental with
the migrated TD — the only requirement is that the MigTD must be bound to the migrated TD before migration can begin
and must be operational until the migration session keys has been successfully exchanged.

Host VMM

The host VMMs on the source and destination sides orchestrate and manage the migration session, via their respective
TDX Modules and MigTDs. They are responsible for exporting and importing of the TD’s memory and non-memory state,
via the TDX Module, and for the transport of that state between the source and the destination platforms.

TDX Module

The TDX Module implements a set of TD migration primitives to implement and enforce the security of migration session
control, TD private memory migration and TD non-memory state migration.

2.4. Migrated Assets

The table below shows the TD assets that are migrated. Metadata includes TD-scope and VCPU-scope non-memory state
(such as control state, CPU register state etc.) and memory attributes (such as GPA and access permissions). Metadata
is not migrated as-is; it is serialized into a migration format and re-created on the destination platform.

Table 2.1: Migrated TD Assets

TD Asset

Where Held

Export Functions

Import Functions

Immutable Non-Memory
State (Metadata)

TDX Module global
TDR

TDH.EXPORT.STATE.IMMUTABLE

TDH.IMPORT.STATE.IMMUTABLE

TDCS
Mutable Non-Memory TDCS TDH.EXPORT.STATE.TD TDH.IMPORT.STATE.TD
State (Metadata) TDVPS TDH.EXPORT.STATE.VP TDH.IMPORT.STATE.VP

Memory State and
Metadata

TD private pages
Secure EPT

TDH.EXPORT.MEM

TDH.IMPORT.MEM

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 13 of 83

Introduction and Overview

Section 1:

5

10

15

20

25

30

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

2.5. Guest TD Migration Life Cycle Overview

2.5.1. Reservation and Session Setup

TD May Run on Source Platform

TD Build RUNNABLE LIVE_EXPORT
Q A
g TDH.SERVTD. — TDH.MR. — TDG.MR. ! TDH.T[:I. : TDG.SERVTDZ. - TDG.SERVTDZ. - TD’;::E::SRT' >
o BIND FINALIZE REPORT : BIND : RD(enc key): WR(dec key) IMMUTABLE
’ "
1 Only if the TD is enabled Sessi(>keys exé,nge
for TDX Connect by Migration TDs
2 Called by the MigTDs / \
c
S [|
g TDH.MNG. L TDH.MNG. - TDH.SERVTD. - TDG.SERVTD. . TDG.SERVTD. — IRLEIMECRT .
= CREATE ADDCX BIND RD(enckey)? | | WR(dec key)? |M|§/|TSI/§ELE >
8 MEMORY_
TD Skeleton Creation UNINITIALIZED IMPORT
Figure 2.3: Migration TD Binding and Session Setup
Guest TD Build, Migration TD Binding and TD Execution on the Source Platform
2.5.1.1.
The source TD build and execution process is described in the [TDX Module Base Spec]. To be migratable, the TD may be
initialized, using the TDH.MNG.INIT function, with ATTRIBUTES.MIGRATABLE bit set to 1.
Before a migration session can begin, the host VMM on the source platform must use TDH.SERVTD.BIND to bind a
Migration TD to the source TD. The MigTD may read selected metadata fields of the source TD, e.g., its ATTRIBUTES and
XFAM configuration, to be used in evaluating a migration policy. The bound MigTD is reflected in the migratable TD’s
2.5.1JDREPORT.
Guest TD Initial Build on the Destination Platform
Same as a legacy TD build process, the host VMM creates a new guest TD by using the TDH.MNG.CREATE interface
function. This destination TD is setup as a “template” to receive the state of the Source Guest TD. As with any TD build,
the host VMM configures the TD’s private HKID (which is not related to the HKID used on the source platform) using the

2.5

TDH.MNG.KEY.CONFIG interface function on each package. The host VMM can then continue to build the TDCS by adding

TDCS pages using the TDH.MNG.ADDCX interface function.
1.3

Once the destination TDCS is built and before TD import can begin, the VMM on the destination platform must use
TDH.SERVTD.BIND to bind a Migration TD to the destination TD. Once migration succeeds, the MigTD bound at the
destination will be reflected in the migratable TD’s TDREPORT.

Migration TDs Session Establishment

2.5.1pFjor to starting any TD migration session, the migration TDs on the source and destination platforms need to create a

secure connection between them. This connection may be made to support one or more migration sessions. Migration
TDs may be written by any vendor; thus, details may vary. Typically, the migration TDs executing on the source and
destination platforms use a TD-quote-based mutual authentication protocol to create a VMM-transport-agnostic session
between them. The Migration TDs typically negotiate a protected transport session (using Diffie-Hellman exchange).
Using this protected transport session, the migration policy can be evaluated by the Migration TDs.

Migration Session Key and Protocol Version Exchange

The migration session keys are ephemeral AES-256-GCM keys used for confidentiality and integrity protection of the
migrated TD private state, and for integrity protections of the migration session control protocol. TD shared memory

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 14 of 83

Introduction and Overview

Section 1:

10

15

20

25

Source

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

state is migrated by the untrusted host VMM per legacy methods — the same network transport may be used for both by
the host VMM. The Migration Session Keys (MSKs) are exchanged between the TDX Modules on both sides with the help
of the Migration TDs.

The TDX Module on each side generates an ephemeral migration session encryption key. The Migration TDs on each
side uses the Service TD metadata read function (TDG.SERVTD.RD) to read the encryption key and securely transfer it to
the peer Migration TD, which uses the Service TD metadata write function (TDG.SERVTD.WR) to write it as the migration
session decryption key.

In addition to the decryption keys, the Migration TDs on both sides write the migration protocol version to be used by
the TDX Modules.

After this point, the host VMM can invoke TDX Module functions such as TDH.EXPORT.* to export state at the source
platform and TDH.IMPORT.* to import TD state at the destination platform.

2.5.2. In-Order Memory Migration Phase

The TD migration session has two phases: in-order and out-order. Those terms are defined in the context of TDX Module
enforcement of memory import ordering vs. memory export ordering. In-order enforcement is required during the live
migration phase, until the source TD is paused and the blackout period begins. During this phase, as long as the source
TD pages are mutable, order enforcement is essential to help ensure the migrated memory image is correct.

TD May Run on Source Platform TDX-Imposed Blackout

__

TDIs may be bound* |

In-Order Memory Export Phase

RUNNABLE LIVE_EXPORT

TDH.EXPORT. | | TDH.EXPORT. TDH.TDI. 1 | TDH.EXPORT. || TDH.EXPORT. | | TDH.EXPORT. | | TDH.EXPORT. TDH.EXPORT.
MEM MEM UNBIND* :- PAUSE MEM STATE.TD STATE.VP MEM
_________ 1

—

PAUSED_EXPORT

TDH.EXPORT.
et STATE.
IMMUTABLE

TDH.EXPORT.
TRACK(DONE)

* Only if the TD is enabled Start
for TDX Connect Token

c
S \ A l v
= TDH.IMPORT.
@ STATE. || TDH.IMPORT. | | TOH.IMPORT. TDH.IMPORT. |_| TDH.IMPORT. |_| TOH.IMPORT. | [|_| TDH.IMPORT. | _| TDH.IMPORT.
S IMMUTABLE MEM MEM MEM STATE.TD STATE.VP MEM TRACK(DONE)
N
(&)
(]
JNINITIALIZED MEMORY_IMPORT STATE_IMPORT

In-Order Memory Import Phase

2.5.2.1.

Figure 2.4: In-Order Migration Phase

TD-Scope Immutable Metadata (Non-Memory State) Migration

The TDX Module protects the confidentiality and integrity of a guest TD non-memory state. Control structures, which
hold guest TD metadata, are not directly accessible to any software (besides the Intel TDX Module) or devices. These
structures are stored encrypted in memory with the TD private key and managed by TDX Module interface functions.

Immutable metadata is the set of TD-scope state variables that are set by TDH.MNG.INIT, which may be modified during
TD build but are never modified after the TD’s measurement is finalized using TDH.MR.FINALIZE. Some of these state
variables control how the TD and its memory is migrated. Therefore, the immutable TD control state is migrated before
any of the TD memory state is migrated.

TD immutable state is exported via the TDH.EXPORT.STATE.IMMUTABLE interface function and imported on the
destination platform via the TDH.IMPORT.STATE.IMMUTABLE interface function. TD global immutable state migration is
described in Ch. 7.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 15 of 83

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

Iterative Pre-Copy of Memory State

During the in-order migration phase, the VMM aims to balance TD availability with progressing the migration work. This
is generally done through an iterative pre-copy of TD memory pages and their in-order import on the destination
platform. The details of TD private memory migration covered in Ch. 8; this section explains its key concepts.

2.5.2.2.1. Migration Considerations for TD Private Memory

2.5.2Memory Migration vs. Memory Encryption

TD Migration does not migrate the TD’s private HKID nor the keys used to encrypt its private memory. The TD’s private
assets are migrated using the migration session keys as described above. The host VMM on the destination platform
assigns a new free HKID and the TDX Module generates new memory encryption keys.

Memory Modification Tracking and Iterative Migration

During live migration, the running source TD and, if enabled for TDX Connect, its bound TDIs may write to memory. A
memory page that has been exported and later modified must be re-migrated in order to ensure the consistency of the
migrated memory image. To enforce that, the TDX Module employs a page modification tracking mechanism. Two export
modes may be supported:

e Write-blocking export is based on blocking memory for writing, to detect TD attempts to modify memory that has
been exported.

e Non-blocking export (if supported by the TDX Module) detects memory modifications based on EPT Dirty bit
indication set by the hardware.

Migration Streams

To utilize multiple LPs and improve migration bandwidth, the host VMM may create multiple migration streams for
concurrently transferring memory state. Migration streams are described in 5.4.

Migration Epochs

Each migration stream enforces import vs. export ordering within the stream. To enforce ordering across multiple
concurrent streams, migration epochs are used. Any specific page can be migrated only once per epoch. Migration
epochs are described in 6.1.4.

2.5.2.2.2. Migration Considerations for EPT Structures

Secure EPT trees are not migrated but rebuilt on the destination platform using memory page attributes, which are
migrated as metadata along with page contents. To do this, the host VMM calls the TDX Module's TDH.MEM.SEPT.ADD
to build the Secure EPTs and TDH.IMPORT.MEM to import memory pages. TDH.IMPORT.MEM uses the cryptographically
protected page metadata (including GPA, Read, Write and Execute attributes, and PENDING state) to ensure Secure EPT
properties from the source platform are accurately recreated, preventing remap attacks during migration.

2.5.2.3.

Migrating shared memory is outside the scope of TDX. Shared memory assigned to the TD can be migrated by the host
VMM using legacy mechanisms.

Source TD Pause and Final Non-Memory State Migration

Following pre-copy of TD private memory, the host VMM must detach any connected TDIs (applicable for TDX Connect)
and pause the source TD for a brief period (also called the blackout period). The VMM initiates this via
TDH.EXPORT.PAUSE, which checks security pre-conditions and prevents TD VCPUs from executing any more.

2.5.2.3.1. Final Non-Memory State Migration

TD mutable non-memory state is a set of source TD state variables that might have changed since it was finalized via
TDH.MR.FINALIZE. Immutable non-memory state exists for the TD scope (as part of the TDR and TDCS control structures)
and the VCPU scope (as part of the TDVPS control structure).

Once the source TD is paused, the host VMM exports the final (mutable) TD non-memory state, for the TD as a whole
and for each VCPU.

Mutable TD state is exported by TDH.EXPORT.STATE.TD (per TD) and TDH.EXPORT.STATE.VP (per VCPU) and imported
by TDH.IMPORT.STATE.TD and TDH.IMPORT.STATE.VP respectively. This is described in Ch. 7.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 16 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

2.5.2.3.2. In-Order Memory State Migration Completion

Any memory state that has been migrated must be up to date when the in-order phase completes. If a memory page
had been migrated and its content or attributes were later updated by the running source TD or by a TDI, it must be re-
migrated. If the TD is enabled for TDX Connect, then all its private memory must be migrated.

5 The TDX Module enforces this using the commitment protocol described in 2.5.4 below.

TD-Scope and VCPU-Scope Mutable Non-Memory State Migration

2.5.3. Out-Of-Order Memory Migration Phase

TDX-Imposed Blackout TD May Not Run on Source Platform
1-Order Memory Export Phase Out-Of-Order Memory Export Phase
PAUSED_EXPORT POST_EXPORT

(]

ht TDH.EXPORT. | _| TDH.EXPORT. | | TDH.EXPORT. TDH.EXPORT. | | TDH.EXPORT. _
g TRACK(DONE) MEM MEM MEM MEM .
(%] I

Start
Token

c

.©

)

© TDH.IMPORT. | _| TDH.IMPORT. |_| TDH.IMPORT. |_| TDH.IMPORT. | | TDH.IMPORT. |_| TDH.IMPORT. | _| TDH.IMPORT. .
E TRACK(DONE) MEM MEM COMMIT MEM MEM END ”

[%]

]

(a)

STATE_IMPORT POST_IMPORT LIVE_IMPORT RUNNABLE
In-Order Memory Import Phase Out-Of-Order Memory Import Phase
TD May Run on Destination Platform
2.5.3.1. Figure 2.5: Out-Of-Order Migration Phase
10 Migration of Memory State and Commitment of Import

If TDX connect is not enabled for the migrated TD, memory pages that have not been migrated during the in-order phase
may be migrated during the out-of-order phase. Since the memory state on the source platform does not change at this
stage, the order of import vs. export is not enforced.

233%he host VMM on the destination platform commits the import by calling TDH.IMPORT.COMMIT (if post-copy is to be
15 used) or TDH.IMPORT.END. At that point, the TD may run on the destination platform and may not run on the source
platform.

Post-Copy of Memory State

In some live migration scenarios, the host VMM may stage some memory state transfer to occur lazily after the
destination TD has started execution. In this case, the host VMM will be required to fetch the required pages as accesses

20 occur by the destination TD — this order of access is indeterminate and will likely differ from the order in which the host
VMM has queued memory state to be transferred.

To support that on-demand model, the order of memory migration during this post-copy stage is not enforced by TDX.
The host VMM may implement multiple migration queues with multiple priorities for memory state transfer. For
example, the host VMM on the source platform may keep a copy of each encrypted migrated page until it receives a

25 confirmation from the destination that the page has been successfully imported. If needed, that copy can be re-sent
using a high priority queue. Another option is, instead of holding a copy of exported pages, to call TDH.EXPORT.MEM
again on demand.

Also, to simplify host VMM software for this model, the TDX Module interface functions used for memory import in this
post-copy stage return additional informational error codes to indicate that a stale import was attempted by the host

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 17 of 83

Introduction and Overview

Section 1:

10

15

20

25

30

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

VMM to account for the case where the low latency import operation for a GPA superseded the import from the higher
latency import queue.

Post-copy migration is not supported if the TD is enabled for TDX Connect.

2.5.4. Migration Commitment

The commitment protocol is enforced by the Intel TDX Module to help ensure that a host VMM cannot violate the security
objectives of TD Live migration — for example, either the destination or source TD, but not both, may execute after live
migration of the source TD to a destination TD, even if an error causes the TD migration to be aborted.

On the source platform, TDH.EXPORT.PAUSE starts the blackout phase of TD live migration and
TDH.EXPORT.TRACK(DONE) ends the blackout phase of live migration (and marks the end of the transfer of TD memory
pre-copy, mutable TD VP and mutable TD global control state). TDH.EXPORT.TRACK(DONE) generates a secure start
token, which indicates that the TD will not run on the source platform and allows the destination TD to become runnable.
On the destination platform, TDH.IMPORT.TRACK consumes the start token. TDH.IMPORT.COMMIT (in case post-copy is
used) or TDH.IMPORT.END commits the migration and allows the TD to run on the destination.

2.5.5. Migration Abort

There are two abort scenarios:

Source Initiated Abort: In a live migration scenario, an error may cause migration orchestration to abort the
migration session while pre-copy is in progress, i.e., the source TD may still run or export
blackout started, but no start token has yet been generated. In such a scenario, the host
VMM on the source platform may initiate an abort via TDH.EXPORT.ABORT.

Destination Initiated Abort: If the pre-copy is complete and a start token has been generated, abort must be initiated
by the host VMM on the destination platform. The TD may be re-allowed to run on the
source platform unless the import session has been committed by TDH.IMPORT.COMMIT
or TDH.IMPORT.END. To do that, the host VMM can generate an abort token using
TDH.IMPORT.ABORT. The abort token, which indicates that the TD will not run on the
destination platform, is sent to the source platform where it may be consumed by
TDH.EXPORT.ABORT.

In both scenarios, the host VMM on the source platform must restore the SEPT state of exported pages on the source
platform, using TDH.EXPORT.RESTORE or TDH.MEM.SCAN.RANGE(EXPORT_RESTORE) (if supported).

The detailed operations are described in Ch. B6.
2.6. Impact of Migration on Measurement and Attestation

TD measurement is extended for the MigTD bound to the TD being migrated, and the ATTRIBUTES.MIGRATABLE bit is
part of the TD attestation. For details, see the [TDX Module Base Spec].

2.7. Intel TDX Module TD Migration Interface Functions Overview

See the [TDX Module Base Spec]’s overview chapter.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 18 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1:

Introduction and Overview

348550-008US (draft)

3. TD Migration Software Flows

Unreleased Feature:

Some of the text in this section is related to Non-Blocking Export, a feature which has not been
released yet at the time of writing of this document. Details related to that feature serve as a

preview and are subject to change.

5 This chapter summarizes the software flows used for TD migration using Intel TDX Module interface functions.

3.1.

Source Platform

1. Create Worker Threads, disable
device optimizations

2. Save memory layout and device
resource information

3. Send memory layout and
resource information to the
destination host

7. MigTDs exchange session keys,
version information etc.

9. Run multiple passes of memory
walker to transfer dirty guest-
memory pages

11.Export mutable state

13.Export memory

19. (optional) Export memory (post-
copy)

20.Tear-down source TD

Typical TD Migration Flow Overview (Write-Blocking Based Export)

Destination Platform

4.

®

indication

Indicate success to VM
Management

Send Migration Information —> |Receive Migration Information
TDH.SERVTD.BIND TDH.SERVTD.BIND
Establish DH session between PAEN Establish DH session between
MigTDs MigTDs
TDG.SERVTD.RD, TDG.SERVTD.WR & - |TDG.SERVTD.RD TDG.SERVTD.WR
TDH.EXPORT.STATE. > TDH.IMPORT.STATE.
IMMUTABLE IMMUTABLE
Memory Pre-Export Memory Pre-Import
TDH.EXPORT.BLOCKW
TDH.MEM.TRACK
TDH.EXPORT.MEM > |TDH.IMPORT.MEM
TDH.EXPORT.UNBLOCKW
TDH.EXPORT.TRACK > |TDH.IMPORT.TRACK |
TDH.EXPORT.PAUSE
TDH.EXPORT.STATE.TD —> |TDH.IMPORT.STATE.TD
TDH.EXPORT.STATE.VP —> |TDH.IMPORT.STATE.VP
TDH.EXPORT.TRACK(start token) —> |TDH.IMPORT.TRACK(start token)
TDH.EXPORT.MEM - |TDH.IMPORT.MEM
15. (optional) Send end of export N 16. (optional) Receive end of export
indication indication
TDH.IMPORT.COMMIT
< 18. (optional) Request post-copy of
pages

TDH.EXPORT.MEM TDH.IMPORT.MEM

TDH.IMPORT.END
Receive migration success < [Send migration success indication

Indicate success to VM
Management

Figure 3.1: Typical TD Migration Flow (Write-Blocking Export)

12.

14.

17.

Receive memory layout and
device resource information
Allocate guest memory and
reserve resources on devices

Setup worker process and signal
the completion to source host

MigTDs exchange session keys,
version information etc.

.Import TD memory contents

Import mutable state

Import memory

Resume VPs

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 19 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1:

Introduction and Overview

348550-008US (draft)

3.2. Typical TD Migration Flow Overview (Non-Blocking Export)

Source Platform

Destination Platform

1. Create Worker Threads, disable 4. Receive memory layout and
device optimizations device resource information
2. Save memory layout and device 5. Allocate guest memory and
resource information reserve resources on devices
3. Send memory layout and
resource information to the Send Migration Information —> |Receive Migration Information
destination host
6. Setup worker process and signal
the completion to source host
TDH.SERVTD.BIND TDH.SERVTD.BIND
Establish DH session between PN Establish DH session between
MigTDs MigTDs
7. MigTDs exchange session keys, | cepyTp RD, TDG.SERVID.WR | €= |TDG.SERVTD.RD TDG.SERVID.WR |o IETDs exchange session keys,
version information etc. version information etc.
TDH.EXPORT.STATE. > TDH.IMPORT.STATE.
IMMUTABLE IMMUTABLE
Memory Pre-Export Memory Pre-Import
TDH.MEM.SCAN.RANGE(DSCAN)
9. Initial In-Order Memory Export |TDH.MEM.TRACK 10.Initial In-Order Memory Import
Round: Run memory walker to ’ v
: IPIs Round: Import TD memory
transfer dirty guest-memory contents
pages TDH.EXPORT.MEM —> |TDH.IMPORT.MEM
TDH.EXPORT.TRACK —> |TDH.IMPORT.TRACK
TDH.MEM.SCAN.RANGE(DSCAN)
11.Additional In-Order Memory TDH.MEM.TRACK 12. Additional In-Order Memory
Export Rounds: Run memory ’ .
. IPls Import Rounds: Import TD
walker to transfer dirty guest- memory contents
memory pages TDH.EXPORT.MEM - |TDH.IMPORT.MEM v
TDH.EXPORT.TRACK - |TDH.IMPORT.TRACK
TDH.EXPORT.PAUSE
13.Final In-Order Memory Export TDH.MEM.SCAN.COMP(DCHECK) 14.Final In-Order Memory Import
Round TDH.EXPORT.MEM > |TDH.IMPORT.MEM Round
TDH.EXPORT.STATE.TD - |TDH.IMPORT.STATE.TD
15. Export mutable state 16.Import mutable state
TDH.EXPORT.STATE.VP —> |TDH.IMPORT.STATE.VP
TDH.EXPORT.TRACK(DONE) - |TDH.IMPORT.TRACK
(optional) Send end of export N (optional) Receive end of export
indication indication
TDH.IMPORT.COMMIT
16.Resume VPs
< (optional) Request post-copy of
pages
17.{optional —non TDX Connect) - |rp) eyporT MEM TDH.IMPORT.MEM
Export memory (post-copy)
TDH.IMPORT.END
.Rec.elw.e migration success & |Send migration success indication
indication
Indicate success to VM Indicate success to VM
Management Management
18.Tear-down source TD

Figure 3.2: Typical TD Migration Flow (Non-Blocking Export)

3.3. Successful Write-Blocking Based Export

The following sequence is typically used to export a TD from a source platform using write blocking.

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 20 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1: Introduction and Overview

348550-008US (draft)

Table 3.1: Typical Write-Blocking Based TD Export Sequence

Migration | Step Description Plurality TDX Module Interface Functions
Phase
In-Order Start of VMM initializes MigTD (as a non- Once TDH.SERVTD.BIND
Export Export migratable TD) and binds it to the source
Session TD.
VMM/orchestration sets up transport Once
session between source and destination
MigTD. MigTDs set up their own
protected channel.
MigTDs reads the session encryption key, Once TDG.SERVTD.RD
version information and other metadata
from the source TD and sends it to the
MigTD on the destination.
MigTD receives the session encryption key | Once TDG.SERVTD.WR
from the MigTD on the destination.
MigTD writes it as the session decryption
key to the source TD. It may also write
the migration version.
VMM starts the export session and Once TDH.EXPORT.STATE.IMMUTABLE
exports immutable state creating a state
migration bundle.
Live Memory | Host VMM blocks a set of pages for Multiple TDH.EXPORT.BLOCKW
Export writing.
Host VMM increments the TD’s TLB epoch | Once per TDH.MEM.TRACK
migration
epoch
Host VMM starts migration epoch and Once per TDH.EXPORT.TRACK(epoch token)
creates epoch token migration bundle; a migration
page can be exported once per epoch. epoch
Host VMM exports, re-exports or cancels Multiple TDH.EXPORT.MEM
the export of TD private pages and creates
a memory migration bundle.
TD write attempt to write to page blocked | Multiple TDH.EXPORT.UNBLOCKW
for writing results in an EPT violation. The
host VMM unblocks the page; if already
exported, it will need to be re-blocked
and re-exported.
Mutable Non- | VMM pauses the source TD Once TDH.EXPORT.PAUSE
Memor
Y VMM exports mutable TD-scope state and | Once TDH.EXPORT.STATE.TD
State Export .]
creates a state migration bundle.
VMM exports mutable VCPU-scope state Per VCPU TDH.EXPORT.STATE.VP
and creates a state migration bundle.
Out-Of- Cold Memory | Host VMM starts the out-of-order export Once TDH.EXPORT.TRACK(start token)
Order Export phase and creates a start token migration
Export bundle.
Host VMM exports TD private pages and Multiple TDH.EXPORT.MEM
creates a memory migration bundle.
December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 21 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1: Introduction and Overview

348550-008US (draft)

Migration | Step Description Plurality TDX Module Interface Functions
Phase

D End Host VMM gets success notification from Once TDH.MNG.VPFLUSHDONE
Teardown the destination platform, terminates the

export session and tears down the TD on
the source platform

TDH.PHYMEM.CACHE.WB
TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM
TDH.PHYMEM.PAGE.WBINVD

3.4. Successful Non-Blocking Export

The following sequence is typically used to export a TD from a source platform using the non-blocking method.

