

 Copyright © 2021 Intel Corporation. All rights reserved.

Intel® Trust Domain Extensions (Intel® TDX) Module
Architecture Application Binary Interface (ABI)
Reference Specification

348551-001US

September 2021

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 2 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Notices and Disclaimers

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps. 5

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure. 10

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided 15

here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others. 20

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 3 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table of Contents

1. About this Document .. 7

1.1. Scope of this Document .. 7

1.2. Glossary... 7

1.3. Notation .. 7 5

1.4. References ... 7

2. ABI Reference: CPU Virtualization Tables ... 8

2.1. MSR Virtualization .. 8

2.2. UPDATED: CPUID Virtualization ... 11

3. ABI Reference: Constants .. 20 10

3.1. Interface Function Completion Status Codes .. 20
3.1.1. Function Completion Status Code Classes (Bits 47:40) ... 20
3.1.2. Function Completion Status Codes ... 20
3.1.3. Function Completion Status Operand IDs ... 24

4. ABI Reference: Data Types .. 27 15

4.1. Basic Crypto Types .. 27

4.2. UPDATED: TDX Module Configuration, Enumeration and Initialization Types .. 27
4.2.1. CPUID_CONFIG.. 27
4.2.2. UPDATED: TDSYSINFO_STRUCT ... 27
4.2.3. UPDATED: CMR_INFO .. 30 20

4.2.4. UPDATED: TDMR_INFO .. 30

4.3. TD Parameters Types .. 32
4.3.1. UPDATED: ATTRIBUTES .. 32
4.3.2. XFAM ... 32
4.3.3. CPUID_VALUES .. 33 25

4.3.4. UPDATED: TD_PARAMS ... 33

4.4. Physical Memory Management Types .. 35
4.4.1. Physical Page Size.. 35

4.5. UPDATED: TD Private Memory Management Data Types: Secure EPT ... 35
4.5.1. Secure EPT Levels .. 35 30

4.5.2. Secure EPT Entry Information as Returned by TDX Module Functions... 35
 Returned Secure EPT Entry Content ... 35
 Additional Returned Secure EPT Information ... 36

4.6. TD Entry and Exit Types .. 37
4.6.1. Extended Exit Qualification ... 37 35

4.7. Measurement and Attestation Types .. 38
4.7.1. CPUSVN ... 38
4.7.2. TDREPORT_STRUCT ... 38
4.7.3. REPORTMACSTRUCT (Reference) ... 39
4.7.4. REPORTTYPE (Reference) .. 40 40

4.7.5. UPDATED: TDINFO_STRUCT ... 40

4.8. UPDATED: Metadata Access Types .. 41
4.8.1. MD_FIELD_ID: Metadata Field Identifier and Sequence Header ... 41
4.8.2. Meaning of Field Codes... 42
4.8.3. Class Codes.. 43 45

 NEW: TDX Module Global Scope Field Class Codes ... 43
 UPDATED: TD-Scope (TDR and TDCS) Field Class Codes .. 44
 VCPU-Scope (TDVPS) Field Class Codes .. 44

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 4 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.8.4. Order of Field Identifiers ... 44
4.8.5. MD_LIST_HEADER: Metadata List Header ... 45
4.8.6. Private Page List .. 45
4.8.7. HPA_AND_SIZE: HPA and Size of a Buffer .. 45
4.8.8. HPA_AND_LAST: HPA and Last Byte Index of a Page-Aligned Buffer ... 45 5

4.9. NEW: Service TD Types ... 46
4.9.1. SERVTD_TYPE: Service TD Binding Type ... 46
4.9.2. SERVTD_ATTR: Service TD Binging Attributes .. 46

4.10. NEW: Migration Types ... 47
4.10.1. MBMD: Migration Bundle Metadata ... 47 10

 Generic MBMD Structure .. 47
 TD-Scope Immutable Non-Memory State MBMD Fields .. 48
 TD-Scope Mutable Non-Memory State MBMD Fields .. 48
 VCPU-Scope Mutable Non-Memory State MBMD Fields .. 48
 TD Private Memory MBMD Fields ... 48 15

 Epoch Token MBMD Fields ... 49
 Abort Token MBMD Fields .. 49

4.10.2. GPA List ... 49
 GPA_LIST_INFO: HPA, First and Last Entries of a GPA List ... 49
 GPA List Entry .. 49 20

 GPA List Entry Details .. 50
4.10.3. Memory Migration Buffers List ... 52

 Migration Buffers List Entry .. 52
4.10.4. Memory Migration Page MAC List .. 52
4.10.5. Non-Memory State Migration Buffers List .. 52 25

 PAGE_LIST_INFO: HPA and Attributes of a Page List ... 52

5. UPDATED: ABI Reference: Metadata (Non-Memory State)... 54

5.1. NEW: Global-Scope (TDX Module) Metadata .. 54
5.1.1. How to Read the Global Fields Table .. 54
5.1.2. Global Metadata Fields ... 54 30

5.2. UPDATED: TD-Scope Metadata .. 56
5.2.1. UPDATED: How to Read the TDR and TDCS Tables .. 56
5.2.2. UPDATED: TDR ... 56
5.2.3. UPDATED: TDCS ... 57

5.3. UPDATED: TDVPS: VCPU-Scope Metadata .. 60 35

5.3.1. UPDATED: Overview .. 60
5.3.2. How to Read the TDVPS (including TD VMCS) Tables ... 60

 UPDATED: Field Access .. 60
5.3.3. TDVPS (excluding TD VMCS) ... 61
5.3.4. TD VMCS ... 63 40

 TD VMCS Guest State Area ... 63
 TD VMCS Host State Area ... 65
 TD VMCS VM-Execution Control Fields ... 66
 TD VMCS VM-Exit Control Fields ... 73
 TD VMCS VM-Entry Control Fields .. 74 45

 TD VMCS VM-Exit Information Fields.. 76

6. UPDATED: ABI Reference: Interface Functions ... 78

6.1. How to Read the Interface Function Definitions ... 78

6.2. NEW: Common Algorithms Used by Multiple Interface Functions ... 78
6.2.1. Metadata Access ... 78 50

 Single Metadata Field Read .. 78
 Single Metadata Field Write ... 79
 Multiple Metadata Fields Write based on a Metadata List .. 79

6.3. UPDATED: Host-Side (SEAMCALL) Interface Functions .. 81

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 5 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.1. UPDATED: SEAMCALL Instruction (Common) .. 81
6.3.2. NEW: TDH.EXPORT.ABORT Leaf ... 84
6.3.3. NEW: TDH.EXPORT.BLOCKW Leaf .. 87
6.3.4. NEW: TDH.EXPORT.MEM Leaf ... 90
6.3.5. NEW: TDH.EXPORT.PAUSE Leaf ... 94 5

6.3.6. NEW: TDH.EXPORT.RESTORE Leaf .. 96
6.3.7. NEW: TDH.EXPORT.STATE.IMMUTABLE Leaf ... 99
6.3.8. NEW: TDH.EXPORT.STATE.TD Leaf ... 103
6.3.9. NEW: TDH.EXPORT.STATE.VP Leaf ... 106
6.3.10. NEW: TDH.EXPORT.TRACK Leaf .. 109 10

6.3.11. NEW: TDH.EXPORT.UNBLOCKW Leaf ... 112
6.3.12. NEW: TDH.IMPORT.ABORT Leaf ... 115
6.3.13. NEW: TDH.IMPORT.COMMIT Leaf ... 118
6.3.14. NEW: TDH.IMPORT.END Leaf ... 120
6.3.15. NEW: TDH.IMPORT.MEM Leaf ... 122 15

6.3.16. NEW: TDH.IMPORT.STATE.IMMUTABLE Leaf .. 127
6.3.17. NEW: TDH.IMPORT.STATE.TD Leaf .. 131
6.3.18. NEW: TDH.IMPORT.STATE.VP Leaf .. 135
6.3.19. NEW: TDH.IMPORT.TRACK Leaf ... 139
6.3.20. UPDATED: TDH.MEM.PAGE.ADD Leaf .. 142 20

6.3.21. UPDATED: TDH.MEM.PAGE.AUG Leaf ... 145
6.3.22. UPDATED: TDH.MEM.PAGE.DEMOTE Leaf .. 148
6.3.23. UPDATED: TDH.MEM.PAGE.PROMOTE Leaf .. 151
6.3.24. UPDATED: TDH.MEM.PAGE.RELOCATE Leaf .. 154
6.3.25. UPDATED: TDH.MEM.PAGE.REMOVE Leaf .. 157 25

6.3.26. UPDATED: TDH.MEM.RANGE.BLOCK Leaf ... 160
6.3.27. UPDATED: TDH.MEM.RANGE.UNBLOCK Leaf .. 163
6.3.28. TDH.MEM.RD Leaf .. 166
6.3.29. UPDATED: TDH.MEM.SEPT.ADD Leaf ... 168
6.3.30. UPDATED: TDH.MEM.SEPT.RD Leaf ... 171 30

6.3.31. UPDATED: TDH.MEM.SEPT.REMOVE Leaf ... 174
6.3.32. UPDATED: TDH.MEM.TRACK Leaf .. 177
6.3.33. TDH.MEM.WR Leaf ... 179
6.3.34. NEW: TDH.MIG.STREAM.CREATE Leaf ... 181
6.3.35. UPDATED: TDH.MNG.ADDCX Leaf ... 183 35

6.3.36. TDH.MNG.CREATE Leaf ... 185
6.3.37. UPDATED: TDH.MNG.INIT Leaf .. 187
6.3.38. TDH.MNG.KEY.CONFIG Leaf .. 190
6.3.39. TDH.MNG.KEY.FREEID Leaf ... 192
6.3.40. TDH.MNG.KEY.RECLAIMID Leaf .. 194 40

6.3.41. UPDATED: TDH.MNG.RD Leaf .. 195
6.3.42. TDH.MNG.VPFLUSHDONE Leaf ... 197
6.3.43. UPDATED: TDH.MNG.WR Leaf ... 199
6.3.44. UPDATED: TDH.MR.EXTEND Leaf ... 201
6.3.45. UPDATED: TDH.MR.FINALIZE Leaf .. 204 45

6.3.46. TDH.PHYMEM.CACHE.WB Leaf ... 206
6.3.47. TDH.PHYMEM.PAGE.RDMD Leaf .. 208
6.3.48. TDH.PHYMEM.PAGE.RECLAIM Leaf .. 210
6.3.49. TDH.PHYMEM.PAGE.WBINVD Leaf ... 213
6.3.50. NEW: TDH.SERVTD.BIND Leaf .. 215 50

6.3.51. NEW: TDH.SERVTD.PREBIND Leaf .. 218
6.3.52. TDH.SYS.CONFIG Leaf .. 220
6.3.53. UPDATED: TDH.SYS.INFO Leaf .. 223
6.3.54. TDH.SYS.INIT Leaf .. 225
6.3.55. TDH.SYS.KEY.CONFIG Leaf ... 228 55

6.3.56. TDH.SYS.LP.INIT Leaf ... 230
6.3.57. TDH.SYS.LP.SHUTDOWN Leaf.. 233
6.3.58. NEW: TDH.SYS.RD Leaf ... 235
6.3.59. NEW: TDH.SYS.RDALL Leaf ... 237
6.3.60. TDH.SYS.TDMR.INIT Leaf ... 239 60

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 6 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.61. UPDATED: TDH.VP.ADDCX Leaf .. 241
6.3.62. UPDATED: TDH.VP.CREATE Leaf ... 243
6.3.63. UPDATED: TDH.VP.ENTER Leaf .. 245
6.3.64. TDH.VP.FLUSH Leaf ... 252
6.3.65. UPDATED: TDH.VP.INIT Leaf .. 254 5

6.3.66. UPDATED: TDH.VP.RD Leaf .. 256
6.3.67. UPDATED: TDH.VP.WR Leaf ... 259

6.4. UPDATED: Guest-Side (TDCALL) Interface Functions.. 262
6.4.1. TDCALL Instruction (Common) .. 262
6.4.2. TDG.MEM.PAGE.ACCEPT Leaf ... 264 10

6.4.3. TDG.MR.REPORT Leaf ... 266
6.4.4. TDG.MR.RTMR.EXTEND Leaf ... 268
6.4.5. NEW: TDG.SERVTD.RD Leaf .. 270
6.4.6. NEW: TDG.SERVTD.WR Leaf ... 273
6.4.7. NEW: TDG.SYS.RD Leaf ... 276 15

6.4.8. NEW: TDG.SYS.RDALL Leaf ... 278
6.4.9. UPDATED: TDG.VM.RD Leaf ... 280
6.4.10. UPDATED: TDG.VM.WR Leaf .. 282
6.4.11. UPDATED: TDG.VP.CPUIDVE.SET Leaf .. 284
6.4.12. UPDATED: TDG.VP.INFO Leaf ... 286 20

6.4.13. NEW: TDG.VP.RD Leaf .. 288
6.4.14. TDG.VP.VEINFO.GET Leaf .. 290
6.4.15. TDG.VP.VMCALL Leaf .. 292
6.4.16. NEW: TDG.VP.WR Leaf ... 295

 25

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 7 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

1. About this Document

1.1. Scope of this Document

This document describes the Application Binary Interface (ABI) of the Intel® Trust Domain Extensions (Intel® TDX) module,
implemented using the Intel TDX Instruction Set Architecture (ISA) extensions, for confidential execution of Trust Domains
in an untrusted hosted cloud environment. 5

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

 Document Name Reference Description

TDX Module
Base Architecture Specification

[TDX Module Spec] Base TDX module architecture overview
and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

TDX Module
TD Migration Architecture Specification

[TD Migration Spec] Architecture overview and specification for
TD migration

→

TDX Module
ABI Reference Specification

[TDX Module ABI] Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the entire TDX module
architecture

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors. 10

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.

1.2. Glossary 15

See the [TDX Module Spec].

1.3. Notation

See the [TDX Module Spec].

1.4. References

See the [TDX Module Spec]. 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 8 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

2. ABI Reference: CPU Virtualization Tables

2.1. MSR Virtualization

Table 2.2 below describes how the Intel TDX module virtualizes MSRs to guest TDs. The table uses a notation that is
described in Table 2.1 below.

Table 2.1: MSR Virtualization Notation Definition 5

Text Virtualization

Native Direct read or write from/to CPU

Inject_GP(condition) TDX Module injects a #GP(0) if condition is true,
else reads from CPU or write to CPU:
 if (condition)
 #GP(0)
 else
 Native

Inject_GP_or_VE(condition) TDX Module injects a #GP(0) if condition is true,
else it injects a #VE:
 if (condition)
 #GP(0)
 else
 #VE

For MSRs that are not listed in the table, the Intel TDX module injects a #VE on both RDMSR and WRMSR by the guest
TD.

Note: The table below provides a high-level overview of MSR virtualization. Implementation details may differ.

Table 2.2: MSR Virtualization 10

MSR Index Range (Hex) MSR Virtualization

First (Hex) Last (Hex) Size
(Hex)

MSR Architectural Name On RDMSR On WRMSR

0x0010 0x0010 0x1 IA32_TIME_STAMP_COUNTER Native #VE

0x0048 0x0048 0x1 IA32_SPEC_CTRL Native Native

0x0049 0x0049 0x1 IA32_PRED_CMD Native Native

0x0087 0x0087 0x1 IA32_MKTME_PARTITIONING Inject_GP_or_VE (~virt.
CPUID(7,0).EDX[18])

Inject_GP_or_VE (~virt.
CPUID(7,0).EDX[18])

0x008C 0x008F 0x4 IA32_SGXLEPUBKEYHASHx #GP(0) #GP(0)

0x0098 0x0098 0x1 MSR_WBINVDP #GP(0) #GP(0)

0x0099 0x0099 0x1 MSR_WBNOINVDP #GP(0) #GP(0)

0x009A 0x009A 0x1 MSR_INTR_PENDING #GP(0) #GP(0)

0x009B 0x009B 0x1 IA32_SMM_MONITOR_CTL #GP(0) #GP(0)

0x009E 0x009E 0x1 IA32_SMBASE #GP(0) #GP(0)

0x00C1 0x00C8 0x8 IA32_PMCx Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x00E1 0x00E1 0x1 IA32_UMWAIT_CONTROL Inject_GP(~virt. CPUID(7,0).ECX[5]) Inject_GP(~virt. CPUID(7,0).ECX[5])

0x010A 0x010A 0x1 IA32_ARCH_CAPABILITIES Get the value read on TDX module
init
Set bit 7 (TSX_CTRL) = 0

Native

0x010B 0x010B 0x1 IA32_FLUSH_CMD Native Native

0x0122 0x0122 0x1 IA32_TSX_CTRL #GP(0) #GP(0)

0x0174 0x0174 0x1 IA32_SYSENTER_CS Native Native

0x0175 0x0175 0x1 IA32_SYSENTER_ESP Native Native

0x0176 0x0176 0x1 IA32_SYSENTER_EIP Native Native

0x0186 0x018D 0x8 IA32_PERFEVTSELx Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x01A0 0x01A0 0x1 IA32_MISC_ENABLE if ~PERFMON
 RDMSR current value
 Indicate Perfmon and PEBS
 are unavailable:
 Bit 7 = 0
 Bit 12 = 1
else
 Native

#VE

0x01A6 0x01A7 0x2 MSR_OFFCORE_RSPx Inject_GP(~PERFMON) Inject_GP(~PERFMON)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 9 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

MSR Index Range (Hex) MSR Virtualization

First (Hex) Last (Hex) Size
(Hex)

MSR Architectural Name On RDMSR On WRMSR

0x01C4 0x01C4 0x1 IA32_XFD Inject_GP(~(virt.
CPUID(0xD,0x1).EAX[4]))

Inject_GP(~(virt.
CPUID(0xD,0x1).EAX[4]))

0x01C5 0x01C5 0x1 IA32_XFD_ERR Inject_GP(~(virt.
CPUID(0xD,0x1).EAX[4]))

Inject_GP(~(virt.
CPUID(0xD,0x1).EAX[4]))

0x01D9 0x01D9 0x1 IA32_DEBUGCTL Clear ENABLE_UNCORE_PMI (bit 13) #GP if illegal, #VE if value is not
supported for TD

0x01F8 0x01F8 0x1 IA32_PLATFORM_DCA_CAP Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18])

Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18])

0x01F9 0x01F9 0x1 IA32_CPU_DCA_CAP Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18])

Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18])

0x01FA 0x01FA 0x1 IA32_DCA_0_CAP Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18])

Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18])

0x0276 0x0276 0x1 MSR_SLAM_ENABLE #GP(0) #GP(0)

0x0277 0x0277 0x1 IA32_PAT Native Native

0x0309 0x030C 0x4 IA32_FIXED_CTRx Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x0329 0x0329 0x1 IA32_PERF_METRICS Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x0345 0x0345 0x1 IA32_PERF_CAPABILITIES if ~PERFMON
 return 0
else if ~XFAM[8]
 clear bit 16
else
 Native

Inject_GP(~PERFMON)

0x038D 0x038D 0x1 IA32_FIXED_CTR_CTRL Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x038E 0x038E 0x1 IA32_PERF_GLOBAL_STATUS Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x038F 0x038F 0x1 IA32_PERF_GLOBAL_CTRL Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x0390 0x0390 0x1 IA32_PERF_GLOBAL_STATUS_RESET Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x0391 0x0391 0x1 IA32_PERF_GLOBAL_STATUS_SET Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x0392 0x0392 0x1 IA32_PERF_GLOBAL_INUSE Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x03F1 0x03F1 0x1 IA32_PEBS_ENABLE Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x03F2 0x03F2 0x1 MSR_PEBS_DATA_CFG Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x03F6 0x03F6 0x1 MSR_PEBS_LD_LAT Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x03F7 0x03F7 0x1 MSR_PEBS_FRONTEND Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x0480 0x0480 0x1 IA32_VMX_BASIC #GP(0) #GP(0)

0x0481 0x0481 0x1 IA32_VMX_PINBASED_CTLS #GP(0) #GP(0)

0x0482 0x0482 0x1 IA32_VMX_PROCBASED_CTLS #GP(0) #GP(0)

0x0483 0x0483 0x1 IA32_VMX_EXIT_CTLS #GP(0) #GP(0)

0x0484 0x0484 0x1 IA32_VMX_ENTRY_CTLS #GP(0) #GP(0)

0x0485 0x0485 0x1 IA32_VMX_MISC #GP(0) #GP(0)

0x0486 0x0486 0x1 IA32_VMX_CR0_FIXED0 #GP(0) #GP(0)

0x0487 0x0487 0x1 IA32_VMX_CR0_FIXED1 #GP(0) #GP(0)

0x0488 0x0488 0x1 IA32_VMX_CR4_FIXED0 #GP(0) #GP(0)

0x0489 0x0489 0x1 IA32_VMX_CR4_FIXED1 #GP(0) #GP(0)

0x048A 0x048A 0x1 IA32_VMX_VMCS_ENUM #GP(0) #GP(0)

0x048B 0x048B 0x1 IA32_VMX_PROCBASED_CTLS2 #GP(0) #GP(0)

0x048C 0x048C 0x1 IA32_VMX_EPT_VPID_CAP #GP(0) #GP(0)

0x048D 0x048D 0x1 IA32_VMX_TRUE_PINBASED_CTLS #GP(0) #GP(0)

0x048E 0x048E 0x1 IA32_VMX_TRUE_PROCBASED_CTLS #GP(0) #GP(0)

0x048F 0x048F 0x1 IA32_VMX_TRUE_EXIT_CTLS #GP(0) #GP(0)

0x0490 0x0490 0x1 IA32_VMX_TRUE_ENTRY_CTLS #GP(0) #GP(0)

0x0491 0x0491 0x1 IA32_VMX_VMFUNC #GP(0) #GP(0)

0x0492 0x0492 0x1 IA32_VMX_PROCBASED_CTLS3 #GP(0) #GP(0)

0x04C1 0x04C8 0x8 IA32_A_PMCx Inject_GP(~PERFMON) Inject_GP(~PERFMON)

0x0500 0x0500 0x1 IA32_SGX_SVN_STATUS #GP(0) #GP(0)

0x0560 0x0560 0x1 IA32_RTIT_OUTPUT_BASE Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0561 0x0561 0x1 IA32_RTIT_OUTPUT_MASK_PTRS Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0570 0x0570 0x1 IA32_RTIT_CTL Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0571 0x0571 0x1 IA32_RTIT_STATUS Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0572 0x0572 0x1 IA32_RTIT_CR3_MATCH Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0580 0x0580 0x1 IA32_RTIT_ADDR0_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0581 0x0581 0x1 IA32_RTIT_ADDR0_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0582 0x0582 0x1 IA32_RTIT_ADDR1_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0583 0x0583 0x1 IA32_RTIT_ADDR1_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0584 0x0584 0x1 IA32_RTIT_ADDR2_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0585 0x0585 0x1 IA32_RTIT_ADDR2_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0586 0x0586 0x1 IA32_RTIT_ADDR3_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0587 0x0587 0x1 IA32_RTIT_ADDR3_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])

0x0600 0x0600 0x1 IA32_DS_AREA Native Native

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 10 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

MSR Index Range (Hex) MSR Virtualization

First (Hex) Last (Hex) Size
(Hex)

MSR Architectural Name On RDMSR On WRMSR

0x06A0 0x06A0 0x1 IA32_U_CET Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))

0x06A2 0x06A2 0x1 IA32_S_CET Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))

0x06A4 0x06A4 0x1 IA32_PL0_SSP Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))

0x06A5 0x06A5 0x1 IA32_PL1_SSP Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))

0x06A6 0x06A6 0x1 IA32_PL2_SSP Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))

0x06A7 0x06A7 0x1 IA32_PL3_SSP Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))

0x06A8 0x06A8 0x1 IA32_INTERRUPT_SSP_TABLE_ADDR Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))

0x06E1 0x06E1 0x1 IA32_PKRS Inject_GP(~PKS) Inject_GP(~PKS)

0x0800 0x0801 0x2 Reserved for xAPIC MSRs #GP(0) #GP(0)

0x0804 0x0807 0x4 Reserved for xAPIC MSRs #GP(0) #GP(0)

0x0808 0x0808 0x1 IA32_X2APIC_TPR Native Native

0x0809 0x0809 0x1 Reserved for xAPIC MSRs Native Native

0x080A 0x080A 0x1 IA32_X2APIC_PPR Native Native

0x080B 0x080B 0x1 IA32_X2APIC_EOI Native Native

0x080C 0x080C 0x1 Reserved for xAPIC MSRs Native Native

0x080E 0x080E 0x1 Reserved for xAPIC MSRs Native Native

0x0810 0x0817 0x8 IA32_X2APIC_ISRx Native Native

0x0818 0x081F 0x8 IA32_X2APIC_TMRx Native Native

0x0820 0x0827 0x8 IA32_X2APIC_IRRx Native Native

0x0829 0x082E 0x6 Reserved for xAPIC MSRs #GP(0) #GP(0)

0x0831 0x0831 0x1 Reserved for xAPIC MSRs #GP(0) #GP(0)

0x083F 0x083F 0x1 IA32_X2APIC_SELF_IPI Native Native

0x0840 0x087F 0x40 Reserved for xAPIC MSRs #GP(0) #GP(0)

0x0880 0x08BF 0x40 Reserved for xAPIC MSRs #GP(0) #GP(0)

0x08C0 0x08FF 0x40 Reserved for xAPIC MSRs #GP(0) #GP(0)

0x0981 0x0981 0x1 IA32_TME_CAPABILITY Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

0x0982 0x0982 0x1 IA32_TME_ACTIVATE Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

0x0983 0x0983 0x1 IA32_TME_EXCLUDE_MASK Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

0x0984 0x0984 0x1 IA32_TME_EXCLUDE_BASE Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13])

0x0985 0x0985 0x1 IA32_UINT_RR Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])

0x0986 0x0986 0x1 IA32_UINT_HANDLER Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])

0x0987 0x0987 0x1 IA32_UINT_STACKADJUST Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])

0x0988 0x0988 0x1 IA32_UINT_MISC Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])

0x0989 0x0989 0x1 IA32_UINT_PD Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])

0x098A 0x098A 0x1 IA32_UINT_TT Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])

0x0C80 0x0C80 0x1 IA32_DEBUG_INTERFACE Native #VE

0x0D90 0x0D90 0x1 IA32_BNDCFGS #GP(0) #GP(0)

0x0D93 0x0D93 0x1 IA32_PASID #GP(0) #GP(0)

0x0DA0 0x0DA0 0x1 IA32_XSS Native if illegal or does not match XFAM
 #GP(0)
else
 Write to CPU

0x1200 0x12FF 0x100 IA32_LBR_INFO Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])

0x14CE 0x14CE 0x1 IA32_LBR_CTL Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])

0x14CF 0x14CF 0x1 IA32_LBR_DEPTH Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])

0x1500 0x15FF 0x100 IA32_LBR_FROM_IP Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])

0x1600 0x16FF 0x100 IA32_LBR_TO_IP Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])

0xC0000080 0xC0000080 0x1 IA32_EFER Native #VE

0xC0000081 0xC0000081 0x1 IA32_STAR Native Native

0xC0000082 0xC0000082 0x1 IA32_LSTAR Native Native

0xC0000084 0xC0000084 0x1 IA32_FMASK Native Native

0xC0000100 0xC0000100 0x1 IA32_FSBASE Native Native

0xC0000101 0xC0000101 0x1 IA32_GSBASE Native Native

0xC0000102 0xC0000102 0x1 IA32_KERNEL_GS_BASE Native Native

0xC0000103 0xC0000103 0x1 IA32_TSC_AUX Native Native

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 11 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

2.2. UPDATED: CPUID Virtualization

Table 2.4 below describes how the Intel TDX module virtualizes CPUID to guest TDs. Note the following:

• The “Configuration by TDH.MNG.INIT” column details which section of the TD_PARAMS structure is used for
configuring how each CPUID bit field is virtualized.

• The “Virtualization” column uses a notation defined in Table 2.3 below. 5

• If the guest TD executes CPUID with a valid leaf / sub-leaf number combination that is not listed in the table, the Intel
TDX module injects a #VE.

• The host VMM should always consult the list of CPUID leaves and sub-leaves configured by
TD_PARAMS.CPUID_CONFIG, as enumerated by TDH.SYS.RD/RDALL or TDH.SYS.INFO.

Table 2.3: CPUID Virtualization Notation Definition 10

CPUID Bit Field
Virtualization

Meaning Virtualization
Details

As Configured Virtual bit field value reflects the host VMM configuration.

As Configured (if
Native)

If the native bit field value returned by executing CPUID is 0, then the
virtual bit field value is o. Else, the virtual bit field value reflects the host
VMM configuration.

Calculated Bit field is calculated by the Intel TDX module. Calculation method

Fixed The virtual bit field value is fixed. Bit field value

Native The virtual bit field value reflects the native value returned by executing
CPUID.

Note: The table below provides a high-level overview of CPUID virtualization. Implementation details may differ.

Table 2.4: CPUID Virtualization Overview

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

 Leaf 0x0

EAX 31 0 32 MaxIndex N/A Fixed 0x21

EBX 31 0 32 Genu N/A Native

ECX 31 0 32 ntel N/A Native

EDX 31 0 32 ineI N/A Native

 Leaf 0x1

EAX 3 0 4 Stepping ID N/A Calculated Min. of all packages

EAX 7 4 4 Model ID N/A Native

EAX 11 8 4 Family ID N/A Native

EAX 13 12 2 Processor Type N/A Native

EAX 15 14 2 Reserved N/A Fixed 0x0

EAX 19 16 4 Extended Model ID N/A Native

EAX 27 20 8 Extended Family ID N/A Native

EAX 31 28 4 Reserved N/A Fixed 0x0

EBX 7 0 8 Brand Index N/A Native

EBX 15 8 8 CLFLUSH Line Size N/A Fixed 0x8

EBX 23 16 8 Maximum Addressable IDs CPUID_CONFIG As Configured

EBX 31 24 8 Initial APIC ID N/A Calculated TDVPS.VCPU_INDEX[7:0]

ECX 0 0 1 SSE3 N/A Native

ECX 1 1 1 PCLMULQDQ N/A Native

ECX 2 2 1 DTES64 N/A Native

ECX 3 3 1 MONITOR N/A Fixed 0x0

ECX 4 4 1 DS-CPL N/A Native

ECX 5 5 1 VMX N/A Fixed 0x0

ECX 6 6 1 SMX N/A Fixed 0x0

ECX 7 7 1 EST CPUID_CONFIG As Configured (if Native)

ECX 8 8 1 TM2 CPUID_CONFIG As Configured (if Native)

ECX 9 9 1 SSSE3 N/A Native

ECX 10 10 1 CNXT-ID N/A Native

ECX 11 11 1 SDBG N/A Native

ECX 12 12 1 FMA XFAM XFAM[2] As Configured (if Native)

ECX 13 13 1 CMPXCHG16B N/A Fixed 0x1

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 12 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

ECX 14 14 1 xTPR Update Control CPUID_CONFIG As Configured (if Native)

ECX 15 15 1 PDCM N/A Fixed 0x1

ECX 16 16 1 Reserved N/A Fixed 0x0

ECX 17 17 1 PCID N/A Native

ECX 18 18 1 DCA CPUID_CONFIG As Configured (if Native)

ECX 19 19 1 SSE4_1 N/A Native

ECX 20 20 1 SSE4_2 N/A Native

ECX 21 21 1 x2APIC N/A Fixed 0x1

ECX 22 22 1 MOVBE N/A Native

ECX 23 23 1 POPCNT N/A Native

ECX 24 24 1 TSC-Deadline N/A Native

ECX 25 25 1 AESNI N/A Fixed 0x1

ECX 26 26 1 XSAVE N/A Fixed 0x1

ECX 27 27 1 OSXSAVE N/A Calculated CR4.OSXSAVE

ECX 28 28 1 AVX XFAM,
CPUID_CONFIG

XFAM[2] As Configured (if Native)

ECX 29 29 1 F16C XFAM,
CPUID_CONFIG

XFAM[2] As Configured (if Native)

ECX 30 30 1 RDRAND N/A Fixed 0x1

ECX 31 31 1 Reserved N/A Fixed 0x0

EDX 0 0 1 FPU N/A Native

EDX 1 1 1 VME N/A Native

EDX 2 2 1 DE N/A Native

EDX 3 3 1 PSE N/A Native

EDX 4 4 1 TSC N/A Native

EDX 5 5 1 MSR N/A Fixed 0x1

EDX 6 6 1 PAE N/A Fixed 0x1

EDX 7 7 1 MCE N/A Fixed 0x1

EDX 8 8 1 CX8 N/A Native

EDX 9 9 1 APIC N/A Fixed 0x1

EDX 10 10 1 Reserved N/A Fixed 0x0

EDX 11 11 1 SEP N/A Native

EDX 12 12 1 MTRR N/A Fixed 0x1

EDX 13 13 1 PGE N/A Native

EDX 14 14 1 MCA N/A Fixed 0x1

EDX 15 15 1 CMOV N/A Native

EDX 16 16 1 PAT N/A Native

EDX 17 17 1 PSE-36 N/A Native

EDX 18 18 1 PSN N/A Native

EDX 19 19 1 CLFSH N/A Fixed 0x1

EDX 20 20 1 Reserved N/A Fixed 0x0

EDX 21 21 1 DS N/A Fixed 0x1

EDX 22 22 1 ACPI CPUID_CONFIG As Configured (if Native)

EDX 23 23 1 MMX N/A Native

EDX 24 24 1 FXSR N/A Native

EDX 25 25 1 SSE N/A Native

EDX 26 26 1 SSE2 N/A Native

EDX 27 27 1 SS N/A Native

EDX 28 28 1 HTT CPUID_CONFIG As Configured (if Native)

EDX 29 29 1 TM CPUID_CONFIG As Configured (if Native)

EDX 30 30 1 Reserved N/A Fixed 0x0

EDX 31 31 1 PBE CPUID_CONFIG As Configured (if Native)

 Leaf 0x3

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x4 / Sub-Leaf 0x0

EAX 4 0 5 Type CPUID_CONFIG As Configured

EAX 7 5 3 Level CPUID_CONFIG As Configured

EAX 8 8 1 Self Initializing CPUID_CONFIG As Configured

EAX 9 9 1 Fully Associative CPUID_CONFIG As Configured

EAX 13 10 4 Reserved N/A Fixed 0x0

EAX 25 14 12 Addressable IDs Sharing this Cache CPUID_CONFIG As Configured

EAX 31 26 6 Addressable IDs for Cores in Package CPUID_CONFIG As Configured

EBX 11 0 12 L N/A Native

EBX 21 12 10 P CPUID_CONFIG As Configured

EBX 31 22 10 W CPUID_CONFIG As Configured

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 13 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

ECX 31 0 32 Number of Sets CPUID_CONFIG As Configured

EDX 0 0 1 WBINVD CPUID_CONFIG As Configured

EDX 1 1 1 Cache Inclusiveness CPUID_CONFIG As Configured

EDX 2 2 1 Reserved N/A Fixed 0x0

EDX 31 3 29 CPUID_CONFIG As Configured

 Leaf 0x4 / Sub-Leaf 0x1

EAX 4 0 5 Type CPUID_CONFIG As Configured

EAX 7 5 3 Level CPUID_CONFIG As Configured

EAX 8 8 1 Self Initializing CPUID_CONFIG As Configured

EAX 9 9 1 Fully Associative CPUID_CONFIG As Configured

EAX 13 10 4 Reserved N/A Fixed 0x0

EAX 25 14 12 Addressable IDs Sharing this Cache CPUID_CONFIG As Configured

EAX 31 26 6 Addressable IDs for Cores in Package CPUID_CONFIG As Configured

EBX 11 0 12 L N/A Native

EBX 21 12 10 P CPUID_CONFIG As Configured

EBX 31 22 10 W CPUID_CONFIG As Configured

ECX 31 0 32 Number of Sets CPUID_CONFIG As Configured

EDX 0 0 1 WBINVD CPUID_CONFIG As Configured

EDX 1 1 1 Cache Inclusiveness CPUID_CONFIG As Configured

EDX 2 2 1 Reserved N/A Fixed 0x0

EDX 31 3 29 CPUID_CONFIG As Configured

 Leaf 0x4 / Sub-Leaf 0x2

EAX 4 0 5 Type CPUID_CONFIG As Configured

EAX 7 5 3 Level CPUID_CONFIG As Configured

EAX 8 8 1 Self Initializing CPUID_CONFIG As Configured

EAX 9 9 1 Fully Associative CPUID_CONFIG As Configured

EAX 13 10 4 Reserved N/A Fixed 0x0

EAX 25 14 12 Addressable IDs Sharing this Cache CPUID_CONFIG As Configured

EAX 31 26 6 Addressable IDs for Cores in Package CPUID_CONFIG As Configured

EBX 11 0 12 L N/A Native

EBX 21 12 10 P CPUID_CONFIG As Configured

EBX 31 22 10 W CPUID_CONFIG As Configured

ECX 31 0 32 Number of Sets CPUID_CONFIG As Configured

EDX 0 0 1 WBINVD CPUID_CONFIG As Configured

EDX 1 1 1 Cache Inclusiveness CPUID_CONFIG As Configured

EDX 2 2 1 Reserved N/A Fixed 0x0

EDX 31 3 29 CPUID_CONFIG As Configured

 Leaf 0x4 / Sub-Leaf 0x3

EAX 4 0 5 Type CPUID_CONFIG As Configured

EAX 7 5 3 Level CPUID_CONFIG As Configured

EAX 8 8 1 Self Initializing CPUID_CONFIG As Configured

EAX 9 9 1 Fully Associative CPUID_CONFIG As Configured

EAX 13 10 4 Reserved N/A Fixed 0x0

EAX 25 14 12 Addressable IDs Sharing this Cache CPUID_CONFIG As Configured

EAX 31 26 6 Addressable IDs for Cores in Package CPUID_CONFIG As Configured

EBX 11 0 12 L N/A Native

EBX 21 12 10 P CPUID_CONFIG As Configured

EBX 31 22 10 W CPUID_CONFIG As Configured

ECX 31 0 32 Number of Sets CPUID_CONFIG As Configured

EDX 0 0 1 WBINVD CPUID_CONFIG As Configured

EDX 1 1 1 Cache Inclusiveness CPUID_CONFIG As Configured

EDX 2 2 1 Complex cache indexing CPUID_CONFIG As Configured

EDX 31 3 29 Reserved N/A Fixed 0x0

 Leaf 0x4 / Sub-Leaf 0x4

EAX 4 0 5 Type N/A Fixed 0x0

EAX 7 5 3 Level N/A Fixed 0x0

EAX 8 8 1 Self Initializing N/A Fixed 0x0

EAX 9 9 1 Fully Associative N/A Fixed 0x0

EAX 13 10 4 Reserved N/A Fixed 0x0

EAX 25 14 12 Addressable IDs Sharing this Cache N/A Fixed 0x0

EAX 31 26 6 Addressable IDs for Cores in Package N/A Fixed 0x0

EBX 11 0 12 L N/A Fixed 0x0

EBX 21 12 10 P N/A Fixed 0x0

EBX 31 22 10 W N/A Fixed 0x0

ECX 31 0 32 Number of Sets N/A Fixed 0x0

EDX 0 0 1 WBINVD N/A Fixed 0x0

EDX 1 1 1 Cache Inclusiveness N/A Fixed 0x0

EDX 2 2 1 Complex Cache Indexing N/A Fixed 0x0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 14 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

EDX 31 3 29 Reserved N/A Fixed 0x0

 Leaf 0x7 / Sub-Leaf 0x0

EAX 31 0 32 Max Sub-Leaves N/A Fixed 0x1

EBX 0 0 1 FSGSBASE N/A Fixed 0x1

EBX 1 1 1 IA32_TSC_ADJUST N/A Fixed 0x0

EBX 2 2 1 SGX N/A Fixed 0x0

EBX 3 3 1 BMI1 CPUID_CONFIG As Configured (if Native)

EBX 4 4 1 HLE N/A Native

EBX 5 5 1 AVX2 XFAM XFAM[2] As Configured (if Native)

EBX 6 6 1 FDP_EXCPTN_ONLY N/A Native

EBX 7 7 1 SMEP N/A Native

EBX 8 8 1 BMI2 CPUID_CONFIG As Configured (if Native)

EBX 9 9 1 Enhanced REP MOVSB/STOSB N/A Native

EBX 10 10 1 INVPCID N/A Native

EBX 11 11 1 RTM N/A Fixed 0x1

EBX 12 12 1 PQM CPUID_CONFIG As Configured (if Native)

EBX 13 13 1 FCS/FDS Deprecation N/A Native

EBX 14 14 1 MPX N/A Fixed 0x0

EBX 15 15 1 Cache QoS Enforcement CPUID_CONFIG As Configured (if Native)

EBX 16 16 1 AVX512F XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EBX 17 17 1 AVX512DQ XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EBX 18 18 1 RDSEED N/A Fixed 0x1

EBX 19 19 1 ADCX/ADOX CPUID_CONFIG As Configured (if Native)

EBX 20 20 1 SMAP/CLAC/STAC N/A Fixed 0x1

EBX 21 21 1 AVX512_IFMA XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EBX 22 22 1 PCOMMIT N/A Native

EBX 23 23 1 CLFLUSHOPT N/A Fixed 0x1

EBX 24 24 1 CLWB N/A Fixed 0x1

EBX 25 25 1 RTIT XFAM XFAM[8] As Configured (if Native)

EBX 26 26 1 AVX512PF XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EBX 27 27 1 AVX512ER XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EBX 28 28 1 AVX512CD XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EBX 29 29 1 SHA N/A Fixed 0x1

EBX 30 30 1 AVX512BW XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EBX 31 31 1 AVX512VL XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

ECX 0 0 1 PREFETCHWT1 N/A Native

ECX 1 1 1 AVX512VBMI XFAM XFAM[7:5] As Configured (if Native)

ECX 2 2 1 UMIP N/A Native

ECX 3 3 1 PKU XFAM XFAM[9] As Configured (if Native)

ECX 4 4 1 OSPKE N/A Calculated CR4.PKE

ECX 5 5 1 MONITORX/MWAITX CPUID_CONFIG As Configured (if Native)

ECX 6 6 1 AVX512_VBMI2 XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

ECX 7 7 1 CET Shadow Stack XFAM XFAM[12:11] As Configured (if Native)

ECX 8 8 1 GFNI N/A Native

ECX 9 9 1 VAES XFAM,
CPUID_CONFIG

XFAM[2] As Configured (if Native)

ECX 10 10 1 VPCLMULQDQ XFAM,
CPUID_CONFIG

XFAM[2] As Configured (if Native)

ECX 11 11 1 AVX512_VNNI XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

ECX 12 12 1 AVX512_BITALG XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

ECX 13 13 1 TME CPUID_CONFIG As Configured (if Native)

ECX 14 14 1 AVX512_VPOPCNTDQ XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

ECX 15 15 1 FZM N/A Fixed 0x0

ECX 16 16 1 57 bit Address Support N/A Native

ECX 21 17 5 MAWAU for MPX N/A Fixed 0x0

ECX 22 22 1 RDPID N/A Native

ECX 23 23 1 KL_ENABLED ATTRIBUTES KL As Configured (if Native)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 15 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

ECX 24 24 1 BUSLOCK N/A Fixed 0x1

ECX 25 25 1 CLDEMOTE N/A Native

ECX 26 26 1 Reserved N/A Fixed 0x0

ECX 27 27 1 MOVDIRI N/A Native

ECX 28 28 1 MOVDIR64B N/A Fixed 0x1

ECX 29 29 1 ENQCMD N/A Fixed 0x0

ECX 30 30 1 SGX_LC N/A Fixed 0x0

ECX 31 31 1 PKS ATTRIBUTES PKS As Configured (if Native)

EDX 0 0 1 Reserved N/A Fixed 0x0

EDX 1 1 1 Reserved N/A Fixed 0x0

EDX 2 2 1 AVX512_4VNNIW XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EDX 3 3 1 AVX512_4FMAPS XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EDX 4 4 1 Fast Short REP MOV N/A Native

EDX 5 5 1 ULI XFAM XFAM[14] As Configured (if Native)

EDX 6 6 1 Reserved N/A Fixed 0x0

EDX 7 7 1 Reserved N/A Fixed 0x0

EDX 8 8 1 AVX512_VP2INTERSECT XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EDX 9 9 1 Reserved N/A Fixed 0x0

EDX 10 10 1 MD_CLEAR supported N/A Native

EDX 11 11 1 Reserved N/A Fixed 0x0

EDX 12 12 1 Reserved N/A Fixed 0x0

EDX 13 13 1 Reserved N/A Fixed 0x0

EDX 14 14 1 SERIALIZE Inst N/A Native

EDX 15 15 1 Hetero Part N/A Native

EDX 16 16 1 TSXLDTRK N/A Native

EDX 17 17 1 Reserved N/A Fixed 0x0

EDX 18 18 1 PCONFIG CPUID_CONFIG As Configured (if Native)

EDX 19 19 1 Architectural LBR support XFAM XFAM[15] As Configured (if Native)

EDX 20 20 1 CET XFAM XFAM[12:11] As Configured (if Native)

EDX 21 21 1 Reserved N/A Fixed 0x0

EDX 22 22 1 TMUL_AMX-BF16 XFAM XFAM[18:17] As Configured (if Native)

EDX 23 23 1 FP16 XFAM XFAM[7:5] As Configured (if Native)

EDX 24 24 1 TMUL_AMX-TILE XFAM XFAM[18:17] As Configured (if Native)

EDX 25 25 1 TMUL_AMX-INT8 XFAM XFAM[18:17] As Configured (if Native)

EDX 26 26 1 IBRS (indirect branch restricted
speculation)

N/A Fixed 0x1

EDX 27 27 1 STIBP (single thread indirect branch
predictors)

N/A Native

EDX 28 28 1 L1D_FLUSH. IA32_FLUSH_CMD support. N/A Native

EDX 29 29 1 IA32_ARCH_CAPABILITIES Support N/A Fixed 0x1

EDX 30 30 1 IA32_CORE_CAPABILITIES Present N/A Fixed 0x1

EDX 31 31 1 SSBD (Speculative Store Bypass Disable) N/A Fixed 0x1

 Leaf 0x7 / Sub-Leaf 0x1

EAX 0 0 1 Reserved N/A Fixed 0x0

EAX 1 1 1 Reserved N/A Fixed 0x0

EAX 2 2 1 Reserved N/A Fixed 0x0

EAX 3 3 1 Reserved N/A Fixed 0x0

EAX 4 4 1 VEX VNNI XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EAX 5 5 1 AVX512_BF16 XFAM,
CPUID_CONFIG

XFAM[7:5] As Configured (if Native)

EAX 6 6 1 LASS CPUID_CONFIG As Configured (if Native)

EAX 7 7 1 Reserved N/A Fixed 0x0

EAX 8 8 1 Reserved N/A Fixed 0x0

EAX 9 9 1 Reserved N/A Fixed 0x0

EAX 10 10 1 Fast Zero-Length MOVSB N/A Native

EAX 11 11 1 Fast Short STOSB N/A Native

EAX 12 12 1 Fast short CMPSB/SCASB N/A Native

EAX 21 13 9 Reserved N/A Fixed 0x0

EAX 22 22 1 HRESET N/A Fixed 0x0

EAX 23 23 1 Reserved N/A Fixed 0x0

EAX 24 24 1 Reserved N/A Fixed 0x0

EAX 25 25 1 Reserved N/A Fixed 0x0

EAX 26 26 1 LAM CPUID_CONFIG As Configured (if Native)

EAX 31 27 5 Reserved N/A Fixed 0x0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 16 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

EBX 29 0 30 Reserved N/A Fixed 0x0

EBX 30 30 1 Reserved N/A Fixed 0x0

EBX 31 31 1 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 0 0 1 Reserved N/A Fixed 0x0

EDX 1 1 1 Reserved N/A Fixed 0x0

EDX 2 2 1 Reserved N/A Fixed 0x0

EDX 3 3 1 Reserved N/A Fixed 0x0

EDX 4 4 1 Reserved N/A Fixed 0x0

EDX 5 5 1 Reserved N/A Fixed 0x0

EDX 31 6 26 Reserved N/A Fixed 0x0

 Leaf 0x8

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0xa

EAX 7 0 8 Version ATTRIBUTES PERFMON As Configured (if Native)

EAX 15 8 8 Number of GP Counters ATTRIBUTES PERFMON As Configured (if Native)

EAX 23 16 8 Width of GP Counters ATTRIBUTES PERFMON As Configured (if Native)

EAX 31 24 8 Length of EBX Vector ATTRIBUTES PERFMON As Configured (if Native)

EBX 0 0 1 Core Cycles Not Available ATTRIBUTES PERFMON As Configured (if Native)

EBX 1 1 1 Instructions Retired Not Available ATTRIBUTES PERFMON As Configured (if Native)

EBX 2 2 1 Reference Cycles Not Available ATTRIBUTES PERFMON As Configured (if Native)

EBX 3 3 1 Last-Level Cache References Not Available ATTRIBUTES PERFMON As Configured (if Native)

EBX 4 4 1 Last-Level Cache Misses Not Available ATTRIBUTES PERFMON As Configured (if Native)

EBX 5 5 1 Branch Instruction Retired Not Available ATTRIBUTES PERFMON As Configured (if Native)

EBX 6 6 1 Branch Mispredict Retired Not Available ATTRIBUTES PERFMON As Configured (if Native)

EBX 31 7 25 Reserved N/A Fixed 0x0

ECX 31 0 32 Fixed Counter Support Bitmap ATTRIBUTES PERFMON As Configured (if Native)

EDX 4 0 5 Number of Fixed-Function Counters ATTRIBUTES PERFMON As Configured (if Native)

EDX 12 5 8 Width of Fixed-Function Counters ATTRIBUTES PERFMON As Configured (if Native)

EDX 13 13 1 Reserved N/A Fixed 0x0

EDX 14 14 1 Reserved N/A Fixed 0x0

EDX 15 15 1 AnyThread Deprecation ATTRIBUTES PERFMON As Configured (if Native)

EDX 31 16 16 Reserved N/A Fixed 0x0

 Leaf 0xd / Sub-Leaf 0x0

EAX 0 0 1 X87 N/A Fixed 0x1

EAX 1 1 1 SSE N/A Fixed 0x1

EAX 2 2 1 AVX256 XFAM XFAM[2] As Configured (if Native)

EAX 3 3 1 PL_BNDREGS N/A Fixed 0x0

EAX 4 4 1 PL_BNDCFS N/A Fixed 0x0

EAX 5 5 1 KMASK XFAM XFAM[7:5] As Configured (if Native)

EAX 6 6 1 AVX3 ZMM 15:0 XFAM XFAM[7:5] As Configured (if Native)

EAX 7 7 1 AVX3 ZMM 31:18 XFAM XFAM[7:5] As Configured (if Native)

EAX 8 8 1 Reserved N/A Fixed 0x0

EAX 9 9 1 PKRU XFAM XFAM[9] As Configured (if Native)

EAX 16 10 7 Reserved N/A Fixed 0x0

EAX 17 17 1 AMX - XTILECFG XFAM XFAM[18:17] As Configured (if Native)

EAX 18 18 1 AMX - XTILEDATA XFAM XFAM[18:17] As Configured (if Native)

EAX 31 19 13 Reserved N/A Fixed 0x0

EBX 31 0 32 Max Bytes for Enabled Features N/A Calculated Native

ECX 31 0 32 Max Bytes for Supported Features XFAM As Configured

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0xd / Sub-Leaf 0x1

EAX 0 0 1 Supports XSAVEOPT N/A Fixed 0x1

EAX 1 1 1 Supports XSAVEC and compacted XRSTOR N/A Fixed 0x1

EAX 2 2 1 Supports XGETBV with ECX = 1 N/A Native

EAX 3 3 1 Supports XSAVES/XRSTORS and IA32_XSS N/A Fixed 0x1

EAX 4 4 1 XFD support XFAM As Configured

EAX 31 5 27 Reserved N/A Fixed 0x0

EBX 31 0 32 Max Bytes for Enabled Features N/A Calculated Native

ECX 7 0 8 Reserved N/A Fixed 0x0

ECX 8 8 1 XSS_RTIT XFAM XFAM[8] As Configured (if Native)

ECX 9 9 1 Reserved N/A Fixed 0x0

ECX 10 10 1 PASID N/A Fixed 0x0

ECX 11 11 1 U_CET XFAM XFAM[12:11] As Configured (if Native)

ECX 12 12 1 S_CET XFAM XFAM[12:11] As Configured (if Native)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 17 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

ECX 13 13 1 HDC N/A Fixed 0x0

ECX 14 14 1 ULI/UNIT XFAM XFAM[14] As Configured (if Native)

ECX 15 15 1 XSS_ARCH_LBRS XFAM XFAM[15] As Configured (if Native)

ECX 16 16 1 HWP Request N/A Fixed 0x0

ECX 31 17 15 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0xd / Sub-Leaves 0x2-0x12

EAX 31 0 32 Size XFAM XFAM[n] As Configured (if Native)

EBX 31 0 32 Offset XFAM XFAM[n] As Configured (if Native)

ECX 0 0 1 IA32_XSS XFAM XFAM[n] As Configured (if Native)

ECX 1 1 1 XFAM XFAM[n] As Configured (if Native)

ECX 31 2 30 XFAM XFAM[n] As Configured (if Native)

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0xe

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x11 / Sub-Leaf N/A

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x12

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x13

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x14 / Sub-Leaf 0x0

EAX 31 0 32 Max Valid Subleaf XFAM XFAM[8] As Configured (if Native)

EBX 0 0 1 CR3 Filtering XFAM XFAM[8] As Configured (if Native)

EBX 1 1 1 Cycle Accurate Mode XFAM XFAM[8] As Configured (if Native)

EBX 2 2 1 IP Filtering XFAM XFAM[8] As Configured (if Native)

EBX 3 3 1 MSRs Preserved Across Warm Reset XFAM XFAM[8] As Configured (if Native)

EBX 4 4 1 PTWRITE Support XFAM XFAM[8] As Configured (if Native)

EBX 5 5 1 Power Event Trace Support XFAM XFAM[8] As Configured (if Native)

EBX 6 6 1 PSB/PMI Injection Support XFAM XFAM[8] As Configured (if Native)

EBX 7 7 1 PT Event Trace Support XFAM XFAM[8] As Configured (if Native)

