

. Copyright © 2024 Intel Corporation. All rights reserved.

Intel® Trust Domain Extensions (Intel® TDX) Module
Architecture Application Binary Interface (ABI)
Reference Specification

348551-005US

October 2024

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 2 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Notices and Disclaimers

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps. 5

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure. 10

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided 15

here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others. 20

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 3 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table of Contents

1. About this Document .. 8

1.1. Scope of this Document .. 8

1.2. Glossary... 8

1.3. Notation .. 8 5

1.4. References ... 9

2. CPU Virtualization Tables ... 10

2.1. MSR Virtualization .. 10
2.1.1. IA32_ARCH_CAPABILITIES (MSR 0x10A) ... 10
2.1.2. IA32_MISC_ENABLE (MSR 0x1A0) .. 10 10

2.1.3. IA32_DEBUGCTL (MSR 0x1D9) .. 11
2.1.4. IA32_X2APIC_* (MSRs 0x800 – 0x8FF) ... 11

2.2. CPUID Virtualization .. 11

3. Data Types ... 12

3.1. Interface Function Completion Status ... 12 15

3.1.1. Function Completion Status Structure .. 12
3.1.2. Function Completion Status Code Classes (Bits 47:40) ... 13
3.1.3. Function Completion Status Codes and Operand IDs ... 13

3.2. Basic Crypto Types .. 13

3.3. TDX Module Configuration, Enumeration and Initialization Types ... 14 20

3.3.1. CPUID_CONFIG.. 14
3.3.2. TDX Module Version ... 14
3.3.3. Global-Scope (TDX Module) Metadata ... 15

3.3.3.1. TDX Features Enumeration ... 15
3.3.3.2. Global Metadata Fields ... 18 25

3.3.4. CMR_INFO ... 18
3.3.5. TDSYSINFO_STRUCT .. 18
3.3.6. TDMR_INFO .. 21

3.4. TD Parameter Types .. 22
3.4.1. ATTRIBUTES ... 22 30

3.4.2. XFAM ... 24
3.4.3. CONFIG_FLAGS .. 24
3.4.4. CPUID_VALUES .. 26
3.4.5. TD_PARAMS .. 26
3.4.6. EVENT_FILTER and the EVENT_FILTERS Array .. 28 35

3.5. Physical Memory Management Types .. 29
3.5.1. PAMT Page Type (PT) Values .. 29
3.5.2. Physical Page Size.. 30

3.6. TD Private Memory Management Data Types: Secure EPT ... 30
3.6.1. Secure EPT Levels .. 30 40

3.6.2. Secure EPT Entry Information as Returned by TDX Module Functions... 31
3.6.2.1. Returned L1 Secure EPT Entry Content ... 31
3.6.2.2. Returned L2 Secure EPT Entry Content ... 32
3.6.2.3. Additional Returned Secure EPT Information ... 32

3.6.3. GPA_ATTR: GPA Attributes .. 34 45

3.6.3.1. GPA Attributes Rules ... 35
3.6.4. GLA List ... 35

3.6.4.1. GLA_LIST_ENTRY ... 35
3.6.4.2. GLA_LIST ... 36
3.6.4.3. GLA_LIST_INFO: GLA List GPA and Additional Information ... 36 50

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 4 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.7. TD Entry and Exit Types .. 36
3.7.1. Extended Exit Qualification ... 36

3.8. L2 VM Transition Types ... 38
3.8.1. L2_ENTER_GUEST_STATE ... 38

3.9. Measurement and Attestation Types .. 38 5

3.9.1. CPUSVN ... 38
3.9.2. TDREPORT_STRUCT ... 39
3.9.3. TEE_TCB_INFO (Reference) ... 39
3.9.4. TEE_TCB_SVN (Reference) .. 40
3.9.5. REPORTMACSTRUCT (Reference) ... 40 10

3.9.6. REPORTTYPE (Reference) .. 41
3.9.7. TDINFO_STRUCT ... 41

3.10. Metadata Access Types ... 42
3.10.1. MD_FIELD_ID: Metadata Field Identifier / Sequence Header.. 42
3.10.2. Meaning of Field Codes ... 44 15

3.10.3. Class Codes .. 45
3.10.3.1. TDX Module Global Scope Field Class Codes .. 45
3.10.3.2. TD-Scope (TDR and TDCS) Field Class Codes ... 46
3.10.3.3. VCPU-Scope (TDVPS) Field Class Codes .. 47

3.10.4. Order of Field Identifiers ... 47 20

3.10.5. MD_LIST_HEADER: Metadata List Header ... 47
3.10.6. Private Page List .. 48
3.10.7. HPA_AND_SIZE: HPA and Size of a Buffer .. 48
3.10.8. HPA_AND_LAST: HPA and Last Byte Index of a Page-Aligned Buffer ... 48

3.11. Service TD Types .. 48 25

3.11.1. SERVTD_BINDING_TABLE: Service TD Binding Table ... 48
3.11.2. SERVTD_BINDING_STATE: Service TD Binding State .. 49
3.11.3. SERVTD_TYPE: Service TD Binding Type ... 49
3.11.4. SERVTD_ATTR: Service TD Binging Attributes .. 49

3.12. Migration Types .. 50 30

3.12.1. MBMD: Migration Bundle Metadata ... 50
3.12.1.1. Generic MBMD Structure.. 50
3.12.1.2. TD-Scope Immutable Non-Memory State MBMD Fields .. 51
3.12.1.3. TD-Scope Mutable Non-Memory State MBMD Fields .. 52
3.12.1.4. VCPU-Scope Mutable Non-Memory State MBMD Fields.. 52 35

3.12.1.5. TD Private Memory MBMD Fields... 52
3.12.1.6. Epoch Token MBMD Fields ... 52
3.12.1.7. Abort Token MBMD Fields .. 53
3.12.1.8. TD Migration Protocol Version Compatibility ... 53

3.12.2. GPA List ... 53 40

3.12.2.1. GPA_LIST_INFO: HPA, First and Last Entries of a GPA List ... 53
3.12.2.2. GPA List Entry .. 54
3.12.2.3. GPA List Entry Details .. 54
3.12.2.4. TD Migration Protocol Version Compatibility ... 56

3.12.3. Memory Migration Buffers List ... 57 45

3.12.3.1. Migration Buffers List Entry .. 57
3.12.4. Page Attributes List ... 57
3.12.5. Memory Migration Page MAC List .. 57
3.12.6. Non-Memory State Migration Buffers List .. 57

3.12.6.1. PAGE_LIST_INFO: HPA and Attributes of a Page List ... 57 50

4. TD Metadata (Non-Memory State) ... 59

4.1. TD-Scope Metadata .. 59
4.1.1. TDR .. 59
4.1.2. TDCS .. 59

4.1.2.1. TDCS.TD_CTLS ... 60 55

4.1.2.2. TDCS.FEATURE_PARAVIRT_CTRL .. 61

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 5 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4.2. TDVPS: VCPU-Scope Metadata .. 64
4.2.1. Overview ... 64
4.2.2. TDVPS (excluding TD VMCS) ... 65
4.2.3. TD (L1) VMCS and L2 VMCS .. 65

4.2.3.1. TD VMCS CR4 Guest/Host Mask ... 65 5

5. Interface Functions .. 67

5.1. How to Read the Interface Function Definitions ... 67

5.2. Reserved Leaf Numbers .. 67

5.3. Common Algorithms Used by Multiple Interface Functions .. 67
5.3.1. VCPU Association with an LP .. 68 10

5.3.2. Metadata Access ... 68
5.3.2.1. Single Metadata Field Read .. 68
5.3.2.2. Single Metadata Field Write ... 68
5.3.2.3. Multiple Metadata Fields Write based on a Metadata List .. 69

5.4. Host-Side (SEAMCALL) Interface Functions ... 70 15

5.4.1. SEAMCALL Instruction (Common) ... 70
5.4.2. TDH.EXPORT.ABORT Leaf .. 73
5.4.3. TDH.EXPORT.BLOCKW Leaf ... 76
5.4.4. TDH.EXPORT.MEM Leaf .. 79
5.4.5. TDH.EXPORT.PAUSE Leaf .. 85 20

5.4.6. TDH.EXPORT.RESTORE Leaf .. 87
5.4.7. TDH.EXPORT.STATE.IMMUTABLE Leaf .. 90
5.4.8. TDH.EXPORT.STATE.TD Leaf .. 95
5.4.9. TDH.EXPORT.STATE.VP Leaf .. 99
5.4.10. TDH.EXPORT.TRACK Leaf... 103 25

5.4.11. TDH.EXPORT.UNBLOCKW Leaf .. 106
5.4.12. TDH.IMPORT.ABORT Leaf ... 109
5.4.13. TDH.IMPORT.COMMIT Leaf .. 112
5.4.14. TDH.IMPORT.END Leaf .. 114
5.4.15. TDH.IMPORT.MEM Leaf .. 116 30

5.4.16. TDH.IMPORT.STATE.IMMUTABLE Leaf ... 123
5.4.17. TDH.IMPORT.STATE.TD Leaf ... 128
5.4.18. TDH.IMPORT.STATE.VP Leaf ... 132
5.4.19. TDH.IMPORT.TRACK Leaf .. 136
5.4.20. TDH.MEM.PAGE.ADD Leaf .. 139 35

5.4.21. TDH.MEM.PAGE.AUG Leaf .. 142
5.4.22. TDH.MEM.PAGE.DEMOTE Leaf ... 145
5.4.23. TDH.MEM.PAGE.PROMOTE Leaf ... 152
5.4.24. TDH.MEM.PAGE.RELOCATE Leaf ... 158
5.4.25. TDH.MEM.PAGE.REMOVE Leaf ... 162 40

5.4.26. TDH.MEM.RANGE.BLOCK Leaf .. 166
5.4.27. TDH.MEM.RANGE.UNBLOCK Leaf ... 169
5.4.28. TDH.MEM.RD Leaf... 172
5.4.29. TDH.MEM.SEPT.ADD Leaf ... 175
5.4.30. TDH.MEM.SEPT.RD Leaf .. 181 45

5.4.31. TDH.MEM.SEPT.REMOVE Leaf .. 185
5.4.32. TDH.MEM.SHARED.SEPT.WR Leaf... 189
5.4.33. TDH.MEM.TRACK Leaf... 193
5.4.34. TDH.MEM.WR Leaf ... 195
5.4.35. TDH.MIG.STREAM.CREATE Leaf .. 198 50

5.4.36. TDH.MNG.ADDCX Leaf .. 201
5.4.37. TDH.MNG.CREATE Leaf ... 203
5.4.38. TDH.MNG.INIT Leaf ... 205
5.4.39. TDH.MNG.KEY.CONFIG Leaf .. 208
5.4.40. TDH.MNG.KEY.FREEID Leaf ... 210 55

5.4.41. TDH.MNG.KEY.RECLAIMID Leaf (Deprecated) .. 212
5.4.42. TDH.MNG.RD Leaf ... 213

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 6 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.43. TDH.MNG.VPFLUSHDONE Leaf ... 216
5.4.44. TDH.MNG.WR Leaf .. 218
5.4.45. TDH.MR.EXTEND Leaf ... 220
5.4.46. TDH.MR.FINALIZE Leaf .. 223
5.4.47. TDH.PHYMEM.CACHE.WB Leaf ... 225 5