Table 3.2: Typical Non-Blocking TD Export Sequence

Migration | Step Description Plurality TDX Module Interface Functions
Phase
In-Order Start of Same as above
Export Export
Session
Live Memory | Host VMM scans memory for page export Multiple TDH.MEM.SCAN.RANGE(DSCAN)
Export (Initial | candidates.
Round) . ,
Host VMM increments the TD’s TLB Once per TDH.MEM.TRACK
epoch. migration
epoch
Host VMM exports TD private pages Multiple TDH.EXPORT.MEM
reported by TDH.MEM.SCAN and creates
memory migration bundles.
Live Memory | Host VMM scans memory for page export Multiple TDH.MEM.SCAN.RANGE(DSCAN)
Export candidates.
Optional
(p_ . Host VMM increments the TD’s TLB epoch | Once per TDH.MEM.TRACK
Additional iorati
Rounds) migration
epoch
Host VMM starts migration epoch and Once per TDH.EXPORT.TRACK(epoch token)
creates epoch token migration bundle; a migration
page can be exported once per epoch. epoch
Host VMM exports, re-exports or cancels Multiple TDH.EXPORT.MEM
the export of TD private pages reported
by TDH.MEM.SCAN and creates a memory
migration bundle.
Final Memory | VMM pauses the source TD Once TDH.EXPORT.PAUSE
Export and
P VMM exports mutable TD-scope state and | Once TDH.EXPORT.STATE.TD
Mutable Non- .]
creates a state migration bundle.
Memory
State Export VMM exports mutable VCPU-scope state Per VCPU TDH.EXPORT.STATE.VP
and creates a state migration bundle.
Host VMM scans memory for page export Multiple TDH.MEM.SCAN.COMP(DCHECK)
candidates.
Host VMM exports, re-exports or cancels Multiple TDH.EXPORT.MEM
the export of TD private pages reported
by TDH.EXPORT.SCAN and creates a
memory migration bundle.
December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 22 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1: Introduction and Overview

348550-008US (draft)

Migration | Step Description Plurality TDX Module Interface Functions
Phase
Out-Of- Cold Memory | Host VMM starts the out-of-order export Once TDH.EXPORT.TRACK(start token)
Order Export phase and creates a start token migration
Export bundle.

Host VMM exports TD private pages and Multiple TDH.EXPORT.MEM

creates a memory migration bundle.
D End Host VMM gets success notification from Once TDH.MNG.VPFLUSHDONE
Teardown the destination platform, terminates the

export session and tears down the TD on
the source platform

TDH.PHYMEM.CACHE.WB
TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM
TDH.PHYMEM.PAGE.WBINVD

3.5. Successful Import

The following sequence is typically used to import a TD to a destination platform.

Table 3.3: Typical TD Import Sequence

Migration
Phase

Step

Description

Plurality

TDX Module Interface Functions

In-Order
Import

Start of
Import
Session

VMM creates the destination TD’s
skeleton

Once

TDH.MNG.CREATE
TDH.MNG.KEY.CONFIG
TDH.MNG.ADDCX

VMM initializes MigTD (as a non-
migratable TD) and binds it to the
destination TD.

Once

TDH.SERVTD.BIND

VMM/orchestration sets up transport
session between source and destination
MigTD. MigTDs set up their own
protected channel.

Once

MigTDs reads the session encryption key,
version information and other metadata
from the destination TD and sends it to
the MigTD on the source.

Once

TDG.SERVTD.RD

MigTD receives the session encryption key
from the MigTD on the source. MigTD
writes it as the session decryption key to
the destination TD. It may also write the
migration version.

Once

TDG.SERVTD.WR

VMM starts the import session and
imports immutable state with a state
migration bundle received from the
source platform.

Once

TDH.IMPORT.STATE.IMMUTABLE

Pre-Copy
Memory
Import

Host VMM builds the Secure EPT by
allocating physical pages.

Multiple

TDH.MEM.SEPT.ADD

Host VMM imports TD private pages with
a memory migration bundle received from
the source platform.

Multiple

TDH.IMPORT.MEM

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 23 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1: Introduction and Overview

348550-008US (draft)

Migration | Step Description Plurality TDX Module Interface Functions
Phase
Host VMM starts migration epoch with an | Once per TDH.IMPORT.TRACK(epoch token)
epoch token migration bundle received migration
from the source platform; a page can be epoch
imported once per epoch.
Mutable TD- VMM imports mutable TD-scope state Once TDH.IMPORT.STATE.TD
scope and with a state migration bundle received
VCPU-scope from the source platform.
nonN-Memory 1 \/\m creates VCPU. Per VCPU | TDH.VP.CREATE
state import
VMM allocates physical pages for the Multiple TDH.VP.ADDCX
VCPU’s TDVPS. per VCPU
VMM imports mutable VCPU-scope state Per VCPU TDH.IMPORT.STATE.VP
with a state migration bundle received
from the source platform.
Out-Of- Pre-Copy Host VMM starts the out-of-order import Once TDH.IMPORT.TRACK(start token)
Order Memory phase with a start token migration bundle
Import Import received from the source platform.
Host VMM builds the Secure EPT by Multiple TDH.MEM.SEPT.ADD
allocating physical pages.
Host VMM imports TD private pages with Multiple TDH.IMPORT.MEM
a memory migration bundle received from
the source platform.
Post-Copy Host VMM commits the import session, Once TDH.IMPORT.COMMIT
Memory allowing the TD to run on the destination
Import platform.
Host VMM can execute the TD as usual. Per VCPU TDH.VP.ENTER
Memory can be imported on demand.
On EPT violation, host VMM requests a Multiple N/A
page import from the source platform.
Host VMM builds the Secure EPT by Multiple TDH.MEM.SEPT.ADD
allocating physical pages.
Host VMM imports TD private pages with Multiple TDH.IMPORT.MEM
a memory migration bundle received from
the source platform.
End Host VMM terminates the import session Once TDH.IMPORT.END

3.6. TD Import Abort

The following sequences are typically used to abort an import of TD to a destination platform, if an error is detected.

3.6.1. TD Import Abort During the In-Order Import Phase
5 Table 3.4: Typical TD Import Sequence Abort During In-Order Input
Migration | Step Description Plurality TDX Module Interface Functions
Phase

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 24 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec

Section 1: Introduction and Overview

348550-008US (draft)

Migration | Step Description Plurality TDX Module Interface Functions
Phase
In-Order Pre-Copy Host VMM builds the Secure EPT by Multiple TDH.MEM.SEPT.ADD
Import Memory allocating physical pages.
Import
(Failed) Host VMM imports TD private pages with Multiple TDH.IMPORT.MEM
a memory migration bundle received from
the source platform.
TDH.IMPORT.MEM returns an error status
indicating a failed import session.
Abort Token VMM creates an abort token and Once TDH.IMPORT.ABORT
Transmission | transmits it to the source platform.
(Optional)
D End Host VMM terminates the import session Once TDH.MNG.VPFLUSHDONE
Teardown and tears down the TD on the destination TDH.PHYMEM.CACHE.WB
platform TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM
TDH.PHYMEM.PAGE.WBINVD
3.6.2. TD Import Abort During the Out-Of-Order Import Phase
Table 3.5: Typical TD Import Sequence Abort During Out-of-Order Input
Migration | Step Description Plurality TDX Module Interface Functions
Phase
In-Order
Import
Out-Of- Memory
Order Import
'? Host VMM imports TD private pages with Multiple TDH.IMPORT.MEM
Import (Failed) . . h
a memory migration bundle received from
the source platform.
TDH.IMPORT.MEM returns an error status
indicating a failed import session.
Abort Token VMM creates an abort token and Once TDH.IMPORT.ABORT
Transmission | transmits it to the source platform.
D End Host VMM terminates the import session Once TDH.MNG.VPFLUSHDONE
Teardown and tears down the TD on the destination

platform

TDH.PHYMEM.CACHE.WB
TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM
TDH.PHYMEM.PAGE.WBINVD

s 3.7. TD Export Abort

The following sequence is typically used to export a TD from a source platform, if the export is aborted.

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 25 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec Section 1: Introduction and Overview 348550-008US (draft)

3.7.1. Export Abort During the In-Order Export Phase

Table 3.6: Typical TD Export Sequence Abort During In-Order Export

Migration | Step Description Plurality TDX Module Interface Functions

Phase

In-Order Start of

Export Export

¥ Sespsion VMM starts the export session and Once TDH.EXPORT.STATE.IMMUTABLE
exports immutable state creating a state
migration bundle.
Export Abort Host VMM aborts the export session. Once TDH.EXPORT.ABORT

Source TD Host VMM may run and manage the Multiple TDH.VP.ENTER etc.

Run and source TD

Restore . . .
Host VMM restores SEPT entries to their Multiple TDH.EXPORT.UNBLOCKW
normal non-export state TDH.EXPORT.RESTORE

3.7.2. Export Abort During the Out-Of-Order Export Phase

5 Table 3.7: Typical TD Export Sequence Abort During Out-Of-Order Export

Migration | Step Description Plurality TDX Module Interface Functions

Phase

In-Order

Export

Out-Of-

Order)

Export Abort Host VMM receives an abort token from Once TDH.EXPORT.ABORT

Export N
the destination platform and abort the
export session.

Source TD Host VMM may run and manage the Multiple TDH.VP.ENTER etc.

Run and source TD

Restore

Host VMM restores SEPT entries to their Multiple TDH.EXPORT.UNBLOCKW
normal non-export state TDH.EXPORT.RESTORE

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 26 of 83

Introduction and Overview

Section 1:

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

SECTION 2:

TD MIGRATION ARCHITECTURE SPECIFICATION

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 27 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

4. Migration TD, Migration Policy and the Extended TCB

This chapter describes the role of the Migration TD, the migration policy it implements and the extended TCB for migrated
TDs. For details of the Intel reference MigTD, refer to the [MigTD Spec].

4.1. Extended TCB and the Migration Policy

5 The TCB of a migrated TD is extended to include the Migration TD bound to it. The Migration TD builds trust relationships
with other Migration TDs, and through them, with other platforms and their component. Thus, it can be said that a
migrated TD’s effective TCB extends to the whole migration pool of platforms, each with its own Migration TD, TDX
Modules etc.

A trusts B

Destination Platform Y

All ACM’s and MCHECK are in NP-SEAMLDR
the same TCB group
N J

o N A /
Source Platform

10 Figure 4.1: Trust Relationship with Migration TDs

This extended TCB is controlled by the migration policy implemented by the Migration TD. TDX does not enforce any
specific migration policy; this is up to the migration TD’s writer.

4.2. Attestation of the Migration TD and its Migration Policy

A migrated TD’s attestation reflects the current platform on which it is running. l.e., calling TDG.MR.REPORT generates

15 a TDREPORT_STRUCT with CPUSVN and TEE_TCB_INFO for the current platform. However, there is no requirement to
re-attest a TD after migration. The initial attestation, as well as attestation done at any time during the migrated TD’s
lifetime, contains the information about the TD’s extended TCB, provided as a measurement of the Migration TD and its
migration policy.

A Migration TD is a private case of a Service TD, which is described in the [Base Spec]. As such, a hash of the bound

20 Migration TD’s TDREPORT_STRUCT is included in the migrated TD’s TDREPORT_STRUCT (as the SERVTD_HASH field). The
service TD protocol allows, at binding time, to select which field of the TDREPORT_STRUCT is included in the calculation
of SERVTD_HASH.

The static components of the Migration TD, i.e., code and data added and measured during its build, are measured by its
MRTD. This may include, for example, a baseline migration policy. Migration TD writers are expected to measure the

25 configurable part of the migration policy and its parameters, i.e., any change that can be made after the Migration TD
build was finalized, using one or more of the RTMRs (run time measurement registers) provided by the TDX architecture
via the TDG.MR.RTMR.EXTEND interface function. Those RTMRs should be included in the SERVTD_HASH calculation.
Thus, the migration policy is attested as part of the Migration TD, and as such, as part of the migrated TD.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 28 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

SERVTD_HASH is not migrated; it is recalculated at the beginning of an import session (TDH.IMPORT.STATE.IMMUTABLE)
to reflect the Migration TD which is bound at the destination.

4.3. Inputs to the Migration TD’s Migration Policy Evaluation

The following data can be read and evaluated by the Migration TD, as part of its migration policy evaluation. The
migration TD may reflect such inputs in an RTMR (using TDG.MR.RTMR.EXTEND) so that it becomes part of any migrated
TD’s attestation.

System-Scope Information Provided by TDG.SYS.RD*

System-scope (platform and TDX Module) information can be read using TDG.SYS.RD or TDG.SYS.RDALL. Examples of
such information are:

e TDX features supported on this platform (e.g., TDX_FEATURESO field)

e Supported TD features (e.g., ATTRIBUTES_FIXEDO/1, XFAM_FIXEDO/1, CPUID_CONFIG_VALUES and
IA32_ARCH_CAPABILITIES_CONFIG_MASK fields)

e TD Migration protocol features (e.g., MIN/MAX_EXPORT/IMPORT_VERSION fields)

The complete list of fields enumerated by TDG.SYS.RD* is provided in the [ABI Spec].

System-Scope Information Provided by TDG.MR.REPORT

The Migration TD may call TDG.MR.REPORT to get the TDREPORT_STRUCT, which contains information about the
platform (CPUSVN) and the TDX Module (TEE_TCB_INFO).

Migration Policy Configuration

The Migration TD’s migration policy may be configured by, e.g., the host VMM.
4.4. Migrated TD Information Provided by TDG.SERVD.RD

Migration TDs on both sides may read migrated TD information using TDG.SERVD.RD, to decide whether that TD can be
migrated to a specific destination platform. Note that similar checks are also done by the TDX Module on import, so
there’s no strict requirement for the Migration TD to do them.

Examples of such information are:

e ATTRIBUTES_FIXEDO/1
e XFAM_FIXEDO/1

e GPAW

e CPUID_VALUES

4.5. Migration Protocol Version Setup

The migration protocol supports versioning, to allow for future updates.

Before starting a migration session, the MigTDs on the source and destination should agree on migration protocol version
that is supported by both sides. To do so, each MigTD can read the following fields using TDG.SYS.RD:

e MIN_EXPORT_VERSION
e MAX_EXPORT_VERSION
e MIN_IMPORT_VERSION
e MAX_IMPORT_VERSION

The MigTD on each side then should write the MIG_VERSION to the migrated TD using TDG.SERVD.WR.
4.6. Migration Session Keys (MSKs) Exchange

1. The MigTD on each side reads the migration encryption key (MIG_ENC_KEY using TDG.SERVTD.RD. The TDX Module
generates a new key on each such read operation.
2. The MigTD on each side sends the key value over a secure channel to the peer MigTD on the other side.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 29 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

45

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Note: A MigTD must never send the same key value to more than one peer MigTD. Failing to do so may expose
TDX to an attack where the same TD is migrated to more than one destination. The MigTD should always
read a new MIG_ENC_KEY value using TDG.SERVTD.RD if it needs to resend it.

3. The MigTD on each side writes the received key value as the migration decryption key (MIG_DEC_KEY), using
TDG.SERVTD.WR.

4.7. Example Migration Session Establishment

Note: The example below illustrates migration session establishment and doesn’t necessarily imply actual
implementation.

The goal is to establish a secure transport channel between Intel TDX Modules and MigTDs on both sides across
compatible platforms and reserve resources for the migration session.

1. Onthe source platform, TD-s to be migrated is created with MIGRATABLE attribute.
2. On the source platform, MigTD-s is created and built.
3. On the source platform, MigTD-s evaluates the platform and TDX Module information using TDG.SYS.RD* and
TDG.MR.REPORT and reflects its updated migration policy in the MigTD’s RTMR[3], using TDG.MR.RTMR.EXTEND.
4. The host VMM on the source platform binds MigTDs to TD-s via an unsolicited Service TD binding using
TDH.SERVTD.BIND:
4.1. MigTD-s requests the host VMM to be bound to TD-s, using TDG.VP.VMCALL.
4.2. The VMM invokes TDH.SERVTD.BIND to bind TDO to MigTD-s. As a result, the MigTD’s TDREPORT fields’ hash
is included in the migrated TD’s TDREPORT (as SERVTD_HASH).
4.3. TDH.SERVTD.BIND returns the migrated TD’s binding handle and TD_UUID. The host VMM communicates
them to MigTD-s.
5. The host VMM on the source platform finalizes the build of TD-s using TDH.MR.FINALIZE.
6. TD-s executes on the source platform.
7. Similar to MigTD-s above, on the destination platform, MigTD-d is created and built. It evaluates its platform and
TDX Module and reflects the updated migration policy in RTMR[3].
8. The migration orchestrator triggers a migration of TD-s from the source platform to the destination platform.
9. MigTD-s may read selected metadata of TD-s (e.g., its ATTRIBUTES and XFAM) using TDG.SERVTD.RD, to use as an
input to the migration policy evaluation.
10. The migration orchestrator requests the source and destination Mig TDs to establish a secure session and negotiate
the migration policy agreement.
11. MigTD-s verifies the MigTD-d quote and establishes a secure transport key for the session with the destination
platform (and vice-versa).
12. MigTD-s authenticates the Migration Policy and evaluates it vs. the capabilities (SVN etc.) of the destination
platform (learnt via the quote) for the specified live migration session.
13. On the destination platform, a destination TD-d skeleton is created via legacy process.
14. On the destination platform, the host VMM may bind MigTD-d to TD-d using TDH.SERVTD.BIND.
15. Migration Keys Exchange:
15.1. MigTD-s reads the source migration encryption key using TDG.SERVTD.RD. This key is used as the forward
migration session key, to encrypt information exported by the TDX Module.
15.2. MigTD-s sends the forward migration session key to MigTD-d.
15.3. On the destination platform, MigTD-d writes the forward migration session key, as the migration decryption
key, using TDG.SERVTD.WR.
15.4. MigTD-d reads the destination migration encryption key using TDG.SERVTD.RD. This key is used as the
backward migration session key, to encrypt information sent by the TDX Module on the destination.
15.5. MigTD-d sends the backward migration session key to MigTD-s.
15.6. 0On the destination platform, MigTD-d writes the backward migration session key, as the migration decryption
key, using TDG.SERVTD.WR.
16. The host VMM on the source platform can now initiate the state export via TDH.EXPORT* SEAMCALLs and import
state via TDH.IMPORT* SEAMCALLs

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 30 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

5. Common TD Migration Mechanisms

This chapter describes the infrastructure used by all Import/Export APIs to migrate TD private memory and metadata.
5.1. Migration Bundles

A migration bundle is the basic unit of information transported between the source and destination platforms. This
section describes the generic migration bundle structure. Private memory migration uses an enhanced format, described
in 8.3.

5.1.1. Overview

TD information is transported from the source platform to the destination platform in migration bundles. A migration
bundle consists of migration data, which may span one or more 4KB pages, and migration bundle metadata (MBMD).
The host VMM may add its own untrusted metadata to the migration bundle, for managing the migration. Migration
bundle transport is the responsibility of untrusted software and is out of the scope of this specification.

I i Untrusted 1 i E i1 1 Untrusted | E
! ! Metadata ' | ! 1 | Metadata | |
! | (addedby ! | i b1 (readby |
I i hostvMM) 1 1 1 1 hostVMM) |
S P R S |
i Migration i E i i Migration E
i Bundle o E i Bundle 1
: Metadata P . Metadata :
i | (mBmD) | i b1 | (mBmD) | i
E ! ! Transport | E !
TDH.EXPORT.* > — 2 s>\ TDH.IMPORT.*
E Migrated E E E E Migrated E
! Data P P Data i

Figure 5.1: Migration Bundle

5.1.2. Migration Data

Migration data contains either TD private memory contents or TD non-memory state. It confidentially is protected using
AES-GCM with the TD migration key and a running migration session counter. Migration data is integrity-protected by its
associated MBMD. For encryption details, see 5.3.

Note: Migration of shared memory pages is the responsibility of untrusted software and is beyond the scope of this
specification.

In memory, migration data occupies one or more 4KB shared memory pages, managed by the host VMM.

5.1.3. Migration Bundle Metadata (MBMD)
A migration bundle metadata (MBMD) structure provides metadata for the migrated data in the migration bundle. In
memory, MBMD resides in a shared page, managed by the host VMM, and must be naturally aligned.

An MBMD is not confidentiality-protected. The host VMM can read the MBMD; this is required for the VMM to perform
the required operations. E.g., the host VMM on the destination platform reads the MBMD to decide which import
function to call.

The MBMD provides integrity protection for itself and for its associated migration data.
The MBMD structure consists of a fixed header and a per-type variable part. The header contains the following fields:

SIZE: Overall size of the MBMD structure, in bytes

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 31 of 83

Section 2: TD Migration Architecture Specification

MIG_VERSION: Migration protocol version
MB_TYPE: The type of information being migrated
MB_COUNTER: Per-stream migration bundle counter
MIG_EPOCH: Migration epoch number
5 MIGS_INDEX: Index of the migration stream
IV_COUNTER: Monotonically increasing counter, used as a component in the AES-GCM IV
The last field of each MBMD is an AES-256-GCM MAC over other MBMD fields and other associated migration data
(migration pages).
The detailed MBMD definition is provided in [TDX Module ABI Spec].
10 5.1.4. Untrusted Metadata
The host VMM may add its own metadata to the migration bundle, e.g., to support its implementation of the migration
protocol. This metadata is untrusted and is not used by the TDX Module.
5.2. Export and Import Functions Interface
On each invocation, export and import functions operate on a single migration bundle and a specific migration stream.
15 5.2.1. Migrating a Multi-Page Migration Bundle
Migration bundles may consist of multiple pages of migrated information. To export a multi-page migration bundle, the
host VMM on the source platform prepares a set of buffers in shared memory. The host VMM provides the MBMD’s HPA
and a list of HPA pointers to the migration pages as an input to the TDH.EXPORT* function. The required number of
migration pages per TDH.EXPORT.* function is enumerated by the TDX Module. See the [ABI Spec] for details.
20 To import a multi-page migration bundle, the host VMM on the destination platform prepares the set of migration pages
and the MBMD, as received from the source platform, in shared memory. The host VMM provides the MBMD’s HPA and
a list of HPA pointers to the migration pages as an input to the TDH.IMPORT* function.
i Source Platform oI I Destination Platform
! | ! Untrusted | E ! ! | i Untrusted | E
' ' 1 Metadata @ | ! ! ' | Metadata !
E ' E (added by ! E ' o i (read by ! E
! E ! host VMM) E ! i E E ' host VMM) E !
: S S . :
' i HE o 1
E i Migration 1 E E E Migration 1
| ! Bundle b b Bundle E
E { Metadata Lo P Metadata '
: (MBMD) b b (MBMD) :
E i B 1 1 Transport 1 o
| TDH.EXPORT.* |y — > TDH.IMPORT.*
| ! 4KB b P 4KB :
! > Migration Lo E 1| Migration 41!
i 1 //Er Page P . Page \\k\\\\ £
E | Pagelist iy P b N ‘\ PageList |
i \ [/t o Co Y |
| | | PAGE_HPA, j ! P b i |\ | PAGE_HPA, | |
E PAGE_HPA, [| i Migrated Data E E E E Migrated Data E ‘ | PAGE_HPA, |/

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

\

' b/ Multi-Page

PAGE_HPA,, / MB'i:]a;:Z“

Multi-Page \

i Migration \ PAGE_HPA,,,
| Bundle

Figure 5.2: Migrating a Multi-Page Migration Bundle

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 32 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

5.2.2. Migration Functions Interruptibility

TDH.EXPORT.* and TDH.IMPORT.* functions may take relatively long time to execute. This is especially true for memory
migration, which can process up to 512 4KB pages. To avoid latency issues, such functions may be interruptible and
resumable. This is supported as follows:

e TDH.EXPORT.* and TDH.IMPORT.* functions are designed to synchronously check for a pending external event by
reading MSR_INTR_PENDING (once after every pre-determined number of cycles, chosen to be smaller than the
maximum allowed cycle latency).

e Asdescribed later, migration functions that work with a Migration Stream use Migration Stream Context (MIGSC). If
an external event is pending, the functions store their context in the proper MIGSC and return with a
TDX_INTERRUPTED_RESUMABLE completion status.

e The host VMM is expected to call the TDH.EXPORT.* or TDH.IMPORT.* function again with the same set of inputs
until the operation is completed successfully (completion status is TDX_SUCCESS) or some error occurs (completion
status indicates an error).

e Aninput flag indicates whether the invocation of a TDH.EXPORT.* or TDH.IMPORT.* function starts a new operation
(and possibly aborts an interrupted one) or resumes an interrupted operation. A migration function which is called
as a resumption of an interrupted operation checks to see if an intermediate state has been saved, and if so, it checks
that it is being invoked with the same input arguments as last time when it was interrupted.

5.3. Cryptographic Protection of Migration Data

5.3.1. Encryption Algorithm

TD migration uses AES in Galois/Counter Mode (GCM) to transfer state between the source and destination platform
platforms. Per [AES-256-GCM] definitions, the TD data private memory or non-memory state temporarily held in the
CPU cache during TDH.EXPORT.* forms the “Plaintext”, and some of the MBMD fields form the “Additional Authenticated
Data”. The “Plaintext” is encrypted using a Migration key (described below). The MAC size, also known as t, as defined
in [AES-256-GCM], must be 128 bits.