EBX 31 8 24 Reserved XFAM XFAM[8] As Configured (if Native)

ECX 0 0 1 ToPA Output Supported XFAM XFAM[8] As Configured (if Native)

ECX 1 1 1 ToPA Tables Support Multiple Regions XFAM XFAM[8] As Configured (if Native)

ECX 2 2 1 Single-Range Output Supported XFAM XFAM[8] As Configured (if Native)

ECX 30 3 28 Reserved XFAM XFAM[8] As Configured (if Native)

ECX 31 31 1 IP Payload Contains LIP XFAM XFAM[8] As Configured (if Native)

EDX 31 0 32 Reserved XFAM XFAM[8] As Configured (if Native)

 Leaf 0x14 / Sub-Leaf 0x1

EAX 1 0 2 MTC Period Options XFAM XFAM[8] As Configured (if Native)

EAX 15 2 14 Reserved XFAM XFAM[8] As Configured (if Native)

EAX 31 16 16 Number of Address Ranges Supported XFAM XFAM[8] As Configured (if Native)

EBX 15 0 16 Cycle Thresholds XFAM XFAM[8] As Configured (if Native)

EBX 31 16 16 PSB Frequencies XFAM XFAM[8] As Configured (if Native)

ECX 31 0 32 Reserved XFAM XFAM[8] As Configured (if Native)

EDX 31 0 32 Reserved XFAM XFAM[8] As Configured (if Native)

 Leaf 0x15

EAX 31 0 32 Denominator N/A Fixed 0x1

EBX 31 0 32 Numerator Other TSC_FREQUENCY As Configured

ECX 31 0 32 Nominal ART Frequency N/A Fixed 0x017D7840

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x19

EAX 0 0 1 CPL0 Restriction ATTRIBUTES KL As Configured (if Native)

EAX 1 1 1 Decrypt only Restriction ATTRIBUTES KL As Configured (if Native)

EAX 2 2 1 Encrypt only Restriction ATTRIBUTES KL As Configured (if Native)

EAX 3 3 1 Process Restriction ATTRIBUTES KL As Configured (if Native)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 18 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

EAX 31 4 28 Reserved_31_4 ATTRIBUTES KL As Configured (if Native)

EBX 0 0 1 AES KL Enabled ATTRIBUTES KL As Configured (if Native)

EBX 1 1 1 Reserved ATTRIBUTES KL As Configured (if Native)

EBX 2 2 1 AES wide KL Support ATTRIBUTES KL As Configured (if Native)

EBX 3 3 1 Reserved ATTRIBUTES KL As Configured (if Native)

EBX 4 4 1 IW Key Backup Support ATTRIBUTES KL As Configured (if Native)

EBX 31 5 27 Reserved ATTRIBUTES KL As Configured (if Native)

ECX 0 0 1 LOADIWKEY No Backup parameter Support ATTRIBUTES KL As Configured (if Native)

ECX 1 1 1 Random IWKey Support N/A Fixed 0x0

ECX 31 2 30 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x1c

EAX 7 0 8 Supported LBR depth values XFAM,
CPUID_CONFIG

XFAM[15] As Configured (if Native)

EAX 29 8 22 Reserved_29_8 XFAM XFAM[15] As Configured (if Native)

EAX 30 30 1 Deep C-state May Reset XFAM XFAM[15] As Configured (if Native)

EAX 31 31 1 IP values contain LIP XFAM XFAM[15] As Configured (if Native)

EBX 0 0 1 CPL Filtering Supported XFAM XFAM[15] As Configured (if Native)

EBX 1 1 1 Branch Filtering Supported XFAM XFAM[15] As Configured (if Native)

EBX 2 2 1 Call-stack Mode Supported XFAM XFAM[15] As Configured (if Native)

EBX 31 3 29 Reserved_31_3 XFAM XFAM[15] As Configured (if Native)

ECX 0 0 1 Mispredict Bit Supported XFAM XFAM[15] As Configured (if Native)

ECX 1 1 1 Timed LBRs Supported XFAM XFAM[15] As Configured (if Native)

ECX 2 2 1 Branch Type Field Supported XFAM XFAM[15] As Configured (if Native)

ECX 31 3 29 Reserved_31_3 XFAM XFAM[15] As Configured (if Native)

EDX 31 0 32 Reserved XFAM XFAM[15] As Configured (if Native)

 Leaf 0x1d / Sub-Leaf 0x0

EAX 0 0 1 TILE support XFAM XFAM[18:17] As Configured (if Native)

EAX 31 1 31 Reserved_31_1 XFAM XFAM[18:17] As Configured (if Native)

EBX 31 0 32 Reserved XFAM XFAM[18:17] As Configured (if Native)

ECX 31 0 32 Reserved XFAM XFAM[18:17] As Configured (if Native)

EDX 31 0 32 Reserved XFAM XFAM[18:17] As Configured (if Native)

 Leaf 0x1d / Sub-Leaf 0x1

EAX 15 0 16 total_tile_bytes XFAM XFAM[18:17] As Configured (if Native)

EAX 31 16 16 bytes_per_tile XFAM XFAM[18:17] As Configured (if Native)

EBX 15 0 16 bytes_per_row XFAM XFAM[18:17] As Configured (if Native)

EBX 31 16 16 max_names XFAM XFAM[18:17] As Configured (if Native)

ECX 15 0 16 max_rows XFAM XFAM[18:17] As Configured (if Native)

ECX 31 16 16 Reserved_31_16 XFAM XFAM[18:17] As Configured (if Native)

EDX 31 0 32 Reserved XFAM XFAM[18:17] As Configured (if Native)

 Leaf 0x1e / Sub-Leaf N/A

EAX 31 0 32 Reserved XFAM XFAM[18:17] As Configured (if Native)

EBX 7 0 8 impl.tmul_maxk (rows or cols) XFAM XFAM[18:17] As Configured (if Native)

EBX 23 8 16 impl.tmul_maxn (column bytes) XFAM XFAM[18:17] As Configured (if Native)

EBX 31 24 8 Reserved_31_24 XFAM XFAM[18:17] As Configured (if Native)

ECX 31 0 32 Reserved XFAM XFAM[18:17] As Configured (if Native)

EDX 31 0 32 Reserved XFAM XFAM[18:17] As Configured (if Native)

 Leaf 0x20

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x21 / Sub-Leaf 0x0

EAX 31 0 32 Maximum sub-leaf N/A Fixed 0x00000000

EBX 31 0 32 “Inte” N/A Fixed 0x65746E49

ECX 31 0 32 “ “ N/A Fixed 0x20202020

EDX 31 0 32 “lTDX” N/A Fixed 0x5844546C

 Leaf 0x80000000

EAX 31 0 32 MaxIndex N/A Native

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Leaf 0x80000001

EAX 31 0 32 Reserved N/A Fixed 0x0

EBX 31 0 32 Reserved N/A Fixed 0x0

ECX 0 0 1 LAHF/SAHF in 64-bit Mode N/A Native

ECX 4 1 4 Reserved_4_1 N/A Fixed 0x0

ECX 5 5 1 LZCNT N/A Native

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 19 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. MSB LSB Field

Size
Field Name TD_PARAMS

Section(s)
Configuration
Details

Virtualization Type Virtualization Details

ECX 7 6 2 Reserved_7_6 N/A Fixed 0x0

ECX 8 8 1 PREFETCHW N/A Native

ECX 31 9 23 Reserved_31_9 N/A Fixed 0x0

EDX 10 0 11 Reserved_10_0 N/A Fixed 0x0

EDX 11 11 1 SYSCALL/SYSRET in 64-bit Mode N/A Native

EDX 19 12 8 Reserved_19_12 N/A Fixed 0x0

EDX 20 20 1 Execute Disable Bit N/A Fixed 0x1

EDX 25 21 5 Reserved_25_21 N/A Fixed 0x0

EDX 26 26 1 1GB Pages N/A Fixed 0x1

EDX 27 27 1 RDTSCP and IA32_TSC_AUX N/A Fixed 0x1

EDX 28 28 1 Reserved_28 N/A Fixed 0x0

EDX 29 29 1 Intel 64 N/A Fixed 0x1

EDX 31 30 2 Reserved_31_30 N/A Fixed 0x0

 Leaf 0x80000008

EAX 7 0 8 Number of Physical Address Bits N/A Fixed 0x34

EAX 15 8 8 Number of Linear Address Bits N/A Native

EAX 31 16 16 Reserved N/A Fixed 0x0

EBX 8 0 9 Reserved_8_0 N/A Fixed 0x0

EBX 9 9 1 WBNOINVD support N/A Fixed 0x1

EBX 31 10 22 Reserved_31_10 N/A Fixed 0x0

ECX 31 0 32 Reserved N/A Fixed 0x0

EDX 31 0 32 Reserved N/A Fixed 0x0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 20 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3. ABI Reference: Constants

This chapter describes the constants designed to be used in the Intel TDX module.

3.1. Interface Function Completion Status Codes

Note: This section provides a high-level overview of function completion status, as defined. Implementation details
may differ. 5

This section defines the function completion status codes. The structure of the status codes is described in the [TDX
Module Spec]. Three tables are provided below: class table, code table and operand ID table.

3.1.1. Function Completion Status Code Classes (Bits 47:40)

Table 3.1: Function Completion Status Code Classes (Bits 47:40) Definition

Class ID Class Name Description

0 General General function completion status

1 Invalid Operand An invalid operand value has been provided, e.g., HKID is out of range,
HPA overlaps SEAMRR, GPA is not private, etc.

2 Resource Busy Resource is busy, there is a concurrency conflict.

3 Page Metadata Page metadata (in PAMT) are incorrect, e.g., page type is wrong.

4 Dependent Resources The state of dependent resources is incorrect, e.g., there are TD pages
while trying to reclaim a TDR page.

5 Intel TDX Module State The Intel TDX module state is incorrect.

6 TD State The state of the TD is incorrect, e.g., it has not been initialized yet.

7 TD VCPU State The state of the TD VCPU is incorrect, e.g., it is corrupted.

8 Key Management The status code is related to key management, e.g., keys are not
configured.

9 Platform The status code is related to platform configuration or state.

10 Physical Memory The status code is related to physical memory.

11 Guest TD Memory The status code is related to guest TD memory.

12 Metadata The status code is related to metadata (global scope, TD scope or VCPU
scope)

13 Service TD The status code is related to a service TD

14 Migration The status code is related to TD migration

 10

3.1.2. Function Completion Status Codes

Table 3.2: Function Completion Status Codes Definition

Flags, Class and Name (Bits 63:32) Details L2 (Bits 31:0) Description

Value (Hex) Status Name

0x00000000 Success TDX_SUCCESS For TDH.VP.ENTER: Exit Reason
For list operations: Number of
problematic sub-operations (e.g., a
page in a list not processed due to an
incorrect state).

Function completed successfully.

0x40000001 Non-
Recover.

TDX_NON_RECOVERABLE_VCPU For TDH.VP.ENTER: Exit Reason TD exit due to a non-recoverable VCPU state (e.g.,
triple fault) – VCPU is disabled

0x60000002 Fatal TDX_NON_RECOVERABLE_TD For TDH.VP.ENTER: Exit Reason TD exit due to a non-recoverable TD state – TD is
disabled

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 21 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Flags, Class and Name (Bits 63:32) Details L2 (Bits 31:0) Description

Value (Hex) Status Name

0x80000003 Recover.
Error

TDX_INTERRUPTED_RESUMABLE For list operations: Number of
problematic sub-operations (e.g., a
page in a list not processed due to an
incorrect state).

Function operation has been interrupted by an
external event, and it may be resumed from the point
it was interrupted by calling it again.

0x80000004 Recover.
Error

TDX_INTERRUPTED_RESTARTABLE For list operations: Number of
problematic sub-operations (e.g., a
page in a list not processed due to an
incorrect state).

Function operation has been interrupted by an
external event, and it may be restarted (from its
beginning) by calling it again.

0x60000005 Fatal TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE For TDH.VP.ENTER: Exit Reason TD exit due to a fatal TD state (e.g., machine check
caused by a memory integrity check error) – TD is
disabled and its private memory can't be accessed.

0xC0000006 Error TDX_INVALID_RESUMPTION 0 Resumed function in invalid, e.g., its operands are
different than the last interrupted function.

0xE0000007 Fatal TDX_NON_RECOVERABLE_TD_NO_APIC TDH.VP.ENTER: Exit Reason TD is running with local APIC disabled

0x00000008 Success TDX_CROSS_TD_FAULT 0 Fault-like TD exit due to a cross-TD error, i.e., the
current TD encountered an error that is related to
some other TD.

0x10000009 Success TDX_CROSS_TD_TRAP 0 Trap-like TD exit due to a cross-TD error, i.e., the
current TD encountered an error that is related to
some other TD.

0x6000000A Fatal TDX_NON_RECOVERABLE_TD_CORRUPTED_MD 0 TD exit due to a non-recoverable corrupted TD
metadata – TD is disabled

0xC0000100 Error TDX_OPERAND_INVALID Operand ID Operand is invalid.

0xC0000101 Error TDX_OPERAND_ADDR_RANGE_ERROR Operand ID Operand address is out of range (e.g., not in a TDMR).

0x80000200 Recover.
Error

TDX_OPERAND_BUSY Operand ID The operand is busy (e.g., it is locked in Exclusive
mode).

0x80000201 Recover.
Error

TDX_PREVIOUS_TLB_EPOCH_BUSY 0 TDH.MEM.TRACK failed because one or more of the
TD's VCPUs are running, and their VCPU epoch is the
previous TD epoch.

0x80000202 Recover.
Error

TDX_SYS_BUSY 0 The Intel TDX module (as a whole) is busy.

0xC0000300 Error TDX_PAGE_METADATA_INCORRECT Operand ID Physical page metadata (in PAMT) are incorrect for
the requested operation.

0x00000301 Success TDX_PAGE_ALREADY_FREE Operand ID Physical page is already marked as PT_FREE.

0xC0000302 Error TDX_PAGE_NOT_OWNED_BY_TD Operand ID Physical page PAMT entry's OWNER field does not
point to the TD's TDR page

0xC0000303 Error TDX_PAGE_NOT_FREE Operand ID Physical page is not free

0xC0000400 Error TDX_TD_ASSOCIATED_PAGES_EXIST 0 Physical pages associated with the TD exist in
memory.

0xC0000500 Error TDX_SYSINIT_NOT_PENDING 0 Attempting TDH.SYS.INIT when not expected.

0xC0000501 Error TDX_SYSINIT_NOT_DONE 0 Attempting non-TDH.SYS.INIT SEAMCALL leaf before
TDH.SYS.INIT was done.

0xC0000502 Error TDX_SYSINITLP_NOT_DONE 0 Attempting non-TDH.SYS.LP.INIT SEAMCALL leaf
before TDH.SYS.LP.INIT was done on this LP.

0xC0000503 Error TDX_SYSINITLP_DONE 0 Attempting TDH.SYS.LP.INIT when already done on
this LP.

0xC0000505 Error TDX_SYS_NOT_READY 0 Attempting to execute a non-initialization SEAMCALL
function before initialization sequence completed.

0xC0000506 Error TDX_SYS_SHUTDOWN 0 Attempting to execute SEAMCALL when the Intel TDX
module is being shut down.

0xC0000507 Error TDX_SYSCONFIG_NOT_DONE 0 Attempting TDH.SYS.KEY.CONFIG before
TDH.SYS.CONFIG is done.

0xC0000600 Error TDX_TD_NOT_INITIALIZED Operand ID (0 if default) TD has not been initialized (by TDH.MNG.INIT).

0xC0000601 Error TDX_TD_INITIALIZED Operand ID (0 if default) TD has been initialized (by TDH.MNG.INIT).

0xC0000602 Error TDX_TD_NOT_FINALIZED Operand ID (0 if default) TD measurement has not been finalized (by
TDH.MR.FINALIZE).

0xC0000603 Error TDX_TD_FINALIZED Operand ID (0 if default) TD measurement has been finalized (by
TDH.MR.FINALIZE).

0xC0000604 Error TDX_TD_FATAL Operand ID (0 if default) TD is in a FATAL error state.

0xC0000605 Error TDX_TD_NON_DEBUG Operand ID (0 if default) TD's ATTRIBUTES.DEBUG bit is 0.

0xC0000606 Error TDX_TDCS_NOT_ALLOCATED Operand ID (0 if default) TDCS pages have not been allocated

0xC0000607 Error TDX_LIFECYCLE_STATE_INCORRECT Operand ID (0 if default) The TD's LIFECYCLE_STATE is incorrect for the
required operation.

0xC0000608 Error TDX_OP_STATE_INCORRECT Operand ID (0 if default) The TD's OP_STATE is incorrect for the required
operation.

0xC0000610 Error TDX_TDCX_NUM_INCORRECT Operand ID (0 if default) The number of TDCX pages is incorrect.

0xC0000700 Error TDX_VCPU_STATE_INCORRECT 0 The VCPU state is incorrect for the requested
operation.

0x80000701 Recover.
Error

TDX_VCPU_ASSOCIATED 0 The VCPU is already associated with another LP.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 22 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Flags, Class and Name (Bits 63:32) Details L2 (Bits 31:0) Description

Value (Hex) Status Name

0x80000702 Recover.
Error

TDX_VCPU_NOT_ASSOCIATED 0 The VCPU is not associated with the current LP.

0xC0000704 Error TDX_NO_VALID_VE_INFO 0 There is no valid #VE information.

0xC0000705 Error TDX_MAX_VCPUS_EXCEEDED 0 TD's maximum number of VCPUs has been exceeded.

0xC0000706 Error TDX_TSC_ROLLBACK 0 Time Stamp Counter value is lower than on last TD
exit.

0xC0000730 Error TDX_TD_VMCS_FIELD_NOT_INITIALIZED Bits 31:0: VMCS field code The TD VMCS field has not been initialized.

0x80000800 Recover.
Error

TDX_KEY_GENERATION_FAILED 0 Failed to generate a random key.

0x80000810 Recover.
Error

TDX_TD_KEYS_NOT_CONFIGURED 0 TD keys have not been configured on the hardware.

0xC0000811 Error TDX_KEY_STATE_INCORRECT 0 KOT entry state is incorrect for the required
operation.

0x00000815 Success TDX_KEY_CONFIGURED 0 The key is already configured on the current package.

0x80000817 Recover.
Error

TDX_WBCACHE_NOT_COMPLETE 0 Attempting to execute TDH.MNG.KEY.FREEID when
TDH.PHYMEM.CACHE.WB has not completed its
operation.

0xC0000820 Error TDX_HKID_NOT_FREE 0 A provided HKID cannot be assigned because it is not
free.

0x00000821 Success TDX_NO_HKID_READY_TO_WBCACHE 0 No private HKID is in the HKID_FLUSHED state, ready
for TDH.PHYMEM.CACHE.WB.

0xC0000823 Error TDX_WBCACHE_RESUME_ERROR 0 Resume of a previously interrupted function has been
aborted due to wrong HKID.

0x80000824 Recover.
Error

TDX_FLUSHVP_NOT_DONE 0 TDH.VP.FLUSH was not done on all required VCPUs;
some VCPUs are still associated with LPs.

0xC0000825 Error TDX_NUM_ACTIVATED_HKIDS_NOT_SUPPORTED Bits 31:0: Maximum supported HKIDs The number of activated key IDs on the platform is
not supported.

0xC0000900 Error TDX_INCORRECT_CPUID_VALUE 0 A CPUID value is incorrect.

0xC0000901 Error TDX_BOOT_NT4_SET 0 MSR IA32_MISC_ENABLES bit 22 (Boot NT4) is set.

0xC0000902 Error TDX_INCONSISTENT_CPUID_FIELD 0 A field returned by CPUID is inconsistent between LPs.

0xC0000904 Error TDX_CPUID_LEAF_1F_FORMAT_UNRECOGNIZED 0 CPUID leaf 1F format is not recognized or sub-leaves
are not in order.

0xC0000905 Error TDX_INVALID_WBINVD_SCOPE 0 WBINVD scope is not supported.

0xC0000906 Error TDX_INVALID_PKG_ID Package ID Package ID is larger than the maximum supported.

0xC0000908 Error TDX_CPUID_LEAF_NOT_SUPPORTED CPUID leaf 0

0xC0000910 Error TDX_SMRR_NOT_LOCKED 0: SMRR, 1: SMRR2 SMRR* is not locked.

0xC0000911 Error TDX_INVALID_SMRR_CONFIGURATION 0: SMRR, 1: SMRR2 SMRR* configuration is invalid.

0xC0000912 Error TDX_SMRR_OVERLAPS_CMR Bits 7:0: 0: SMRR, 1: SMRR2
Bits 15:8: Overlapping CMR index

SMRR* overlaps a CMR.

0xC0000913 Error TDX_SMRR_LOCK_NOT_SUPPORTED 0 Platform does not support SMRR locking.

0xC0000914 Error TDX_SMRR_NOT_SUPPORTED 0 Platform does not support SMRR.

0xC0000920 Error TDX_INCONSISTENT_MSR Bits 31:0: MSR index MSR configuration is inconsistent between LPs.

0xC0000921 Error TDX_INCORRECT_MSR_VALUE Bits 31:0: MSR index MSR value is incorrect.

0xC0000930 Error TDX_SEAMREPORT_NOT_AVAILABLE 0 SEAMOPS(SEAMREPORT) instruction leaf is not
available.

0xC0000A00 Error TDX_INVALID_TDMR Bits 7:0: TDMR index TDMR base address is not aligned on 1GB, its HKID
bits are not 0, TDMR size is not specified with 1GB
granularity or TDMR is outside the platform's
maximum PA.

0xC0000A01 Error TDX_NON_ORDERED_TDMR Bits 7:0: TDMR index TDMR is not specified in an ascending, non-
overlapping order.

0xC0000A02 Error TDX_TDMR_OUTSIDE_CMRS Bits 7:0: TDMR index TDMR non-reserved parts are not fully contained in
CMRs.

0x00000A03 Success TDX_TDMR_ALREADY_INITIALIZED 0 TDMR is already fully initialized.

0xC0000A10 Error TDX_INVALID_PAMT Bits 7:0: TDMR index
Bits 15:8: PAMT level (2: 1GB,
 1: 2MB, 0: 4KB)

PAMT region base address is not aligned on 4KB, its
HKID bits are not 0, PAMT region size is not specified
with 4KB granularity, it is not large enough for the
TDMR size or PAMT region is outside the platform's
maximum PA.

0xC0000A11 Error TDX_PAMT_OUTSIDE_CMRS Bits 7:0: TDMR index
Bits 15:8: PAMT level (2: 1GB,
 1: 2MB, 0: 4KB)

PAMT is not fully contained in CMRs.

0xC0000A12 Error TDX_PAMT_OVERLAP Bits 7:0: TDMR index
Bits 15:8: PAMT level (2: 1GB,
 1: 2MB, 0: 4KB)
Bits 23:16: Overlapping TDMR index

PAMT overlaps with TDMR non-reserved parts or with
another PAMT.

0xC0000A20 Error TDX_INVALID_RESERVED_IN_TDMR Bits 7:0: TDMR index
Bits 15:8: Reserved area index

Reserved area in TMDR's base offset is not aligned on
4KB, its size is not specified with 4KB granularity or it
is not fully contained within the TDMR.

0xC0000A21 Error TDX_NON_ORDERED_RESERVED_IN_TDMR Bits 7:0: TDMR index
Bits 15:8: Reserved area index

Reserved area in TDMR is not specified in an
ascending, non-overlapping order.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 23 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Flags, Class and Name (Bits 63:32) Details L2 (Bits 31:0) Description

Value (Hex) Status Name

0xC0000A22 Error TDX_CMR_LIST_INVALID 0 CMR list provided to the TDX module is invalid

0xC0000B00 Error TDX_EPT_WALK_FAILED Operand ID EPT walk failed

0xC0000B01 Error TDX_EPT_ENTRY_FREE Operand ID EPT entry is free

0xC0000B02 Error TDX_EPT_ENTRY_NOT_FREE Operand ID EPT entry is not free

0xC0000B03 Error TDX_EPT_ENTRY_NOT_PRESENT Operand ID EPT entry is not present

0xC0000B04 Error TDX_EPT_ENTRY_NOT_LEAF Operand ID EPT entry is not a leaf

0xC0000B05 Error TDX_EPT_ENTRY_LEAF Operand ID EPT entry is a leaf

0xC0000B06 Error TDX_GPA_RANGE_NOT_BLOCKED Operand ID GPA range is not blocked

0x00000B07 Success TDX_GPA_RANGE_ALREADY_BLOCKED Operand ID GPA range is already blocked

0xC0000B08 Error TDX_TLB_TRACKING_NOT_DONE Operand ID TLB tracking has not been done

0xC0000B09 Error TDX_EPT_INVALID_PROMOTE_CONDITIONS Operand ID Conditions for GPA mapping promotions as invalid

0x00000B0A Success TDX_PAGE_ALREADY_ACCEPTED Error EPT level Page has already been accepted

0xC0000B0B Error TDX_PAGE_SIZE_MISMATCH Error EPT level Requested page size does not match the current GPA
mapping size

0xC0000B0C Error TDX_GPA_RANGE_BLOCKED Operand ID GPA range is blocked

0xC0000B0D Error TDX_EPT_ENTRY_STATE_INCORRECT Operand ID EPT entry state is incorrect

0xC0000B0E Error TDX_EPT_PAGE_NOT_FREE Operand ID EPT page is not free

0xC0000C00 Error TDX_METADATA_FIELD_ID_INCORRECT For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

The provided FIELD_ID is incorrect.

0xC0000C01 Error TDX_METADATA_FIELD_NOT_WRITABLE For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

Field code and write mask are for a read-only field.

0xC0000C02 Error TDX_METADATA_FIELD_NOT_READABLE For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

Field code is for an unreadable field.

0xC0000C03 Error TDX_METADATA_FIELD_VALUE_NOT_VALID For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

The provided field value is not valid.

0xC0000C04 Error TDX_METADATA_LIST_OVERFLOW For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

A metadata list does not fit within the provided buffer

0xC0000C05 Error TDX_INVALID_METADATA_LIST_HEADER 0 Metadata list header is invalid

0xC0000C06 Error TDX_REQUIRED_METADATA_FIELD_MISSING 0 A required metadata field is missing

0xC0000C07 Error TDX_METADATA_ELEMENT_SIZE_INCORRECT For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

A metadata field identifier specifies an incorrect
ELEMENT_SIZE_CODE for the field

0xC0000C08 Error TDX_METADATA_LAST_ELEMENT_INCORRECT For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

A metadata field identifier specifies an incorrect
LAST_ELEMENT_IN_FIELD for the field

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 24 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Flags, Class and Name (Bits 63:32) Details L2 (Bits 31:0) Description

Value (Hex) Status Name

0xC0000C09 Error TDX_METADATA_FIELD_CURRENTLY_NOT_WRITABLE For a single field, set to 0.
For a metadata list:
Bits 15:0: Sequence number
 0xFFFF indicates the list header.
Bits 31:16: Field number in sequence
 0xFFFF indicates the sequence
 header.

The metadata field is currently not writable, e.g., per
some state of the TD

0xC0000D00 Error TDX_SERVTD_ALREADY_BOUND_FOR_TYPE 0 A single service TD of this type is supported

0xC0000D01 Error TDX_SERVTD_TYPE_MISMATCH 0 Service TD type does not match the currently bound
type

0xC0000D02 Error TDX_SERVTD_ATTR_MISMATCH 0 Service TD attributes do not match the currently
bound attributes

0xC0000D03 Error TDX_SERVTD_INFO_HASH_MISMATCH 0 Service TD hash of TDINFO_STRUCT does not match
the currently bound hash

0xC0000D04 Error TDX_SERVTD_UUID_MISMATCH 0 Service TD UUID does not match the currently bound
UUID

0xC0000D05 Error TDX_SERVTD_NOT_BOUND Binding slot number Service TD is not bound

0xC0000D06 Error TDX_SERVTD_BOUND 0 Service TD is already bound

0xC0000D07 Error TDX_TARGET_UUID_MISMATCH 0 Taget TD UUID does not match the requested
TD_UUID

0xC0000D08 Error TDX_TARGET_UUID_UPDATED 0 Taget TD UUID does not match the requested
TD_UUID, but pre-migration target TD UUID does
match it

0xC0000E00 Error TDX_INVALID_MBMD 0 MBMD is invalid

0xC0000E01 Error TDX_INCORRECT_MBMD_MAC 0 MBMD.MAC field value is incorrect

0xC0000E02 Error TDX_NOT_WRITE_BLOCKED Operand ID Secure EPT entry is not blocked for writing

0x00000E03 Success TDX_ALREADY_WRITE_BLOCKED Operand ID Secure EPT entry is already blocked for writing

0xC0000E04 Error TDX_NOT_EXPORTED Operand ID Secure EPT entry is not marked as exported

0xC0000E05 Error TDX_MIGRATION_STREAM_STATE_INCORRECT 0 Migraion stream has not been initialized or is not
enabled

0xC0000E06 Error TDX_MAX_MIGS_NUM_EXCEEDED MAX_MIGS The maximum number of supported migration
streams has been exceeded

0xC0000E07 Error TDX_EXPORTED_DIRTY_PAGES_REMAIN 0 There are some pages that have been exported, but
need to be re-exported because their contents have
changed

0xC0000E08 Error TDX_MIGRATION_SESSION_KEY_NOT_SET 0 A new migration session key has not been set before a
migration session start is attempted

0xC0000E09 Error TDX_TD_NOT_MIGRATABLE 0 The TD's ATTRIBUTES.MIGRATABLE bit is not set

0xC0000E0A Error TDX_PREVIOUS_EXPORT_CLEANUP_INCOMPLETE 0 A previous aborted export session cleanup (using
TDH.EXPORT.CANCEL) has not been completed

0xC0000E0B Error TDX_NUM_MIGS_HIGHER_THAN_CREATED 0 The number of migration streams used by the session
is higher than the number of created migration
streams

0xC0000E0C Error TDX_IMPORT_MISMATCH 0 A re-import or an import cancellation does not match
the existing Secure EPT entry

0xC0000E0D Error TDX_MIGRATION_EPOCH_OVERFLOW 0 Migration epoch has exceeded its maximum value

0xC0000E0E Error TDX_MAX_EXPORTS_EXCEEDED 0 Maximum number of TD export attempts (2^31) has
been exceeded

0xC0000E0F Error TDX_INVALID_PAGE_MAC Operand ID Imported page MAC is invalid

0xC0000E10 Error TDX_MIGRATED_IN_CURRENT_EPOCH Operand ID Page already migrated in the current epoch

0xC0000E11 Error TDX_DISALLOWED_IMPORT_OVER_REMOVED Operand ID Disallowed age import over a previously-removed
page

3.1.3. Function Completion Status Operand IDs

Table 3.3: Function Completion Operand IDs Definition

Operand
ID

Explicit/
Implicit

Class Operand Description

0 Explicit GPR RAX Explicit input operand RAX

1 Explicit GPR RCX Explicit input operand RCX

2 Explicit GPR RDX Explicit input operand RDX

3 Explicit GPR RBX Explicit input operand RBX

5 Explicit GPR RBP Explicit input operand RBP

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 25 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand
ID

Explicit/
Implicit

Class Operand Description

6 Explicit GPR RSI Explicit input operand RSI

7 Explicit GPR RDI Explicit input operand RDI

8 Explicit GPR R8 Explicit input operand R8

9 Explicit GPR R9 Explicit input operand R9

10 Explicit GPR R10 Explicit input operand R10

11 Explicit GPR R11 Explicit input operand R11

12 Explicit GPR R12 Explicit input operand R12

13 Explicit GPR R13 Explicit input operand R13

14 Explicit GPR R14 Explicit input operand R14

15 Explicit GPR R15 Explicit input operand R15

64 Explicit Component of explicit input ATTRIBUTES TD_PARAMS.ATTRIBUTES

65 Explicit Component of explicit input XFAM TD_PARAMS.XFAM

66 Explicit Component of explicit input EXEC_CONTROLS TD_PARAMS.EXEC_CONTROLS

67 Explicit Component of explicit input EPTP_CONTROLS TD_PARAMS.EPTP_CONTROLS

68 Explicit Component of explicit input MAX_VCPUS TD_PARAMS.MAX_VCPUS

69 Explicit Component of explicit input CPUID_CONFIG TD_PARAMS.CPUID_CONFIG

70 Explicit Component of explicit input TSC_FREQUENCY TD_PARAMS.TSC_FREQUENCY

95 Explicit Component of explicit input PAGE PAGE PA array entry

96 Explicit Component of explicit input TDMR_INFO_PA TDMR_INFO_PA array entry

97 Explicit Component of explicit input GPA_LIST_ENTRY GPA_LIST array entry

98 Explicit Component of explicit input MIG_BUFF_LIST_ENTRY Migration buffer list entry

99 Explicit Component of explicit input NEW_PAGE_LIST_ENTRY New page list entry

128 Implicit Physical Page TDR TDR Page

129 Implicit Physical Page TDCX TDCX Page

130 Implicit Physical Page TDVPR TDVPR Page

132 Implicit Physical Page REG_PAGE PT_REG private page

144 Implicit TD logical control structure TDCS TDCS Logical Structure

145 Implicit TD logical control structure TDVPS TDVPS Logical Structure

146 Implicit TD logical control structure SEPT_TREE Secure EPT Tree

147 Implicit TD logical control structure SEPT_ENTRY Secure EPT Entry

168 Implicit Component of logical control
structure

RTMR TDCS.RTMR

169 Implicit Component of logical control
structure

TD_EPOCH TDCS.TD_EPOCH

170 Implicit Component of logical control
structure

STDBC TDCS.STDBC_LINK

171 Implicit Component of logical control
structure

MIGSC TDCS.MIGSC_LINK and MIGSC page

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 26 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand
ID

Explicit/
Implicit

Class Operand Description

172 Implicit Component of logical control
structure

OP_STATE TDCS.OP_STATE

173 Implicit Component of logical control
structure

MIG TDCS Migration Context

174 Implicit Component of logical control
structure

SERVTD_BINDINGS Service TD bindings table

184 Implicit Abstract item SYS Intel TDX Module

185 Implicit Abstract item TDMR TDMR

186 Implicit Abstract item KOT KOT

187 Implicit Abstract item KET KET

188 Implicit Abstract item WBCACHE TDH.PHYMEM.CACHE.WB State

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 27 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. ABI Reference: Data Types

This section describes data types that are designed to be used by the Intel TDX module.

4.1. Basic Crypto Types

Table 4.1: Basic Crypto Types

Name Size
(Bytes)

Description

SHA384_HASH 48 384-bit buffer containing the result of a SHA384 hash calculation

KEY128 16 128-bit key

KEY256 32 256-bit key

 5

4.2. UPDATED: TDX Module Configuration, Enumeration and Initialization Types

Note: This section describes configuration, enumeration and initialization types, as defined. Implementation may
differ.

4.2.1. CPUID_CONFIG

CPUID_CONFIG is designed to enumerate how the host VMM may configure the virtualization done by the Intel TDX 10

module for a single CPUID leaf and sub-leaf. An array of CPUID_CONFIG entries is used for the Intel TDX module
enumeration by TDH.SYS.INFO.

Table 4.2: CPUID_CONFIG Definition

Field Offset
(Bytes)

Size
(Bytes)

Description

LEAF 0 4 EAX input value to CPUID

SUB_LEAF 4 4 ECX input value to CPUID

A value of -1 indicates a CPUID leaf with no sub-leaves.

EAX 8 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EAX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

EBX 12 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EBX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

ECX 16 4 Enumeration of the configurable virtualization of the value returned by CPUID in
ECX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

EDX 20 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EDX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

4.2.2. UPDATED: TDSYSINFO_STRUCT 15

TDSYSINFO_STRUCT is designed to provide enumeration information about the Intel TDX module. It is an output of the
TDH.SYS.INFO leaf function.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 28 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Note: TDSYSINFO_STRUCT and TDH.SYS.INFO are provided for backward compatibility. TDH.SYS.RDALL is the
recommended method to read Intel TDX module information.

TDSYSINFO_STRUCT’s size is 1024B.

Table 4.3: TDSYSINFO_STRUCT Definition

Section Field Name Offset
(Bytes)

Type Size
(Bytes)

Description

Intel TDX
Module
Info

ATTRIBUTES 0 Bitmap 4 Module attributes

Bits 30:0 Reserved – set to 0

Bit 31 0 indicates a
production module.

 1 indicates a debug
module.

VENDOR_ID 4 Integer 4 0x8086 for Intel

BUILD_DATE 8 BCD 4 Intel TDX module build data – in
yyyymmdd BCD format (each
digit occupies 4 bits)

BUILD_NUM 12 Integer 2 Build number of the Intel TDX
module

MINOR_VERSION 14 Integer 2 Minor version number of the
Intel TDX module

MAJOR_VERSION 16 Integer 2 Major version number of the
Intel TDX module

SYS_RD 18 Boolean 1 A non-0 value indicates that the
information in this structure is
incomplete. TDH.SYS.RD or
TDH.SYS.RDALL should be used
to obtain TDX module
information.

RESERVED 19 N/A 13 This field is reserved for
enumerating future Intel TDX
module capabilities.

Set to 0

Memory
Info

MAX_TDMRS 32 Integer 2 The maximum number of
TDMRs supported

MAX_RESERVED_
PER_TDMR

34 Integer 2 The maximum number of
reserved areas per TDMR

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 29 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Section Field Name Offset
(Bytes)

Type Size
(Bytes)

Description

PAMT_ENTRY_
SIZE

36 Integer 2 The size of a PAMT entry –
determines the number of bytes
that need to be reserved for the
three PAMT areas:

• PAMT_1G (1 entry per 1GB
of TDMR)

• PAMT_2M (1 entry per 2MB
of TDMR)

• PAMT_4K (1 entry per 4KB
of TDMR)

RESERVED 38 N/A 10 Set to 0

Control
Struct Info

TDCS_BASE_SIZE 48 Integer 2 Base value for the number of
bytes required to hold TDCS

RESERVED 50 N/A 2 Reserved for additional TDCS
enumeration

Set to 0

TDVPS_BASE_SIZE 52 Integer 2 Base value for the number of
bytes required to hold TDVPS

RESERVED 54 N/A 10 Set to 0

TD
Capabilities

ATTRIBUTES_
FIXED0

64 Bitmap 8 If any certain bit is 0 in
ATTRIBUTES_FIXED0, it must be
0 in any TD’s ATTRIBUTES. The
value of this field reflects the
Intel TDX module capabilities
and configuration and CPU
capabilities.

ATTRIBUTES_
FIXED1

72 Bitmap 8 If any certain bit is 1 in
ATTRIBUTES_FIXED1, it must be
1 in any TD’s ATTRIBUTES. The
value of this field reflects the
Intel TDX module capabilities
and configuration and CPU
capabilities.

XFAM_FIXED0 80 Bitmap 8 If any certain bit is 0 in
XFAM_FIXED0, it must be 0 in
any TD’s XFAM.

XFAM_FIXED1 88 Bitmap 8 If any certain bit is 1 in
XFAM_FIXED1, it must be 1 in
any TD’s XFAM.

RESERVED 96 N/A 32 Set to 0

NUM_CPUID_
CONFIG

128 Integer 4 Number of the following
CPUID_CONFIG entries

CPUID_CONFIG[0] 132 CPUID_
CONFIG

24

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 30 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Section Field Name Offset
(Bytes)

Type Size
(Bytes)

Description

 Enumeration of the CPUID
leaves/sub-leaves that contain
bit fields whose virtualization by
the Intel TDX module is either:

• Directly configurable
(CONFIG_DIRECT) by the
host VMM

• Bits that the host VMM may
allow to be 1
(ALLOW_DIRECT) and their
native value, as returned by
the CPU, is 1.

See 4.2.1 for details.

Note that the virtualization of
many CPUID bit fields not
enumerated in this list is
configurable indirectly via the
XFAM and ATTRIBUTES assigned
to a TD by the host VMM.

CPUID_
CONFIG[last]

 CPUID_
CONFIG

24

Reserved RESERVED N/A Fills up to the structure size
(1024B) – set to 0

4.2.3. UPDATED: CMR_INFO

CMR_INFO is designed to provide information about a Convertible Memory Range (CMR), as configured by BIOS and
checked and stored securely by MCHECK.

Note: CMR_INFO and TDH.SYS.INFO are provided for backward compatibility. TDH.SYS.RDALL is the recommended 5

method to read Intel TDX module information.

Table 4.4: CMR_INFO Entry Definition

Name Offset
(Bytes)

Type Size
(Bytes)

Description

CMR_BASE 0 Physical
Address

8 Base address of the CMR: since a CMR is aligned on 4KB, bits
11:0 are 0.

CMR_SIZE 8 Integer 8 Size of the CMR, in bytes: since a CMR is aligned on 4KB, bits
11:0 are 0.

A value of 0 indicates a null entry.

TDH.SYS.INFO leaf function returns a MAX_CMRS (32) entry array of CMR_INFO entries. The CMRs are sorted from the
lowest base address to the highest base address, and they are non-overlapping. 10

4.2.4. UPDATED: TDMR_INFO

TDMR_INFO is designed to provide information about a single Trust Domain Memory Region (TDMR) and its associated
PAMT. It is used as an input to TDH.SYS.CONFIG.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 31 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 4.5: TDMR_INFO Entry Definition

Name Offset
(Bytes)

Type Size
(Bytes)

Description

TDMR_BASE 0 Physical
Address

8 Base address of the TDMR (HKID bits must be 0): since a
TDMR is aligned on 1GB, bits 29:0 are always 0.

TDMR_SIZE 8 Integer 8 Size of the TDMR, in bytes: must be greater than 0 and a
whole multiple of 1GB (i.e., bits 29:0 are always 0).

PAMT_1G_BASE 16 Physical
Address

8 Base address of the PAMT_1G range associated with the
above TDMR (HKID bits must be 0): since a PAMT range is
aligned on 4KB, bits 11:0 are always 0.

PAMT_1G_SIZE 24 Integer 8 Size of the PAMT_1G range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.

PAMT_2M_BASE 32 Physical
Address

8 Base address of the PAMT_2M range associated with the
above TDMR (HKID bits must be 0): since a PAMT range is
aligned on 4KB, bits 11:0 are always 0.

PAMT_2M_SIZE 40 Integer 8 Size of the PAMT_2M range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.

PAMT_4K_BASE 48 Physical
Address

8 Base address of the PAMT_4K range associated with the above
TDMR (HKID bits must be 0): since a PAMT range is aligned on
4KB, bits 11:0 are always 0.

PAMT_4K_SIZE 56 Integer 8 Size of the PAMT_4K range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.

RESERVED_OFFSET[0] 64 Integer 8 • Offset of reserved range 0 within the TDMR: since a
reserved range is aligned on 4KB, bits 11:0 are always 0.

RESERVED_SIZE[0] 72 Integer 8 Size of reserved range 0 within the TDMR:

• A size of 0 indicates a null entry. All following reserved
range entries must also be null.

• Since a reserved range is aligned on 4KB, bits 11:0 are
always 0.

RESERVED_OFFSET[N-1] 64 +
16*(N-1)

Integer 8 Offset of the last reserved range within the TDMR.

RESERVED_SIZE[N-1] 72 +
16*(N-1)

Integer 8 Size of the last reserved range within the TDMR.

Notes:

• The number of reserved areas within a TDMR is enumerated by TDX Module’s MAX_RESREVED_PER_TDMR metadata
field, which can be read using TDH.SYS.RD, TDH.SYS.RDALL or TDH.SYS.RDM. For details, see 4.2.25.1. 5

• For backward compatibility, this value is also enumerated by TDSYSINFO_STRUCT.MAX_RESREVED_PER_TDMR (see
4.2.2).

• Within each TDMR entry, all reserved areas must be sorted from the lowest offset to the highest offset, and they
must not overlap with each other.

• All TDMRs and PAMTs must be contained within CMRs. 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 32 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

• A PAMT area must not overlap with another PAMT area (associated with any TDMR), and it must not overlap with
non-reserved areas of any TDMR. PAMT areas may reside within reserved areas of TDMRs.

4.3. TD Parameters Types

Note: This section describes TD parameter types, as defined. Implementation details may differ.

4.3.1. UPDATED: ATTRIBUTES 5

ATTRIBUTES is defined as a 64b field that specifies various guest TD attributes. ATTRIBUTES is provided by the host VMM
as a guest TD initialization parameter as part of TD_PARAMS. It is reported to the guest TD by TDG.VP.INFO and as part
of TDREPORT_STRUCT returned by TDG.MR.REPORT. ATTRIBUTES is migrated to a destination platform as part of the
immutable TD state export by TDH.EXPORT.STATE.IMMUTABLE and import by TDH.IMPORT.STATE.IMMUTABLE.

The ATTRIBUTES bits are divided into three groups, as shown in the table below. If any bit in the TUD group is set to 1, 10

the guest TD is under off-TD debug and is untrusted. The SEC group indicates features that may impact TD security but
are not considered as impacting TD trust.

Table 4.6: ATTRIBUTES Definition

Bits Group Description Bits Field Description

7:0 TUD TD Under Debug

If any of the bits in
this group are set
to 1, the guest TD
is untrusted.

0 DEBUG Guest TD runs in off-TD debug mode. Its
VCPU state and private memory are
accessible by the host VMM.

7:1 RESERVED Reserved for future TUD flags – must be 0

31:8 SEC Attributes that
may impact TD
security

28:8 RESERVED Reserved for future SEC flags – must be 0

29 MIGRATABLE TD is migratable (using a Migration TD)

30 PKS TD is allowed to use Supervisor Protection
Keys.

31 KL TD is allowed to use Key Locker.

Must be 0

63:32 OTHER Attributes that do
not impact TD
security

62:32 RESERVED Reserved for future OTHER flags – must be 0

63 PERFMON TD is allowed to use Perfmon and
PERF_METRICS capabilities.

4.3.2. XFAM 15

Intel SDM, Vol. 1, 13 Managing State Using the XSAVE Feature Set
Intel SDM, Vol. 3, 13 System Programming for Instruction Set Extensions and Processor Extended State

Intel TDX module extended state handling is described in the [TDX Module Spec].

XFAM (eXtended Features Available Mask) is defined as a 64b bitmap, which has the same format as XCR0 or IA32_XSS
MSR. XFAM determines the set of extended features available for use by the guest TD. XFAM is provided by the host 20

VMM as a guest TD initialization parameter as part of TD_PARAMS. It is reported to the guest TD by CPUID(0x0D, 0x01)
and as part of TDREPORT_STRUCT returned by TDG.MR.REPORT.

The Intel TDX module and the Intel® architecture impose some rules on how the bits of XFAM may be set. See the [TDX
Module Spec] for details.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 33 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.3.3. CPUID_VALUES

CPUID_VALUES is defined as a 128b structure composed of four 32b fields representing the values returned by CPUID in
registers EAX, EBX, ECX and EDX. An array of CPUID_RET is used during guest TD configuration by TDH.MNG.INIT.

Table 4.7: CPUID_VALUES Definition

Field Offset
(Bytes)

Size
(Bytes)

Description

EAX 0 4 Value returned by CPUID in EAX

EBX 4 4 Value returned by CPUID in EBX

ECX 8 4 Value returned by CPUID in ECX

EDX 12 4 Value returned by CPUID in EDX

 5

4.3.4. UPDATED: TD_PARAMS

TD_PARAMS is provided as an input to TDH.MNG.INIT, and some of its fields are included in the TD report. The format
of this structure is valid for a specific MAJOR_VERSION of the Intel TDX module, as reported by TDH.SYS.RD/RDM or
TDH.SYS.INFO.

TD_PARAMS’ size is 1024B. 10

Table 4.8: UPDATED: TD_PARAMS Definition

Field Offset
(Bytes)

Type Size
(Bytes)

Description Included in
TDREPORT?

ATTRIBUTES 0 64b bitmap (see
4.3.1)

8 TD attributes: the value set in this field must
comply with ATTRIBUTES_FIXED0 and
ATTRIBUTES_FIXED1 enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO.

Yes

XFAM 8 64b bitmap in
XCR0 format

8 Extended Features Available Mask: indicates
the extended state features allowed for the
TD. XFAM’s format is the same as XCR0 and
IA32_XSS MSR. The value set in this field
must satisfy the following conditions:

• Natively valid value for XCR0 and
IA32_XSS (does not contain reserved
bits, features not supported by the CPU,
or illegal bit combinations)

• Complies with XFAM_FIXED0 and
XFAM_FIXED1 as enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO.

Yes

MAX_VCPUS 16 Unsigned 16b
Integer

2 Maximum number of VCPUs No

RESERVED 18 N/A 6 Must be 0 No

EPTP_CONTROLS 24 EPTP 8 Control bits of EPTP – copied to each TD
VMCS on TDH.VP.INIT:

Bits 2:0 Memory type – must be 110 (WB)

Bits 5:3 EPT level – 1 less than the EPT
page-walk length

Bits 63:6 Reserved – must be 0

No

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 34 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Offset
(Bytes)

Type Size
(Bytes)

Description Included in
TDREPORT?

EXEC_CONTROLS 32 64b bitmap (see

Table 4.9)

8 Non-measured TD-scope execution controls No

TSC_FREQUENCY 40 16b unsigned
integer

2 TD-scope virtual TSC frequency in units of
25MHz – must be between 4 and 400.

No

RESERVED 42 N/A 38 Must be 0 No

MRCONFIGID 80 SHA384_HASH 48 Software-defined ID for non-owner-defined
configuration of the guest TD – e.g., run-
time or OS configuration

Yes

MROWNER 128 SHA384_HASH 48 Software-defined ID for the guest TD’s
owner

Yes

MROWNERCONFIG 176 SHA384_HASH 48 Software-defined ID for owner-defined
configuration of the guest TD – e.g., specific
to the workload rather than the run-time or
OS

Yes

RESERVED 224 N/A 32 Must be 0 No

CPUID_CONFIG[0] 256 CPUID_VALUES 16 Direct configuration of CPUID leaves/sub-
leaves virtualization: the number and order
of entries must be equal to the number and
order of directly configurable or allowable
CPUID leaves/sub-leaves reported by
TDH.SYS.RD/RDALL or TDH.SYS.INFO. Note
that the leaf and sub-leaf numbers are
implicit.

Only bits that have been reported as 1 by
TDH.SYS.RD/RDALL or TDH.SYS.INFO may be
set to 1.

Note that the virtualization of many CPUID
bit fields not enumerated in this list is
configurable indirectly, via the XFAM and
ATTRIBUTES fields.

No

CPUID_CONFIG[n-1] CPUID_VALUES 16

RESERVED N/A Fills up to TD_PARAMS size (1024B) – must
be 0

No

Table 4.9: TD_PARAMS_STRUCT.EXEC_CONTROLS Definition

Bits Name Description

0 GPAW TD-scope Guest Physical Address Width execution control: copied to each TD
VMCS GPAW execution control on TDH.VP.INIT

0: GPA.SHARED bit is GPA[47]

1: GPA.SHARED bit is GPA[51]

63:1 RESERVED Must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 35 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.4. Physical Memory Management Types

Note: This section describes physical memory types, as defined. Implementation may differ.

PAMT entry and PT (page type) are defined in the [TDX Module Spec].

4.4.1. Physical Page Size

Three physical page size levels (4KB, 2MB and 1GB) are defined. 5

Table 4.10: Page Size Definition

Page Size Associated
Physical Page Size

Value

PS_1G 1GB 2

PS_2M 2MB 1

PS_4K 4KB 0

4.5. UPDATED: TD Private Memory Management Data Types: Secure EPT

Intel SDM, Vol. 3, 28.2.2 EPT Translation Mechanism

Note: This section describes private memory management types, as defined. Implementation may differ. 10

4.5.1. Secure EPT Levels

Secure EPT level definition is identical to legacy VMX EPT level definition. As a rule, an EPT entry at level L maps a GPA
range whose size is 212+9*L.

Table 4.11: EPT Levels Definition

Level 0 1 2 3 4 5 (5-Level EPT Only)

GPA Range Size 4KB 2MB 1GB 512GB 256TB 16PB1

Child Physical
Page Size

4KB 2MB 1GB N/A N/A N/A

EPT Page Type N/A EPT EPD EPDPT EPML4 EPML5

Parent EPT
Entry Type

EPTE EPDE EPDPTE EPML4E EPML5E (5-level EPT) or
VMCS.EPTP (4-level EPT)

VMCS.EPTP

GPA Offset Bits 20:12 29:21 38:30 47:39 51:48 (5-level EPT only) N/A

 15

4.5.2. Secure EPT Entry Information as Returned by TDX Module Functions

Many Intel TDX module functions return Secure EPT entry information. This information is returned in the formats
detailed below, which may be different that the actual Secure EPT format as maintained by the TDX module in memory.

Note: The returned Secure EPT information is subject to change with new versions of TDX.

 Returned Secure EPT Entry Content 20

The returned secure EPT entry format is detailed below. It may be different that the actual Secure EPT format as
maintained by the TDX module in memory.

1 Only the lower half is available as TD private GPA space, because the SHARED bit must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 36 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 4.12: Secure EPT Entry Content as Returned by TDX Interface Functions

Secure EPT Entry Field Value Returned in RCX
(per Entry State Returned in RDX)

MSB LSB Size Short
Name

Full Name Enabled Non-FREE
Leaf

Non-FREE
Non-Leaf

FREE

0 0 1 R Read N/A R R 0

1 1 1 W Write N/A W W 0

2 2 1 Xs Execute N/A Xs Xs 0

5 3 3 MT Memory Type N/A 6 0 0

6 6 1 IPAT Ignore PAT N/A 1 0 0

7 7 1 PS Leaf N/A 1 0 0

8 8 1 A Accessed No 0 0 0

9 9 1 D Dirty No 0 0 0

10 10 1 Xu Execute (User) No Xu Xu 0

11 11 1 Ignored Ignored N/A 0 0 0

51 12 40 HPA[51:12] Host Physical Address [51:12] N/A HPA[51:12] HPA[51:12] 0

57 57 1 VPW Verify Paging-Write No 0 0 0

58 58 1 PW Paging Write No 0 0 0

59 59 1 Ignored Ignored N/A 0 0 0

60 60 1 SSS Supervisor Shadow Stack No 0 0 0

61 61 1 SPP Check Sub-Page Permissions No 0 0 0

62 62 1 Ignored Ignored N/A 0 0 0

63 63 1 SVE Suppress #VE Yes SVE 0 1

 Additional Returned Secure EPT Information

Additional information for secure EPT entries is returned as defined below.