5.4.48. TDH.PHYMEM.PAGE.RDMD Leaf .. 228
5.4.49. TDH.PHYMEM.PAGE.RECLAIM Leaf .. 230
5.4.50. TDH.PHYMEM.PAGE.WBINVD Leaf ... 234
5.4.51. TDH.SERVTD.BIND Leaf ... 236
5.4.52. TDH.SERVTD.PREBIND Leaf ... 239 10

5.4.53. TDH.SYS.CONFIG Leaf .. 242
5.4.54. TDH.SYS.INFO Leaf .. 245
5.4.55. TDH.SYS.INIT Leaf .. 247
5.4.56. TDH.SYS.KEY.CONFIG Leaf ... 250
5.4.57. TDH.SYS.LP.INIT Leaf ... 252 15

5.4.58. TDH.SYS.LP.SHUTDOWN Leaf (Deprecated) ... 255
5.4.59. TDH.SYS.RD Leaf .. 256
5.4.60. TDH.SYS.RDALL Leaf .. 258
5.4.61. TDH.SYS.S4_END Leaf ... 260
5.4.62. TDH.SYS.SHUTDOWN Leaf .. 262 20

5.4.63. TDH.SYS.TDMR.INIT Leaf ... 264
5.4.64. TDH.SYS.UPDATE Leaf ... 266
5.4.65. TDH.VP.ADDCX Leaf .. 268
5.4.66. TDH.VP.CREATE Leaf ... 271
5.4.67. TDH.VP.ENTER Leaf ... 273 25

5.4.67.1. Inputs .. 273
5.4.67.2. Outputs ... 274
5.4.67.3. CPU State Preservation Following a Successful TD Entry and a TD Exit .. 280
5.4.67.4. Special Environment Requirements .. 280
5.4.67.5. Guest TD State Loading or VM Entry Failure ... 280 30

5.4.67.6. Leaf Function Latency ... 281
5.4.67.7. Leaf Function Description ... 281
5.4.67.8. Completion Status Codes .. 282

5.4.68. TDH.VP.FLUSH Leaf ... 285
5.4.69. TDH.VP.INIT Leaf ... 287 35

5.4.70. TDH.VP.RD Leaf ... 290
5.4.71. TDH.VP.WR Leaf .. 293

5.5. Guest-Side (TDCALL) Interface Functions .. 296
5.5.1. TDCALL Instruction (Common) .. 296
5.5.2. TDG.MEM.PAGE.ACCEPT Leaf ... 298 40

5.5.3. TDG.MEM.PAGE.ATTR.RD Leaf ... 301
5.5.4. TDG.MEM.PAGE.ATTR.WR Leaf .. 304
5.5.5. TDG.MR.REPORT Leaf ... 309
5.5.6. TDG.MR.RTMR.EXTEND Leaf ... 312
5.5.7. TDG.MR.VERIFYREPORT .. 314 45

5.5.8. TDG.SERVTD.RD Leaf ... 316
5.5.9. TDG.SERVTD.WR Leaf.. 320
5.5.10. TDG.SYS.RD Leaf .. 325
5.5.11. TDG.SYS.RDALL Leaf .. 327
5.5.12. TDG.VM.RD Leaf .. 329 50

5.5.13. TDG.VM.WR Leaf .. 331
5.5.14. TDG.VP.CPUIDVE.SET Leaf .. 333
5.5.15. TDG.VP.ENTER Leaf ... 335
5.5.16. TDG.VP.INFO Leaf ... 341
5.5.17. TDG.VP.INVEPT Leaf .. 343 55

5.5.18. TDG.VP.INVGLA Leaf ... 345
5.5.19. TDG.VP.RD Leaf ... 348
5.5.20. TDG.VP.VEINFO.GET Leaf .. 350
5.5.21. TDG.VP.VMCALL Leaf .. 353

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 7 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.22. TDG.VP.WR Leaf .. 356

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 8 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

1. About this Document

1.1. Scope of this Document

This document describes the Application Binary Interface (ABI) of the Intel® Trust Domain Extensions (Intel® TDX) module,
implemented using the Intel TDX Instruction Set Architecture (ISA) extensions, for confidential execution of Trust Domains
in an untrusted hosted cloud environment. 5

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

 Document Name Reference Description

TDX Module
Base Architecture Specification

[TDX Module Base
Spec]

Base TDX module architecture overview
and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

TDX Module
TD Migration Architecture Specification

[TD Migration Spec] Architecture overview and specification for
TD migration

TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for
TD Partitioning

TDX Module
TDX Connect Specification

[TDX Connect Spec] Architecture overview and specification for
TDX Connect

→

TDX Module
ABI Reference Specification

[TDX Module ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the entire TDX module
architecture

TDX Module
TDX Connect ABI Reference
Specification

[TDX Connect ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the TDX connect architecture

TDX Module ABI Reference Tables [TDX Module ABI

Tables]
A set of JSON format files detailing TDX
module Application Binary Interface (ABI)

TDX Module ABI Incompatibilities [TDX Module ABI

Incompatibilities]
Description of the incompatibilities
between TDX 1.0 and TDX 1.4/1.5 that may
impact the host VMM and/or guest TDs

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors. 10

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.

1.2. Glossary 15

See the [TDX Module Base Spec].

1.3. Notation

See the [TDX Module Base Spec].

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 9 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

1.4. References

See the [TDX Module Base Spec].

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 10 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

2. CPU Virtualization Tables

2.1. MSR Virtualization

Most of the MSR virtualization information is provided in a separate JSON format file msr_virtualization.json. Additional
information about specific MSRs is provided below.

2.1.1. IA32_ARCH_CAPABILITIES (MSR 0x10A) 5

The virtualization of IA32_ARCH_CAPABILITIES (MSR 0x10A) is described in the [Base Spec] section “Checking and
Virtualization of CPU Side Channel Protection Mechanisms Enumeration”.

2.1.2. IA32_MISC_ENABLE (MSR 0x1A0)

The virtualization of IA32_MISC_ENABLE (MSR 0x1A0) depends on TDCS.TD_CTLS.REDUCE_VE, as set by the guest TD.
Support of this bit is enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30). 10

If TDCS.TD_CTLS.REDUCE_VE is 0 or is not supported, then RDMSR(IA32_MISC_ENABLE) returns the MSR’s native value,
except that if the TD’s ATTRIBUTES.PERFMON is 0, then bit 7 (Perfmon Available) is set to 0 and bit 12 (PEBS Unavailable)
is set to 1. WRMSR(IA32_MISC_ENABLE) results in a #VE(CONFIG_PARAVIRT).

If TDCS.TD_CTLS.REDUCE_VE is 1, then RDMSR(IA32_MISC_ENABLE) reads from a shadow value in TDVPS, and
WRMSR(IA32_MISC_ENABLE) behaves as described in the table below. 15

Table 2.1: IA32_MISC_ENABLE (MSR 0x1A0) Virtualization when TDCS.TD_CTLS.REDUCE_VE is Set to 1

Bit Name Access Init Value of Shadow
(in TDVPS)

On
RDMSR

On WRMSR Description

0 Fast-Strings
Enable

RW Native value From
shadow

To shadow

3 Automatic
Thermal
Control
Circuit Enable

RW 0 From
shadow

To shadow

7 Perfmon
Available

RO ATTRIBUTES.PERFMON From
shadow

Ignore

11 BTS
Unavailable

RO Native (checked to be
1)

From
shadow

Ignore

12 PEBS
Unavailable

RO Native &
~ATTRIBUTES.PERFMON

From
shadow

Ignore

16 Enhanced
Speed Step

RW Virt. CPUID(1).ECX[7] From
shadow

If (virt. CPUID(1).ECX[7] == 0)
and (value == 1), #GP. Else,
write to shadow

Support
paravirtualization

18 Enable
MONITOR
FSM

RW Virt. CPUID(1).ECX[3] From
shadow

If (value is being modified),
#VE(UNSUPPORTED_FEATURE).
Else, write to shadow

Guest TD is not
expected to change
this bit.

22 Limit CPUID
Max Leaf

RW 0 From
shadow

If (value == 1),
#VE(UNSUPPORTED_FEATURE).

Value in shadow remains 0.

Simplify CPUID
handling, not
supposed to happen
with modern OS

23 xTPR
Message
Disable

RW 0 From
shadow

If (virt. CPUID(1).ECX[14] == 0)
and (value == 1), #GP. Else,
write to shadow

TDs are not allowed
to broadcast IPIs.
Host VMM can
control this bit.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 11 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit Name Access Init Value of Shadow
(in TDVPS)

On
RDMSR

On WRMSR Description

34 XD Bit
Disable

RW 0 From
shadow

If (value == 1), #GP.

Value in shadow remains 0.

This bit is
deprecated.

Other Reserved RO 0 From
shadow

If (value == 1), #GP.

Value in shadow remains 0.

2.1.3. IA32_DEBUGCTL (MSR 0x1D9)

See the [Base Spec] section “On-TD Debug”.

2.1.4. IA32_X2APIC_* (MSRs 0x800 – 0x8FF)

See the [Base Spec] section “Virtual APIC Access by Guest TD”. 5

2.2. CPUID Virtualization

CPUID virtualization information is provided in a separate JSON format file cpuid_virtualization.json.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 12 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3. Data Types

This section describes data types that are designed to be used by the Intel TDX module.

3.1. Interface Function Completion Status

Note: This section provides a high-level overview of function completion status, as defined. Implementation details
may differ. 5

A high-level definition of the interface functions completion status is provided in the [TDX Module Base Spec].

3.1.1. Function Completion Status Structure

Table 3.1: Intel TDX Interface Functions Completion Status (Returned in RAX) Definition

Bits Name Description

63 ERROR Interface function aborted due to error.

0: Indicates that the function completed successfully – possibly with
some warnings.

1: Indicates that the function aborted due to some error.

62 NON_RECOVERABLE Recoverability hint – applicable only when ERROR is 1.

0: Indicates that the function may possibly be retried after some
conditions have been corrected.

1: Indicates that the error is probably not recoverable.

61 FATAL Fatality hint – applicable only for SEAMCALL.

0: Indicates that the TD can continue its normal lifecycle.

1: Indicates that the TD entered a state where it can only be torn
down. E.g., when an import has failed and the TD’s OP_STATE is
FAILED_IMPORT.

60 HOST_RECOVERABILITY_HINT As a TDH.VP.ENTER output, indicates a TDCALL that resulted in a trap-
like TD exit for which the host VMM needs to provide a recoverability
hint in the following TD entry.

On the following TDH.VP.ENTER, the host VMM provides a hint to the
guest TD, which is the output of the TDCALL:

0: The host VMM hints that the guest-side function may possibly be
retried (e.g., the host may have corrected some conditions).

1: The host VMM hints that the error is probably not recoverable.

59:48 RESERVED Reserved – set to 0

47:40 CLASS Class of the function completion status

39:32 DETAILS_L1 Details of the function completion status

31:0 DETAILS_L2 Additional details of the function completion status – e.g., includes:

• Implicit or explicit operand identifier

• CPUID leaf or sub-leaf

• MSR index

• VMCS field code

• VM exit reason

• CMR index

• TDMR index

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 13 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.1.2. Function Completion Status Code Classes (Bits 47:40)

Table 3.2: Function Completion Status Code Classes (Bits 47:40) Definition

Class ID Class Name Description

0 General General function completion status

1 Invalid Operand An invalid operand value has been provided, e.g., HKID is out of range,
HPA overlaps SEAMRR, GPA is not private, etc.