The Initialization Vector (IV) is 96 bits. Itis composed as described below. Since 64 bits will never wrap around in practice,
this helps ensure a unique counter for each stream.

Table 5.1: Components of the 96-bits IV

Bits Size Name Description

63:0 64 IV_COUNTER | Starts from 1, incremented by 1 every time AES-GCM is used to encrypt data
and/or generate a MAC for a migration bundle. The counter is incremented
even if the data is discarded and not used for migration.

79:64 16 MIGS_INDEX | Stream index (see 5.3)

95:80 16 RESERVED Setto O

5.3.2. Migration Session Keys

Two migration session keys are used, one in each direction:

e The TDX Module on the source platform generates a migration session forward key for encrypting migration bundles
by the source TDX Module and decrypting them by the destination TDX Module.

e The TDX Module on the destination platform generates a migration session backward key for encrypting migration
bundles by the destination TDX Module and decrypting them by the source TDX Module.

Each of the MigTDs on the source and the destination platforms reads the key generated on its side, known as the
migration encryption key, from the TDX Module’s migrated TD’s metadata, and transfers it using a secure connection to
its peer MigTD on the other side of the migration session. The peer MigTD then writes the key, to be used as the migration
decryption key, to the TDX Module’s migrated TD’s metadata. TD metadata read and write use the Service TD protocol,
as described in the [TDX Module Base Spec].

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 33 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Forward Migration Session Key——————»|
Migration TD Migration TD
-¢——Backward Migration Session Key——

I
? . Decryption
Encryption Key
Key
Decryption Encryption
Key Key
Y \ A
Migrated TD’s Migrated TD’s
Metadata Metadata
(in TDCS) (in TDCS)
TDX Module TDX Module
Source Destination
Platform Platform

Figure 5.3: Migration Session Keys Exchange
The migration keys properties are as follows:

e The key strength is 256 bits.

e A new encryption key is generated by the TDX Module on TD creation (TDH.MNG.CREATE) and at the beginning of
each migration session (TDH.*PORT.STATE.IMMUTABLE).

e The encryption key is read by the MigTD from the migrated TD’s metadata using the Service TD metadata protocol,
as described in the [TDX Module Base Spec].

e The MigTD transfers the encryption key to its peer MigTD, over a secure channel both MigTDs have created.

e The decryption key is written by the MigTD to the migrated TD’s metadata using the Service TD metadata protocol,
as described in the [TDX Module Base Spec].

e The keys are accessible only by the MigTD and the Intel TDX Module.

e Onthe start of migration session by TDH.*PORT.STATE.IMMUTABLE, the Intel TDX Module copies the encryption and
decryption keys into working keys that are used throughout the session.

e The keys are used by TDH.EXPORT.*/TDH.IMPORT.* to control the migration session and migrate TD memory and
non-memory. The migration stream AES-GCM protocol requires that state is migrated in-order between the source
and destination platform. This helps guarantee the order within each migration stream.

e The keys are destroyed when a TD holding them is torn down, or when new keys are generated or programmed.

5.4. Migration Streams and Migration Queues

Migration stream is a TDX concept. Multiple streams allow multi-threaded, concurrent export and import, and enable
the Intel TDX Module to enforce proper ordering of migration bundles during the in-order phase where this is essential.

Migration queue is a host VMM concept. Multiple queues allow QoS and prioritization. E.g., Post-copy of pages on
demand (triggered by an EPT violation on the destination platform) may have a higher priority than other post-copy of
pages. To avoid head-of-line blocking by waiting in the same queue as lower priority pages, a separate high priority queue
can be used by the host VMM.

From the migration streams and migration queues perspective, a migration session is divided into two main phases:

e In-order, where the source TD may run, and its memory and non-memory state may change. During the in-order
phase, the order of memory migration is critical. A newer export of the same memory page must be imported after
an older export of the same page. Furthermore, for any memory page that has been migrated during the in-order
phase, the most up-to-date version of that page must be migrated before the in-order phase ends. In the in-order
phase, one or more migration streams are mapped to each migration queue.

e Out-of-order, where the source TD does not run, and its memory and non-memory state may not change. During
out-of-order, the order of memory migration is not important — except that migration bundles exported during the

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 34 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

in-order phase can’t be imported during the out-of-order phase. Furthermore, the host VMM may assign exported
pages (even multiple copies of the same exported page) to a different priority queue. This is used, e.g., for on-
demand migration after the destination TD starts running.

The start tokens, generated by TDH.EXPORT.TRACK(DONE) and verified by TDH.IMPORT.TRACK, serve as markers to

5 indicate the end of the in-order phase and start of the out-of-order phase. They are used to implement a rendezvous
point, enforcing all the in-order state (across all streams) to have been imported before the out-of-order phase starts and
the destination TD may execute.

5.3 describes how the stream context held by the source and the destination platforms and the MBMD fields included in
each migration bundle are used to construct the non-repeated AES-GCM IV. Note also that the same stream queues can
10 be used for both in-order and out-of-order. The semantic use of the queues is up to the host VMM.

,—» AES-256-GCM Migration Session Forward Key —l
Encryption Decryption
Key Key
AES-256-GCM Migration Session Backward Key . .
Source Destination
Platform Decryption Encryption Platform
Key |- ¢———From MBMD——p>| Key
0 STREAM_INDEX AES_GCM_CONTER
(16 bits) (16 bits) (64 bits)
-< -256- its) > y
TDCS AES-256-GCM |V (96 bits)
Stream TDCS
Context Sl
Context
Forward Migration Stream 0 (Default)
MB 3 MB O
Migration TDH.EXPORT.PAGE MEB_COUNTER = 1 j§ MB_COUNTER = 0 TDH.IMPORT.PAGE | Migration
Bundle 0 @ LP1 @ LP1 Bundle 0
Migration Backward Migration Stream O (Default) Migration
Bundle 3 Bundle 3
TDH.EXPORT.ABORT M8 M8 TDH.IMPORT.ABORT
' ’ MB_COUNTER =0 MB_COUNTER =1 ’ ’
Migration TDH.EXPORT.PAGE Forward Migration Stream 1 TDH.IMPORT.PAGE Migration
Bundle 1 @ LP2 Bundle 1
@ LP2
MB 2 MB 1
Migration MB_COUNTER =1 MB_COUNTER = 0 Migration
Bundle 2 Bundle 2

Figure 5.4: Migration Streams
Migration streams have the following characteristics:

e Within each stream, the state is migrated in-order. This is enforced by the MB_COUNTER field of MBMD.
15 e Export or import operations using a specific migration stream must be serialized. Concurrency is supported only
between streams.
e The host VMM should use the same stream index to import memory on the destination TD (which should be in
MEMORY_IMPORT, STATE_IMPORT or RUNNABLE state). This is enforced by TDH.IMPORT.MEM.
e Non-memory state can only be migrated once; there is no override of older migrated non-memory state with a newer
20 one. Ordering requirements (e.g., TD-scope non-memory state must be imported before VCPU non-memory state)
are enforced by the lifecycle state machine, as described in 6.2.
e The maximum number of forward streams is implementation dependent:
o Each stream requires context space allocation.
o Stream ID requires a field in the MBMD header.
25 e There is one backward stream.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 35 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

e The maximum total number of forward and backward migration streams is enumerated by MAX_MIGS, readable
TDH.SYS.RD*.

5.5. Measurement and Attestation

5.5.1. TD Measurement Registers Migration

TDs have two types of measurement registers:

MRTD: Static measurement of the TD build process and the initial contents of the TD. This state is migrated as part
of the global immutable state of the TD (via TDH.EXPORT.STATE.IMMUTABLE and
TDH.IMPORT.STATE.IMMUTABLE).

RTMR: An array of general-purpose measurement registers, available to the TD software for measuring additional
logic and data loaded into the TD at runtime. Since this measurement covers dynamic state beyond the
static state and can be extended by TD software via TDG.MR.RTMR.EXTEND, this state is migrated only
during the blackout period, as part of the TD’s mutable state (via TDH.EXPORT.STATE.TD and
TDH.IMPORT.STATE.TD).

All TD measurements are reflected in TD attestations.

5.5.2. TD Measurement Reporting Changes

The TDINFO structure is enhanced to include hashes of Service TDs’ TDINFO; for TD migration, the applicable Service TD
is the Migration TD. Refer to the [TDX Module Base Spec] for a discussion of Service TDs.

5.5.3. TD Measurement Quoting Changes

To create a remotely verifiable attestation, the TDREPORT_STRUCT must be converted into a Quote signed by a certified
Quote signing key, as described in the [TDX Module Base Spec].

TDREPORT_STRUCT is HMAC'ed using an HMAC key unique to each platform and accessible only to the CPU. This protects
the integrity of the structure and can only be verified on the local platform via the SGX ENCLU(EVERIFYREPORT2)
instruction. TDREPORT_STRUCT cannot be sent off platforms for verification; it first must be converted into signed
Quotes.

If a report is generated by TDG.MR.REPORT on the source platform, but the TD is migrated to a destination platform, the
local HMAC key is different and hence the EVERIFYREPORT2 on the migrated TDG.MR.REPORT is expected to fail. The TD
software is typically unaware of being migrated. It is expected to retry the TDG.MR.REPORT operation if it fails.

5.5.4. TCB Recovery and Migration

The TDX architecture has several levels of TCB:

e CPUHW level, which includes microcode patch, ACMs etc.
e Intel TDX Module
e Attestation Enclaves, which include the TD Quoting Enclave and Provisioning Certification Enclave

The TCB Recovery story is different for each level. The existing TCB Recovery model for CPU SW level items applies
similarly to TDX and SGX and requires a restart of the platform to take effect. The Intel TDX Module can be unloaded
and reloaded to reflect an upgraded Intel TDX Module. The enclaves can be upgraded at runtime, but if the PCE is
upgraded, a new certificate must be downloaded.

5.6. TDX Control Structures Support of TD Migration

This section discusses updates and additions to the global and TD-scope control structures, to support TD migration.

5.6.1. MIGSC: Migration Stream Context

Migration streams are defined in 5.3.

MIGSC (Migration Stream Context) is an opaque control structure that holds migration stream context. MIGSC occupies
a single 4KB physical page; it is created using the TDH.MIG.STREAM.CREATE function. MIGSC can only be created if a
migration session is not in progress.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 36 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Opaque (Intel TDX Module Opaque (TD Private HKID):
Global Private HKID): VMM Allocated, Intel TDX Module Managed
VMM Allocated,
Intel TDX Module Managed

| P IDCX Fage e
DR age ,,,,,,,,,,,,,,,,, 1 |

Secure EPT Tree

TDCS

MIGSC U

Migration Stream Context

Figure 5.5: TD-Scope Control Structures Overview

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS

Page 37 of 83

Section 2: TD Migration Architecture Specification

10

15

Source

Destination

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

6. Migration Session Control and State Machines

This chapter discusses the TD migration session control, state machine and messaging protocol.

6.1. Overview

6.1.1. Pre-Migration

Prior to starting a migration session, the following should have happened:

e On the destination platform, the TD has been created as a skeleton (control structure pages only).
e Migration TDs should be bound as service TDs on both source and destination platforms.
e Migration TDs must have exchanged the migration session keys and decided on a migration protocol version.

1 TDIs may be bound*

TD May Run on Source Platform

TD Build RUNNABLE LIVE_EXPORT
————d e o -
1
TDH.SERVTD. TDH.MR. TDG.MR. ' TDH.TDI. | TDG.SERVTD. | | TDG.SERVTD. TDZ'T?TPEORT' >
i 2 [2 ° »
BIND FINALIZE REPORT :_ : _B_lNli o RD(enc key) WR(dec key) VDIUCE
R \ _________ 77 __________ e
1 Only if the TD is enabled Session keys exchange
for TDX Connect by Migration TDs
2 Called by the MigTDs
[!
TOHMNG. || TOH.MNG. |[| | TOHSERVID. | | TDGSERVID. | | TDG.SERVTD. | | TOMLIFORT: .
2 2 . Ll
CREATE ADDCX BIND RD(enc key) WR(dec key) DIUTAGIE
MEMORY._
TD Skeleton Creation UNINITIALIZED IMPORT

Figure 6.1: Pre-Migration

6.1.2. Successful Migration Session

Figure 6.3 below shows an overview of a successful migration session. This figure shows the following:

e Migration session control interface functions (TDH.EXPORT.PAUSE, TDX.EXPORT.TRACK etc.)

e States of the TD Operation State Machine (RUNNABLE, LIVE_EXPORT etc.) are also shown. The state machine itself
is discussed in 6.2.4.2 below.

e Phases of the export and import sessions

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 38 of 83

Section 2: TD Migration Architecture Specification

10

15

Source

Destination

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

TD May Run on Source Platform TDX-Imposed Blackout
TDIs may be bound* |
In-Order Memory Export Phase
RUNNABLE LIVE_EXPORT PAUSED_EXPORT
TOHEXPORT.| [| [)i~ T 1
et TDH.EXPORT. | | TDH.EXPORT. TDH.TDI. 1| TDH.EXPORT. |_| TDH.EXPORT. |_| TDH.EXPORT. | | TDH.EXPORT. TDH.EXPORT. | | TDH.EXPORT.
B o MEM MEM UNBIND* ™| PpAUSE MEM STATE.TD STATE.VP MEM TRACK(DONE) >
_________ 1
l
* Only if the TD is enabled Start
for TDX Connect Token
4 ! ! \ 2
TD';'\:TP:RT‘ TDH.IMPORT. |_| TDH.IMPORT. TDH.IMPORT. |_| TDH.IMPORT. | _| TDH.IMPORT. TDH.IMPORT. |_| TDH.IMPORT.
TS MEM MEM MEM STATE.TD STATE.VP MEM TRACK(DONE)|
JNINITIALIZED MEMORY_IMPORT STATE_IMPORT
In-Order Memory Import Phase

Figure 6.2: Migration Session In-Order Phase (Success Case)

On the source platform, an export session’s in-order export phase starts with the host VMM invoking the
TDH.EXPORT.STATE.IMMUTABLE function. This function creates a migration bundle that is transmitted by the host VMM
to the destination platform, where TDH.IMPORT.STATE.IMMUTABLE is invoked to start the import session’s in-order
import phase.

TDH.EXPORT.PAUSE pauses the TD on the source platform and starts the TDX-imposed blackout period. If the TD is
configured with TDX Connect enabled, the TDX Module checks that all non-migratable assets have been released (e.g.,
MMIO mappings, TDIs).

TDH.EXPORT.TRACK(DONE), when invoked on the source platform, verifies proper in-order export:
e The TD’s non-memory state must have been exported.

e Ifany TD private page has been exported, the latest version of that page must have been exported.
e Ifthe TDis configured with TDX Connect enabled, all TD private pages must have been exported.

TDH.EXPORT.TRACK(DONE) ends the in-order memory export phase and creates a start token migration bundle that is
transmitted by the host VMM to the destination platform, where TDH.IMPORT.TRACK(DONE) is invoked to end the in-
order import phase. See also the discussion of migration epochs in 6.1.4 below.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 39 of 83

Section 2: TD Migration Architecture Specification

Source

Destination

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

TDX-Imposed Blackout TD May Not Run on Source Platform
1-Order Memory Export Phase Out-Of-Order Memory Export Phase
PAUSED_EXPORT POST_EXPORT
TDH.EXPORT. | | TDH.EXPORT. | | TDH.EXPORT. TDH.EXPORT. | | TDH.EXPORT. _
TRACK(DONE) MEM MEM MEM MEM "
Start
Token

TDH.IMPORT. TDH.IMPORT. |_| TDH.IMPORT. |_| TDH.IMPORT. | | TDH.IMPORT. |_| TDH.IMPORT. |__| TDH.IMPORT.

TRACK(DONE) MEM MEM COMMIT MEM MEM END
STATE_IMPORT POST_IMPORT LIVE_IMPORT RUNNABLE
In-Order Memory Import Phase Out-Of-Order Memory Import Phase

TD May Run on Destination Platform

Figure 6.3: Migration Session Out-Of-Order Phase (Success Case)

TDH.IMPORT.COMMIT, invoked on the destination platform, commits the migration session and enables the TD to run
on it, while memory import may continue. This also helps ensure that the TD will not run on the source platform, since
an abort token can no longer be generated.

Optionally, TDH.IMPORT.END, invoked on the destination platform, commits the migration session and enables the TD
to run on it if not already done by TDH.IMPORT.COMMIT. TDH.IMPORT.END ends the migration session; memory import
is no longer allowed.

6.1.3. Aborted Migration Session

6.1.3.1.

Abort During the In-Order Phase

Figure 6.4 below shows a case where a migration session is aborted during the in-order migration phase.
TDH.EXPORT.ABORT, invoked by the host VMM, terminates the export session and enables the TD to resume running on
the source platform. By design, the TD should not be able to run on the destination platform — it is up to the host VMM
to free up any resource allocated there.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 40 of 83

\ 4

Section 2: TD Migration Architecture Specification

10

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

TD May Run

on Source Platform

TDX-Imposed Blackout

TD May Run

on Source Platform

In-Order Memory Export Phase

v

v

LIVE_EXPORT PAUSED_EXPORT RUNNABLE

<]

8 TDH.EXPORT. TDH.EXPORT. . TDH.EXPORT. | | TDH.EXPORT. L TDH.EXPORT. TDH.EXPORT. TDH.EXPORT.

g MEM PAUSE MEM STATE.TD STATE.VP MEM ABORT

v

c

©

)

© TDH.IMPORT. TDH.IMPORT. |_| TDH.IMPORT. L TDH.IMPORT. TDH.IMPORT.

E MEM MEM STATE.TD STATE.VP MEM

7]

o]

o

MEMORY_IMPORT STATE_IMPORT
In-Order Memory Import Phase
TD May Not Run on
Destination Platform
Figure 6.4: Migration Session Control Overview (Abort During the In-Order Phase)
Abort during the Out-Of-Order Phase

6.1.3.2.

Figure 6.5 below shows a case where a migration session is aborted during the out-of-order migration phase.
TDH.IMPORT.ABORT is invoked by the host VMM on the destination platform. This function terminates the import
session and puts the TD in a state where, by design, it can run —it is up to the host VMM to free up any resource allocated
there. TDH.IMPORT.ABORT also creates an abort token, which is transmitted by the host VMM back to the source

platform.

On the source platform, the host VMM invokes TDH.EXPORT.ABORT, which checks the validity of the abort token and

enables the TD to resume running.

TDX-Imposed Blackout

TD May Run on Source Platform

1-Order Memory Export Phase

Out-Of-Order Memory Export Phase

v

PAUSED_EXPORT POST_EXPORT RUNNABLE

(]
hut TDH.EXPORT. | | TDH.EXPORT. | | TDH.EXPORT. TDH.EXPORT.
8 TRACK(DONE) MEM MEM ABORT
wn

Start Abort

Token Token
c
o
=
@® TDH.IMPORT. | __| TDH.IMPORT. | | TDH.IMPORT. |_| TDH.IMPORT.
£ TRACK(DONE) MEM MEM ABORT
7]
(O]
o

STATE_IMPORT POST_IMPORT FAILED_IMPORT
In-Order Memory Import Phase Out-Of-Order Memory Import Phase
TD May Not Run on Destination Platform
Figure 6.5: Migration Session Control Overview (Abort During the Out-Of-Order Phase)
December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 41 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

6.1.4. Migration Epochs

As described in 5.4, within each migration stream, proper ordering is maintained by the migration bundle counter
(MB_COUNTER) of each MBMD. However, there is no intrinsic guarantee of ordering across migration streams.

To help ensure overall ordering, the migration session is divided to migration epochs. A given page can only be imported,

5 or its import can be cancelled, once per migration epoch. An epoch token, generated on the source platform by
TDH.EXPORT.TRACK, serves as an epoch separator. It provided the total number of migration bundles exported so far.
This helps TDH.IMPORT.TRACK, which imports the epoch token, check that all migration bundles of the previous epoch
have been received. No migration bundle of an older epoch may be imported.
The start token, which starts the out-of-order phase, is a special version of the epoch token. Epoch number OxFFFFFFFF
10 indicates the out-of-order phase.
Notes
e Do not confuse TDH.MEM.TRACK (which is used for TLB tracking) with TDH.EXPORT.TRACK (which rendezvous all
migration streams).
e Migration epoch is a TDX concept. It roughly corresponds to migration round (or migration pass) which is a usage
15 concept.
Time >
. Post-Copy (TD
«—— Live Migration (TD is Running on Source) >e Blackout (.TD S e is Running on —
not Running) o
Destination)
< In-Order Phase >e Out-Of-Order Phase ———»
<«——— Mig. Epoch0 ———><«— Mig. Epoch1l —><+— Mig. Epoch2 —>
|
Stream Page Page Page Page Epoch Page Page Epoch Page Start Page Page Page Page
0 0 11 5 15 | | Token 6 12 | | Token 7 Token 8 24 28 20
Stream Page Page Page Page Page Page | |Cancel Page Page Page Page
1 3 8 12 4 11 6 8 23 16 21 29
Stream Page Page Page Page Page Page Page Page Page Page Page
2 13 1 6 14 4 14 12 18 17 26 19
Stream Page Page Page Page Page Cancel Page Page Page Page Page
3 2 7 10 9 8 7 1 17 27 22 29
Figure 6.6: Migration Epochs Overview
6.2. Migration Session Control
6.2.1. Migration TD Binding and Migration Key Assignment
20 Migration TD binding (using TDH.SERVTD.BIND) must happen before a migration session can start. This may happen
during TD build, before the measurement has been finalized (by TDH.MR.FINALIZE). Alternatively, pre-binding (using
TDH.SERVTD.PREBIND) can be done during TD build, and actual binding can happen later. On the destination platform
migration TD binding and TD import must happen before the TD is initialized (by TDH.MNG.INIT).
Migration key assignment, done by TDG.SERVTD.WR, may happen at any time after migration TD binding, except during
25 the PAUSED_EXPORT and POST_EXPORT states. A new migration key must be written for any migration session.
6.2.2. Export Side (Source Platform)
To begin an export session, the TD’s OP_STATE must either be RUNNABLE, indicating that its measurement has been
finalized (by TDH.MR.FINALIZE), or LIVE_IMPORT, indicating that this TD has been previously imported.
An export session begins with immutable TD state export (using TDH.EXPORT.STATE.IMMUTABLE). This function copies
30 the migration key to a working migration key. It then starts the in-order export phase. It transitions the OP_STATE to

LIVE_EXPORT, allowing the source TD to continue running normally while private memory is being exported.

TDH.EXPORT.PAUSE transitions the source TD’s OP_STATE into the PAUSED_EXPORT state. In this state, TD private
memory and TD non-memory state modification are prevented. None of the TD VCPUs may be running (i.e., in TDX non-

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 42 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

45

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

root mode), and no host-side (SEAMCALL) function is allowed to change any TD non-memory state that is to be exported.
For TDX Connect, all non-migratable assets have been released (e.g., MMIO mappings, TDIs). Memory export (via
TDH.EXPORT.MEM etc.) may still continue. Per-TD and per-VCPU mutable control state are exported using
TDH.EXPORT.STATE.TD and TDH.EXPORT.STATE.VP respectively.

At any time, the export may be aborted by the host VMM using TDH.EXPORT.ABORT, which returns the source TD to the
RUNNABLE state, where it can continue to run normally. No abort token is required at this phase since no start token
has been generated and the destination TD, by design, should not be able to run.

Note: TDH.EXPORT.STATE.TD is expected to be called by the exporting host VMM prior to TDH.EXPORT.STATE.VP, but
this is only enforced on the import side.

TDH.EXPORT.TRACK(DONE) generates a start token which the host VMM transmits to the destination VMM. It transitions
the source TD OP_STATE into the POST_EXPORT state, starting the out-of-order export phase. If the TD has not been
configured with TDX Connect enabled, memory export (TDH.EXPORT.MEM) may continue; this is required to support the
out-of-order stage of the TD live migration.

In the TD Migration Session POST_EXPORT state, a TDH.EXPORT.ABORT with a valid abort token, received from the
destination VMM, indicates that the TD, by design, should not be able to run on the destination platform. It terminates
the export session and returns the source TD to the RUNNABLE state, where it can continue to run normally.

The host VMM can start tearing down the source TD at any time, by ensuring that no VCPU is associated with an LP (i.e.,
by executing TDH.VP.FLUSH for all VCPUs) and issuing TDH.MNG.VPFLUSHDONE. Typically, it will do after it gets a
notification from the destination platform that import has been successful.

6.2.3. Import Side (Destination Platform)

Migration TD binding (using TDH.SERVTD.BIND) and migration key assignment (using TDG.SERVTD.WR) must happen in
the UNINITIALIZED state, where TDCS memory has already been allocated but the destination TD has not been initialized
yet. This is required since the destination TD is going to be initialized by importing immutable state from the source TD.

TDH.IMPORT.STATE.IMMUTABLE starts the in-order import phase. It initializes the destination TD’s TDCS with imported
immutable state and transitions the destination TD’s OP_STATE into MEMORY_IMPORT. In this state, TD private memory
can be imported using TDH.IMPORT.MEM etc.