Table 4.13: Additional Secure EPT Entry Information Returned by TDX Interface Functions 5

Bits Name Description

2:0 Level Level of the returned Secure EPT entry – see 4.5.1 above

7:3 Reserved Set to 0

15:8 State The TDX state of the Secure EPT entry – see Table 4.14 below

63:16 Reserved Set to 0

Table 4.14: Secure EPT Entry TDX State Returned by TDX Interface Functions

State Name Public
State
Number

Description

FREE 0 Secure EPT entry does not map a GPA range.

REMOVED 5 Secure EPT entry is of a removed page

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 37 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

State Name Public
State
Number

Description

MAPPED 4 Secure EPT entry maps a private GPA range which is accessible
by the guest TD.

BLOCKED 1 Secure EPT entry maps a private GPA range, but new address
translations to that range are blocked.

BLOCKEDW 8 Secure EPT entry maps a private GPA range, but new address
translations for write operations to that range are blocked.

EXPORTED_BLOCKEDW 9 Secure EPT entry maps a private page that has been blocked
for writing and exported.

EXPORTED_DIRTY 11 Secure EPT entry maps a private page that was exported, but is
not blocked for writing and its content and/or attributes may
have since been modified.

EXPORTED_DIRTY_BLOCKEDW 12 Secure EPT entry maps a private page that was previously
exported, its content and/or attributes may have since been
modified and then it was blocked for writing.

PENDING 2 Secure EPT entry maps a 4KB or a 2MB page that has been
dynamically added to the guest TD using TDH.MEM.PAGE.AUG
and is pending acceptance by the guest TD using
TDG.MEM.PAGE.ACCEPT. This page is not yet accessible by the
guest TD.

PENDING_BLOCKED 3 Secure EPT entry is both pending and blocked.

PENDING_BLOCKEDW 16 Secure EPT entry is both pending and blocked for writing.

PENDING_EXPORTED_BLOCKEDW 17 Secure EPT entry is both pending and exported.

PENDING_EXPORTED_DIRTY 19 Secure EPT entry is both pending and exported, and is not
blocked for writing.

PENDING_EXPORTED_DIRTY_BLOCKEDW 20 Secure EPT entry is both pending and exported, and is blocked
for writing.

4.6. TD Entry and Exit Types

4.6.1. Extended Exit Qualification

Extended Exit Qualification is a 64-bit field returned by TDH.VP.ENTER for asynchronous TD exits with an architectural
VMX exit reasons. It contains additional non-VMX, TDX-specific information. 5

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 38 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 4.15: Extended Exit Qualification

Bits Name Description

3:0 TYPE Extended exit qualification type

Value Name Description

0 NONE No extended exit qualification

1 ACCEPT Exit qualification for an EPT violation during
TDG.MEM.PAGE.ACCEPT

Other Reserved

31:4 Reserved Set to 0

63:32 INFO TYPE-specific information

Set to 0 for NONE – See below for other values of TYPE

Table 4.16: Extended Exit Qualification INFO Field for ACCEPT

Bits Name Description

34:32 REQ_SEPT_LEVEL SEPT level requested as an input to TDG.MEM.PAGE.ACCEPT

37:35 ERR_SEPT_LEVEL SEPT level in which TDG.MEM.PAGE.ACCEPT detected an error

45:38 ERR_SEPT_STATE The TDX state of the Secure EPT entry where TDG.MEM.PAGE.ACCEPT detected
an error – see Table 4.14 above

46 ERR_SEPT_IS_LEAF Indicates that the SEPT entry where TDG.MEM.PAGE.ACCEPT detected an error
is a leaf entry

63:47 Reserved Set to 0

4.7. Measurement and Attestation Types 5

Note: This section describes measurement and attestation types, as defined. Implementation may differ.

4.7.1. CPUSVN

CPUSVN is a 16B Security Version Number of the CPU.

• There is a single CPUSVN used for SGX and TDX.

• CPUSVN contents are considered micro-architectural. CPUSVN is composed of fields for PR_RESET_SVN, 10

R_LAST_PATCH_SVN, SINIT, BIOS ACM, Boot Guard ACM and BIOS Guard NP-PPPE module.

4.7.2. TDREPORT_STRUCT

TDREPORT_STRUCT is the output of the TDG.MR.REPORT function. TDREPORT_STRUCT is composed of a generic MAC
structure (REPORTMACSTRUCT, see 4.7.3 below), a SEAMINFO structure and a TDX-specific TEE info structure
(TDINFO_STRUCT, see 4.7.5 below). 15

The size of TDREPORT_STRUCT is 1024B.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 39 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 4.17: TDREPORT_STRUCT Definition

Name Offset
(Bytes)

Type Size
(Bytes)

Description

REPORTMACSTRUCT 0 REPORTMACSTRUCT 256 REPORTMACSTRUCT for the
TDG.MR.REPORT

TEE_TCB_INFO 256 TEE_TCB_INFO_STRUCT 239 Additional attestable elements in the
TD’s TCB are not reflected in the
REPORTMACSTRUCT.CPUSVN – includes
the Intel TDX module measurements.

RESERVED 495 N/A 17 Reserved – contains 0

TDINFO 512 TDINFO_STRUCT 512 TD’s attestable properties

4.7.3. REPORTMACSTRUCT (Reference)

REPORTMACSTRUCT is common to Intel’s Trusted Execution Environments (TEEs) – e.g., SGX and TDX.
REPORTMACSTRUCT is the first field in the TEE report structure. In the TDX architecture, that is TDREPORT_STRUCT. 5

REPORTMACSTRUCT is MAC-protected and contains hashes of the remainder of the report structure which includes the
TEE’s measurements, and where applicable, the measurements of additional TCB elements not reflected in
REPORTMACSTRUCT.CPUSVN – e.g., a SEAM’s measurements.

Software verifying a TEE report structure (for TDX, this includes TEE_TCB_INFO_STRUCT and TDINFO_STRUCT) should
first confirm that its REPORTMACSTRUCT.TEE_TCB_INFO_HASH equals the hash of the TEE_TCB_INFO_STRUCT (if 10

applicable) and that REPORTMACSTRUCT.TEE_INFO_HASH equals the hash of the TDINFO_STRUCT. Then, software uses
ENCLU(EVERIFYREPORT) to help check the integrity of the REPORTMACSTRUCT. If all checks pass, the measurements in
the structure describe a TEE on this platform.

The size of REPORTMACSTRUCT is 256B.

Table 4.18: REPORTMACSTRUCT Definition 15

Name Offset
(Bytes)

Type Size
(Bytes)

Description MAC

REPORTTYPE 0 REPORTTYPE 4 Type Header Structure Yes

RESERVED 4 12 Must be zero Yes

CPUSVN 16 CPUSVN 16 CPU SVN Yes

TEE_TCB_INFO_HASH 32 SHA384_HASH 48 SHA384 of TEE_TCB_INFO for TEEs
implemented using Intel TDX

Yes

TEE_INFO_HASH 80 SHA384_HASH 48 SHA384 of TEE_INFO: a TEE-specific info
structure (TDG.VP.INFO or SGXINFO) or 0
if no TEE is represented

Yes

REPORTDATA 128 64 A set of data used for communication
between the caller and the target.

Yes

RESERVED 192 32 Must be zero Yes

MAC 224 32 The MAC over the REPORTMACSTRUCT
with model-specific MAC

No

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 40 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.7.4. REPORTTYPE (Reference)

REPORTTYPE indicates the reported Trusted Execution Environment (TEE) type, sub-type and version.

The size of REPORTTYPE is 4B.

Table 4.19: REPORTTYPE Definition

Name Offset
(Bytes)

Size
(Bytes)

Description

TYPE 0 1 Trusted Execution Environment (TEE) Type:

0x00: SGX

0x7F-0x01: Reserved (TEE implemented by CPU)

0x80: Reserved (TEE implemented by SEAM module)

0x81: TDX

0xFF-0x82: Reserved (TEE implemented by SEAM module)

SUBTYPE 1 1 TYPE-specific subtype

Value is 0

VERSION 2 1 TYPE-specific version.

Value is 0

RESERVED 3 1 Must be zero

 5

4.7.5. UPDATED: TDINFO_STRUCT

TDINFO_STRUCT is defined as the TDX-specific TEE_INFO part of TDG.MR.REPORT. It contains the measurements and
initial configuration of the TD that was locked at initialization and a set of measurement registers that are run-time
extendable. These values are copied from the TDCS by the TDG.MR.REPORT function. Refer to the [TDX Module Spec]
for additional details. 10

The size of TDINFO_STRUCT is 512B.

Table 4.20: TDINFO_STRUCT Definition

Name Offset
(Bytes)

Type Size (Bytes) Description

ATTRIBUTES 0 8 TD’s ATTRIBUTES

XFAM 8 8 TD’s XFAM

MRTD 16 SHA384_HASH 48 Measurement of the initial contents of the TD

MRCONFIGID 64 SHA384_HASH 48 Software-defined ID for non-owner-defined
configuration of the guest TD – e.g., run-time or OS
configuration

MROWNER 112 SHA384_HASH 48 Software-defined ID for the guest TD’s owner

MROWNERCONFIG 160 SHA384_HASH 48 Software-defined ID for owner-defined configuration of
the guest TD – e.g., specific to the workload rather than
the run-time or OS

RTMR 208 SHA384_HASH NUM_RTMRS
* 48

Array of NUM_RTMRS (4) run-time extendable
measurement registers

SERVTD_HASH 400 SHA384_HASH 48 Hash of the TDINFO_STRUCTs of service TDs bound or
pre-bound to this TD

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 41 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Name Offset
(Bytes)

Type Size (Bytes) Description

RESERVED 448 N/A 64 Must be zero

4.8. UPDATED: Metadata Access Types

Note: This section describes control structure field access types, as defined. Implementation may differ.

Metadata access is described in the [TDX Module Spec].

4.8.1. MD_FIELD_ID: Metadata Field Identifier and Sequence Header 5

A metadata field identifier is used for accessing a single field. A metadata sequence header is an extension of the field
identifier, used for accessing a field sequence.

Lists of metadata field identifiers for global-scope metadata, TD-scope metadata and VCPU-scope metadata are provided
in Ch. 5. To access a certain metadata field, a base identifier is taken from those tables; only LAST_FIELD_IN_SEQUENCE
and WRITE_MASK_VALID need to be updated as needed. 10

Table 4.21: Metadata Field Identifier and Sequence Header Definition

Bits Size Name Base
Identifier
from
Metadata
Tables

Description

31:0 32 FIELD_CODE Yes For a single metadata field identifier, identifies the element that is being
accessed.

For a metadata sequence header, identifies the first field that is being
accessed in a sequence.

33:32 2 ELEMENT_SIZE_CODE Yes Size of a single element of a metadata field

0: 8 bits

1: 16 bits

2: 32 bits

3: 64 bits

For backward compatibility, TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD and
TDH.VP.WR version 0 ignore this field and use a default value based on the
field code.

37:34 4 LAST_ELEMENT_
IN_FIELD

Yes Number of elements in a metadata field, minus 1

For a single-element identifier, LAST_ELEMENT_IN_FIELD is ignored.

46:38 9 LAST_FIELD_
IN_SEQUENCE

No Number of fields in a sequence, minus 1

For a single field identifier, LAST_FIELD_IN_SEQUENCE is 0.

49:47 3 RESERVED Yes Must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 42 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Size Name Base
Identifier
from
Metadata
Tables

Description

50 1 INC_SIZE Yes For a single field identifier, INC_SIZE must be 0.

For a sequence header, INC_SIZE specifies how FIELD_CODE is incremented
when accessing consecutive elements in a sequence:

0: Increment FIELD_CODE by 1 for each element.

1: Increment FIELD_CODE by 2 for each element.

INC_SIZE is designed to support VMCS field encoding, where bit 0 (access
type) is always 0 for full access.

51 1 WRITE_MASK_VALID No Indicates that a write mask is provided together with the write value.
Applicable only when used for writing fields.

For backward compatibility, TDH.MNG.WR and TDH.VP.WR version 0 ignore
this field and use a default value of 1.

54:52 3 CONTEXT_CODE Yes Specifies the context of the field:

0: Platform (whole Intel TDX module)

1: TD

2: TD VCPU

Other: Reserved

For backward compatibility, TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD and
TDH.VP.WR version 0 ignore this field and use an implicit value.

55 1 RESERVED Yes Must be 0

61:56 6 CLASS_CODE Yes Identifies the class of the fields being accessed

Class codes are defined in 4.8.3.

62 1 RESERVED Yes Must be 0

63 1 NON_ARCH Yes Specified forward compatibility, i.e., whether this field identifier will maintain
their definition in a compatible way throughout Intel TDX module updates.

0: Field identifier will maintain forward compatibility.

1: Field identifier may not maintain forward compatibility.

4.8.2. Meaning of Field Codes

For some field classes, field codes have an architectural meaning, as shown below. For other classes, field codes are
arbitrarily assigned.

Table 4.22: Meaning of Field Codes 5

Field Class Field Code Meaning Reference

VMCS Field code is identical to the architectural VMCS field code. The “HIGH”
access type (for accessing the upper 32b of 64b fields) is not supported.

[Intel SDM, Vol. 3,
24.11.2 and App.
B]

MSR Bitmap Offset (in 8B units) from the beginning of the architectural MSR bitmaps
page structure Offset (in 8B units) from the beginning of the architectural
MSR bitmaps page structure

[Intel SDM, Vol. 3,
24.6.9]

Secure EPT Root Offset (in 8B units) from the beginning of the page

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 43 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Class Field Code Meaning Reference

Virtual APIC
Page

Offset (in 8B units) from the beginning of the architectural virtual APIC page
structure

[Intel SDM, Vol. 3,
29.1]

CPUID Config CPUID Leaf and Sub-Leaf, packed as shown below:

Bits Description

31 Leaf number bit 31

30:24 Leaf number bit 6:0

23 Sub-leaf not applicable flag

22:16 Sub-leaf number bits 6:0

15:1 Reserved, must be 0

0 Element index within field

GPR State Architectural GPR number

MSR State Architectural MSR index, packed as shown below:

Bits Description

31:14 Reserved, must be 0

13 Bit 31 (equal to bit 30) of the architectural MSR index

12:0 Bits 12:0 of the architectural MSR index

Extended State Offset (in 8B units) from the beginning of the page extended state buffer

Other Arbitrary field identifiers

4.8.3. Class Codes

 NEW: TDX Module Global Scope Field Class Codes

TDX Module global scope field classes are defined as follows:

Table 4.23: TDX Module Global Scope Field Class Codes Definition 5

Class Code Field Class Name

0 Platform Info

8 TDX Module Version

9 TDX Module Handoff

10 TDX Module Info

16 CMR Info

17 TDMR Info

24 TD Control Structures

25 TD Configurability

32 Migration

33 Service TD

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 44 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

 UPDATED: TD-Scope (TDR and TDCS) Field Class Codes

TD-scope field classes are defined as follows:

Table 4.24: TD Scope (TDR and TDCS) Field Class Codes Definition

Class Code Control Structure Field Class Name

0 TDR TD Management

1 TDR Key Management

16 TDCS TD Management

17 TDCS Execution Controls

18 TDCS TLB Epoch Tracking

19 TDCS Measurement

20 TDCS CPUID

24 TDCS Migration

25 TDCS Service TD

32 TDCS MSR Bitmaps

33 TDCS Secure EPT Root

35 TDCS MIGSC Links

 5

 VCPU-Scope (TDVPS) Field Class Codes

TDVPS field classes are defined as follows:

Table 4.25: TD VCPU Scope (TDVPS) Field Class Codes Definition

Class Code Field Class Name

0 TD VMCS

1 VAPIC

2 VE_INFO

16 Guest GPR State

17 Other Guest State

18 Guest Extended State

19 Guest MSR State

32 Management

4.8.4. Order of Field Identifiers 10

For usages such as TD migration, there is a need to define strict ordering between field identifiers. For this purpose, we
consider field identifiers to be orders by the following fields:

1. CONTEXT_CODE
2. CLASS_CODE
3. FIELD_CODE 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 45 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.8.5. MD_LIST_HEADER: Metadata List Header

MD_LIST_HEADER is defined below. The size of MD_LIST_HEADER is 64 bits.

Table 4.26: MD_LIST_HEADER Definition

Bits Name Description

15:0 LIST_BUFF_SIZE The size of memory buffer containing the list

The buffer may be larger than the actual space occupied by the list; in this case
the excess buffer space is ignored or read and may be overwritten on write.

31:16 NUM_SEQUENCES The number of metadata field sequences in the list.

63:32 RESERVED Reserved, set to 0

4.8.6. Private Page List 5

A private page list specifies a list of HPAs of 4KB pages that are, or will become, TD private pages. The list may have up
to 512 64-bit entries, each containing a 4KB-aligned HPA (HKID bits must be 0) of a page. The list is contained in a single
4KB page and must be aligned on 4KB. The page list may contain null entries, indicated by the INVALID bit.

Table 4.27: Private Page List Entry

Bits Name Description

11:0 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

51:12 HPA Bits 51:12 of the host physical address (HKID bits must be 0) of the
migration buffer page

62:52 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

63 INVALID A value of 1 indicates that this entry is invalid

 10

4.8.7. HPA_AND_SIZE: HPA and Size of a Buffer

HPA_AND_SIZE is a 64-bit structure used to provide a buffer host physical address and size details.

Table 4.28: HPA_AND_SIZE

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits) of the buffer

63:52 SIZE Size of the buffer, in bytes

4.8.8. HPA_AND_LAST: HPA and Last Byte Index of a Page-Aligned Buffer 15

HPA_AND_LAST is a 64-bit structure used to provide a 4KB aligned buffer host physical address and size details.

Table 4.29: HPA_AND_LAST

Bits Name Description

11:0 LAST Index of the last byte in the buffer

51:12 HPA Bits 51:12 of the host physical address (including HKID bits) of the 4KB-
aligned buffer

63:52 RESERVED Reserved: must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 46 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.9. NEW: Service TD Types

4.9.1. SERVTD_TYPE: Service TD Binding Type

SERVTD_TYPE is a 16-bit field which specifies the binding type of a service TD.

Table 4.30: SERVTD_TYPE Definition

Value Meaning Multiple Bindings Metadata Access

0 Migration TD No Migration session key

Other Reserved N/A N/A

 5

4.9.2. SERVTD_ATTR: Service TD Binging Attributes

SERVTD_ATTR is a 64-bit field which specifies binding attributes of a service TD.

Table 4.31: SERVTD_ATTR Definition

Bit(s) Name Description

0 INSTANCE_BINDING 0: Class Binding: Rebinding can be done with any TD with the same
SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR as the original
binding. Those parameters are migrated.

1: Instance Binding: Rebinding can be done with the same TD instance
(same SERVTD_UUID), using the same SERVTD_TYPE and
SERVTD_ATTR as the original binding.

1 RESERVED

Must be 0

2 RESERVED

Must be 0

3 RESERVED

Must be 0

31:4 RESERVED Must be 0

32 IGNORE_ATTRIBUTES If set to 1, a value of 0 is used instead of the service TD’s ATTRIBUTES field
when calculating SERVTD_INFO_HASH

33 IGNORE_XFAM If set to 1, a value of 0 is used instead of the service TD’s XFAM field when
calculating SERVTD_INFO_HASH

34 IGNORE_MRTD If set to 1, a value of 0 is used instead of the service TD’s MRTD field when
calculating SERVTD_INFO_HASH

35 IGNORE_MRCONFIGID If set to 1, a value of 0 is used instead of the service TD’s MRCONFIGID
field when calculating SERVTD_INFO_HASH

36 IGNORE_MROWNER If set to 1, a value of 0 is used instead of the service TD’s MROWNER field
when calculating SERVTD_INFO_HASH

37 IGNORE_MROWNERCONFIG If set to 1, a value of 0 is used instead of the service TD’s MROWNER field
when calculating SERVTD_INFO_HASH

38 IGNORE_RTMR0 If set to 1, a value of 0 is used instead of the service TD’s RTMR0 field
when calculating SERVTD_INFO_HASH

39 IGNORE_RTMR1 If set to 1, a value of 0 is used instead of the service TD’s RTMR1 field
when calculating SERVTD_INFO_HASH

40 IGNORE_RTMR2 If set to 1, a value of 0 is used instead of the service TD’s RTMR2 field
when calculating SERVTD_INFO_HASH

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 47 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit(s) Name Description

41 IGNORE_RTMR3 If set to 1, a value of 0 is used instead of the service TD’s RTMR3 field
when calculating SERVTD_INFO_HASH

42 IGNORE_SERVTD_HASH If set to 1, a value of 0 is used instead of the service TD’s SERVTD_HASH
field when calculating SERVTD_INFO_HASH

63:43 RESERVED Must be 0

4.10. NEW: Migration Types

4.10.1. MBMD: Migration Bundle Metadata

MBMD is composed of a common header and a variable type-specific information.

 Generic MBMD Structure 5

Table 4.32: Generic MBMD Structure Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

SIZE 0 2 Overall size of the MBMD structure, in bytes Yes No

MIG_VERSION 2 2 Migration protocol version

Changes in MBMB format, other migration bundle
components format or migration protocol sequence
require updating the protocol version.

Migration protocol version is set by the MigTD before
migration session starts.

Yes No

MIGS_INDEX 4 2 Index of the migration stream used for migrating this
migration bundle

As 0 Yes

MB_TYPE 6 1 The type of information being migrated:

0: TD-scope immutable non-memory state

1: TD-scope mutable non-memory state

2: VCPU-scope mutable non-memory state

3–15: Reserved

16: TD private memory

17–31: Reserved

32: Epoch token

33: Abort token

Other: Reserved

Yes No

RESERVED 7 1 Reserved, must be 0 Yes No

MB_COUNTER 8 4 Per-stream migration bundle counter

Starts from 0 on each migration epoch start,
incremented by 1 on each MBMD export to the
associated stream.

Yes No

MIG_EPOCH 12 4 Migration epoch

Starts from 0 on migration session start, incremented
by 1 on each epoch token.

A value of 0xFFFFFFFF indicates out-of-order phase.

Yes No

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 48 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

IV_COUNTER 16 8 Monotonously incrementing counter, used as a
component in the AES-GCM IV

As 0 Yes

Type-Specific
Information

24 Variable Variable-sized additional information for each specific
type of MBMD

Yes No

MAC 24+V 16 AES-256-GCM MAC over other MBMD fields and any
associated migration data (all the migration pages)

No No

 TD-Scope Immutable Non-Memory State MBMD Fields

Table 4.33: TD-Scope Immutable Non-Memory State MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

NUM_MIGS 24 2 Maximum number of migration streams that will be
used

Yes No

NUM_IN_ORDER_MIGS 26 2 Number of migration streams that will be used
during the in-order migration phase

Yes No

RESERVED 28 4 Maximum number of migration streams that will be
used

Yes No

 TD-Scope Mutable Non-Memory State MBMD Fields 5

Table 4.34: TD-Scope Mutable Non-Memory State MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

RESERVED 24 8 Reserved, must be 0 Yes No

 VCPU-Scope Mutable Non-Memory State MBMD Fields

Table 4.35: VCPU-Scope Mutable Non-Memory State MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

VP_INDEX 24 2 Virtual CPU index Yes No

RESERVED 26 6 Reserved, must be 0 Yes No

 10

 TD Private Memory MBMD Fields

Table 4.36: TD Private Memory MBMD Type-Specific Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

NUM_GPAS 24 2 Number of entries in the GPA list, including
PENDING pages and CANCEL requests for which no
content is migrated

Yes No

RESERVED 26 6 Reserved, must be 0 Yes No

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 49 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

 Epoch Token MBMD Fields

Table 4.37: Epoch Token MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

TOTAL_MB 24 8 The total number of migration bundles, including the
current one, which have been exported since the
beginning of the migration session

Yes No

 Abort Token MBMD Fields

Table 4.38: Abort Token MBMD Fields Definition 5

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

RESERVED 24 8 Reserved, must be 0 Yes No

4.10.2. GPA List

A GPA list specifies a list of GPAs to migrated by TDH.EXPORT.MEM and TDH.IMPORT.MEM, blocked for writing by
TDH.EXPORT.BLOCKW or reset to their original SEPT entry state by TDH.EXPORT.RESTORE. GPA list may have up to 512
entries, is contained in a single 4KB page and must be aligned on 4KB. The GPA list may contain null entries, as indicated 10

by OPERATION field’s value set to 0 (NOP).

 GPA_LIST_INFO: HPA, First and Last Entries of a GPA List

GPA_LIST_INFO is a 64b structure used as a GPR input and output operand of multiple migration interface functions, e.g.,
TDH.EXPORT.MEM. It provides the HPA of the GPA list page in shared memory, and the index of the first entry and last
entries to be processed. 15

Table 4.39: GPA_LIST_INFO

Bits Name Description

2:0 RESERVED Reserved: must be 0

11:3 FIRST_ENTRY Index of the first entry of the list to be processed

51:12 HPA Bits 51:12 of the host physical address (including HKID) of the GPA list
page, which must be a shared HPA

54:52 RESERVED Reserved: must be 0

63:55 LAST_ENTRY Index of the last entry in the GPA list

 GPA List Entry

Table 4.40 below shows the format of a GPA list entry as used. Bits that are located in the same place as in SEPT entries
are highlighted. The GPA list entry format is designed so that the output of TDH.EXPORT.BLOCKW can be used directly 20

with TDH.EXPORT.MEM, and the output of TDH.EXPORT.MEM can be used directly with TDH.IMPORT.MEM.

Table 4.40: GPA List Entry Definition

Bit(s) Size Name Description TDH.EXPORT.BLOCKW TDH.EXPORT.MEM TDH.IMPORT.MEM TDH.EXPORT.RESTORE

In Out In Out In Out In Out

0 1 R Read Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 50 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit(s) Size Name Description TDH.EXPORT.BLOCKW TDH.EXPORT.MEM TDH.IMPORT.MEM TDH.EXPORT.RESTORE

In Out In Out In Out In Out

1 1 W Write Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

2 1 Xs Execute
(Supervisor)

Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

4:3 2 OPERATION See below Yes Yes Yes Yes Yes Yes Yes Yes

6:5 2 RESERVED Reserved Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod.

9:7 3 MIG_TYPE See below Yes Unmod. Yes Unmod. Yes Unmod. Yes Unmod.

10 1 Xu Execute (User) Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

11 1 PENDING See below Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

51:12 40 GPA Guest Physical
Address bits
51:12

Yes Unmod. Yes Unmod. Yes Unmod. Yes Unmod.

56:52 5 STATUS See below Must be 0 Yes Must be 0 Yes Must be 0 Yes Must be 0 Yes

57 1 VPW Verify Paging-
Write

Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

58 1 PW Paging Write Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

59 1 RESERVED Reserved Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod.

60 1 SSS Supervisor
Shadow Stack

Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

62:61 2 RESERVED Reserved Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod.

63 1 SVE Suppress #VE Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

 GPA List Entry Details

GPA List Details: OPERATION

The following tables describe the meaning of OPERATION, as used for each applicable interface function. Note that the
OPERATION definitions for TDH.EXPORT.BLOCKW, TDH.EXPORT.MEM and TDH.IMPORT.MEM are designed to be 5

compatible, so that the same GPA list can be used for all of them.

Table 4.41: OPERATION Values Definition for TDH.EXPORT.BLOCKW

Value Name Input Output

0 NOP No operation Not blocked

1 BLOCKW Block for writing Blocked

2 NOP No operation Not blocked

3 BLOCKW Block for writing Blocked

Table 4.42: OPERATION Values Definition for TDH.EXPORT.MEM

Value Name Input Output

0 NOP No operation Not exported

1 MIGRATE Export Initial export during this migration
session or following a CANCEL

2 CANCEL Cancel previous export Cancellation of a previous migration

3 RE_MIGRATE Export Re-export of updated content or
attributes

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 51 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 4.43: OPERATION Values Definition for TDH.IMPORT.MEM

Value Name Input Output

0 NOP No operation Not imported

1 MIGRATE Initial import during this migration
session or following a CANCEL

Imported

2 CANCEL Cancel previous import Removed previous import

3 RE_MIGRATE Re-export of updated page content or
attributes

Imported

Table 4.44: OPERATION Values Definition for TDH.EXPORT.RESTORE

Value Name Input Output

0 NOP No operation Not restored

1 RESTORE Restore SEPT entry to non-migration
state

Restored

2 NOP Reserved Not restored

3 RESTORE Restore SEPT entry to non-migration
state

Restored

 5

GPA List Details: MIG_TYPE

Table 4.45: MIG_TYPE Values Definition

Value Name Description

0 PAGE_4K 4KB private memory page

Other RESERVED Reserved for future types

GPA List Details: PENDING

Table 4.46: PENDING Values Definition 10

Value Name Description

0 MAPPED SEPT entry is MAPPED

1 PENDING SEPT entry is PENDING

GPA List Details: STATUS

Table 4.47: STATUS Values Definition

Value Name Description

0 SUCCESS GPA list entry was processed successfully

1 SKIPPED GPA list entry was skipped because NOP was requested

2 SEPT_WALK_FAILED Secure EPT walk failed for the requested GPA

3 SEPT_ENTRY_BUSY Secure EPT entry was busy

4 SEPT_ENTRY_STATE_INCORRECT Secure EPT entry state was incorrect for the requested
operation and the TD’s OP_STATE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 52 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Value Name Description

5 TLB_TRACKING_NOT_DONE TLB tracking was not done for the requested GPA

6 OP_STATE_INCORRECT The TD’s OP_STATE was incorrect for the requested
operation and Secure EPT entry state

7 MIGRATED_IN_CURRENT_EPOCH Requested GPA has already been migrated during the
current migration epoch

8 MIG_BUFFER_NOT_AVAILABLE Required migration buffer was not provided

9 NEW_PAGE_NOT_AVAILABLE Required new TD page was not provided

10 INVALID_PAGE_MAC Page MAC was invalid

11 DISALLOWED_IMPORT_OVER_REMOVED Page import over a removed page is not allowed

12 TD_PAGE_BUSY TD page was busy

31-13 Reserved Reserved

4.10.3. Memory Migration Buffers List

A memory migration buffer list specifies a list of HPAs of 4KB pages in shared memory, to be used as output by
TDH.EXPORT.MEM and as input by TDH.IMPORT.MEM. The list may have up to 512 64-bit entries, each containing a 4KB-
aligned HPA (including HKID bits) of a page in shared memory. The list is contained in a single 4KB page and must be 5

aligned on 4KB. The page list may contain null entries, indicated by the INVALID bit.

 Migration Buffers List Entry

Table 4.48: Migration Buffers List Entry

Bits Name Description

11:0 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

51:12 HPA Bits 51:12 of the host physical address (including HKID) of the migration
buffer page, which must be a shared HPA

62:52 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

63 INVALID A value of 1 indicates that this entry is invalid

4.10.4. Memory Migration Page MAC List 10

A page MAC list specifies a list of MACs over 4KB migrated pages and their GPA list entries, to be used as output by
TDH.EXPORT.MEM and as input by TDH.IMPORT.MEM. The list must contain an entry for each respective GPA list entry
used with the same interface functions. The list may have up to 256 128-bit entries, each containing a single AES-GMAC-
256 of a migrated page. The list is contained in a single 4KB page and must be aligned on 4KB.

4.10.5. Non-Memory State Migration Buffers List 15

A non-memory state migration buffer list specifies a list of HPAs of 4KB pages in shared memory, to be used as output by
TDH.EXPORT.STATE.* and as input by TDH.IMPORT.STATE.*. The list may have up to 512 64-bit entries, each containing
a 4KB-aligned HPA (including HKID bits) of a page in shared memory. The list is contained in a single 4KB page and must
be aligned on 4KB.

 PAGE_LIST_INFO: HPA and Attributes of a Page List 20

PAGE_LIST_INFO is a 64b structure used as a GPR input and output operand of multiple migration interface functions,
e.g., TDH.EXPORT.STATE.TD. It provides the HPA of the migration buffers list page in shared memory, and the index of
the last entry to be processed.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 53 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 4.49: PAGE_LIST_INFO

Bits Name Description

11:0 RESERVED Reserved: must be 0

51:12 HPA Bits 51:12 of the host physical address (including HKID) of the GPA list
page, which must be a shared HPA

54:52 RESERVED Reserved: must be 0

63:55 LAST_ENTRY Index of the last entry in the page list

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 54 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5. UPDATED: ABI Reference: Metadata (Non-Memory State)

This chapter describes the details of TDX metadata, a.k.a. non-memory state or control state.

5.1. NEW: Global-Scope (TDX Module) Metadata

TDX module global scope fields provide enumeration information about the Intel TDX module. They are used with the
TDH.SYS.RD, TDH.SYS.RDALL, TDG.SYS.RD and TDG.SYS.RDALL functions. 5

5.1.1. How to Read the Global Fields Table

The access columns describe whether this field is accessible to the host VMM and to guest TDs. Access is done using the
TDX module metadata access functions, e.g., TDH.SYS.RD. Possible values are shown in the table below.

Table 5.1: Field Access Definition

Access Meaning

None No access to the field

RO This field can only be read.

 10

5.1.2. Global Metadata Fields

Table 5.2: Global Scope Metadata

Class Field VMM
Access

Guest
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

Platform Info NUM_PKGS RO None Integer 4 1 1 4 Number of CPU packages in the system (1 - 8) 0x0000000200000000

Platform Info PKG_FMS RO None N/A 4 8 1 4 Array of version information (type, family,
model, stepping) as returned by
CPUID(1).EAX for each package. Unused
entries (NUM_PKGS and above) are set to 0.

0x0000000200000001

TDX Module
Version

VENDOR_ID RO RO Integer 4 1 1 4 0x8086 for Intel 0x0800000200000000

TDX Module
Version

BUILD_DATE RO None BCD 4 1 1 4 Intel TDX module build data – in yyyymmdd
BCD format (each digit occupies 4 bits)

0x8800000200000001

TDX Module
Version

BUILD_NUM RO None Integer 2 1 1 2 Build number of the Intel TDX module 0x8800000100000002

TDX Module
Version

MINOR_VERSION RO RO Integer 2 1 1 2 Minor version number of the Intel TDX
module

0x0800000100000003

TDX Module
Version

MAJOR_VERSION RO RO Integer 2 1 1 2 Major version number of the Intel TDX
module

0x0800000100000004

TDX Module
Info

SYS_ATTRIBUTES RO RO Bitmap 4 1 1 4 Module attributes
Bits 30:0 Reserved – set to 0
Bit 31 0 indicates a production module.
 1 indicates a debug module.

0x0A00000200000000

TDX Module
Info

NUM_TDX_FEATURES RO RO 8-bit
integer

1 1 1 1 Number of TDX_FEATURES fields 0x0A00000000000001

TDX Module
Info

TDX_FEATURES0 RO RO 64-bit
bitmap

8 1 1 8 Enumerates TDX features:
Bit 0 TD Migration
Bit 1 TD Preserving
Bit 2 Service TD
Bit 3 TDG.VP.RD/WR
Bit 4 Relaxed mem management
concurrency
Bits 63:5 Reserved, set to 0

0x0A00000300000008

CMR Info NUM_CMRS RO None Integer 2 1 1 2 Number of the following CMR entries 0x9000000100000000

CMR Info CMR_BASE RO None Physical
Address

8 32 1 8 Array of CMR base addresses
Since a CMR is aligned on 4KB, bits 11:0 are
0.

0x9000000300000080

CMR Info CMR_SIZE RO None Integer 8 32 1 8 Array of CMR sizes, in bytes
Since a CMR is aligned on 4KB, bits 11:0 are
0.
A value of 0 indicates a null entry.

0x9000000300000100

TDMR Info MAX_TDMRS RO None Integer 2 1 1 2 The maximum number of TDMRs supported 0x9100000100000008

TDMR Info MAX_RESERVED_PER_TD
MR

RO None Integer 2 1 1 2 The maximum number of reserved areas per
TDMR

0x9100000100000009

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 55 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Access

Guest
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

TDMR Info PAMT_4K_ENTRY_SIZE RO None Integer 2 1 1 2 The size of a PAMT_4K (1 entry per 4KB of
TDMR) entry, in bytes – determines the
number of bytes that need to be reserved for
the PAMT_4K area.

0x9100000100000010

TDMR Info PAMT_2M_ENTRY_SIZE RO None Integer 2 1 1 2 The size of a PAMT_2M (1 entry per 2MB of
TDMR) entry, in bytes – determines the
number of bytes that need to be reserved for
the PAMT_2M area.

0x9100000100000011

TDMR Info PAMT_1G_ENTRY_SIZE RO None Integer 2 1 1 2 The size of a PAMT_1G (1 entry per 1GB of
TDMR) entry, in bytes – determines the
number of bytes that need to be reserved for
the PAMT_1G area.

0x9100000100000012

TD Control
Structures

TDR_BASE_SIZE RO None Integer 2 1 1 2 Base value for the number of bytes required
to hold TDR

0x9800000100000000

TD Control
Structures

TDCS_BASE_SIZE RO None Integer 2 1 1 2 Base value for the number of bytes required
to hold TDCS

0x9800000100000100

TD Control
Structures

TDVPS_BASE_SIZE RO None Integer 2 1 1 2 Base value for the number of bytes required
to hold TDVPS

0x9800000100000200

TD
Configurability

ATTRIBUTES_FIXED0 RO None Bitmap 8 1 1 8 If any certain bit is 0 in ATTRIBUTES_FIXED0,
it must be 0 in any TD’s ATTRIBUTES. The
value of this field reflects the Intel TDX
module capabilities and configuration and
CPU capabilities.

0x1900000300000000

TD
Configurability

ATTRIBUTES_FIXED1 RO None Bitmap 8 1 1 8 If any certain bit is 1 in ATTRIBUTES_FIXED1,
it must be 1 in any TD’s ATTRIBUTES. The
value of this field reflects the Intel TDX
module capabilities and configuration and
CPU capabilities.

0x1900000300000001

TD
Configurability

XFAM_FIXED0 RO None Bitmap 8 1 1 8 If any certain bit is 0 in XFAM_FIXED0, it must
be 0 in any TD’s XFAM.

0x1900000300000002

TD
Configurability

XFAM_FIXED1 RO None Bitmap 8 1 1 8 If any certain bit is 1 in XFAM_FIXED1, it must
be 1 in any TD’s XFAM.

0x1900000300000003

TD
Configurability

NUM_CPUID_CONFIG RO None Unsigned
16-bit
integer

2 1 1 2 Number of the following CPUID_CONFIG
entries

0x9900000100000004

TD
Configurability

CPUID_CONFIG_LEAVES RO None 8 40 1 8 Array of CPUID leaf / sub-leaf numbers:
Bits 31:0: Leaf number
Bits 63:32 Sub-leaf number. A value of -1
indicates a CPUID
 leaf with no sub-leaves.

0x9900000300000400

TD
Configurability

CPUID_CONFIG_VALUES RO None 16 40 2 8 Array of configurable virtualization of the
value returned by CPUID:
Element 0[31:0]: EAX
Element 0[63:32]: EBX
Element 1[31:0]: ECX
Element 1[63:32]: EDX
A bit value of 1 indicates that the host VMM
can configure that bit

0x9900000300000500

Migration MIG_ATTRIBUTES RO RO 64-bit
bitmap

8 1 1 8 Migration attributes (details are TBD) 0xA000000300000000

Migration MIN_EXPORT_VERSION RO RO 16-bit
integer

2 1 1 2 Minimum value of migration version
supported for export

0x2000000100000001

Migration MAX_EXPORT_VERSION RO RO 16-bit
integer

2 1 1 2 Maximum value of migration version
supported for export

0x2000000100000002

Migration MIN_IMPORT_VERSION RO RO 16-bit
integer

2 1 1 2 Minimum value of migration version
supported for import

0x2000000100000003

Migration MAX_IMPORT_VERSION RO RO 16-bit
integer

2 1 1 2 Maximum value of migration version
supported for import

0x2000000100000004

Migration MAX_MIGS RO None Unsigned
integer

2 1 1 2 Maximum number of migration streams per
TD

0xA000000100000010

Migration NUM_IMMUTABLE_STAT
E_PAGES

RO None Integer 1 1 1 1 Number of pages required for exporting
immutable state by
TDH.EXPORT.STATE.IMMUTABLE

0xA000000000000020

Migration NUM_TD_STATE_PAGES RO None Integer 1 1 1 1 Number of pages required for exporting TD
state by TDH.EXPORT.STATE.TD

0xA000000000000021

Migration NUM_VP_STATE_PAGES RO None Integer 1 1 1 1 Number of pages required for exporting
VCPU state by TDH.EXPORT.STATE.VP

0xA000000000000022

Service TD MAX_SERV_TDS RO None Unsigned
integer

2 1 1 2 Maximum number of service TDs per TD 0xA100000100000000

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 56 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Access

Guest
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

Service TD SERVTD_ATTR_FIXED0 RO None 64-bit
bitmap

8 1 1 8 Fixed-0 bits of Service TD attributes. A bit
value of 0 indicates corresponding
SERVTD_ATTR bit must be 0

0xA100000300000001

Service TD SERVTD_ATTR_FIXED1 RO None 64-bit
bitmap

8 1 1 8 Fixed-1 bits of Service TD attributes. A bit
value of 1 indicates corresponding
SERVTD_ATTR bit must be 1

0xA100000300000002

5.2. UPDATED: TD-Scope Metadata

TD-scope control structures are described the [TDX Module Spec].

5.2.1. UPDATED: How to Read the TDR and TDCS Tables

The access columns describe whether this field is accessible to the host VMM in production mode (ATTRIBUTES.DEBUG == 5

0) and debug mode (ATTRIBUTES.DEBUG == 1), to the guest TD and to a Migration TD. Access is done using the TDX
module metadata access functions, e.g., TDH.MNG.RD. Possible values are shown in the table below.

Table 5.3: Field Access Definition

Access Meaning

None No access to the field

RO This field can only be read.

RW This field can be read and written.

RWS This field can be read and written. The TDX module performs some special operation on write.

5.2.2. UPDATED: TDR 10

Note: This section describes TDR, as defined. Implementation may differ.

TDR is the root control structure of a guest TD. TDR is encrypted using the Intel TDX global private HKID. It contains the
minimal set of fields that allow TD management operation when the guest TD’s private ephemeral HKID is not known yet
or when the TD’s key state is such that memory encrypted with the guest TD’s private ephemeral key is not accessible.

TDR occupies a single 4KB naturally aligned page of memory. It is the first TD page to be allocated and the last to be 15

removed. None of the state in the TDR is migrated – it is locally initialized on the destination platform for a migrated TD.

TRD fields are divided into the following classes:

Table 5.4: TDR Field Classes Definition

Field Class Description

TD Management These fields are used to manage the TDR page, its descendent TD private memory
pages and control structure pages.

Key Management These fields are used by the Intel TDX module to manage memory encryption keys.
See the [TDX Module Spec] for details.

Note: The table below lists only TDR fields that may be accessed by the host VMM in either production or debug mode. 20

Table 5.5: TDR Definition

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

MigTD
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

TD
Management

FATAL RO RO None None Boolean Non-
Arch

1 1 Non-
Arch

Indicates a fatal error, e.g., #MC during TD
operation.

0x8010000300000001

TD
Management

NUM_TDCX RO RO None None Unsigned
Integer

Non-
Arch

1 1 Non-
Arch

Number of TDCX pages that have been added by
TDH.MNG.ADDCX

0x8010000300000002

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 57 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

MigTD
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

TD
Management

CHLDCNT RO RO None None 64b
Unsigned
Integer

8 1 1 8 The number of 4KB child pages (including opaque
control structure pages) associated with this TDR

0x8010000300000004

TD
Management

LIFECYCLE_STATE RO RO None None LIFECYCLE_
STATE

Non-
Arch

1 1 Non-
Arch

The life cycle state of this TD 0x8010000300000005

TD
Management

TDCX_PA RO RO None None Array of
Physical
Address

8 5 1 8 Physical addresses of the TDCX pages (without
HKID bits)

0x8010000300000010

TD
Management

TD_UUID RO RO RO RO 256-bit
blob

32 1 4 8 Universally Unique Identifier of the TD 0x8010000300000020

Key
Management

HKID RO RO None None 16b
Unsigned
Integer

2 1 1 2 Private HKID 0x8110000100000001

Key
Management

PKG_CONFIG_BITMAP RO RO None None Bitmap Non-
Arch

1 1 Non-
Arch

Bitmap that indicates on which package
TDH.MNG.KEY.CONFIG was executed successfully
using this private key entry

0x8110000300000002

5.2.3. UPDATED: TDCS

Note: This section describes TDCS, as defined. Implementation may differ.

TDCS complements TDR as the logical control structure of a guest TD. TDCS is encrypted with the guest TS’s ephemeral
private key. It controls the guest TD operation and holds the state that is global to all the TD’s VCPUs. TDCS state fields 5

are initialized either via TDH.MNG.INIT, or via TDH.IMPORT.STATE.IMMUTABLE – the latter when the TD is the target for
migration.

TDCS fields are divided into the following classes:

Table 5.6: TDCS Field Classes Definition

Field Class Description

TD Management These fields are used to manage the TDCS, its descendent TD private memory pages
and control structure pages.

TD Execution Control Control the execution of the guest TD: some TD execution control fields are
provided as an input to TDH.MNG.INIT, and some of those are included in the
TDG.MR.REPORT.

TLB Epoch Tracking Track the TLB epoch of the guest TD – see the [TDX Module Spec] for details

Measurement TD measurement registers and associated fields – see the [TDX Module Spec] for
details

Migration TDCS fields that control TD migration

MIGSC Links Links to Migration Stream Context pages

Service TD TDCS fields that control Service TD binding and operation

MSR Bitmaps MSR bitmaps that control VM exit from the guest TD on RDMSR/WRMSR are
common to all TD VCPUs and thus are stored as part of TDCS.

Secure EPT Root Page The root page (PML5 or PML4) of the secure EPT

 10

Note: The table below lists only TDCS fields that may be accessed by the host VMM in either production or debug
mode.

Table 5.7: TDCS Definition 15

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

MigTD
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

TD
Management

NUM_VCPUS RO RO RO None 32b
Unsigned
Integer

4 1 1 4 The number of VCPUs that are either in TDX non-
root mode (TDVPS.VCPU_STATE ==
VCPU_ACTIVE) or are ready to run
(TDVPS.VCPU_STATE == VCPU_READY):

0x9010000200000001

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 58 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

MigTD
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

this includes VCPUs that have been successfully
initialized (by TDH.VP.INIT) or imported (by
TDH.IMPORT.STATE.VP) and have not since
started teardown (due to a Triple Fault)

TD
Management

NUM_ASSOC_VCPUS RO RO None None 32b
Unsigned
Integer

4 1 1 4 The number of VCPUS associated with LPs – i.e.,
the LPs might hold TLB translations and/or
cached TD VMCS

0x9010000200000002

TD
Management

OP_STATE RO RO None None OP_STATE Non-
Arch

1 1 Non-
Arch

The operation state (sub-state of life cycle
TD_KEYS_CONFIGURED state) of this TD

0x9010000300000004

Execution
Controls

ATTRIBUTES RO RO RO None ATTRIBUTE
S

8 1 1 8 TD attributes 0x1110000300000000

Execution
Controls

XFAM RO RO RO None XCR0 8 1 1 8 Extended Features Available Mask: indicates the
extended user and system features which are
available for the TD.
Copied to each TDVPS on TDH.VP.INIT.

0x1110000300000001

Execution
Controls

MAX_VCPUS RO RO RO None 32b
Unsigned
Integer

4 1 1 4 Maximum number of VCPUs 0x1110000200000002

Execution
Controls

GPAW RO RO RO None Boolean Non-
Arch

1 1 Non-
Arch

This bit has the same meaning as the VMCS
GPAW execution control:
0: GPA.SHARED bit is GPA[47]
1: GPA.SHARED bit is GPA[51]

0x1110000300000003

Execution
Controls

EPTP RO RO None None EPTP 8 1 1 8 TD-scope Secure EPT pointer: format is the same
as the VMCS EPTP execution control; copied to
each TD VMCS EPTP on TDH.VP.INIT

0x1110000300000004

Execution
Controls

TSC_OFFSET RO RO None None 64b
unsigned
Integer

8 1 1 8 TD-scope TSC offset execution control: copied to
each TD VMCS TSC-offset execution control on
TDH.VP.INIT

0x111000030000000A

Execution
Controls

TSC_MULTIPLIER RO RO None None 64b
Unsigned
Integer

8 1 1 8 TD-scope TSC multiplier execution control:
copied to each TD VMCS TSC-multiplier execution
control on TDH.VP.INIT

0x111000030000000B

Execution
Controls

TSC_FREQUENCY RO RO RO None 16b
Unsigned
Integer

2 1 1 2 Virtual TSC frequency – in units of 25MHz 0x111000010000000C

Execution
Controls

VIRTUAL_TSC None None None None 64b
Unsigned
Integer

8 1 1 8 Virtual TSC value. This value is only calculated
and used at the end of migration
(TDH.EXPORT.STATE.TD) and doesn't need to
actually reside in TDCS.

0x111000030000000D

Execution
Controls

NUM_CPUID_VALUES RO RO None None 16b
Unsigned
Integer

2 1 1 2 Number of valid fields in CPUID_VALUES 0x911000010000000E

Execution
Controls

XBUFF_SIZE RO RO None None Unsigned
Integer

2 1 1 2 Actual size of the XSAVE buffer – calculated by
TDH.MNG.INIT based on XFAM

0x911000010000000F

Execution
Controls

NOTIFY_ENABLES None RW RW None Bitmap 8 1 1 8 Enable guest notification of events:
bit 0: Notify when Zero Step attack is
suspected
bits 63:1: Reserved, must be 0

0x9110000300000010

Execution
Controls

XBUFF_OFFSETS RO RO None None Unsigned
Integer

4 19 1 4 XSAVE buffer components offsets – calculated by
TDH.MNG.INIT based on XFAM

0x9110000200000800

TLB Epoch
Tracking

TD_EPOCH RO RO None None 64b Integer 8 1 1 8 The TD epoch counter: incremented by the host
VMM using the TDH.MEM.TRACK function

0x9210000300000000

TLB Epoch
Tracking

REFCOUNT RO RO None None 16b
Unsigned
Integer

2 2 1 2 Each REFCOUNT counts the number of LPs which
may have TLB entries created during a specific
TD_EPOCH and are currently executing in TDX
non-root mode.

0x9210000100000001

Measurement MRTD RO RO RO None SHA384_H
ASH

48 1 6 8 Measurement of the initial contents of the TD 0x1310000300000000

Measurement MRCONFIGID RO RO RO None SHA384_H
ASH

48 1 6 8 Software-defined ID for non-owner-defined
configuration of the guest TD – e.g., run-time or
OS configuration

0x1310000300000010

Measurement MROWNER RO RO RO None SHA384_H
ASH

48 1 6 8 Software-defined ID for the guest TD’s owner 0x1310000300000018

Measurement MROWNERCONFIG RO RO RO None SHA384_H
ASH

48 1 6 8 Software-defined ID for owner-defined
configuration of the guest TD – e.g., specific to
the workload rather than the run-time or OS

0x1310000300000020

Measurement RTMR None RO RO None Array of
SHA384_H
ASH

48 4 6 8 Array of NUM_RTMRS run-time extendable
measurement registers

0x1310000300000040

Measurement MRTD_CONTEXT None None None None SHA384_C
ONTEXT

Non-
Arch

1 Non-
Arch

Non-
Arch

Non-architectural context used during ongoing
calculation of MRTD until TDH.MR.FINALIZE

0x9310000300000080

CPUID CPUID_VALUES RO RO None None CPUID_RET 16 128 2 8 Values returned by CPUID leaves/sub-leaves:
Element 0[31:0]: EAX
Element 0[63:32]: EBX
Element 1[31:0]: ECX
Element 1[63:32]: EDX
Field code is composed as follows:
31 Leaf number bit 31
30:24 Leaf number bit 6:0
23 Sub-leaf not applicable flag
22:16 Sub-leaf number bits 6:0

0x9410000300000000

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 59 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

MigTD
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

15:1 Reserved, must be 0
0 Element index within field

Migration MIG_DEC_KEY_SET RO RO None None Boolean Non-
Arch

1 1 Non-
Arch

Set when a new MIG_DEC_KEY is written, cleared
when the MIG_DEC_KEY is copied to
MIG_DEC_WORKING_KEY

0x9810000300000001

Migration EXPORT_COUNT RO RO None None 32b
Unsigned
Integer

4 1 1 4 Counts the number of times this TD has been
exported, included aborted export sessions.
Incremented at the beginning of each export
session (TDH.EPORT.STATE.IMMUTABLE).

0x9810000200000002

Migration IMPORT_COUNT RO RO None None 32b
Unsigned
Integer

4 1 1 4 Counts the number of times this TD has been
imported.
Incremented by TDH.IMPORT.COMMIT.

0x9810000200000003

Migration MIG_EPOCH RO RO None None 32b
Unsigned
Integer

4 1 1 4 Migration epoch
Starts from 0 on migration session start,
incremented by 1 on each epoch token.
A value of 0xFFFFFFFF indicates out-of-order
phase.

0x9810000200000004

Migration BW_EPOCH RO RO None None 64b
Unsigned
Integer

8 1 1 8 Blocking-for-write epoch
Holds the value of TD_EPOCH at last time
TDH.EXPORT.BLOCKW blocked a page for writing.

0x9810000300000005

Migration TOTAL_MB_COUNT RO RO None None Unsigned
Integer

8 1 1 8 The total number of migration bundles exported
or imported during the current migration
sessions

0x9810000300000006

Migration MIG_DEC_KEY None RO None RWS KEY_256 32 1 4 8 Migration decryption key, as written by the
Migration TD
Special write behavior:
- Acquire a shared lock on TDCS.OP_STATE to
prevent
 concurrent migration session start.
- Set MIG_DEC_KEY_SET

0x9810000300000010

Migration MIG_DEC_WORKING_K
EY

None RO None RW KEY_256 32 1 4 8 Migration working key, copied from MIG_KEY at
the beginning of a migration session and used
throughout the session.