2 Resource Busy Resource is busy, there is a concurrency conflict.

3 Page Metadata Page metadata (in PAMT) are incorrect, e.g., page type is wrong.

4 Dependent Resources The state of dependent resources is incorrect, e.g., there are TD pages
while trying to reclaim a TDR page.

5 Intel TDX Module State The Intel TDX module state is incorrect.

6 TD State The state of the TD is incorrect, e.g., it has not been initialized yet.

7 TD VCPU State The state of the TD VCPU is incorrect, e.g., it is corrupted.

8 Key Management The status code is related to key management, e.g., keys are not
configured.

9 Platform The status code is related to platform configuration or state.

10 Physical Memory The status code is related to physical memory.

11 Guest TD Memory The status code is related to guest TD memory.

12 Metadata The status code is related to metadata (global scope, TD scope or VCPU
scope)

13 Service TD The status code is related to a service TD

14 Migration The status code is related to TD migration

15 TDX I/O The status code is related to TDX I/O

16 Measurement The status code is related to TDX measurement

17 TD Partitioning The status code is related to TD partitioning

255 Reserved Reserved for use by host VMM or guest TD software

This value is never used by the TDX module.

3.1.3. Function Completion Status Codes and Operand IDs 5

Interface functions completion status codes and operand IDs are provided in a separate JSON format file
interface_functions_completion_status.json.

3.2. Basic Crypto Types

Table 3.3: Basic Crypto Types

Name Size
(Bytes)

Description

SHA384_HASH 48 384-bit buffer containing the result of a SHA384 hash calculation

KEY128 16 128-bit key

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 14 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Name Size
(Bytes)

Description

KEY256 32 256-bit key

3.3. TDX Module Configuration, Enumeration and Initialization Types

Note: This section describes configuration, enumeration and initialization types, as defined. Implementation may
differ.

3.3.1. CPUID_CONFIG 5

CPUID_CONFIG is designed to enumerate how the host VMM may configure the virtualization done by the Intel TDX
module for a single CPUID leaf and sub-leaf. An array of CPUID_CONFIG entries is used for the Intel TDX module
enumeration by TDH.SYS.INFO.

Table 3.4: CPUID_CONFIG Definition

Field Offset
(Bytes)

Size
(Bytes)

Description

LEAF 0 4 EAX input value to CPUID

SUB_LEAF 4 4 ECX input value to CPUID

A value of -1 indicates a CPUID leaf with no sub-leaves.

EAX 8 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EAX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

EBX 12 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EBX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

ECX 16 4 Enumeration of the configurable virtualization of the value returned by CPUID in
ECX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

EDX 20 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EDX: a value of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

 10

3.3.2. TDX Module Version

The TDX module version is enumerated as five fields, as shown in the table below. When written as a string, the fields
are separated by a dot, e.g., “1.5.08.04.0234”.

Table 3.5: TDX Module Version Definition

Field As Text Size (Bytes) Description

MAJOR_VERSION
and
MINOR_VERSION

1 digit each, e.g.,
“1.5”

16 bits each Together, represent the main version number of the TDX
module. Usually related to the supported SOCs.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 15 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field As Text Size (Bytes) Description

UPDATE_VERSION 2 digits, e.g.,
“1.5.08”

16 bits A sub-version of the major/minor version. The update
version number is incremented after every production-
signed drop of the TDX module. E.g., if version 1.5.01 is
production-signed, the next drop will be not use 01 as its
update version, regardless of being a production-signed
drop or not.

INTERNAL_VERSION 2 digits, e.g.,
“1.5.08.04”

16 bits A sub-version of the update version. Denotes internal
release number.

BUILD_NUM 4 digits, e.g.,
“1.5.08.04.0234”

16 bits A unique build number

3.3.3. Global-Scope (TDX Module) Metadata

TDX module global scope fields provide enumeration information about the Intel TDX module. They are used with the
TDH.SYS.RD, TDH.SYS.RDALL, TDG.SYS.RD and TDG.SYS.RDALL functions.

3.3.3.1. TDX Features Enumeration 5

The main enumeration of features supported by the TDX module is provided by the TDX_FEATURES array of 64-bit
metadata fields. The number of fields is enumerated by NUM_TDX_FEATURES.

The TDX module features of TDX 1.0 are considered a baseline. TDX_FEATURES enumerate features beyond that baseline.

Table 3.6: TDX_FEATURES0 Definition

Bit(s) Name Description

0 TD_MIGRATION The TDX module supports TD migration. Further information is provided
by the Migration fields.

1 TD_PRESERVING The TDX module supports TD preserving updates. Further information is
provided by the TDX Module Handoff metadata fields.

2 SERVICE_TD The TDX module supports Service TDs. Further information is provided by
the Service TD fields.

3 ENHANCED_METADATA The TDX module supports enhanced metadata interface functions:

• Version 1 of previously existing functions: TDH.MNG.RD, TDH.VP.RD
and TDG.VM.RD.

• New functions: TDH.SYS.RD, TDH.SYS.RDALL, TDG.SYS.RD,
TDG.SYS.RDALL, TDG.VP.RD/WR.

4 RELAXED_MEM_MNG The TDX module’s memory management requirements are relaxed vs. TDX
1.0:

• Many interface functions allow concurrent memory management
operations by exclusively locking specific Secure EPT entries instead
of the whole Secure EPT tree:

o TDH.MEM.PAGE.AUG/DEMOTE/PROMOTE/RELOCATE/REMOVE

o TDH.MEM.SEPT.ADD

• TLB tracking (e.g., TDH.MEM.RANGE.BLOCK followed by
TDH.MEM.TRACK and IPIs) may be skipped if the TD’s OP_STATE is
such that the TD can’t be running, i.e., in the following cases:

o On normal TD build, the TD’s measurement has not yet been
finalized by TDH.MR.FINALIZED.

o The TD has been paused for export by TDH.EXPORT.PAUSE, and
export has not been aborted by TDH.EXPOR.ABORT.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 16 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit(s) Name Description

o On import, TD execution has been enabled by
TDH.IMPORT.COMMIT or TDH.IMPORT.END.

5 CPUID_VIRT_GUEST_CTRL Guest TD may request that on certain CPUID leaves/sub-leaves a
#VE(CONFIG_PARAVIRT) will always be injected, using the TDG.VP.RD/WR
to access the TDVPS’ CPUID_CONTROL fields.

6 TDX_CONNECT Both the TDX module and the CPU support TDX Connect.

7 TD_PARTITIONING The TDX module supports TD partitioning:

• New interface functions: TDG.MEM,PAGE.ATTR.RD/WR,
TDG.VP.ENTER, TDG.VP.INVEPT, TDG.VP.INVGLA

• Version 1 of existing interface functions: TDH.MEM.PAGE.PROMOTE,
TDH.MEM.SEPT.ADD, TDH.MEM.SEPT.REMOVE

• Backward-compatible updates to existing interface functions, with
new input and/or output operands.

8 LOCAL_ATTESTATION The TDX module supports local attestation:

• New interface function: TDG.MR.VERIFYREPORT

9 TD_ENTRY_ENHANCEMENTS The TDX module supports the following TD entry enhancements:

• HOST_RECOVERABILITY_HINT: On trap-like asynchronous TD exit, bit
60 of the TDH.VP.ENTER completion status (returned in RAX) may be
set to 1. In this case, the host VMM may set the following TD entry’s
input value of RCX’ HOST_RECOVERABILITY_HINT bit; this bit is copied
to the guest RAX bit 60, which the guest interprets as part of a
TDCALL completion status.

10 HOST_PRIORITY_LOCKS The TDX module implements host-priority locks to avoid denial-of-service
by guest TDs. This requires the host VMM to retry operations that fail
with a TDX_OPERAND_BUSY status.

11 CONFIG_IA32_ARCH_CAPABILITIES The TDX module allows the host VMM to configure the virtualization of
IA32_ARCH_CAPABILITIES MSR.

12 SEALING The TDX module supports signed TDs and seal keys bound to new TD
properties:

• New interface functions: TDG.MR.KEY.GET

• SEALING support depends on TD_SIGNING_AND_SVN (bit 22) support

13 S4 The TDX module supports state hibernation and restoration across S4 CPU
state:

• New interface function: TDH.SYS.S4_END

• New input flag to TDH.EXPORT/IMPORT.STATE.IMMUTABLE

14 ACT The TDX module manages memory access control using the CPU’s Access
Control Table (ACT).

15 WBINVD_DOMAINS TDH.PHYMEM.CACHE.WB needs to be called per WBINVD domain that
might be different than a whole package. WBINVD domains are
enumerated with the WBINVD_DOMAIN* metadata fields.

If SKIP_PHYMEM_CACHE_WB (bit 34) is 1, then WBINVD_DOMAINS is 0.

16 PENDING_EPT_VIOLATION_V2 The TDX module supports enhanced handling of EPT violation on guest TD
access to PENDING pages:

• Decision on whether a #VE(PENDING) is injected to the guest TD can
be guest configurable.

• Extended exit qualification is provided to the host VMM.

• EPT violation on L2 VM access to a PENDING page always causes an
L2→L1 exit.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 17 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit(s) Name Description

17 FMS_CONFIG The TDX module supports configuration of virtual CPUID(1).EAX
(Family/Model/Stepping) value for migratable TDs.

18 NO_RBP_MOD The TDX module supports a TD configuration where RBP is never modified
by any host-side (SEAMCALL) and guest-side (TDCALL) interface function.
This is configured by TD_PARAMS.CONFIG_FLAGS.NO_RBP_MOD (see
3.4.3).

19 L2_TLB_INVD_OPT The TDX module supports additional address translation invalidation
modes on TDG.VP.ENTER.

20 TOPOLOGY_ENUM The TDX module supports virtual topology enumeration and configuration
of CPUID(0xB), CPUID(0x1F) and x2APIC ID.

21 PARTITIONED_TD_MIGRATION The TDX module supports migration of partitioned TDs.

22 TD_SIGNING_AND_SVN The TDX module supports the following:

• REPORTTYPE.VERSION value of 2

• TDSIGSTRUCT

• Additional attestation configuration (MRSIGNER, PRODID, etc.)

• TDG.MR.ASSIGNSVNS interface function

23 CLFLUSH_BEFORE_ALLOC When allocating a memory page to be used as TD private memory or TD
control structure page, the host VMM is required to ensure that none of
the cache lines associated with the page is in a MODIFIED state.

24 EVENT_FILTERING The TDX module supports filtering of performance monitoring events,
based on configuration by the host VMM as part of TDH.MNG.INIT.

25 ICSSD Instruction-Count based Single-Step Defense: Indicates that the TDX
module supports single-step attack detection based on counting TD VCPU
instructions.

This feature is only available for guest TDs where performance monitoring
is not enabled (ATTRIBUTES.PERFMON == 0).

26 FIXED_CTR12_PROF System profiling by IA32_FIXED_CTR1 and IA32_FIXED_CTR2 is supported.

IA32_FIXED_CTR1 and IA32_FIXED_CTR2 continue counting while the TDX
module is running. If a TD is not enabled for performance monitoring
(ATTRIBUTES.PERFMON == 0) and not debuggable
(ATTRIBUTES.DEBUG == 0) then the counters continue counting while that
TD is running.