TDH.IMPORT.STATE.TD imports the per-TD mutable state and transitions the destination TD’s OP_STATE into
STATE_IMPORT. In this state, mutable VCPU state can be imported using TDH.IMPORT.STATE.VP. TD private memory
import also continues.

Upon executing TDH.IMPORT.TRACK with a valid start token as operand, the destination TD’s OP_STATE transitions into
the POST_IMPORT state, starting the out-of-order import phase. Memory import (a.k.a. post-copy) may continue, but
pages can only be imported if their GPA is free (i.e., the Secure EPT state is FREE).

An import failure up to this point, e.g., improper sequence of page import vs. alias import, or executing
TDH.IMPORT.TRACK with a bad start token received from the source platform, transitions the TD’s OP_STATE to the
FAILED_IMPORT state. In addition, the host VMM can explicitly abort the import by using TDH.IMPORT.ABORT. In the
FAILED_IMPORT state, the TD is designed not to run; it can only be torn down. TDH.IMPORT.ABORT generates an abort
token, which can be transmitted to the source platform.

TDH.IMPORT.COMMIT transitions the destination TD’s OP_STATE transitions into the LIVE_IMPORT state. In this state,
the destination TD may run normally. Out-of-order memory import may continue as long as the destination TD is in the
LIVE_IMPORT state. An import failure in the LIVE_IMPORT state terminates the import session; it transitions the TD’s
OP_STATE to the RUNNABLE state, where the TD can continue running normally. An abort token can no longer be
generated.

TDH.IMPORT.END ends the import session and transitions the destination TD’s OP_STATE into the RUNNABLE state. This
transition is optional if TDH.IMPORT.COMMIT has already been executed; it removes any limitations on TD memory
management that exist during the out-of-order import phase.

A new export session (TDH.EXPORT.STATE.IMMUTABLE) terminates a previous out-of-order import.

6.2.4. Details: Migration State Machine

This section provides a detailed view of the migration session control state machine. Details may be of interest to host
VMM programmers who require a deeper understanding of TD Migration.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 43 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Details: Reminder: TD Lifecycle State Machine

The whole TD migration process happens within the TD_KEYS_CONFIGURED state of the TD life cycle state machine,
where an HKID has been assigned to the TD and the keys have been configured on the hardware. As a reminder, the TD
life cycle state diagram is shown in Figure 6.7 below. For details, see the [TDX Module Base Spec].

6.2.4.1.

TD private key is configured

TD private key not

TDH.MNG.

KEY.CONFIG configured TDH.MNG.KEY.CONFIG
[non-last [last package]
package]

TD Operation S_O
Sub-State

(& J

TDH.MNG.KEY.FREEID
TDH.MNG.VPFLUSHDONE
[no associated VCPUs]

TD_BLOCKED

TD has no HKID TD private memory
access is blocked
and caches are
getting flushed

TDH.PHYMEM.
PAGE.RECLAIM
[non-TDR]

TDH.MNG.KEY.FREEID——

(. J

TDH.PHYMEM.PAGE.RECLAIM[TDR]

Figure 6.7: TD Life Cycle State Diagram
524V2\/ithin the TD_KEYS_CONFIGURED state, a secondary-level TD Operation state machine controls the overall TD

" operation, including migration.

Details: OP_STATE: TD Operation State Machine

10 The TD Operation state machine is shown in Figure 6.8 below. The baseline state machine is extended with new
migration-related states and transitions, highlighted in red text and lines. The export states are highlighted in purple,
and the import states are highlighted in blue.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 44 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

allocation

TDH.SERVTD.BIND

TDH.SERVTD.BIND

TDH.VP.CREATE,

Notes

TDH.MNG .KEY.CONFIG :) TDH.VP.ADDCX,
[last package] (MigTD) (MigTD) TDH.VP.INIT o Unless otherwise noted, transition
happen on successful completion of
UNALLOCATED UNINITIALIZED INITIALIZED interface functions
TDCS memory TDCS memory has TD memory Color Conventions
TDH.MNG.ADDCX__,|been allocated TOH.MNG.INIT: allocation and -~ .
[last page] measurement Transition that acquires an
o exclusive lock on OP_STATE
VCPU creation
TDT'_E":AQAE)’:{:_‘;&D Transition that acquires a
F— Y shared lock on OP_STATE
TDH.IMPORT.STATE.IMMUTABLE
TDH.MNG.ADDCX
[non-last page] [import failed] [success] TDH.MR.FINALIZE
TDH.EXPORT.
[interrupted] STATE. ﬁ—/}[interrupted]
TDH.MEM.* IMMUTABLE TDH.MEM.*
START_IMPORT
Immutable state TD is runnable [success] TD is runnable,
import is in immutable state
rogress exportis in
prog TDH.EXPORT. P
ABORT progress
TDH.IMPORT.STATE.IMMUTABLE TDH.EXPORT.STATE.IMMUTABLE
TDH.IMPORT.END
[import failed] [interrupted] TDH.IMPORT.MEM TDH.EXPORT. [interrupted]
[import failed] STATE.
[success] IMMUTABLE [success]
TDH.MEM.*
’7 MEMORY_IMPORT
TOHIMPORT MEM TD memory import | TDH.IMPORT. TDis runnable, TDis runnable, live TDH.EXPORT.MEM
[_TRA(;K post-copy memory TDH.EXPORT.__|memory export can
in-order . ABORT
\—> not done] import can be done be done
TDH.IMPORT. TDH.MEM.*
END TDH.EXPORT.
TDH.IMPORT.STATE.TD TRACK
TDH.IMPORT. [in-order
MEM TDH.EXPORT.PAUSE ot done]
TDH.EXPORT.MEM,
TDH.IMPORT.STATE.VP, (T o TDH.EXPORT.
TDH.IMPORT.MEM STATE_IMPORT PAUSED_EXPORT STATEVP
TD memory and TDH.IMPORT. TD memory export,
non-memory state TRACK TDH.EXPORT.__|non-memory state
import [in-order ABORT export
p not done] p
TDH.EXPORT.
TDH.EXPORT. 3 STATE.TD
TRACK
TDH.IMPORT.TRACK [in-order TDH.EXPORT.
[in-order done && not done] TRACK

all non-memory state imported]

POST_IMPORT

TDH.IMPORT.*
[import failed]

FAILED_IMPORT

Destination TD can
only be destroyed

TDH.IMPORT.ABORT /
Generate abort token

TDH.IMPORT.ABORT /
Generate abort token

Post-copy TD
memory import

TDH.IMPORT.
coMmMmIT

TDH.IMPORT.
MEM

TDH.EXPORT.ABORT
[good abort token]

[in-order done]

POST_EXPORT

TD memory post-
copy export

TDH.EXPORT.MEM

Figure 6.8: TD Operation State Machine (Sub-States of TD_KEYS_CONFIGURED)

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 45 of 83

Section 2: TD Migration Architecture Specification

6.

N

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

Details: OP_STATE Summary

Table 6.1: OP_STATE Sub-States of TD_KEYS_CONFIGURED

Sub-State

Source /

Destination

Description

UNALLOCATED

Both

TDCS memory is being allocated.

FUNINITIALIZED

Both

TDCS is pending initialization.

On the destination platform, migration TD binding and migration

key assignment must happen in this state.

INITIALIZED

Source

TD is being built. Memory is added and measured. VCPUs are

created.

Migration TD binding may happen in this state.

RUNNABLE

Both

TD can run.

START_EXPORT

Source

TD can run.

TDH.EXPORT.STATE.IMMUTABLE has been interrupted.

LIVE_EXPORT

Source

Export session started.

TD can run.

Immutable non-memory state (TDH.EXPORT.STATE.IMMUTABLE)

has been exported.

Live memory can be exported (TDH.EXPORT.MEM etc.).

PAUSED_EXPORT

Source

No TD VCPU may run.
TD memory can’t be written.

Memory can be exported.

Mutable non-memory state is being exported.

POST_EXPORT

Source

Start token has been generated.

Mutable control state has been exported.

No TD VCPU may run.
TD memory can’t be written.

Memory can be exported (post-copy).

START_IMPORT

Destination

Import session started.

TDH.IMPORT.STATE.IMMUTABLE has been interrupted.

MEMORY_IMPORT

Destination

Immutable non-memory state (TDH.EXPORT.STATE.IMMUTABLE)

has been imported.

TD memory can be imported.

STATE_IMPORT

Destination

Mutable non-memory TD-scope state (TDH.EXPORT.STATE.TD) has

been imported.

TD memory can be imported.

TD VCPU non-memory state can be imported

POST_IMPORT

Destination

TD memory can be imported (post-copy).

LIVE_IMPORT

Destination

TD VCPUs may run.

TD memory can be imported (post-copy).

FAILED_IMPORT

Destination

Destination TD will not run.

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 46 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

6.3. Migration Tokens

Migration tokens are transmitted from the source platform to the destination platform and vice versa as part of the
migration session control.

An epoch token is generated by TDH.EXPORT.TRACK. It serves as a separator between migration epochs. A start token
is a special version of an epoch token which starts the out-of-order phase. The start token helps ensure that no newer
version of any memory page exported prior to the start token exists on the source platform.

The abort token is generated by TDH.IMPORT.ABORT on the destination platform if import fails for any reason. It helps
ensure that the TD will not run on the destination platform and therefore may be restored on the source platform.

Migration tokens are formatted as Migration Bundles, with only an MBMD. Its format is defined in the [TDX Module ABI
Spec].

15

20

25

30

h E Migration E i Transport E E Migration E
TDH.EXPORT. | ! Bundle] i P ! }E Bundle] TDH.IMPORT.
TRACK > i Metadata Lo g Metadata ! > TRACK
i (MBMD) 1 ! I (MBMD) :
: . P A ! o
Epoch Token E ! Epoch Token
i E E Migration E E Transport i E Migration E i E
¢ TDH.EXPORT. smmnE .E Bundle i‘ Ih R .i Bundle i R TDH.IMPORT.
! ABORT] ! Metadata P Lo Metadata ! ! ABORT]
{ ! (MBMD) o P (MBMD) ! { :
Abort Token i i Abort Token If Failed

Figure 6.9: Migration Tokens

6.4. Migration Protocol Versioning

6.4.1. Introduction

Migration protocol version number is provided as part of the MBMD header. Migration protocol changes may require
migration version increment and may impact source and destination compatibility. For example, this may happen due
to:

e Incompatible MBMD format changes

e New values of MBMD fields

e New memory migration variants (e.g., support of aliases for VM nesting)
e Incompatible migration session state machine changes

Non-memory state (metadata) migration changes may also require migration version increment. For example, this may
happen due to:

e New exported metadata fields
e New values or format of exported metadata fields

6.4.2. Enumeration of Supported Migration Versions

TDX Module enumerates supported migration versions using global metadata fields that can be read by the host VMM
(TDH.SYS.RD) and MigTD (TDG.SYS.RD).
On export, the TDX Module can work with MIG_VERSION in the range specified by the following metadata fields:

MAX_EXPORT_VERSION: Maximum value of migration version supported for export

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 47 of 83

Section 2: TD Migration Architecture Specification

10

15

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

MIN_EXPORT_VERSION: Minimum value of migration version supported for export

For example, a module may be updated to support version X for new memory migration formats for VM Nesting. But it
may be written to export using version X-1 if a non-VM-Nesting TD is exported to an older module.

On import, the TDX Module understands MIG_VERSION in the range specified by the following:
MAX_IMPORT_VERSION: Maximum value of migration version supported for import
MIN_IMPORT_VERSION: Minimum value of migration version supported for import

For example, if the module supports version X that was created to support new memory migration formats for VM
Nesting, it can still understand version X-1 that doesn’t use the new formats.

6.4.3. Setting the Migration Protocol Version for a Migration Session

The migration protocol version to be used for a migration session is set the MigTD before the session starts. MigTDs at
the source and destination platform enumerate export and import versions support, respectively. They decide on the
version that is compatible between the platforms, to be used for the migration session. TD-scope metadata field
MIG_VERSION is writable by the MigTD using TDH.SERVTD.WR. At the start of the migration session, the TDX Module
copies MIG_VERSION to an internal WORKING_MIG_VERSION that is used throughout the session.

6.5. Migration Session Control Functions Summary

This section provides an overview of the export session control functions. A detailed description is provided in [TDX
Module ABI Spec].

Table 6.2: Migration Session Control Interface Functions

Name Description Preconditions
TDH.EXPORT.STATE.IMMUTABLE | Start an export session. e TDisrunnable.
This function exports the TD’s * A rf\.ew crjnlgratlon key has been
immutable state — that configure T
functionality is discussed in Ch. 7. * Enough migration stream contexts
have been created using

TDH.MIG.STREAM.CREATE.

TDH.EXPORT.PAUSE Pauses the source TD and startsthe | ¢ TD immutable state has been
TDX-enforced blackout period. This exported.
operation is local to the source | ¢ Al TD VCPUs have stopped executing
platform and is not communicated and no other TD-specific SEAMCALL is
to the destination platform. running.

TDH.EXPORT.TRACK Starts a new migration epoch and | ¢ The export session is in progress, but
generate an epoch token. If so its out-of-order phase has not begun
requested, starts the out-of-order yet.

phase and generates a start token. | ¢ See the discussion of export
completeness checks in Ch. 8.

TDH.EXPORT.ABORT Aborts the export session. e An export session is in progress.

e If invoked during the out-of-order
phase, the abort token received from
the destination platform must be

correct.
TDH.IMPORT.STATE.IMMUTABLE | Start an export session. e The TDCS been allocation but not
This function exports the TD’s initialized. o
immutable state — that e A new migration key has been
configured.

functionality is discussed in Ch. 7.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 48 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

Name

Description

Preconditions

Enough migration streams contexts
have been created using
TDH.MIG.STREAM.CREATE.

TDH.IMPORT.TRACK

Starts a new migration epoch based
on an imported epoch token. If the
token is a start token, starts the out-
of-order phase.

The import session is in progress, but
its out-of-order phase has not begun
yet.

The epoch token migration bundle is
imported successfully.

If a start token is received, all
mutable state must have been
imported.

TDH.IMPORT.COMMIT

Enable the TD to run.

The import season’s out-of-order
phase is in progress.

TDH.IMPORT.END

Ends the import session.

The import season’s out-of-order
phase is in progress.

TDH.IMPORT.ABORT

Aborts the import session (if not
already aborted) and generates an
abort token.

The import session is in progress.
The TD is not allowed to run yet
(OP_STATE is not LIVE_IMPORT).

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 49 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

7. TD Non-Memory State Migration

This chapter discusses all non-memory state migration, immutable and mutable.

TD-scope non-memory state resides in control structures TDR and TDCS. TD VCPU state resides (while the VCPU is not
running) in TDVPS, which includes the TD VMCS. This chapter discusses how non-memory state is migrated.

7.1. TD Non-Memory State Migration Operation

7.1.1. Non-Memory State Migration Data

Non-memory state migration data is used for migrating immutable state, at the beginning of the migration process, by
TDH.EXPORT.STATE.IMMUTABLE and TDH.IMPORT.STATE.IMMUTABLE, and for migrating mutable state, at the end of
the migration process, by TDH.EXPORT.STATE.TD, TDH.IMPORT.STATE.TD, TDH.EXPORT.STATE.VP and
TDH.IMPORT.STATE.VP.

The non-memory state is migrated in a way that abstracts the actual TD control structure format, allowing that format to
remain implementation-dependent and vary between the source and destination platforms.

7.1.2. Non-Memory State MBMD

The MBMD for each non-memory state migration bundle contains the following type-specific fields:

e Metadata type: Immutable TD-scope metadata or mutable L1 VCPU-scope metadata
e VM index and VCPU index (if applicable).

Details of the non-memory state MBMD are defined in the [TDX Module ABI Spec].

7.1.3. Immutable vs. Mutable TD State

In the scope of TD migration, immutable state is defined as any TD state that may not change after TD build, i.e., after
TD measurement has been finalized (by TDH.MR.FINALIZE).

Migrated immutable state includes the following:

e Platform-scope immutable state required so that the TDX Module on the destination platform can verify
compatibility. Namely, it includes the source TDX Module’s version information.
e TD-scope immutable state of the source TD

Immutable TD state export and import functions (TDH.EXPORT.STATE.IMMUTABLE, TDH.IMPORT.STATE.IMMUTABLE)
start the migration session. Migration session control is discussed in Ch. 6.

Migrated mutable state includes the following:

e TD-scope mutable state
e VCPU-scope mutable state

Mutable TD state export is done after the TD has been paused (by TDH.EXPORT.PAUSE); it helps ensure that the state
will not change anymore until TD export completes. TDH.EXPORT.STATE.TD exports TD-scope mutable state, followed
by multiple, per-VCPU TDH.EXPORT.STATE.VP calls which export VCPUs mutable state.

Mutable TD state import must begin with TD-scope state import (by TDH.IMPORT.STATE.TD), followed by multiple, per-
VCPU TDH.IMPORT.STATE.VP calls which import VCPUs state.

7.2. Expected Configuration by the Host VMM

The host VMM is expected to configure a migratable TD in a way that will be compatible with the set of possible
destination platforms and their Intel TDX Module configurations. For example:

e The configured TD ATTRIBUTES and XFAM bits should be supported by all destination platforms and their Intel TDX
Module configurations.

e The configured virtual CPUID values should be supported by all destination platforms and their Intel TDX Module
configurations.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 50 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

7.3. Non-Memory State Migration Functions Summary

This section provides a short summary of the non-memory state migration interface functions. A detailed specification
is provided in [TDX Module ABI Spec].

Table 7.1: Non-Memory State Migration Interface Functions

Name

Description

Preconditions

TDH.EXPORT.STATE.IMMUTABLE

Export the TD’s immutable state as
a multi-page migration bundle.

This function starts the export
session; that functionality is
described in Ch. 6.

TD is runnable.
A new migration key has been
configured.

TDH.EXPORT.STATE.TD

Export the TD-scope mutable state
as a multi-page migration bundle.

The export session is in the in-order
phase and the TD has been paused.

TDH.EXPORT.STATE.VP

Export the VCPU-scope mutable
state as a multi-page migration
bundle.

The export session is in the in-order
phase and the TD has been paused.

TDH.IMPORT.STATE.IMMUTABLE

Import the TD’s immutable state
as a multi-page migration bundle.

This function starts the import
session; that functionality is
described in Ch. 6.

TD has not been initialized.
A new migration key has been set.

TDH.IMPORT.STATE.TD

Import the TD’s mutable state as a
multi-page migration bundle.

TD immutable state has been
imported.

TDH.IMPORT.STATE.VP

Imports a VCPU mutable state as a
multi-page migration bundle.

TDVPS pages have been allocated
by the host VMM, but the VCPU has
not been initialized.

TD-scope state has been imported.

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 51 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

8. TD Private Memory Migration

Unreleased Feature: Some of the text in this section is related to Non-Blocking Export, a feature which has not been
released yet at the time of writing of this document. Details related to that feature serve as a
preview and are subject to change.

This chapter described how Intel TDX Module manages TD private memory and guest-physical (GPA) address translation
metadata migration.

8.1. Overview

8.1.1. In-Order and Out-of-Order Migration

TD private memory migration can happen in the in-order migration phase and out-of-order migration phase.

During the in-order phase, the host VMM may implement live migration pre-copy, by exporting memory content (using
TDH.EXPORT.MEM etc.) while the TD is running (TDCS.OP_STATE is LIVE_EXPORT). This is not enforced by TDX; the host
VMM may implement cold migration by avoiding memory export until the TD is paused.

During the out-of-order phase, the host VMM may implement post-copy by allowing the TD to run on the destination
platform (using TDH.IMPORT.COMMIT). This is not enforced by TDX; the host VMM can first complete all memory
migration before allowing the TD to run, yet benefit from the simpler and potentially higher performance operation
supported during the out-of-order phase.

Note: Even if the TDX Module supports post-copy with non-blocking export, post-copy is only allowed if TDX Connect
is not enabled for the TD.

8.1.2. Write-Blocking Export vs. Non-Blocking Live Export

During live migration, the TDX Module tracks exported page modification to enforce consistent memory image migration.
The TDX Module supports two modes of memory live export:

Write Blocking: Memory pages are blocked for writing before being exported. A guest TD attempt to modify exported
memory results in an EPT violation TD exit. The host VMM is expected to unblock the page and later
block it again and re-export it. TDX Module support for write-blocking based export is enumerated by
TDX_FEATURESO.TD_MIGRATION (bit 0), readable by TDH.SYS.RD*.

Non-Blocking: Memory pages are not blocked for writing. If a memory page is modified by the guest TD, DMA or by
the TDX Module, its SEPT entry’s Dirty bit is set. The host VMM is expected to call a TDX Module
interface function that scans the TD’s GPA space for dirty pages, and re-export those pages. TDX
Module support for non-blocking export is enumerated by TDX_FEATURESO.NON_BLOCKING_EXPORT
(bit 41), readable by TDH.SYS.RD*.

The export mode is a TDX Module configuration parameter, selected by the host VMM via a setting as part of the TDX
Module initialization sequence.

e By default, write blocking export is used.

e Non-blocking export can be configured during first-time module initialization (by TDH.SYS.CONFIG).

e On TD-preserving TDX Module update, the export mode may be updated from the default write blocking mode to
non-blocking mode, if no export session has been used before.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 52 of 83

Section 2: TD Migration Architecture Specification

5

10

15

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

8.2. Conventions: SEPT Entry State Diagrams Color Coding

This chapter contains multiple SEPT entry state diagrams, which use the following color-coding conventions.

GPA is guest accessible

GPA is blocked, TLB entries may still be
cached

GPA is not guest accessible, GPA may not be
reused, no physical page is associated

DO

only

B0

Figure 8.1: Secure EPT Entry State Diagrams Color Conventions

8.3. GPA Lists and Private Memory Migration Bundles

8.3.1. Overview

Page GPA

i
List i
|

Encrypted
Page
Attributes
List?

TDH.EXPORT.MEM mssslpp:

Page MAC
List

| I

:

Up to E
512 * 4KB !
'

Encrypted
Migration
Pages

PAGE_HPA, |[—

PAGE_HPA, |-

// Migrated Data
[Pacttpa, |

Mig. Buffers List Migration Bundle

__

Figure 8.2: Private Memory Migration

Page GPA

i

- i
List]
i

Encrypted
Page
Attributes
List!

Page MAC
List

Up to
512 * 4KB
Encrypted
Migration
Pages

A

Multi-Page
Migration Bundle

TDH.IMPORT.MEM

PAGE_HPA,

PAGE_HPA,

PAGE_HPA,_

Mig. Buffers List

GPA is guest accessible for read and execute

GPA is not guest accessible, GPA may not be
reused, physical page still associated

GPA is not guest accessible, no physical page
is associated

Destination Platform

New Pages List?

PAGE_HPAO

PAGE_HPA1

PAGE_HPA,_,,

:

Up to
512 * 4KB
Pages

1 page Attributes List is required for partitioned TDs.

2 Page List HPA is null for in-place import and for re-import.

Unlike the generic migration bundle structure described in 5.1, private memory migration bundle is composed of multiple

MAC-protected components:

e MAC-protected MBMD
e For each 4KB page:

o Encrypted and MAC-protected 4KB migration buffer

o MAC-protected page GPA and additional metadata
o For partitioned TDs, encrypted and MAC-protected

page attributes

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 53 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

This structure allows the export and import functions to process the MBMD and each page and its metadata separately,
avoiding the need to perform SEPT walks twice and to hold intermediate SEPT entry states. The separate parts of the
migration bundle are cryptographically bound together as follows:

e A per-stream monotonically incrementing IV_COUNTER and the migration steam index are used for calculating the
AES-GCM IV value, as described in 5.3.

e This s first done for the migration bundle’s MBMD MAC.

e For each page, the IV_COUNTER is incremented by 1 and a new IV value is calculated and used for the page metadata
MAC.

e The MBMD specifies the number of pages migrated by the migration bundle. This helps check that the whole
migration bundle is imported on the destination platform.

8.3.2. GPAlList

As shown in the example in the diagram above, a GPA list is used as part of the private memory migration bundle. It is
also used as an input and output of multiple memory migration interface functions: TDH.EXPORT.BLOCKW,
TDH.EXPORT.MEM, TDH.EXPORT.RESTORE, TDH.IMPORT.MEM, TDH.MEM.SCAN.COMP and TDH.MEM.SCAN.RANGE.

A GPA list contains up to 512 entries, each containing the following information:

Table 8.1: GPA List Entry Abstract Definition

Field Usage for Page Migration Encrypted? | Details
Page Size 4KB No
GPA GPA bits 51:12 No
State MAPPED or PENDING No

Operation | NOP, MIGRATE, REMIGRATE or CANCEL | No

Attributes | Page attributes for each L2 VM Yes Optional, provided in a separate list (see
below)
MAC Integrity protection for the above N/A Provided in a separate list
fields and for the migrated page
content

A single GPA list entry, a separate page MAC list entry and an optional separate page attributes list entry compose the
page metadata.

The GPA list is MAC-protected but is not encrypted. This allows the host VMM on the destination to parse the GPA list in
order to prepare for calling TDH.IMPORT.MEM,; e.g., build the Secure EPT to map the imported pages.

A detailed definition of the GPA list is provided in the [TDX Module ABI Spec].

8.3.3. Page Attributes List (Required for Partitioned TDs)

If the migrated TD is partitioned, the GPA list entry is extended with L2 page attributes. These are provided in a separate
page attributes list, containing the same number of entries as the GPA list. Each page attributes list entry contains the
migratable page attributes for each L2 VM: R, W, Xs, Xu, SSS, VGP, PWA and SVE. The page attributes list is encrypted
and MAC-protected.