0x9810000300000014

Migration MIG_VERSION RO RO None RWS 64b
Unsigned
Integer

2 1 1 2 Migration protocol version, as written by the
migration TD

0x9810000100000020

Migration MIG_WORKING_VERSIO
N

RO RO None None 16b
Unsigned
Integer

2 1 1 2 Migration working protocol version, copied from
MIG_VERSION at the beginning of a migration
session and used throughout the session

0x9810000100000021

Migration DIRTY_COUNT RO RO None None 16b
Unsigned
Integer

8 1 1 8 Counts of the number of pages that must be re-
exported, because their contents have been
modified since they have been exported, before
a start token may be generated

0x9810000300000030

Migration MIG_COUNT RO RO None None 64b
Unsigned
Integer

8 1 1 8 Counts the number of SEPT entries that need to
be cleaned up after an aborted migration

0x9810000300000031

Migration NUM_MIGS RO RO None None 16b
Unsigned
Integer

2 1 1 2 Number of Migration Stream Context (MIGSC)
pages that have been allocated

0x9810000100000032

Migration NUM_IN_ORDER_MIGS RO RO None None 16b
Unsigned
Integer

2 1 1 2 Number of migration streams that can be used
during the export in-order phase

0x9810000100000033

Migration PRE_IMPORT_UUID RO RO RO RO 256-bit
blob

32 1 4 8 The original value of TD_UUID before is was
overwritten as part of the immutable state
import

0x9810000300000040

Service TD SERVTD_HASH RO RO RO None SHA384_H
ASH

48 1 6 8 SHA384 hash of the bound or pre-bound service
TDs

0x9910000300000000

Service TD SERVTD_BINDING_STAT
E

RO RO RO None 8b
Unsigned
Integer

1 64 1 1 Indicates the state of the service TD binding slot:
0: NULL
1: PRE_BOUND
2: BOUND
3: UNBOUND

0x9910000000010000

Service TD SERVTD_INFO_HASH RO RO RO None SHA384_H
ASH

48 64 6 8 SHA384 hash of the service TD's TDINFO_STRUCT 0x9910000300020000

Service TD SERVTD_TYPE RO RO RO None 16b
Unsigned
Integer

2 64 1 2 Service TD type 0x9910000100030000

Service TD SERVTD_ATTR RO RO RO None 64b bitmap 8 64 1 8 Service TD attributes 0x9910000300040000

Service TD SERVTD_UUID RO RO RO None 256-bit
blob

32 64 4 8 Service TD UUID 0x9910000300050000

MSR Bitmaps MSR_BITMAPS None RO None None 64b bitmap 8 512 1 8 TD-scope RDMSR/WRMSR exit control bitmaps 0x2010000300000000

Secure EPT
Root

SEPT_ROOT None RO None None Secure EPT
Entry

8 512 1 8 Secure EPT root page (PML5 or PML4) 0x2110000300000000

MIGSC Links MIGSC_LINKS RO RO None None MIGSC_LIN
K

8 512 1 8 An array of links to Migration Stream Contexts.
Each entry contains the following information:
Bit 51:12: MIGSC_HPA:
 Bits 52:12 of the MIGSC page HPA
 (without the HKID bits)
Bit 0: LOCK:
 Mutex for controlling access to the
 MIGSC

0xA310000300000000

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 60 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

MigTD
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

Bit 1: INITIALIZED:
 A boolean flag, indicating that the
 MIGSC has been initialized.
Bit 2: ENABLED:
 A boolean flag, indicating that the
 MIGS is enabled
The flags are held here, not in the MIGSC itself,
to enable efficient state-related operations on all
migration streams, e.g., disabling all streams.

5.3. UPDATED: TDVPS: VCPU-Scope Metadata

Note: This section describes TDVPS, as defined. Implementation may differ.

TDVPS is described in the [TDX Module Spec].

5.3.1. UPDATED: Overview 5

Logically, in the Intel TDX module’s linear address space, TDVPS is a single structure that holds the state and control
information for a single TD VCPU. The state is loaded to the LP on TD Entry and saved on TD exits.

Physically, TDVPS is composed of a root page (TDVPR) and multiple extension pages (TDCX). The pages need not be
contiguous in physical memory.

TDVPS is initialized by TDH.MNG.INITVP. For an TD being migrated, TDVPS is imported by TDH.IMPORT.STATE.VP, which 10

initializes some state fields and migrates some fields from the source TD VPS state.

TDVPS fields are divided into the following classes:

Table 5.8: TDVPS Field Classes Definition

Field Class Description

VCPU Management These fields are used to manage the TDVPS and the TD VCPU.

TD VMCS The TD VCPU’s architectural VMCS

VAPIC The TD VCPU’s Virtual APIC page

VE_INFO Holds Virtualization Exception (#VE) information

Guest GPR State TD VCPU’s general-purpose register state

Guest MSR State TD VCPU’s MSR state

Guest Extended State TD VCPU’s extended state

5.3.2. How to Read the TDVPS (including TD VMCS) Tables 15

 UPDATED: Field Access

The access columns describe whether this field is accessible to the host VMM in production mode (ATTRIBUTES.DEBUG ==
0) and debug mode (ATTRIBUTES.DEBUG == 1) and to the guest TD. Access is done using the TDX module metadata
access functions, e.g., TDH.VP.RD. Possible values are shown in the table below.

Table 5.9: Field Access Definition 20

Access Meaning

None No access to the field

RO This field can only be read.

RW This field can be read and written. No limitations are imposed except for checking that the value fits
in the field size.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 61 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Access Meaning

RWS This field can be read and written. Writing is subject to the same limitations as if the field was
modified by the guest TD (for guest state fields) and/or other limitation as described per field.

5.3.3. TDVPS (excluding TD VMCS)

Note: The table below lists only TDVPS fields that may be accessed by the host VMM in either production or debug
mode.

Table 5.10: TDVPS Definition 5

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

Management VCPU_STATE None RO None VCPU_STA
TE

1 1 1 1 The activity state of the VCPU. 0xA020000000000000

Management LAST_TD_EXIT None RO None LAST_TD_E
XIT

1 1 1 1 Type of the last TD exit 0xA02000000000000F

Management LAUNCHED None RO None Boolean 1 1 1 1 A Boolean flag, indicating whether the TD VCPU has
been VMLAUNCH’ed on this LP since it has last
been associated with this VCPU.
If TRUE, VM entry should use VMRESUME.
Else, VM entry should use VMLAUNCH.

0xA020000000000001

Management VCPU_INDEX RO RO RW 32b
Unsigned
Integer

4 1 1 4 Sequential index of the VCPU in the parent TD.
VCPU_INDEX indicates the order of VCPU
initialization (by TDINITVP), starting from 0, and is
made available to the TD via TDINFO.
VCPU_INDEX is in the range 0 to (TDCS.MAX_VCPUS
- 1), up to 0xFFFE

0xA020000200000002

Management NUM_TDCX RO RO None Unsigned
Integer

1 1 1 1 Number of TDCX pages added to this TDVPS 0xA020000000000003

Management TDVPS_PAGE_PA RO RO None Array of PA 8 6 1 8 An array of TDVPS_PAGES physical address pointers
to the TDVPS physical pages
• PA is without HKID bits
• Page 0 is the PA of the
 TDVPR page
• Pages 1,2... are PAs of the
 TDCX pages

0xA020000300000010

Management ASSOC_LPID RO RO None Integer 4 1 1 4 The unique, hardware-derived identifier of the
logical processor on which this VCPU is currently
associated (either by TDENTER or by other VCPU-
specific SEAMCALL flow):
• A value of -1 indicates that
 VCPU is not associated with
 any LP.
• Initialized by TDH.VP.INIT to
 the LP_ID on which it ran.

0xA020000200000004

Management ASSOC_HKID RO RO None Integer 4 1 1 4 The TD's ephemeral private HKID at the last time
this VCPU was associated (either by TDENTER or by
other VCPU-specific SEAMCALL flow) with an LP:
initialized by TDH.VP.INIT to the current TD
ephemeral private HKID

0xA020000200000005

Management VCPU_EPOCH RO RO None Integer 8 1 1 8 The value of TDCS.TD_EPOCH at the time this VCPU
entered TDX non-root mode

0xA020000300000006

Management CPUID_SUPERVISOR_VE RO RO RW Boolean 1 1 1 1 When set, the Intel TDX module injects #VE on
guest TD execution of CPUID in CPL = 0.

0xA020000000000007

Management CPUID_USER_VE RO RO RW Boolean 1 1 1 1 When set, the Intel TDX module injects #VE on
guest TD execution of CPUID in CPL > 0.

0xA020000000000008

Management IS_SHARED_EPTP_VALID RO RO None Boolean 1 1 1 1 Indicates that Shared EPTP is valid: set on
successful TDH.VP.WR to Shared EPTP

0xA020000000000009

Management LAST_EXIT_TSC None RO None Unsigned
64b Integer

8 1 1 8 Initialized to the value returned rdtsc on
TDH.VP.INIT

0xA02000030000000A

Management PEND_NMI RW RW None Boolean 1 1 1 1 When set, the Intel TDX module injects an NMI to
the guest TD at the next available opportunity (NMI
window open after TDENTER). the Intel TDX
module then clears PEND_NIM.

0x202000000000000B

Management XFAM RO RW None Bitmap 8 1 1 8 Copied from TDCS on TDH.VP.INIT.
On TDH.VP.WR, checked for architectural and
platform compatibility

0x202000030000000C

Management LAST_EPF_GPA_LIST_IDX None RO None Unsigned
Integer

1 1 1 1 Number of valid entries in LAST_EPF_GPA_LIST 0xA02000000000000D

Management POSSIBLY_EPF_STEPPING None RO None Unsigned
Integer

1 1 1 1 Number of possibly legal EPT Faults (EPFs) detected
so far at this TD vCPU instruction

0xA02000000000000E

Management LAST_EPF_GPA_LIST None RO None GPA 8 32 1 8 Array of GPAs that caused EPF so far at this TD
vCPU instruction

0xA020000300000100

CPUID
Control

CPUID_CONTROL None RO RW Array of 8-
bit bitmaps

1 128 1 1 Bit 0: When set, the Intel TDX module injects
 #VE on guest TD execution of CPUID in
 CPL = 0.

0xA120000000000000

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 62 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

Bit 1: When set, the Intel TDX module injects
 #VE on guest TD execution of CPUID in
 CPL > 0.
Other: Reserved, must be 0.

TD VMCS TD_VMCS None None None Page 1 4096 1 1 0x00200000FFFFFFFF

VAPIC VAPIC None RO None Page 8 0 1 8 Virtual APIC Page 0x0120000300000000

VE_INFO EXIT_REASON None RO None 0 4 1 1 4 0x0220000200000000

VE_INFO VALID None RO None 0 4 1 1 4 0xFFFFFFFF: valid
0x00000000: not valid

0x0220000200000001

VE_INFO EXIT_QUALIFICATION None RO None 0 8 1 1 8 0x0220000300000002

VE_INFO GLA None RO None 0 8 1 1 8 0x0220000300000003

VE_INFO GPA None RO None 0 8 1 1 8 0x0220000300000004

VE_INFO EPTP_INDEX None RO None 0 2 1 1 2 0x0220000100000005

VE_INFO INSTRUCTION_LENGTH None RO None 0 4 1 1 4 0x8220000200000010

VE_INFO INSTRUCTION_INFORMATION None RO None 0 4 1 1 4 0x8220000200000011

Guest GPR
State

RAX None RW None 0 8 1 1 8 0x1020000300000000

Guest GPR
State

RCX None RW None 0 8 1 1 8 Init value is provided as an input to TDH.VP.INIT
(same value as R8)

0x1020000300000001

Guest GPR
State

RDX None RW None 0 8 1 1 8 Init Value:
• Bits [31:00]: Same as RESET
 value, matches
 CPUID.1:EAX. CPU version
 information includes Family,
 Model and Stepping
• Bits [63:32]: Set to 0

0x1020000300000002

Guest GPR
State

RBX None RW None 0 8 1 1 8 Init Value:
• Bits [05:00]: GPAW is the
 effective GPA width (in bits)
 for this TD (do not confuse
 with MAXPA); SHARED bit is
 at GPA bit GPAW-1; only
 GPAW values 48 and 52 are
 possible
• Bits [63:06]: Reserved for
 future additional details, set
 to 0, must be ignored by
 vBIOS

0x1020000300000003

Guest GPR
State

RSP_PLACEHOLDER None None None 0 8 1 1 8 0x1020000300000004

Guest GPR
State

RBP None RW None 0 8 1 1 8 Init Value:
• Bits [31:00]: Virtual CPU
 index, starting from 0 and
 allocated sequentially on
 each successful TDH.VP.INIT
• Bits [63:32]: Set to 0

0x1020000300000005

Guest GPR
State

RSI None RW None 0 8 1 1 8 0x1020000300000006

Guest GPR
State

RDI None RW None 0 8 1 1 8 Init value is provided as an input to TDH.VP.INIT
(same value as RCX)

0x1020000300000007

Guest GPR
State

R8 None RW None 0 8 1 1 8 0x1020000300000008

Guest GPR
State

R9 None RW None 0 8 1 1 8 0x1020000300000009

Guest GPR
State

R10 None RW None 0 8 1 1 8 0x102000030000000A

Guest GPR
State

R11 None RW None 0 8 1 1 8 0x102000030000000B

Guest GPR
State

R12 None RW None 0 8 1 1 8 0x102000030000000C

Guest GPR
State

R13 None RW None 0 8 1 1 8 0x102000030000000D

Guest GPR
State

R14 None RW None 0 8 1 1 8 0x102000030000000E

Guest GPR
State

R15 None RW None 0 8 1 1 8 0x102000030000000F

Guest State DR0 None RW None 0 8 1 1 8 0x1120000300000000

Guest State DR1 None RW None 0 8 1 1 8 0x1120000300000001

Guest State DR2 None RW None 0 8 1 1 8 0x1120000300000002

Guest State DR3 None RW None 0 8 1 1 8 0x1120000300000003

Guest State DR6 None RW None 0 8 1 1 8 0x1120000300000006

Guest State XCR0 None RO None 0 8 1 1 8 0x1120000300000020

Guest State VCPU_STATE_DETAILS ROS ROS None 0 8 1 1 8 Bit 0: VMXIP, indicates that a virtual interrupt
 is pending delivery, i.e.
 VMCS.RVI[7:4] > TDVPS.VAPIC.VPPR[7:4]
Bits 63:1: Reserved, set to 0

0x9120000300000021

Guest MSR
State

IA32_SPEC_CTRL None RW None 0 8 1 1 8 0x1320000300000048

Guest MSR
State

IA32_UMWAIT_CONTROL None RW None 0 8 1 1 8 0x13200003000000E1

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 63 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Field VMM
Prod.
Access

VMM
Debug
Access

Guest
Access

Type Field
Size
(Bytes)

Num
Fields

Num
Elem.

Elem.
Size
(Bytes)

Description Base FIELD_ID (Hex)

Guest MSR
State

IA32_PERFEVTSELx None RW None 0 8 8 1 8 0x1320000300000186

Guest MSR
State

MSR_OFFCORE_RSPx None RW None 0 8 2 1 8 0x13200003000001A6

Guest MSR
State

IA32_XFD None RO None 0 8 1 1 8 0x13200003000001C4

Guest MSR
State

IA32_XFD_ERR None RO None 0 8 1 1 8 0x13200003000001C5

Guest MSR
State

IA32_FIXED_CTRx None RW None 0 8 4 1 8 0x1320000300000309

Guest MSR
State

IA32_PERF_METRICS None RW None 0 8 1 1 8 0x1320000300000329

Guest MSR
State

IA32_FIXED_CTR_CTRL None RW None 0 8 1 1 8 0x132000030000038D

Guest MSR
State

IA32_PERF_GLOBAL_STATUS None RO None 0 8 1 1 8 0x132000030000038E

Guest MSR
State

IA32_PEBS_ENABLE None RW None 0 8 1 1 8 0x13200003000003F1

Guest MSR
State

MSR_PEBS_DATA_CFG None RW None 0 8 1 1 8 0x13200003000003F2

Guest MSR
State

MSR_PEBS_LD_LAT None RW None 0 8 1 1 8 0x13200003000003F6

Guest MSR
State

MSR_PEBS_FRONTEND None RW None 0 8 1 1 8 0x13200003000003F7

Guest MSR
State

IA32_A_PMCx None RW None 0 8 8 1 8 0x13200003000004C1

Guest MSR
State

IA32_DS_AREA None RW None 0 8 1 1 8 0x1320000300000600

Guest MSR
State

IA32_XSS None RO None 0 8 1 1 8 0x1320000300000DA0

Guest MSR
State

IA32_LBR_DEPTH None RW None 0 8 1 1 8 0x13200003000014CF

Guest MSR
State

IA32_STAR None RO None 0 8 1 1 8 0x1320000300002081

Guest MSR
State

IA32_LSTAR None RO None 0 8 1 1 8 0x1320000300002082

Guest MSR
State

IA32_FMASK None RO None 0 8 1 1 8 0x1320000300002084

Guest MSR
State

IA32_KERNEL_GS_BASE None RO None 0 8 1 1 8 0x1320000300002102

Guest MSR
State

IA32_TSC_AUX None RW None 0 8 1 1 8 0x1320000300002103

Guest Ext.
State

XBUFF None RW None XSAVES
buffer

8 1536 1 8 0x1220000300000000

5.3.4. TD VMCS

Intel SDM, 24 Virtual Machine Control Structures

Note: This section describes TD VMCS usage, as defined. Implementation may differ.

TD VMCS is a VMX format VMCS (with TDX ISA extensions) that is stored as part of TDVPS. 5

 TD VMCS Guest State Area

5.3.4.1.1. TD VMCS Guest Register State Area

Intel SDM, Vol. 3, 9.1.1 Processor State after Reset
Intel SDM, Vol. 3, 24.4.1 Guest Register State

Table 5.11: TD VMCS Guest Register State Area Fields 10

Field VMM Access Init Value (after TDH.VP.INIT)

Prod. Debug

Guest CR0 None RWS 0x0021
• Bits PE (0) and NE (5) are set to 1.
• All other bits are cleared to 0.
The initial value is checked for compatibility with fixed-0 and fixed-1 bits according to
IA32_VMX_CR0_FIXED* MSRs, except for PG (bit 31) which is allowed to be 0 since the
guest TD runs as an unrestricted guest.

Guest CR3 None RW 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 64 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field VMM Access Init Value (after TDH.VP.INIT)

Prod. Debug

Guest CR4 None RWS 0x2040
• Bits MCE (6) and VMXE (13) are set
 to 1
• All other bits are cleared to 0.
The initial value is checked for compatibility with fixed-0 and fixed-1 bits according to
IA32_VMX_CR4_FIXED* MSRs.

Guest DR7 None RW 0x00000400

Guest RSP None RW 0

Guest RIP None RW 0xFFFFFFF0

Guest RFLAGS None RW 0x00000002

Guest ES selector None RW 0

Guest CS selector None RW 0

Guest SS selector None RW 0

Guest DS selector None RW 0

Guest FS selector None RW 0

Guest GS selector None RW 0

Guest LDTR selector None RW 0

Guest TR selector None RW 0

Guest ES base None RW 0

Guest CS base None RW 0

Guest SS base None RW 0

Guest DS base None RW 0

Guest FS base None RW 0

Guest GS base None RW 0

Guest LDTR base None RW 0

Guest TR base None RW 0

Guest GDTR base None RW 0

Guest IDTR base None RW 0

Guest ES limit None RW 0xFFFFFFFF

Guest CS limit None RW 0xFFFFFFFF

Guest SS limit None RW 0xFFFFFFFF

Guest DS limit None RW 0xFFFFFFFF

Guest FS limit None RW 0xFFFFFFFF

Guest GS limit None RW 0xFFFFFFFF

Guest LDTR limit None RW 0x0000FFFF

Guest TR limit None RW 0x0000FFFF

Guest GDTR limit None RW 0x0000FFFF

Guest IDTR limit None RW 0

Guest ES access rights None RW 0x0000C093
(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

Guest CS access rights None RW 0x0000C09B
(Code, RX, Accessed, DPL=0, Present, 32b)

Guest SS access rights None RW 0x0000C093
(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

Guest DS access rights None RW 0x0000C093
(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

Guest FS access rights None RW 0x0000C093
(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

Guest GS access rights None RW 0x0000C093
(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

Guest LDTR access rights None RW 0x00010082
(LDT, Present, 32b, 1B granularity, Unusable)

Guest TR access rights None RW 0x0000008B
(32b TSS, Busy, Present, 32b, 1B granularity)

Guest SMBASE None None 0

5.3.4.1.2. TD VMCS Guest MSRs

See also the MSR virtualization tables in 2.1.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 65 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.12: TD VMCS Guest MSRs

Field VMM Access Init Value (after TDH.VP.INIT)

Prod. Debug

IA32_DEBUGCTL None RWS 0

IA32_SYSENTER_CS None RW 0

IA32_SYSENTER_ESP None RW 0

IA32_SYSENTER_EIP None RW 0

IA32_PERF_GLOBAL_CTRL None RW 0x000000FF
• EN_PMCx (bits 0 to (NUM_PMC - 1))
 are set to 1.
• All other bits are cleared to 0.

IA32_PAT None RW 0x0007040600070406

IA32_EFER None RW 0x901
• SCE (bit 0) is set to 1.
• LME (bit 8) is set to 1.
• NXE (bit 11) is set to 1.
• All other bits are cleared to 0.

GUEST_IA32_S_CET None RW 0

GUEST_SSP None RW 0

GUEST_IA32_INTERRUPT_SSP_TABLE_ADDR None RW 0

IA32_RTIT_CTL None RW 0

IA32_LBR_CTL None RW 0

IA32_BNDCFGS None RO 0

IA32_GUEST_PKRS None RW 0

5.3.4.1.3. TD VMCS Guest Non-Register State Area

Intel SDM, 24.4.2 Guest Non-Register State

Table 5.13: TD VMCS Guest Non-Register State Area Fields 5

Field Name VMM Access Description Initial
State

Prod. Debug

Activity State None RO Saved/restored on VM exit/entry Active (0)

Interruptibility State None RW Saved/restored on VM exit/entry 0

Pending Debug
Exceptions

None RW Saved/restored on VM exit/entry 0

VMCS Link Pointer None None Saved/restored on VM exit/entry NULL_PA
(-1)

VMX-Preemption
Timer Value

None RW N/A: VMX-preemption timer is not used by
guest TDs.

0

PDPTEn None RW N/A: PAE paging is not used by TD guests. NULL_PA
(-1)

Guest Interrupt
Status

None RW Includes RVI (lower byte) and SVI (upper byte):
saved/restored on VM exit/entry

0

PML Index None RW N/A: PML is not used by guest TDs. 0

Guest UINV None RW 0

 TD VMCS Host State Area

Intel SDM, 24.5 Host-State Area

The host state area is not intended to be accessible outside the Intel TDX module.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 66 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

 TD VMCS VM-Execution Control Fields

Intel SDM, 24.6 VM-Execution Control Fields

5.3.4.3.1. TD VMCS Pin-Based VM-Execution Controls

Table 5.14: TD VMCS Pin-Based VM-Execution Controls

VMM Access

Bit Name Prod. Debug Description Init Value

0 External-interrupt exiting None RO The Intel TDX module performs TD Exit 1

1 Reserved None RO MSR

2 Reserved None RO MSR

3 NMI exiting None RO The Intel TDX module performs TD Exit 1

4 Reserved None RO MSR

5 Virtual NMIs None RO 1

6 Activate VMX-preemption timer None RO 0

7 Process posted interrupts RWS RWS Set to 1 by TDH.VP.WR only if a valid posted interrupt
descriptor and a valid posted interrupt notification
vector are set.

0

8 Reserved None RO MSR

9 Reserved None RO MSR

10 Reserved None RO MSR

11 Reserved None RO MSR

12 Reserved None RO MSR

13 Reserved None RO MSR

14 Reserved None RO MSR

15 Reserved None RO MSR

16 Reserved None RO MSR

17 Reserved None RO MSR

18 Reserved None RO MSR

19 Reserved None RO MSR

20 Reserved None RO MSR

21 Reserved None RO MSR

22 Reserved None RO MSR

23 Reserved None RO MSR

24 Reserved None RO MSR

25 Reserved None RO MSR

26 Reserved None RO MSR

27 Reserved None RO MSR

28 Reserved None RO MSR

29 Reserved None RO MSR

30 Reserved None RO MSR

31 Reserved None RO MSR

 5

Reserved bits are set based on IA32_VMX_TRUE_PINBASED_CTLS MSR.

5.3.4.3.2. TD VMCS Processor-Based VM-Execution Controls

Table 5.15: TD VMCS Primary Processor-Based VM-Execution Controls

VMM Access

Bit Name Prod. Debug Description Init Value

0 Reserved None RO MSR

1 Reserved None RO MSR

2 Interrupt-window exiting None RW 0

3 Use TSC offsetting None RO 1

4 Reserved None RO MSR

5 Reserved None RO MSR

6 Reserved None RO MSR

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 67 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

VMM Access

Bit Name Prod. Debug Description Init Value

7 HLT exiting None RO The Intel TDX module injects a
#VE into the guest TD

1

8 Reserved None RO MSR

9 INVLPG exiting None RW 0

10 MWAIT exiting None RO The Intel TDX module injects a
#VE into the guest TD

1

11 RDPMC exiting None RW ~TDCS.ATTRIBUTES.PERFMON

12 RDTSC exiting None RW 0

13 Reserved None RO MSR

14 Reserved None RO MSR

15 CR3-load exiting None RW 0

16 CR3-store exiting None RW 0

17 Activate tertiary controls None RO 1

18 Reserved None RO MSR

19 CR8-load exiting None RW 0

20 CR8-store exiting None RW 0

21 Use TPR shadow None RO 1

22 NMI-window exiting None RO Set by the Intel TDX module
before entering the guest TD –
based on TDVPS.PEND_NMI

0

23 MOV-DR exiting None RW 0

24 Unconditional I/O exiting None RW 1

25 Use I/O bitmaps None RO 0

26 Reserved None RO MSR

27 Monitor trap flag None RW 0

28 Use MSR bitmaps None RO 1

29 MONITOR exiting None RW 1

30 PAUSE exiting None RW 0

31 Activate secondary controls None RO 1

Reserved bits are set based on IA32_VMX_TRUE_PROCBASED_CTLS MSR.

Table 5.16: TD VMCS Secondary Processor-Based VM-Execution Controls

VMM Access

Bit Name Prod. Debug Description Init Value

0 Virtualize APIC accesses None RO 0

1 Enable EPT None RO 1

2 Descriptor-table exiting None RW 0

3 Enable RDTSCP None RO 1

4 Virtualize x2APIC mode None RO 1

5 Enable VPID None RO 1

6 WBINVD exiting None RO 1

7 Unrestricted guest None RO 1

8 APIC-register virtualization None RO 1

9 Virtual-interrupt delivery None RO 1

10 PAUSE-loop exiting None RW 0

11 RDRAND exiting None RW 0

12 Enable INVPCID None RO 1

13 Enable VM functions None RO 1

14 VMCS shadowing None RO 0

15 Enable ENCLS exiting None RO 1

16 RDSEED exiting None RW 0

17 Enable PML None RWS If set to 1, PML address must be a
valid shared physical address

0

18 EPT-violation #VE None RO 1

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 68 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

VMM Access

Bit Name Prod. Debug Description Init Value

19 Conceal VMX from PT None RO 1

20 Enable XSAVES/XRSTORS None RW 1

21 PASID translation None RO 1

22 Mode-based execute control
for EPT

None RO 0

23 Enable SPP None RO 0

24 PT uses guest physical
addresses (PT2GPA)

None RO 1

25 Use TSC scaling None RO 1

26 Enable user-level wait and
pause

None RO Set to the value of virtualized
CPUID(0x7,0x0).ECX[5]

27 Enable PCONFIG None RO Set to the value of virtualized
CPUID(0x7,0x0).EDX[18]

28 Enable ENCLV exiting None RO 1

29 Enable EPC Virtualization
Extensions

None RO 0

30 Bus-lock detection RW RW If enabled by the host VMM
(using TDH.VP.WR), then the Intel
TDX module performs TD Exit on
VM exit.

0

31 Notification exiting RW RW If enabled by the host VMM
(using TDH.VP.WR), then the Intel
TDX module performs TD Exit on
VM exit.

0

Table 5.17: TD VMCS Tertiary Processor-Based VM-Execution Controls

VMM Access

Bit Name Prod. Debug Description Init Value (after
TDH.VP.INIT)

0 LOADIWKEY exiting None RW 0

1 Enable HLAT None RO 0

2 EPT paging-write control None RO 0

3 Guest paging verification None RO 0

4 IPI virtualization None RO 0

5 GPAW None RO 0: GPA.SHARED bit is GPA[47]
1: GPA.SHARED bit is GPA[51]

Copied from
TDCS.GPAW

6 Reserved None RO MSR

7 Reserved None RO MSR

8 Reserved None RO MSR

9 Reserved None RO MSR

10 Reserved None RO MSR

11 Reserved None RO MSR

12 Reserved None RO MSR

13 Reserved None RO MSR

14 Reserved None RO MSR

15 Reserved None RO MSR

16 Reserved None RO MSR

17 Reserved None RO MSR

18 Reserved None RO MSR

19 Reserved None RO MSR

20 Reserved None RO MSR

21 Reserved None RO MSR

22 Reserved None RO MSR

23 Reserved None RO MSR

24 Reserved None RO MSR

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 69 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

VMM Access

Bit Name Prod. Debug Description Init Value (after
TDH.VP.INIT)

25 Reserved None RO MSR

26 Reserved None RO MSR

27 Reserved None RO MSR

28 Reserved None RO MSR

29 Reserved None RO MSR

30 Reserved None RO MSR

31 Reserved None RO MSR

32 Reserved None RO MSR

33 Reserved None RO MSR

34 Reserved None RO MSR

35 Reserved None RO MSR

36 Reserved None RO MSR

37 Reserved None RO MSR

38 Reserved None RO MSR

39 Reserved None RO MSR

40 Reserved None RO MSR

41 Reserved None RO MSR

42 Reserved None RO MSR

43 Reserved None RO MSR

44 Reserved None RO MSR

45 Reserved None RO MSR

46 Reserved None RO MSR

47 Reserved None RO MSR

48 Reserved None RO MSR

49 Reserved None RO MSR

50 Reserved None RO MSR

51 Reserved None RO MSR

52 Reserved None RO MSR

53 Reserved None RO MSR

54 Reserved None RO MSR

55 Reserved None RO MSR

56 Reserved None RO MSR

57 Reserved None RO MSR

58 Reserved None RO MSR

59 Reserved None RO MSR

60 Reserved None RO MSR

61 Reserved None RO MSR

62 Reserved None RO MSR

63 Reserved None RO MSR

Reserved bits are set based on IA32_VMX_PROCBASED_CTLS3 MSR.

5.3.4.3.3. TD VMCS Controls for APIC Virtualization

Table 5.18: TD VMCS Controls for APIC Virtualization

Field Name VMM Access Description Initial Value

Prod. Debug

APIC-access address None RO NULL_PA (-1)

Virtual-APIC address None None On VCPU-to-LP association, set by the Intel TDX
module to the address of the VAPIC page in
TDVPS, including the TD’s ephemeral HKID

Address of the VAPIC
page in TDVPS,
including the TD’s
ephemeral HKID

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 70 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Name VMM Access Description Initial Value

Prod. Debug

TPR threshold None RO 0

EOI-exit bitmap n None RO 0

Posted-interrupt
notification vector

RWS RWS TDH.VP.WR checks the value to be in the range 0
to 255.
See process posted interrupt pin-based
execution control.

0xFFFF

Posted-interrupt
descriptor address

RWS RWS TDH.VP.WR checks the value as follows:
• It must be a valid shared physical address
 (HKID bits encode a shared HKID).
• It must be aligned on 64B.
See process posted interrupt pin-based
execution control.

0xFFFFFFFFFFFFFFC0

5.3.4.3.4. EPTP and Shared EPTP

Table 5.19: EPTP (Copied from TDCS.EPTP on TDH.VP.INIT)

Bits Field Name VMM Access Description Initial Value

Prod. Debug

2:0 EPT Memory
Type

RO RO Set to WB 6

5:3 EPT Level RO RO 1 less than the EPT page-walk length Copied from TDCS.EPTP

6 Enable A/D Bits RO RO 0

7 Enable
supervisor
shadow stack
control

RO RO 0

11:8 Reserved RO RO 0

51:12 EPML5/4 PA RO RO

63:52 Reserved RO RO 0

Table 5.20: Shared EPTP 5

Bits Field Name VMM Access Description Initial Value

Prod. Debug

11:0 Reserved None RO 0

51:12 EPML5/4 PA RWS RWS

63:52 Reserved None RO 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 71 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.3.4.3.5. CR-Related TD VMCS VM-Execution Control Fields

Table 5.21: CR-Related VMCS VM-Execution Control Fields

Field Name VMM Access Description Initial Value

Prod. Debug

CR0 Guest/Host
Mask

None RW Bits 0, 5, 29 and 30 can't be written
even in debug mode

The following bits are set to 1, indicating they
are owned by the Intel TDX module:
• PE (0)
• NE (5)
• NW (29)
• CD (30)
• Any bit set to 1 in IA32_VMX_CR0_FIXED0
 (i.e., a bit whose value must be 1)
• Any bit set to 0 in IA32_VMX_CR0_FIXED1
 (i.e., a bit whose value must be 0), except for
 PG(31) which is set to 0, since the guest TD
 runs as an unrestricted guest
• Bits known to the Intel TDX module as
 reserved (bits 63-32, 28-19, 17 and 15-6)
All other bits are cleared to 0, indicating they
are owned by the guest TD.

CR0 Read Shadow None RW Bits 0 and 5 can't be written even
in debug mode

The following bits are set to 1:
• PE (0)
• NE (5)
• Any bit set to 1 in IA32_VMX_CR0_FIXED0
 (i.e., a bit whose value must be 1)
All other bits are cleared to 0.

CR4 Guest/Host
Mask

None RW Bits 6, 13 and 14 can't be written
even in debug mode

• Bits MCE (6), VMXE (13) and SMXE (14) are
 set to 1, indicating they are owned
 by the Intel TDX module.
• If PK is not enabled, then bit PKE (22) is set
 to ~TDCS.XFAM[9] to intercept writes to CR4.
• If TDCS.XFAM[12:11] is 11, then bit CET (23)
 is cleared to 0. Otherwise, if CET is not
 enabled, then bit CET (23) is set to 1 to
 intercept writes to CR4.
• If ULI is not enabled, then bit UINT (25) is
 set ~TDCS.XFAM[14] to intercept writes to
 CR4.
• If KeyLocker is not enabled, then bit KL (19)
 is set to ~TDCS.ATTRIBUTES.KL to intercept
 writes to CR4.
• If PKS is not enabled, then bit PKS (24) is set
 to ~TDCS.ATTRIBUTES.PKS to intercept writes
 to CR4.
• If Perfmon is not enabled, then bit PCE (8) is
 set to ~TDCS.ATTRIBUTES.PERFMON to
 intercept writes to CR4.
• Any bit set to 1 in IA32_VMX_CR4_FIXED0
 (i.e., a bit whose value must be 1) is set to 1.
• Any bit set to 0 in IA32_VMX_CR4_FIXED1
 (i.e., a bit whose value must be 0) is set to 1.
• Bits known to the Intel TDX module as
 reserved (bits 63-26 and bit 15) are set to 1.
• All other bits are cleared to 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 72 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Name VMM Access Description Initial Value

Prod. Debug

CR4 Read Shadow None RW Bit 6 can't be written even in debug
mode

• Bit MCE (6) is set to 1.
• Bit VMXE (13) is cleared to 0.
• Any other bit whose value is set to 1 in
 IA32_VMX_CR4_FIXED0 (i.e., a bit
 whose value must be 1) is set to 1.
• All other bits are cleared to 0.

CR3-Target Values None RW N/A: The Intel TDX module does
not control guest CR3

N/A

CR3-Target Count None RW Set to 0: Intel TDX module does
not control guest CR3

0

5.3.4.3.6. Other TD VMCS VM-Execution Control Fields

Table 5.22: Other TD VMCS VM-Execution Control Fields

Field Name VMM Access Description Initial Value

Prod. Debug

Exception Bitmap None RW • Bit 18 (MCE) is set to 1, even in
 debug mode.
• Other bits are cleared to 0. They may be
 modified in debug mode.

0x00040000

Page-fault error-
code mask

None RW 0

Page-fault error-
code match

None RW 0

I/O-Bitmap
Address n

None RO Set to NULL_PA (-1): I/O bitmaps execution
control is set to 0

NULL_PA (-1)

Time-Stamp
Counter Offset

RO RW Copied from TDCS.TSC_OFFSET

Time-Stamp
Counter
Multiplier

RO RW Copied from
TDCS.TSC_MULTIPLIER

MSR-Bitmap
Address

RO RO

Executive-VMCS
Pointer

None None N/A NULL_PA (-1)

TD HKID RO RO

VPID None RO 1 + the sequential initialization index of the
VCPU (TDVPS.VCPU_INDEX + 1)

Set to 1 + the sequential index
of the VCPU
(TDVPS.VCPU_INDEX + 1)

PLE_GAP RO RW 0

PLE_Window RO RW 0

VM-Function
Controls

RO RO The Intel TDX module injects a #UD into the
TD.

0

EPTP-list address RO RO VMFUNC is not supported. NULL_PA (-1)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 73 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Name VMM Access Description Initial Value

Prod. Debug

VMREAD-bitmap
address

None RO VMCS shadowing is not supported. NULL_PA (-1)

VMWRITE-bitmap
address

None RO VMCS shadowing is not supported. NULL_PA (-1)

ENCLS-Exiting
Bitmap

None RO Set to all 1’s – the Intel TDX module injects
a #UD into the guest TD.

All 1s

ENCLV-Exiting
Bitmap

None RO Set to all 1’s – the Intel TDX module injects
a #UD into the guest TD.

All 1s

PML address RO RWS TDH.VP.WR checks the value as follows:
• It must be a valid shared physical address
 (HKID bits encode a shared HKID).
• It must be aligned on 4KB.
See enable PML execution control.

0xFFFFFFFFFFFFF000

Virtualization-
exception
information
address

None RO

EPTP index None RO 0

XSS-Exiting
Bitmap

None RW 0

low PASID
directory address

None RO

high PASID
directory address

None RO

notify window RW RW 0

PCONFIG-Exiting
Bitmap

None RO -1

 TD VMCS VM-Exit Control Fields

Intel SDM, 24.7 VM-Exit Control Fields

Table 5.23: TD VMCS VM-Exit Controls

VMM Access

Name Prod. Debug Description Init Value

Reserved None RO MSR

Reserved None RO MSR

Save debug controls None RO 1

Reserved None RO MSR

Reserved None RO MSR

Reserved None RO MSR

Reserved None RO MSR

Reserved None RO MSR

Reserved None RO MSR

Host address-space size None RO 1

Reserved None RO MSR

Reserved None RO MSR

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 74 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

VMM Access

Name Prod. Debug Description Init Value

Load IA32_PERF_GLOBAL_CTRL None RO Set to 1 if TDCS.ATTRIBUTES.PERFMON =
1 or ATTRIBUTES.DEBUG = 1

Reserved None RO MSR

Reserved None RO MSR

Acknowledge interrupt on exit None RO 1

Reserved None RO MSR

Reserved None RO MSR

Save IA32_PAT None RO 1

Load IA32_PAT None RO 1

Save IA32_EFER None RO 1

Load IA32_EFER None RO 1

Save VMX-preemption time value None RO Set to 1 if TDCS.ATTRIBUTES.DEBUG = 1

Clear IA32_BNDCFGS None RO Deprecated 0

Conceal VMX from PT None RO 1

Clear IA32_RTIT_CTL None RO 1

Clear IA32_LBR_CTL None RO 1

Clear UINV None RO 1

Load host CET state None RO 1

Load host PKRS None RO 0

Save IA32_PERF_GLOBAL_CTRL None RO Set to 1 if TDCS.ATTRIBUTES.PERFMON =
1 or ATTRIBUTES.DEBUG = 1

Reserved None RO MSR

Reserved bits are set based on IA32_VMX_TRUE_EXIT_CTLS MSR.

Table 5.24: TD VMCS VM-Exit Controls for MSRs

Field Name VMM Access Description Initial Value

Prod. Debug

VM-exit MSR-store count None RO Not used 0

VM-exit MSR-store address None RO Not used NULL_PA (-1)

VM-exit MSR-load count None RW Not used 0

VM-exit MSR-load address None RO Not used NULL_PA (-1)

 TD VMCS VM-Entry Control Fields 5

Intel SDM, 24.8 VM-Entry Control Fields

Table 5.25: TD VMCS VM-Entry Controls

VMM Access

Bit Name Prod. Debug Description Init Value (after TDH.VP.INIT)

0 Reserved None RO MSR

1 Reserved None RO MSR

2 Load debug controls None RO 1

3 Reserved None RO MSR

4 Reserved None RO MSR

5 Reserved None RO MSR

6 Reserved None RO MSR

7 Reserved None RO MSR

8 Reserved None RO MSR

9 IA-32e mode guest None RO Written by the CPU on VM exit 0

10 Entry to SMM None RO 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 75 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

VMM Access

Bit Name Prod. Debug Description Init Value (after TDH.VP.INIT)

11 Deactivate dual-monitor
treatment

None RO 0

12 Reserved None RO MSR

13 Load
IA32_PERF_GLOBAL_CTRL

None RO Set to 1 if TDCS.ATTRIBUTES.PERFMON = 1
or ATTRIBUTES.DEBUG = 1

14 Load IA32_PAT None RO 1

15 Load IA32_EFER None RO 1

16 Load IA32_BNDCFGS None RO 0

17 Conceal VMX from PT None RO 1

18 Load IA32_RTIT_CTL None RO 1

19 Load UINV None RO 1

20 Load CET state None RO 1

21 Load IA32_LBR_CTL None RO 1

22 Load guest PKRS None RO Set to 1 if TDCS.ATTRIBUTES.PKRS = 1 or
TDCS.ATTRIBUTES.DEBUG = 1

23 Reserved None RO MSR

24 Reserved None RO MSR

25 Reserved None RO MSR

26 Reserved None RO MSR

27 Reserved None RO MSR

28 Reserved None RO MSR

29 Reserved None RO MSR

30 Reserved None RO MSR

31 Reserved None RO MSR

Reserved bits are set based on IA32_VMX_ENTRY_CTLS MSR.

Table 5.26: TD VMCS VM-Entry Controls for MSRs

Field Name VMM Access Description Initial Value

Prod. Debug

VM-entry MSR-load count None RO Not used 0

VM-entry MSR-load address None RO Not used NULL_PA (-1)

Table 5.27: TD VMCS VM-Entry Controls for Event Injection 5

Field Name VMM Access Description Initial Value

Prod. Debug

VM-entry interruption information None RO

VM-entry exception error code None RO

VM-entry instruction length None RO

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 76 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

 TD VMCS VM-Exit Information Fields

Intel SDM, 24.9 VM-Exit Information Fields

Table 5.28: TD VMCS Basic VM-Exit Information

Field Name VMM Access Description Initial Value

Prod. Debug

Exit reason None RO If the Intel TDX module decides to perform a TD exit, it
returns this in RAX bits 31:0.
Bit 27 (enclave mode) is not set.
Bit 28 (Pending MTF VM exit) is not set.
Bit 29 (VM exit from VMX root operation) is not set.
Bit 31 (VM-entry failure) is not set.

N/A

Exit qualification None RO If the Intel TDX module decides to perform a TD exit, it
returns this in RCX. If the exit is due to EPT violation,
bits 12-7 of the exit qualification are cleared to 0.

N/A

Guest-Linear
Address

None RO N/A

Guest-physical
Address

None RO If the Intel TDX module decides to perform a TD exit, it
returns this in R8. It the EPT fault was caused by an
access attempt to a private page, the Intel TDX module
clears bits 11:0 to 0.

N/A

Table 5.29: TD VMCS Information for VM Exits Due to Vectored Events 5

Field Name VMM Access Description Initial Value

Prod. Debug

VM-exit interruption
information

None RO On asynchronous TD exit, the Intel TDX module returns
this in R9. Bits 63:32 are cleared to 0.

N/A

VM-exit interruption
error code

None RO N/A

Table 5.30: TD VMCS Information for VM Exits That Occur During Event Delivery

Field Name VMM Access Description Initial Value

Prod. Debug

IDT-vectoring
information

None RO

IDT-vectoring error
code

None RO

Table 5.31: TD VMCS Information for VM Exits Due to Instruction Execution

Field Name VMM Access Description Initial Value

Prod. Debug

VM-exit instruction
length

None RO

VM-exit instruction
information

None RO

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 77 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Name VMM Access Description Initial Value

Prod. Debug

I/O RCX None RO N/A

I/O RSI None RO N/A

I/O RDI None RO N/A

I/O RIP None RO N/A

Table 5.32: TD VMCS VM-Instruction Error Field

Field Name VMM Access Description Initial Value

Prod. Debug

VM-instruction
error

None RO N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 78 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6. UPDATED: ABI Reference: Interface Functions

6.1. How to Read the Interface Function Definitions

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

A table of operands is provided for any function that has explicit and/or implicit memory operands or implicit resources. 5

Table 6.1 below describes how to read it. Most of the background is detailed in the [TDX Module Spec].

Table 6.1: How to Read the Operands Information Tables

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Alignment
Check

Concurrency Restrictions

Resource Contain.
2MB

Contain.
1GB

The
operand
may be
specified
explicitly
or may be
implicit

Register
used as
a
pointer
to the
operand

HPA or
GPA

Resource
(memory
or CPU
internal)
for this
operand

Data type
of the
resource,
as defined
in Chapter
4 or
Chapter 5

Type of
memory
or
resource
access:
R, RW, or
Ref

Shared,
Private,
Opaque or
Hidden

Required
alignment
of the
operand

Concurrency restrictions are
described in the [TDX Module
Spec].

For explicit memory accesses using
HPA, there are additional
concurrency restrictions on the
1GB and 2MB blocks that contain
the accessed HPA. For other types
of accesses, only the operand
concurrency is applicable.

Shared(h) and Exclusive(h) indicate
shared access with host-side
priority.

Shared(i) and Exclusive(i) indicate
that the resource is implicitly
restricted.

6.2. NEW: Common Algorithms Used by Multiple Interface Functions

This section describes common algorithms that are used by multiple interface functions. 10

6.2.1. Metadata Access

 Single Metadata Field Read

The following algorithm is used when reading a single metadata field based on a provided field identifier. This algorithm
is used by TDH.MNG.RD, TDH.VP.RD and TDG.VM.RD, TDG.VP.RD.

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 15

vary.

1. Check that the field identifier is valid and derive a read mask depending on whether this algorithm is used by a host-
side or a guest-side interface function, and whether the TD runs in debug mode (ATTRIBUTES.DEBUG is 1).

2. If the read mask is 0, then fail; the field in not readable.

If the above checks passed: 20

3. Read the field value from the control structure using the proper method per field class.
4. Mask the field value with the read mask derived above, and return the resulting value.

4.1. In some cases, special handling is required. E.g., the field value may need to be translated to another format,
or some other action may be needed.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 79 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

 Single Metadata Field Write

The following algorithm is used when writing a single metadata field based on provided field identifier, input value and
write mask. This algorithm is used by TDH.MNG.WR, TDH.VP.WR, TDG.VM.WR and TDG.VP.WR.

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 5

1. Check that the field identifier is valid and derive the field attributes (read mask, write mask) depending on whether
this algorithm is used by a host-side or a guest-side interface function, and whether the TD runs in debug mode
(ATTRIBUTES.DEBUG is 1).

2. If the write mask is 0, then fail, the field in not writable.

If passed: 10

3. Calculate an effective write mask:
3.1. If a write mask is provided as an input, derive the effective write mask by bitwise-anding the write mask derived

above with the write mask provided as an input.
3.2. Else, the effective write mask is the write mask derived above.

4. If the effective write mask is 0, then fail, the field in not writable. 15

If passed:

5. Read the old field value from the control structure using the proper method per field class.
6. Calculate a new field value based on the input value and the effective write mask, and write to the control structure

using the proper method per field class.
6.1. In some cases, special handling is required. E.g., the new field value may need to be checked for validity, or 20

some other action may be needed.

If passed:

7. Mask the old field value with the read mask derived above, and return the resulting value.

 Multiple Metadata Fields Write based on a Metadata List

The following algorithm is used when writing multiple metadata fields based on a provided metadata list. This algorithm 25

is used by TDH.IMPORT.STATE.*.

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

1. Check the list header to be valid (NUM_SEQUENCES > 0).

If passed: 30

2. For each sequence in the list:
2.1. Check that the list did not cross 4KB page boundary.
2.2. Read the sequence header and check it is valid.

If the above checks passed:

2.3. For each field in the sequence: 35

2.3.1. Check that the list did not cross 4KB page boundary.
2.3.2. Check that the field identifier is valid and derive a write mask depending on whether this algorithm is used

by a host-side or a guest-side interface function, and whether the TD runs in debug mode
(ATTRIBUTES.DEBUG is 1).

2.3.3. If the write mask is 0, then fail, the field in not writable. 40

If the above checks passed:

2.3.4. Calculate an effective write mask:
2.3.4.1. If a write mask is provided for each field in the current sequence, derive the effective write mask

by bitwise-anding the write mask derived above with the write mask provided with the field.
2.3.4.2. Else, the effective write mask is the write mask derived above. 45

2.3.5. If the effective write mask is 0, then fail, the field in not writable.

If passed:

2.3.6. Read the existing field value from the control structure using the proper method per field class.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 80 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

2.3.7. Calculate a new field value based on the input value and the effective write mask, and write to the control
structure using the proper method per field class.
2.3.7.1. In some cases, special handling is required. E.g., the new field value may need to be checked for

validity, or some other action may be needed.

 5

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 81 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3. UPDATED: Host-Side (SEAMCALL) Interface Functions

The SEAMCALL instruction enters the Intel TDX module. It is designed to call host-side Intel TDX functions, either local or
a TD entry to a guest TD, as selected by RAX.

6.3.1. UPDATED: SEAMCALL Instruction (Common)

This section describes the common functionality of SEAMCALL. Leaf functions are described in the following sections. 5

Table 6.2: SEAMCALL Input Operands Definition

Parameter Description

RAX Leaf and version numbers, as defined in the [TDX Module Spec]. See Table 6.4 below for
SEAMCALL leaf numbers.

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

Other See individual SEAMCALL leaf functions.

Table 6.3: SEAMCALL Output Operands Definition

Parameter Description

RAX Instruction return code, indicating the outcome of execution of the instruction. See the [TDX
Module Spec] for details.

Other See individual SEAMCALL leaf functions.

Table 6.4: SEAMCALL Instruction Leaf Numbers Definition 10

Leaf

Interface Function Name Description

0 TDH.VP.ENTER Enter TDX non-root operation

1 TDH.MNG.ADDCX Add a control structure page to a TD

2 TDH.MEM.PAGE.ADD Add a 4KB private page to a TD during TD build time

3 TDH.MEM.SEPT.ADD Add and map a 4KB Secure EPT page to a TD

4 TDH.VP.ADDCX Add a control structure page to a TD VCPU

5 TDH.MEM.PAGE.RELOCATE Relocate a 4KB mapped page from its HPA to another

6 TDH.MEM.PAGE.AUG Dynamically add a 4KB private page to an initialized TD

7 TDH.MEM.RANGE.BLOCK Block a TD private GPA range

8 TDH.MNG.KEY.CONFIG Configure the TD private key on a single package

9 TDH.MNG.CREATE Create a guest TD and its TDR root page

10 TDH.VP.CREATE Create a guest TD VCPU and its TDVPR root page

11 TDH.MNG.RD Read TD metadata

12 TDH.MEM.RD Read from private memory of a debuggable guest TD

13 TDH.MNG.WR Write TD metadata

14 TDH.MEM.WR Write to private memory of a debuggable guest TD

15 TDH.MEM.PAGE.DEMOTE Split a 2MB or a 1GB private TD page mapping into 512 4KB or 2MB page
mappings respectively

16 TDH.MR.EXTEND Extend the guest TD measurement register during TD build

17 TDH.MR.FINALIZE Finalize the guest TD measurement register

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 82 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf

Interface Function Name Description

18 TDH.VP.FLUSH Flush the address translation caches and cached TD VMCS associated with a TD
VCPU

19 TDH.MNG.VPFLUSHDONE Check all of a guest TD’s VCPUs have been flushed by TDH.VP.FLUSH

20 TDH.MNG.KEY.FREEID Mark the guest TD’s HKID as free

21 TDH.MNG.INIT Initialize per-TD control structures

22 TDH.VP.INIT Initialize the per-VCPU control structures

23 TDH.MEM.PAGE.PROMOTE Merge 512 consecutive 4KB or 2MB private TD page mappings into one 2MB or
1GB page mapping respectively

24 TDH.PHYMEM.PAGE.RDMD Read the metadata of a page in a TDMR

25 TDH.MEM.SEPT.RD Read a Secure EPT entry

26 TDH.VP.RD Read VCPU metadata

27 TDH.MNG.KEY.RECLAIMID Does nothing; provided for backward compatibility

28 TDH.PHYMEM.PAGE.RECLAIM Reclaim a physical memory page owned by a TD (i.e., TD private page, Secure EPT
page or a control structure page)

29 TDH.MEM.PAGE.REMOVE Remove a private page from a guest TD

30 TDH.MEM.SEPT.REMOVE Remove a Secure EPT page from a TD

31 TDH.SYS.KEY.CONFIG Configure the Intel TDX global private key on the current package

32 TDH.SYS.INFO Get Intel TDX module information

33 TDH.SYS.INIT Globally initialize the Intel TDX module

34 TDH.SYS.RD Read a TDX Module global-scope metadata field

35 TDH.SYS.LP.INIT Initialize the Intel TDX module per logical processor

36 TDH.SYS.TDMR.INIT Partially initialize a Trust Domain Memory Region (TDMR)

37 TDH.SYS.RDALL Read all host-readable TDX Module global-scope metadata fields

38 TDH.MEM.TRACK Increment the TD’s TLB tracking counter

39 TDH.MEM.RANGE.UNBLOCK Remove the blocking of a TD private GPA range

40 TDH.PHYMEM.CACHE.WB Write back the contents of the cache on a package

41 TDH.PHYMEM.PAGE.WBINVD Write back and invalidate all cache lines associated with the specified memory
page and HKID

43 TDH.VP.WR Write VCPU metadata

44 TDH.SYS.LP.SHUTDOWN Shutdown the Intel TDX module on the current LP

45 TDH.SYS.CONFIG Globally configure the Intel TDX module

48 TDH.SERVTD.BIND Bind a service TD to a target TD

49 TDH.SERVTD.PREBIND Pre-bind a service TD to a target TD

64 TDH.EXPORT.ABORT Abort an export session

65 TDH.EXPORT.BLOCKW Block a TD private page for writing

66 TDH.EXPORT.RESTORE Cancel the export of a previously exported TD private page

68 TDH.EXPORT.MEM Export a TD private page

70 TDH.EXPORT.PAUSE Pause the exported TD

71 TDH.EXPORT.TRACK End the in-order export phase and generate a start token

72 TDH.EXPORT.STATE.IMMUTABLE Start an export session and export the TD’s immutable state

73 TDH.EXPORT.STATE.TD Export the TD’s mutable state

74 TDH.EXPORT.STATE.VP Export a VCPU mutable state

75 TDH.EXPORT.UNBLOCKW Unblock a page that has been blocked for writing

80 TDH.IMPORT.ABORT Abort an import session

81 TDH.IMPORT.END End an import session

82 TDH.IMPORT.COMMIT Commit the import session and allow the imported TD to run

83 TDH.IMPORT.MEM Import a TD private page

84 TDH.IMPORT.TRACK Process a start token and end the in-order import phase

85 TDH.IMPORT.STATE.IMMUTABLE Start an import session and import the TD’s immutable state

86 TDH.IMPORT.STATE.TD Import the TD’s mutable state

87 TDH.IMPORT.STATE.VP Import a VCPU mutable state

96 TDH.MIG.STREAM.CREATE Create a migration stream

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 83 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Instruction Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

On entry, the Intel TDX module performs the checks listed below at a high level. Errors cause a SEAMRET with RAX set
to the proper completion status code. 5

1. The leaf number in RAX is supported by the Intel TDX module.
2. If the Intel TDX module’s state is not SYS_READY, only TDH.SYS.RD*, TDH.SYS.INFO, TDH.SYS.INIT, TDH.SYS.LP.INIT,

TDH.SYS.CONFIG, TDH.SYS.KEY.CONFIG and TDH.SYS.SHUTDOWN leaf functions are allowed. Those leaf functions
then perform other initialization state checks.