27 MAXPA_VIRT The TDX module supports virtualization of physical address width, as
enumerated by CPUID(0x80000008).EAX[7:0].

28 APX Both the TDX module and the CPU support Intel® APX (Advanced
Performance Extensions).

29 CPUID2_VIRT The TDX module supports virtualization of CPUID(2)

30 VE_REDUCTION The TDX module supports run time controls by the guest TD to reduce the
cases where #VE is injected by the TDX module on guest TD execution of
CPUID, RDMSR/WRMSR and other instructions.

Note: VE_REDUCTION implies TOPOLOGY_ENUM and CPUID2_VIRT.

31 ENHANCED_EVENT_FILTERING The TDX module supports enhanced filtering of performance monitoring
events, based on configuration by the host VMM as part of
TDH.MNG.INIT.

32 TDX_CONNECT_PARTITIONING The TDX module supports TDX Connect for partitioned TDs.

33 MAXGPA_VIRT The TDX module supports virtualization of guest physical address width,
as enumerated by CPUID(0x80000008).EAX[23:16].

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 18 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit(s) Name Description

34 SKIP_PHYMEM_CACHE_WB The host VMM needs not call TDH.PHYMEM.CACHE.WB as part of the TD
teardown sequence.

35 NON_BLOCKING_RESIZE The TDX module supports TDH.MEM.PAGE.DEMOTE and
TDH.MEM.PAGE.PROMOTE without blocking and TLB tracking.

63:36 RESERVED Set to 0

3.3.3.2. Global Metadata Fields

Global metadata information is provided in a separate JSON format file global_metadata.json.

3.3.4. CMR_INFO

CMR_INFO is designed to provide information about a Convertible Memory Range (CMR), as configured by BIOS and 5

checked and stored securely by MCHECK.

Note: CMR_INFO and TDH.SYS.INFO are provided for backward compatibility. TDH.SYS.RDALL is the recommended
method to read Intel TDX module information. See also 3.3.3 above.

Table 3.7: CMR_INFO Entry Definition

Name Offset
(Bytes)

Type Size
(Bytes)

Description

CMR_BASE 0 Physical
Address

8 Base address of the CMR: since a CMR is aligned on 4KB, bits
11:0 are 0.

CMR_SIZE 8 Integer 8 Size of the CMR, in bytes: since a CMR is aligned on 4KB, bits
11:0 are 0.

A value of 0 indicates a null entry.

 10

TDH.SYS.INFO leaf function returns an array of CMR_INFO entries. The CMRs are sorted from the lowest base address to
the highest base address, and they are non-overlapping.

3.3.5. TDSYSINFO_STRUCT

TDSYSINFO_STRUCT is designed to provide enumeration information about the Intel TDX module. It is an output of the
TDH.SYS.INFO leaf function. 15

Note: TDSYSINFO_STRUCT and TDH.SYS.INFO are provided for backward compatibility. TDH.SYS.RDALL is the
recommended method to read Intel TDX module information. See also 3.3.3 above.

TDSYSINFO_STRUCT’s size is 1024B.

Table 3.8: TDSYSINFO_STRUCT Definition

Section Field Name Offset
(Bytes)

Type Size
(Bytes)

Description

Intel TDX
Module
Info

ATTRIBUTES 0 Bitmap 4 Module attributes

Bits 30:0 Reserved – set to 0

Bit 31 0 indicates a
production module.

 1 indicates a debug
module.

VENDOR_ID 4 Integer 4 0x8086 for Intel

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 19 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Section Field Name Offset
(Bytes)

Type Size
(Bytes)

Description

BUILD_DATE 8 BCD 4 Intel TDX module build data – in
yyyymmdd BCD format (each
digit occupies 4 bits)

BUILD_NUM 12 Integer 2 Build number of the Intel TDX
module

MINOR_VERSION 14 Integer 2 Minor version number of the
Intel TDX module

MAJOR_VERSION 16 Integer 2 Major version number of the
Intel TDX module

SYS_RD 18 Boolean 1 A non-0 value indicates that the
information in this structure is
incomplete. TDH.SYS.RD or
TDH.SYS.RDALL should be used
to obtain TDX module
information.

RESERVED 19 N/A 13 This field is reserved for
enumerating future Intel TDX
module capabilities.

Set to 0

Memory
Info

MAX_TDMRS 32 Integer 2 The maximum number of
TDMRs supported

MAX_RESERVED_
PER_TDMR

34 Integer 2 The maximum number of
reserved areas per TDMR

PAMT_ENTRY_
SIZE

36 Integer 2 The size of a PAMT entry –
determines the number of bytes
that need to be reserved for the
three PAMT areas:

• PAMT_1G (1 entry per 1GB
of TDMR)

• PAMT_2M (1 entry per 2MB
of TDMR)

• PAMT_4K (1 entry per 4KB
of TDMR)

RESERVED 38 N/A 10 Set to 0

Control
Struct Info

TDCS_BASE_SIZE 48 Integer 2 Base value for the number of
bytes required to hold TDCS

RESERVED 50 N/A 2 Reserved for additional TDCS
enumeration

Set to 0

TDVPS_BASE_SIZE 52 Integer 2 Base value for the number of
bytes required to hold TDVPS

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 20 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Section Field Name Offset
(Bytes)

Type Size
(Bytes)

Description

RESERVED 54 N/A 10 Set to 0

TD
Capabilities

ATTRIBUTES_
FIXED0

64 Bitmap 8 If any certain bit is 0 in
ATTRIBUTES_FIXED0, it must be
0 in any TD’s ATTRIBUTES. The
value of this field reflects the
Intel TDX module capabilities
and configuration and CPU
capabilities.

ATTRIBUTES_
FIXED1

72 Bitmap 8 If any certain bit is 1 in
ATTRIBUTES_FIXED1, it must be
1 in any TD’s ATTRIBUTES. The
value of this field reflects the
Intel TDX module capabilities
and configuration and CPU
capabilities.

XFAM_FIXED0 80 Bitmap 8 If any certain bit is 0 in
XFAM_FIXED0, it must be 0 in
any TD’s XFAM.

XFAM_FIXED1 88 Bitmap 8 If any certain bit is 1 in
XFAM_FIXED1, it must be 1 in
any TD’s XFAM.

RESERVED 96 N/A 32 Set to 0

NUM_CPUID_
CONFIG

128 Integer 4 Number of the following
CPUID_CONFIG entries

CPUID_CONFIG[0] 132 CPUID_
CONFIG

24 Enumeration of the CPUID
leaves/sub-leaves that contain
bit fields whose virtualization by
the Intel TDX module is either:

• Directly configurable
(CONFIG_DIRECT) by the host
VMM

• Bits that the host VMM may
allow to be 1
(ALLOW_*_DIRECT) and their
native value, as returned by
the CPU, is 1.

See 3.3.1 for details.

Note that the virtualization of
many CPUID bit fields not
enumerated in this list is
configurable indirectly via the
XFAM and ATTRIBUTES assigned
to a TD by the host VMM.

CPUID_
CONFIG[last]

 CPUID_
CONFIG

24

Reserved RESERVED N/A Fills up to the structure size
(1024B) – set to 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 21 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.3.6. TDMR_INFO

TDMR_INFO is designed to provide information about a single Trust Domain Memory Region (TDMR) and its associated
PAMT. It is used as an input to TDH.SYS.CONFIG.

Table 3.9: TDMR_INFO Entry Definition

Name Offset
(Bytes)

Type Size
(Bytes)

Description

TDMR_BASE 0 Physical
Address

8 Base address of the TDMR (HKID bits must be 0): since a
TDMR is aligned on 1GB, bits 29:0 are always 0.

TDMR_SIZE 8 Integer 8 Size of the TDMR, in bytes: must be greater than 0 and a
whole multiple of 1GB (i.e., bits 29:0 are always 0).

PAMT_1G_BASE 16 Physical
Address

8 Base address of the PAMT_1G range associated with the
above TDMR (HKID bits must be 0): since a PAMT range is
aligned on 4KB, bits 11:0 are always 0.

PAMT_1G_SIZE 24 Integer 8 Size of the PAMT_1G range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.

PAMT_2M_BASE 32 Physical
Address

8 Base address of the PAMT_2M range associated with the
above TDMR (HKID bits must be 0): since a PAMT range is
aligned on 4KB, bits 11:0 are always 0.

PAMT_2M_SIZE 40 Integer 8 Size of the PAMT_2M range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.

PAMT_4K_BASE 48 Physical
Address

8 Base address of the PAMT_4K range associated with the above
TDMR (HKID bits must be 0): since a PAMT range is aligned on
4KB, bits 11:0 are always 0.

PAMT_4K_SIZE 56 Integer 8 Size of the PAMT_4K range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.

RESERVED_OFFSET[0] 64 Integer 8 • Offset of reserved range 0 within the TDMR: since a
reserved range is aligned on 4KB, bits 11:0 are always 0.

RESERVED_SIZE[0] 72 Integer 8 Size of reserved range 0 within the TDMR:

• A size of 0 indicates a null entry. All following reserved
range entries must also be null.

• Since a reserved range is aligned on 4KB, bits 11:0 are
always 0.

RESERVED_OFFSET[N-1] 64 +
16*(N-1)

Integer 8 Offset of the last reserved range within the TDMR.

RESERVED_SIZE[N-1] 72 +
16*(N-1)

Integer 8 Size of the last reserved range within the TDMR.

 5

Notes:

• The number of reserved areas within a TDMR is enumerated by TDX Module’s MAX_RESREVED_PER_TDMR metadata
field, which can be read using TDH.SYS.RD, TDH.SYS.RDALL or TDH.SYS.RDM. For details, see 3.3.53.3.3.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 22 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

• For backward compatibility, this value is also enumerated by TDSYSINFO_STRUCT.MAX_RESREVED_PER_TDMR (see
3.3.5).

• Within each TDMR entry, all reserved areas must be sorted from the lowest offset to the highest offset, and they
must not overlap with each other.

• All TDMRs and PAMTs must be contained within CMRs. 5

• A PAMT area must not overlap with another PAMT area (associated with any TDMR), and it must not overlap with
non-reserved areas of any TDMR. PAMT areas may reside within reserved areas of TDMRs.

3.4. TD Parameter Types

Note: This section describes TD parameter types, as defined. Implementation details may differ.

3.4.1. ATTRIBUTES 10

ATTRIBUTES is defined as a 64b field that specifies various attested guest TD attributes. ATTRIBUTES is provided by the
host VMM as a guest TD initialization parameter as part of TD_PARAMS. It is reported to the guest TD by TDG.VP.INFO,
TDG.VM.RD* and as part of TDREPORT_STRUCT returned by TDG.MR.REPORT. ATTRIBUTES is migrated to a destination
platform as part of the immutable TD state export by TDH.EXPORT.STATE.IMMUTABLE and import by
TDH.IMPORT.STATE.IMMUTABLE. 15

The ATTRIBUTES bits are divided into four groups, as shown in the table below, according to their impact on TD security:

• If any bit in the TUD group is set to 1, the guest TD is under off-TD debug and is untrusted.