A detailed definition of the page attributes list is provided in the [TDX Module ABI Spec].

8.3.4. Private Memory Migration Buffer

The migration buffer holds the encrypted migrated page content; thus, it is included only if the page metadata indicates
a MIGRATE or a REMIGRATE request, and the page is MAPPED. The migration buffer is allocated by the host VMM and
resides in shared memory. The migration buffer is encrypted and MAC-protected.

On first time import of a page (MIGRATE request), the host VMM can select in-place import: the migration buffer
becomes the TD private page which holds the imported and decrypted content.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 54 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

8.4. Write-Blocking Based Memory Export

This section describes private memory export using the write-blocking method.

8.4.1. Host VMM Perspective

This section describes write-blocking based export from the host VMM perspective. This is a simplified view; a more

5 detailed view is discussed later.
Typical Write-Blocking Export Session
Time >
. Post-Copy (TD may be
«— Live Migration (TD is Running on Source) —><+——— Blackout (TD is not Running) ————»<— . Py (. y_
Running on Destination)
N In-Order Phase e Out-Of-Order Phase —*
Mig. Epoch0 ———><«— Mig. Epoch1 —*><«————— Mig. Epoch 2 > Mig. Epoch OxFFFFFFFF —*
|
Stream TD Page Page Page Page Epoch Page Page Epoch TD VP Page Start Page Page Page Page
0 State 0 11 5 15 Token 6 12 Token| | State State 7 Token 8 24 28 20
Stream Page Page Page Page Page VP Page Cancel Page Page Page Page
1 3 8 12 4 11 State 6 8 23 16 21 29
Stream Page Page Page Page Page VP Page Page Page Page Page Page
2 13 1 6 14 4 State 14 12 18 17 26 19
Stream Page Page Page Page Page Cancel Page Page Page Page Page
3 2 7 10 9 8 7 1 17 27 22 29
DH.EXPORT| [TDH.EXPORT.| TDH.EXPORT.
TRACK TRACK TRACK(DONE)
TDH.EXPORT. TDH.MEM. [TDH.EXPORT TDH.EXPORT. TDH.MEM. [TDH.EXPORT| DH.EXPORT| DH.EXPORT| [TDH.EXPORT|
BLOCKW TRACK MEM BLOCKW TRACK MEM MEM II MEM II MEM II
TDH.EXPORT. TDH.EXPORT. TDH.EXPORT. TDH.EXPORT. DH.EXPORT) | TDH.EXPORT. TDH.EXPORT. DH.EXPORT [TDH.EXPORT,
STATE.IMMUTABLE | |UNBLOCKW UNBLOCKW UNBLOCKW PAUSE | | STATE.TD | | STATE.VP MEM II MEM II
[

<+<— Export Round 2 (Final)] ————>«——— Out-Of-Order Export ———

Typical expected usage divides the export session into export rounds (or passes). An export round may have the following

3.2. If a page has been exported before but needs to be removed, promoted or demoted, cancel its migration by

In the example above, steps 1 and 2 need to be performed before step 3, but there is no strict requirement for

During the live export phase (when TDCS.OP_STATE is LIVE_EXPORT), exporting a private memory page requires that

«—— Export Round 0 Export Round 1
Figure 8.3: Typical Write-Blocking Based Export Session
10 steps:
1. [If the TD has not been paused by TDH.EXPORT.PAUSE, ensure TLB shootdown:
1.1. Invoke TDH.EXPORT.BLOCKW with a list of pages to be exported.
1.2. Invoke TDH.MEM.TRACK.
1.3. Issue IPIs to ensure TD re-entry on all VCPUs and TLB invalidation.
15 2. Start a new migration epoch by invoking TDH.EXPORT.TRACK.
3. Invoke TDH.EXPORT.MEM with a list of pages.
3.1. If a page is being exported, mark its list entry as MIGRATE.
8.4.1.2.
marking its list entry as CANCEL.
20 Note:
the order of step 2 vs. step 1.
Live Export: Blocking for Writing, TLB Tracking and Exporting a Page
page modification must be tracked by the TDX Module. This includes:
25 e Page content

e Page attributes
e For partitioned TDs, L2 page attributes

To achieve this, the page’s L1 SEPT entry and any L2 SEPT entries must be blocked for writing by TDH.EXPORT.BLOCKW.

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 55 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

If the TD has not been paused, the host VMM must execute the TLB tracking sequence below, which together with the
checks done by TDH.EXPORT.MEM helps ensure that no cached TLB entries that have been created before blocking for
writing are left.

1. Execute TDH.EXPORT.BLOCKW on each page to be exported, blocking subsequent creation of writable TLB
5 translations to that page. Note that cached translations may still exist at this stage.
2. Execute TDH.MEM.TRACK, advancing the TD’s epoch counter.
3. Send an IPI (Inter-Processor Interrupt) to each RLP (Remote Logical Processor) on which any of the TD’s VCPUs is
currently scheduled.
4. Upon receiving the IPI, each RLP will TD exit to the host VMM.

10 At this point the blocked pages are considered tracked for export. Even though some LPs may still hold writable TLB
entries to the target GPA ranges, those are designed to be flushed on the next TD entry. Normally, the host VMM on
each RLP will treat the TD exit as spurious and will immediately re-enter the TD.

5. Export each page using TDH.EXPORT.MEM.

Exporting a Page after the Source TD is Paused

15 After the source TD is paused, no blocking is required since the TD is not running. This reduces the amount of work that
needs to be done by the host VMM during the TD’s blackout period. This is shown in the dashed transitions in Figure 8.8

8405 low.

Unblocking for Write, Tracking Dirty Pages and Re-Exporting

8.4.1814.1.4.1. Overview

20 During the live export phase (when TDCS.OP_STATE is LIVE_EXPORT), the source TD may attempt to write a page that has
been blocked for writing, or to modify the page attributes (for partitioned TDs, this includes L2 attributes). The TDX
migration architecture allows the host VMM to unblock the page. The Intel TDX Module tracks such pages as “dirty”. All
dirty pages must be re-exported by the host VMM for the in-order migration phase to be completed. This assures that
either the latest version of a page has been exported by the time the source TD is paused, or that page has not been

25 exported at all.

8.4.1.4.2. Unblocking for Write and Re-Exporting a Page

If the source TD attempts to write to a page that has been blocked for writing, a TD exit will occur, indicating an EPT
violation due to a write attempt to a non-writable page.

Note: No indication is directly provided to the host VMM whether this page is blocked for writing by

30 TDH.EXPORT.BLOCKW or whether writing is disabled due to some other reason (e.g., the page is BLOCKED).
Intel TDX
Module Guest TD

: Write attempt

|

| .

| IVM Exit (EPT Violation) I (failed)
L 4———TD Exit (EPT Violation)

I

I

I

| TDH.EXPORT.UNBLOCKW Remove write protection, mark :

o the page as dirty if exported

< |

I

I

I

TDH.VP.ENTER—>|—|
VM entry

Figure 8.4: Typical Sequence for Unblocking a Page on Guest TD Write Attempt (Write-Blocking Export)

Write attempt
(success)

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 56 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

To enable access to the page, the host VMM is expected to execute TDH.EXPORT.UNBLOCKW and then resume the TD
VCPU by TDH.VP.ENTER.

e If the page has not yet been exported, TDH.EXPORT.UNBLOCKW restores its SEPT entry’s original MAPPED state.
e If the page has been exported, TDH.EXPORT.UNBLOCKW updates its SEPT state to EXPORTED_DIRTY. This state is
5 similar to MAPPED from the guest TD’s memory access perspective, but it indicates that the page is dirty and needs
to be re-exported.
e For partitioned TDs, if the page has any L2 mappings, TDH.EXPORT.UNBLOCKW unblocks their L2 SEPT entries by
restoring their W bit value.

The host VMM re-exports the page by TDH.EXPORT.BLOCKW, TLB tracking and TDH.EXPORT.MEM as described below.

10 Using the same GPA List for TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM

TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM use GPA lists with compatible formats. This allows the same list to be used
for blocking and exporting memory, as follows:

gaik The host VMM on the source platform may prepare a GPA list with MIGRATE and CANCEL commands (see later) and
provide it as input to TDH.EXPORT.BLOCKW.
15 2. TDH.EXPORT.BLOCKW will attempt to block pages whose command is MIGRATE and update the GPA list depending
on the success of the operation.
3. The same GPA list can be provided as input to TDH.EXPORT.MEM, which then updates it depending on the success
of the operation and whether this is a first-time export (MIGRATE) or re-export (REMIGRATE) and adds page
attributes information.

i
i
i MBMD
Page GPA Update operation Page GPA Update operation, ' Page'GPA &
- — —> - — A —i—» Attributes
List — and status List — status and attributes ! Lists
______________\://_ _____________________________________) v_/ ____________________ E__
i Page MAC
TDH.EXPORT.BLOCKW TDH.EXPORT.MEM ﬂi List
|
TDH.MEM.TRACK X i :
N o i Up to
' RN 1| 512*4KB
) 1 Encrypted
PAGE_HPA, |, ' | Migration
’ Pages
PAGE_HPA, | | &
h
i ; / i Migrated Data
PAGE_HPA . [~ TTTTTeTmTeTTITT
Multi-Page
50 B4LE. Mig. Buffers List Migration Bundle

Figure 8.5: Typical Write-Blocking Based Memory Export Round and the GPA List
A detailed definition of the GPA list is provided in the [TDX Module ABI Spec].

Prohibited Operations on Exported Pages and Export Cancellation

Once a page has been exported during the current export session, it can’t be blocked, removed, promoted, demoted or
25 relocated. This prevents the destination platform from using a stale copy of that page.

In order to perform such memory management operations on an exported page, the host VMM must first execute
TDH.EXPORT.MEM indicating a CANCEL operation for the page. No migration buffer is required for this GPA list entry.
When the GPA list is processed on the destination platform by TDH.IMPORT.MEM, the previously migrated page is

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 57 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

removed from the destination TD. TDH.EXPORT.MEM restores the page SEPT entry to its pre-export MAPPED or PENDING

state.

Source
TDX Module

5

10

15

IjjfTDH.EXPORT.MEM(MIGRATE page X)

T
D —————— failure indication— — — — — >l

-TDH.EXPORT.TRACK:
|
________________ >
I:I:—TDH,EXPORT.MEM(CANCEL page X) T
________________ > 1

8.4.1.7.

DH.MEM.PAGE.BLOCK(page X) I

DH.MEM.PAGE.BLOCK(page X)
|

——————— success— — — — — — — —j—l

Migration Bundle(MIGRATE page X)—p»|

Destination
TDX Module

Epoch Token—————— P

TDH.IMPORT.MEM(MIGRATE page X)

J_< ________________

Migration Bundle(CANCEL page X)——P»

TDH.IMPORT.TRAC K4:|:|
J_< ________________

TDH.IMPORT.MEM(CANCEL page X)Atlj

Figure 8.6: Typical Sequence for Cancelling a Page Export (Write-Blocking Export)

Exporting Pending Pages

The host VMM is not directly aware if a page is in a PENDING state or not; the guest TD may accept a PENDING page by
TDG.MEM.PAGE.ACCEPT at any time. If supported, the guest may release a MAPPED page by TDG.MEM.PAGE.RELEASE,
converting it to a PENDING page. The page content of a PENDING page is not exported, and no migration buffer is used.
The page attributes (including the optional page attributes list entry) are exported. On the destination platform,
TDH.IMPORT.MEM creates the page in a PENDING state.

If the guest TD accepts a pending page that has been exported, TDG.MEM.PAGE.ACCEPT results in an EPT violation. The
host VMM is expected to call TDH.EXPORT.UNBLOCKW, which marks the page as PENDING_EXPORT_DIRTY, and resumes
the guest TD. TDH.MEM.PAGE.ACCEPT then re-executes; it initialized the page and updates the SEPT state to mark the
page as EXPORTED_DIRTY (where the page is mapped and accessible to the guest TD). The host VMM can then re-export
the page, as described in 8.4.1.4 above.

TDH.VP.ENTER—PIJ-I

Intel TDX
Module

Guest TD

' 0
TDG.MEM.PAGE.ACCEPT:

—— D Exit (EPT Violation)ﬁ

TDH.EXPORT.UNBLOCKW4tD Remove write protecti
< __________________

the page as dirty if exported

|
|
I
|
on, mark |
I
I
I
I

I VM entry j]
TDG.MEM.PAGE.ACCEPT:

Success— — — — — — — — j—|

Figure 8.7: Typical Sequence for Unblocking a PENDING Page on TDG.MEM.PAGE.ACCEPT Attempt (Write-Blocking

Export)

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 58 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Re-Exporting a Non-Dirty Page

In the out-of-order phase, where strict migration order is not enforced, the host VMM may re-export a previously
exported page even if it has not been unblocked for writing and its contents have not been modified.

This allows a page to be re-exported and transferred to the destination platform over a high-priority stream. This helps
5 reduce destination TD latency while waiting for a page to be imported.

Such an operation is tagged MIGRATE, not REMIGRATE, in the exported GPA list. This is because the exact same version
8.4.16F the page is being exported.

SEPT Cleanup after Export Abort

After an export session is aborted (by TDH.EXPORT.ABORT), the source TD is allowed to run. However, SEPT entries and,

10 for partitioned TDs, L2 SEPT entries, that have been modified during the aborted export session, keep their state. Such

SEPT entries must be cleaned up by the host VMM before memory management operations are allowed on them, and/or
s.4.1before a new export session is attempted, as follows:

e Cleanup of SEPT entries that have been blocked for writing is done by TDH.EXPORT.UNBLOCKW (if the page is to be
written) or TDH.RANGE.BLOCK (is the page is to be blocked for some memory management operation).
15 e Cleanup of SEPT entries that have been exported is done by TDH.EXPORT.RESTORE.

The TDX Module holds a TDCS field called MIG_COUNT, which counts the number of exported pages that require cleanup.
This field is readable by the host VMM, using TDH.MNG.RD. The counter is initialized to 0. To start a new migration
session, its value must be 0.

8.4.2. Details of Write-Blocking Based Export

20 This section provides a detailed view of write-blocking based export. Details may be of interest to host VMM
programmers who require a deeper understanding of TD Migration.

8.4.2.1. Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export

Figure 8.8 below shows a partial SEPT entry state diagram for exporting mapped pages. The following sections describe
the details. The color-coding convention used in this diagram is described in 8.2.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 59 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

—_—————
BLOCKED)

Page is mapped but I
| new translations are |
| blocked |

TDH.MEM.
RANGE.BLOCK

See Leaf Entry

TDH.EXPORT.MEM(MIGRATE)

[TDis paused] /

1
TDH.EXPORT.MEM(MIGRATE)
[out-of-order] /

I
State Diagram | MlglggﬁLE‘l"H : MIGRATE
| _
|
. Y
___l BLOCKEDW !_ _____ _,r_ EXPORTED_
i | . BLOCKEDW |¢
Page is mapped and Page is mapped but ~
I

TDH.EXPORT.MEM(MIGRATE) /

translations are MIGRATE,
blocked MIG_COUNT++

| accessible to guest
|TD

| |[«—TDH.EXPORT.UNBLOCKW—

l w '\ |
1
TDH.EXPORT.MEM

TDH.EXPORT.MEM(CANCEL) / TDH.EXPORT.UNBLOCKW / (MIGRATE)

TDH.EXPORT.BLOCKW new write

Page is exported and

[TDis not paused] blocked for writing

MIG_COUNT-- DIRTY_COUNT++ [TDis paused] /
TDH.EXPORT.RESTORE / REMIGRATE
MIG_COUNT-- ’

DIRTY_COUNT--

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

Page is mapped and

accessible to guest

TDH.EXPORT.RESTORE / ™
MIG_COUNT-- TDH.EXPORT.MEM
(MIGATE) /
REMIGRATE,
TDH.EXPORT.BLOCKW DIRTY_COUNT--
TDH.EXPORT.UNBLOCKW
EXPORTED_
TDH.EXPORT.MEM(CANCEL) / DIRTY BLOCKEDW
DIRTY_COUNT--, MIG_COUNT-- -
Page is exported and
blocked for writing
TDH.EXPORT.RESTORE /
MIG_COUNT--
-
8.4.2.2. Figure 8.8: Partial L1 SEPT Leaf Entry State Diagram for Mapped Page Write-Blocking Based Export

Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export

The figure below shown the partial state diagram for PENDING page export.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 60 of 83

Section 2: TD Migration Architecture Specification

10

15

20

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

e — A\
PENDING_BLOCKED
Page is pending and |

| blocked |

| | TDH.MEM.
| I RANGE.BLOCK

1
TDH.EXPORT.MEM(MIGRATE) TDH.EXPORT.MEM
[TDis paused] / -— (MIGRATE) /
MIGRATE, MIG_COUNT++ MIGRATE

See Leaf Entry
State Diagram

|
|
|
|
[

|

T T T T \ Y
PENDING ' _ _ _ _| PENDING_ | o __ __ __ »l PENDING_
I—————' BLOCKEDW EXPORTED
Page is pending guest | BLOCKEDV\7
| TD acceptance | TDH.EXPORT.BLOCKW TDH'EXPOEQA;A&(EM'GRATE) /’
| | [TDis not paused] MIG_COUNT++
I | ¢ — — — — — |
| [«—TDH.EXPORT.UNBLOCKW—r |
—r s !
TDH.EXPORT.MEM See Mapped
(MIGRATE) Leaf Entr
TDH.EXPORT.MEM(CANCEL) / TDH.EXPORT.UNBLOCKW / ™i dl/ v
MIG_COUNT-- DIRTY_COUNT [TD is paused] Export State
TDH.EXPORT.RESTORE / B - o D&ET'YW'(SZGT,\‘ET’__ Diagram
MIG_COUNT-- -
- |
PENDING_ |
TDH.EXPORT.MEM(CANCEL) / EXPORTED L _ _ _ _ _ |
DIRTY_COUNT--, MIG_COUNT-- -
DIRTY ;
| Page is mapped and |
accessible to guest |
TDH.EXPORT.RESTORE / TDG.MEM. __ | ITo I
MIG_COUNT-- PAGE.ACCEPT
N |
TDH.EXPORT.BLOCKW
TDH.EXPORT.UNBLOCKW TDH.EXPORT.MEM
(MIGRATE) /
REMIGRATE,
PENDING_ DIRTY_COUNT--
TDH.EXPORT.MEM(CANCEL) / EXPORTED -
DIRTY_COUNT--, MIG_COUNT-- DIRTY_BLOCKEDW.
TDH.EXPORT.RESTORE /

MIG_COUNT--

|

Figure 8.9: Partial L1 SEPT Leaf Entry State Diagram for Pending Page Write-Blocking Based Export

8.4.2.3.

Details: TDCS.DIRTY_COUNT: TD-Scope Dirty Page Counter

TDCS.DIRTY_COUNT is a TD-scope dirty page counter.

e DIRTY_COUNT is cleared when a new migration session begins (by TDH.EXPORT.STATE.IMMUTABLE).

e DIRTY_COUNT is incremented when a page that has previously been exported in the current session is unblocked for
writing by TDH.EXPORT.UNBLOCKW.

o DIRTY_COUNT is decremented when a newer version of a page, which has previously been exported in the current
session, is exported by TDH.EXPORT.MEM.

For successful start token generation by TDH.EXPORT.TRACK, the value of the DIRTY_COUNT must be 0, indicating that
all pages exported so far have their newest pages exported. At this point, since the source TD is paused, no newer
versions of any page can be created, and the destination TD can start execution. Private pages which have not been
exported yet in the current session may still be remaining for post copy export. Note that exported pages may not have
been transported yet. The start token MBMD’s TOTAL_MB field verification enforces that all exported state has been
imported (in-order) on the destination — see the [TDX Module ABI Spec] for details.

8.5. Non-Blocking Memory Export

Unreleased Feature: Non-Blocking Export is a feature which has not been released yet at the time of writing of this
document. Details related to that feature serve as a preview and are subject to change.

8.5.1. Host VMM Perspective

This section describes non-blocking export from the host VMM perspective. This is a simplified view; a more detailed
view is discussed later.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 61 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

EPT Access and Dirty Bits Background
Intel SDM, Vol. 3, 30.3.5 Accessed and Dirty Flags for EPT

The Dirty Bit

Non-blocking live export relies on detecting memory changes using the Secure EPT entry’s Dirty bit (9). This bit is set by

5 the h/w (CPU or IOMMU) in the leaf EPT entry for a certain GPA when it performs an EPT walk for translating that GPA

8.5.110r @ write operation. The Dirty bit is sticky — the h/w may only set it to 1 but never clear it. The Dirty bit is only cleared
by s/w —in case of Secure EPT, by the TDX Module.

Implication of Address Translation Caching

The CPU and IOMMU cache page address translations and paging structures. An EPT entry’s Dirty bit is only set during

10 an EPT walk, when there is a need to do address translation, and the applicable entries are not cached. This means that
even if the TDX Module clears the Dirty bit of an SEPT entry, the h/w may not be aware of this since it holds a cached
entry; it will not set the Dirty bit if there’s a new write access. Since page modification detection relies on the correct
value of the Dirty bit, there is a need to do a TLB shootdown, as described in the following sections. TLB shootdown is
tracked by the TDX Module as a prerequisite to page export, to help ensure secure operation.

15 Memory Export Concept: Scan and Export

Non-blocking export is based on the concept of scan and export. Export typically consists of multiple rounds, with the
8.5.1dllowing steps per round:

1. Scanthe TD’s GPA space for memory export candidates.
2. Do aTLB shootdown.
20 3. Based on the scan results, prepare a list of pages and export them.

Export] Prepare e Fee | | __
—J» TDH.MEM.SCAN.* » Candidate Export ——>| . — TDH.EXPORT.MEM
. K GPA List

Page GPA List Lists -

— | | :
|

| I
TLB Shootdown:
——p| TDH.MEM.TRACK [m== < Send IPls

* Invalidate IOTLBs

8.5.1.3. Figure 8.10: Memory Export Round Concept: Scan and Export

The host VMM is not required to track the state of the TD private pages. It can rely on the TDX Module memory scan
functions to provide the required information.

25 Conceptual, Simplified Page State Diagram

Although the host VMM is not required to track the TD private page state, it is worthwhile to understand how the TDX
Module tracks page state using the Secure EPT state. This section provides a conceptual view of the page state machine,
which serves as a simplified overview of the export operation from the host VMM's perspective.

Note: The actual SEPT entry state machine is more complex. It is described in the following sections and in the [Base
30 Spec].

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 62 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

The following table lists the conceptual state machine’s states and their handling by the memory scan functions (which
are described later):

Table 8.2: Conceptual, Simplified Page States for Dirty Bit Based Export

State Description TDH.MEM.SCAN.*
NOT_EXPORTED Pages that either were not exported during Page GPA is reported by
the current migration session, or that were TDH.MEM.SCAN.*, to let the host

exported but their export was later cancelled. VMM know it needs to be exported.

EXPORTED Pages that were exported. Pages may have If the page’s SEPT entry’s Dirty bit
their Dirty bit set due to content modifications | is set, TDH.MEM.SCAN.* clears the
by the CPU, DMA or the TDX Module, or due to | Dirty bit, sets the page state to

attributes modifications by the guest TD (e.g., EXPORTED_MODIFIED and reports

TDG.MEM.PAGE.ACCEPT or the page GPA to let the host VMM
TDG.MEM.PAGE.ATTR.WR). know it needs to be re-exported.
EXPORTED_MODIFIED | Pages that were exported, and later either TDH.MEM.SCAN.* reports the page

scanned and found to require re-export since GPA to let the host VMM know it
their Dirty bit was set, or their attributes were | needs to be re-exported.
changed by some TDX Module memory
management function.

EXPORT_CANCEL_ Pages that were exported but their export TDH.MEM.SCAN.* reports the page
REQUIRED must be cancelled, due to memory GPA to let the host VMM know it
management operations (such as needs to be re-exported.

TDH.MEM.RANGE.BLOCK) by the host VMM.

Note: This conceptual state represents
multiple states, shown in the detailed
diagram later; those are required since
different memory management
operations are handled differently.

BLOCKED When a page that was in an Page GPA is not reported by
EXPORT_CANCEL_REQUIRED state due to TDH.MEM.SCAN.RANGE(DSCAN)
blocking is exported (as a CANCEL operation), since it is not exported.

the page state becomes the normal BLOCKED
state.

Note: This conceptual state represents
multiple states, shown in the detailed
diagram later; those are required since
different memory management
operations are handled differently.

Section 2: TD Migration Architecture Specification

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 63 of 83

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

TDH.MEM.SCAN(DSCAN) / TDH.MEM.SCAN(DCHECK) /
Clear D, add to GPA list add to GPA list
—Y Y | TDH.EXPORT.MEM
NOT_EXPORTED [TLB tracked] / > EXPORTED
Note: Page is not exported Export(MIGRATE) Page is exported

This is a conceptual diagram.
State names are not actual SEPT
state names. Some transitions TDH.MEM.RANGE.BLOCK
are simplified or not shown.