If all checks pass, the Intel TDX module calls the leaf function according to the leaf number in RAX. See the following 10

sections for individual leaf function details.

Completion Status Codes

Table 6.5: SEAMCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS SEAMCALL is successful.

TDX_SYS_SHUTDOWN

Other See individual leaf functions.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 84 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.2. NEW: TDH.EXPORT.ABORT Leaf

TDH.EXPORT.ABORT aborts an export session and allows the source TD to resume normal operation, depending on export
state and an abort token received from the destination platform.

Table 6.6: TDH.EXPORT.ABORT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 If an abort token is available, R8 provides the HPA and size of memory of an MBMD structure in
memory, as described below.

Otherwise, R8’s value must be 0.

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream index:

Bits Name Description

15:0 MIGS_INDEX If an abort token is available, this is the migration stream index.

Otherwise, this field’s value must be 0.

63:16 RESERVED Reserved: must be 0

 5

Table 6.7: TDH.EXPORT.ABORT Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

Leaf Function Description

TDH.EXPORT.ABORT aborts an export session. If successful, i.e., the target TD does not run, the source TD becomes
runnable. If called during the out-of-order phase, an abort token received from the destination platform is required.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 85 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.8: TDH.EXPORT.ABORT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA MBMD buffer MBMD R Shared 128B None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.EXPORT.ABORT checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS has been allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress but has not been committed yet: TDCS.OP_STATE is LIVE_EXPORT, PAUSED_EXPORT 10

or POST_EXPORT.
6. The migration stream index is lower than TDCS.NUM_MIGS.

If successful, the function does the following:

7. If the export session is in the post-copy phase (TDCS.OP_STATE is POST_EXPORT):
7.1. Check that the buffer provided for MBMD is large enough. 15

7.2. Copy the MBMD into a temporary buffer.
7.3. Check the MBMD fields.

If passed:

7.4. If the migration stream has not been initialized, initialize it.
7.5. Build the 96b IV for this migration bundle by concatenating 1 as the direction bit, the stream index and the 20

MBMD’s IV_COUNTER.
7.6. Calculate MAC based on the MAC’ed fields of MBMD and check that its value is the same as the MBMD’s MAC

field’s value.
8. Else (the export session is in the pre-copy phase – TDCS.OP_STATE is LIVE_EXPORT or PAUSED_EXPORT):

8.1. Check that the MBMD HPA and size provided in R8 is 0. 25

8.2. Check that the migration stream index provided in R10 is 0.

If passed:

9. Terminate the export session:
9.1. Set all migration streams’ INITIALIZED and ENABLED flags to FALSE.
9.2. Set TDCS.OP_STATE to RUNNABLE. 30

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 86 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.9: TDH.EXPORT.ABORT Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 87 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.3. NEW: TDH.EXPORT.BLOCKW Leaf

Block a list of TD private 4KB pages for writing.

Table 6.10: TDH.EXPORT.BLOCKW Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX GPA_LIST_INFO: HPA of a GPA list page in shared memory, and first and last entries to process, as
defined in 4.10.2

RDX HPA of the source TD’s TDR page (HKID bits must be 0)

Table 6.11: TDH.EXPORT.BLOCKW Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX GPA_LIST_INFO: Same as the input value, except that FIRST_ENTRY is updated to the index of the
next entry to be processed

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

For each 4KB page in the GPA list, if a blocking operation has been requested, TDH.EXPORT.BLOCKW finds the Secure EPT 10

entry for the provided page. If the entry state is correct (MAPPED, PENDING, EXPORTED_DIRTY or
PENDING_EXPORTED_DIRTY), TDH.EXPORT.BLOCKW marks it as blocked for writing (by setting the Secure EPT entry state
to BLOCKEDW, PENDING_BLOCKEDW, EXPORTED_DIRTY_BLOCKEDW or PENDING_EXPORTED_DIRTY_BLOCKEDW
respectively). It records the current TD’s TLB epoch in the TD’s global BW_EPOCH, and marks the GPA list entry as ready
for export. 15

List Entry Error: If a page can’t be blocked for writing, TDH.EXPORT.BLOCKW marks its GPA list entry as unsuccessful,
but does not abort. It continues to the next entry, if applicable. The return status in RAX indicates the
number of such cases encountered during operation.

Interruptibility: TDH.EXPORT.BLOCKW is interruptible. If a pending interrupt is detected during operation,
TDH.EXPORT.BLOCKW returns with a TDX_INTERRUPED_RSUMABLE status in RAX. RCX is updated with 20

the next list entry index to process, so the host BMM may re-invoke TDH.EXPORT.BLOCKW immediately
after handling the interrupt.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 88 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.12: TDH.MEM.RANGE.BLOCKW Memory Operands Information

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit N/A GPA TD private
pages (via GPA
list)

Block None Private 4KB None None None

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.MEM.RANGE.BLOCKW checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. Export session is in the in-order phase and the TD has not been paused yet (TDCS .OP_STATE is LIVE_EXPORT). 10

f passed, process the GPA list:

Note: Error conditions that impact a single GPA list entry do not cause an abort of TDH.EXPORT.BLOCKW. Instead, the
GPA list entry is updates with a proper status code, and the corresponding migration buffer list entry is marked
as invalid.

 15

6. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY, if OPERATION
indicates a BLOCKW request:
6.1. Check the GPA list entry fields value.

If passed:

6.2. Walk the Secure EPT based on the GPA operand and find the Secure EPT entry to be blocked. 20

6.3. Check the Secure EPT entry state: it should be either of MAPPED, PENDING, EXPORTED_DIRTY or
PENDING_EXPORTED_DIRTY.

6.4. If passed, update the SEPT entry and record the TD epoch:
6.4.1. Save the original value of SEPT.W into SEPT.TDW.
6.4.2. Block the Secure EPT entry for writing. Atomically set its state to BLOCKEDW, PENDING_BLOCKEDW, 25

EXPORTED_DIRTY_BLOCKEDW or PENDING_EXPORTED_DIRTY_BLOCKEDW as appropriate.
6.4.3. Copy the TD’s epoch (TDCS.TD_EPOCH) to TDCS.BW_EPOCH.

6.5. Else:
6.5.1. Set the GPA list entry’s OPERATION field to NOP and STATUS field to the applicable status.

6.6. If this is not the last entry in the list, and there is a pending interrupt, terminate TDH.EXPORT.BLOCKW with a 30

TDX_INTERRUPTED_RESUMABLE status.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 89 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.13: TDH.EXPORT.BLOCKW Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_EPT_ENTRY_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.EXPORT.BLOCKW is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 90 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.4. NEW: TDH.EXPORT.MEM Leaf

TDH.EXPORT.MEM exports a list of TD private pages contents and/or cancellation requests and prepares a migration
bundle in shared memory.

Table 6.14: TDH.EXPORT.MEM Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX GPA_LIST_INFO: HPA of a GPA list page in shared memory, and first and last entries to process, as
defined in 4.10.2

On a new invocation, FIRST_ENTRY must be 0. On a resumed invocation, FIRST_ENTRY must be the
index of the next GPA list entry to export.

RDX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 HPA (including HKID bits) of a migration buffer list in shared memory , corresponding to the GPA
list pointed by RCX – see 4.10.3.

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

R11 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the first 256 entries of
the GPA list pointed by RCX – see 4.10.3.

R12 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the last 256 entries of
the GPA list pointed by RCX – see 4.10.3.

 5

Table 6.15: TDH.EXPORT.MEM Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX GPA_LIST_INFO: Same as the input value, except that FIRST_ENTRY is updated to the index of the
next entry to be processed

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 91 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Number of exported 4KB migration buffers

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.MEM exports a list of up to 512 TD private 4KB pages as a migration bundle, which includes an MBMD, set 5

of 4KB pages encrypted with the migration session key, a 4KB page containing the GPA and attributes list, and two 4KB
pages containing page MACs.

A GPA list is provided as an input. For each page in the list, the requested operation may be either to export the page or
to cancel a previous page export. It is also possible to skip entries in the least by requesting no operation for specific
entries. The GPA list format is described in 4.10.2. It is designed to be compatible with TDH.EXPORT.BLOCKW. 10

A list of 4KB page buffers is provided as an input. In case no data is exported (PENDING page, page cancellation or some
state error) TDH.EXPORT.PAGE marks the

Export Error: If a page can’t be exported, TDH.EXPORT.MEM marks its GPA list entry as unsuccessful, but does not
abort. It continues to the next entry, if applicable. The return status in RAX indicates the number of
such cases encountered during operation. 15

Interruptibility: TDH.EXPORT.MEM is interruptible. If a pending interrupt is detected during operation,
TDH.EXPORT.MEM returns with a TDX_INTERRUPED_RESUMABLE status in RAX. RCX is updated with
the next list entry index to process, so the host VMM may re-invoke TDH.EXPORT.MEM immediately
after handling the interrupt, keeping the same inputs except setting R10.RESUME to 1.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 20

Intel TDX Module API.

Table 6.16: TDH.EXPORT.MEM Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Migration
buffer list

PAGE_LIST R Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A GPA TD private
pages (via GPA
list)

Block None Private 4KB None None None

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 92 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit N/A HPA Migration
buffer pages
(via page list)

Blob RW Shared 4KB None None None

Explicit N/A HPA Migration
buffer pages
(via page list)

Blob RW Shared 4KB None None None

Explicit N/A HPA MAC pages (via
page list)

Blob RW Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.EXPORT.MEM checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress.
6. If the export is in the in-order phase, the migration stream index is lower than TDCS.NUM_IN_ORDER_MIGS. Else, 10

the migration stream index is lower than TDCS.NUM_MIGS.
7. The buffer provided for MBMD is large enough.

If successful, the function does the following:

8. If the RESUME input flag is 0, indicating that this is a new (not resumed) invocation of TDH.EXPORT.MEM:
8.1. If the migration stream has not been initialized, initialize it. 15

8.2. Increment the migration stream context’s IV_COUNTER
8.3. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the

stream context’s IV_COUNTER.
8.4. Build a local copy of the MBMD.
8.5. Calculate the MBMD MAC. 20

8.6. Write the MBMD to memory.
9. Else (this is a resumption of a previously interrupted TDH.EXPORT.MEM):

9.1. Check that the migration stream has been initialized.
9.2. Check that the stream context’s INTERRUPTED_FUNC contains TDH.EXPORT.MEM’s leaf number.
9.3. Check that the current inputs are the same as saved in the stream context when the function was interrupted. 25

If passed, process the GPA list:

Note: Error conditions that impact a single GPA list entry do not cause an abort of TDH.EXPORT.MEM. Instead, the
GPA list entry is updates with a proper status code, and the corresponding migration buffer list entry is marked
as invalid.

10. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY: 30

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 93 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

10.1. If no operation is requested, mark the corresponding migration buffer list entry as invalid and continue to the
next GPA list entry.

10.2. Check the GPA list entry fields value.

If passed:

10.3. Walk the SEPT based on the GPA and level operands and find the leaf entry for the page. 5

10.4. Check that the SEPT entry state is allowed for page export.
10.5. If the TD is running (TDCS.OP_STATE is LIVE_EXPORT) and TLB tracking is required, check TLB tracking vs.

TDCS.BW_EPOCH set previously by TDH.EXPORT.BLOCKW.
10.6. Check that the requested operation is allowed in the current export phase.
10.7. Check that the requested operation is allowed for the current SEPT entry state. 10

Note: TDH.EXPORT.MEM does not check that the page has not been exported in the current migration epoch
during the in-order phase. This is checked when the page is imported by TDH.IMPORT.MEM.

10.8. Update the SEPT entry state, GPA list entry and migration buffer list entry.
10.9. Increment the migration stream context’s IV_COUNTER
10.10. Build the 96b IV for this page by concatenating 0 as the direction bit, the stream index and the stream 15

context’s IV_COUNTER.
10.11. Accumulate page MAC based on the GPA list entry.
10.12. If the page content is to be exported, encrypt the TD private page into the migration buffer and accumulate

MAC.
10.13. Write the page MAC to the MAC list. 20

10.14. If this is not the last round and there is a pending interrupt:
10.14.1. Save intermediate state in the migration stream context.
10.14.2. Terminate TDH.EXPORT.MEM with a TDX_INTERRUPTED_RESUMABLE status.

10.15. Else, advance to the next entry in the GPA list, if applicable.
11. Once the GPA list has been fully processed, update the migration stream next MB counter field. 25

Completion Status Codes

Table 6.17: TDH.EXPORT.MEM Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_OPERAND_PAGE_INVALID

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 94 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.5. NEW: TDH.EXPORT.PAUSE Leaf

TDH.EXPORT.PAUSE starts the TDX-enforced blackout period on the source platform, where the source TD is paused.

Table 6.18: TDH.EXPORT.PAUSE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of Source TD TDR page (HKID bits must be 0)

Table 6.19: TDH.EXPORT.PAUSE Output Operands Definitions 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.PAUSE starts the Live Migration Blackout period on the source platform. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.20: TDH.EXPORT.PAUSE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS Epoch
Tracking Fields

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.EXPORT.PAUSE checks the memory operands per the table above when applicable during its flow. The text below 15

does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 95 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. TDCS.OP_STATE is LIVE_EXPORT.

Note: All TD VCPUs have stopped executing and no other TD-specific SEAMCALL is running. This is implicit, since
TDH.EXPORT.PAUSE has an exclusive access to TDR and TDCS. 5

If successful, the function does the following:

6. Increment the TD’s epoch counter (TDCS.TD_EPOCH).

Note: This allows memory management operations to skip the need for blocking and TLB tracking while the TD is
paused. If the export session is aborted, the first TDH.VP.ENTER on each VCPU will flush TLB.

7. Set the TDCS.OP_STATE to PAUSED_EXPORT. 10

Completion Status Codes

Table 6.21: TDH.EXPORT.PAUSE Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 96 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.6. NEW: TDH.EXPORT.RESTORE Leaf

TDH.EXPORT.RESTORE restores a list of TD private 4KB pages’ Secure EPT entry states after an export abort.

Table 6.22: TDH.EXPORT.RESTORE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX GPA_LIST_INFO: HPA of a GPA list page in shared memory, and first and last entries to process, as
defined in 4.10.2

RDX HPA of the source TD’s TDR page (HKID bits must be 0)

Table 6.23: TDH.EXPORT.RESTORE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX GPA_LIST_INFO: Same as the input value, except that FIRST_ENTRY is updated to the index of the
next entry to be processed

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.RESTORE restores a list of TD private 4KB pages’ Secure EPT entry states after an aborted export session. It 10

reverts each Secure EPT entry to its original non-exported state.

List Entry Error: If a page’s Secure EPT entry can’t be restored, TDH.EXPORT.RESTORE marks its GPA list entry as
unsuccessful, but does not abort. It continues to the next entry, if applicable. The return status in RAX
indicates the number of such cases encountered during operation.

Interruptibility: TDH.EXPORT.RESTORE is interruptible. If a pending interrupt is detected during operation, 15

TDH.EXPORT.RESTORE returns with a TDX_INTERRUPED_RSUMABLE status in RAX. RCX is updated with
the next list entry index to process, so the host VMM may re-invoke TDH.EXPORT.RESTORE immediately
after handling the interrupt.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 97 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.24: TDH.EXPORT.RESTORE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit N/A GPA TD private
pages (via GPA
list)

Block None Private 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.EXPORT.RESTORE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. TDCS.OP_STATE is RUNNABLE. 10

If passed, process the GPA list:

Note: Error conditions that impact a single GPA list entry do not cause an abort of TDH.EXPORT.RESTORE. Instead, the
GPA list entry is updates with a proper status code, and the corresponding migration buffer list entry is marked
as invalid.

6. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY, if OPERATION 15

indicates a RESTORE request:
6.1. Check the GPA list entry fields value.

If passed:

6.2. Walk the SEPT based on the GPA and level operands and find the leaf entry for the page.
6.3. Check that the SEPT entry state is one of the EXPORTED_* or PENDING_EXPORTED_* states. 20

6.4. If passed, update the SEPT entry:
6.4.1. Atomically decrement TDCS.MIG_COUNT.
6.4.2. If the SEPT state is one of the *_DIRTY* states, atomically decrement TDCS.DIRTY_CONT.
6.4.3. If the SEPT state is one of the PENDING_* states, update it to PENDING. Else, update it to MAPPED.

6.5. Else: 25

6.5.1. Set the GPA list entry’s OPERATION field to NOP and STATUS field to the applicable status.
6.6. If this is not the last entry in the list, and there is a pending interrupt, terminate TDH.EXPORT.RESTORE with a

TDX_INTERRUPTED_RESUMABLE status.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 98 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.25: TDH.EXPORT.RESTORE Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_OPERAND_PAGE_INVALID

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 99 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.7. NEW: TDH.EXPORT.STATE.IMMUTABLE Leaf

TDH.EXPORT.STATE.IMMUTABLE starts a new export session and exports the TD’s immutable state as a multi-page
migration bundle.

Table 6.26: TDH.EXPORT.STATE.IMMUTABLE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO: migration buffers list information – see 4.10.2.1

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

31:16 NUM_IN_ORDER_MIGS Number of migration streams to be used during the in-order
migration phase

62:32 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

 5

Table 6.27: TDH.EXPORT.STATE.IMMUTABLE Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RDX Number of exported 4KB migration buffers

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 100 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.STATE.IMMUTABLE starts a new export session. It exports the TD’s immutable state as a migration bundle,
which includes an MBMD and a set of 4KB pages, encrypted with the migration session key. The migration bundle is 5

protected by a MAC that is stored in the MBMD.

TDH.EXPORT.STATE.IMMUTABLE is interruptible. The host VMM is expected to invoke it in a loop until it returns with
either a success indication or with a non-recoverable error indication.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 10

Table 6.28: TDH.EXPORT.STATE.IMMUTABLE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST RW Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.EXPORT.STATE.IMMUTABLE checks the memory operands per the table above when applicable during its flow. The
text below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. The TD build and measurement have been finalized, or the TD has been imported, and no export session is in progress 20

(TDCS.OP_STATE is either RUNNABLE or LIVE_IMPORT).
6. The TD is migratable: TDCS.ATTRIBUTES.MIGRATABLE is set to 1.
7. Any previous aborted export session has been cleaned up: TDCS.MIG_COUNT is 0.
8. MIGS_INDEX is 0.
9. NUM_IN_ORDER_MIGS is in the range 1 through TDCS.NUM_MIGS. 25

10. The buffer provided for MBMD is large enough.
11. The number of pages in the page list is large enough to hold the exported state.

Note: The required number of pages is enumerated by TDH.SYS.RD*.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 101 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

12. If the RESUME input flag is 0, indicating that this is a new invocation of TDH.EXPORT.STATE.IMMUTABLE (not a
resumption of a previously interrupted one):
12.1. Check that a valid migration key has been set by the Migration TD. If this is not the first migration session, then

the migration key must have been set after the previous migration session has started. 5

Note: There is no explicit check that a migration TD is bound; this is implied by the above check.

If passed:

12.2. Initialize the migration context in TDCS:
12.2.1. Copy the migration key to a working migration key that will be used throughout the export session.
12.2.2. Copy NUM_IN_ORDER_MIGS to TDCS. 10

12.2.3. Set all migration streams’ INITIALIZED flags to 0 and ENABLED flags to 1.
12.3. Initialize the current migration stream.
12.4. Increment the migration stream context’s IV_COUNTER.
12.5. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the

stream context’s IV_COUNTER. 15

12.6. Build the MBMD in the migration stream context.
12.7. Accumulate MAC in the stream context based on the MAC’ed fields of MBMD.

13. Else (this is a resumption of a previously interrupted TDH.EXPORT.STATE.IMMUTABLE):
13.1. Check that the resumption is valid:

13.1.1. The stream context indicates there’s a valid interruption state. 20

13.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand have the same value as in the
interruption state.

13.2. Check that the migration stream is enabled.
13.3. Restore the previously saved page list index from the migration context.
13.4. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the 25

stream context’s IV_COUNTER.

If passed:

14. Repeat exporting 4KB pages until all immutable state is exported or until a pending interrupt is detected:
14.1. Get the 4KB next page HPA from it from the page list.
14.2. Dump the next set of metadata fields as a metadata list of field sequences, into an internal temporary 4KB 30

buffer.
14.3. Use the migration key and the migration stream context to encrypt the 4KB internal buffer into the destination

data page and update the MAC calculation.
14.4. If all immutable state has been exported:

14.4.1. Write the accumulated MAC to the MBMD in the stream context. 35

14.4.2. Write the MBMD to the memory buffer provided by the host VMM.
14.4.3. Mark the migration stream context’s interrupted state as invalid.
14.4.4. Increment the migration stream context’s NEXT_MB_COUNTER.
14.4.5. Set TDCS.TOTAL_MB to 1.
14.4.6. Set TDCS.OP_STATE to LIVE_EXPORT. 40

14.4.7. Clear TDCS.DIRTY_COUNT to 0.
14.4.8. Terminate TDH.EXPORT.STATE.IMMUTABLE with a TDX_SUCCESS status.

14.5. Else, if there is a pending interrupt:
14.5.1. Save the interruption state to the stream context
14.5.2. Terminate TDH.EXPORT.STATE.IMMUTABLE with a TDX_INTERRUPTED_RESUMABLE status. 45

Completion Status Codes

Table 6.29: TDH.EXPORT.STATE.IMMUTABLE Completion Status Codes (Returned in RAX) Definition [TO BE
COMPLETED]

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 102 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 103 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.8. NEW: TDH.EXPORT.STATE.TD Leaf

TDH.EXPORT.STATE.TD exports a paused TD’s mutable state as a multi-page migration bundle.

Table 6.30: TDH.EXPORT.STATE.TD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO: migration buffers list information – see 0

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

Table 6.31: TDH.EXPORT.STATE.TD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RDX Number of exported 4KB migration buffers

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 104 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.EXPORT.STATE.TD exports the TD’s mutable state as a migration bundle, which includes an MBMD and a set of 4KB
pages, encrypted with the migration session key. The migration bundle is protected by a MAC that is stored in the MBMD.
The TD must have been paused by a TDH.EXPORT.PAUSE.

TDH.EXPORT.STATE.TD is interruptible. The host VMM is expected to invoke it in a loop until it returns with either a
success indication or with a non-recoverable error indication. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.32: TDH.EXPORT.STATE.TD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

TDH.EXPORT.STATE.TD checks the memory operands per the table above when applicable during its flow. The text below 10

does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 15

4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress, and the TD has been paused: TDCS.OP_STATE is PAUSED_EXPORT.
6. Migration stream index is 0.
7. The migration stream is enabled and initialized.
8. The buffer provided for MBMD is large enough. 20

9. The number of pages in the page list is large enough to hold the exported state.

Note: The required number of pages is enumerated by TDH.SYS.RD*.

If successful, the function does the following:

10. If the RESUME input flag is 0, indicating that this is a new invocation of TDH.EXPORT.STATE.TD (not a resumption of
a previously interrupted one): 25

10.1. Increment the migration stream context’s IV_COUNTER.
10.2. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index (0) and the

stream context’s IV_COUNTER.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 105 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

10.3. Build the MBMD in the migration stream context.
10.4. Accumulate MAC in the stream context based on the MAC’ed fields of MBMD.

11. Else (this is a resumption of a previously interrupted TDH.EXPORT.STATE.TD):
11.1. Check that the resumption is valid:

11.1.1. The stream context indicates there’s a valid interruption state. 5

11.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand have the same value as in the
interruption state.

11.2. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the
stream context’s IV_COUNTER.

11.3. Restore the previously saved page list index from the migration context. 10

If passed:

12. Repeat exporting 4KB pages until all mutable TD state is exported or until a pending interrupt is detected:
12.1. Get the 4KB next page HPA from it from the page list.
12.2. Dump the next set of metadata fields as a metadata list of field sequences, into an internal temporary 4KB

buffer. 15

12.3. Use the migration key and the migration stream context to encrypt the 4KB internal buffer into the destination
data page and update the MAC calculation.

12.4. If all TD state has been exported:
12.4.1. Write the accumulated MAC to the MBMD in the stream context.
12.4.2. Write the MBMD to the memory buffer provided by the host VMM. 20

12.4.3. Mark the migration stream context’s interrupted state as invalid.
12.4.4. Increment the migration stream context’s NEXT_MB_COUNTER.
12.4.5. Increment TDCS.TOTAL_MB.
12.4.6. Terminate TDH.EXPORT.STATE.TD with a TDX_SUCCESS status.

12.5. Else, if there is a pending interrupt: 25

12.5.1. Save the interruption state to the stream context
12.5.2. Terminate TDH.EXPORT.STATE.TD with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 6.33: TDH.EXPORT.STATE.TD Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 30

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 106 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.9. NEW: TDH.EXPORT.STATE.VP Leaf

TDH.EXPORT.STATE.VP exports a paused TD’s VCPU mutable state as a multi-page migration bundle.

Table 6.34: TDH.EXPORT.STATE.VP Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD VCPU’s TDVPR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO: migration buffers list information – see 0

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

Table 6.35: TDH.EXPORT.STATE.VP Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RDX Number of exported 4KB migration buffers

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 107 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.EXPORT.STATE.VP exports a TD’s VCPU mutable state as a migration bundle, which includes an MBMD and a set of
4KB pages, encrypted with the migration session key. The migration bundle is protected by a MAC that is stored in the
MBMD. The TD must have been paused by a TDH.EXPORT.PAUSE.

TDH.EXPORT.STATE.VP is interruptible. The host VMM is expected to invoke it in a loop until it returns with either a
success indication or with a non-recoverable error indication. 5

VCPU Association: TDH.EXPORT.VP associates the TD VCPU with the current LP. This requires that the VCPU will not be
associated with another LP – for details, see the [TDX Module Spec].

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.36: TDH.EXPORT.STATE.VP Memory Operands Information Definition 10

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS R Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Shared 4KB None None None

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

TDH.EXPORT.STATE.VP checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR). 15

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress, and the TD has been paused: TDCS.OP_STATE is PAUSED_EXPORT.
6. Migration stream index is lower than TDCS.NUM_IN_ORDER_MIGS. 20

7. The migration stream is enabled.
8. The buffer provided for MBMD is large enough.
9. The number of pages in the page list is large enough to hold the exported state.

Note: The required number of pages is enumerated by TDH.SYS.RD*.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 108 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

10. If the RESUME input flag is 0, indicating that this is a new invocation of TDH.EXPORT.STATE.VP (not a resumption of
a previously interrupted one):
10.1. If the migration stream has not been initialized, initialize it.
10.2. Increment the migration stream context’s IV_COUNTER. 5

10.3. Build the MBMD in the migration stream context.
10.4. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the

stream context’s IV_COUNTER.
10.5. Accumulate MAC in the stream context based on the MAC’ed fields of MBMD.

11. Else (this is a resumption of a previously interrupted TDH.EXPORT.STATE.VP): 10

11.1. Check that the resumption is valid:
11.1.1. The stream context indicates there’s a valid interruption state.
11.1.2. The current SEAMCALL leaf number, and the TDVPR HAP and PAGE_OR_LIST operands are the same as

in the interruption state.
11.2. Increment the migration stream context’s IV_COUNTER. 15

11.3. Restore the previously saved page list index from the migration context.
12. Repeat exporting 4KB pages until all immutable state is exported or until a pending interrupt is detected:

12.1. Get the 4KB next page HPA from it from the page list.
12.2. Dump the next set of metadata fields as a metadata list of field sequences, into an internal temporary 4KB

buffer. 20

12.3. Use the migration key and the migration stream context to encrypt the 4KB internal buffer into the destination
data page and update the MAC calculation.

12.4. If all VCPU state has been exported:
12.4.1. Write the accumulated MAC to the MBMD in the stream context.
12.4.2. Write the MBMD to the memory buffer provided by the host VMM. 25

12.4.3. Mark the migration stream context’s interrupted state as invalid.
12.4.4. Increment the migration stream context’s NEXT_MB_COUNTER.
12.4.5. Increment TDCS.TOTAL_MB.
12.4.6. Terminate TDH.EXPORT.STATE.VP with a TDX_SUCCESS status.

12.5. Else, if there is a pending interrupt: 30

12.5.1. Save the interruption state to the stream context
12.5.2. Terminate TDH.EXPORT.STATE.VP with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 6.37: TDH.EXPORT.STATE.VP Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 35

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 109 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.10. NEW: TDH.EXPORT.TRACK Leaf

TDH.EXPORT.TARCK ends the current in-order export phase epoch and either starts a new epoch or starts the out-of-
order export phase. Generate an epoch token to be exported to the destination platform.

Table 6.38: TDH.EXPORT.TRACK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream and flags:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 IN_ORDER_DONE Indicates that the in-order export phase is done

 5

Table 6.39: TDH.EXPORT.TRACK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

If R10.IN_ORDER_DONE is 0, TDH.EXPORT.TRACK starts a new export epoch.

Else (R10.IN_ORDER_DONE is 1), TDH.EXPORT.TRACK checks that no memory exported so far needs to be re-exported. If
so, it ends the in-order export phase and starts the out-of-order phase.

In both cases, TDH.EXPORT.TRACK generates an epoch token, to be exported on the specified migration stream.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 110 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.40: TDH.EXPORT.TRACK Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

TDH.EXPORT.TRACK checks the memory operands per the table above when applicable during its flow. The text below 5

does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 10

4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in the in-order phase: TDCS.OP_STATE is either LIVE_EXPORT or PAUSED_EXPORT.
6. The migration stream index is 0.
7. The migration stream is initialized.
8. The buffer provided for MBMD is large enough. 15

If successful, the function does the following:

9. If R10.IN_ORDER_DONE is 0:
9.1. Increment TDCS.MIG_EPOCH

10. Else (R10.IN_ORDER_DONE is 1):
10.1. Check that an export session is in the in-order phase and the TD has been paused: TDCS.OP_STATE is 20

PAUSED_EXPORT.
10.2. Check that TDCS.DIRTY_COUNT is 0, indicating that no unexported newer versions of any memory page

exported so far remain. Memory pages that have not yet been exported may remain, and may later be exported
(out-of-order).

10.3. The TD mutable state has been exported (by TDH.EXPORT.STATE.TD). 25

If passed:

10.4. Start the out-of-order phase:
10.4.1. Set TDCS.OP_STATE to POST_EXPORT.
10.4.2. Set TDCS.MIG_EPOCH to 0xFFFFFFFF.

11. Increment the migration stream context’s IV_COUNTER. 30

12. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the stream
context’s IV_COUNTER.

13. Create an epoch token MBMD with the following fields:
13.1. The number of the new epoch that have just begun. Bit 63 indicates the beginning of the out-of-order phase.
13.2. The total number of migration bundles (including the current one) that have been exported in the current 35

migration session.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 111 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

14. Accumulate MAC based on the MAC’ed fields of MBMD and write to the MBMD’s MAC field’s value.
15. Write the MBMD to the provided memory buffer.

Completion Status Codes

Table 6.41: TDH.EXPORT.TRACK Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 5

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 112 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.11. NEW: TDH.EXPORT.UNBLOCKW Leaf

Remove the write-blocking of a 4KB TD private page previously blocked by TDH.EXPORT.BLOCKW.

Table 6.42: TDH.EXPORT.UNBLOCKW Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the page to be blocked for writing
– see 4.5.1: must be 0 (4KB)

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the GPA to be unblocked for writing

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 6.43: TDH.EXPORT.UNBLOCKW Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry where the error was detected

In other cases, RCX returns 0

RDX Extended error information part 2

In case of EPT walk error, EPT level where the error was detected

In other cases, RDX returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.UNBLOCKW finds the write blocked Secure EPT entry for the given GPA and level. It verifies that the entry 10

has been blocked for writing and TLB tracking has been done, then marks the entry as non-blocked for writing (MAPPED,
PENDING, EXPORTED_DIRTY or PENDING_EXPORTED_DIRTY as appropriate).

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 113 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.44: TDH.EXPORT.UNBLOCKW Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page or TD
private page

Blob None Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.EXPORT.UNBLOCKW checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. Either of the following is true: 10

5.1. An export session is in progress.
5.2. The TD is allowed to run (TDCS.OP_STATE is either RUNNABLE, LIVE EXPORT, PAUSED_EXPORT or

POST_EXPORT). In these states, TDH.EXPORT.UNBLOCKW is used to clean up after an aborted export session.
6. The specified level is 0 (4KB).

If successful, the function does the following: 15

7. Walk the Secure EPT based on the GPA operand and find the Secure EPT page or TD private page to be unblocked
for writing.

8. Check the Secure EPT entry state is blocked for writing: BLOCKEDW, PENDING_BLOCKEDW,
EXPORTED_DIRTY_BLOCKEDW or PENDING_EXPORTED_DIRTY_BLOCKEDW.

9. If the TD is allowed to run, check that TLB tracking was done. 20

If passed:

10. If the page has not been exported (Secure EPT entry state is BLOCKEDW or PENDING_BLOCKEDW), unblock the
Secure EPT entry for writing by atomically setting its state to MAPPED or PENDING, respectively.

11. Else (Secure EPT entry state is EXPORTED_DIRTY_BLOCKEDW or PENDING_EXPORTED_DIRTY_BLOCKEDW):
11.1. Unblock the Secure EPT entry for writing by atomically setting its state to EXPORTED_DIRTY or 25

PENDING_EXPORTED_DIRTY, respectively.
11.2. Atomically increment TDCS.DIRTY_COUNT.

Completion Status Codes

Table 6.45: TDH.EXPORT.UNBLOCKW Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_EPT_WALK_FAILED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 114 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_NOT_WRITE_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.EXPORT.UNBLOCKW is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 115 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.12. NEW: TDH.IMPORT.ABORT Leaf

Abort an import session; after this the target TD can only be destroyed. Generate an abort token that is to be consumed
by the source platform.

Table 6.46: TDH.IMPORT.ABORT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream index

 5

Table 6.47: TDH.IMPORT.ABORT Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDH.IMPORT.ABORT generates an abort token MBMD and sets the destination TD’s OP_STATE to IMPORT_FAILED. In
this state, the destination TD will not run; it can only be destroyed. This is indicated by the FATAL bit (61) of the
completion status returned in RAX.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

Table 6.48: TDH.IMPORT.ABORT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 116 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.IMPORT.ABORT checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in progress but has not been committed yet (TDCS.OP_STATE is one of MEMORY_IMPORT,

STATE_IMPORT, POST_IMPORT or FAILED_IMPORT). 10

6. The migration stream index is lower than TDCS.NUM_MIGS.
7. The buffer provided for MBMD is large enough.

If successful, the function does the following:

8. Set TDCS.OP_STATE to FAILED_IMPORT.
9. If the migration stream has not been initialized, initialize it. 15

10. Increment the stream context’s IV_COUNTER.
11. Build the 96b IV for this migration bundle by concatenating 1 as the direction bit, the stream index and the stream

context’s IV_COUNTER.
12. Create an abort token MBMD.
13. Accumulate MAC based on the MAC’ed fields of MBMD and write to the MBMD’s MAC field’s value. 20

14. Write the MBMD to the provided memory buffer.
15. Increment the stream context’s NEXT_MB_COUNTER.

Completion Status Codes

Table 6.49: TDH.IMPORT.ABORT Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 117 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 118 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.13. NEW: TDH.IMPORT.COMMIT Leaf

Commit an import session and allow the imported TD to run.

Table 6.50: TDH.IMPORT.COMMIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

Table 6.51: TDH.IMPORT.COMMIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.COMMIT commits an import session and allows the important TD to run. Post-copy memory import may 10

continue.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.52: TDH.IMPORT.COMMIT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

 15

TDH.IMPORT.COMMIT checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 20

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 119 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in the out-of-order phase: TDCS.OP_STATE is POST_IMPORT.

If successful, the function does the following:

6. Set TDCS.OP_STATE to LIVE_IMPORT.

Completion Status Codes 5

Table 6.53: TDH.IMPORT.COMMIT Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 120 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.14. NEW: TDH.IMPORT.END Leaf

End an import session.

Table 6.54: TDH.IMPORT.END Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

Table 6.55: TDH.IMPORT.END Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.END ends an import session and allows the important TD to run (if not already allowed by 10

TDH.IMPORT.COMMIT).

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.56: TDH.IMPORT.END Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

 15

TDH.IMPORT.END checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 20

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 121 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in the out-of-order phase.

If successful, the function does the following:

6. Set TDCS.OP_STATE to RUNNABLE.

Completion Status Codes 5

Table 6.57: TDH.IMPORT.END Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 122 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.15. NEW: TDH.IMPORT.MEM Leaf

TDH.IMPORT.MEM imports a list of TD private pages contents and/or cancellation requests based on a migration bundle
in shared memory.

Table 6.58: TDH.IMPORT.MEM Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX GPA_LIST_INFO: HPA of a GPA list page in shared memory, and first and last entries to process, as
defined in 4.10.2

RDX HPA of the destination TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 HPA (including HKID bits) of a migration buffer list in shared memory, corresponding to the GPA
list pointed by RCX – see 4.10.3.

No migration buffers are required for PENDING pages and for migration cancellation requests. The
list entries for such pages are skipped.

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

R11 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the first 256 entries of
the GPA list pointed by RCX – see 4.10.3.

R12 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the last 256 entries of
the GPA list pointed by RCX – see 4.10.3.

R13 If in-place import is requested for pages imported for the first -time in the current import session,
or for the first-time after a previous import cancellation, R13 should be set to NULL_PA (all 1’s).

Otherwise, R13 should be set to the HPA (including HKID bits) of a destination page list in shared
memory, corresponding to the GPA list pointed by RCX – see 4.8.6. For pages imported for the
first-time in the current import session, or for the first-time after a previous import cancellation,
the corresponding pages pointed the list become the destination TD pages.

 5

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 123 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.59: TDH.IMPORT.MEM Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX GPA_LIST_INFO: Same as the input value, except that FIRST_ENTRY is updated to the index of the
next entry to be processed

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 5

TDH.IMPORT.MEM imports a list of up to 512 TD private 4KB pages based on a migration bundle, which includes an
MBMD, set of 4KB pages encrypted with the migration session key, a 4KB page containing the GPA and attributes list,
and two 4KB pages containing page MACs.

For each page in the migration bundle’s GPA list, the requested operation may either be to import the page, to re-import
a newer version of the page (after a previous import) or to cancel a previous page import. It is also possible to skip entries 10

in the least by requesting no operation for specific entries. The GPA list format is described in 4.10.2.

Re-Import: Re-import is only allowed during the in-order import phase. The imported pages replace an older
version of the same pages, as long as the SEPT entry state is compatible:

• If the old SEPT state is PENDING, it may be overwritten by a new version that is either PENDING or
MAPPED. 15

• If the old SEPT state is MAPPED, it may be overwritten by a newer version that is MAPPED.

Page attributes (e.g., RWX etc.) of a new page version may be different than those of a previously
imported version.

If the out-of-order import phase, the imported pages may not overwrite an older version of the same
pages. 20

In-Place Import: First-time import of a page during the current import session, or following a previous import
cancellation, may be done in-place; the same physical pages that are provided as input are converted
to TD private pages. Alternatively, a list of 4KB pages to be used as the destination TD new private
pages may be provided. In any case, either a migration buffer or a new page must be provided, even if
the imported page is PENDING and no content is imported. 25

Re-import of a page is always done over the TD private page that holds the previously imported version.

Import Abort: In many cases, an error during import aborts the import session because the memory state of the
imported TD can’t be guaranteed to be correct.

If the import session has not been committed yet (by THD.IMPORT.COMMIT) and not yet entered the
LIVE_IMPORT state where the TD is allowed to run, a failed TDH.IMPORT.MEM is considered fatal to 30

the import session (except in cases where the imported TD state has not been modified). The target
TD is marked as IMPORT_FAILED and, by design, will not run. This is indicated by the FATAL bit (61) of
the completion status returned in RAX.

If the import session has been committed and the entered the LIVE_IMPORT state where the TD is
allowed to run, then a failed TDH.IMPORT.MEM terminates the import session (except in cases where 35

the imported TD state has not been modified) but does not impact the TD’s ability to run. This is
indicated by the FATAL bit (61) of the completion status returned in RAX.

Interruptibility: TDH.IMPORT.MEM is interruptible. If a pending interrupt is detected during operation,
TDH.IMPORT.MEM returns with a TDX_INTERRUPED_RSUMABLE status in RAX. RCX is updated with

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 124 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

the next list entry index to process, so the host VMM may re-invoke TDH.IMPORT.MEM immediately
after handling the interrupt, keeping the same inputs except setting R10.RESUME to 1.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.60: TDH.IMPORT.MEM Memory Operands Information Definition 5

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA MBMD MBMD R Shared 128B None None None

Explicit R9 HPA Migration
buffer list

PAGE_LIST R Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A GPA TD private
pages (via GPA
list)

Block None Private 4KB None None None

Explicit N/A HPA Migration
buffer pages
(via page list)

Blob RW Shared 4KB None None None

Explicit N/A HPA MAC pages (via
page list)

Blob RW Shared 4KB None None None

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Private 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entries

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.IMPORT.MEM checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 10

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in progress.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 125 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6. If import is in the in-order phase, check that the migration stream index is lower than TDCS.NUM_IN_ORDER_MIGS.
Else, check that the migration stream index is lower than TDCS.NUM_MIGS.

If successful, the function does the following:

7. If the RESUME input flag is 0, indicating that this is a new (not resumed) invocation of TDH.IMPORT.MEM:
7.1. Initialize the migration stream if not done so far. 5

7.2. Copy the MBMD into a temporary buffer.
7.3. Check the MBMD fields.

If passed:

7.4. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and MBMD’s
MB_COUNTER. 10

7.5. Check the MAC based on the MAC’ed fields of MBMD.
8. Else (this is a resumption of a previously interrupted TDH.IMPORT.MEM):

8.1. Check that the stream context’s INTERRUPTED_FUNC contains TDH.IMPORT.MEM’s leaf number.
8.2. Check that the current inputs are the same as saved in the stream context when the function was interrupted.

If passed, process the GPA list: 15

Note: Error conditions that impact a single GPA list entry, but do not cause an import session about, do not cause an
abort of TDH.IMPORT.MEM. Instead, the GPA list entry is updates with a proper status code.

9. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY:
9.1. Increment the migration stream context’s IV_COUNTER
9.2. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the 20

stream context’s IV_COUNTER.
9.3. Accumulate page MAC based on the GPA list entry.
9.4. If no operation is requested:

9.4.1. Check that the calculated MAC value is equal to the provided page MAC value.

If passed: 25

9.4.2. Mark the corresponding new page list entry (if available) as invalid and continue to the next GPA list
entry.

9.5. Walk the SEPT based on the GPA and level operands and find the leaf entry for the page.
9.6. Check that the SEPT entry state is allowed for page import.
9.7. If import is in the out-of-order phase, check that the requested operation in first-time import. 30

9.8. If the requested operation if import or re-import, and the page state is not PENDING, check that a migration
buffer is provided, and its address is a valid shared address.

9.9. If the requested operation is first-time migrate:
9.9.1. Check that the SEPT entry state is either FREE or REMOVED.
9.9.2. If the SEPT entry state is REMOVED, check that the has not been removed in the current migration 35

epoch.

If passed:

9.9.3. If no new page list entry is provided, and a migration buffer is provided, this indicates in-place import.
If the page is not PENDING, copy the migration buffer content to a temporary buffer. The migration
buffer page will become the new TD private page. 40

9.9.4. Else, check that the new page list entry is a valid shared HPA.
9.9.5. If the page is not PENDING, decrypt the migration buffer or temporary buffer into the new TD page.

Use direct writes (MOVDIR64B), and accumulate MAC.
9.9.6. Check that the calculated MAC value is equal to the provided page MAC value.

If passed: 45

9.9.7. Update the new TD page PAMT entry; record the current migration epoch value in PAMT.BEPOCH.
9.9.8. Update the SEPT entry.

9.10. Else, if the requested operation is re-migrate:
9.10.1. Check that the SEPT entry state is either MAPPED or PENDING.
9.10.2. Using the page’s PAMT.BEPOCH, check that the page has not been imported in the current migration 50

epoch.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 126 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

9.10.3. Record the current migration epoch value in PAMT.BEPOCH.
9.10.4. If the page is not PENDING, decrypt the migration buffer or temporary buffer into the new TD page.

Use direct writes (MOVDIR64B), and accumulate MAC.
9.10.5. Check that the calculated MAC value is equal to the provided page MAC value. 5

If passed:

9.10.6. Update the SEPT entry.
9.11. Else, if the requested operation is migration cancel:

9.11.1. Check that the SEPT entry state indicates that the page has been exported.
9.11.2. Calculate MAC over the GPA list entry and check that the value is equal to the provided page MAC value. 10

9.11.3. Using the page’s PAMT.BEPOCH, check that the page has not been imported in the current migration
epoch.

If passed:

9.11.4. Update the SEPT entry; set the state to REMOVED and record the current migration epoch in the HPA.
9.12. If this is not the last round and there is a pending interrupt: 15

9.12.1. Save intermediate state in the migration stream context.
9.12.2. Terminate TDH.EXPORT.MEM with a TDX_INTERRUPTED_RESUMABLE status.

9.13. Else, advance to the next entry in the GPA list, if applicable.
10. Once the GPA list has been fully processed, update the migration stream expected MB counter field.

Completion Status Codes 20

Table 6.61: TDH.IMPORT.MEM Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 127 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.16. NEW: TDH.IMPORT.STATE.IMMUTABLE Leaf

TDH.IMPORT.STATE.IMMUTABLE starts a new import session and exports the TD’s immutable state as a multi-page
migration bundle.

Table 6.62: TDH.IMPORT.STATE.IMMUTABLE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of Destination TD TDR page (HKID bits must be 0)

R8 HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO: migration buffers list information – see 0

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

 5

Table 6.63: TDH.IMPORT.STATE.IMMUTABLE Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX Extended error information 1

In case of an error related to non-memory state field import, RCX contains the offending field
identifier.

RDX Extended error information 2

Reserved – set to 0.

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 128 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.STATE.IMMUTABLE starts a new import session. It imports the TD’s immutable state migration bundle
previously exported by TDH.EXPORT.STATE.IMMUTABLE. The migration bundle includes an MBMD and a set of 4KB 5

pages.

TDH.IMPORT.STATE.IMMUTABLE is interruptible. The host VMM is expected to invoke it in a loop until it returns with
either a success indication or with a non-recoverable error indication.

TD immutable state is verified by TDH.IMPORT.STATE.IMMUTABLE against target platform capabilities and Intel TDX
module version, capabilities and configuration. The checks are similar, but not identical, to the TD_PARAMS checks done 10

on the source platform by TDH.MNG.INIT.

A failed TDH.IMPORT.STATE.IMMUTABLE marks (except in cases where the imported TD state has not been modified)
the target TD as IMPORT_FAILED; by design, it will not run. This is indicated by the FATAL bit (61) of the completion status
returned in RAX.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 15

Intel TDX Module API.

Table 6.64: TDH.IMPORT.STATE.IMMUTABLE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA MBMD MBMD R Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Source pages
(via page list)

Blob R Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.IMPORT.STATE.IMMUTABLE checks the memory operands per the table above when applicable during its flow. The
text below does not explicitly mention those checks, except when necessary. 20

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number). 25

5. The TD has not been initialized (TDCS.OP_STATE is UNINITIALIZED).
6. A Migration TD has been bound to the source TD, and no migration session is in progress: Migration Session State is

MIG_TD_BOUND.
7. The migration stream index is 0.
8. The buffer provided for MBMD is large enough and fits within a 4KB page. 30

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 129 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

9. If the RESUME input flag is 0, indicating this is a new invocation of TDH.IMPORT.STATE.IMMUTABLE (not a
resumption of a previously interrupted one):
9.1. Check that a valid migration key has been set by the Migration TD. If this is not the first migration session, then

the migration key must have been set after the previous migration session has started. 5

Note: There is no explicit check that a migration TD is bound; this is implied by the above check.

If passed:

9.2. Initialize the migration context in TDCS:
9.2.1. Copy the migration key to a working migration key that will be used throughout the import session.
9.2.2. Copy the MBMD’s NUM_IN_ORDER_MIGS to TDCS 10

9.2.3. Set all migration streams’ INITIALIZED flag to 0 and ENABLED flags to 1.
9.3. Initialize the current migration stream.
9.4. Copy the MBMD into the migration context.
9.5. Check the MBMD fields.

If passed: 15

9.6. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the
stream context’s IV_COUNTER.

9.7. Accumulate MAC based on the MAC’ed fields of MBMD.
10. Else (this is a resumption of a previously interrupted TDH.IMPORT.STATE.IMMUTABLE):

10.1. Check that the resumption is valid: 20

10.1.1. The stream context indicates there’s a valid interruption state.
10.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand are the same as in the interruption

state.
10.2. Check that the migration stream is enabled.
10.3. Restore the previously saved page list index from the migration context. 25

If passed:

11. Repeat importing 4KB pages until all immutable state is imported or until a pending interrupt is detected:
11.1. Get the 4KB next page HPA from it from the page list.
11.2. Use the migration key and the migration stream context to decrypt the 4KB internal buffer into an internal

temporary 4KB buffer and update the MAC calculation. 30

11.3. Parse the metadata list and write the control structure fields using the algorithm described in 6.2.1.3. Check
each TDR or TDCS field for compatibility.

If passed:

11.4. If all metadata lists have been imported:
11.4.1. Check that the accumulated MAC value is equal to the saved MBMD’s MAC value. 35

11.4.2. Check that all global, TDR and TDCS metadata fields required to be imported by
TDH.IMPORT.STATE.IMMUTABLE have indeed been imported.

11.4.3. Initialize TDR and TDCS fields that need to be initialized at the beginning of the import session.
11.4.4. Mark the migration stream context’s interrupted state as invalid.
11.4.5. Increment the migration stream context’s EXPECTED_MB_COUNTER. 40

11.4.6. Set TDCS.TOTAL_MB to 1.
11.4.7. Set TDCS.OP_STATE to MEMORY_IMPORT.
11.4.8. Terminate TDH.IMPORT.STATE.IMMUTABLE with a TDX_SUCCESS status.

11.5. Else, if there is a pending interrupt:
11.5.1. Save the interruption state to the stream context 45

11.5.2. Terminate TDH.IMPORT.STATE.IMMUTABLE with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 6.65: TDH.IMPORT.STATE.IMMUTABLE Completion Status Codes (Returned in RAX) Definition [TO BE
COMPLETED]

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 130 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 131 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.17. NEW: TDH.IMPORT.STATE.TD Leaf

TDH.IMPORT.STATE.TD imports the TD-scope mutable state as a multi-page migration bundle.

Table 6.66: TDH.IMPORT.STATE.TD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of Destination TD TDR page (HKID bits must be 0)

R8 HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO: migration buffers list information – see 0

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

Table 6.67: TDH.IMPORT.STATE.TD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX Extended error information 1

In case of an error related to non-memory state field import, as indicated by RAX, RCX contains the
offending field identifier.

RDX Extended error information 2

Reserved – set to 0.

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 132 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.STATE.TD imports the TD-scope mutable state migration bundle previously exported by
TDH.EXPORT.STATE.TD. The migration bundle includes an MBMD and a set of 4KB pages. 5

TDH.IMPORT.STATE.TD is interruptible. The host VMM is expected to invoke it in a loop until it returns with either a
success indication or with a non-recoverable error indication.

TD-scope mutable state is verified by TDH.IMPORT.STATE.TD against target platform capabilities and Intel TDX module
version, capabilities and configuration.