• Bits in the TUP group indicate features that impact security and trust. It is up to the remote verifier to decide whether
the impact on TD trustworthiness is acceptable.

• Bits in the SEC group indicate features that may impact TD security but are not considered as impacting TD trust. Bits 20

in the SEC group may have a positive or a negative impact on the TD security if set, as specified in the table.

• Bits in the OTHER group indicate feature that are attested but do not impact TD security.

The table below shows the whole set of ATTRIBUTES bits that have been defined. However, the following must be noted:

• Some versions of the TDX module may not support some of the ATTRIBUTES bits. E.g., for a TDX Module that does
not support TD Migration, the MIGRATABLE bit must always be 0. 25

• Some of the ATTRIBUTES bits depend on CPU support. E.g., for a CPU does not support Key Locker, the KL bit must
be 0.

Notes

• The host VMM can determine the supported set of ATTRIBUTES bits by reading the ATTRIBUTES_FIXED0 and
ATTRIBUTES_FIXED1 fields using TDH.SYS.RD/RDALL. 30

• The attestation infrastructure may evaluate a TD’s ATTRIBUTES based on the negative or positive security impact of
each bit. For example, if a new version of the TDX module uses the currently reserved bit 25, the attestation
infrastructure can know that this bit has a negative security impact when set, even without knowing the meaning of
the bit.

• TD configuration that does not need to be attested (normally because it doesn’t impact TD security) is not included 35

in ATTRIBUTES. See the definition of CONFIG_FLAGS, CPUID configuration and other fields of TD_PARAMS in the
following sections.

Table 3.10: ATTRIBUTES Definition

Bits Group Description Bits Bit Name TD
Security
Impact
if 1

Description

3:0 TUD TD Under Debug

If any of the bits
in this group are
set to 1, the guest
TD is untrusted.

0 DEBUG Negative Guest TD runs in off-TD debug mode. Its VCPU
state and private memory are accessible by the
host VMM.

DEBUG may not be set if MIGRATABLE is set.

3:1 RESERVED Negative Reserved for future TUD flags – must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 23 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Group Description Bits Bit Name TD
Security
Impact
if 1

Description

15:4 TUP TD Under
Profiling

The TD is subject
to profiling,
which may expose
side channel
information to
untrusted entities.

4 HGS_PLUS_PROF Negative The TD is subject to HGS+ operation. HGS+
monitors the TD operation as part of the whole
system.

This bit may be set, if supported by the TDX
module, regardless on CPU support.

5 PERF_PROF Negative The TD is subject to system profiling using
performance monitoring counters. Those counters
are not context-switched on TD entry and exit; they
monitor the TD operation as part of the whole
system.

This bit may be set, if supported by the TDX
module, regardless on CPU support.

6 PMT_PROF Negative The TD is subject to system profiling using core
out-of-band telemetry. Core telemetry monitors
the TD operation as part of the whole system.

This bit may be set, if supported by the TDX
module, regardless of CPU support.

15:7 RESERVED Negative Reserved for future TUP flags – must be 0

31:16 SEC Security

Attributes that
may impact TD
security

16 ICSSD Positive Indicates that the TDX module must use
Instruction-Count based Single-Step Defense to
protect against single-step attacks.

ICSSD may not be set if PERFMON is set.

This bit may only be set if the TDX module supports
ICSSD.

22:17 RESERVED_P Positive Reserved for future SEC flags that will indicate
positive impact on TD security.

• As an input to TDH.MN.INIT, must be 0.

Attestation verifiers may allow any value.

26:23 RESERVED_N Negative Reserved for future SEC flags that will indicate
negative impact on TD security – must be 0

27 LASS Positive TD is allowed to use Linear Address Space
Separation.

This bit may only be set if both the TDX module and
the CPU support LASS.

28 SEPT_VE_DISABLE Negative Disable EPT violation conversion to #VE(PENDING)
on guest TD access of PENDING pages

29 MIGRATABLE Negative TD is migratable (using a Migration TD).

MIGRATABLE may not be set if either DEBUG or
PERFMON is set.

This bit may only be set if the TDX module supports
TD Migration.

30 PKS Positive TD is allowed to use Supervisor Protection Keys.

This bit may only be set if both the TDX module and
the CPU support PKS.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 24 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Group Description Bits Bit Name TD
Security
Impact
if 1

Description

31 KL Positive TD is allowed to use Key Locker.

This bit may only be set if both the TDX module and
the CPU support Key Locker.

55:32 RESERVED Reserved 55:32 RESERVED None Reserved for future expansion of the SEC group -
must be 0

63:56 OTHER Attributes that are
attested but do
not impact TD
security

61:56 RESERVED None Reserved for future OTHER flags – must be 0

62 TPA None The TD is a TDX Connect Provisioning Agent.

This bit may only be set if both the TDX module and
the CPU support TDX Connect.

63 PERFMON None TD is allowed to use Perfmon and PERF_METRICS
capabilities.

PERFMON may not be set if either MIGRATABLE or
ICSSD is set.

This bit may only be set if the TDX Module supports
Performance Monitoring virtualization.

3.4.2. XFAM

Intel SDM, Vol. 1, 13 Managing State Using the XSAVE Feature Set
Intel SDM, Vol. 3, 13 System Programming for Instruction Set Extensions and Processor Extended State

Intel TDX module extended state handling is described in the [TDX Module Base Spec]. 5

XFAM (eXtended Features Available Mask) is defined as a 64b bitmap, which has the same format as XCR0 or IA32_XSS
MSR. XFAM determines the set of extended features available for use by the guest TD. XFAM is provided by the host
VMM as a guest TD initialization parameter as part of TD_PARAMS. It is reported to the guest TD by CPUID(0x0D, 0x01)
and as part of TDREPORT_STRUCT returned by TDG.MR.REPORT.

The Intel TDX module and the Intel® Architecture impose some rules on how the bits of XFAM may be set. See the [TDX 10

Module Base Spec] for details.

Support of XFAM bits depend on CPU support and TDX module support. The supported bit values can be enumerated by
reading the XFAM_FIXED_0 and XFAM_FIXED_1 fields using TDH.SYS.RD/RDALL.

3.4.3. CONFIG_FLAGS

CONFIG_FLAGS is a set of TD configuration flags. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 25 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 3.11: TD_PARAMS_STRUCT.CONFIG_FLAGS Definition

Bits Name Description

0 GPAW GPAW (Guest Physical Address Width1) controls the position of the SHARED
bit in GPA. It is copied to each TD VMCS and L2 VMCS GPAW execution
control on TDH.VP.INIT and TDH.IMPORT.STATE.VP.

0: GPA.SHARED bit is GPA[47]

1: GPA.SHARED bit is GPA[51]

A value of 1 can only be specified if EPTP_CONTROLS[5:3] is specified as 4
(i.e., 5-level EPT). For details, see the [TDX Arch Extensions Spec].

1 FLEXIBLE_PENDING_VE Controls the guest TD’s ability to change the PENDING page access behavior
from its default value:

0: The guest TD cannot change the behavior set by
ATTRIBUTES.SEPT_VE_DISABLE.

1: The guest TD can change the default behavior set by
ATTRIBUTES.SEPT_VE_DISABLE.

Enumeration: Availability of FLEXIBLE_PENDING_VE is enumerated by
TDX_FEATURES0.PENDING_EPT_VIOLATION_V2 (bit 16) and
by CONFIG_PARAMS_FIXED0/1, readable using TDH.SYS.RD*.

2 NO_RBP_MOD Controls whether RBP value can be modified by TDG.VP.VMCALL and
TDH.VP.ENTER:

0: RBP can be used as an input to TDG.VP.VMCALL. The value provided
by the guest TD is used as an output of TDH.VP.ENTER. The value
provided by the host TD to the following TDH.VP.ENTER is used as an
output of TDG.VP.VMCALL.

1: RBP can’t be used as an input to TDG.VP.VMCALL. TDG.VP.VMCALL
preserves the guest TD’s value of RBP. TDH.VP.ENTER preserves the
host VMM’s value of RBP.

Enumeration: Availability of NO_RBP_MOD is enumerated by
TDX_FEATURES0.NO_RBP_MOD (bit 18) and by
CONFIG_PARAMS_FIXED0/1, readable using TDH.SYS.RD*.

3 MAXPA_VIRT Controls virtualization of physical address width, as enumerated by
CPUID(0x80000008).EAX[7:0]:

0: The virtual value of CPUID(0x80000008).EAX[7:0] is set to the native
value of that field.

 The virtual value of CPUID(0x80000008).EAX[23:16] is determined by
the setting of MAXGPA_VIRT (bit 4 below).

1: MAXGPA_VIRT (bit 4 below) must be set to 0.

 The virtual value of CPUID(0x80000008).EAX[7:0] is configured by the
host VMM.

 The virtual value of CPUID(0x80000008).EAX[23:16] is set to 0.

For details, see the [Base Spec] discussion of GPA space size virtualization.

Enumeration: Availability of MAXPA_VIRT is enumerated by
TDX_FEATURES0.MAXPA_VIRT (bit 27) and by
CONFIG_PARAMS_FIXED0/1, readable using TDH.SYS.RD*.

1 The name is misleading, since the GPA width is not determined by GPAW.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 26 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Name Description

4 MAXGPA_VIRT Controls virtualization of guest physical address width, as enumerated by
CPUID(0x80000008).EAX[23:16]:

0: The virtual value of CPUID(0x80000008).EAX[7:0] is determined by the
setting of MAXPA_VIRT (bit 3 above).

 The virtual value of CPUID(0x80000008).EAX[23:16] is set to 0.

1: MAXPA_VIRT (bit 3 above) must be set to 0.

 The virtual value of CPUID(0x80000008).EAX[7:0] is set to the native
value of that field.

 The virtual value of CPUID(0x80000008).EAX[23:16] is set depending
on the value of GPAW (bit 0 above) and the native value of
CPUID(0x80000008).EAX[7:0].

For details, see the [Base Spec] discussion of GPA space size virtualization.

Enumeration: Availability of MAXGPA_VIRT is enumerated by
TDX_FEATURES0.MAXGPA_VIRT (bit 33) and by
CONFIG_PARAMS_FIXED0/1, readable using TDH.SYS.RD*.

63:5 RESERVED Must be 0

3.4.4. CPUID_VALUES

CPUID_VALUES is defined as a 128b structure composed of four 32b fields representing the values returned by CPUID in
registers EAX, EBX, ECX and EDX. An array of CPUID_RET is used during guest TD configuration by TDH.MNG.INIT.

Table 3.12: CPUID_VALUES Definition 5

Field Offset
(Bytes)

Size
(Bytes)

Description

EAX 0 4 Value returned by CPUID in EAX

EBX 4 4 Value returned by CPUID in EBX

ECX 8 4 Value returned by CPUID in ECX

EDX 12 4 Value returned by CPUID in EDX

3.4.5. TD_PARAMS

TD_PARAMS is provided as an input to TDH.MNG.INIT, and some of its fields are included in the TD report. The format
of this structure is valid for a specific MAJOR_VERSION of the Intel TDX module, as reported by TDH.SYS.RD/RDALL or
TDH.SYS.INFO. 10

TD_PARAMS’ size is 1024B.

Table 3.13: TD_PARAMS Definition

Field Offset
(Bytes)

Type Size
(Bytes)

Description Included in
TDREPORT?