TDH.MEM.SCAN(DCHECK)

TDH.EXPORT.MEM / [D==1]/
Export(CANCEL) TDH.MEM.SCAN(DSCAN) Clear D,
D==1]/ add to GPA list TDH.EXPORT.MEM

[(D==0) && TLB tracked] /

Clear D, add to GPA list Export(REMIGRATE)

BLOCKED EXPORT_ < EXPORTED_
CANCEL_REQUIRED MODIFIED
Page is blocked -REQ °
TDH.EXPORT.MEM / Export(CANCEL) is export(REMIGRATE)
Export(CANCEL) required TDH.MEM.RANGE.BLOCK is required

. J . J

A F Y
TDH.MEM.SCAN(DSCAN) / TDH.MEM.SCAN(DCHECK) / TDH.MEM.SCAN(DCHECK) /

. TDH.MEM.SCAN(DSCAN) /
Clear D, add to GPA list Inc. DIRTY_COUNT, X
add to GPA list Clear D, add to GPA list add to GPA list

Figure 8.11: Conceptual Page State Diagram for Non-Blocking Export

Scanning for Candidate Pages to Export or Re-export

8.5.1.4.
8.5.1.4.1. Overview

5 During the live export phase, memory pages may be modified asynchronously to the host VMM'’s operations, by the
running TD or its bound TDIs. The host VMM does not need to know the SEPT entry states. It uses the export candidates
list provided by the following interface functions:

TDH.MEM.SCAN.RANGE(DSCAN): This function is used iteratively by the host VMM during the LIVE_EXPORT phase of
TD migration to identify pages in the specified GPA range needing export.
10 Identification is based on the SEPT entry’s page state and the Dirty bit. The function
returns a list of pages that the host VMM can use to prepare export requests (as an
input to TDH.EXPORT.MEM).

TDH.MEM.SCAN.COMP(DCHECK): This function is used by the host VMM during the export blackout period, after the
TD is paused and all TDIs are unbound. The function performs a comprehensive
15 scan of the TD’s GPA address space and identifies the remaining pages needing
export and returns a page list. It ensures migration consistency by requiring that
the whole GPA range will be scanned and maintaining a counter of pages that need
to be exported. TDH.EXPORT.TRACK(DONE) then checks that those pages have
indeed been exported, as a precondition for generating a start token.

20 Although memory export only supports 4KB page mapping, the scanning functions return information for 4KB, 2MB and
1GB page mapping sizes. The host VMM is responsible for demoting 2MB and 1GB pages before calling
TDH.EXPORT.MEM.

The host VMM is expected to maintain an export GPA list:

e A GPA should be added to the list when it is reported by TDH.MEM.SCAN.*.
25 e A GPA should be removed from the list when it is successfully exported by TDH.EXPORT.MEM.

TDH.MEM.SCAN.* returns a list of export candidates regardless of whether pages in that list have been returned by a
previous call to TDH.MEM.SCAN.*. If page X has been reported as an export candidate, and has not yet been exported,
it may be reported again.

8.5.1.4.2. Using the Memory Scanning Functions

30 To help reduce the scan time, especially during the export blackout period, TDH.MEM.SCAN.* can be called concurrently
on multiple LPs.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 64 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

34

8550-008US (draft)

A comprehensive scan of the whole GPA range is done as follows:

e The host VMM needs to configure the comprehensive scan using TDH.MEM.SCAN.CONFIG. The host VMM can divide
the TD’s GPA address space into ranges, typically to optimize the scan for NUMA configurations. The configuration
is not migrated with the TD; it needs to be redone if the TD is to be migrated again.

by each instance (multiple instances can concurrently scan the same range).
e If the scan fails (e.g., there are blocked pages), the host VMM can reset the comprehensive scan using
TDH.MEM.SCAN.RESET and then retry the scan.

For further details, see the [TDX Module ABI Spec].

The host VMM can call TDH.MEM.SCAN.COMP on multiple threads, specifying the pre-configured GPA range to scan

10 Typical Non-Blocking Export Session
Typical expected usage divides the export session into export rounds (or passes). The diagram below shows a typical
export session, which is composed of several live migration export rounds and a final export round during the blackout
period, when the TD is not running. It also shows post-copy (which is not applicable if the TD is configured for TDX
8.5.1Cennect).
15 The diagram below shows 4 migration streams and the usage of migration epochs to synchronize them. Migration epochs
are defined in 6.1.4.
Time >
Post-Copy (non TDX
«—— Live Migration (TD is Running on Source) ——><«—— Blackout (TD is not Running) ———><— Connect, TD may be = —»|
Running on Destination)
N In-Order Phase > Out-Of-Order Phase —>
Mig. Epoch0 ———><«— Mig. Epoch1l —*><«————— Mig. Epoch 2 Mig. Epoch OxFFFFFFFF —*
1
Stream D Page Page Page Page Epoch Page Page Epoch TD VP Page Start Page Page Page Page
0 State 0 11 5 15 Token 6 12 Token| | State State 7 Token 8 24 28 20
Stream Page Page Page Page Page VP Page Cancel Page Page Page Page
1 3 8 12 4 11 State || 6 8 23 16 21 29
Stream Page Page Page Page Page VP Page Page Page Page Page Page
2 13 1 6 14 4 State || 14 12 18 17 26 19
Stream Page Page Page Page Page | |Cancel Page Page Page Page Page
3 2 7 10 9 8 7 1 17 27 22 29
DH.EXPORT| [TDH.EXPORT.| TDH.EXPORT.
TRACK TRACK TRACK(DONE)
ITDH.MEM.SCAN| TDH.MEM. IoTLB [TDH.EXPORT | [TDH.MEM.SCAN| TDH.MEM. 1oTL8 [TDH.EXPORT| 'TDH.MEM.SCAN| DH.EXPORT| DH.EXPORT| [TDH.EXPORT|
(DSCAN) TRACK MEM (DSCAN) TRACK MEM II (DCHECK) II MEM I MEM II MEM II
TDH.EXPORT. DH.EXPORT, | TDH.EXPORT. | | TDH.EXPORT. CHZARELT[] Rl RBrT
STATE.IMMUTABLE PAUSE | | STATE.TD | | STATE.VP MEM I MEM II
«—— Export Round 0 > Export Round 1 —————><—— Export Round 2 (Final) Out-Of-OrderExport ______ |

Figure 8.12: Typical Non-Blocking Export Session

(non TDX Connect)

8.5.1.5.1. Typical Non-Blocking Live Export Round
20 Note: Do not confuse TDH.MEM.TRACK (which is used for TLB tracking) with TDH.EXPORT.TRACK (which rendezvous
all migration streams).
An export round during the live migration phase of the export session typically has the following steps:
1. Prepare a list of pages to be exported by calling TDH.MEM.SCAN.RANGE(DSCAN) one or more times.
1.1. TDH.MEM.SCAN.RANGE(DSCAN) can be called concurrently on multiple LPs.
25 2. Do the TDX TLB (and IOTLB, if the TD is enabled for TDX Connect) shootdown sequence. This is required to ensure
that, after the following export, the CPU or IOMMU will indeed set the Dirty bit if a page is written.
2.1. Call TDH.MEM.TRACK.
2.2. Issue IPIs (Inter-Processor Interrupts) to all RLP (Remote Logical Processors) on which any of the TD’s VCPUs is
currently scheduled. This causes TD re-entry and TLB (and IOTLB, if the TD has bound TDI) invalidation on all
30 VCPUs.
December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 65 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

45

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Start a new migration epoch by invoking TDH.EXPORT.TRACK. This is required for the TDX Module on the destination

to ensure proper ordering on import.

Call TDH.EXPORT.MEM with a list of pages based on the export candidates list reported by

TDH.MEM.SCAN.RANGE(DSCAN) above.

4.1. The host VMM may choose not to include pages reported as blocked, since this is an interim state used as
preparation to some memory management operation.

4.2. TDH.EXPORT.MEM determines the required export operation (MIGRATE, REMIGRATE or CANCEL) based on
each page state.

4.3. TDH.EXPORT.MEM checks that the TLB shootdown above has indeed been done, using the TDX TLB tracking
mechanism (see the [TDX Module Base Spec] for details).

4.4. TDH.EXPORT.MEM can be called concurrently on multiple LPs, each exporting to a different migration stream.

Concurrency and Order during Live Export

There is no strict ordering requirement between steps 2 and 3, as long as they precede step 4.
TDH.MEM.SCAN.RANGE(DSCAN) can run concurrently with TDH.EXPORT.MEM, as long as different pages are
processed. E.g., it is possible to scan a certain GPA range while exporting memory of a different GPA range.

If TDH.MEM.SCAN.RANGE(DSCAN) encounters a busy SEPT entry due to a conflict with some other function, it skips
that entry. The page will be processed by the next TDH.MEM.SCAN.RANGE(DSCAN) or
TDH.MEM.SCAN.COMP(DCHECK) . For details, see the [ABI Spec].

If TDH.EXPORT.MEM encounters a busy SEPT entry due to a conflict with some other function, it skips that entry. It
writes the status into the GPA list; the host VMM may read that list and call TDH.EXPORT.MEM to export pages that
have not been exported. For details, see the [ABI Spec].

8.5.1.5.2. Typical Final Export Round

The final export round ensures that the full up-to-date memory image (and non-memory state) is exported. It typically
consists of the following steps:

1.

7.

Pause the TD using TDH.EXPORT.PAUSE. This requires no pages to be blocked and, if the TD is enabled for TDX

Connects, no TDIs to be attached.

Export the TD’s non-memory immutable state using TDH.EXPORT.STATE.TD and TDH.EXPORT.STATE.VP.

Prepare a list remaining of pages to be exported in the final round by calling TDH.MEM.SCAN.COMP(DCHECK) one or

more times until the whole GPA range has been scanned.

3.1. TDH.MEM.SCAN.CONFIG should be called prior to TDH.MEM.SCAN.COMP to configure the GPA ranges for
scanning.

3.2. TDH.MEM.SCAN.COMP(DCHECK) can be called concurrently on multiple LPs.

There is no need to do a TLB shootdown since the TD is paused and no TDI is bound to the TD.

Start a new migration epoch by invoking TDH.EXPORT.TRACK. This is required for the TDX Module on the destination

to ensure proper ordering on import.

Call TDH.EXPORT.MEM with a list of pages. The TDX Module determines the required export operation (MIGRATE,

REMIGRATE or CANCEL) based on each page state.

6.1. All the pages detected by TDH.MEM.SCAN.COMP(DCHECK) as requiring re-export must be exported.

6.2. If post-copy is supported (for a TD where TDX Connect is not enabled), pages identified by
TDH.MEM.SCAN.COMP(DCHECK) as never having been exported may be exported later during the out-of-order
phase.

6.3. TDH.EXPORT.MEM may be called concurrently on multiple LPs, each exporting to a different migration stream.

End the in-order export phase by calling TDH.EXPORT.TRACK(DONE).

Concurrency and Order during Final Export

TDH.MEM.SCAN.COMP(DCHECK) can run concurrently with TDH.EXPORT.MEM, as long as different pages are
processed. E.g., it is possible to scan a certain GPA range while exporting memory of a different GPA range.

Unlike TDH.MEM.SCAN.RANGE(DSCAN), if TDH.MEM.SCAN.COMP(DCHECK) encounters a busy SEPT entry due to a
conflict with some other function, it returns to the host VMM indicating an interrupted operation. The host VMM is
expected to resume TDH.MEM.SCAN.COMP(DCHECK) . For details, see the [ABI Spec].

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 66 of 83

Section 2: TD Migration Architecture Specification

5

10

15

20

25

30

35

40

45

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

8.5.1.7.

Interaction with Memory Management Operations

8.5.1.6.1. Memory Management Restrictions on Pages that Have Been Exported

Exported Page Blocking and Removal

A page that has been exported can still be blocked (TDH.MEM.RANGE.BLOCK) and/or removed
(TDH.MEM.PAGE.REMOVE) by the host VMM, subject to other restrictions (e.g., no attached TDIs for TDs configured for

51X Connect).

Synchronization with the destination is done by exporting a CANCEL operation for this page, so that the destination can
remove it. A blocked or removed page is put in one of several special states (together called EXPORT_CANCEL_REQUIRED
in the conceptual state diagram above). Pages in those states are detected by TDH.MEM.SCAN.RANGE(DSCAN) and
TDH.MEM.SCAN.COMP(DCHECK) so that the host VMM can include them in the GPA list for TDH.EXPORT.MEM. Once
TDH.EXPORT.MEM has exported a CANCEL operation for such a page, the page state is set to one of the NON_EXPORTED
states.

Exported Page Promotion or Demotion

A page that has been exported can’t be promoted (TDH.MEM.PAGE.PROMOTE). Since an exported page mapping size is
4KB, it can’t be demoted (TDH.MEM.PAGE.DEMOTE) either.

Note: Even without migration, the host VMM should always be prepared for a Promote operation to fail. E.g., L1 may
set the attributes of some of the small pages to be merged differently than the other small pages, preventing
promotion.

8.5.1.6.2. Memory Management Restrictions During the Export Blackout Period

The following memory management restriction applies during the PAUSED_EXPORT state, which begins when the TD is
paused by TDH.EXPORT.PAUSE and ends when a start token is generated by TDH.EXPORT.TRACK(DONE). These
restrictions exist to facilitate export completeness tracking (for details, see 8.5.2.8 below).

No Blocked Pages

No page may be blocked while in the PAUSED_EXPORT state. This condition is checked by TDH.EXPORT.PAUSE and
TDH.MEM.SCAN.COMP(DCHECK). TDH.MEM.RANGE.BLOCK and TDH.MEM.RANGE.UNBLOCK are not allowed.

Note: TDH.MEM.PAGE.DEMOTE and TDH.MEM.PAGE.RELOCATE are allowed without blocking in the PAUSED_EXPORT
state.

Other Restrictions

e Page addition and removal by TDH.MEM.PAGE.AUG and TDH.MEM.PAGE.REMOVE is not allowed while in the

PAUSED_EXPORT state. Note that TDH.MEM.PAGE.ADD is also not allowed since the TD build has been, by definition,

finalized.

e SEPT tree changes by TDH.MEM.PAGE.PROMOTE, TDH.MEM.SEPT.ADD, and TDH.MEM.SEPT.REMOVE are not
allowed while in the PAUSED_EXPORT state.

Exporting Pending Pages

The host VMM is not directly aware of whether a page is in a PENDING state or not:
e The guest TD may accept a PENDING page by TDG.MEM.PAGE.ACCEPT at any time, converting it to a MAPPED page.

8.5.18. |If supported, the guest TD may release a MAPPED page by TDG.MEM.PAGE.RELEASE, converting it to a PENDING

page.

Thus, TDH.EXPORT.MEM may export a pending page. This is indicated by the GPA list entry, and no migration buffer is
used since the page content is not exported. The page attributes (including the optional page attributes list entry) are
exported. On the destination platform, TDH.IMPORT.MEM creates the page in a PENDING state.

SEPT Cleanup after Export Abort

After an export session is aborted (by TDH.EXPORT.ABORT) the source TD is allowed to run. However, SEPT entries and,
for partitioned TDs, L2 SEPT entries, that have been modified during the aborted export session, keep their state. Such
SEPT entries must be cleaned up by the host VMM before memory management operations that are not allowed for

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 67 of 83

Section 2: TD Migration Architecture Specification

10

15

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

migrated pages (such as TDH.MEM.PAGE.PROMOTE) are attempted on them, and/or before a new export session is
attempted.

Cleanup is done either by TDH.EXPORT.RESTORE, which receives a list of up to 512 pages, or (if supported) by
TDH.MEM.SCAN.RANGE(EXPORT_RESTORE), which scans a GPA range.

The TDX Module holds a TDCS field called MIG_COUNT, which counts the number of exported pages that require cleanup.
This field is readable by the host VMM, using TDH.MNG.RD. The counter is initialized to 0. To start a new migration
session, its value must be 0.

8.5.2. Details of Non-Blocking Export

This section provides a detailed view of non-blocking export. Details may be of interest to host VMM programmers who
require a deeper understanding of TD Migration.

Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export

To support non-blocking export of Mapped pages, the following SEPT states are added. Their main goal is to help keep
the destination TD memory image in sync with the source TD memory image. The next section describes the states added

8.5.21@r Pending pages.

Table 8.3: L1 SEPT Entry States Related to Mapped Page Export

State Name Description

EXPORTED The page has been exported. This state indicates that any change in the
page content or attributes would require a re-export.

EXPORTED_MODIFIED The page was exported and later either identified as dirty based on the
Dirty bit (which was atomically cleared by the same operation that
checked its value) or some memory management operation changed the
page attributes or state. This state indicates that the page must be re-
exported as a REMIGRATE operation.

EXPORTED_BLOCKED The page was exported and later blocked by TDH.MEM.RANGE.BLOCK.
This state indicates that the page must be re-exported as a CANCEL
operation.

EXPORTED_REMOVED The page was exported and later removed by TDH.MEM.PAGE.REMOVE.
This state indicates that the page should be re-exported, as a CANCEL
operation.

EXPORTED_REMOVE_IN_PROGRESS | The page was exported and later partially removed by
TDH.MEM.PAGE.REMOVE. This state indicates that the page should be
re-exported as a CANCEL operation.

This state is only applicable for client platforms, which use ACT-based
memory protection.

A partial SEPT entry state diagram for exporting Mapped pages using the Dirty bit method is shown below. The following
sections describe the details. The color-coding convention used in this diagram is described in 8.2.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 68 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

TDH.MEM.SCAN(DSCAN) /

See Leaf Entry Add to GPA list

State Diagram TDH.EXPORT.MEM /

Export(CANCEL),

_ dec. MIG_COUNT, EXPORTED_

GPAis not allocated | dec. DIRTY_COUNT, REMOVED

to the TD [dec. MEM_COUNT Page is removed,
L— export(CANCEL) is

TDH.EXPORT.RESTORE, red

| | TDH.MEM.SCAN.RANGE require

| | (EXPORT_RESTORE)/

———— Dec. MIG_COUNT,

dec. MEM_COUNT
Add to GPA list

TDH.MEM.SCAN.COMP(DCHECK) /

[success]

-TDH.MEM.PAGE.REMOVE:

[interrupted]

TDH.MEM.PAGE.REMOVE
[TLB tracked | | TD paused] /
Dec. BLOCKED_COUNT

TDH.MEM.SCAN(DSCAN) /

Add to GPA list See Leaf Entry

State Diagram

dec. DIRTY_COUNT Page removal is in

' progress

Page removal is in

progress TDH.EXPORT.RESTORE,

export(CANCEL) is TDH.MEM.SCAN(EXPORT_RESTORE) / '
. Dec. MIG_COUNT

required —

TDH.MEM.SCAN(DCHECK) /
Add to GPA list

e TDH.EXPORT.MEM /
EXPORTED_ Export(CANCEL), REMOVE_
REMOVE_ dec. MIG_ COUNT, IN_PROGRESS
IN_PROGRESS!

See Leaf Entry TDH"\//LZZI .tscgl:ﬁ[TIS(éAN) /
State Diagram ©° s . Notes
TDH.EXPORT.MEM — 1 These states are only applicable for platforms that use ACT-based memory protection.
BLOCKED e ! EXPORTED_BLOCKED
Xport(CANCEL), Color Conventions
i | dec. MIG_COUNT, i e ventl
Page is mapped but ec ¢ , Page is blocked for E o E i o
new translations are |<* dec. DIRTY_COUNT new address 8 —Transition that doesn’t modify D—» Transition that clears D——»
| blocked «— TDH.EXPORT.RESTORE, ”anss(t'c‘:"\‘s/cﬂy > ;u
| | TDH.MEM.SCAN.RANGE f:p::ired ® 8 « State where D may be O or 1 8 State where D is always 0 @
| | (EXPORT_RESTORE)/ a @ o
—_ Dec. MIG_COUNT - S S
S w Z =
okzkE 2z 3
203 3
z909 Z3
539 £ TDH.EXPORT.MEM
3 E a =8 [out-of-order] / See PENDING‘Entry
See Leaf <Z(9(X E S Export(MIGRATE) Export State Diagram
Entry State TDH.MEM.SCAN(DSCAN) / =38 9
Diagram Clear D, set BEPOCH, add to GPA list =3a “
S e ;
TDH.EXPORT.MEM E & Page is exported I
[TLB tracked | | TD paused] / ap TDG.MEM.PAGE.RELEASE / | |
Page is mapped and I Export(MIGRATE), inc. MIG_COUNT, Inc. DIRTY_COUNT | |
| accessible to guest if TD is paused, clear D | |
™
: e—— TDH.EXPORT.RESTORE, —— |
TDH.MEM.SCAN.RANGE(EXPORT_RESTORE —_——_—————
| I Dee. MIG (COUNT - 1 g - TDH.EXPORT.MEM
- - Sz [((D==0) &&
3 @3 TDH.MEM.SCAN.RANGE TDG.MEM.PAGE. TLB tracked) | |
TDH.MEM.SCAN(DCHECK) / V] :\ o (DSCAN)[D==1]/ TDH.MEM.SCAN.COMP ATTR.WR / TD paused] /
Add to GPA list Z @ 5 ClearD,set BEPOCH (DCHECK) [D ==1] / Update SEPT, Export(REMIGRATE),
; 9 G inc. DIRTY_COUNT inc. DIRTY_COUNT, Inc. DIRTY_COUNT dec. DIRTY_COUNT,
“é % add to GPA list add to GPA list if TD is paused, clear D See PENDING Entry
5= Export State Diagram
g
L L, PENDING_EXPORTED
TDG.MEM.PAGE.ACCEPT / MODIFIED
Inc. DIRTY_COUNT = |
export(REMIGRATE) TDG.MEM.PAGE.RELEASE /
TDH.EXPORT.RESTORE, is required — Clear D |
TDH.MEM.SCAN.RANGE(EXPORT_RESTORE) /-
Dec. MIG_COUNT l¢———TDG.MEM.PAGE.ACCEPT- |
| _ |
TDH.MEM.SCAN.RANGE(DSCAN) / - = wL
Clear D, set BEPOCH, TDG.MEM.PAGE.ATTR.WR /
add to GPA list Updatle SEPT
L
TDH.MEM.SCAN.COMP(DCHECK) /
Add to GPA list
8.5.2.2. o GrATS
Figure 8.13: Partial L1 SEPT Leaf Entry State Diagram for MAPPED Page Non-Blocking Export
Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export
The state diagram for PENDING page export is very similar to the one above. Note that PENDING pages are considered
5 non-present from the h/w perspective, so the CPU and DMA do not normally set the Dirty bit. An exception to this is

pages converted to PENDING by TDG.MEM.PAGE.RELEASE where the h/w may hold a TLB translation.

Table 8.4: L1 SEPT Entry State Related to Pending Page Export

State Name

Description

PENDING_EXPORTED

The page has been exported. This state indicates that any change in the
page attributes would require a re-export.

PENDING_EXPORTED_MODIFIED

The page was exported and later identified as dirty based on the Dirty
bit (which was atomically cleared by the same operation that checked
its value). This state indicates that the page must be re-exported as a
REMIGRATE operation.

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 69 of 83

Section 2: TD Migration Architecture Specification

See Leaf Entry
State Diagram

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

State Name

Description

PENDING_EXPORTED_BLOCKED

operation.

The page was exported and later blocked by TDH.MEM.RANGE.BLOCK.
This state indicates that the page must be re-exported as a CANCEL

A partial SEPT entry state diagram for exporting Pending pages using the Dirty bit method is shown below. The following
sections describe the details. The color-coding convention used in this diagram is described in 8.2.

EXPORTED

—
EXPORTED_

[su ccess]+[interru pted]—»lr

See Mapped
Entry Export
State Diagram

See Mapped REMOVED REMOVE_) '
IN_PROGRESS
Entry Export Page is removed, | !——_————
State Diagram | oy o0 rt(CANCEL) is i Page removalisin |
' required | progress, |
') export(CANCEL) is
|«[success] [interrupted]— 44 ired |
N — \required
TDH.MEM.PAGE.REMOVE
[TLB tracked | | TD paused] / Notes

TDH.MEM.SCAN(DSCAN) /
Add to GPA list

TDH.EXPORT.MEM /

—

Dec. PENDING_BLOCKED_COUNT

Color Conventions

1 These states are only applicable for platforms that use ACT-based memory protection.
2 No TLB tracking is required

Transition that clears D——»

State where D is always 0 8

See MAPPED Entry
Export State Diagram

TDG.MEM.PAGE.ACCEPT /

|
Inc. DIRTY_COUNT |
|
1
1

TDH.EXPORT.MEM? /
Export(REMIGRATE),
dec. DIRTY_COUNT

See MAPPED Entry
Export State Diagram

TDG.MEM.PAGE.RELEASE /
Clear D

TDG.MEM.PAGE.ATTR.WR /

Update SEPT
J

PENDING_BLOCKED PENDING_EXPORTED
Export(CANCEL), BLOCKED —Transition that doesn’t modify D%
Page is pending and | dec. MIG_COUNT, =
| blocked [dec. DIRTY_COUNT Page is pending and -
| TDH.EXPORT.RESTORE, blocked, ~3 State where D may be 0 or 1 9
| :‘7 TDH.MEM.SCAN export(CANCEL) is 838, o,
| | (EXPORT_RESTORE) / required \% a 5' Z 2=
—_ — — — — = 2 - @ oRoRe] wS
Dec. MIG_COUNT g 8] 28 :I Q9
S 2z =g
Y So% BE
935 5z S 25 TDH.EXPORT.MEM
= é| T 2= 5= [out-of-order] /
See Leaf sg B a L Export(MIGRATE)
Entry State TDH.MEM.SCAN(DSCAN) / § = g PR
Diagram Add to GPA list g z T PENDING_EXPORTED
o
PENDING = § Page is exported
Page is pending | TDH.EXPORT.MEM? / N
acceptance by the Export(MIGRATE), inc. MIG_COUNT
| guest TD
TDH.EXPORT.RESTORE,
| | TDH.MEM.SCAN(EXPORT_RESTORE) / _ 5
| Dec. MIG_COUNT ¥o 3
— = 258
TDH.MEM.SCAN(DCHECK) / ;] B TDG.MEM.PAGE.
Inc. UNEXPORTED_COUNT, 2ES ATTR.WR /
Add to GPA list Qw2 Update SEPT,
2® Inc. DIRTY_COUNT
< a9
Ss=2
ww o
=2z
I I a
== PENDING_EXPORTED
j7
I (=) _MODIFIED
> export(REMIGRATE)
TDH.EXPORT.RESTORE, is required
TDH.MEM.SCAN(EXPORT_RESTORE) /
Dec. MIG_COUNT
J
TDH.MEM.SCAN(DSCAN) /
Add to GPA list
8.5.2.3.
TDH.MEM.SCAN(DCHECK) /
Add to GPA list
5 Figure 8.14: Partial L1 SEPT Leaf Entry State Diagram for PENDING Page Non-Blocking Export
Details: TD Partitioning Considerations for Dirty Bit Operations
With TD partitioning, in addition to the main SEPT tree used by L1, each L2 VM has its own L2 SEPT tree. TD private
memory writes by an L2 VM, by devices associated with that L2 VM or by TDX Module flows that run in the context of
that L2 VM set the Dirty bits in L2 SEPT entries.
10 Thus, when the logical Dirty bit is discussed, the actual operation may involve the L1 SEPT entry’s Dirty bit and/or one or

more of the L2 SEPT entries’ Dirty bits. The following table describes the various operations done on the Dirty bit and

their actual meaning for partitioned TD

S.