A failed TDH.IMPORT.STATE.TD marks (except in cases where the imported TD state has not been modified) the target 10

TD as IMPORT_FAILED; by design, it will not run. This is indicated by the FATAL bit (61) of the completion status returned
in RAX.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.68: TDH.IMPORT.STATE.VP Memory Operands Information Definition 15

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA MBMD MBMD R Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Source pages
(via page list)

Blob R Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.IMPORT.STATE.TD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 20

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in progress, but TD-scope mutable state has not been imported yet (TDCS.OP_STATE is

MEMORY_IMPORT). 25

6. The migration stream index is 0.
7. The migration stream is enabled.
8. The buffer provided for MBMD is large enough and fits within a 4KB page.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 133 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

9. If the RESUME input flag is 0, indicating this is a new invocation of TDH.IMPORT.STATE.TD (not a resumption of a
previously interrupted one):
9.1. Copy the MBMD into the migration context.
9.2. Check the MBMD fields. 5

If passed:

9.3. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the
stream context’s IV_COUNTER.

9.4. Accumulate MAC based on the MAC’ed fields of MBMD.
10. Else (this is a resumption of a previously interrupted TDH.IMPORT.STATE.IMMUTABLE): 10

10.1. Check that the resumption is valid:
10.1.1. The stream context indicates there’s a valid interruption state.
10.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand are the same as in the interruption

state.
10.2. Restore the previously saved page list index from the migration context. 15

If passed:

11. Repeat importing 4KB pages until all immutable state is imported or until a pending interrupt is detected:
11.1. Get the 4KB next page HPA from it from the page list.
11.2. Use the migration key and the migration stream context to decrypt the 4KB internal buffer into an internal

temporary 4KB buffer and update the MAC calculation. 20

11.3. Parse the metadata list and write the control structure fields using the algorithm described in 6.2.1.3. Check
each TDR or TDCS field for compatibility.

If passed:

11.4. If all metadata lists have been imported:
11.4.1. Check that the accumulated MAC value is equal to the saved MBMD’s MAC value. 25

11.4.2. Check that all TDR and TDCS fields required to be imported by TDH.IMPORT.STATE.TD have indeed been
imported.

11.4.3. Initialize TDR and TDCS fields that need to be initialized at the end of the import session.
11.4.4. Mark the migration stream context’s interrupted state as invalid.
11.4.5. Increment the migration stream context’s EXPECTED_MB_COUNTER. 30

11.4.6. Increment TDCS.TOTAL_MB.
11.4.7. Set TDCS.OP_STATE to STATE_IMPORT.
11.4.8. Terminate TDH.IMPORT.STATE.TD with a TDX_SUCCESS status.

11.5. Else, if there is a pending interrupt:
11.5.1. Save the interruption state to the stream context 35

11.5.2. Terminate TDH.IMPORT.STATE.TD with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 6.69: TDH.IMPORT.STATE.TD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 134 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 135 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.18. NEW: TDH.IMPORT.STATE.VP Leaf

TDH.IMPORT.STATE.VP imports the VCPU-scope mutable state as a multi-page migration bundle.

Table 6.70: TDH.IMPORT.STATE.VP Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD VCPU’s TDVPR page (HKID bits must be 0)

R8 HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO: migration buffers list information – see 0

R10 Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted operation

Table 6.71: TDH.IMPORT.STATE.VP Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

RCX Extended error information 1

In case of an error related to non-memory state field import, as indicated by RAX, RCX contains the
offending field identifier.

RDX Extended error information 2

Reserved – set to 0.

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 136 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.STATE.VP imports the VCPU-scope mutable state migration bundle previously exported by
TDH.EXPORT.STATE.VP. The migration bundle includes an MBMD and a set of 4KB pages. 5

TDH.IMPORT.STATE.VP is interruptible. The host VMM is expected to invoke it in a loop until it returns with either a
success indication or with a non-recoverable error indication.

TD-scope mutable state is verified by TDH.IMPORT.STATE.VP against target platform capabilities and Intel TDX module
version, capabilities and configuration.

A failed TDH.IMPORT.STATE.VP marks (except in cases where the imported TD state has not been modified) the target 10

TD as IMPORT_FAILED; by design, it will not run. This is indicated by the FATAL bit (61) of the completion status returned
in RAX.

VCPU Association: TDH.IMPORT.VP associates the TD VCPU with the current LP. This requires that the VCPU will not be
associated with another LP – for details, see the [TDX Module Spec].

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 15

Intel TDX Module API.

Table 6.72: TDH.IMPORT.STATE.VP Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA MBMD MBMD R Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Source pages
(via page list)

Blob R Shared 4KB None None None

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

TDH.IMPORT.STATE.VP checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary. 20

The function checks the following conditions:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number). 25

5. An import session is in progress and TD-scope mutable state has been imported (TDCS.OP_STATE is STATE_IMPORT).
6. The migration stream index is lower than TDCS.NUM_IN_ORDER_MIGS.
7. The number of pages allocated to this TDVPS is correct.
8. The VCPU has not been initialized yet (TDVPS.VCPU_STATE is VCPU_UNINITIALIZED).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 137 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

9. The buffer provided for MBMD is large enough.

If successful, the function does the following:

10. If the RESUME input flag is 0, indicating this is a new invocation of a previously interrupted TDH.IMPORT.STATE.VP
(not a resumption of a previously interrupted one):
10.1. Copy the MBMD into the migration context. 5

10.2. Check the MBMD fields.

If passed:

10.3. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the
stream context’s IV_COUNTER.

10.4. Accumulate MAC based on the MAC’ed fields of MBMD. 10

10.5. Atomically increment the TD’s VCPU counter (TDCS.NUM_VCPUS), and check that maximum number of VCPUs
(TDCS.MAX_VCPUS) has not been exceeded.

11. Else (this is a resumption of a previously interrupted TDH.IMPORT.STATE.VP):
11.1. Check that the resumption is valid:

11.1.1. The stream context indicates there’s a valid interruption state. 15

11.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand are the same as in the interruption
state.

If passed:

12. Repeat importing 4KB pages until all TD-scope state is imported or until a pending interrupt is detected:
12.1. Get the 4KB next page HPA from it from the page list. 20

12.2. Use the migration key and the migration stream context to decrypt the 4KB internal buffer into an internal
temporary 4KB buffer and update the MAC calculation.

12.3. Parse the metadata list and write the control structure fields using the algorithm described in 6.2.1.3. Check
each TDVPS field for compatibility.

If passed: 25

12.4. If all metadata lists have been imported:
12.4.1. Check that the accumulated MAC value is equal to the saved MBMD’s MAC value.
12.4.2. Check that all TDR and TDCS fields required to be imported by TDH.IMPORT.STATE.VP have indeed been

imported.
12.4.3. Initialize TDVPS fields that need to be initialized at the end of the import session. 30

12.4.4. Mark the migration stream context’s interrupted state as invalid.
12.4.5. Increment the migration stream context’s EXPECTED_MB_COUNTER.
12.4.6. Increment TDCS.TOTAL_MB.
12.4.7. Terminate TDH.IMPORT.STATE.VP with a TDX_SUCCESS status.

12.5. Else, if there is a pending interrupt: 35

12.5.1. Save the interruption state to the stream context
12.5.2. Terminate TDH.IMPORT.STATE.VP with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 6.73: TDH.IMPORT.STATE.VP Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 138 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 139 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.19. NEW: TDH.IMPORT.TRACK Leaf

TDH.IMPORT.TRACK consumes an epoch token received from the source platform. It ends the current in-order import
phase epoch and either starts a new epoch or starts the out-of-order import phase.

Table 6.74: TDH.IMPORT.TRACK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream index – must be 0

 5

Table 6.75: TDH.IMPORT.TRACK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 6.3.1

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDH.IMPORT.TRACK parses an epoch token received from the source platform. It checks that the epoch number indicated
by the token is correct, and that all migration bundles indicated by the token have been received.

If successful, it ends the current import epoch, and as indicated by the epoch token either starts a new epoch or starts
the out-of-order import phase.

A failure marks the target TD as IMPORT_FAILED; by design, it will not run. This is indicated by the FATAL bit (61) of the 15

completion status returned in RAX.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 140 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.76: TDH.IMPORT.TRACK Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA MBMD buffer MBMD R Shared 128B None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.IMPORT.TRACK checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in the in-order phase: TDCS.OP_STATE is either MEMORY_IMPORT or STATE_IMPORT. 10

6. An import session is in progress and the TD-scope state has been imported: TDCS.OP_STATE is STATE_IMPORT.
7. The migration stream index is 0.
8. The migration stream is initialized.
9. The buffer provided for MBMD is large enough.

If successful, the function does the following: 15

10. Copy the MBMD into a temporary buffer.
11. Check the MBMD fields:

11.1. Check that SIZE is large enough.
11.2. Check that MB_TYPE indicates an epoch token.
11.3. Check that MIGS_INDEX is 0. 20

11.4. Check that the MB_COUNTER value is equal to the migration stream’s EXPECTED_RX_COUNTER.
11.5. Check that MIG_EPOCH is higher than TDCS.MIG_EPOCH.
11.6. Check that TOTAL_MB is equal to TDCS.TOTAL_MB + 1.
11.7. Check that reserved fields are 0.

If passed: 25

12. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the stream
context’s IV_COUNTER.

13. Accumulate MAC based on the MAC’ed fields of MBMD and check that the value is the same as the MBMD’s MAC
field’s value.

If passed: 30

14. Set the stream context’s EXPECTED_MB _COUNTER to 1.
15. Increment TDCS.TOTAL_MB.
16. Set TDCS.MIG_EPOCH to the MIG_EPOCH value provided in the MBMD.
17. If the MIG_EPOCH value provided in the MBMD is 0xFFFFFFFF, indicating the start of out-of-order phase:

17.1. Start the out-of-order import phase: set TDCS.OP_STATE to POST_IMPORT. 35

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 141 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.77: TDH.IMPORT.TRACK Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 142 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.20. UPDATED: TDH.MEM.PAGE.ADD Leaf

Add a 4KB private page to a TD, mapped to the specified GPA, filled with the given page image and encrypted using the
TD ephemeral key, and update the TD measurement with the page properties.

Table 6.78: TDH.MEM.PAGE.ADD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the EPT entry that will map the new page – see 4.5.1: must be 0

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address to be mapped for the new Secure
EPT page

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the target page to be added to the TD (HKID bits must be 0)

R9 Host physical address (including HKID bits) of the source page image

 5

Table 6.79: TDH.MEM.PAGE.ADD Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 143 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.ADD adds a 4KB private page to a TD and maps it to the provided GPA. It copies the provided source
page image to specified physical page using the TD’s ephemeral private key and updates the TD measurement with the 5

page properties. TDH.MEM.PAGE.ADD is used during TD build before the TD is initialized.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.80: TDH.MEM.PAGE.ADD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private page
(GPA)2

Blob RW Private 4KB N/A N/A N/A

Explicit RDX HPA TDR page Blob RW Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA TD private page
(HPA)2

Blob RW Private 4KB Exclusive Shared Shared

Explicit R9 HPA Source page Blob R Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Exclusive(i) N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

 10

TDH.MEM.PAGE.ADD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 15

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

INITIALIZED).
5. The target page metadata in PAMT must be correct (PT must be PT_NDA).

If successful, the function does the following: 20

6. Walk the Secure EPT based on the GPA operand, and find the leaf EPT entry for the 4KB page.

If the Secure EPT entry is marked as FREE, the function does the following:

7. Copy the source image to the target TD page using the TD’s ephemeral private HKID, and direct write (MOVDIR64B).
8. Update the parent Secure EPT entry with the target page HPA and MAPPED state.
9. Extend TDCS.MRTD with the target page GPA. Extension is done using SHA384 with a 128B extension buffer 25

composed as follows:
o Bytes 0 through 11 contain the ASCII string “MEM.PAGE.ADD”.
o Bytes 16 through 23 contain the GPA (in little-endian format).
o All the other bytes contain 0.

2 RCX and R8 denote the same TD private page operand, using HPA and GPA respectively

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 144 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

10. Increment TDR.CHLDCNT.
11. Update the PAMT entry with the PT_REG page type and the TDR physical address as the OWNER.

Completion Status Codes

Table 6.81: TDH.MEM.PAGE.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.ADD is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 5

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 145 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.21. UPDATED: TDH.MEM.PAGE.AUG Leaf

Dynamically add a 4KB or a 2MB private page to an initialized TD, mapped to the specified GPAs.

Table 6.82: TDH.MEM.PAGE.AUG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the target page to be added to the TD (HKID bits must be 0)

Table 6.83: TDH.MEM.PAGE.AUG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.AUG adds a 4KB or a 2MB private page to a TD and maps it to the provided GPA. The new page is 10

mapped in a pending state and can be accessed only by the guest TD after it accepts it using
TDCALL(TDG.MEM.PAGE.ACCEPT). TDH.MEM.PAGE.AUG does not initialize the new page and does not update the TD
measurement.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 146 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.84: TDH.MEM.PAGE.AUG Memory Operands Information Definition

Explicit/
Implicit

Register Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private page
(GPA)3

Blob None Private 212+9*Level
Bytes

N/A N/A N/A

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA TD private page
(HPA)3

Blob None Private 212+9*Level
Bytes

Exclusive Shared4 Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.MEM.PAGE.AUG checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must be in one of the following states:

4.1. The TD has been initialized locally by TDH.MNG.INIT and no migration session is in progress 10

4.2. An export session is in progress its live export phase; TDH.EXPORT.PAUSE has not been invoked yet.
4.3. An import session is in its live import phase, initiated by TDH.IMPORT.COMMIT.

5. The target page metadata in PAMT must be correct (PT must be PT_NDA for the entire 4KB or 2MB range).

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand, and find the leaf EPT entry for the 4KB or 2MB page. 15

If the Secure EPT entry is marked as FREE, the function does the following:

7. Update the parent Secure EPT entry with the target page HPA and PENDING state.
8. Atomically increment TDR.CHLDCNT by 1 (for a 4KB page) or by 512 (for a 2MB page).
9. Update the PAMT entry with the PT_REG page type and the TDR physical address as the OWNER.

Completion Status Codes 20

Table 6.85: TDH.MEM.PAGE.AUG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

3 RCX and R8 denote the same TD private page operand, using HPA and GPA respectively

4 Applicable for 4KB pages only

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 147 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.AUG is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 148 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.22. UPDATED: TDH.MEM.PAGE.DEMOTE Leaf

Split a large private TD page (2MB or 1GB) into 512 small pages (4KB or 2MB, respectively).

Table 6.86: TDH.MEM.PAGE.DEMOTE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the large page to be split: either 1
(2MB) or 2 (1GB) – see 4.5.1

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the large page to be split

Depending on the level, the following least significant bits must be 0:

Level 1 (2MB): Bits 20:12

Level 2 (1GB): Bits 29:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the new Secure EPT page to be added to the TD (HKID bits must be 0)

Table 6.87: TDH.MEM.PAGE.DEMOTE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 149 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.DEMOTE splits a large TD private page (2MB or 1GB) into 512 small pages (4KB or 2MB, respectively)
and adds a new Secure EPT page to map those small pages. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.88: TDH.MEM.PAGE.DEMOTE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Name Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

TD private page
to split

Blob None Private 212+9*level
bytes

Exclusive None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA New Secure
EPT page

SEPT_PAGE RW Private 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
Tree

N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A

TDH.MEM.PAGE.DEMOTE checks the memory operands per the table above when applicable during its flow. The text 10

below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 15

4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED
or RUNNING).

5. The specified page level is either 1 (2MB) or 2 (1GB). See 4.5.1 for a definition of EPT level.

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and locate the large TD private page to be demoted. 20

7. Check the page is blocked (its parent Secure EPT entry is a leaf entry, and its state is BLOCKED or PENDING_BLOCKED).
8. Check that TLB tracking has been done, based on the large TD private page’s PAMT.BEPOCH.

If successful, the function does the following:

9. Split the large TD private page PAMT entry into 512 PAMT entries at the lower level:
9.1. Set the parent PAMT_2M or PAMT_1G entry state to PT_NDA. 25

9.2. Set the 512 child PAMT4K or PAMT_2M entries respectively to PT_REG.
10. Initialize the new Secure EPT page’s 512 entries to MAPPED state pointing to the 512 consecutive small pages above.

Use the TD’s ephemeral private HKID and direct write (MOVDIR64B).
11. Atomically set the demoted Secure EPT entry to MAPPED (if it was BLOCKED) or PENDING (if it was

PENDING_BLOCKED) non-leaf entry pointing to the new Secure EPT page. 30

12. Atomically increment TDR.CHLDCNT by 1.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 150 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

12.1. Note that CHLDCNT counts the number of 4KB pages. The change is due only to the addition of the new Secure
EPT page.

13. Update the PAMT entry of the new Secure-EPT page with the PT_EPT page type and the TDR physical address as the
OWNER.

Completion Status Codes 5

Table 6.89: TDH.MEM.PAGE.DEMOTE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_LEAF

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.DEMOTE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 151 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.23. UPDATED: TDH.MEM.PAGE.PROMOTE Leaf

Merge 512 consecutive small private TD pages (4KB or 2MB) into one large page (2MB or 1GB, respectively).

Table 6.90: TDH.MEM.PAGE.PROMOTE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that will map the merged large page: either
1 (2MB) or 2 (1GB) (see 4.5.1)

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the merged large page

Depending on the level, the following least significant bits must be 0:

Level 1 (2MB): Bits 20:12

Level 2 (1GB): Bits 29:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 6.91: TDH.MEM.PAGE.PROMOTE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 152 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.PROMOTE merges 512 private pages, which are consecutive both in the HPA space and in the GPA space.
It removes the Secure EPT leaf page that formerly mapped those pages. 5

All merged private pages must have the same Secure EPT attributes and state, which must be either MAPPED or PENDING.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.92: TDH.MEM.PAGE.PROMOTE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Removed
Secure EPT
page

SEPT_PAGE R Private 212+9*Level
Bytes

Exclusive None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A HPA Merged HPA
range

Blob None Private N/A Exclusive None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
Tree

N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Large page
Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A

Implicit N/A GPA Small pages
Secure EPT
entries

SEPT Entry RW Private N/A Exclusive N/A N/A

 10

TDH.MEM.PAGE.PROMOTE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 15

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified merged page level is either 1 (2MB) or 2 (1GB) – see 4.5.1 for a definition of EPT level.

If successful, the function does the following: 20

6. Walk the Secure EPT based on the GPA operand, and locate the Secure EPT parent entry of the GPA range to be
promoted to a merged large page.

7. Check the Secure EPT entry:
7.1. It must be a non-leaf entry.
7.2. It must be blocked (BLOCKED) . 25

8. Get the HPA of the Secure EPT page, which currently maps the GPA range to be promoted, from the Secure EPT
above. Get its PAMT entry.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 153 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

9. Check that TLB tracking has been done, based on the above Secure EPT page’s PAMT.BEPOCH.
10. Scan the content of the above Secure EPT page and check all 512 entries:

10.1. They are leaf entries (this also implies that the corresponding pages are PT_REG).
10.2. Their state is MAPPED
10.3. Have contiguous HPA mapping aligned to the promoted range size. 5

If successful, the above checks imply that:

• The 2MB or 1GB GPA range to be promoted has a corresponding single HPA range and a single PAMT entry
(PAMT_2M or PAMT_1G, respectively) owned by the current guest TD, and its current PAMT.PT is PAMT_NDA.

• The 512 child PAMT entries (PAMT_2M or PAMT_4K, respectively) of the above are owned by the current guest TD,
and their PAMT.PT is PAMT_REG. 10

The function then does the following:

11. Merge the corresponding 512 physical pages into a single larger physical page:
11.1. Set the small page (PAMT_4K or PAMT_2M) entries state to PT_NDA.
11.2. Set the parent (PAMT_2M or PAMT_1G respectively) entry to PT_REG.

12. Atomically set the promoted Secure EPT entry to MAPPED or PENDING (depending on the small pages’ Secure EPT 15

entry state) leaf entry pointing to the merged HPA range.
13. Remove the Secure EPT page that previously mapped the 512 physical pages:

13.1. Atomically decrement TDR.CHLDCNT by 1.
13.1.1. Note that CHLDCNT counts the number of 4KB pages. The change is due only to the removal of the

Secure EPT page. 20

13.2. Update the PAMT entry of the removed Secure EPT page to PT_NDA.

Completion Status Codes

Table 6.93: TDH.MEM.PAGE.PROMOTE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_FREE

TDX_EPT_ENTRY_LEAF

TDX_EPT_INVALID_PROMOTE_CONDITIONS

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.PROMOTE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 154 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.24. UPDATED: TDH.MEM.PAGE.RELOCATE Leaf

Relocate a 4KB mapped page from its current host physical address to another.

Table 6.94: TDH.MEM.PAGE.RELOCATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the private page to be relocated,
must be 0 (i.e., 4KB) (see 4.5.1).

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the private page to be relocated

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the relocated page target (HKID bits must be 0)

Table 6.95: TDH.MEM.PAGE.RELOCATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 155 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.MEM.PAGE.RELOCATE replaces a mapped 4KB page mapping target HPA by moving the current page content to a
new target HPA and updating the Secure-EPT mapping to the new target HPA. On successful operation, the previous
mapped HPA target is marked is free in the PAMT.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 5

Table 6.96: TDH.MEM.PAGE.RELOCATE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

TD private page Blob R Private 4KB Exclusive None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA Target physical
page

Blob RW Private 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.MEM.PAGE.RELOCATE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 10

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING). 15

5. The target page metadata in PAMT must be correct (PT must be PT_NDA).

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and level and find the currently mapped HPA.
7. Check the Secure EPT entry is a blocked (BLOCKED or PENDING_BLOCKED) leaf entry.
8. Check that the currently mapped HPA is different than the target HPA. 20

9. Check that TLB tracking was done.

If successful, the function does the following:

10. If the page state is BLOCKED, copy the currently mapped page content to the target page, using the TD’s ephemeral
private HKID and direct writes (MOVDIR64B).

11. Free the currently mapped HPA by setting its PAMT.PT to PT_NDA. 25

12. Update the target page’s PAMT entry with the PT_REG page type and the TDR physical address as the OWNER.
13. Update the Secure EPT entry with the target page HPA. Set its state to MAPPED or PENDING depending on whether

its previous state was BLOCKED or PENDING_BLOCKED, respectively.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 156 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.97: TDH.MEM.PAGE.RELOCATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.RELOCATE is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 157 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.25. UPDATED: TDH.MEM.PAGE.REMOVE Leaf

Remove a GPA-mapped 4KB, 2MB or 1GB private page from a TD.

Table 6.98: TDH.MEM.PAGE.REMOVE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the private page to be removed:
either 0 (4KB), 1 (2MB) or 2 (1GB) – see 4.5.1.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the private page to be removed

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 6.99: TDH.MEM.PAGE.REMOVE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.REMOVE removes a 4KB, 2MB or 1GB private page from the TD’s Secure EPT tree. On successful 10

operation, it marks the physical page as free in PAMT.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 158 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.100: TDH.MEM.PAGE.REMOVE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

TD private page Blob R Private 212+9*Level
Bytes

Exclusive None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A

TDH.MEM.PAGE.REMOVE checks the memory operands per the table above when applicable during its flow. The text 5

below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 10

4. The TD must be in one of the following states:
4.1. The TD has been initialized locally by TDH.MNG.INIT.
4.2. An import session is in progress.

5. The specified level is either 0 (4KB), 1 (2MB) or 2 (1GB) – see 4.5.1 for a definition of EPT level.

If successful, the function does the following: 15

6. Walk the Secure EPT based on the GPA operand, and find the page to be removed.
7. If TLB tracking is required (based on the Secure EPT entry state and the TD’s OP_STATE)

7.1. Check the page’s parent Secure EPT entry is a blocked leaf entry (BLOCKED or PENDING_BLOCKED).
7.2. Check that TLB tracking was done.

If successful, the function does the following: 20

8. Atomically decrement TDR.CHLDCNT by 1, 512 or 5122 depending on the removed TD private page size (4KB, 2MB or
1GB, respectively).

9. Free the physical page:
9.1. If the level is 0 (4KB), set the PAMT entry of the removed TD private page to PT_NDA.
9.2. Else (levels 1 or 2, 2MB or 1GB respectively), set the PAMT entry of the removed TD private page to PT_NDA. 25

10. Set the parent Secure EPT entry to FREE.

Completion Status Codes

Table 6.101: TDH.MEM.PAGE.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 159 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.REMOVE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 160 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.26. UPDATED: TDH.MEM.RANGE.BLOCK Leaf

Block a TD private GPA range (i.e., a Secure EPT page or a TD private page) at any level (4KB, 2MB, 1GB, 512GB, 256TB,
etc.) from creating new GPA-to-HPA address translations.

Table 6.102: TDH.MEM.RANGE.BLOCK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the GPA range to be blocked – see
4.5.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the GPA range to be blocked

Depending on the level, the following least significant bits must be 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

 5

Table 6.103: TDH.MEM.RANGE.BLOCK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 161 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.RANGE.BLOCK finds the Secure EPT entry for the given GPA and level, and it marks it as blocked (BLOCKED or 5

PENDING_BLOCKED as appropriate). It records the current TD’s TLB epoch in the PAMT entry of the physical Secure EPT
page or TD private page mapped by the blocked Secure EPT entry.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.104: TDH.MEM.RANGE.BLOCK Memory Operands Information Definition 10

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page or TD
private page

Blob None Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Exclusive N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Transaction N/A N/A

TDH.MEM.RANGE.BLOCK checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 15

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified level is of an EPT entry – i.e., 0 to 3 for 4-level EPT or 0 to 4 for 5-level EPT. See 4.5.1 for a definition of 20

EPT level.

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT entry to be blocked.
7. Check the Secure EPT entry is not free and not blocked (its state should be MAPPED or PENDING).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 162 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

8. Block the Secure EPT entry. Use an atomic operation (LOCK CMPXCHG) to check that the Secure EPT entry has not
change and to set its state to BLOCKED (if it was MAPPED) or PENDING_BLOCKED (if it was PENDING).

If passed:

9. Read the TD’s epoch (TDCS.TD_EPOCH), and write it to the PAMT entry of the blocked Secure EPT page or TD private 5

page (PAMT.BEPOCH).

Completion Status Codes

Table 6.105: TDH.MEM.RANGE.BLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.RANGE.BLOCK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 163 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.27. UPDATED: TDH.MEM.RANGE.UNBLOCK Leaf

Remove the blocking of a TD private GPA range (i.e., a Secure EPT page or a TD private page), at any level (4KB, 2MB,
1GB, 512GB, 256TB etc.) previously blocked by TDH.MEM.RANGE.BLOCK.

Table 6.106: TDH.MEM.RANGE.UNBLOCK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the GPA range to be unblocked –
see 4.5.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address range to be unblocked

Depending on the level, the following least significant bits must be 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

 5

Table 6.107: TDH.MEM.RANGE.UNBLOCK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 164 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.RANGE.UNBLOCK finds the blocked Secure EPT entry for the given GPA and level. It checks that the entry has 5

been blocked and TLB tracking has been done, and then it marks the entry as non-blocked (MAPPED or PENDING as
appropriate).

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.108: TDH.MEM.RANGE.UNBLOCK Memory Operands Information Definition 10

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page or TD
private page

Blob None Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Exclusive N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

TDH.MEM.RANGE.UNBLOCK checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 15

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified level is of an EPT entry (i.e., 0 to 3 for 4-level EPT or 0 to 4 for 5-level EPT) – see 4.5.1 for a definition 20

of EPT level.

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT page or TD private page to be unblocked.
7. Check the page’s parent Secure EPT entry is blocked (BLOCKED or PENDING_BLOCKED).
8. Check that TLB tracking was done. 25

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 165 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

9. Unblock the Secure EPT entry. Atomically set its state to MAPPED (if it was BLOCKED) or PENDING (if it was
PENDING_BLOCKED).

Completion Status Codes

Table 6.109: TDH.MEM.RANGE.UNBLOCK Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.RANGE.UNBLOCK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 166 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.28. TDH.MEM.RD Leaf

Read a 64b chunk from a debuggable guest TD private memory.

Table 6.110: TDH.MEM.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The guest physical address of a naturally aligned 8-byte chunk of a guest TD private page

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 6.111: TDH.MEM.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

R8 Content of the memory chunk

In case of an error, as indicated by RAX, R8 returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.RD reads a 64b chunk from a debuggable guest TD private memory. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 167 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.112: TDH.MEM.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private
memory

Blob R Private 8B None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS
structure

TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A GPA Secure EPT
tree

N/A RW Private N/A Shared N/A N/A

TDH.MEM.RD checks the memory operands per the table above when applicable during its flow. The text below does
not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.KEY_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The TD is debuggable (TDCS.ATTRIBUTES.DEBUG is 1). 10

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf entry.
7. Check that the Secure EPT entry state is PRESENT.

If passed:

8. Read the content of the memory chunk. 15

Completion Status Codes

Table 6.113: TDH.MEM.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TO BE COMPLETED

TDX_SUCCESS

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 168 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.29. UPDATED: TDH.MEM.SEPT.ADD Leaf

Add and map a 4KB Secure EPT page to a TD.

Table 6.114: TDH.MEM.SEPT.ADD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the non-leaf Secure EPT entry that will map the new Secure EPT
page – see 4.5.1

Level must between 1 and 3 for a 4-level EPT or between 1 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of to be mapped for the new
Secure EPT page

Depending on the level, the following least significant bits must be 0:

Level 1 (EPT): Bits 20:12

Level 2 (EPD): Bits 29:12

Level 3 (EPDPT): Bits 38:12

Level 4 (EPML4): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the new Secure EPT page to be added to the TD (HKID bits must be 0)

Table 6.115: TDH.MEM.SEPT.ADD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 169 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.ADD adds a 4KB Secure EPT page to a TD and maps it to the provided GPA. It initializes the page to hold 5

512 free entries using the TD’s ephemeral private key.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.116: TDH.MEM.SEPT.ADD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page (GPA)5

SEPT_PAGE RW Private 212+9*Level
Bytes

N/A N/A N/A

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA Secure EPT
page (HPA)5

SEPT_PAGE RW Private 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A

 10

TDH.MEM.SEPT.ADD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 15

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified level is of an EPT non-leaf entry – i.e., 1 to 3 for 4-level EPT or 1 to 4 for 5-level EPT. See 4.5.1 for a

definition of EPT level. 20

6. The target page metadata in PAMT must be correct (PT must be PT_NDA).

5 RCX and R8 denote the same Secure EPT page operand, using HPA and GPA respectively

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 170 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

7. Walk the Secure EPT based on the GPA operand, and find the parent EPT entry for the new Secure EPT page.

If the Secure EPT entry is marked as FREE:

8. Initialize the new Secure EPT page to 0, indicating 512 entries in the FREE state, using the TD’s ephemeral private
HKID and direct writes (MOVDIR64B). 5

9. Update the parent Secure EPT entry with the new Secure EPT page HPA and MAPPED state.
10. Increment TDR.CHLDCNT.
11. Update the new Secure EPT page’s PAMT entry with the PT_EPT page type and the TDR physical address as the

OWNER.

Completion Status Codes 10

Table 6.117: TDH.MEM.SEPT.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.SEPT.ADD is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 171 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.30. UPDATED: TDH.MEM.SEPT.RD Leaf

Read a Secure EPT entry.

Table 6.118: TDH.MEM.SEPT.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry to read – see 4.5.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address for the Secure EPT entry to read

Depending on the level, the following least significant bits must be 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 6.119: TDH.MEM.SEPT.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Secure EPT entry architectural content – see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure E PT entry. Software should
consult the Secure EPT information returned in RDX.

• In case of successful operation, the requested entry’s architectural content is returned.

• In case of EPT walk error, the architectural content of the Secure EPT entry where the error
was detected is returned.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 172 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Secure EPT entry level and state – see 4.5.2

• In case of successful operation, the requested entry’s information is returned.

• In case of EPT walk error, the information of the Secure EPT entry where the error was
detected is returned.

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.RD reads a Secure EPT entry. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.120: TDH.MEM.SEPT.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
entry

SEPT_ENTRY R Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
Tree

N/A R Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT Entry RW Private N/A None N/A N/A

TDH.MEM.SEPT.RD checks the memory operands per the table above when applicable during its flow. The text below 10

does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 15

4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED
or RUNNING).

5. The specified level is of an EPT entry (i.e., 0 to 3 for 4-level EPT or 0 to 4 for 5-level EPT) – see 4.5.1 for a definition
of EPT level.

If successful, the function does the following: 20

6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT entry.
7. Read the Secure EPT entry contents.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 173 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.121: TDH.MEM.SEPT.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.SEPT.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 174 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.31. UPDATED: TDH.MEM.SEPT.REMOVE Leaf

Remove an empty 4KB Secure EPT page from a TD.

Table 6.122: TDH.MEM.SEPT.REMOVE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the non-leaf Secure EPT entry that maps the Secure EPT page to be
removed – see 4.5.1

Level must be between 1 and 3 for a 4-level EPT or between 1 and 4 for a
5-level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address for the Secure EPT page to be
removed

Depending on the level, the following least significant bits must be 0:

Level 1 (EPT): Bits 20:12

Level 2 (EPD): Bits 29:12

Level 3 (EPDPT): Bits 38:12

Level 4 (EPML4): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 6.123: TDH.MEM.SEPT.REMOVE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 175 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
4.5.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.REMOVE removes an empty Secure EPT page, with all 512 marked as FREE, from the TD’s Secure EPT 5

tree. On successful operation, it marks the 4KB physical page as free in PAMT.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.124: TDH.MEM.SEPT.REMOVE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page

SEPT_PAGE R Private 212+9*Level
Bytes

Exclusive None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
Tree

N/A RW Private N/A Exclusive N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT Entry RW Private N/A Exclusive(i) N/A N/A

 10

TDH.MEM.SEPT.REMOVE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 15

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified level is of a non-leaf EPT entry (i.e., 1 to 3 for 4-level EPT or 1 to 4 for 5-level EPT) – see 4.5.1 for a

definition of EPT level. 20

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT page to be removed.
7. Check the page’s parent Secure EPT entry is a blocked (BLOCKED) non-leaf entry.
8. Check that TLB tracking was done.
9. Scan the Secure EPT page content and check all 512 entries are FREE. 25

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 176 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

10. Atomically decrement TDR.CHLDCNT.
11. Set the PAMT entry of the removed Secure EPT page to PT_NDA.
12. Set the parent Secure EPT entry to FREE.

Completion Status Codes 5

Table 6.125: TDH.MEM.SEPT.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.SEPT.REMOVE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 177 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.32. UPDATED: TDH.MEM.TRACK Leaf

Increment the TD’s TLB epoch counter.

Table 6.126: TDH.MEM.TRACK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of the parent TDR page (HKID bits must be 0)

Table 6.127: TDH.MEM.TRACK Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.TRACK increments the TD’s TLB epoch counter. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.128: TDH.MEM.TRACK Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDR RW Opaque 4KB Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS Epoch
Tracking Fields

N/A RW Opaque N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized and finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

RUNNING). 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 178 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following as a critical section, protected by exclusively locking the TDCS epoch tracking
fields TD_EPOCH and REFCOUNT. A concurrent TDH.VP.ENTER may cause this locking to fail with a TDX_OPERAND_BUSY
status code; in this case the caller is expected to retry TDH.MEM.TRACK.

5. Lock the TDCS epoch tracking fields in exclusive mode.
6. Check that the TD’s previous epoch’s REFCOUNT is 0. This helps ensure that no REFCOUNT information will be lost 5

when TD_EPOCH is incremented in the next step.
7. If successful, increment the TD’s epoch counter (TDCS.TD_EPOCH).
8. Release the exclusive mode locking of the epoch tracking fields.

Completion Status Codes

Table 6.129: TDH.MEM.TRACK Completion Status Codes (Returned in RAX) Definition 10

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PREVIOUS_TLB_EPOCH_BUSY

TDX_SUCCESS TDH.MEM.TRACK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 179 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.33. TDH.MEM.WR Leaf

Write a 64b chunk from a debuggable guest TD private memory.

Table 6.130: TDH.MEM.WR Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The guest physical address of a naturally aligned 8-byte chunk of a guest TD private page

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Data to be written to memory

Table 6.131: TDH.MEM.WR Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Secure EPT entry architectural content – see 4.5.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

• In case of successful operation, the requested entry’s architectural content is returned.

• In case of EPT walk error, the architectural content of the Secure EPT entry where the error
was detected is returned.

In other cases, RCX returns 0.

RDX Secure EPT entry level and state – see 4.5.2

• In case of successful operation, the requested entry’s information is returned .

• In case of EPT walk error, the information of the Secure EPT entry where the error was
detected is returned.

In other cases, RDX returns 0.

R8 Previous content of the memory chunk

In case of an error, as indicated by RAX, R8 returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.WR writes a 64b chunk to a debuggable guest TD private memory. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 180 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.132: TDH.MEM.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private
memory

Blob RW Private 8B None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS
structure

TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A GPA Secure EPT
tree

N/A RW Private N/A Shared N/A N/A

TDH.MEM.WR checks the memory operands per the table above when applicable during its flow. The text below does
not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.KEY_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The TD is debuggable (TDCS.ATTRIBUTES.DEBUG is 1). 10

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf entry.
7. Check that the Secure EPT entry state is PRESENT.

If passed:

8. Read the content of the memory chunk. 15

9. Write the new content of the memory chunk.

Completion Status Codes

Table 6.133: TDH.MEM.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TO BE COMPLETED

TDX_SUCCESS

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 181 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.34. NEW: TDH.MIG.STREAM.CREATE Leaf

Create a Migration Stream and its MIGSC control structure.

Table 6.134: TDH.MIG.STREAM.CREATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a page where MIGSC will be created

RDX The physical address of the owner TDR page (HKID bits must be 0)

Table 6.135: TDH.MIG.STREAM.CREATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MIG.STREAM.CREATE creates a new Migration Stream and its MIGSC control structure. This function can be invoked 10

at any time after the TDCS pages have been allocated.

TDH.MIG.STREAM.CREATE can only be successfully invoked if no migration session is in progress.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.136: TDH.MIG.STREAM.CREATE Memory Operands Information Definition 15

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA MIGSC page MIGSC RW Opaque 4KB Exclusive Shared Shared

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive(i) N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 182 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

4. TDCS pages have been allocated (TDR.NUM_TDCX is the required number).
5. No migration session is in progress (TDCS.OP_STATE is none of *_EXPORT or *_IMPORT).
6. The MIGSC page metadata in PAMT is correct (PT is PT_NDA).
7. The number of already created migration streams is lower than the maximum allowed.

If successful, the function does the following: 10

8. Increment the number of migration streams (TDCS.NUM_MIG_STREAMS).
9. Initialize the MIGSC page contents using direct write (MOVDIR64B).
10. Initialize the applicable forward link entry in TDCS (TDCS.MIGSC_LINK):

o Set MIGSC_PA to the MIGSC page HPA.
o Clear the INITIALIZED and ENABLED flags. 15

11. Atomically increment TDR.CHLDCNT.
12. Initialize the MIGSC page metadata in PAMT (Set PT to PT_TDCX, OWNER to the TDR HPA).

Completion Status Codes

Table 6.137: TDH.MIG.STREAM.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MIG.STREAM.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 183 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.35. UPDATED: TDH.MNG.ADDCX Leaf

Add a TDCX page to a guest TD.

Table 6.138: TDH.MNG.ADDCX Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a page where TDCX will be added (HKID bits must be 0)

RDX The physical address of the owner TDR page (HKID bits must be 0)

Table 6.139: TDH.MNG.ADDCX Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.ADDCX adds a TDCX page, which is a child of the specified TDR. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.140: TDH.MNG.ADDCX Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDCX page Blob RW Opaque 4KB Exclusive Shared Shared

Explicit RDX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

In addition to the explicit memory operand checks per the table above, the function checks the following conditions: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD must not have been initialized (TDR.INIT is FALSE).
4. The number of TDCX pages (TDR.NUM_TDCX) is smaller than the required number.
5. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 20

6. The new TDCX page metadata in PAMT must be correct (PT must be PT_NDA).

If successful, the function does the following:

7. Initialize the TDCX page contents using direct writes (MOVDIR64B).
8. Set the TDCX pointer entry in the TDR.TDCX_PA array.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 184 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

9. Increment TDR.NUM_TDCX.
10. If TDR.NUM_TDCX is equal to the required number of TDCX pages, mark the TD as uninitialized (set TDCS.OP_STATE

to UNINITIALIZED).

Completion Status Codes

Table 6.141: TDH.MNG.ADDCX Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.ADDCX is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_INITIALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCX_NUM_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 185 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.36. TDH.MNG.CREATE Leaf

Create a new guest TD and its TDR root page.

Table 6.142: TDH.MNG.CREATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a page where TDR will be created (HKID bits must be 0)

RDX Bits Name Description

15:0 HKID The TD’s ephemeral private HKID

63:16 Reserved Reserved: must be 0

Table 6.143: TDH.MNG.CREATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.CREATE creates a TDR page which is the root page of a new guest TD. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.144: TDH.MNG.CREATE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A

In addition to the explicit memory operand checks per the table above, the function checks the following conditions: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_NDA).
2. The value of the specified HKID must be in the range configured for TDX.
3. The KOT entry for the specified HKID must be marked as HKID_FREE.

If successful, the function does the following:

4. Zero out the TDR page contents using direct write (MOVDIR64B). 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 186 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5. Initialize the key management fields.
6. Initialize the state variables.
7. Initialize the TD management fields.
8. Mark the KOT entry for the specified HKID as HKID_ASSIGNED.
9. Initialize the TDR page metadata in PAMT. 5

Completion Status Codes

Table 6.145: TDH.MNG.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_HKID_NOT_FREE

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 187 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.37. UPDATED: TDH.MNG.INIT Leaf

Initialize TD-scope control structures TDR and TDCS.

Table 6.146: TDH.MNG.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

RDX The physical address (including HKID bits) of an input TD_PARAMS_STRUCT

Table 6.147: TDH.MNG.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information

In case of a TD_PARAMS_STRUCT.CPUID_CONFIG error, RCX returns the applicable CPUID
information as shown below.

In all other cases, RCX returns 0.

Bits Name Description

31:0 LEAF CPUID leaf number

63:32 SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(0xFFFFFFFF).

Other Unmodified

Leaf Function Latency

TDH.MNG.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description 10

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.INIT initializes the TD-scope control structures TDR and TDCS based on a set of TD parameters provided as
input.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 15

Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 188 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.148: TDH.MNG.INIT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Explicit RDX HPA TD Parameters TD_PARAMS R Shared 1024B None N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD must not have been initialized (TDR.INIT is FALSE).
4. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
5. All the required TDCS pages have been added (by TDH.MNG.ADDCX) but the TD has not have been initialized

(TDCS.OP_STATE is UNINITIALIZED).

If successful, the function does the following: 10

6. Set the TDCS TD management fields to their initial values.
7. Read the input parameters structure fields.
8. Check the input parameters and initialize the TDCS logical structure.

8.1. Check that ATTRIBUTES and XFAM bits that must be fixed-0 or fixed-1 are set correctly.
8.2. Check XFAM bit groups that must have certain values (e.g., AVX bits 7:5). 15

If passed:

9. Initialize EPTP to point to TDCS.SEPT_ROOT.
10. Initialize the MSR bitmaps based on ATTRIBUTES and XFAM.
11. Initialize the TDCS measurement fields.
12. Mark the TD as initialized (set TDCS.OP_STATE to INITIALIZED). 20

Completion Status Codes

Table 6.149: TDH.MNG.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_INITIALIZED

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 189 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCX_NUM_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 190 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.38. TDH.MNG.KEY.CONFIG Leaf

Configure the TD ephemeral private key on a single package.

Table 6.150: TDH.MNG.KEY.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

Table 6.151: TDH.MNG.KEY.CONFIG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Latency

TDH.MNG.KEY.CONFIG execution time may be longer than most TDX module interface functions execution time. No
interrupts (including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description 10

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.KEY.CONFIG configures the TD’s ephemeral private key on a single package.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

Table 6.152: TDH.MNG.KEY.CONFIG Operands Information

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A KETs on current
package

N/A N/A Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 20

3. HKID has been assigned to the TD; TDR.LIFECYCLE_STATE is TD_HKID_ASSIGNED.

If successful, the function does the following:

4. Configure the TD ephemeral private key on the package.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 191 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.1. This operation may fail due to a conflict with a concurrent TDH.MNG.KEY.CONFIG or PCONFIG running on the
same package.

4.2. A CPU-generated random key is used. The operation may fail due to lack of entropy.
5. If the key has been configured on all the packages, set TDR.LIFECYCLE_STATE to TD_KEYS_CONFIGURED.

Completion Status Codes 5

Table 6.153: TDH.MNG.KEY.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_KEY_CONFIGURED

TDX_KEY_GENERATION_FAILED

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.KEY.CONFIG is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 192 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.39. TDH.MNG.KEY.FREEID Leaf

End the platform cache flush sequence, and mark applicable HKIDs in KOT as free.

Table 6.154: TDH.MNG.KEY.FREEID Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

Table 6.155: TDH.MNG.KEY.FREEID Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.KEY.FREEID ends the platform cache flush sequence for the HKIDs associated with the specified TD after 10

TDH.PHYMEM.CACHE.WB has been executed on all the required packages. It marks the TD’s HKIDs in KOT as free, and
the TD itself as being torn down.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.156: TDH.MNG.KEY.FREEID Memory Operands Information Definition 15

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TLB and VMCS caches associated with the HKID have been flushed, and no memory associated with this HKID may

be accessed: 20

2.1. TDR.LIFECYCLE_STATE is TD_BLOCKED.
2.2. The KOT entry for the TD’s private HKID is marked as HKID_FLUSHED.
2.3. The KOT entry for the TD’s private HKID indicates that TDH.PHYMEM.CACHE.WB has been executed on all

applicable packages or cores.

If successful, the function does the following: 25

3. Mark the KOT entry as HKID_FREE.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 193 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. Set TDR.LIFECYCLE_STATE to TD_TEARDOWN.

Completion Status Codes

Table 6.157: TDH.MNG.KEY.FREEID Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.KEY.FREEID is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_WBCACHE_NOT_COMPLETE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 194 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.40. TDH.MNG.KEY.RECLAIMID Leaf

This function is provided for backward compatibility.

Table 6.158: TDH.MNG.KEY.RECLAIMID Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

Table 6.159: TDH.MNG.KEY.RECLAIMID Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.KEY.RECLAIMID is provided for backward compatibility. It does not do anything except returning a constant 10

TDX_SUCCESS status.

Completion Status Codes

Table 6.160: TDH.MNG.KEY.RECLAIMID Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDH.MNG.KEY.RECLAIMID is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 195 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.41. UPDATED: TDH.MNG.RD Leaf

Read a TD-scope metadata field (control structure field) of a TD.

Table 6.161: TDH.MNG.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

For TDH.MNG.RD version 1 or higher, a value of -1 is a special case: it is not a valid field identifier;
in this case the first readable field identifier is returned in RDX.

Table 6.162: TDH.MNG.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RDX For TDH.MNG.RD version 0, RDX is unmodified.

For TDH.MNG.RD version 1 or higher, RDX returns the next readable field identifier. A value of -1
indicates no next field identifier is available.

R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.RD reads a TD-scope metadata field (control structure field) of a TD. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 196 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.163: TDH.MNG.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. All the required TDCS pages have been added (TDR.NUM_TDCX is the required number).

If the above checks passed:

5. Read the control structure field using the algorithm described in 6.2.1.1.

Completion Status Codes 10

Table 6.164: TDH.MNG.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 197 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.42. TDH.MNG.VPFLUSHDONE Leaf

Check that none of the TD’s VCPUs are associated with an LP.

Table 6.165: TDH.MNG.VPFLUSHDONE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

Table 6.166: TDH.MNG.VPFLUSHDONE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.VPFLUSHDONE checks that none of the TD’s VCPUs are associated with an LP, and it then prepares for cache 10

flushing by TDH.PHYMEM.CACHE.WB.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.167: TDH.MNG.VPFLUSHDONE Operands Information

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A

 15

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TDR.LIFECYCLE_STATE is either TD_HKID_ASSIGNED or TD_KEYS_CONFIGURED.
3. The KOT entry for the TD’s assigned HKID in the list must be marked as HKID_ASSIGNED.
4. None of the TD’s VCPUs are associated with an LP (either the TD has not been initialized by TDH.MNG.INIT, or 20

TDCS.NUM_ASSOC_VCPUS is 0).

If successful, the function does the following:

5. Set a bitmap in the KOT entry to track the required subsequent TDH.PHYMEM.CACHE.WB operations.
6. Set TDR.LIFECYCLE_STATE to TD_BLOCKED.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 198 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

7. Mark the KOT entry as HKID_FLUSHED.

Completion Status Codes

Table 6.168: TDH.MNG.VPFLUSHDONE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FLUSHVP_NOT_DONE

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.VPFLUSHDONE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 5

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 199 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.43. UPDATED: TDH.MNG.WR Leaf

Write a TD-scope metadata field (control structure field) of a TD.

Table 6.169: TDH.MNG.WR Input Operands Definitions

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

For TDH.MNG.WR version > 0, if the WRITE_MASK_VALID bit of the field identifier is 0, then the
write mask is ignored.

Table 6.170: TDH.MNG.WR Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

R8 Previous content of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.WR writes a TD-scope metadata field (control structure field) of a TD. The specific bits of the value (R8) are 10

written as specified by the write mask (R9). Writing is subject to the field’s writability.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.171: TDH.MNG.WR Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 200 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR)
2. The TD is not in a FATAL state (TDR.FATAL is FALSE)
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED) 5

4. All the required TDCS pages have been added (TDR.NUM_TDCX is the required number).
5. The TD is debuggable (TDCS.ATTRIBUTES.DEBUG is 1)

If the above checks passed:

6. Write the control structure field and return its old value, using the algorithm described in 6.2.1.2.

Completion Status Codes 10

Table 6.172: TDH.MNG.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.WR is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NON_DEBUG

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 201 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.44. UPDATED: TDH.MR.EXTEND Leaf

Extend the MRTD measurement register in the TDCS with the measurement of the indicated chunk of a TD page.

Table 6.173: TDH.MR.EXTEND Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The GPA of the TD page chunk to be measured

RDX The physical address of the TDR page of the target TD (HKID bits must be 0)

Table 6.174: TDH.MR.EXTEND Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry where the error was detected

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, EPT level where the error was detected

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MR.EXTEND updates the MRTD measurement register in the TDCS with the measurement of the indicated chunk of 10

a TD private page. For pages whose contents need to be measured, once the page is copied into the TD memory area,
the host VMM will call TDH.MR.EXTEND multiple times to measure the pages contents into MRTD. TDEXEND can be
executed only before TDH.MR.FINALIZE.

Note: TDH.MR.EXTEND works on a 256B chunk of a page, not on a full page, due to instruction latency considerations.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 15

Intel TDX Module API.

Table 6.175: TDH.MR.EXTEND Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private page
chunk

Blob R Private 256B None None None

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 202 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RDX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A GPA Secure EPT tree N/A R Private N/A Exclusive(i) N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is
INITIALIZED).

5. The page must be mapped and accessible in the Secure EPT.

If successful, the function does the following:

6. Update the TD measurement in TDCS based on the chunk’s GPA and contents. 10

7. Extend TDCS.MRTD with the chunk’s GPA and contents. Extension is done using SHA384, with three 128B extension
buffers. The first extension buffer is composed as follows:
o Bytes 0 through 8 contain the ASCII string “MR.EXTEND”.
o Bytes 16 through 23 contain the GPA (in little-endian format).
o All the other bytes contain 0. 15

The other two extension buffers contain the chunk’s contents.

Completion Status Codes

Table 6.176: TDH.MR.EXTEND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_PRESENT

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MR.EXTEND is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 203 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 204 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.45. UPDATED: TDH.MR.FINALIZE Leaf

TDH.MR.FINALIZE completes measurement of the initial TD contents and marks the TD as ready to run.

Table 6.177: TDH.MR.FINALIZE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of the parent TDR page (HKID bits must be 0)

Table 6.178: TDH.MR.FINALIZE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MR.FINALIZE completes the measurement of the initial TD contents and marks the TD as finalized. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.179: TDH.MR.FINALIZE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

In addition to the memory operand checks per the table above, the function checks the following: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

INITIALIZED). 20

If successful, the function does the following:

5. Finalize the TD measurement, i.e., SHA384 calculation of TDCS.MRTD that has been accumulated so far by
TDH.MEM.PAGE.ADD and TDH.MR.EXTEND.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 205 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6. Calculate TDCS.SERVTD_HASH:
6.1. Get all service TD binding slots whose SERVTD_BINDING_STATE is not NOT_BOUND.

6.1.1. If no service TD binding slots apply, set TDCS.SERVTD_HASH to 0.
6.2. Sort in ascending order by SERVTD_TYPE as the primary key, SERVTD_INFO_HASH as a secondary key (if multiple

service TDs of the same type are bound). 5

6.3. Concatenate SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR of each slot in a temporary buffer:
6.3.1. SERVTD_INFO_HASH in bytes 5:0
6.3.2. SERVTD_TYPE in bytes 7:6
6.3.3. SERVTD_ATTR in bytes 15:8
6.3.4. Concatenate all buffers. 10

6.3.5. Calculate SHA384 and store in TDCS.SERVTD_HASH.
7. Mark the TD as finalized.

Completion Status Codes

Table 6.180: TDH.MR.FINALIZE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MR.FINALIZE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 206 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.46. TDH.PHYMEM.CACHE.WB Leaf

TDH.PHYMEM.CACHE.WB is an interruptible and restartable function to write back the cache hierarchy on a package or
a core.

Table 6.181: TDH.PHYMEM.CACHE.WB Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX Command, as described below:

Value Name Description

 0 WB_START_CMD Start a new TDH.PHYMEM.CACHE.WB cycle with no cache
invalidation.

 1 WB_RESUME_CMD Resume a previously interrupted TDH.PHYMEM.CACHE.WB cycle
with no cache invalidation.

Other Reserved

 5

Table 6.182: TDH.PHYMEM.CACHE.WB Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDH.PHYMEM.CACHE.WB writes back the cache hierarchy to memory and updates the KOT state to allow reuse of HKIDs.

• TDH.PHYMEM.CACHE.WB does not invalidate cache lines.

• The function is interruptible by external events and is restartable. In case it is interrupted by an external event,
information is stored in an Intel TDX module internal table which allows the instruction to be restarted.

• The function operates on cache lines associated with any HKID. 15

• The function helps ensure write back of at least those cache lines where the state of that HKID (in the KOT) was
HKID_FLUSHED at the time of the first invocation (RCX == TDH.PHYMEM.CACHE.WB_START_CMD (0)).