ATTRIBUTES 0 64b bitmap (see
3.4.1)

8 TD attributes: the value set in this field must
comply with ATTRIBUTES_FIXED0 and
ATTRIBUTES_FIXED1 enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO.

Yes

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 27 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Offset
(Bytes)

Type Size
(Bytes)

Description Included in
TDREPORT?

XFAM 8 64b bitmap in
XCR0 format

8 Extended Features Available Mask: indicates
the extended state features allowed for the
TD. XFAM’s format is the same as XCR0 and
IA32_XSS MSR. The value set in this field
must satisfy the following conditions:

• Natively valid value for XCR0 and
IA32_XSS (does not contain reserved bits,
features not supported by the CPU, or
invalid bit combinations)

• Complies with XFAM_FIXED0 and
XFAM_FIXED1 as enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO.

Yes

MAX_VCPUS 16 Unsigned 16b
Integer

2 Maximum number of VCPUs

Must be higher than 0.

Must not be higher than
MAX_VCPUS_PER_TD, which may be read by
TDH.SYS.RD*.

No

NUM_L2_VMS 18 Unsigned 8b
Integer

1 Number of L2 VMs

May be between 0 and 3. A value of 0
indicates no TD Partitioning is supported.

No

MSR_CONFIG_CTLS 19 8b bitmap 1 MSR configuration controls: No

Bit Description

0 Indicates that TD configuration
should use the
IA32_ARCH_CAPABILITIES_CONFIG
field below

Other Reserved, must be 0

RESERVED 20 N/A 4 Must be 0 No

EPTP_CONTROLS 24 EPTP 8 Control bits of EPTP – copied to each TD
VMCS on TDH.VP.INIT:

Bits 2:0 Memory type – must be 110 (WB)

Bits 5:3 EPT level – 1 less than the EPT page-
walk length. Must be either 3 or 4.
Must comply with the EPT page-
walk length supported by the CPU.

Bits 63:6 Reserved – must be 0

No

CONFIG_FLAGS 32 64b bitmap

8 Non-measured TD-scope execution controls.
See 3.4.3 above for details.

No

TSC_FREQUENCY 40 16b unsigned
integer

2 TD-scope virtual TSC frequency in units of
25MHz – must be between 4 and 400.

No

RESERVED 42 N/A 38 Must be 0 No

MRCONFIGID 80 SHA384_HASH 48 Software-defined ID for non-owner-defined
configuration of the guest TD – e.g., run-time
or OS configuration

Yes

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 28 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Offset
(Bytes)

Type Size
(Bytes)

Description Included in
TDREPORT?

MROWNER 128 SHA384_HASH 48 Software-defined ID for the guest TD’s owner Yes

MROWNERCONFIG 176 SHA384_HASH 48 Software-defined ID for owner-defined
configuration of the guest TD – e.g., specific
to the workload rather than the run-time or
OS

Yes

IA32_ARCH_
CAPABILITIES_CONFIG

224 64b bitmap 8 Configuration of IA32_ARCH_CAPABILITIES
MSR virtualization (if enabled by
MSR_CONFIG_CTLS above). Configuration
capabilities are enumerated by the
IA32_ARCH_CAPABILITIES_CONFIG_MASK.
which can be read by TDH.SYS.RD/RDALL.

No

MRCONFIGSVN 232 16b unsigned
integer

2 SVN corresponding to MRCONFIGID

Support of this field is enumerated by
TDX_FEATURES0.SEALING (bit 12). If not
supported, this field must be 0.

Yes

MROWNERCONFIGSVN 234 16b unsigned
integer

2 SVN corresponding to MROWNERCONFIG

Support of this field is enumerated by
TDX_FEATURES0.SEALING (bit 12). If not
supported, this field must be 0.

Yes

RESERVED 236 N/A 20 Must be 0 No

CPUID_CONFIG[0] 256 CPUID_VALUES 16 Direct configuration of CPUID leaves/sub-
leaves virtualization: the number and order
of entries must be equal to the number and
order of directly configurable or allowable
CPUID leaves/sub-leaves reported by
TDH.SYS.RD/RDALL or TDH.SYS.INFO. Note
that the leaf and sub-leaf numbers are
implicit.

Only bits that have been reported as 1 by
TDH.SYS.RD/RDALL or TDH.SYS.INFO may be
set to 1.

Note that the virtualization of many CPUID bit
fields not enumerated in this list is
configurable indirectly, via the XFAM and
ATTRIBUTES fields.

No

CPUID_CONFIG[n-1] CPUID_VALUES 16

RESERVED N/A Fills up to TD_PARAMS size (1024B) – must be
0

No

3.4.6. EVENT_FILTER and the EVENT_FILTERS Array

Enumeration: Support of EVENT_FILTER is enumerated by TDX_FEATURES0.EVENT_FILTERING (bit 24) and
TDX_FEATURES0.ENHANCED_EVENT_FILTERING (bit 31), readable by TDH.SYS.RD*.

EVENT_FILTER Entry 5

EVENT_FILTER specifies a single criterion for filtering values written by the guest TD to the IA32_PERFEVTSELx MSRs.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 29 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 3.14: EVENT_FILTER Entry

Bits Name Description

7:0 EVENT_SELECT Value for matching the IA32_PERFEVTSEL MSR’s EVENT_SELECT field

30:8 RESERVED Must be 0

31 NEGATIVE If the TDX module supports enhanced event filtering, as enumerated by
TDX_FEATURES0.ENHANCED_EVENT_FILTERING, then NEGATIVE indicates a
negative match.

Else NEGATIVE must be 0.

47:32 UMASK Value for matching the IA32_PERFEVTSEL MSR’s UMASK2 and UMASK field, after
applying UMASK_MASK (if applicable).

If the CPU does not support UMASK2, then the upper 8 bit of UMASK must be 0.

63:48 UMASK_MASK If the TDX module supports enhanced event filtering, as enumerated by
TDX_FEATURES0.ENHANCED_EVENT_FILTERING, then UMASK_MASK selects which
bits of the IA32_PERFEVTSEL MSR’s UMASK2 and UMASK fields to compare with
UMASK.

Else, UMASK_MASK must be 0xFFFF.

EVENT_FILTERS Array

EVENT_FILTERS is an array of EVENT_FILTER entries, provided by the host VMM as an input to TDH.MNG.INIT.

If the TDX module supports enhanced event filtering, as enumerated by TDX_FEATURES0.ENHANCED_EVENT_FILTERING, 5

then the array must be sorted in an ascending order by EVENT_SELECT. Else, the array must be sorted in an ascending
order by the raw 64-bit value of each entry and must not contain duplicate entries.

The maximum number of entries in the array is enumerated by MAX_EVENT_FILTERS, readable by TDH.SYS.RD*.

3.5. Physical Memory Management Types

Note: This section describes physical memory types, as defined. Implementation may differ. 10

PAMT entry and PT (page type) are defined in the [TDX Module Base Spec].

3.5.1. PAMT Page Type (PT) Values

Some PT values are applicable only when enumerated by certain TDX_FEATURES bits (see 3.3.3.1). If a certain PT value
is not applicable, then it is considered reserved. For a detailed description of the page types, refer to the [Base Spec].

Table 3.15: PAMT Page Type Values 15

Page Type Value TDX_FEATURES
Enumeration

PT_NDA 0 N/A The physical page is Not Directly Assigned to the
Intel TDX module.

PT_RSVD 1 N/A The physical page is reserved for non-TDX usage.

PT_PR 2 ACT (bit 14) The physical page holds a page that is pending
release.

PT_REG 3 N/A The physical page holds TD private memory.

PT_TDR 4 N/A The physical page holds the TD Root (TDR) control
structure.

PT_TDCX 5 N/A The physical page holds a TD control structure.

PT_TDVPR 6 N/A The physical page holds a TD VCPU Root (TDVPR)
page.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 30 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Page Type Value TDX_FEATURES
Enumeration

PT _TR 7 NON_BLOCKING_RESIZE
(bit 35)

The physical page has no current GPA mapping, but
the CPU may still hold TLB entries associated with
it. The page must be TLB tracked before it can be
assigned for any usage.

PT_EPT 8 N/A The physical page holds a Secure EPT page.

PT_DEVIFCS_R 9 TDX_CONNECT (bit 6) The physical page holds a DEVIFCS structure

PT_DEVIF_NR 10 TDX_CONNECT (bit 6) The physical page holds a DEVIFCS internal data

PT_IOMMU_MT 11 TDX_CONNECT (bit 6) The physical page holds an I/O
(IOMMU/IDE/SPDM) data

PT_MMIO_MT 12 TDX_CONNECT (bit 6) The physical page holds an MMIO metadata table

PT_DEVIFMT 13 TDX_CONNECT (bit 6) The physical page holds a DEVIF metadata table

RESERVED Other N/A Reserved

3.5.2. Physical Page Size

Three physical page size levels (4KB, 2MB and 1GB) are defined.

Table 3.16: Page Size Definition

Page Size Associated
Physical Page Size

Value

PS_1G 1GB 2

PS_2M 2MB 1

PS_4K 4KB 0

 5

3.6. TD Private Memory Management Data Types: Secure EPT

Intel SDM, Vol. 3, 28.2.2 EPT Translation Mechanism

Note: This section describes private memory management types, as defined. Implementation may differ.

3.6.1. Secure EPT Levels

Secure EPT level definition is identical to legacy VMX EPT level definition. As a rule, an EPT entry at level L maps a GPA 10

range whose size is 212+9*L.

Table 3.17: EPT Levels Definition

Level 0 1 2 3 4 5 (5-Level EPT Only)

GPA Range Size 4KB 2MB 1GB 512GB 256TB 16PB2

Child Physical
Page Size

4KB 2MB 1GB N/A N/A N/A

EPT Page Type N/A EPT EPD EPDPT EPML4 EPML5

Parent EPT
Entry Type

EPTE EPDE EPDPTE EPML4E EPML5E (5-level EPT) or
VMCS.EPTP (4-level EPT)

VMCS.EPTP

2 Only the lower half is available as TD private GPA space, because the SHARED bit must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 31 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Level 0 1 2 3 4 5 (5-Level EPT Only)

GPA Offset Bits 20:12 29:21 38:30 47:39 51:48 (5-level EPT only) N/A

3.6.2. Secure EPT Entry Information as Returned by TDX Module Functions

Many Intel TDX module functions return Secure EPT entry information. This information is returned in the formats
detailed below, which may be different that the actual Secure EPT format as maintained by the TDX module in memory.

Note: The returned Secure EPT information is subject to change with new versions of TDX. 5

3.6.2.1. Returned L1 Secure EPT Entry Content

The returned L1 secure EPT entry format is detailed below. It may be different that the actual Secure EPT format as
maintained by the TDX module in memory.