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 70 of 83

TDG.MEM.PAGE.RELEASE /__|
Inc. DIRTY_COUNT, clear D
-TDG.MEM.PAGE.ACCEPT:

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

Table 8.5: Logical Dirty Bit vs. Actual L1 and L2 Dirty Bits

Logical Operation

Actual Operation

Is the Dirty bit 0?

Logical Dirty is 0 if the Dirty bitis 0 in the L1 SEPT
entry and all L2 SEPT entries.

Is the Dirty bit 1?

Logical Dirty is 1 if the Dirty bitis 1 in the L1 SEPT
entry or any of the L2 SEPT entries.

Atomically clear the Dirty bit and return its previous
value.

Atomically test and clear the Dirty bit in L1 and each
L2 SEPT entries. Return true if the Dirty bit was 1 in
any of the SEPT entries.

Clear the Dirty bit.

Clear the Dirty bit in L1 and each L2 SEPT entries.

Set the Access and Dirty bits as a result of reading or
writing to the TD private page by a TDX Module flow
operating in the context of the TD, e.g.,
TDG.MR.REPORT.

Set the A and D bits as part of the soft SEPT walk
done by the TDX Module.

Set the Access and Dirty bits as a result of translating
GPAs to HPAs and caching the HPA values to be used

Set the A and D bits as part of the soft SEPT walk
done by the TDX Module.

by the CPU (as VMCS fields) and by the TDX Module,
e.g., as part of L12>L2 entry.

Details: Pending Pages Considerations

8.5.2.4.
As described in 8.5.1.7 above, the page state may change from PENDING to MAPPED (by TDG.MEM.PAGE.ACCEPT) and

5 vice versa (by TDG.MEM.PAGE.RELEASE). Both operations are considered a change of page attributes and thus require
re-export if the page has been exported.

8.5.2.5. Details: Blocked Pages Considerations

As described in 8.5.1.6.2 above, no blocked pages are allowed during the export blackout period (PAUSED_EXPORT
phase). This applies to the following SEPT entry states: BLOCKED, EXPORTED_BLOCKED, PENDING_BLOCKED,
10 PENDING_EXPORTED_BLOCKED.

There are two reasons for that:

o Blocked pages are not exported. The blocked state is always an interim state; the host VMM blocks a page when it
intends to perform some other operation, such as page removal.
8325 Not allowing blocked pages during the PAUSED_EXPORT phase simplified the tracking of export completeness by
15 TDH.MEM.SCAN.COMP(DCHECK) and TDH.EXPORT.MEM.

Details: Memory Management Considerations

8.5.2.6.1. Details: Host-Side Memory Management Considerations

The tables below summarize special consideration for the interaction of non-blocking export and TD private memory
management operations done by the host VMM and guest TD.

20 Table 8.6: Host-Side Memory Management Considerations of Non-Blocking Export

Operation Details

TDH.MEM.PAGE.AUG A page that has been exported and then removed is put in an
EXPORTED_REMOVED state (see below). While in this state, the host VMM can
call TDH.MEM.PAGE.AUG to add a new page to the same GPA. The page state is

set to EXPORTED_PENDING_MODIFIED.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 71 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Operation Details

TDH.MEM.PAGE.DEMOTE It is possible to demote a non-exported 2MB or 1GB page whose state is
MAPPED, BLOCKED or PENDING or PENDING_BLOCKED.

If the page state before the demote operation was MAPPED and a non-blocking
export session is in the LIVE_EXPORT phase, the TDX Module sets all the
demoted pages’ Dirty bits®. Otherwise, it clears them.

A page that has been exported is mapped at 4KB, so it can’t be demoted.

TDH.MEM.PAGE.PROMOTE | Itis possible to promote a 2MB or 1GB GPA range if all the small pages within
that range are non-exported whose state is MAPPED or PENDING. The TDX
Module sets the promoted page’s Dirty bit2.

It is not possible to promote a page that has been exported. Supporting that
would complicate the SEPT state machine (e.g., handling the case where some
4KB pages have different states than other, add new states that indicate the
need to export a CANCEL operation etc.). Note that the host VMM should
already be able to handle situations where promotion is not possible, e.g., due
to different L2 attributes set by L1.

TDH.MEM.PAGE.RELOCATE A blocked page in the EXPORTED_BLOCKED or PENDING_EXPORTED_BLOCKED
state can be relocated. This unblocks the page, and the page state is set to
EXPORTED_MODIFIED or PENDING_EXPORTED_MODIFIED respectively.

TDH.MEM.PAGE.REMOVE A page that has been exported can be removed. The page is putin an
EXPORTED_REMOVED state to track the need for exporting a CANCEL operation
for it, after which the page state is set to the regular FREE state.

TDH.MEM.SEPT.REMOVE A page that has been exported and then removed is put in an
EXPORTED_REMOVED state (see above). While in that state, the L1 SEPT entry
mapping the page is not free. Thus, the L1 SEPT page where it resides cannot
be removed.

TDH.MEM.RANGE.BLOCK A page that has been exported can be blocked (and later removed or
unblocked). Depending on whether the page is pending, the page is put in an
EXPORTED_BLOCKED or PENDING_EXPORTED_BLOCKED state to track the need
for exporting a CANCEL operation for it, after which the page state is set to the
regular BLOCKED or PENDING_BLOCKED state respectively.

TDH.MEM.RANGE.UNBLOCK | A blocked page in the EXPORTED_BLOCKED or PENDING_EXPORTED_BLOCKED
state can be unblocked. The page state is set to EXPORTED_MODIFIED or
PENDING_EXPORTED_MODIFIED respectively.

8.5.2.6.2. Details: Guest-Side Memory Management Considerations
The guest TD is not directly aware of memory export; memory management operations are still available to it.

Table 8.7: Guest-Side Memory Management Considerations of Non-Blocking Export

Operation Details

TDG.MEM.PAGE.ACCEPT The guest TD may accept a PENDING_EXPORTED or a
PENDING_EXPORTED_MODIFIED page. The page state becomes
EXPORTED_MODIFIED so that TDH.MEM.SCAN.RANGE(DSCAN) or
TDH.MEM.SCAN.COMP(DCHECK) will detect the need to re-export the page.

1 With block-less demote, the h/w may still set the Dirty bit of the large page’s SEPT entry while TDH.MEM.PAGE.DEMOTE is running
and before it updated that SEPT entry to be a non-leaf entry. Thus, setting the Dirty bity of the small pages SEPT entries is necessary.

2This is done for simplification of implementation, since the page will have to be demoted in any case for migration.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 72 of 83

Section 2: TD Migration Architecture Specification

10

15

20

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

Operation Details

TDG.MEM.PAGE.ATTR.WR The guest TD may update the attributes of an EXPORTED or
EXPORTED_MODIFIED. The page state becomes EXPORTED_MODIFIED so that
TDH.MEM.SCAN.RANGE(DSCAN) or TDH.MEM.SCAN.COMP(DCHECK) will detect
the need to re-export the page.

Similarly, the guest TD may update the attributes of a PENDING_EXPORTED, or

PENDING_EXPORTED_MODIFIED page. The page state becomes
PENDING_EXPORTED_MODIFIED.

TDG.MEM.PAGE.RELEASE If supported, the guest TD may release an EXPORTED or an EXPORTED_DIRTY
page. The page state becomes PENDING_EXPORTED_MODIFIED so that
TDH.MEM.SCAN.RANGE(DSCAN) or TDH.MEM.SCAN.COMP(DCHECK) will detect
the need to re-export the page.

Details: TLB Tracking Considerations

TLB tracking is required to ensure no Dirty bit setting is lost, i.e., if a page is modified then the its Dirty bit is set in its SEPT

entry, or its SEPT entry state indicates that it needs to be exported.
5.2.7.

From the point of view of each single page, the sequence is:

1. Scan the page.
2. Call TDH.MEM.TRACK and do a round of IPIs.
3. Export the page.

Typically, this would be done for a chunk of the GPA space:

1. Scan GPA space chunk.
2. Call TDH.MEM.TRACK and do a round of IPIs.
3. Export all pages in chunk that have been detected as requiring export.

It is possible to do the above sequence concurrently on multiple threads. However, it is important to note that
TDH.MEM.TRACK and IPls are TD-global and need to be serialized. If TDH.MEM.TRACK is called when there are still active
TD VCPUs that started running (i.e., TDH.VP.ENTER) before the previous TDH.MEM.TRACK, it will fail with a
TDX_PREVIOUS_TLB_EPOCH_BUSY status.

Synchronization can be done proactively or reactively:

e Proactively: Wait for a previous TDH_MEM_TRACK and IPIs to complete before calling TDH.MEM.TRACK again.
e Reactively: If TDH.MEM.TARCK fails with TDX_PREVIOUS_TLB_EPOCH_BUSY, retry it until is succeeds, assuming
concurrently IPIs did go out and eventually all TD VCPUs will TD-exit.

The following diagram shows how TLB tracking works. In this diagram, TD_EPOCH is a TD-scope epoch counter
incremented by TDH.MEM.TRACK. VCPU_EPOPCH is the value of TD_EPOCH at the time of last TD entry.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 73 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

TD_EPOCH=3

TD_EPOCH = 4

TD_EPOCH=5

1
A———VCPU_EPOCH =4

RN . .

i i
: 1 VCPU_EPOCH =5

LP2 O em—————————es ® © @uumm——) ® © @EEE——————

1 I 1 1
TD Page write | TD TDEntry; TD TD Entry | D bit set by CPU
Entry D bit set | Exit no TLB flush Exit TLB | on write
Lo - | flushed |
TLB entries exist, D bit not set by GPU !
1 I | 1
A VCPU_EPOCH = 4— : ——VCPU_EPOCH =5
LP1 (o ; @ o Gummr————

] 1]
TD Page write TLB entries e):<ist, TD TD Entry
Entry Dbitset DbitnotsetbyCPU Exit TLB
| flushed

D bit set by CPU
on write

VCPU_EPOCH =3

/A—VCPU_EPOCH =5——

g g (N

LP0 Gu——)

i .i---i-----:b-—

™ Page write TLB entries exist, ™ ! TD Entry D bit set by CPU
Entry D bit set D bit not set by CPU Exit | TLB on write
i i flushed
: 1 : H » Time
THD.MEM.TRACK TDH.MEM. TDH.MEM. IPI TDH.EXPORT.MEM
SCAN.RANGE TRACK SEPT states
D bit cleared, indicate pages are
SEPT state indicates exported

export is required

Figure 8.15: Non-Blocking Export TLB Tracking Example

Details: Export Completeness Tracking

8.5.2.8.

8.5.2.8.1. Overview

After the TD is paused by TDH.EXPORT.PAUSE, the TDX Module needs to enforce memory export completeness before
a start token can be exported to enable the TD to run on the destination platform. This means that the exported memory
image reflects the up-to-date state of the source TD memory image. Note that the migration protocol ensures that the
imported memory image is in sync with the exported one.

The host VMM is expected to do the following:

1. Run a comprehensive scan of the TD’s GPA space, by calling TDH.MEM.SCAN.COMP(DCHECK).
2. Export all memory pages reported by TDH.MEM.SCAN.COMP(DCHECK) as export candidates, using
TDH.EXPORT.MEM.

The above operations can be done concurrently.

8.5.2.8.2. Memory Counters and Checking by TDH.EXPORT.TRACK(DONE)

The TDX Module holds the following counters in TDCS. They are reset when a migration session starts
(TDH.EXPORT.STATE.IMMUTABLE).

MEM_COUNT Counts the number of TD private memory pages, in multiples of 4KB. MEM_COUNT is incremented
when a new page is added to the TD, and decremented when a page is removed from the TD.

MIG_COUNT Counts of the number of 4KB pages that have been exported at least once in the current migration
session.

DIRTY_COUNT Counts the number of 4KB pages that have been exported but either their content or their attributes
have changed since, so a re-export is required. Counting is in units of 4KB. DIRTY_COUNT is
incremented by any function which transitions the page state out of EXPORTED or
PENDING_EXPORTED; it is decremented by TDH.EXPORT.MEM.

TDH.EXPORT.TRACK(DONE) checks the counter values as follows:

e TDH.MEM.SCAN.COMP(DCHECK) was called and completed a comprehensive scan of the TD’s GPA space.
e DIRTY_COUNT s 0—i.e., all memory pages that required a re-export were indeed re-exported.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 74 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

e |f the TDX Module does not support post-copy for non-blocking export, or if the TD is enabled for TDX Connect
(TD_PARAMS.CONFIG_FLAGS.TDX_CONNECT), MIG_COUNT is equal to MEM_COUNT - i.e., all memory pages have
been exported.

Note: If the TDX Module supports post-copy for non-blocking export and the TD is not enabled for TDX Connect, the
5 host VMM is allowed not to export some of the memory image at this point. Typically, unexported pages are
exported on demand during the post-copy phase. Failure to export (but not re-export) memory is considered a

denial of service, which is not prevented by TDX.

The host VMM can read the above counters, if required, using TDH.MNG.RD.

Tracking of export completeness is based on the following properties, which are true during the PAUSED_EXPORT state,
10 once the TD is paused by TDH.EXPORT.PAUSE and before a start token is generated by TDH.EXPORT.TRACK(DONE):

e TD private memory is immutable.
o TheTDis paused.
o No TDIs are bound.
o Host-side memory management operations are restricted, as described in 8.5.1.6.2. Specifically, no page may
15 be blocked. Note that BLOCKED and PENDING_BLOCKED are intermediate states, as preparations for some
memory management operation. Not allowing blocked pages simplifies tracking for correctness.
e TDH.MEM.SCAN.COMP(DCHECK) scans each TD private page exactly once.
e TDH.EXPORT.MEM can only export a page once.

8.5.2.8.3. Backward Compatibility

20 The migrated TD may have been created by an older TDX Module that didn’t support non-blocking export, and later the
TDX Module was updated using TD-preserving update. In this case, TDH.MEM.SCAN may be less efficient; some metadata
maintained by a TDX Module that supports non-blocking export during the TD lifecycle for optimizing the scan may be
missing.

Details: Shared EPT Considerations
8.5.2.9.

25 The TDX Module is not directly involved in Shared EPT management. However, the CPU has a single set of EPT controls,
which impact both the Secure EPT and Shared EPT operation.

To avoid any performance impact while export is not in progress, the TDX Module only enables Access and Dirty bits

setting by the CPU and, for TDX Connect, IOMMU while an export session is in progress and the TD may still run —i.e.,

when the TD’s OP_STATE is LIVE_EXPORT. This phase begins with TDH.EXPORT.STATE.IMMUTABLE and ends with
30 TDH.EXPORT.PAUSE or TDH.EXPORT.ABORT.

The host VMM should take this into consideration if it relies on the Shared EPT’s Access and Dirty bits.

8.6. Memory Import

8.6.1. Host VMM Perspective
8.6.1.1.

This section describes memory import from the host VMM perspective. This is a simplified view; a more detailed view is
35 discussed later.

In-Order Import Phase

8.6.1.1.1. Overview of In-order Import

During the in-order import phase, a page may be imported multiple times. In addition, a page import may be cancelled.
Ordering is maintained by the MBMD’s MB_COUNTER and the requirement that a page can only be imported once per
40 migration epoch.

8.6.1.1.2. Memory Management During In-Order Import
During the in-order import phase, no blocking and no TLB tracking is required, since the destination TD is not running yet.

Addition and removal of Secure EPT pages are allowed during the in-order phase — they are required as part of building
the TD on the destination platform. To import a page that has L2 pages mappings, the host VMM on the destination

45 platform must have built the L2 SEPT for the applicable L2 VMs, using TDH.MEM.SEPT.ADD, down to the proper page
mapping level.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 75 of 83

Section 2: TD Migration Architecture Specification

15

20

25

30

40

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

L]
8.6.1.3

Page management operations are prohibited during the in-order import phase. These include:

e Page addition by TDH.MEM.PAGE.ADD and TDH.MEM.PAGE.AUG

e Page removal by TDH.MEM.PAGE.REMOVE

e Page promotion and demotion by TDH.MEM.PAGE.PROMOTE and TDH.MEM.PAGE.DEMOTE

e Page relocation by TDH.MEM.PAGE.RELOCATE

e GPA range blocking and unblocking by TDH.MEM.RANGE.BLOCK and TDH.MEM.RANGE.UNBLOCK

Out-of-Order import Phase

8.6.1.2.1. Overview of Out-of-Order Import

When the out-of-order import phase begins, any pages that have been imported are designed to be up to date. A page
may only be imported if its GPA mapping does not exist yet (SEPT entry’s state is FREE). An attempt to import a page that

s.6.1t1@s been imported before during the out-of-order phase is dropped but not considered an error; this is normally the

result of the same page being migrated on a high-priority queue. Source memory state is immutable, so ordering is not
required.

8.6.1.2.2. Memory Management During Out-of-Order Import

During the out-of-order import phase, TLB tracking is required in the LIVE_IMPORT OP_STATE, since the TD may be
running on the destination platform.

Secure EPT Management

Addition and removal of Secure EPT pages are allowed during the out-of-order phase — they are required as part of
building the TD on the destination platform.

Page Addition

TDH.MEM.PAGE.ADD is prohibited (since the TD had been finalized before the migration session began).
TDH.MEM.PAGE.AUG is allowed after TDH.IMPORT.COMMIT, when the TD is allowed to run on the destination platform
while the import session continues.

If a page was not imported but was added locally (TDH.MEM.PAGE.AUG), this is equivalent to the VMM removing a page
without coordinating with the TD, then adding a new page. The TD should not accept (TDG.MEM.PAGE.ACCEPT) such a
page since from its point of view this is a page that already exists in its GPA space. The secure EPT entry state for the
locally added page is PENDING, and if a page is imported to the same GPA, import will fail.

Promotion and Demotion

Page promotion and demotion are allowed during the out-of-order phase.

Page Removal

Page removal (TDH.MEM.PAGE.REMOVE) is allowed during the out-of-order import phase. However, the page’s SEPT
entry is not marked as FREE when the page is removed. Instead, the SEPT entry state is set to REMOVED. The REMOVED
state is equivalent to the FREE state, except for the following limitations that apply after TDH.IMPORT.COMMIT, when
the TD is allowed to run on the destination platform while the import session continues, until TDH.IMPORT.END:

Page import is not allowed to this GPA.
e Removal of the parent SEPT page is not allowed.

Page Relocation

Page relocation is supported at any stage without any changes.

In-Place Import

In-place import repurposes the physical pages holding the imported data as private memory pages that hold the
decrypted data. This saves the host VMM on the destination platform the need to allocate memory for the imported
data, at the cost of a small fixed-sized intermediate buffer that needs to be held by Intel TDX Module, and some other
complications. In-place import may be selected for each page imported for the first time, or following a previous CANCEL,
but not for re-import of a new version of a previously imported page.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 76 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

8.6.2. Details of Memory Import

Details: In-Order Import Phase

8.6.2.1.1. Details: Overview of In-Order Import
Once the out-of-order import phase begins, any pages that have been imported are designed to be up to date.

The state diagram below shows the L1 SEPT entry state during in-order import. The color-coding convention used in this
diagram is described in 8.2.

8.6.2.1.

TDH.IMPORT.MEM(REMIGRATE)
[mapped]

TDH.IMPORT.MEM(CANCEL) /

Page is mapped and
TDH.IMPORT.MEM(MIGRATE) acfessible fopguest Dec. MEM_COUNT

[mapped] / ™
Inc. MEM_COUNT TDH.IMPORT.MEM(MIGRATE)
[mapped] / —
Inc. MEM_COUNT

Y
REMOVED

TDH.IMPORT.MEM
(REMIGRATE)
[pending]

SEPT entry is not
mapped to the TD

Page is removed
from the TD, but GPA

is reserved
TDH.IMPORT.MEM

(REMIGRATE)
[mapped]

PENDING TDH.IMPORT.MEM(MIGRATE)
[[pending] / —
Inc. MEM_COUNT

Page is pending guest

TDH.IMPORT.MEM(MIGRATE) TD acceptance

e — [pending] / —p
Inc. MEM_COUNT

TDH.IMPORT.MEM(CANCEL) /
_ Dec. MEM_COUNT

TDH.IMPORT.MEM(REMIGRATE)
[pending]

Figure 8.16: Partial L1 SEPT Entry State Diagram for Page In-Order Import Phase

An SEPT page can only be removed if all its entries are FREE; specifically, it can’t be removed if any entry state is
REMOVED.

8.6.2.1.2. Details: Enforcing a Single Import Operation per Migration Epoch

When a page is imported during the in-order phase, the current migration epoch is recorded. Page re-import and import
cancel operations check the recorded migration epoch. For the import to succeed, it should be older than the current
migration epoch.

When a page import is cancelled during the in-order phase, the physical page is removed but its SEPT entry is put into a
REMOVED state, and the current migration epoch is recorded. For partitioned TDs, any L2 SEPT entries that map the
page become L2_FREE. A page first-time import operation checks the recorded migration epoch. For the import to
succeed, it should be older than the current migration epoch.

8.6.2.1.3. Importing L2 Page Mappings During In-Order Import
For partitioned TDs, L2 page mappings are imported as part of a page import, and follow these rules:

e When a page is imported or re-imported, its L2 page mappings, if any, are created or updated in the L2 SEPT leaf
entry.

e When a page is re-imported, and a previously imported page mapping does not exist in the new import, the L2 SEPT
leaf entry is set to L2_FREE.

e When a page import is cancelled, its L2 SEPT leaf entries, if any, are set to L2_FREE.

The state diagram below shows the L2 SEPT entry state during in-order import. The color-coding convention used in this
diagram is described in 8.2.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 77 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

TDH.IMPORT.MEM(MIGRATE or REMIGRATE)
[mapped, page alias exists]

L2 SEPT entryis TDH.IMPORT.MEM

TDH.IMPORT.MEM(REMIGRATE) mapped as a page (REMIGRATE)
[page alias doesn’t exist] alias and accessible [mapped,
toL2 VM

page alias exists]

TDH.IMPORT.MEM(CANCEL}———

TDH.IMPORT.MEM

L2 SEPT entry is not (REMIGRATE)
mapped to the TD [mapped,
TDH.IMPORT.MEM page alias exists]

(REMIGRATE)
[pending,
page alias exists]

A

TDH.IMPORT.MEM(CANCEL)————{ L2 BLOCKED

L2 SEPT entry is TDH.IMPORT.MEM
TDH.IMPORT.MEM(REMIGRATE) mapped as a page (REMIGRATE)

[page alias doesn’t exist] alias but not [pending,

accessible to L2 VM page alias exists)
TDH.IMPORT.MEM(MIG RATE Or‘REMIGRATE)
[pending, page alias exists] \)

Figure 8.17: Partial L2 SEPT Leaf Entry State Diagram for L2 Page Mapping Import During the In-Order Phase

Details: Out-of-Order import Phase

8.6286.2.2.1. Details: Overview of Out-of-Order Import

5 The state diagram below shows the L1 SEPT entry state during out-of-order import. The color-coding convention used in
this diagram is described in 8.2.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 78 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

TDH.MEM.PAGE.PROMOTE[non-leaf NL_MAPPED entry] /
Entry becomes leaf, MAPPED
From Non-Leaf Entry
State Diagram
TDH.MEM.PAGE.DEMOTE /
New leaf, MAPPED *| Page is mapped and
accessible to guest TDH.MEM.RANGE.BLOCK /
TD Inc. BLOCKED_COUNT

TDH.IMPORT.MEM(MIGRATE)
[mapped] /
Inc. MEM_COUNT

TDH.IMPORT.MEM(MIGRATE)
[mapped, previous CANCEL during in-order import] /
Inc. MEM_COUNT

TDH.MEM.PAGE.DEMOTE /
Entry becomes non-leaf,
NL_MAPPED /
Dec. BLOCKED_COUNT
To Non-Leaf
Entry State
Diagram

BLOCKED

Page is mapped but
new translations are
blocked

TDH.MEM.PAGE.REMOVE /

Dec. MEM_COUNT, dec. BLOCKED_COUNT

REMOVED

SEPT entry is not
mapped to a physical

page

SEPT entry is not
mapped to a physical
page. If OP_STATE is
not LIVE_IMPORT,

TDH.IMPORT.MEM(MIGRATE)
[pending, previous CANCEL during in-order import] /

TDH.IMPORT.MEM(MIGRATE) Inc. MEM_COUNT

[pending] /
Inc. MEM_COUNT

PENDING

> Page is pending guest

TD acceptance
. TDH.MEM.PAGE.DEMOTE /
New leaf, PENDING

TDH.MEM.RANGE.BLOCK /
Inc. PENDING_BLOCKED_COUNT

equivalent to FREE.