• Depending on the implementation, the instruction may write back additional cache lines.

• The scope at which TDH.PHYMEM.CACHE.WB operates (e.g., package or core) is determined at Intel TDX module
initialization time. 20

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 207 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.183: TDH.PHYMEM.CACHE.WB (Implicit) Operands Information

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A KOT KOT N/A Hidden N/A Shared N/A N/A

Implicit N/A N/A WBT entry for
current scope

WBT_ENTRY N/A Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The command value is one of the supported ones.
2. If the command is to start a new TDH.PHYMEM.CACHE.WB cycle (RCX == 0), then: 5

2.1. Clear the internally saved interruption state.
2.2. Scan the KOT: mark those HKIDs whose state is HKID_FLUSHED in an internal table; only those HKIDs will be

later marked as written back and invalidated upon successful completion of TDH.PHYMEM.CACHE.WB.
2.3. If none of the KOT entries for the requested set of HKIDs (either single or all) is in HKID_FLUSHED state, then

abort with an informational code (it achieved its goal: write back and invalidate at least the HKIDs that are in 10

the HKID_FLUSHED state).
3. Run cache write back operation on the cache hierarchy of the current package or core. This operation is long and

may be interrupted by external events.
3.1. If a previous TDH.PHYMEM.CACHE.WB has been interrupted, the operation resumes from the interruption

point which has been recorded. 15

3.2. In case of interruption, the current point in the write back and invalidation flow and the current HKID are
recorded.

4. If the operation has not been interrupted, update the KOT as follows:
4.1. For each KOT entry, if the entry was marked as HKID_FLUSHED at the start of the TDH.PHYMEM.CACHE.WB

cycle as discussed above, use the KOT entry’s bitmap to indicate that TDH.PHYMEM.CACHE.WB has been 20

executed on this package or core.

Error and Informational Codes

Table 6.184: TDH.PHYMEM.CACHE.WB Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_NO_HKID_READY_TO_WBCACHE

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.PHYMEM.CACHE.WB is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 208 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.47. TDH.PHYMEM.PAGE.RDMD Leaf

Read the metadata of a page (or the metadata of the containing large page) in TDMR.

Table 6.185: TDH.PHYMEM.PAGE.RDMD Operands

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX A physical address of a 4KB page in TDMR (HKID bits must be 0)

Table 6.186: TDH.PHYMEM.PAGE.RDMD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Page Type (PT):

Value Name Description

0 PT_NDA The physical page is Not Directly Assigned to the Intel TDX module.

1 PT_RSVD The physical page is reserved for non-TDX usage.

3 PT_REG The physical page holds TD private memory.

4 PT_TDR The physical page holds the TD Root (TDR) control structure.

8:5 The physical page holds a TD control structure.

Other Reserved

In case of an error, RCX returns 0.

RDX OWNER: the HPA of the TD’s TDR control structure page (if applicable)

In case of an error, as indicated by RAX, RDX returns 0.

R8 Bits Name Description

2:0 Size Size of the containing 4KB, 2MB or 1GB page – see 4.4.1

63:3 Reserved Set to 0

In case of an error, as indicated by RAX, R8 returns 0.

R9 BEPOCH

In case of an error, as indicated by RAX, R9 returns 0.

R10 Reserved: set to 0

R11 Reserved: set to 0

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 209 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.PHYMEM.PAGE.RDMD finds the containing page (4KB, 2MB or 2GB) of the given page in TDMR and reads its
metadata from its PAMT entry. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.187: TDH.PHYMEM.PAGE.RDMD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target
page

Blob None Opaque/
Private

4KB Shared Shared Shared

If the memory operand checks per the table above pass, the function does the following: 10

1. Do a PAMT walk, and find the containing page and its size.

If passed:

2. Read the PAMT entry.

Completion Status Codes

Table 6.188: TDH.PHYMEM.PAGE.RDMD Completion Status Codes (Returned in RAX) Definition 15

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.PHYMEM.PAGE.RDMD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 210 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.48. TDH.PHYMEM.PAGE.RECLAIM Leaf

Reclaim a physical 4KB, 2MB or 1GB TD-owned page (i.e., TD private page, Secure EPT page or a control structure page)
from a TD, given its HPA.

Table 6.189: TDH.PHYMEM.PAGE.RECLAIM Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a 4KB, 2MB or 1GB page to be reclaimed (HKID bits must be 0)

 5

Table 6.190: TDH.PHYMEM.PAGE.RECLAIM Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Page Type (PT):

Value Name Description

0 PT_NDA The physical page is Not Directly Assigned to the Intel TDX module.

1 PT_RSVD The physical page is reserved for non-TDX usage.

3 PT_REG The physical page holds TD private memory.

4 PT_TDR The physical page holds the TD Root (TDR) control structure.

8:5 The physical page holds a TD control structure.

Other Reserved

In case of an error, as indicated by RAX, RCX returns 0.

RDX OWNER: the HPA of the TD’s TDR control structure page (if applicable)

In case of an error, as indicated by RAX, RDX returns 0.

R8 Bits Name Description

2:0 Size Size of the containing 4KB, 2MB or 1GB page – see 4.4.1

63:3 Reserved Set to 0

In case of an error, as indicated by RAX, R8 returns 0.

R9 Reserved: set to 0

R10 Reserved: set to 0

R11 Reserved: set to 0

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 211 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.PHYMEM.PAGE.RECLAIM reclaims a TD-owned physical page from the TD.

TDH.PHYMEM.PAGE.RECLAIM can reclaim pages only if the owner TD is in the TD_TEARDOWN state. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.191: TDH.PHYMEM.PAGE.RECLAIM Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target page Blob RW Opaque/
Private

4KB,
2MB
or
1GB

Exclusive Shared Shared

Implicit N/A N/A TDR page6 TDR RW Opaque 4KB Shared N/A N/A

TDH.PHYMEM.PAGE.RECLAIM checks the memory operands per the table above when applicable during its flow. The 10

text below does not explicitly mention those checks, except when necessary.

The function works as follows:

1. Check that the target page metadata in PAMT are correct (PT must not be PT_NDA nor PT_RSVD).
2. If the target page is not a TDR (PT is not PT_TDR):

2.1. Get the TDR page (pointed by the target page’s PAMT.OWNER). 15

2.2. Check that the TD is in teardown state (TDR.LIFECYCLE_STATE is TD_TEARDOWN).
2.3. Atomically decrement TDR.CHLDCNT.

3. Else (target page is a TDR):
3.1. Check that the TD is in teardown state (TDR.LIFECYCLE_STATE is TD_TEARDOWN).
3.2. Check that TDR.CHLDCNT is 0. 20

4. Update the PAMT entry of the reclaimed page to PT_NDA.
5. Return the page metadata (as they were before PAMT update above).

Completion Status Codes

Table 6.192: TDH.PHYMEM.PAGE.RECLAIM Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

6 Except when TDR is the target page

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 212 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SUCCESS TDH.PHYMEM.PAGE.RECLAIM is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_ASSOCIATED_PAGES_EXIST

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 213 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.49. TDH.PHYMEM.PAGE.WBINVD Leaf

Write back and invalidate all cache lines associated with the specified memory page and HKID.

Table 6.193: TDH.PHYMEM.PAGE.WBINVD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX Physical address (including HKID bits) of a 4KB page in TDMR

Table 6.194: TDH.PHYMEM.PAGE.WBINVD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.PHYMEM.PAGE.WBINVD performs cache write back and invalidation on all the cache lines associated with the 10

specified page and HKID. The page must not be in use by the Intel TDX module (i.e., not assigned to a TD as a private
page or a Secure EPT page), nor used as a control structure page.

It is the responsibility of the host VMM to track which HKID is associated with the target page; the function does not
check it.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 15

Intel TDX Module API.

Table 6.195: TDH.PHYMEM.PAGE.WBINVD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target page Blob R Private/
Opaque

4KB Shared Shared Shared

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The target page must be marked in PAMT as not controlled by the Intel TDX module (PT must be PT_NDA). 20

If successful, the function performs the following:

2. Write back and invalidate all the cache lines for the given target HPA and HKID.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 214 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.196: TDH.PHYMEM.PAGE.WBINVD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.PHYMEM.PAGE.WBINVD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 215 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.50. NEW: TDH.SERVTD.BIND Leaf

Bind a service TD to a target TD.

Table 6.197: TDH.SERVTD.BIND Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of the target TD’s TDR page (HKID bits must be 0)

RDX The physical address of the service TD’s TDR page (HKID bits must be 0)

R8 Index (slot number) in the target TD’s service TD binding table

R9 SERVTD_TYPE: Service TD type

R10 SERVTD_ATTR: Service TD attributes

Table 6.198: TDH.SERVTD.BIND Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Binding handle

In case of an error, as indicated by RAX, RCX returns 0.

R10 TD_UUID bits 63:0

In case of an error, as indicated by RAX, R10 returns 0.

R11 TD_UUID bits 127:64

In case of an error, as indicated by RAX, R11 returns 0.

R12 TD_UUID bits 195:128

In case of an error, as indicated by RAX, R12 returns 0.

R13 TD_UUID bits 255:196

In case of an error, as indicated by RAX, R13 returns 0.

AVX, AVX2
and
AVX512
state

May be reset to the architectural INIT state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 216 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.SERVTD.BIND binds a service TD to a target TD.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.199: TDH.SERVTD.BIND Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page

TDR RW Opaque 4KB Shared Shared Shared

Explicit RDX HPA Service TD’s TDR
page

TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A Target TD’s TDCS
structure

TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A Target TD’s
TDCS.OP_STATE

OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Binding table RW Opaque N/A Exclusive None None

Implicit N/A N/A Service TD’s
TDCS structure

TDCS R Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A Service TD’s
TDCS.OP_STATE

OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Service TD’s
TDCS.RTMR

SHA384_
HASH

N/A Opaque N/A Shared N/A N/A

 5

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Target TD checks:
1.1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
1.2. The target TD is not in a FATAL state (TDR.FATAL is FALSE).
1.3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 10

1.4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).
1.5. The target TD has not been paused for export and is not in the in-order import phase.

2. Service TD checks:
2.1. The service TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2.2. The service TD is not in a FATAL state (TDR.FATAL is FALSE). 15

2.3. The service TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
2.4. The service TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).
2.5. Either the service TD’s measurements have been finalized (by TDH.MR.FINALIZE) or it is being imported and

import is in the out-of-order phase.
3. Binding slot number does not exceed the number of available slots. 20

4. SERVTD_TYPE is supported.
5. If only one service TD binding instance is supported by SERVTD_TYPE, no other binding slot whose BINDIND_STATE

is not NOT_BOUND may have the same SERVTD_TYPE.
6. SERVTD_ATTR is supported.

If the above checks passed: 25

7. If the binding slot’s SERVTD_BINDING_STATE is NOT_BOUND (i.e., this is an initial binding):
7.1. Check that the target TD’s measurements have not been finalized (by TDH.MR.FINALIZE).
7.2. Copy the provided SERVTD_TYPE and SERVTD_ATTR to the binding slot.
7.3. Calculate the service TD’s SERVTD_INFO_HASH and write to the binding slot’s SERVTD_INFO_HASH.
7.4. Copy the SERVTD’s TD_UUID to the binding slot’s SERVTD_UUID. 30

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 217 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

8. Else, if the binding slot’s SERVTD_BINDING_STATE is PRE_BOUND (i.e., this is a late initial binding):
8.1. Check that the requested SERVTD_TYPE is equal to the binding slot’s SERVTD_TYPE.
8.2. Check that the requested SERVTD_ATTR is equal to the binding slot’s SERVTD_ATTR.
8.3. Calculate the service TD’s SERVTD_INFO_HASH and check that it is equal to the binding slot’s

SERVTD_INFO_HASH. 5

8.4. Copy the SERVTD’s TD_UUID to the binding slot’s SERVTD_UUID.
9. Else, if the binding slot’s SERVTD_BINDING_STATE is BOUND or UNBOUND (i.e., this is a rebinding):

9.1. Check that the requested SERVTD_TYPE is equal to the binding slot’s SERVTD_TYPE.
9.2. Check that the requested SERVTD_ATTR is equal to the binding slot’s SERVTD_ATTR.
9.3. Calculate the service TD’s SERVTD_INFO_HASH and check that it is equal to the binding slot’s 10

SERVTD_INFO_HASH.
9.4. If SERVTD_ATTR.INSTANCE_BINDING is set:

9.4.1. Check that the SERVTD’s TD_UUID is equal to the binding slot’s SERVTD_UUID.
9.4.2. Copy the calculated service TD’s SERVTD_INFO_HASH to the binding slot’s SERVTD_INFO_HASH.

9.5. Else: 15

9.5.1. Check that the service TD’s SERVTD_INFO_HASH is equal to the binding slot’s SERVTD_INFO_HASH.
9.5.2. Copy the SERVTD’s TD_UUID to the binding slot’s SERVTD_UUID.

If passed:

10. Set the binding slot’s SERVTD_BINDING_STATE to BOUND.
11. Calculate and return the binding handle. 20

Completion Status Codes

Table 6.200: TDH.SERVTD.BIND Completion Status Codes (Returned in RAX) Definition [TO BE EDITED]

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.SERVTD.BIND is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 218 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.51. NEW: TDH.SERVTD.PREBIND Leaf

Pre-bind a service TD to a target TD.

Table 6.201: TDH.SERVTD.PREBIND Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of the target TD’s TDR page (HKID bits must be 0)

RDX The physical address (including HKID bits) of SERVTD_INFO_HASH, the expected SHA384 hash of
the service TD’s TDINFO_STRUCT

R8 Index (slot number) in the target TD’s service TD binding table

R9 SERVTD_TYPE: Expected service TD type

R10 SERVTD_ATTR: Expected service TD attributes

Table 6.202: TDH.SERVTD.PREBIND Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SERVTD.PREBIND pre-binds a service TD to a target TD, by setting its expected binding parameters. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.203: TDH.SERVTD.PREBIND Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantic
s

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page

TDR RW Opaque 4KB Shared Shared Shared

Explicit RDX HPA SERVTD_INFO_
HASH

SHA384_
HASH

R Shared 64B N/A N/A N/A

Implicit N/A N/A Target TD’s TDCS
structure

TDCS RW Opaque N/A Shared(i) N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 219 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantic
s

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A Target TD’s
TDCS.OP_STATE

OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Binding table RW Opaque N/A Exclusive None None

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The target TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).
5. The target TD’s measurements have not been finalized (by TDH.MR.FINALIZE).
6. Binding slot number does not exceed the number of available slots.
7. SERVTD_TYPE is supported.
8. If only one service TD binding instance is supported by SERVTD_TYPE, no other binding slot whose BINDIND_STATE 10

is not NOT_BOUND may have the same SERVTD_TYPE.
9. SERVTD_ATTR is supported.
10. The binding slot’s SERVTD_BINDING_STATE is either NOT_BOUND or PRE_BOUND.

If the above checks passed:

11. Copy the provided SERVTD_TYPE, SERVTD_ATTR and SERVTD_INFO_HASH to the binding slot. 15

12. Set the binding slot’s SERVTD_BINDING_STATE to PRE_BOUND.

Completion Status Codes

Table 6.204: TDH.SERVTD.PREBIND Completion Status Codes (Returned in RAX) Definition [TO BE EDITED]

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.SERVTD.PREBIND is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 220 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.52. TDH.SYS.CONFIG Leaf

Globally configure the Intel TDX module.

Table 6.205: TDH.SYS.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of an array of pointers, each containing the physical address of a single
TDMR_INFO entry (see 4.2.4).

The pointer array must be sorted such that TDMR base addresses (TDMR_INFO.TDMR_BASE) are
sorted from the lowest to the highest base address, and TDMRs do not overlap with each other.

RDX The number of pointers in the above buffer, between 1 and 64

R8 Bits Name Description

15:0 HKID Intel TDX global private HKID value

63:16 Reserved Reserved: must be 0

Table 6.206: TDH.SYS.CONFIG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.CONFIG performs global (platform-scope) configuration of the Intel TDX module. This function is intended to be 10

executed during OS/VMM boot, and thus it has relaxed latency requirements.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.207: TDH.SYS.CONFIG Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDMR Info
Pointers

Array of HPA R Shared 512B None N/A N/A

Explicit N/A HPA TDMR Info TDMR_INFO R Shared 512B None N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 221 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module
internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. PL.SYS_STATE is SYSINIT_DONE.
1.2. TDH.SYS.LP.INIT has been executed on all LPs. 5

2. The number of TDMR_INFO entries is at least 1 and does not exceed the supported number of TDMRs.
3. Check each physical address of to TDMR_INFO; read the applicable TDMR_INFO entry; check and update the internal

TDMR_TABLE with TDMR, reserved areas and PAMT setup. The order of checks is not required to be exactly the
same as described below.
o TDMRs must be sorted in an ascending base address order. 10

o For each TDMR:

• TDMR base address must be aligned on 1GB.

• TDMR size must be greater than 0 and a whole multiple of 1GB.

• Any address within the TDMR must comply with the platform’s maximum PA, and its HKID bits must be 0.

• For each PAMT region (1G, 2M and 4K) of each TDMR: 15

▪ PAMT base address must comply with the alignment requirements.
▪ Any address within the PAMT range must comply with the platform’s maximum PA, and its HKID bits

must be 0.
▪ The size of each PAMT region must be large enough to contain the PAMT for its associated TDMR.

• Reserved areas within TDMR must be sorted in an ascending offset order. 20

• A null reserved area (indicated by a size of 0) may be followed only by other null reserved areas.

• For each reserved area within TDMR:
▪ Offset and size must comply with the alignment and granularity requirements.
▪ Reserved areas must not overlap.
▪ Reserved areas must be fully contained within their TDMR. 25

o TDMRs must not overlap with other TDMRs.
o PAMTs must not overlap with other PAMTs.
o TDMRs’ non-reserved parts and PAMTs must not overlap (PAMTs may reside within TDMR reserved areas).
o TDMRs’ non-reserved parts must be contained in convertible memory – i.e., in CMRs.
o PAMTs must be contained in convertible memory – i.e., in CMRs. 30

4. Check and set the Intel TDX global private HKID. The provided HKID must be in the TDX HKID range.

If successful, the function does the following:

5. Complete the initialization of the Intel TDX module at platform scope.
6. Set PL.SYS_STATE to SYSCONFIG_DONE.

Completion Status Codes 35

Table 6.208: TDH.SYS.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INVALID_PAMT

TDX_INVALID_RESERVED_IN_TDMR

 TDX_INVALID_TDMR

TDX_NON_ORDERED_RESERVED_IN_TDMR

TDX_NON_ORDERED_TDMR

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 222 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_PAMT_OUTSIDE_CMRS

TDX_PAMT_OVERLAP

TDX_SUCCESS TDH.SYS.CONFIG is successful.

TDX_SYS_BUSY

TDX_SYS_SHUTDOWN

TDX_SYSINIT_NOT_DONE

TDX_SYSINITLP_NOT_DONE

TDX_TDMR_ALREADY_INITIALIZED

TDX_TDMR_OUTSIDE_CMRS

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 223 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.53. UPDATED: TDH.SYS.INFO Leaf

Provide information about the Intel TDX module and the convertible memory.

Note: TDH.SYS.INFO is provided for backward compatibility. TDH.SYS.RDALL is the recommended method to read Intel
TDX module information.

Table 6.209: TDH.SYS.INFO Input Operands Definition 5

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address (including HKID bits) of a buffer where the output TDSYSINFO_STRUCT will be
written

RDX The number of bytes in the above buffer

R8 The physical address (including HKID bits) of a buffer where an array of CMR_INFO will be written

R9 The number of CMR_INFO entries in the above buffer

Table 6.210: TDH.SYS.INFO Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RDX The actual number of bytes written to the above buffer

In case of an error, as indicated by RAX, RDX returns 0.

R9 The number of CMR_INFO entries actually written to the above buffer

In case of an error, as indicated by RAX, R9 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 10

vary.

TDH.SYS.INFO provides information about the Intel TDX module and about the memory configuration.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 224 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.211: TDH.SYS.INFO Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDX system
information
structure

TDSYSINFO_STRUCT RW Shared 1024B None N/A N/A

Explicit R8 HPA CMR table CMR_INFO_ARRAY RW Shared 512B None N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. TDH.SYS.INIT has been executed. 5

1.2. TDH.SYS.LP.INIT has been executed on the current LP.
2. The number of bytes provided for returning TDSYSINFO_STRUCT (in RDX) must be at least the size of that structure.
3. The number of entries provided for returning CMR_INFO_ARRAY (in R9) must be at least the actual number of CMRs.

If successful, the function does the following:

4. Write the TDSYSINFO_STRUCT, and set RDX to the actual number of bytes written. 10

5. Write the CMR_INFO_ARRAY based on the CMR information in SEAMCFG, and set R9 to the actual number of CMRs.

Completion Status Codes

Table 6.212: TDH.SYS.INFO Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.INFO is successful.

TDX_SYS_SHUTDOWN

TDX_SYSINITLP_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 225 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.54. TDH.SYS.INIT Leaf

Globally initialize the Intel TDX module.

Table 6.213: TDH.SYS.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX Intel TDX module attributes

Bits Name Description

63:0 RESERVED Reserved: must be 0

Table 6.214: TDH.SYS.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of an incorrect CPUID value, RCX returns the applicable CPUID information as shown
below. In all other cases, RCX returns 0.

Bits Name Description

31:0 LEAF CPUID leaf number

63:32 SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(0xFFFFFFFF).

RDX Extended error information part 2

In case of an incorrect CPUID value, RDX returns the value masks as shown below. A bit value
of 1 indicates a bit position that was checked against the required value. In all other cases, RDX
returns 0.

Bits Name Description

31:0 MASK_EAX Mask of the value returned by CPUID in EAX

63:32 MASK_EBX Mask of the value returned by CPUID in EBX

R8 Extended error information part 3

In case of an incorrect CPUID value, R8 returns the value masks as shown below. A bit value of
1 indicates a bit position that was checked against the required value. In all other cases, R8
returns 0.

Bits Name Description

31:0 MASK_ECX Mask of the value returned by CPUID in ECX

63:32 MASK_EDX Mask of the value returned by CPUID in EDX

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 226 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

R9 Extended error information part 4

In case of an incorrect CPUID value, R9 returns the expected values as shown below. In all
other cases, R9 returns 0.

Bits Name Description

31:0 VALUE_EAX Value expected to be returned by CPUID in EAX

63:32 VALUE_EBX Value expected to be returned by CPUID in EBX

R10 Extended error information part 5

In case of an incorrect CPUID value, R10 returns the expected values as shown below. In all
other cases, R10 returns 0.

Bits Name Description

31:0 VALUE_ECX Value expected to be returned by CPUID in ECX

63:32 VALUE_EDX Value expected to be returned by CPUID in EDX

Other Unmodified

Special Environment Requirements

If the IA32_TSX_CTRL MSR is supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.TSX_CTRL (bit 7), then
the values of its following bits must be 0:

• RTM_DISABLE (bit 0) 5

• TSX_CPUID_CLEAR (bit 1)

The IA32_MISC_PACKAGE_CTRL MSR must be supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.
MISC_PACKAGE_CTRL (bit 11). IA32_MISC_PACKAGE_CTLS.ENERGY_FILTERING_ENABLE (bit 0) must be set to 1.

Leaf Function Latency

TDH.SYS.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts 10

(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.INIT performs global (platform-scope) initialization of the Intel TDX module. This function is intended to be 15

executed during OS/VMM boot and thus it has relaxed latency requirements.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.215: TDH.SYS.INIT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 227 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Check that PL.SYS_STATE is SYSINIT_PENDING.
2. Do any global Intel TDX module initializations required for running this flow.
3. Check the memory operands per the table above.
4. Check the following conditions (no specific order is implied): 5

• Enumerate CPU and platform information, and check Intel TDX module compatibility. If the Intel TDX module is
compatible with multiple variants of CPU and platform features, sample the current LP’s features enumeration
– to be later checked to be the same on all LPs by TDH.SYS.LP.INIT. Examples of compatibility checks are:
o The CPU must support any ISA that the Intel TDX module relies upon, such as SHA-NI.
o The CPU must support the WBINVD scope for which the Intel TDX module was built. 10

• Sample and check the platform configuration on the current LP – to be later checked to be the same on all LPs
by TDH.SYS.LP.INIT. For example:
o Sample SMRR and SMRR2, check they are locked and do not overlap any CMR, and store their values to be

checked later on each LP.

If successful, the function does the following: 15

5. Complete the initialization of the Intel TDX module at platform scope.
6. Set PL.SYS_STATE to SYSINIT_DONE.

Completion Status Codes

Table 6.216: TDH.SYS.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_BOOT_NT4_SET

TDX_CPUID_LEAF_1F_FORMAT_UNRECOGNIZED

TDX_CPUID_LEAF_1F_NOT_SUPPORTED

TDX_CPUID_LEAF_0D_INCONSISTENT

TDX_INCORRECT_CPUID_VALUE

TDX_INCORRECT_MSR_VALUE

TDX_INVALID_WBINVD_SCOPE

TDX_SMRR_LOCK_NOT_SUPPORTED

TDX_SMRR_NOT_LOCKED

TDX_SMRR_NOT_SUPPORTED

TDX_SMRR_OVERLAPS_CMR

TDX_SUCCESS TDH.SYS.INIT is successful.

TDX_SYS_BUSY

TDX_SYS_SHUTDOWN

TDX_SYSINIT_NOT_PENDING

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 228 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.55. TDH.SYS.KEY.CONFIG Leaf

Configure the Intel TDX global private key on the current package.

Table 6.217: TDH.SYS.KEY.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

Table 6.218: TDH.SYS.KEY.CONFIG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Latency

TDH.SYS.KEY.CONFIG execution time may be longer than most TDX module interface functions execution time. No
interrupts (including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description 10

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.KEY.CONFIG performs package-scope Intel TDX global private key configuration.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

Table 6.219: TDH.SYS.KEY.CONFIG Operands Information

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Check that TDH.SYS.CONFIG has completed successfully (PL.SYS_STATE is SYSCONFIG_DONE).

If successful, the function does the following: 20

2. Do the following as an atomic operation (e.g., LOCK BTS) on PL.PKG_CONFIG_BITMAP:
2.1. Check the package has not yet been configured.
2.2. Mark it as configured.

3. Execute PCONFIG to configure the Intel TDX global private HKID on the package with a CPU-generated random key.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 229 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

PCONFIG may fail due to an entropy error or a device busy error. In these cases, the VMM should retry
TDH.SYS.KEY.CONFIG.

If successful:

4. If this was the last package on which TDH.SYS.KEY.CONFIG has executed, set PL.STATE to SYS_READY.

Completion Status Codes 5

Table 6.220: TDH.SYS.KEY.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_KEY_CONFIGURED

TDX_KEY_GENERATION_FAILED

TDX_OPERAND_BUSY

TDX_SUCCESS TDH.SYS.KEY.CONFIG is successful.

TDX_SYS_BUSY

TDX_SYS_SHUTDOWN

TDX_SYSINIT_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 230 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.56. TDH.SYS.LP.INIT Leaf

Initialize the Intel TDX module at the current logical processor scope.

Table 6.221: TDH.SYS.LP.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

Table 6.222: TDH.SYS.LP.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RCX Extended error information part 1

In case of an inconsistent CPUID field error, RCX returns the applicable CPUID information as
shown below.

In all other cases, RCX returns 0.

Bits Name Description

31:0 LEAF CPUID leaf number

63:32 SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(0xFFFFFFFF).

RDX Extended error information part 2

In case of an inconsistent CPUID field error, RDX returns the value masks as shown below. A bit
value of 1 indicates a bit position that was checked against the same CPUID leaf value checked
during TDH.SYS.INIT.

In all other cases, RDX returns 0.

Bits Name Description

31:0 MASK_EAX Mask of the value returned by CPUID in EAX

63:32 MASK_EBX Mask of the value returned by CPUID in EBX

R8 Extended error information part 3

In case of an inconsistent CPUID field error, R8 returns the value masks as shown below. A bit
value of 1 indicates a bit position that was checked against the same CPUID leaf value checked
during TDH.SYS.INIT.

In all other cases, R8 returns 0.

Bits Name Description

31:0 MASK_ECX Mask of the value returned by CPUID in ECX

63:32 MASK_EDX Mask of the value returned by CPUID in EDX

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 231 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Special Environment Requirements

If the IA32_TSX_CTRL MSR is supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.TSX_CTRL (bit 7), then
the values of its following bits must be 0:

• RTM_DISABLE (bit 0) 5

• TSX_CPUID_CLEAR (bit 1)

The IA32_MISC_PACKAGE_CTRL MSR must be supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.
MISC_PACKAGE_CTRL (bit 11). IA32_MISC_PACKAGE_CTLS.ENERGY_FILTERING_ENABLE (bit 0) must be set to 1.

Leaf Function Latency

TDH.SYS.LP.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts 10

(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.LP.INIT performs LP-scope initialization of the Intel TDX module. This function is intended to be executed during 15

OS/VMM boot, and thus it has relaxed latency requirements.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.223: TDH.SYS.LP.INIT Operands Information

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Shared N/A N/A

 20

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. TDH.SYS.INIT has completed successfully (PL.SYS_STATE is SYSINIT_DONE).
2. This is the first invocation of TDH.SYS.LP.INIT on the current LP.

If successful, the function does the following:

3. Do a global EPT flush (INVEPT type 2). 25

4. Initialize the Intel TDX module’s LP-scope variables.
5. Check the compatibility and uniformity of features and configuration. Once per LP, core or package, depending on

the scope of the checked feature or configuration:
5.1. Check features compatibility with the Intel TDX module. For example, the WBINVD scope must be the same as

the scope the Intel TDX module was built to handle. In cases where the Intel TDX module supports several 30

options, check that the features on the current LP are the same as sampled during TDH.SYS.INIT.
5.2. Check configuration uniformity. For example, the SMRR and SMRR2 must be locked and configured in the same

way as sampled during TDH.SYS.INIT.
6. Mark the current LP as initialized.

Completion Status Codes 35

Table 6.224: TDH.SYS.LP.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INCONSISTENT_CPUID_FIELD

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 232 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_INCONSISTENT_MSR

TDX_INCORRECT_MSR_VALUE

TDX_INVALID_PKG_ID

TDX_SUCCESS TDH.SYS.LP.INIT is successful.

TDX_SYS_BUSY

TDX_SYS_SHUTDOWN

TDX_SYSINIT_NOT_DONE

TDX_SYSINITLP_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 233 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.57. TDH.SYS.LP.SHUTDOWN Leaf

Initiate Intel TDX module shutdown, and prevent further SEAMCALLs on the current logical processor.

Table 6.225: TDH.SYS.LP.SHUTDOWN Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

Table 6.226: TDH.SYS.LP.SHUTDOWN Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.LP.SHUTDOWN marks the Intel TDX module as being shut down (if not already in this state) and prevents 10

further SEAMCALLs on the current LP.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.227: TDH.SYS.LP.SHUTDOWN Operands Information

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Shared N/A N/A

 15

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Mark the Intel TDX module as being shut down by setting PL.SYS_STATE to SYS_SHUTDOWN.
2. Prevent further SEAMCALLs on the current LP by setting the SEAM VMCS’s HOST RIP field to the value of

SYS_INFO_TABLE.SHUTDOWN_HOST_RIP (originally configured by the SEAMLDR).
3. Do a global EPT flush (INVEPT type 2). 20

3.1. This is a defense-in-depth. In case of an Intel TDX module update, TDH.SYS.LP.INIT will do a global EPT flush.

Completion Status Codes

Table 6.228: TDH.SYS.LP.SHUTDOWN Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDH.SYS.LP.SHUTDOWN is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 234 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SYS_BUSY

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 235 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.58. NEW: TDH.SYS.RD Leaf

Read a TDX Module global-scope metadata field.

Table 6.229: TDH.SYS.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

Table 6.230: TDH.MNG.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RDX Next readable field identifier. A value of -1 indicates no next field identifier is available.

In case of another error, as indicated by RAX, RDX returns -1.

R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.RD reads a TDX Module global-scope metadata field. 10

RDX returns the next host-side readable field identifier. This may be used by the host VMM to enumerate the TDX
Module’s capabilities and configuration. To read all the available fields, the host VMM can invoke TDH.SYS.RD in a loop,
starting with field identifier 0 as an input, until RDX returns 0.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 236 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.231: TDH.SYS.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

There are no relevant memory operands.

The function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. TDH.SYS.INIT has been executed. 5

1.2. TDH.SYS.LP.INIT has been executed on the current LP.

If successful, the function does the following:

2. Read the requested field using the algorithm described in 6.2.1.1.
3. Return the next readable field identifier, or a value of 0 if none exists.
4. Return the field value. 10

Completion Status Codes

Table 6.232: TDH.SYS.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.INFO is successful.

TDX_SYS_SHUTDOWN

TDX_SYSINITLP_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 237 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.59. NEW: TDH.SYS.RDALL Leaf

Read all host-readable TDX Module global-scope metadata fields.

Table 6.233: TDH.SYS.RDALL Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RDX The physical address (including HKID bits) of a 4KB page where a metadata list will be returned

In case of error, some field value entries might not contain valid data.

R8 Initial field identifier. A value of 0 means start from the first field identifier.

Table 6.234: TDH.SYS.RDALL Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

R8 Next field identifier. A value of -1 means all applicable field identifiers have been returned in the
metadata list.

In case of an error, as indicated by RAX, R8 returns -1.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.RDALL reads all host-readable TDX Module global-scope metadata fields into a metadata list in the provided 10

page. If all applicable fields do not fit in the list, the function can be invoked in a loop, each invocation providing an initial
field identifier returned as the next field identifier of the previous invocation, as shown in the following example:

1. NEXT_FIELD_ID = 0
2. STATUS = TDX_SUCCESS
3. While ((STATUS is not a non-recoverable error) && (NEXT_FIELD_ID != -1)) 15

3.1. Set LIST_BUFFER to the next 4K buffer
3.2. Invoke TDH.SYS.RDALL(RDX = LIST_BUFFER, RDX = NEXT_FIELD_ID)
3.3. STATUS = RAX, NEXT_FIELD_ID = R8

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 20

Table 6.235: TDH.SYS.RDALL Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RDX HPA Metadata list MD_LIST RW Shared 4KB None None None

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 238 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. TDH.SYS.INIT has been executed.
1.2. TDH.SYS.LP.INIT has been executed on the current LP. 5

If successful, the function does the following:

2. Dump the list of next host-readable metadata fields into the provided page.

Completion Status Codes

Table 6.236: TDH.MNG.RDALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.RDALL is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 239 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.60. TDH.SYS.TDMR.INIT Leaf

Partially initialize a Trust Domain Memory Region (TDMR) and its associated PAMT.

Table 6.237: TDH.SYS.TDMR.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical base address of a TDMR (HKID bits must be 0)

Table 6.238: TDH.SYS.TDMR.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RDX On successful completion, RDX returns the TDMR next-to-initialize address. This is the physical
address of the last byte that has been initialized so far, rounded down to 1GB.

In all other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.TDMR.INIT partially initializes the metadata (PAMT) associated with a Trust Domain Memory Region (TDMR), 10

while adhering to latency considerations. It can run concurrently on multiple LPs as long as each concurrent flow
initializes a different TDMR. After each 1GB range of a TDMR has been initialized, that 1GB range becomes available for
use by any Intel TDX function that creates a private TD page or a control structure page – e.g., TDH.MEM.PAGE.ADD,
TDH.VP.ADDCX, etc.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 15

Intel TDX Module API.

Table 6.239: TDH.SYS.TDMR.INIT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDMR Blob None None 1GB Exclusive N/A N/A

Implicit N/A HPA PAMT region
associated with
TDMR

Blob RW Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The provided TDMR start address belongs to one of the TDMRs set during TDH.SYS.INIT. 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 240 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

2. The TDMR has not been completely initialized yet.

If successful, the function does the following:

3. If the TDMR has been completely initialized, there is nothing to do.

Else, the function does the following:

4. Initialize the next implementation defined un-initialized number of PAMT entries. The maximum number of PAMT 5

entries to be initialized is set to help avoid latency issues.
4.1. PAMT_4K entries associated with a physical address that is within a reserved range are marked with PT_RSVD.
4.2. Other PAMT_4K entries are marked with PT_NDA.
4.3. PAMT_2M and PAMT_1G entries are marked with PT_NDA.

5. If the PAMT for a 1GB block of TDMR has been fully initialized, mark that 1GB block as ready for use. This means that 10

4KB pages in this 1GB block may be converted to private pages – e.g., by SEAMCALL(TDH.MEM.PAGE.ADD). This can
be done concurrently with initializing other TDMRs.

6. Return the next-to-initialize address rounded down to 1GB. This is done so the host VMM will not attempt to use a
1GB block that is not fully initialized.

Completion Status Codes 15

Table 6.240: TDH.SYS.TDMR.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.TDMR.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TDMR_ALREADY_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 241 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.61. UPDATED: TDH.VP.ADDCX Leaf

Add a TDCX page to memory as a child of a given TDVPR.

Table 6.241: TDH.VP.ADDCX Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a page where the TDCX page will be added (HKID bits must be 0)

RDX The physical address of a TDVPR page (HKID bits must be 0)

Table 6.242: TDH.VP.ADDCX Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.ADDCX adds a TDCX page as a child of a given TDVPR. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.243: TDH.VP.ADDCX Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDCX page Blob RW Opaque 4KB Exclusive Shared Shared

Explicit RDX HPA TDVPR page Blob RW Opaque 4KB Exclusive Shared Shared

Implicit N/A HPA TDR page TDR RW Opaque N/A Shared None None

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the explicit memory operand checks per the table above, the function checks the following conditions: 15

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD has been initialized (by TDH.MNG.INIT).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 242 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5. The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).
6. The TD VCPU has not been initialized (by TDH.VP.INIT) and is not being torn down (TDVPS.VCPU_STATE is

VCPU_UNINITIALIZED).
7. The new TDCX page metadata in PAMT must be correct (PT must be PT_NDA).
8. The maximum number of TDCX pages per TDVPS (as enumerated by TDH.SYS.RD* or TDH.SYS.INFO) has not been 5

exceeded.

If successful, the function does the following:

9. Zero out the TDCX page contents using direct writes (MOVDIR64B).
10. Increment the VCPU’s TDCX counter, and set a pointer in the parent TDVPR page to the new TDCX page.
11. Increment TDR.CHLDCNT. 10

12. Initialize the TDCX page metadata in PAMT.

Completion Status Codes

Table 6.244: TDH.VP.ADDCX Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.ADDCX is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TDCX_NUM_INCORRECT

TDX_VCPU_STATE_INCORRECT

 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 243 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.62. UPDATED: TDH.VP.CREATE Leaf

Create a guest TD VCPU and its root TDVPR page.

Table 6.245: TDH.VP.CREATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a page where TDVPR will be added (HKID bits must be 0)

RDX The physical address of the owner TDR page (HKID bits must be 0)

Table 6.246: TDH.VP.CREATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.CREATE begins the build of a new guest TD VCPU. It adds a TDVPR page as a child of a TDR page. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.247: TDH.VP.CREATE Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page Blob RW Opaque 4KB Exclusive Shared Shared

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS R Opaque 4KB Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the explicit memory operand checks per the table above, the function checks the following conditions: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

INITIALIZED). 20

5. The TDVPR page metadata in PAMT must be correct (PT must be PT_NDA).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 244 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

6. Zero out the TDVPR page contents using direct write (MOVDIR64B).
7. Increment TDR.CHLDCNT.
8. Initialize the TDVPS management fields, which all reside in the TDVPR page.
9. Initialize the TDVPR page metadata in PAMT. 5

Completion Status Codes

Table 6.248: TDH.VP.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 245 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.63. UPDATED: TDH.VP.ENTER Leaf

Enter TDX non-root operation.

From the host VMM’s point of view, TDH.VP.ENTER is a complex operation that normally involves TD entry followed by a
TD exit. Therefore, input and output operands are specified by multiple tables below.

The following table details TDH.VP.ENTER input operands for initial entry or following a previous asynchronous TD exit. 5

Table 6.249: TDH.VP.ENTER Input Operands Definition for Initial Entry or Following a Previous Asynchronous TD Exit

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of the TD VCPU’s TDVPR page (HKID bits must be 0)

The following table details TDH.VP.ENTER input operands following a previous trap-like asynchronous TD exit, where bit
60 (HOST_RECOVERABILITY_HINT) of the previous TDH.VP.ENTER completion status (returned in RAX) was set to 1.

Table 6.250: TDH.VP.ENTER Input Operands Definition Following a Previous Trap-Like Asynchronous TD Exit with a 10

Host Recoverability Hint

Operand Description

RAX SEAMCALL instruction leaf and version numbers – see 6.3.1

RCX The physical address of the TD VCPU’s TDVPR page (HKID bits must be 0)

RDX Host hints

Bit(s) Name Description

0 HOST_RECOVERABILITY_HINT 0: The host VMM hints that the guest-side function may
possibly be retried (e.g., the host may have corrected
some conditions).

1: The host VMM hints that the error is probably not
recoverable.

This bit is reflected to the guest TD in bit 60 of RAX.

Other RESERVED Must be 0

The following table details TDH.VP.ENTER input operands for following a previous synchronous TD exit.

Table 6.251: TDH.VP.ENTER Input Operands Definition Following a Previous TDCALL(TDG.VP.VMCALL)

Operand Description

RAX SEAMCALL instruction leaf and version numbers – see 6.3.1

RCX The physical address of the TD VCPU’s TDVPR page

RBX, RDX,
RBP, RSI,
RDI,
R8 – R15

If the corresponding bit of RCX at the previous TD exit (i.e., previous TDH.VP.ENTER termination)
was set to 1, the register value is passed as-is to the guest TD – see the description of
TDG.VP.VMCALL in 6.4.15 for details.

Else, the register value is not used as an input.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 246 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

XMM0 –
XMM15

If the corresponding bit of RCX at the previous TD exit (i.e., previous TDH.VP.ENTER termination)
was set to 1, the register value is passed as-is to the guest TD – see the description of
TDG.VP.VMCALL in 6.4.15 for details.

Else, the register value is not used as an input.

The following table details TDH.VP.ENTER output operands when an error occurs, and the interface function returns
without entering the TD.

Table 6.252: TDH.VP.ENTER Output Operands Definition on Error (No TD Entry)

Operand Description

RAX SEAMCALL instruction return code

Other
GPRs

Unmodified

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) may be cleared to its
architectural INIT state.

 5

The following table details TDH.VP.ENTER output operands when TD entry succeeds, and later an asynchronous TD exit
occurs due to a VMX architectural exit reason.

Table 6.253: TDH.VP.ENTER Output Operands Definition on Asynchronous TD Exits Following a TD Entry (with a VMX
Architectural Exit Reason)

Operand TD Exit
Information

Description

RAX Status and
Exit Reason

SEAMCALL instruction return code

The DETAILS_L1 field in bits 39:32 may have the following values:

• TDX_SUCCESS, indicating a normal TD exit

• TDX_NON_RECOVERABLE_VCPU, indicating that the VCPU is disabled

• TDX_NON_RECOVERABLE_TD, indicating that the TD is disabled

• TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE, indicating that the TD is
disabled, and its private memory can’t be accessed

The DETAILS_L2 field in bits 31:0 contain the VMCS exit reason.

RCX Exit
Qualification

Format is similar to the VMCS exit qualification.

When exit is due to EPT violation, bits 12-7 of the exit qualification are cleared to 0.

RDX Extended Exit
Qualification

Additional non-VMX, TDX-specific information – see 4.6.1

R8 Guest
Physical
Address

When exit is due to EPT violation or EPT misconfiguration, format is similar to the
VMCS guest-physical address, except that bits 11:0 are cleared to 0.

In other cases, R8 is cleared to 0.

R9 VM-Exit
Interruption
Information

When exit is due to a vectored event, format of bits 31:0 is similar to the VMCS VM-
exit interruption information. Bits 63:32 are cleared to 0.

In other cases, R9 is cleared to 0.

RBX, RSI,
RDI, R10 –
R15

None Cleared to 0

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural INIT
state.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 247 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

The following table details TDH.VP.ENTER output operands on when TD entry succeeds, and later an asynchronous TD
exit occurs with a non-VMX TD exit status.

Table 6.254: TDH.VP.ENTER Output Operands Definition on Asynchronous TD Exits Following a TD Entry (with a non-
VMX TD Exit Status) 5

Operand TD Exit
Information

Description

RAX Status and
Exit Reason

SEAMCALL instruction return code

The DETAILS_L1 field in bits 39:32 may have the following values:

• TDX_NON_RECOVERABLE_TD_CORRUPTED_MD

RCX, RDX,
RBX, RBP,
RDI, RSI,
R8 – R15

Reserved Cleared to 0

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural INIT
state.

The following table details TDH.VP.ENTER output operands on when TD entry succeeds, and later an asynchronous TD
exit occurs due to a cross-TD operation, i.e., the current TD operating on another TD.

Table 6.255: TDH.VP.ENTER Output Operands Definition on Asynchronous TD Exits Following a TD Entry (with Cross-
TD Exit Details) 10

Operand TD Exit
Information

Description

RAX Status and
Exit Reason

SEAMCALL instruction return code

The DETAILS_L1 field in bits 39:32 may have the following values:

• TDX_CROSS_TD_FAULT, indicating a fault-like asynchronous TD exit, with non-
VMX cross-TD status.

• TDX_CROSS_TD_TRAP, indicating a trap-like asynchronous TD exit, with non-
VMX cross-TD status.

RCX Cross-TD
Status

Status code of the error which caused the TD exit, using the same format as TDCALL
instruction return code

RDX Target TD HPA of the TD which was the target of the cross-TD operation

RBX, RBP,
RDI, RSI,
R8 – R15

Reserved Cleared to 0

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural INIT
state.

The following table details TDH.VP.ENTER output operands on when TD entry succeeds, and later a synchronous TD exit,
triggered by TDG.VP.VMCALL, occurs.

Table 6.256: TDH.VP.ENTER Output Operands Definition on TDCALL(TDG.VP.VMCALL) Following a TD Entry

Operand Description

RAX SEAMCALL instruction return code

• The DETAILS_L2 field in bits 31:0 contain the VMCS exit reason, indicating TDCALL (77).

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 248 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RCX Value as passed in to TDCALL(TDG.VP.VMCALL) by the guest TD: indicates which part of the
guest TD GPR and XMM state is passed as-is to the VMM and back. For details, see the
description of TDG.VP.VMCALL in 6.4.15.

RBX, RDX, RBP,
RDI, RSI,
R8 – R15

If the corresponding bit in RCX is set to 1, the register value is passed as -is from the guest TD’s
input to TDG.VP.VMCALL.

Else, the register value cleared to 0.

XMM0 –
XMM15

If the corresponding bit in RCX is set to 1, the register value is passed as -is from the guest TD’s
input to TDG.VP.VMCALL.

Else, the register value cleared to 0.

Extended State
except XMM

Any extended state, except XMM, that the TD is allowed to use (per TDCS.XFAM) is cleared to
its architectural INIT state.

CPU State Preservation Following a Successful TD Entry and a TD Exit

Following a successful TD entry and a TD exit, some CPU state is modified:

• Registers DR0, DR1, DR2, DR3, DR6 and DR7 are set to their architectural INIT value.

• XCR0 is set to the TD’s user-mode feature bits of XFAM (bits 7:0, 9). 5

• Multiple MSRs are set as described below. In this table, Init(condition) means that the MSR is set to its INIT value if
the condition is true, else the MSR is unmodified.

Table 6.257: MSRs that may be Modified by TDH.VP.ENTER

MSR Index Range (Hex)

First (H) Last (H) Size (H) MSR Architectural Name MSR Preservation across TDH.VP.ENTER

0x00E1 0x00E1 0x1 IA32_UMWAIT_CONTROL Init(virt. CPUID(7,0).ECX[5])

0x0186 0x018D 0x8 IA32_PERFEVTSELx Init(PERFMON)

0x01A6 0x01A7 0x2 MSR_OFFCORE_RSPx Init(PERFMON)

0x01C4 0x01C4 0x1 IA32_XFD Init(virt. CPUID(0xD,0x1).EAX[4])

0x01C5 0x01C5 0x1 IA32_XFD_ERR Init(virt. CPUID(0xD,0x1).EAX[4])

0x01D9 0x01D9 0x1 IA32_DEBUGCTL INIT, except for the following bits which are
preserved:
Bit 1 (BTF)
Bit 12 (FREEZE_PERFMON_ON_PMI)
Bit 14 (FREEZE_WHILE_SMM)

0x0309 0x030C 0x4 IA32_FIXED_CTRx Init(PERFMON)

0x0329 0x0329 0x1 IA32_PERF_METRICS Init(PERFMON)

0x038D 0x038D 0x1 IA32_FIXED_CTR_CTRL Init(PERFMON)

0x038E 0x038E 0x1 IA32_PERF_GLOBAL_STATUS Init(PERFMON)

0x038F 0x038F 0x1 IA32_PERF_GLOBAL_CTRL Init(PERFMON)

0x03F1 0x03F1 0x1 IA32_PEBS_ENABLE Init(PERFMON)

0x03F2 0x03F2 0x1 MSR_PEBS_DATA_CFG Init(PERFMON)

0x03F6 0x03F6 0x1 MSR_PEBS_LD_LAT Init(PERFMON)

0x03F7 0x03F7 0x1 MSR_PEBS_FRONTEND Init(PERFMON)

0x04C1 0x04C8 0x8 IA32_A_PMCx Init(PERFMON)

0x0560 0x0560 0x1 IA32_RTIT_OUTPUT_BASE Init(XFAM(8))

0x0561 0x0561 0x1 IA32_RTIT_OUTPUT_MASK_PTRS Init(XFAM(8))

0x0570 0x0570 0x1 IA32_RTIT_CTL Init(XFAM(8))

0x0571 0x0571 0x1 IA32_RTIT_STATUS Init(XFAM(8))

0x0572 0x0572 0x1 IA32_RTIT_CR3_MATCH Init(XFAM(8))

0x0580 0x0580 0x1 IA32_RTIT_ADDR0_A Init(XFAM(8))

0x0581 0x0581 0x1 IA32_RTIT_ADDR0_B Init(XFAM(8))

0x0582 0x0582 0x1 IA32_RTIT_ADDR1_A Init(XFAM(8))

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 249 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

MSR Index Range (Hex)

First (H) Last (H) Size (H) MSR Architectural Name MSR Preservation across TDH.VP.ENTER

0x0583 0x0583 0x1 IA32_RTIT_ADDR1_B Init(XFAM(8))

0x0584 0x0584 0x1 IA32_RTIT_ADDR2_A Init(XFAM(8))

0x0585 0x0585 0x1 IA32_RTIT_ADDR2_B Init(XFAM(8))

0x0586 0x0586 0x1 IA32_RTIT_ADDR3_A Init(XFAM(8))

0x0587 0x0587 0x1 IA32_RTIT_ADDR3_B Init(XFAM(8))

0x0600 0x0600 0x1 IA32_DS_AREA INIT

0x06A0 0x06A0 0x1 IA32_U_CET Init(XFAM[11] | XFAM[12])

0x06A4 0x06A4 0x1 IA32_PL0_SSP Init(XFAM[11] | XFAM[12])

0x06A5 0x06A5 0x1 IA32_PL1_SSP Init(XFAM[11] | XFAM[12])

0x06A6 0x06A6 0x1 IA32_PL2_SSP Init(XFAM[11] | XFAM[12])

0x06A7 0x06A7 0x1 IA32_PL3_SSP Init(XFAM[11] | XFAM[12])

0x0985 0x0985 0x1 IA32_UINT_RR Init(XFAM[14])

0x0986 0x0986 0x1 IA32_UINT_HANDLER Init(XFAM[14])

0x0987 0x0987 0x1 IA32_UINT_STACKADJUST Init(XFAM[14])

0x0988 0x0988 0x1 IA32_UINT_MISC Init(XFAM[14])

0x0989 0x0989 0x1 IA32_UINT_PD Init(XFAM[14])

0x098A 0x098A 0x1 IA32_UINT_TT Init(XFAM[14])

0x0DA0 0x0DA0 0x1 IA32_XSS Supervisor-mode feature bits of XFAM (bits 8, 16:10)

0x1200 0x12FF 0x100 IA32_LBR_INFO Init(XFAM[15])

0x14CE 0x14CE 0x1 IA32_LBR_CTL Init(XFAM[15])

0x14CF 0x14CF 0x1 IA32_LBR_DEPTH Init(XFAM[15])

0x1500 0x15FF 0x100 IA32_LBR_FROM_IP Init(XFAM[15])

0x1600 0x16FF 0x100 IA32_LBR_TO_IP Init(XFAM[15])

0xC0000081 0xC0000081 0x1 IA32_STAR INIT

0xC0000082 0xC0000082 0x1 IA32_LSTAR INIT

0xC0000084 0xC0000084 0x1 IA32_FMASK INIT

0xC0000102 0xC0000102 0x1 IA32_KERNEL_GS_BASE INIT

0xC0000103 0xC0000103 0x1 IA32_TSC_AUX INIT

Special Environment Requirements

The value read from IA32_TSC_ADJUST MSR must be the same as it was during TDH.SYS.INIT.

If the IA32_TSX_CTRL MSR is supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.TSX_CTRL (bit 7), then
the values of its following bits must be 0: 5

• RTM_DISABLE (bit 0)

• TSX_CPUID_CLEAR (bit 1)

Leaf Function Latency

In some cases (e.g., suspected single/zero step attack mitigation), TDH.VP.ENTER execution time may be longer than most
TDX module interface functions execution time. No interrupts (including NMI and SMI) are processed by the logical 10

processor during that time.

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.ENTER enters TDX non-root operation. 15

VCPU Association: TDH.VP.ENTER associates the target TD VCPU with the current LP. This requires that the VCPU will
not be associated with another LP. For details, see the [TDX Module Spec].

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 250 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.258: TDH.VP.ENTER Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared7 Shared7 Shared7

Implicit N/A HPA TDR page TDR RW Opaque N/A Shared7 N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i)7 N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared7 N/A N/A

Implicit N/A N/A TDCS TLB
Tracking Fields

N/A RW Opaque N/A Shared N/A N/A

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is RUNNING).