Table 3.18: L1 Secure EPT Entry Content as Returned by TDX Interface Functions

L1 Secure EPT Entry Field Value Returned in RCX
(per Entry State Returned in RDX)

MSB LSB Size Short
Name

Full Name Enabled Non-FREE
Leaf

Non-FREE
Non-Leaf

FREE

0 0 1 R Read N/A R R 0

1 1 1 W Write N/A W W 0

2 2 1 X / Xs Execute N/A X X 0

5 3 3 MT Memory Type N/A MT 0 0

6 6 1 IPAT Ignore PAT N/A IPAT 0 0

7 7 1 PS Leaf N/A 1 0 0

8 8 1 A Accessed No 0 0 0

9 9 1 D Dirty No 0 0 0

10 10 1 Xu Execute (User) No 0 0 0

11 11 1 Ignored Ignored N/A 0 0 0

51 12 40 HPA[51:12] Host Physical Address [51:12] N/A HPA[51:12] HPA[51:12] 0

57 57 1 VGP Verify Guest Paging No 0 0 0

58 58 1 PWA Paging-Write Access No 0 0 0

59 59 1 Ignored Ignored N/A 0 0 0

60 60 1 SSS Supervisor Shadow Stack No 0 0 0

61 61 1 SPP Check Sub-Page Permissions No 0 0 0

62 62 1 Ignored Ignored N/A 0 0 0

63 63 1 SVE Suppress #VE Yes SVE 0 1

 10

For L1 SEPT entries, the R, W and X access permission bits’ values depend on the SEPT entry state:

• For leaf entries in the MAPPED and EPORTED_DIRTY states, and non-leaf entries in the NL_MAPPED state, RWX = 111.

• For leaf entries in the BLOCKED, PENDING* and REMOVED states, non-leaf entries in the NL_BLOCKED state and FREE
entries, RWX = 000.

• For leaf entries in the *BLOCKEDW* states, RWX = 101. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 32 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.6.2.2. Returned L2 Secure EPT Entry Content

The returned L2 secure EPT entry format is detailed below. It may be different that the actual L2 Secure EPT format as
maintained by the TDX module in memory.

Table 3.19: L2 Secure EPT Entry Content as Returned by TDX Interface Functions

L2 Secure EPT Entry Field Value Returned in RCX
(per Entry State Returned in RDX)

MSB LSB Size Short
Name

Full Name Enabled Non-FREE
Leaf

Non-FREE
Non-Leaf

FREE

0 0 1 R Read N/A R R 0

1 1 1 W Write N/A W W 0

2 2 1 Xs Execute N/A Xs Xs 0

5 3 3 MT Memory Type N/A MT 0 0

6 6 1 IPAT Ignore PAT N/A IPAT 0 0

7 7 1 PS Leaf N/A 1 0 0

8 8 1 A Accessed No 0 0 0

9 9 1 D Dirty No 0 0 0

10 10 1 Xu Execute (User) No Xu Xu 0

11 11 1 Ignored Ignored N/A 0 0 0

51 12 40 HPA[51:12] Host Physical Address [51:12] N/A HPA[51:12] HPA[51:12] 0

57 57 1 VGP Verify Guest Paging No 0 / VGP 0 0

58 58 1 PWA Paging-Write Access No 0 / PWA 0 0

59 59 1 Ignored Ignored N/A 0 0 0

60 60 1 SSS Supervisor Shadow Stack No 0 / SSS 0 0

61 61 1 SPP Check Sub-Page Permissions No 0 0 0

62 62 1 Ignored Ignored N/A 0 0 0

63 63 1 SVE Suppress #VE Yes SVE 0 1

 5

For L2 SEPT entries, the R, W, Xs and Xu access permission bits’ values depend on the L2 SEPT entry state and on the TD’s
ATTRIBUTE.DEBUG value:

• For leaf entries in the L2_MAPPED state:
o If ATTRIBUTES.DEBUG is 0, then RWXsXu = 1111 and VGP, PWA and SSS are cleared to 0.
o Else, the real values of RWXsXu and of VGP, PWA and SSS are returned. 10

• For leaf entries in the L2_BLOCKED state:
o If ATTRIBUTES.DEBUG is 0, then RWXsXu = 0000 and VGP, PWA and SSS are cleared to 0.
o Else, then RWXsXu = 0000 and GP, PWA and SSS are returned.

• For non-leaf entries in the L2_NL_MAPPED state, RWXsXu = 1111.

• For non-leaf entries in the L2_NL_BLOCKED state and L2_FREE entries, RWXsXu = 0000. 15

3.6.2.3. Additional Returned Secure EPT Information

Additional information for secure EPT entries is returned as defined below. Some SEPT entry state values are applicable
only when enumerated by certain TDX_FEATURES bits (see 3.3.3.1). If a certain SEPT entry state value is not applicable,
then it is considered reserved.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 33 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 3.20: Additional Secure EPT Entry Information Returned by TDX Interface Functions

Bits Name Description

2:0 Level Level of the returned Secure EPT entry – see 3.6.1 above

7:3 Reserved Set to 0

15:8 State The TDX state of the Secure EPT entry – see Table 3.21 below

17:16 VM Index of the VM for which the SEPT information is returned

63:18 Reserved Set to 0

Table 3.21: Secure L1 EPT Entry TDX State Returned by TDX Interface Functions

L1 SEPT Entry State Name Public
State
Number

TDX_FEATURES
Enumeration

Description

FREE 0 N/A L1 Secure EPT entry does not map a GPA range.

REMOVED 5 TD_MIGRATION
or S4

L1 Secure EPT entry is of a removed page

NL_MAPPED 132 N/A L1 Secure EPT entry maps a private GPA range
which is accessible by the guest TD.

NL_BLOCKED 129 N/A L1 Secure EPT entry maps a private GPA range, but
new address translations to that range are blocked.

MAPPED 4 N/A L1 Secure EPT entry maps a private GPA page which
is accessible by the guest TD.

BLOCKED 1 N/A L1 Secure EPT entry maps a private GPA page but
new address translations to that range are blocked.

BLOCKEDW 8 TD_MIGRATION L1 Secure EPT entry maps a private GPA page, but
new address translations for write operations to
that range are blocked.

EXPORTED_BLOCKEDW 9 TD_MIGRATION
or S4

L1 Secure EPT entry maps a private page that has
been blocked for writing and exported.

EXPORTED_DIRTY 11 TD_MIGRATION L1 Secure EPT entry maps a private page that was
exported but is not blocked for writing and its
content and/or attributes may have since been
modified.

EXPORTED_DIRTY_BLOCKEDW 12 TD_MIGRATION L1 Secure EPT entry maps a private page that was
previously exported, its content and/or attributes
may have since been modified and then it was
blocked for writing.

PENDING 2 N/A L1 Secure EPT entry maps a 4KB or a 2MB page that
has been dynamically added to the guest TD using
TDH.MEM.PAGE.AUG and is pending acceptance by
the guest TD using TDG.MEM.PAGE.ACCEPT. This
page is not yet accessible by the guest TD.

PENDING_BLOCKED 3 N/A L1 Secure EPT entry is both pending and blocked.

PENDING_BLOCKEDW 16 TD_MIGRATION L1 Secure EPT entry is both pending and blocked
for writing.

PENDING_EXPORTED_BLOCKEDW 17 TD_MIGRATION
or S4

L1 Secure EPT entry is both pending and exported.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 34 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

L1 SEPT Entry State Name Public
State
Number

TDX_FEATURES
Enumeration

Description

PENDING_EXPORTED_DIRTY 19 TD_MIGRATION L1 Secure EPT entry is both pending and exported
and is not blocked for writing.

PENDING_EXPORTED_DIRTY_BLOCKEDW 20 TD_MIGRATION Secure EPT entry is both pending and exported and
is blocked for writing.

MMIO_MAPPED 32 TDX_CONNECT Secure EPT entry maps a private MMIO page which
is accessible by the guest TD.

MMIO_BLOCKED 33 TDX_CONNECT Secure EPT entry maps a private MMIO page, but
new address translations to that page are blocked.

MMIO_PENDING 34 TDX_CONNECT Secure EPT entry maps a 4KB, 2MB or 1GB MMIO
page that is pending acceptance by the guest TD
using TDG.MMIO.ACCEPT. This page is not yet
accessible by the guest TD.

MMIO_PENDING_BLOCKED 35 TDX_CONNECT Secure EPT entry for an MMIO page is both
pending and blocked.

Table 3.22: Secure L2 EPT Entry TDX State Returned by TDX Interface Functions

L2 SEPT Entry State Name Public State
Number

TDX_FEATURES
Enumeration

Description

L2_FREE 64 TD_PARTITIONING L2 Secure EPT entry does not map a GPA range.

L2_NL_MAPPED 196 TD_PARTITIONING L2 Secure EPT entry maps a private GPA range which is
accessible by the L2 VM.

L2_NL_BLOCKED 193 TD_PARTITIONING L2 Secure EPT entry maps a private GPA range, but new
address translations to that range are blocked.

L2_MAPPED 68 TD_PARTITIONING L2 Secure EPT entry maps a private GPA page which is
accessible by the L2 VM.

L2_BLOCKED 65 TD_PARTITIONING L2 Secure EPT entry maps a private GPA page but new
address translations to that range are blocked.

L2_MMIO_MAPPED 96 TD_PARTITIONING
and TDX_CONNECT

L2 Secure EPT entry maps a private MMIO page which is
accessible by the L2 VM.

L2_MMIO_BLOCKED 97 TD_PARTITIONING
and TDX_CONNECT

L2 Secure EPT entry maps a private MMIO page, but new
address translations to that page are blocked.

3.6.3. GPA_ATTR: GPA Attributes

GPA_ATTR specifies the settable attributes of a page. It is used as an input of TDG.MEM.PAGE.ATTR.WR, as an output of 5

TDG.PAGE.ATTR.WR, and for migration (TDH.EXPORT.MEM and TDH.IMPORT.MEM) and, if the TD is in debug mode, for
returning of L2 attributes by TDH.MEM.SEPT.RD.

GPA_ATTR is an array of four GPA_ATTR_SINGLE_VM 16-bit entries:

Table 3.23: GPA_ATTR: GPA Attributes (all VMs) Definition

Bits VM
Index

Bits Description

15:0 0 15:0 GPA attributes for L1 (all-0 for migration)

31:16 1 31:24 GPA attributes for L2 VM #1

47:32 2 47:32 GPA attributes for L2 VM #2

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 35 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits VM
Index

Bits Description

63:48 3 63:48 GPA attributes for L2 VM #3

Table 3.24: GPA_ATTR_SINGLE_VM: GPA Attributes (Single VM) Definition

Bit(s) Size Attribute
Type

Name Description TDG.MEM.PAGE.
ATTR.RD/WR Access

Used for
Migration

L1 L2
Mem.

L2
MMIO3

L1 L2

0 1 Intel64 R Read None RW RW No Yes

1 1 Intel64 W Write None RW RW No Yes

2 1 Intel64 Xs Execute (Supervisor) None RW R No Yes

3 1 Intel64 Xu Execute (User) None RW R No Yes

4 1 Intel64 VGP Verify Guest Paging None RW R No Yes

5 1 Intel64 PWA Paging-Write Access None RW R No Yes

6 1 Intel64 SSS Supervisor Shadow Stack None RW R No Yes

7 1 Intel64 RESERVED Reserved, must be 0 None None None No No

14:8 7 N/A RESERVED Reserved, must be 0 None R R No No

15 1 TDX VALID Indicates that the other bits are
valid. If its value is 0, other fields
are reserved and must be 0.

RW RW RW No Yes

3.6.3.1. GPA Attributes Rules

The TDX module enforces the following rules to help ensure that GPA attributes will not cause an EPT Misconfiguration 5

(see [Intel SDM, Vol. 3, 28.3.3.1]):

• If VALID is 0, all other bits must be 0

• Reserved bits must be 0.