TDH.MEM.PAGE.REMOVE /

Dec. MEM_COUNT, dec. PENDING_BLOCKED_COUNT

PENDING_BLOCKED

Page is pending but
guest TD acceptance

is blocked

To Non-Leaf
Entry State
Diagram

TDH.MEM.PAGE.DEMOTE /
Entry becomes non-leaf,
NL_MAPPED /

Dec. BLOCKED_COUNT

Figure 8.18: Partial L1 SEPT Entry State Diagram for Page Out-of-Order Import Phase

An SEPT page can only be removed if all its entries are FREE; specifically, it can’t be removed if any entry state is
REMOVED.

5 8.6.2.2.2. Details: Importing L2 Page Mappings During Out-of-Order Import

During out-of-order import, L2 page mappings may be created as part of a page import. L2 SEPT leaf entries don’t need
the REMOVED state; thus, the L2 state transitions are very simple. The state diagram below shows the L2 SEPT entry
state during out-of-order import. The color-coding convention used in this diagram is described in 8.2.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 79 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

L2 SEPT entry is
TDH.IMPORT.MEM(MIGRATE) mapped as a page
[mapped, page alias exists] alias and accessible
to L2 VM

L2 SEPT entryis not
mapped to the TD

L2_BLOCKED

L2 SEPT entryis

TDH.IMPORT.MEM(MIGRATE) mapped as a page
[pending, page alias exists] alias but not

accessible to L2 VM

Figure 8.19: Partial L2 SEPT Leaf Entry State Diagram for Page Out-of-Order Import Phase

8.7. Secure EPT Concurrency Considerations

8.7.1. Overview

To support high performance migration, memory migration interface functions are allowed to run concurrently on
multiple LPs. However, no concurrent operation is allowed on any single Secure EPT entry. Interface functions that work
on specific Secure EPT entries acquire an exclusive lock to that entry.

8.7.2. GPA List Processing Implications

On the source side, export functions that process a GPA list (TDH.EXPORT.BLOCKW, TDH.EXPORT.MEM,
TDH.EXPORT.RESTORE) that encounter a busy SEPT entry skip the processing of that GPA. In this case, they set the
STATUS field of the GPA list entry to SEPT_ENTRY_BUSY_HOST_PRIORITY and the OPERATION field to NOP. The host
VMM can scan the GPA list to detect skipped entries and retry the operation later.

On the destination side, if TDH.IMPORT.MEM encounters a busy SEPT entry, its behavior depends on the import phase.
During the in-order phase, any SEPT entry error causes the import session to fail. In the out-of-order phase,
TDH.IMPORT.MEM skips the busy entry, similar to TDH.EXPORT.MEM.

8.8. Security Analysis: Achieving Memory Migration Security Objectives

8.8.1. General

The key security design goal for TD Private memory migration is to ensure integrity and freshness of the TD private
memory at the destination TD after migration — this helps ensure that a malicious VMM cannot execute the TD after
migration with any stale or modified data.

Integrity of memory includes the memory contents as well as the guest physical to host physical mapping and attributes
that control TD access to private memory.

Using PAMT and Secure EPT, Intel TDX Module enforces the following properties for TD private GPA accesses:

Unique TD Association: A physical page used as a TD private page, Secure EPT page or a control structure can only be
assigned to single guest TD.

Unique GPA Mapping: A TD private page or a Secure EPT page can be mapped at most by single guest TD GPA.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 80 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

45

50

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

These security properties are maintained for a TD during migration with some additional functionality afforded to allow
for live migration.

e Private TD pages and Secure EPT entries (for partitioned TDs, this includes L2 Secure EPT entries) are initialized in a
single operation (via TDH.IMPORT.MEM) for pages migrated using TDH.EXPORT.MEM. Like the pre-conditions for
the non-migration TDH.MEM.PAGE.ADD, the parent Secure EPT entry must be free (unmapped).

e When write-blocking based export is used on the source platform, a private page may be mapped as non-writable
(a.k.a. blocked for writing) to allow for the page contents to be exported. For partitioned TDs, this any L2 mapping
of a page is also mapped as non-writable. Following from previous security requirements, this mapping update also
requires TLB tracking to help ensure that no active writable cached GPA address translations exist to the to-be-
migrated GPA range.

e When non-blocking export is used on the source platform, a private page is detected as requiring export based on
an atomic test-and-clear of the SEPT entry’s Dirty bit set by the h/w. For partitioned TDs, this includes applicable L2
SEPT entries. Following from previous security requirements, this scan also requires TLB tracking prior to export to
help ensure that no active writable cached GPA address translations prevent further updates of the SEPT entry’s
Dirty bit.

e For 1GBand 2MB pages, secure EPT mapping demotion (to a 4KB page size) is required as a pre-condition to exporting
contents of a page for migration.

e The Migration key used for exporting and importing TD memory and CPU state is distinct from keys used for other
operations such as Paging.

8.8.2. Preventing Usage of Stale Memory Copies due to Mis-Ordering

Multiple versions of a page that are exported in a certain order are imported in the same order. This is achieved using
the following mechanisms:

e Migration streams help ensure ordering within each stream.
e Migration epochs, limiting migration of a specific page to no more than one time per epoch, help ensure total
ordering per page.

8.8.3. Enforcing Export of the Entire Memory Image

TDX Connect

When the TD is enabled for TDX Connect, while TDIs are bound and have DMA access to the TD memory, DMA must not
fail. Therefore, TDX Connect requires that all the TD mapped pages remain pinned as long as TDI can access them. The
entire TD private memory image must be migrated intact. This is enforced by the TDX Module as described below.

Only non-blocking export is supported when TDX Connect is enabled for a TD. A counter of unexported pages
(TDCS.UNEXPORTED_COUNT) is maintained by the TDX Module at the source platform based on a comprehensive scan
of the TD’s GPA space by TDH.MEM.SCAN.COMP(DCHECK) and on TDH.EXPORT.MEM. If the value of that counter is not
0, then TDH.EXPORT.TRACK fails. See 8.5.2.8 for details.

Non TDX Connect

If the TD is not configured for TDX Connect, the TDX Module does not enforce exporting all memory. If a page is not
migrated, an EPT violation happens when the guest TD attempts to access it on the destination platform. This is normal
behavior for the post-copy method of migration, and in the worst case is considered a denial of service.

8.8.4. Non-Blocking Export: Detecting Memory State Change

Memory state change is detected by scanning the SEPT tree and detecting pages where the Dirty bit is set.

1. TDH.MEM.SCAN.RANGE(DSCAN) does the following with the SEPT entry exclusively locked (but Accessed/Dirty bits
can be set by h/w):
1.1. Detect that an EXPORTED page is dirty (either L1 or any L2 SEPT entries’ Dirty bit is 1).
1.2. Clear the Dirty bit in each of L1 and L2 SEPT entries.
1.3. Update the page state to EXPORTED_MODIFIED.
1.4. Records the TD epoch in the page’s PAMT.
2. TDH.EXPORT.MEM does the following with the SEPT entry exclusively locked (but Accessed/Dirty bits can be set by
h/w):
2.1. Find that the page state is MODIFIED.
2.2. Check the TLB tracking conditions.

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 81 of 83

Section 2: TD Migration Architecture Specification

10

15

20

25

30

35

40

45

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification 348550-008US (draft)

2.3. Export the page.
2.4. Update the page state to EXPORTED.

The above sequence helps ensure the following:

e Setting the EXPORTED_MODIFIED state in step 1.3 means that this page will be detected later by DSCAN or DCHECK
and will be re-exported as a precondition to start token generation (see below).

e The order of TLB tracking check (in step 2.2) before the page is exported (in step 2.3) means that any write access by
either the TD s/w, by the TDX Module working on behalf of the TD s/w or by a TDI will result in an SEPT walk and
setting of the Dirty bit. The page will be detected later by DSCAN or DCHECK and will be re-exported again as a
precondition to start token generation (see below).

8.8.5. Preventing Usage of Stale Memory Copies due to Failure to Re-export

Running the destination TD with a stale copy of a memory page, because the source VMM failed to re-export a newer
copy of a page, is prevented as described below.

Assume for example that the source VMM exported an older version (v1) of page but never re-exported a newer version
(v2) of that page. In this case, generating a start token by TDH.EXPORT.TRACK is prevented.

e With write-blocking based export, a counter of dirty pages (TDCS.DIRTY_COUNT) is maintained by the TDX Module
at the source platform, based on tracking the TDH.EXPORT.MEM and TDX.EXPORT.UNBLOCKW operations. If the
value of that counter is not 0, then TDH.EXPORT.TRACK fails. See 8.4.2.38.4.2.3 for details.

e With non-blocking export, the same counter is maintained by the TDX Module based on a comprehensive scan of
the TD’s GPA space by TDH.MEM.SCAN.COMP(DCHECK) and on TDH.EXPORT.MEM. If the value of that counter is
not 0, then TDH.EXPORT.TRACK(DONE) fails. See 8.5.2.8 for details.

8.8.6. Preventing Usage of Missing or Stale Memory Copies due to Failure to Import

Running the destination TD with a missing or a stale copy of a memory page, because the destination VMM failed to
import a copy of a page, is prevented as described below.

The in-order phase commitment protocol is designed to ensure that the export will fail, and the destination TD will not
run. As discussed above, TDH.EXPORT.TRACK(DONE) generates a start token that is dependent of the exact export
sequence; it checks that no unexported newer versions of previously exported pages remain. If the TD is enabled for TDX
Connect, TDH.EXPORT.TRACK(DONE) checks that no unexported pages remain.

The start token is verified by TDH.IMPORT.TRACK; the out-of-order migration phase may start, and the destination TD
may run only if the start token verifies correctly. For migration session control details see Ch. 6.

8.8.7. Preventing Usage of Stale Memory GPA Mapping and Attributes

The destination TD is prevented from running with a copy of a memory page with stale GPA mapping, access permissions
and other attributes (for partitioned TD, this included L2 mapping) as follows:

e GPA mappings and attributes are migrated together with their respective pages.
e Any change to GPA mappings or attributes is considered a change to the page and requires re-migration.

8.8.8. Out-Of-Order Phase and Its Usage for Post Copy

In the in-order import phase the host VMM can import pages for GPA addresses that are free, and it may also reload
newer versions of pages to previously imported and present GPA addresses. In the out-of-order import phase, import is
only allowed to non-present GPA addresses. At this stage, all memory state on the source platform is designed to be
immutable, and the latest version of all pages exported so far will be imported. Thus, the order of out-of-order import is
not relevant — except that memory content exported during the in-order phase can’t be imported during the out-of-order
phase. This allows us to use a separate migration stream for high-priority, low-latency updates, e.g., to implement post-
copy by allowing the TD to run and migrate memory pages on demand at a high priority, based on EPT violation.

8.9. Memory Migration Interface Functions Summary

This section provides a short summary of the memory migration interface functions. A detailed specification is provided
in [TDX Module ABI Spec].

December 2025 DRAFT FOR REVIEW — WORK IN PROGRESS Page 82 of 83

Section 2: TD Migration Architecture Specification

TDX Module TD Migration Spec

Section 2: TD Migration Architecture Specification

348550-008US (draft)

Table 8.8: Memory Migration Interface Functions

Name Export Description Preconditions
Mode
TDH.EXPORT.BLOCKW Write Block a list of 4KB pages for writing, | Write-blocking export session is in
Blocking | as preparation for export. the in-order phase and the TD has
not been paused yet
TDH.EXPORT.MEM Any Export, re-export or sends an Export session is in progress
export cancellation request for a
list of 4KB pages.
TDH.EXPORT.RESTORE Any Restore a list of 4KB pages after an Export session is not in progress
export session abort.
TDH.EXPORT.UNBLOCKW Write Unblock a single 4KB page that has The TD is configured for write-
Blocking | been blocked for writing. blocking based export, and either
an export session is in progress, but
the committed export phase has not
begun, or the TD is allowed to run
TDH.IMPORT.MEM Any Import, re-import or cancel a Import session is in progress
previous import for a list of 4KB
pages.
TDH.MEM.SCAN.COMP(DCHECK) | Non- Do a comprehensive scan of the TD | The non-blocking export session is
Blocking | private memory and detect pages in the EXPORT_PAUSED state.
that must be exported for the
export session to complete.
TDH.MEM.SCAN.CONFIG Non- Configure comprehensive scan
Blocking | parameters
TDH.MEM.SCAN.RANGE(DSCAN) | Non- Scan a TD private memory GPA
Blocking | range and detect pages that need
to be exported.
TDH.MEM.SCAN.RANGE Any Scan the TD private memory and Export session is not in progress
(EXPORT_RESTORE) restore SEPT after an export session
abort.
TDH.MEM.SCAN.RESET Non- Reset comprehensive scan state
Blocking

December 2025

DRAFT FOR REVIEW — WORK IN PROGRESS

Page 83 of 83

Section 2: TD Migration Architecture Specification

	Notices and Disclaimers
	Table of Contents
	SECTION 1: TD MIGRATION INTRODUCTION AND OVERVIEW
	1. About this Document
	1.1. Scope of this Document
	1.2. Document Organization
	1.3. Glossary
	1.4. Notation
	1.5. References
	1.5.1. Intel Public Documents
	1.5.2. Intel TDX Public Documents
	1.5.3. Non-Intel Public Documents

	2. TD Migration Overview
	2.1. Introduction
	2.2. TD Migration Scenarios
	2.2.1. Cold migration
	2.2.2. Live Migration
	2.2.3. Image Snapshot and Jumpstart (Not Supported)

	2.3. Components Involved in TD Migration
	Migrated TD
	Migration TD (MigTD)
	Host VMM
	TDX Module

	2.4. Migrated Assets
	2.5. Guest TD Migration Life Cycle Overview
	2.5.1. Reservation and Session Setup
	2.5.1.1. Guest TD Build, Migration TD Binding and TD Execution on the Source Platform
	2.5.1.2. Guest TD Initial Build on the Destination Platform
	2.5.1.3. Migration TDs Session Establishment
	2.5.1.4. Migration Session Key and Protocol Version Exchange

	2.5.2. In-Order Memory Migration Phase
	2.5.2.1. TD-Scope Immutable Metadata (Non-Memory State) Migration
	2.5.2.2. Iterative Pre-Copy of Memory State
	2.5.2.2.1. Migration Considerations for TD Private Memory
	Memory Migration vs. Memory Encryption
	Memory Modification Tracking and Iterative Migration
	Migration Streams
	Migration Epochs

	2.5.2.2.2. Migration Considerations for EPT Structures

	2.5.2.3. Source TD Pause and Final Non-Memory State Migration
	2.5.2.3.1. Final Non-Memory State Migration
	2.5.2.3.2. In-Order Memory State Migration Completion

	2.5.2.4. TD-Scope and VCPU-Scope Mutable Non-Memory State Migration

	2.5.3. Out-Of-Order Memory Migration Phase
	2.5.3.1. Migration of Memory State and Commitment of Import
	2.5.3.2. Post-Copy of Memory State

	2.5.4. Migration Commitment
	2.5.5. Migration Abort

	2.6. Impact of Migration on Measurement and Attestation
	2.7. Intel TDX Module TD Migration Interface Functions Overview

	3. TD Migration Software Flows
	3.1. Typical TD Migration Flow Overview (Write-Blocking Based Export)
	3.2. Typical TD Migration Flow Overview (Non-Blocking Export)
	3.3. Successful Write-Blocking Based Export
	3.4. Successful Non-Blocking Export
	3.5. Successful Import
	3.6. TD Import Abort
	3.6.1. TD Import Abort During the In-Order Import Phase
	3.6.2. TD Import Abort During the Out-Of-Order Import Phase

	3.7. TD Export Abort
	3.7.1. Export Abort During the In-Order Export Phase
	3.7.2. Export Abort During the Out-Of-Order Export Phase

	SECTION 2: TD MIGRATION ARCHITECTURE SPECIFICATION
	4. Migration TD, Migration Policy and the Extended TCB
	4.1. Extended TCB and the Migration Policy
	4.2. Attestation of the Migration TD and its Migration Policy
	4.3. Inputs to the Migration TD’s Migration Policy Evaluation
	System-Scope Information Provided by TDG.SYS.RD*
	System-Scope Information Provided by TDG.MR.REPORT
	Migration Policy Configuration

	4.4. Migrated TD Information Provided by TDG.SERVD.RD
	4.5. Migration Protocol Version Setup
	4.6. Migration Session Keys (MSKs) Exchange
	4.7. Example Migration Session Establishment

	5. Common TD Migration Mechanisms
	5.1. Migration Bundles
	5.1.1. Overview
	5.1.2. Migration Data
	5.1.3. Migration Bundle Metadata (MBMD)
	5.1.4. Untrusted Metadata

	5.2. Export and Import Functions Interface
	5.2.1. Migrating a Multi-Page Migration Bundle
	5.2.2. Migration Functions Interruptibility

	5.3. Cryptographic Protection of Migration Data
	5.3.1. Encryption Algorithm
	5.3.2. Migration Session Keys

	5.4. Migration Streams and Migration Queues
	5.5. Measurement and Attestation
	5.5.1. TD Measurement Registers Migration
	5.5.2. TD Measurement Reporting Changes
	5.5.3. TD Measurement Quoting Changes
	5.5.4. TCB Recovery and Migration

	5.6. TDX Control Structures Support of TD Migration
	5.6.1. MIGSC: Migration Stream Context

	6. Migration Session Control and State Machines
	6.1. Overview
	6.1.1. Pre-Migration
	6.1.2. Successful Migration Session
	6.1.3. Aborted Migration Session
	6.1.3.1. Abort During the In-Order Phase
	6.1.3.2. Abort during the Out-Of-Order Phase

	6.1.4. Migration Epochs
	Notes

	6.2. Migration Session Control
	6.2.1. Migration TD Binding and Migration Key Assignment
	6.2.2. Export Side (Source Platform)
	6.2.3. Import Side (Destination Platform)
	6.2.4. Details: Migration State Machine
	6.2.4.1. Details: Reminder: TD Lifecycle State Machine
	6.2.4.2. Details: OP_STATE: TD Operation State Machine
	6.2.4.3. Details: OP_STATE Summary

	6.3. Migration Tokens
	6.4. Migration Protocol Versioning
	6.4.1. Introduction
	6.4.2. Enumeration of Supported Migration Versions
	6.4.3. Setting the Migration Protocol Version for a Migration Session

	6.5. Migration Session Control Functions Summary

	7. TD Non-Memory State Migration
	7.1. TD Non-Memory State Migration Operation
	7.1.1. Non-Memory State Migration Data
	7.1.2. Non-Memory State MBMD
	7.1.3. Immutable vs. Mutable TD State

	7.2. Expected Configuration by the Host VMM
	7.3. Non-Memory State Migration Functions Summary

	8. TD Private Memory Migration
	8.1. Overview
	8.1.1. In-Order and Out-of-Order Migration
	8.1.2. Write-Blocking Export vs. Non-Blocking Live Export

	8.2. Conventions: SEPT Entry State Diagrams Color Coding
	8.3. GPA Lists and Private Memory Migration Bundles
	8.3.1. Overview
	8.3.2. GPA List
	8.3.3. Page Attributes List (Required for Partitioned TDs)
	8.3.4. Private Memory Migration Buffer

	8.4. Write-Blocking Based Memory Export
	8.4.1. Host VMM Perspective
	8.4.1.1. Typical Write-Blocking Export Session
	8.4.1.2. Live Export: Blocking for Writing, TLB Tracking and Exporting a Page
	8.4.1.3. Exporting a Page after the Source TD is Paused
	8.4.1.4. Unblocking for Write, Tracking Dirty Pages and Re-Exporting
	8.4.1.4.1. Overview
	8.4.1.4.2. Unblocking for Write and Re-Exporting a Page

	8.4.1.5. Using the same GPA List for TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM
	8.4.1.6. Prohibited Operations on Exported Pages and Export Cancellation
	8.4.1.7. Exporting Pending Pages
	8.4.1.8. Re-Exporting a Non-Dirty Page
	8.4.1.9. SEPT Cleanup after Export Abort

	8.4.2. Details of Write-Blocking Based Export
	8.4.2.1. Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export
	8.4.2.2. Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export
	8.4.2.3. Details: TDCS.DIRTY_COUNT: TD-Scope Dirty Page Counter

	8.5. Non-Blocking Memory Export
	8.5.1. Host VMM Perspective
	8.5.1.1. EPT Access and Dirty Bits Background
	The Dirty Bit
	Implication of Address Translation Caching

	8.5.1.2. Memory Export Concept: Scan and Export
	8.5.1.3. Conceptual, Simplified Page State Diagram
	8.5.1.4. Scanning for Candidate Pages to Export or Re-export
	8.5.1.4.1. Overview
	8.5.1.4.2. Using the Memory Scanning Functions

	8.5.1.5. Typical Non-Blocking Export Session
	8.5.1.5.1. Typical Non-Blocking Live Export Round
	Concurrency and Order during Live Export

	8.5.1.5.2. Typical Final Export Round
	Concurrency and Order during Final Export

	8.5.1.6. Interaction with Memory Management Operations
	8.5.1.6.1. Memory Management Restrictions on Pages that Have Been Exported
	Exported Page Blocking and Removal
	Exported Page Promotion or Demotion

	8.5.1.6.2. Memory Management Restrictions During the Export Blackout Period
	No Blocked Pages
	Other Restrictions

	8.5.1.7. Exporting Pending Pages
	8.5.1.8. SEPT Cleanup after Export Abort

	8.5.2. Details of Non-Blocking Export
	8.5.2.1. Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export
	8.5.2.2. Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export
	8.5.2.3. Details: TD Partitioning Considerations for Dirty Bit Operations
	8.5.2.4. Details: Pending Pages Considerations
	8.5.2.5. Details: Blocked Pages Considerations
	8.5.2.6. Details: Memory Management Considerations
	8.5.2.6.1. Details: Host-Side Memory Management Considerations
	8.5.2.6.2. Details: Guest-Side Memory Management Considerations

	8.5.2.7. Details: TLB Tracking Considerations
	8.5.2.8. Details: Export Completeness Tracking
	8.5.2.8.1. Overview
	8.5.2.8.2. Memory Counters and Checking by TDH.EXPORT.TRACK(DONE)
	8.5.2.8.3. Backward Compatibility

	8.5.2.9. Details: Shared EPT Considerations

	8.6. Memory Import
	8.6.1. Host VMM Perspective
	8.6.1.1. In-Order Import Phase
	8.6.1.1.1. Overview of In-order Import
	8.6.1.1.2. Memory Management During In-Order Import

	8.6.1.2. Out-of-Order import Phase
	8.6.1.2.1. Overview of Out-of-Order Import
	8.6.1.2.2. Memory Management During Out-of-Order Import
	Secure EPT Management
	Page Addition
	Promotion and Demotion
	Page Removal
	Page Relocation

	8.6.1.3. In-Place Import

	8.6.2. Details of Memory Import
	8.6.2.1. Details: In-Order Import Phase
	8.6.2.1.1. Details: Overview of In-Order Import
	8.6.2.1.2. Details: Enforcing a Single Import Operation per Migration Epoch
	8.6.2.1.3. Importing L2 Page Mappings During In-Order Import

	8.6.2.2. Details: Out-of-Order import Phase
	8.6.2.2.1. Details: Overview of Out-of-Order Import
	8.6.2.2.2. Details: Importing L2 Page Mappings During Out-of-Order Import

	8.7. Secure EPT Concurrency Considerations
	8.7.1. Overview
	8.7.2. GPA List Processing Implications

	8.8. Security Analysis: Achieving Memory Migration Security Objectives
	8.8.1. General
	8.8.2. Preventing Usage of Stale Memory Copies due to Mis-Ordering
	8.8.3. Enforcing Export of the Entire Memory Image
	TDX Connect
	Non TDX Connect

	8.8.4. Non-Blocking Export: Detecting Memory State Change
	8.8.5. Preventing Usage of Stale Memory Copies due to Failure to Re-export
	8.8.6. Preventing Usage of Missing or Stale Memory Copies due to Failure to Import
	8.8.7. Preventing Usage of Stale Memory GPA Mapping and Attributes
	8.8.8. Out-Of-Order Phase and Its Usage for Post Copy

	8.9. Memory Migration Interface Functions Summary