If successful, the function does the following:

5. Associate the VCPU with the current LP and update TD VMCS.
5.1. Check that the VCPU has been initialized and is not being torn down. 10

5.2. Atomically check that the VCPU is not associated with another LP, and associate it with the current LP.
5.3. If the TD’s ephemeral HKID has changed since last VM entry, update all TD VMCS physical pointers and the TD

HKID execution control.
5.4. Update the TD VMCS host state fields with any Intel TDX module LP-specific values.

If passed: 15

6. If the TD VCPU to be entered is different than the last TD VCPU entered on the current LP, issue an indirect branch
prediction barrier command to the CPU by writing to the IA32_PRED_CMD MSR with the IBPB bit set.

7. Update the TLB tracking state. This is done as a critical section allowing concurrent TDH.VP.ENTERs but no concurrent
TDH.MEM.TRACK. A concurrent TDH.MEM.TRACK may cause this locking to fail; in this case, the caller is expected
to retry TDH.VP.ENTER. 20

7.1. Lock the TDCS epoch tracking fields in shared mode.
7.2. Sample the TD’s epoch counter (TDCS.TD_EPOCH) into the VCPU’s TDVPS.VCPU_EPOCH.
7.3. Atomically increment the TD’s REFCOUNT that is associated with the sampled epoch

(TDCS.REFCOUNT[TD_EPOCH % 2]).
7.4. Release the shared mode locking of the epoch tracking fields. 25

If successful:

8. Set TDVPS.VCPU_STATE to VCPU_ACTIVE.
9. Restore guest TD state:

9.1. If previous TD exit was due to a TDG.VP.VMCALL:
9.1.1. Restore guest XMM and GPR state that is not passed as-is from the host VMM, as controlled by the 30

value of guest TD RCX input to TDG.VP.VMCALL.
9.1.2. Set guest RAX to 0.

9.2. Else (TD exit was an asynchronous exit):
9.2.1. Restore CPU extended state from TDVPS (per TDCS.XFAM).

9.3. Restore other guest state from TDVPS. 35

7 The shared locking of TDVPS, TDR, TDCS, TDCS.OP_STATE (but not the TDCS epoch tracking fields) is for the whole duration of running
in TDX non-root mode; the locks are released on TD exit.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 251 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

10. Execute VMLAUNCH or VMRESUME depending on whether this VCPU has been launched on this LP since its last
association with the LP (TVPS.VMLAUNCH).

Note: Logically, from the point of view of the host VMM, a successful TDH.VP.ENTER is terminated by the next TD exit.

Completion Status Codes

In case of successful execution (which resulted in the TD guest running and then exiting), the status code value in RAX is 5

encoded the same as the VMX Exit reason – see the [TDX Module Spec] for details.

Table 6.259: TDH.VP.ENTER Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_NON_RECOVERABLE_TD TDH.VP.ENTER launched or resumed TD VCPU operation
(TDX non-root mode) – followed later by a TD exit. The TD
state is non-recoverable – further TD entry is prohibited.
Exit reason is in RAX bits 31:0.

TDX_NON_RECOVERABLE_VCPU TDH.VP.ENTER launched or resumed TD VCPU operation
(TDX non-root mode) – followed later by a TD exit. The TD
VCPU state is non-recoverable – further TD entry to this
VCPU is prohibited. Exit reason is in RAX bits 31:0.

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Note the special case where the indicated operand is
TLB_EPOCH. This may happen due to a conflict with
TDH.MEM.TRACK. The host VMM may retry TDH.VP.ENTER.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.ENTER launched or resumed TD VCPU operation
(TDX non-root mode) – followed later by a TD exit. Exit
reason is in RAX bits 31:0.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 252 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.64. TDH.VP.FLUSH Leaf

Flush the address translation caches and cached TD VMCS associated with a TD VCPU on the current logical processor.

Table 6.260: TDH.VP.FLUSH Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

Table 6.261: TDH.VP.FLUSH Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.FLUSH flushes the address translation caches and cached TD VMCS associated with a TD VCPU on the current LP. 10

It then marks the VCPU as not associated with any LP.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.262: TDH.VP.FLUSH Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive Shared Shared

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

 15

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED.
3. The current VCPU must be currently associated with the current LP.

If the above checks pass, the function does the following: 20

4. Flush the TLB context and extended paging structure (EPxE) caches associated with the TD using INVEPT single-
context invalidation (type 1).

5. Flush the cached TD VMCS content to TDVPS using VMCLEAR.
6. Mark the current VCPU as not associated with any LP.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 253 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

7. Atomically decrement (using LOCK XADD) the associated VCPUs counter (TDCS.NUM_ASSOC_VCPUS).

Completion Status Codes

Table 6.263: TDH.VP.FLUSH Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.FLUSH is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_VCPU_NOT_ASSOCIATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 254 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.65. UPDATED: TDH.VP.INIT Leaf

Initialize the saved state of a TD VCPU.

Operands

Table 6.264: TDH.VP.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

RDX Initial value of the guest TD VCPU RCX

 5

Table 6.265: TDH.VP.INIT Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

Other Unmodified

Leaf Function Latency

TDH.VP.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time. 10

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.INIT initialized the saved state of a VCPU in the TDVPR and TDPX pages.

VCPU Association: TDH.VP.INIT associates the target TD VCPU with the current LP – for details, see the [TDX Module 15

Spec].

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.266: TDH.VP.INIT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive Shared Shared

Implicit N/A HPA TDR page TDR R Opaque 4KB Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 255 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is 5

INITIALIZED).
5. The number of pages allocated to this TDVPS is correct.
6. The TD VCPU has not been initialized (by TDH.VP.INIT) and is not being torn down (TDVPS.VCPU_STATE is

VCPU_UNINITIALIZED).

If successful, the function does the following: 10

7. Atomically increment the TD’s VCPU counter (TDCS.NUM_VCPUS), and check that maximum number of VCPUs
(TDCS.MAX_VCPUS) has not been exceeded.

If passed:

8. Assign a unique sequential identifier to the VCPU.
9. Initialize the VCPU state fields in the logical TDVPS structure (TDVPR and TDCX pages). 15

10. Set the TDVPS.LAST_TD_EXIT to ASYNC_FAULT since the first TD entry is the same as TD entry following an
asynchronous fault-like TD exit.

Completion Status Codes

Table 6.267: TDH.VP.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_MAX_VCPUS_EXCEEDED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCX_NUM_INCORRECT

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

TDX_VCPU_STATE_INCORRECT

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 256 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.66. UPDATED: TDH.VP.RD Leaf

Read a VCPU-scope metadata fields (control structure field) of a TD.

Table 6.268: TDH.VP.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

For TDH.VP.RD version 1 or higher, a value of -1 is a special case: it is not a valid field identifier; in
this case the first readable field identifier is returned in RDX.

Table 6.269: TDH.VP.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

RDX For TDH.VP.RD version 0, RDX is unmodified.

For TDH.VP.RD version 1 or higher, RDX returns the next readable field identifier. A value of -1
indicates no next field is available. In case of another error, RDX returns -1.

R8 Field content

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.RD reads a TDVPS field, given its field code. Reading is subject to the field’s readability (per the TD’s 10

ATTRIBUTES.DEBUG bit).

VCPU Association: TDH.VP.RD associates the target TD VCPU with the current LP. This requires that the VCPU will not
be associated with another LP – for details, see the [TDX Module Spec].

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 257 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.270: TDH.VP.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared Shared Shared

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is not

UNALLOCATED nor UNINITIALIZED).
5. The provided field code is valid.
6. The provided TDVPS field is readable per the TD’s debug attribute (TDCS.ATTRIBUTES.DEBUG). 10

If successful, the function does the following:

7. Associate the VCPU with the current LP, and update TD VMCS.
7.1. Check that the VCPU has been initialized and is not being torn down.
7.2. Atomically check that the VCPU is not associated with another LP, and associate it with the current LP.
7.3. If the TD’s ephemeral HKID has changed since last VM entry, update all TD VMCS physical pointers and the TD 15

HKID execution control.
7.4. Update the TD VMCS host state fields with any Intel TDX module LP-specific values.

If passed:

8. Read the control structure field using the algorithm described in 6.2.1.1.

Completion Status Codes 20

Table 6.271: TDH.VP.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_VCPU_ASSOCIATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 258 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_VCPU_STATE_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 259 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.3.67. UPDATED: TDH.VP.WR Leaf

Write a VCPU-scope metadata field (control structure field) of a TD.

Table 6.272: TDH.VP.WR Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

R8 64b value to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

Table 6.273: TDH.VP.WR Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 6.3.1

R8 Previous content of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.WR writes a TDVPS field, given its field code. The specific bits of the value (R8) are written as specified by the 10

write mask (R9). Writing is subject to the field’s writability (per the TD’s ATTRIBUTES.DEBUG bit). Writing of specific
fields is also subject to additional rules as detailed in 5.3.

TDH.VP.WR returns the previous content of the field masked by the field’s readability (per the TD’s ATTRIBUTES.DEBUG
bit).

VCPU Association: TDH.VP.WR associates the target TD VCPU with the current LP. This requires that the VCPU will not 15

be associated with another LP – for details, see the [TDX Module Spec].

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 260 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 6.274: TDH.VP.WR Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared Shared Shared

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is not

UNALLOCATED nor UNINITIALIZED).
5. The provided field code is valid.
6. The provided TDVPS field is writable per the TD’s debug attribute (TDCS.ATTRIBUTES.DEBUG). 10

If successful, the function does the following:

7. Associate the VCPU with the current LP and update TD VMCS.
7.1. Check that the VCPU has been initialized and is not being torn down.
7.2. Atomically check that the VCPU is not associated with another LP, and associate it with the current LP.
7.3. If the TD’s ephemeral HKID has changed since last VM entry, update all TD VMCS physical pointers and the TD 15

HKID execution control.
7.4. Update the TD VMCS host state fields with any Intel TDX module LP-specific values.

If passed:

8. Write the control structure field and return its old value, using the algorithm described in 6.2.1.2.
8.1. Writes of some fields are subject to rules, as detailed per field in 5.3 – e.g., the value of fields that contain 20

Shared physical address, such as the Shared EPT Pointer, must have a Shared HKID value and must comply with
some alignment rules.

8.2. In most cases, writes of guest state fields are subject to the same rules as if the write is done by the guest itself
– e.g., writing to guest CR4 is subject to the rules described in the [TDX Module Spec]. If the write operation is
illegal, TDH.VP.WR fails and returns a proper error code. 25

8.3. In debug mode (ATTRIBUTES.DEBUG == 1), there are some TDVPS fields where the TDH.VP.WR does not check
whether the written values are architecturally valid. It is the responsibility of the host VMM, and failing to do
so will later cause a VM entry failure leading to a fatal shutdown of the Intel TDX module. The security of any
guest TD is not impacted.

8.4. In other cases, in debug mode (ATTRIBUTES.DEBUG == 1), TDH.VP.WR allows setting of TDVPS fields to values 30

that may impact the correct operation of the TD under debug. It is the responsibility of the host VMM to take
this into consideration.

• TDH.VP.WR is allowed to enable BTM by setting guest IA32_DEBUGCTL[7:6] to 0x1.

• TDH.VP.WR is allowed to modify the state of IA32_DEBUCTL[13] (ENABLE_UNCORE_PMI).

• TDH.VP.WR is allowed to enable VM exits on exceptions other than MCE by setting the TD VMCS exception 35

bitmap execution control. The Intel TDX module does not take this into account when handling VM exits
that occur during event delivery.

Completion Status Codes

Table 6.275: TDH.VP.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 261 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.WR is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TD_VMCS_FIELD_NOT_INITIALIZED

TDX_TDVPS_FIELD_NOT_WRITABLE

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

TO BE COMPLETED

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 262 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4. UPDATED: Guest-Side (TDCALL) Interface Functions

The TDCALL instruction causes a VM exit to the Intel TDX module. It is used to call guest-side Intel TDX functions, either
local or a TD exit to the host VMM, as selected by RAX.

6.4.1. TDCALL Instruction (Common)

This section describes the common functionality of TDCALL. Leaf functions are described in the following sections. As 5

used by the Intel TDX module, TDCALL is allowed only in 64b mode.

Table 6.276: TDCALL Input Operands Definition

Operand Description

RAX Leaf and version numbers, as defined in the [TDX Module Spec]. See Table 6.278 below for
TDCALL leaf numbers.

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

Other See individual TDCALL leaf functions.

Table 6.277: TDCALL Output Operands Definition

Operand Description

RAX Instruction return code, indicating the outcome of execution of the instruction – see the [TDX
Module Spec] for details.

Other See individual TDCALL leaf functions.

 10

Table 6.278: TDCALL Instruction Leaf Numbers Definition

Leaf

Interface Function Name Description

0 TDG.VP.VMCALL Call a host VM service

1 TDG.VP.INFO Get TD execution environment information

2 TDG.MR.RTMR.EXTEND Extend a TD run-time measurement register

3 TDG.VP.VEINFO.GET Get Virtualization Exception Information for the recent #VE exception

4 TDG.MR.REPORT Creates a cryptographic report of the TD

5 TDG.VP.CPUIDVE.SET Control delivery of #VE on CPUID instruction execution

6 TDG.MEM.PAGE.ACCEPT Accept a pending private page into the TD

7 TDG.VM.RD Read a TD-scope metadata field

8 TDG.VM.WR Write a TD-scope metadata field

9 TDG.VP.RD Read a VCPU-scope metadata field

10 TDG.VP.WR Write a VCPU-scope metadata field

11 TDG.SYS.RD Read a TDX Module global-scope metadata field

12 TDG.SYS.RDALL Read all gust-readable TDX Module global-scope metadata fields

18 TDG.SERVTD.RD Read a target TD metadata field

20 TDG.SERVTD.WR Write a target TD metadata field

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 263 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Instruction Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This section describes how TDCALL leaf functions are implemented by the Intel TDX module.

On VM exit, the Intel TDX module performs the following checks: 5

1. If the CPU mode is not 64b ((IA32_EFER.LMA == 1) && (CS.L == 1)), the Intel TDX module injects a #GP(0) fault into
the guest TD.

2. If the leaf number in RAX is not supported by the Intel TDX module, it returns a TDX_OPERAND_INVALID(0) status
code in RAX.

If all checks pass, the Intel TDX module calls the leaf function according to the leaf number in RAX – see the following 10

sections for individual leaf function details.

Completion Status Codes

Table 6.279: TDCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDCALL is successful.

TDX_OPERAND_INVALID Illegal leaf number

Other See individual leaf functions

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 264 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.2. TDG.MEM.PAGE.ACCEPT Leaf

Accept a pending private page, and initialize the page to all-0 using the TD ephemeral private key.

Table 6.280: TDG.MEM.PAGE.ACCEPT Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the private page to be accepted:
either 0 (4KB) or 1 (2MB) – see 4.5.1.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the private page to be accepted

63:52 Reserved Reserved: must be 0

Table 6.281: TDG.MEM.PAGE.ACCEPT Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

Accept a pending private page, previously added by TDH.MEM.PAGE.AUG, into the TD. Initialize the page to 0. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.282 TDG.MEM.PAGE.ACCEPT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Explicit RCX GPA TD private page Blob RW Private 212+9*Le

vel
Bytes

None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 265 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A Secure EPT tree N/A RW Private N/A None

Implicit N/A GPA Secure EPT entry SEPT Entry RW Private N/A Exclusive8,
Transaction

TDG.MEM.PAGE.ACCEPT checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

In addition to the memory operand checks per the table above, the function does the following (no specific order is
implied): 5

1. Walk the Secure EPT based on the GPA operand and requested level. The walk is successful if arrived at a leaf entry
whose state is PENDING. In case of error, return a status code or TD exit as described in the [TDX Module Spec].

If successful, do the following:

2. Loop until the whole page has been initialized, or until interrupted:
2.1. Initialize the next 4KB chunk to 0 using the TD’s ephemeral private HKID and direct writes (MOVDIR64B). 10

2.2. If not done and there is a pending interrupt, abort TDG.MEM.PAGE.ACCEPT and resume the guest TD without
updating RIP and any GPR.

If done initializing the page, do the following:

3. Atomically (using LOCK CMPXCHG), check that the entry state is still PENDING, and set it to MAPPED.
3.1. If failed (a concurrent host-side function may have changed the Secure EPT entry state), do a TD exit with an 15

EPT Violation exit reason and a NOT_PENDING indication in the extended exit qualification.

Completion Status Codes

Table 6.283: TDG.MEM.PAGE.ACCEPT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY Concurrent TDG.MEM.PAGE.ACCEPT is using the same Secure EPT entry

TDX_PAGE_ALREADY_ACCEPTED

TDX_PAGE_SIZE_MISMATCH Requested page size is 2MB, but the page GPA is not mapped at 2MB size

TDX_SUCCESS TDG.MEM.PAGE.ACCEPT is successful.

8 Guest-side only

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 266 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.3. TDG.MR.REPORT Leaf

TDG.MR.REPORT creates a TDREPORT_STRUCT structure that contains the measurements/configuration information of
the guest TD that called the function, measurements/configuration information of the Intel TDX module and a
REPORTMACSTRUCT.

Table 6.284: TDG.MR.REPORT Input Operands Definition 5

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX 1024B-aligned guest physical address of newly created report structure

RDX 64B-aligned guest physical address of additional data to be signed

R8 Bits Name Description

7:0 Report sub type Must be 0

63:8 Reserved Reserved: must be 0

Table 6.285: TDG.MR.REPORT Output Operands Definition

Operand Description

RAX TDCALL instruction return code – see 6.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 10

vary.

This function creates a TDREPORT_STRUCT structure that contains the measurements/configuration information of the
guest TD that called the function, measurements/configuration information of the Intel TDX module and a
REPORTMACSTRUCT. The REPORTMACSTRUCT is integrity-protected with a MAC, and it contains the hash of the
measurements and configuration as well as additional REPORTDATA provided by the TD software. 15

Additional REPORTDATA, a 64-byte value, is provided by the guest TD to be included in the TDG.MR.REPORT.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.286: TDG.MR.REPORT Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Explicit RCX GPA Output report TDREPORT_STRUCT RW Private/
Shared

1024B None

Explicit RDX GPA Input report data REPORTDATA R Private/
Shared

64B None

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 267 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDCS.RTMR SHA384_HASH N/A Opaque N/A Shared

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific
order is implied):

1. R8 must specify report sub type 0.

If passed, the function does the following: 5

2. Assemble a report type structure based on the report sub type provided in R8.
3. Assemble the output report’s TDINFO fields from the TDCS reported fields (ATTRIBUTES, XFAM, MRTD, MRCONFIGID,

MROWNER, MROWNERCONFIG and RTMRs).
4. Calculate a SHA384 hash over TDINFO.
5. Execute SEAMREPORT to complete the output report, based on the input report data, the TDINFO hash calculated 10

above and the report type structure.

If successful:

6. Write the output report to memory.

Completion Status Codes

Table 6.287: TDG.MR.REPORT Completion Status Codes (Returned in RAX) Definition 15

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.MR.REPORT is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 268 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.4. TDG.MR.RTMR.EXTEND Leaf

Extend a TDCS.RTMR measurement register.

Table 6.288: TDG.MR.RTMR.EXTEND Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX 64B-aligned guest physical address of a 48B extension data buffer

RDX Index of the measurement register to be extended

Table 6.289: TDG.MR.RTMR.EXTEND Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This function extends one of the RTMR measurement registers in TDCS with the provided extension data in memory. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.290 TDG.MR.RTMR.EXTEND Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Explicit RCX GPA EXTEND_DATA Blob R Private 64B None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i)

Implicit N/A N/A TDCS.RTMR SHA384_HASH N/A Opaque N/A Exclusive

Implicit N/A N/A TDVPR page TDVPS None Opaque N/A Shared

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific 15

order is implied):

1. RDX must contain a valid RTMR index.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 269 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

2. Extend the RTMR indexed by RDX with the extension data. Extension is done by calculating SHA384 hash over a 96B
buffer, composed as follows:
o Bytes 0 through 47 contain the current RTMR value.
o Bytes 48 through 95 contain the extension data. 5

Completion Status Codes

Table 6.291: TDG.MR.RTMR.EXTEND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.MR.RTMR.EXTEND is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 270 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.5. NEW: TDG.SERVTD.RD Leaf

As a service TD, read a metadata field (control structure field) of a target TD.

Table 6.292: TDG.SERVTD.RD Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX Binding handle

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

R10 Target TD’s TD_UUID bits 63:0

R11 Target TD’s TD_UUID bits 127:64

R12 Target TD’s TD_UUID bits 195:128

R13 Target TD’s TD_UUID bits 255:196

Table 6.293: TDG.SERVTD.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

RDX RDX returns the next readable field identifier. A value of -1 indicates no next field identifier is
available. In case of another error, RDX returns -1.

R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

R10 Updated target TD’s TD_UUID bits 63:0

In case of an error, as indicated by RAX, R10 is unmodified

R11 Updated target TD’s TD_UUID bits 127:64

In case of an error, as indicated by RAX, R11 is unmodified

R12 Updated target TD’s TD_UUID bits 195:128

In case of an error, as indicated by RAX, R12 is unmodified

R13 Updated target TD’s TD_UUID bits 255:196

In case of an error, as indicated by RAX, R13 is unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 271 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SERVTD.RD reads a metadata field (control structure field) of a target TD. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.294 TDG.SERVTD.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page (from
binding handle)

TDR None Opaque N/A Shared(h) Shared(h) Shared(h)

Implicit N/A N/A TDR page TDR None Opaque N/A Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i) None None

Implicit N/A N/A Service TD’s
TDCS.RTMR

SHA384_
HASH

N/A Opaque N/A Shared N/A N/A

Implicit N/A N/A Target TD’s TDCS
structure

TDCS R Opaque N/A Shared(i) None None

Implicit N/A N/A Target TD’s
TDCS.OP_STATE

OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Target TD’s
Binding table

 R Opaque N/A Shared(h) None None

Implicit N/A N/A Target TD’s TD
metadata

N/A R Opaque N/A None None None

If the memory operand checks per the table above pass: 10

1. Based on the provided binding handle and the current (service) TD’s TD_UUID, calculate the target TD’s TDR HPA and
binding slot number.

2. Check that the calculated binding slot number does not exceed target TD’s the number of available slots9.
3. Acquire access to the target TD’s TDR in a shared mode.

3.1. If failed due to HOST_PRIORITY, do a TD exit. 15

4. Check the target TD state:
4.1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
4.2. The target TD is not in a FATAL state (TDR.FATAL is FALSE).
4.3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4.4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number). 20

If passed:

5. Check that the target TD’s TD_UUID is the same as specified.

9 This value is a property of the TDX module and is the same for all TDs.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 272 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.1. If failed, and the target TD’s PRE_IMPORT_UUID is the same as the specified TD_UUID, abort and return the
current target TD’s TD_UUID.

If passed:

6. Check that the target TD’s binding slot’s SERVTD_BINDING_STATE is BOUND.
7. Calculate the current (service) TD’s TD_UUID and check it is equal to the target TD’s binding slot’s SERVTD_UUID. 5

8. Calculate the current (service) TD’s TDINFO_HASH and check it is equal to the target TD’s binding slot’s
SERVTD_TDINFO_HASH.

If passed:

9. Read the control structure field using the algorithm described in 6.2.1.1Error! Reference source not found..

Completion Status Codes 10

Note: Bit 60 (HOST_RECOVERABILITY_HINT) may be set by the host VMM if an error resulted in a trap-like TD exit
followed by a TDH.VP.ENTER. See the [TDX Module Spec] for details.

Table 6.295: TDG.SERVTD.RD Completion Status Codes (Returned in RAX) Definition [TO BE COMPLETED]

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.SERVTD.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 273 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.6. NEW: TDG.SERVTD.WR Leaf

As a service TD, write a metadata field (control structure field) of a target TD.

Table 6.296: TDG.SERVTD.WR Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX Binding handle

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

R10 Target TD’s TD_UUID bits 63:0

R11 Target TD’s TD_UUID bits 127:64

R12 Target TD’s TD_UUID bits 195:128

R13 Target TD’s TD_UUID bits 255:196

Table 6.297: TDG.SERVTD.WR Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

R8 Previous contents of the field

In case of an error, R8 returns 0.

R10 Updated target TD’s TD_UUID bits 63:0

In case of an error, as indicated by RAX, R10 is unmodified

R11 Updated target TD’s TD_UUID bits 127:64

In case of an error, as indicated by RAX, R11 is unmodified

R12 Updated target TD’s TD_UUID bits 195:128

In case of an error, as indicated by RAX, R12 is unmodified

R13 Updated target TD’s TD_UUID bits 255:196

In case of an error, as indicated by RAX, R13 is unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 274 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SERVTD.WR writes a metadata field (control structure field) of a target TD. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.298 TDG.SERVTD.WR Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page (from
binding handle)

TDR None Opaque N/A Shared(h) Shared(h) Shared(h)

Implicit N/A N/A TDR page TDR None Opaque N/A Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i) None None

Implicit N/A N/A Service TD’s
TDCS.RTMR

SHA384_
HASH

N/A Opaque N/A Shared N/A N/A

Implicit N/A N/A Target TD’s TDCS
structure

TDCS R Opaque N/A Shared(i) None None

Implicit N/A N/A Service TD’s
TDCS.OP_STATE

OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Target TD’s
Binding table

 R Opaque N/A Shared(h) None None

Implicit N/A N/A Target TD’s TD
metadata

N/A RW Opaque N/A None None None

If the memory operand checks per the table above pass: 10

1. Based on the provided binding handle and the current (service) TD’s TD_UUID, calculate the target TD’s TDR HPA and
binding slot number.

2. Check that the calculated binding slot number does not exceed target TD’s the number of available slots10.
3. Acquire access to the target TD’s TDR in a shared mode.

3.1. If failed due to HOST_PRIORITY, do a TD exit. 15

4. Check the target TD state:
4.1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
4.2. The target TD is not in a FATAL state (TDR.FATAL is FALSE).
4.3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4.4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number). 20

4.5. The target TD has not been paused for export.

If passed:

5. Check that the target TD’s TD_UUID is the same as specified.
5.1. If failed, and the target TD’s PRE_IMPORT_UUID is the same as the specified TD_UUID, abort and return the

current target TD’s TD_UUID. 25

10 This value is a property of the TDX module and is the same for all TDs.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 275 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

6. Check that the target TD’s binding slot’s SERVTD_BINDING_STATE is BOUND.
7. Calculate the current (service) TD’s TD_UUID and check it is equal to the target TD’s binding slot’s SERVTD_UUID.
8. Calculate the current (service) TD’s TDINFO_HASH and check it is equal to the target TD’s binding slot’s

SERVTD_TDINFO_HASH. 5

If passed:

9. Write the control structure field and return its old value, using the algorithm described in 6.2.1.2.

Completion Status Codes

Note: Bit 60 (HOST_RECOVERABILITY_HINT) may be set by the host VMM if an error resulted in a trap-like TD exit
followed by a TDH.VP.ENTER. See the [TDX Module Spec] for details. 10

Table 6.299: TDG.SERVTD.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VM.WR is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 276 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.7. NEW: TDG.SYS.RD Leaf

Read a TDX Module global-scope metadata field.

Table 6.300: TDG.SYS.RD Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

Table 6.301: TDG.SYS.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

RDX Next readable field identifier. A value of -1 indicates no next field identifier is available.

In case of another error, as indicated by RAX, RDX returns -1.

R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SYS.RD reads a TDX Module global-scope metadata field. 10

RDX returns the next guest-side readable field identifier. This may be used by the guest TD to enumerate the TDX
Module’s capabilities and configuration. To read all the available fields, the guest TD can invoke TDG.SYS.RD in a loop,
starting with field identifier 0 as an input, until RDX returns 0.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

Table 6.302 TDG.SYS.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

There are no relevant memory operands.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 277 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

1. Read the requested field using the algorithm described in 6.2.1.1.
2. Return the next readable field identifier, or a value of 0 if none exists.
3. Return the field value.

Completion Status Codes

Table 6.303: TDG.SYS.RD Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.SYS.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 278 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.8. NEW: TDG.SYS.RDALL Leaf

Read all guest-readable TDX module global-scope metadata fields.

Table 6.304: TDG.SYS.RDALL Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RDX The GPA of a 4KB page where a metadata list will be returned

In case of error, some field value entries might not contain valid data.

R8 Initial field identifier. A value of 0 means start from the first field identifier.

Table 6.305: TDG.SYS.RDALL Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

R8 Next field identifier. A value of -1 means all applicable field identifiers have been returned in the
metadata list.

In case of another error, as indicated by RAX, R8 returns -1.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SYS.RDALL reads all host-readable TDX Module global-scope metadata fields into a metadata list in the provided 10

page. If all applicable fields do not fit in the list, the function can be invoked in a loop, each invocation providing an initial
field identifier returned as the next field identifier of the previous invocation, as shown in the following example:

1. NEXT_FIELD_ID = 0
2. STATUS = TDX_SUCCESS
3. While ((STATUS is not a non-recoverable error) && (NEXT_FIELD_ID != -1)) 15

3.1. Set LIST_BUFFER to the next 4K buffer
3.2. Invoke TDG.SYS.RDALL(RDX = LIST_BUFFER, RDX = NEXT_FIELD_ID)
3.3. STATUS = RAX, NEXT_FIELD_ID = R8

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 20

Table 6.306: TDG.SYS.RDALL Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Explicit RDX GPA Metadata List MD_LIST RW Private 4096 None

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 279 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If the memory operand checks per the table above pass:

1. Dump all guest-readable metadata fields into the provided list buffer.

Completion Status Codes

Table 6.307: TDG.SYS.RDALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.SYS.RDALL is successful.

 5

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 280 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.9. UPDATED: TDG.VM.RD Leaf

Read a TD-scope metadata field (control structure field) of a TD.

Table 6.308: TDG.VM.RD Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

For TDG.VM.RD version 1 or higher, a value of -1 is a special case: it is not a valid field identifier;
in this case the first readable field identifier is returned in RDX.

Table 6.309: TDG.VM.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

RDX For TDG.VM.RD version 0, RDX is unmodified.

For TDG.VM.RD version 1 or higher, RDX returns the next readable field identifier. A value of -1
indicates no next field identifier is available. In case of another error, RDX returns -1.

R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VM.RD reads a VM-scope metadata field (control structure field) of a TD. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.310 TDG.VM.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 281 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TD metadata (guest-
side access)

N/A R Opaque N/A Shared

If the memory operand checks per the table above pass:

10. Read the control structure field using the algorithm described in 6.2.1.1.

Completion Status Codes

Table 6.311: TDG.VM.RD Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VM.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 282 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.10. UPDATED: TDG.VM.WR Leaf

Write a TD-scope metadata field (control structure field) of a TD.

Table 6.312: TDG.VM.WR Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

Table 6.313: TDG.VM.WR Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

R8 Previous contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VM.WR writes a VM-scope metadata field (control structure field) of a TD. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.314 TDG.VM.WR Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 283 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TD metadata (guest-
side access)

N/A R Opaque N/A Shared

If the memory operand checks per the table above pass:

1. Write the control structure field and return its old value, using the algorithm described in 6.2.1.2.

Completion Status Codes

Table 6.315: TDG.VM.WR Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VM.WR is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 284 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.11. UPDATED: TDG.VP.CPUIDVE.SET Leaf

TDG.VP.CPUIDVE.SET controls unconditional #VE on CPUID execution by the guest TD.

Note: TDG.VP.CPUIDVE.SET is provided for backward compatibility. The guest TD may control the same settings by
writing to the VCPU-scope metadata fields CPUID_SUPERVISOR_VE and CPUID_USER_VE using TDG.VP.WR.

Table 6.316: TDG.VP.CPUIDVE.SET Input Operands Definition 5

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX Controls whether CPUID executed by the guest TD will cause #VE unconditionally

Bits Name Description

0 SUPERVISOR Flags that when CPL is 0, a CPUID executed by the guest TD will cause a #VE
unconditionally

1 USER Flags that when CPL > 0, a CPUID executed by the guest TD will cause a #VE
unconditionally

63:2 RESERVED Reserved: must be 0

Table 6.317: TDG.VP.CPUIDVE.SET Output Operands Definition

Operand Description

RAX TDCALL instruction return code – see 6.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 10

vary.

This function controls whether execution of CPUID by the guest TD, when running in supervisor mode and/or in user
mode, will unconditionally result in a #VE.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API. 15

Table 6.318 TDG.VP.CPUIDVE.SET Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 285 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific
order is implied):

1. Reserved bits of RCX must be 0.

If successful, the function does the following:

2. Update the TDVPS.CPUID_VE flags which control unconditional #VE injection for CPUID for the current VCPU. 5

Completion Status Codes

Table 6.319: TDG.VP.CPUIDVE.SET Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.CPUIDVE.SET is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 286 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.12. UPDATED: TDG.VP.INFO Leaf

Get guest TD execution environment information.

Table 6.320: TDG.VP.INFO Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

Table 6.321: TDG.VP.INFO Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1 – returns a constant value of TDX_SUCCESS (0)

RCX Bits Name Description

5:0 GPAW The effective GPA width (in bits) for this TD (do not confuse with MAXPA).
SHARED bit is at GPA bit GPAW-1.

Only GPAW values 48 and 52 are possible.

63:6 RESERVED Reserved: 0

RDX The TD’s ATTRIBUTES (provided as input to TDH.MNG.INIT)

R8 Bits Name Description

31:0 NUM_VCPUS Number of Virtual CPUs that are usable (i.e. either active or ready)

63:32 MAX_VCPUS TD's maximum number of Virtual CPUs (provided as input to
TDH.MNG.INIT)

R9 Bits Name Description

31:0 VCPU_INDEX Virtual CPU index, starting from 0 and allocated sequentially on each
successful TDH.VP.INIT

63:32 RESERVED Reserved for enumerating future Intel TDX module capabilities, etc.: set to
0

R10 Bits Name Description

0 SYS_RD Indicates that the TDG.SYS.RD/RDM/RDALL functions are available.
Further enumeration can be done using these functions.

63:1 RESERVED Reserved – set to 0

R11 Reserved for enumerating future Intel TDX module capabilities, etc.: set to 0

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 287 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.INFO provides the TD software with execution environment information – beyond information that is provided
by CPUID. 5

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.322: TDG.VP.INFO Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS R Opaque N/A Shared

Completion Status Codes 10

Table 6.323: TDG.VP.INFO Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDG.VP.INFO is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 288 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.13. NEW: TDG.VP.RD Leaf

Read a VCPU-scope metadata field (control structure field) of a TD.

Table 6.324: TDG.VP.RD Input Operands

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

Table 6.325: TDG.VP.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

RDX Next readable field identifier. A value of -1 indicates no next field identifier is available.

In case of another error, as indicated by RAX, RDX returns -1.

R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.RD reads a VCPU-scope metadata field (control structure field) of a TD. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.326 TDG.VP.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 289 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared

If the memory operand checks per the table above pass:

1. Read the control structure field using the algorithm described in 6.2.1.1.

Completion Status Codes

Table 6.327: TDG.VP.RD Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VM.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 290 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.14. TDG.VP.VEINFO.GET Leaf

Intel SDM, Vol. 3, 24.9.4 Information for VM Exits Due to Instruction Execution
Intel SDM, Vol. 3, 25.5.6 Virtualization Exceptions
Intel SDM, Vol. 3, 27.2.5 Information for VM Exits Due to Instruction Execution

Get Virtualization Exception Information for the recent #VE exception. 5

Table 6.328: TDG.VP.VEINFO.GET Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

Table 6.329: TDG.VP.VEINFO.GET Output Operands Definition

Operand Description

RAX TDCALL instruction return code – see 6.4.1

RCX Bits Name Description

31:0 Exit Reason The 32-bit value that would have been saved into the VMCS as an exit
reason if a VM exit had occurred instead of the virtualization exception

63:32 Reserved Reserved: 0

In case of an error, RCX returns 0.

RDX Exit Qualification: the 64-bit value that would have been saved into the VMCS as an exit
qualification if a legacy VM exit had occurred instead of the virtualization exception

In case of an error, RDX returns 0.

R8 Guest Linear Address: the 64-bit value that would have been saved into the VMCS as a guest-
linear address if a legacy VM exit had occurred instead of the virtualization exception

In case of an error, R8 returns 0.

R9 Guest Physical Address: the 64-bit value that would have been saved into the VMCS as a guest-
physical address if a legacy VM exit had occurred instead of the virtualization exception

In case of an error, R9 returns 0.

R10 Bits Name Description

31:0 VM-exit
instruction
length

The 32-bit value that would have been saved into the VMCS as VM-exit
instruction length if a legacy VM exit had occurred instead of the
virtualization exception

63:32 VM-exit
instruction
information

The 32-bit value that would have been saved into the VMCS as VM-exit
instruction information if a legacy VM exit had occurred instead of the
virtualization exception

In case of an error, R10 returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 291 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.VEINFO.GET returns the virtualization exception information of a #VE exception that was previously delivered to 5

the guest TD.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.330: TDG.VP.VEINFO.GET Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS None Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared

 10

The function checks the following conditions (no specific order is implied):

• The VALID field in TDVPS.VE_INFO must non-0 to indicate that a valid virtualization information is available.

If successful, the function does the following:

1. Return the EXIT_REASON, EXIT_QUALIFICATION, GLA, GPA, INSTRUCTION_LENGTH and
INSTRUCTION_INFORMATTION from TDVPS.VE_INFO in GPRs. 15

2. Clear the VALID field in TDVPS.VE_INFO to 0 to indicate that the virtualization information has been read.

Completion Status Codes

Table 6.331: TDG.VP.VEINFO.GET Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_NO_VE_INFO There is no Virtualization Exception information.

TDX_SUCCESS TDG.VP.VEINFO.GET is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 292 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.15. TDG.VP.VMCALL Leaf

Perform a TD Exit to the host VMM.

Table 6.332: TDG.VP.VMCALL Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX A bitmap that controls which part of the guest TD GPR and XMM state is passed as -is to the VMM
and back

A bit value of 0 indicates that the corresponding register is saved by the Intel TDX module,
scrubbed to 0 before SEAMRET to the host VMM, and restored by the Intel TDX module on the
following TDH.VP.ENTER.

A bit value of 1 indicates that the corresponding register is passed as -is to the host VMM, and on
the following TDH.VP.ENTER, the register value is used as input from the host VMM and passed as -
is to the guest TD.

The value of RCX is passed to the host VMM.

Bits Name Description

15:0 GPR Mask Controls the transfer of GPR values:

Bit 0: RAX (must be 0)
Bit 1: RCX (must be 0)
Bit 2: RDX
Bit 3: RBX
Bit 4: RSP (must be 0)
Bit 5: RBP
Bit 6: RSI
Bit 7: RDI
Bits 15:8: R15 – R8

31:16 XMM Mask Controls the transfer of XMM15 – XMM0 register values

63:32 Reserved Reserved: must be 0

RBX, RDX,
RBP, RSI,
RDI,
R8 – R15

If the corresponding bit in RCX is set to 1, the register value passed as-is to the host VMM on
SEAMRET.

Else, the register value is not used as an input and is preserved.

XMM0 –
XMM15

If the corresponding bit in RCX is set to 1, the register value passed as -is to the host VMM on
SEAMRET.

Else, the register value is not used as an input and is preserved.

Table 6.333: TDG.VP.VMCALL Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code: returns a constant value of TDX_SUCCESS (0)

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 293 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RCX Unmodified

RBX, RDX,
RBP, RDI,
RSI,
R8 – R15

If the corresponding bit in RCX is set to 1, the register value passed as -is from the host VMM’s
SEAMCALL(TDH.VP.ENTER) input.

Else, the register value is unmodified.

XMM0 –
XMM15

If the corresponding bit in RCX is set to 1, the register value passed as -is from the host VMM’s
SEAMCALL(TDH.VP.ENTER) input.

Else, the register value is unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.VMCALL performs a TD exit to the host VMM. From the VMM’s point of view, this is the termination of a previous
SEAMCALL(TDH.VP.ENTER). Selected GPR and XMM state is passed to the VMM host, controlled by RCX as shown above. 5

The rest of the CPU state is saved in TDVPS and replaced with a synthetic state.

From the guest TD’s point of view, a subsequent SEAMCALL(TDH.VP.ENTER) from the host VMM terminates the
TDG.VP.VMCALL function. Most GPR state, and if the value of RCX bit 1 is set, all XMM state, is passed to the TD guest as
shown above.

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the 10

Intel TDX Module API.

Table 6.334: TDG.VP.VMCALL Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS None Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS R/W Opaque N/A Shared

1. Save guest TD CPU state to TDVPS (including TD VMCS):
1.1. Save extended state per TDCS.XFAM. There is no strict requirement to save XMM state that will be passed to 15

the host VMM as controlled by RCX. This state will be overwritten on the next TD entry.
1.2. Save GPR state. There is no strict requirement to save GPR state that will be passed to the host VMM as

controlled by RCX (but RCX itself must be saved). This state will be overwritten on the next TD entry.
1.3. Advance the saved RIP to the instruction following TDCALL.

2. Adjust the TDCS TLB tracking counters. 20

3. Release the shared locking – acquired on TDH.VP.ENTER of TDR, TDCS and TDVPS.
4. Load host VMM state:

4.1. Clear the extended state except XMM (per TDCS.XFAM) to synthetic INIT values.
4.2. As controlled by RCX, either clear or set to the guest TD’s value the state of XMM0 – XMM15.
4.3. As controlled by RCX, either clear or set to the guest TD’s value the state of RBX, RDX, RBP, RDI, RSI and R8 – R15. 25

4.4. Set RCX to the guest TD’s value.
4.5. Set RAX to the TDCALL exit reason.
4.6. Restore other host VMM state – saved during TDH.VP.ENTER.

5. Execute SEAMRET to return to the host VMM.

Note: Logically, from the point of view of the guest TD, TDG.VP.VMCALL is terminated by the next TDH.VP.ENTER. 30

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 294 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 6.335: TDG.VP.VMCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.VMCALL is successful. TD exit was done, resulting a in a completion of
SEAMCALL(TDH.VP.ENTER) on the host VMM side. Later, the host VMM
executed SEAMCALL(TDH.VP.ENTER) again, and execution returned to the
guest TD VCPU (in TDX non-root mode) completing TDG.VP.VMCALL.

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 295 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4.16. NEW: TDG.VP.WR Leaf

Write a VCPU-scope metadata field (control structure field) of a TD.

Table 6.336: TDG.VP.WR Input Operands

Operand Description

RAX TDCALL instruction leaf number and version, see 6.3.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 4.8

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and FIELD_SIZE components of the field identifier
are ignored.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

Table 6.337: TDG.VP.WR Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 6.4.1

R8 Previous contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.WR writes a VCPU-scope metadata field (control structure field) of a TD. 10

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 6.338 TDG.VM.WR Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource Type Access Access
Semantics

Align.
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-001US

September 2021 Page 296 of 296

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If the memory operand checks per the table above pass:

1. Write the control structure field and return its old value, using the algorithm described in 6.2.1.2.

Completion Status Codes

Table 6.339: TDG.VP.WR Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.WR is successful.

	Notices and Disclaimers
	Table of Contents
	1. About this Document
	1.1. Scope of this Document
	1.2. Glossary
	1.3. Notation
	1.4. References

	2. ABI Reference: CPU Virtualization Tables
	2.1. MSR Virtualization
	2.2. UPDATED: CPUID Virtualization

	3. ABI Reference: Constants
	3.1. Interface Function Completion Status Codes
	3.1.1. Function Completion Status Code Classes (Bits 47:40)
	3.1.2. Function Completion Status Codes
	3.1.3. Function Completion Status Operand IDs

	4. ABI Reference: Data Types
	4.1. Basic Crypto Types
	4.2. UPDATED: TDX Module Configuration, Enumeration and Initialization Types
	4.2.1. CPUID_CONFIG
	4.2.2. UPDATED: TDSYSINFO_STRUCT
	4.2.3. UPDATED: CMR_INFO
	4.2.4. UPDATED: TDMR_INFO
	Notes:

	4.3. TD Parameters Types
	4.3.1. UPDATED: ATTRIBUTES
	4.3.2. XFAM
	4.3.3. CPUID_VALUES
	4.3.4. UPDATED: TD_PARAMS

	4.4. Physical Memory Management Types
	4.4.1. Physical Page Size

	4.5. UPDATED: TD Private Memory Management Data Types: Secure EPT
	4.5.1. Secure EPT Levels
	4.5.2. Secure EPT Entry Information as Returned by TDX Module Functions
	4.5.2.1. Returned Secure EPT Entry Content
	4.5.2.2. Additional Returned Secure EPT Information

	4.6. TD Entry and Exit Types
	4.6.1. Extended Exit Qualification

	4.7. Measurement and Attestation Types
	4.7.1. CPUSVN
	4.7.2. TDREPORT_STRUCT
	4.7.3. REPORTMACSTRUCT (Reference)
	4.7.4. REPORTTYPE (Reference)
	4.7.5. UPDATED: TDINFO_STRUCT

	4.8. UPDATED: Metadata Access Types
	4.8.1. MD_FIELD_ID: Metadata Field Identifier and Sequence Header
	4.8.2. Meaning of Field Codes
	4.8.3. Class Codes
	4.8.3.1. NEW: TDX Module Global Scope Field Class Codes
	4.8.3.2. UPDATED: TD-Scope (TDR and TDCS) Field Class Codes
	4.8.3.3. VCPU-Scope (TDVPS) Field Class Codes

	4.8.4. Order of Field Identifiers
	4.8.5. MD_LIST_HEADER: Metadata List Header
	4.8.6. Private Page List
	4.8.7. HPA_AND_SIZE: HPA and Size of a Buffer
	4.8.8. HPA_AND_LAST: HPA and Last Byte Index of a Page-Aligned Buffer

	4.9. NEW: Service TD Types
	4.9.1. SERVTD_TYPE: Service TD Binding Type
	4.9.2. SERVTD_ATTR: Service TD Binging Attributes

	4.10. NEW: Migration Types
	4.10.1. MBMD: Migration Bundle Metadata
	4.10.1.1. Generic MBMD Structure
	4.10.1.2. TD-Scope Immutable Non-Memory State MBMD Fields
	4.10.1.3. TD-Scope Mutable Non-Memory State MBMD Fields
	4.10.1.4. VCPU-Scope Mutable Non-Memory State MBMD Fields
	4.10.1.5. TD Private Memory MBMD Fields
	4.10.1.6. Epoch Token MBMD Fields
	4.10.1.7. Abort Token MBMD Fields

	4.10.2. GPA List
	4.10.2.1. GPA_LIST_INFO: HPA, First and Last Entries of a GPA List
	4.10.2.2. GPA List Entry
	4.10.2.3. GPA List Entry Details
	GPA List Details: OPERATION
	GPA List Details: MIG_TYPE
	GPA List Details: PENDING
	GPA List Details: STATUS

	4.10.3. Memory Migration Buffers List
	4.10.3.1. Migration Buffers List Entry

	4.10.4. Memory Migration Page MAC List
	4.10.5. Non-Memory State Migration Buffers List
	4.10.5.1. PAGE_LIST_INFO: HPA and Attributes of a Page List

	5. UPDATED: ABI Reference: Metadata (Non-Memory State)
	5.1. NEW: Global-Scope (TDX Module) Metadata
	5.1.1. How to Read the Global Fields Table
	5.1.2. Global Metadata Fields

	5.2. UPDATED: TD-Scope Metadata
	5.2.1. UPDATED: How to Read the TDR and TDCS Tables
	5.2.2. UPDATED: TDR
	5.2.3. UPDATED: TDCS

	5.3. UPDATED: TDVPS: VCPU-Scope Metadata
	5.3.1. UPDATED: Overview
	5.3.2. How to Read the TDVPS (including TD VMCS) Tables
	5.3.2.1. UPDATED: Field Access

	5.3.3. TDVPS (excluding TD VMCS)
	5.3.4. TD VMCS
	5.3.4.1. TD VMCS Guest State Area
	5.3.4.1.1. TD VMCS Guest Register State Area
	5.3.4.1.2. TD VMCS Guest MSRs
	5.3.4.1.3. TD VMCS Guest Non-Register State Area

	5.3.4.2. TD VMCS Host State Area
	5.3.4.3. TD VMCS VM-Execution Control Fields
	5.3.4.3.1. TD VMCS Pin-Based VM-Execution Controls
	5.3.4.3.2. TD VMCS Processor-Based VM-Execution Controls
	5.3.4.3.3. TD VMCS Controls for APIC Virtualization
	5.3.4.3.4. EPTP and Shared EPTP
	5.3.4.3.5. CR-Related TD VMCS VM-Execution Control Fields
	5.3.4.3.6. Other TD VMCS VM-Execution Control Fields

	5.3.4.4. TD VMCS VM-Exit Control Fields
	5.3.4.5. TD VMCS VM-Entry Control Fields
	5.3.4.6. TD VMCS VM-Exit Information Fields

	5.3.5.

	6. UPDATED: ABI Reference: Interface Functions
	6.1. How to Read the Interface Function Definitions
	6.2. NEW: Common Algorithms Used by Multiple Interface Functions
	6.2.1. Metadata Access
	6.2.1.1. Single Metadata Field Read
	6.2.1.2. Single Metadata Field Write
	6.2.1.3. Multiple Metadata Fields Write based on a Metadata List

	6.3. UPDATED: Host-Side (SEAMCALL) Interface Functions
	6.3.1. UPDATED: SEAMCALL Instruction (Common)
	Instruction Description
	Completion Status Codes

	6.3.2. NEW: TDH.EXPORT.ABORT Leaf
	Leaf Function Description
	Leaf Function Description
	Completion Status Codes

	6.3.3. NEW: TDH.EXPORT.BLOCKW Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.4. NEW: TDH.EXPORT.MEM Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.5. NEW: TDH.EXPORT.PAUSE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.6. NEW: TDH.EXPORT.RESTORE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.7. NEW: TDH.EXPORT.STATE.IMMUTABLE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.8. NEW: TDH.EXPORT.STATE.TD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.9. NEW: TDH.EXPORT.STATE.VP Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.10. NEW: TDH.EXPORT.TRACK Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.11. NEW: TDH.EXPORT.UNBLOCKW Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.12. NEW: TDH.IMPORT.ABORT Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.13. NEW: TDH.IMPORT.COMMIT Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.14. NEW: TDH.IMPORT.END Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.15. NEW: TDH.IMPORT.MEM Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.16. NEW: TDH.IMPORT.STATE.IMMUTABLE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.17. NEW: TDH.IMPORT.STATE.TD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.18. NEW: TDH.IMPORT.STATE.VP Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.19. NEW: TDH.IMPORT.TRACK Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.20. UPDATED: TDH.MEM.PAGE.ADD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.21. UPDATED: TDH.MEM.PAGE.AUG Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.22. UPDATED: TDH.MEM.PAGE.DEMOTE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.23. UPDATED: TDH.MEM.PAGE.PROMOTE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.24. UPDATED: TDH.MEM.PAGE.RELOCATE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.25. UPDATED: TDH.MEM.PAGE.REMOVE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.26. UPDATED: TDH.MEM.RANGE.BLOCK Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.27. UPDATED: TDH.MEM.RANGE.UNBLOCK Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.28. TDH.MEM.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.29. UPDATED: TDH.MEM.SEPT.ADD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.30. UPDATED: TDH.MEM.SEPT.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.31. UPDATED: TDH.MEM.SEPT.REMOVE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.32. UPDATED: TDH.MEM.TRACK Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.33. TDH.MEM.WR Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.34. NEW: TDH.MIG.STREAM.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.35. UPDATED: TDH.MNG.ADDCX Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.36. TDH.MNG.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.37. UPDATED: TDH.MNG.INIT Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	6.3.38. TDH.MNG.KEY.CONFIG Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	6.3.39. TDH.MNG.KEY.FREEID Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.40. TDH.MNG.KEY.RECLAIMID Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.41. UPDATED: TDH.MNG.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.42. TDH.MNG.VPFLUSHDONE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.43. UPDATED: TDH.MNG.WR Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.44. UPDATED: TDH.MR.EXTEND Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.45. UPDATED: TDH.MR.FINALIZE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.46. TDH.PHYMEM.CACHE.WB Leaf
	Leaf Function Description
	Error and Informational Codes

	6.3.47. TDH.PHYMEM.PAGE.RDMD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.48. TDH.PHYMEM.PAGE.RECLAIM Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.49. TDH.PHYMEM.PAGE.WBINVD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.50. NEW: TDH.SERVTD.BIND Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.51. NEW: TDH.SERVTD.PREBIND Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.52. TDH.SYS.CONFIG Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.53. UPDATED: TDH.SYS.INFO Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.54. TDH.SYS.INIT Leaf
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	6.3.55. TDH.SYS.KEY.CONFIG Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	6.3.56. TDH.SYS.LP.INIT Leaf
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	6.3.57. TDH.SYS.LP.SHUTDOWN Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.58. NEW: TDH.SYS.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.59. NEW: TDH.SYS.RDALL Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.60. TDH.SYS.TDMR.INIT Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.61. UPDATED: TDH.VP.ADDCX Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.62. UPDATED: TDH.VP.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.63. UPDATED: TDH.VP.ENTER Leaf
	CPU State Preservation Following a Successful TD Entry and a TD Exit
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	6.3.64. TDH.VP.FLUSH Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.65. UPDATED: TDH.VP.INIT Leaf
	Operands
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	6.3.66. UPDATED: TDH.VP.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.3.67. UPDATED: TDH.VP.WR Leaf
	Leaf Function Description
	Completion Status Codes

	6.4. UPDATED: Guest-Side (TDCALL) Interface Functions
	6.4.1. TDCALL Instruction (Common)
	Instruction Description
	Completion Status Codes

	6.4.2. TDG.MEM.PAGE.ACCEPT Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.3. TDG.MR.REPORT Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.4. TDG.MR.RTMR.EXTEND Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.5. NEW: TDG.SERVTD.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.6. NEW: TDG.SERVTD.WR Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.7. NEW: TDG.SYS.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.8. NEW: TDG.SYS.RDALL Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.9. UPDATED: TDG.VM.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.10. UPDATED: TDG.VM.WR Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.11. UPDATED: TDG.VP.CPUIDVE.SET Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.12. UPDATED: TDG.VP.INFO Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.13. NEW: TDG.VP.RD Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.14. TDG.VP.VEINFO.GET Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.15. TDG.VP.VMCALL Leaf
	Leaf Function Description
	Completion Status Codes

	6.4.16. NEW: TDG.VP.WR Leaf
	Leaf Function Description
	Completion Status Codes