• If bit W is 1, bit R must be 1

• If bit PWA is 1, bit R must be 1 (regardless of the VMCS “EPT paging-write control” VM-execution control. 10

The TDX module checks, on TDH.SYS.INIT, that the CPU supports setting Xs or Xu when R is 0.

3.6.4. GLA List

GLA lists are used by TDG.VP.INVGLA.

3.6.4.1. GLA_LIST_ENTRY

GLA_LIST_ENTRY species a range of consecutive guest linear addresses, each aligned on 4KB. 15

Table 3.25: GLA_LIST_ENTRY Definition

Bits Name Description

11:0 LAST_GLA_INDEX Index of the last 4KB-aligned linear address to be processed

63:12 BASE_GLA Bits 63:12 of the guest linear address of the first 4KB page to be processed

3 Applicable only if the TDX module supports TDX Connect

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 36 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.6.4.2. GLA_LIST

A GLA_LIST is an array of up to 512 GLA_LIST_ENTRIES.

3.6.4.3. GLA_LIST_INFO: GLA List GPA and Additional Information

GLA_LIST_INFO is a 64b structure used as a GPR input and output operand of TDG.VP.INVGLA. It provides the GPA of the 5

GLA list page in private memory, the index of the first entry and the number of entries to be processed.

Table 3.26: GLA_LIST_INFO

Bits Name Description

8:0 FIRST_ENTRY Index of the first entry of the list to be processed

11:9 RESERVED Reserved: must be 0

51:12 LIST_GPA Bits 51:12 of the guest physical address of the GLA list page, which must be a
private GPA

61:52 NUM_ENTRIES Number of entries in the GLA list to be processed, must be between 0 through 512

63:62 RESERVED Reserved: must be 0

3.7. TD Entry and Exit Types

3.7.1. Extended Exit Qualification 10

Extended Exit Qualification is a 64-bit field returned by TDH.VP.ENTER for asynchronous TD exits with an architectural
VMX exit reasons. It contains additional non-VMX, TDX-specific information.

Table 3.27: Extended Exit Qualification

Bits Name Description

3:0 TYPE Extended exit qualification type

Value Name Description

0 NONE No extended exit qualification

1 ACCEPT Extended exit qualification for an EPT
violation during TDG.MEM.PAGE.ACCEPT

2 GPA_DETAILS Extended exit qualification for an EPT
violation caused by guest-side interface
function failure of GPA→HPA translation

3 TD_ENTRY_MSR_LOAD_FAILURE Extended exit qualification for failures of
TD entry due to loading guest MSR state

4 TD_ENTRY_XSTATE_LOAD_FAILURE Extended exit qualification for failures of
TD entry due to loading guest extended
state

5 ATTR_WR Extended exit qualification for an EPT
violation during TDG.MEM.PAGE.ATTR.WR

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 37 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Name Description

6 PENDING_EPT_VIOLATION4 Extended exit qualification for an EPT
violation due to guest TD access to a
PENDING page

Other Reserved

31:4 Reserved Set to 0

63:32 INFO TYPE-specific information

TYPE Value

NONE 0

ACCEPT See the table below

GPA_DETAILS See the table below

TD_ENTRY_MSR_LOAD_FAILURE MSR index

TD_ENTRY_XSTATE_LOAD_FAILURE 0

ATTR_WR See the table below

PENDING_EPT_VIOLATION 0

Reserved 0

Table 3.28: Extended Exit Qualification INFO Field (Bits 63:32) when TYPE is ACCEPT or ATTR_WR

Bits Name Description

34:32 REQ_SEPT_LEVEL SEPT level requested as an input to TDG.MEM.PAGE.ACCEPT or
TDG.MEM.PAGE.ATTR.WR

37:35 ERR_SEPT_LEVEL SEPT level in which TDG.MEM.PAGE.ACCEPT or TDG.MEM.PAGE.ATTR.WR
detected an error

45:38 ERR_SEPT_STATE The TDX state of the Secure EPT entry where TDG.MEM.PAGE.ACCEPT or
TDG.MEM.PAGE.ATTR.WR detected an error – see Table 3.21 above

46 ERR_SEPT_IS_LEAF Indicates that the SEPT entry where TDG.MEM.PAGE.ACCEPT or
TDG.MEM.PAGE.ATTR.WR detected an error is a leaf entry

63:47 Reserved Set to 0

Table 3.29: Extended Exit Qualification INFO Field (Bits 63:32) when TYPE is GPA_DETAILS

Bits Name Description

34:32 Reserved Set to 0

37:35 ERR_SEPT_LEVEL Level where the Secure EPT walk error occurred

51:38 Reserved Set to 0

53:52 VM_INDEX Virtual machine index for which Secure EPT walk error occurred

63:54 Reserved Set to 0

 5

4 Availability of this indication is enumerated by TDX_FEATURES0.PENDING_EPT_VIOLATION_V2 (bit 16), readable by TDH.SYS.RD*.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 38 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.8. L2 VM Transition Types

3.8.1. L2_ENTER_GUEST_STATE

L2_ENTER_GUEST_STATE is used as input and output of TDG.VP.ENTER. It is an array of general-purpose (GPR) register
values, organized according to their architectural number, with additional values of RFLAG, RIP and SSP.

Table 3.30: L2_ENTER_GUEST_STATE Definition 5

Offset (Bytes) Size (Bytes) Name Description

0 8 RAX

8 8 RCX

16 8 RDX

24 8 RBX

32 8 RSP

40 8 RBP

48 8 RSI

56 8 RDI

64 8 R8

72 8 R9

80 8 R10

88 8 R11

96 8 R12

104 8 R13

112 8 R14

120 8 R15

128 8 RFLAGS

136 8 RIP

144 8 SSP

152 2 GUEST_INTERRUPT_STATUS Bits 7:0: RVI

Bits 15:7: SVI

3.9. Measurement and Attestation Types

Note: This section describes measurement and attestation types, as defined. Implementation may differ.

3.9.1. CPUSVN

CPUSVN is a 16B Security Version Number of the CPU. 10

• There is a single CPUSVN used for SGX and TDX.

• CPUSVN contents are considered micro-architectural. CPUSVN is composed of fields for PR_RESET_SVN,
R_LAST_PATCH_SVN, SINIT, BIOS ACM, Boot Guard ACM and BIOS Guard NP-PPPE module.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 39 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.9.2. TDREPORT_STRUCT

TDREPORT_STRUCT is the output of the TDG.MR.REPORT function. TDREPORT_STRUCT is composed of a generic MAC
structure (REPORTMACSTRUCT, see 3.9.5 below), a TEE_TCB_INFO structure and a TDX-specific TEE info structure
(TDINFO_STRUCT, see 3.9.7 below).

The overall size of TDREPORT_STRUCT depends on its version, as specified in REPORTMACSTRUCT.REPORTTYPE.VERSION: 5

• For REPORTTYPE.VERSION values of 0 and 1, TDREPORT_STRUCT’s size is 1024 bytes.

Table 3.31: TDREPORT_STRUCT Definition

Name Offset
(Bytes)

Type Size
(Bytes)

Description

REPORTMACSTRUCT 0 REPORTMACSTRUCT 256 REPORTMACSTRUCT for the TDG.MR.REPORT

TEE_TCB_INFO 256 TEE_TCB_INFO_STRUCT 239 Additional attestable elements in the TD’s TCB are
not reflected in the REPORTMACSTRUCT.CPUSVN
– includes the Intel TDX module measurements.

RESERVED 495 N/A 17 Reserved – contains 0

TDINFO 512 TDINFO_STRUCT See
3.9.7

Structure containing the TD’s attestable
properties.

• The hash of this structure is found in
REPORTMACSTRUCT.TEE_INFO_HASH.

• Size is determined by
REPORTMACSTRUCT.REPORTTYPE.VERSION.
See 3.9.7 for details.

3.9.3. TEE_TCB_INFO (Reference)

TEE_TCB_INFO is defined in the [TDX Arch Extensions Spec]. The definition below is provided for reference. Some details 10

which are not applicable for TDX have been eliminated.

The size of TEE_TCB_INFO is 239 bytes.

Table 3.32: TEE_TCB_INFO Definition

Name Offset
(Bytes)

Size
(Bytes)

Description

VALID 0 8 Indicates which TEE_TCB_INFO fields are valid.

• 1 in the ith significant bit reflects that the 8 bytes starting at
offset (8 * i) are valid

• 0 in the ith significant bit reflects that either 8 bytes starting at
offset (8 * i) is not populated or reserved and is set to zero.

Set to 0x301FF.

TEE_TCB_SVN 8 16 TEE_TCB_SVN of the TDX module that created the TD on the
current platform.

TD Migration: For a TD which has been migrated, this is the
TEE_TCB_SVN of the TDX module on the
destination platform, at the time of destination TD
creation (TDH.MNG.CREATE), before import.

MRSEAM 24 48 The measurement of the TDX module that created the TD on the
current platform.

TD Migration: For a TD which has been migrated, this is the
measurement of the TDX module on the
destination platform, at the time of destination TD
creation (TDH.MNG.CREATE), before import.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 40 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Name Offset
(Bytes)

Size
(Bytes)

Description

MRSIGNERSEAM 72 48 Set to all 0’s.

ATTRIBUTES 120 8 Set to all 0’s.

TEE_TCB_SVN2 128 16 TEE_TCB_SVN of the current TDX module on the current platform.

TD Migration: For a TD which has been migrated, this is the
measurement of the current TDX module on the
destination platform, at the time
TDREPORT_STRUCT is generated by
TDG.MR.REPORT.

Note: TEE_TCB_SVN2 may be different that
TEE_TCB_SVN, due to TD-preserving TDX module
updates.

RESERVED 144 95 Set to all 0’s.

3.9.4. TEE_TCB_SVN (Reference)

TEE_TCB_SVN is defined in the [TDX Arch Extensions Spec]. The definition below is provided for reference.

Name Offset
(Bytes)

Size
(Bytes)

Description

TDX_MODULE_SVN_MINOR 0 1 TDX module minor SVN

TDX_MODULE_SVN_MAJOR 1 1 TDX module major SVN

SEAM_LAST_PATCH_SVN 2 1 Microcode SE_SVN at the time the TDX module was loaded

RESERVED 3 13 Must be Zero

3.9.5. REPORTMACSTRUCT (Reference)

Note: REPORTMACSTRUCT is defined in the [TDX Arch Extensions Spec]; the definition below is provided for reference. 5

REPORTMACSTRUCT is the first field in the TEE report structure. It is common to Intel’s Trusted Execution Environments
(TEEs) – e.g., SGX and TDX. In the TDX architecture, that is TDREPORT_STRUCT. REPORTMACSTRUCT is MAC-protected
and contains hashes of the remainder of the report structure which includes the TEE’s measurements, and where
applicable, the measurements of additional TCB elements not reflected in REPORTMACSTRUCT.CPUSVN – e.g., a SEAM’s
measurements. 10

Software verifying a TEE report structure (for TDX, this includes TEE_TCB_INFO_STRUCT and TDINFO_STRUCT) should
check the following:

1. Check that REPORTMACSTRUCT.TEE_INFO_HASH equals SHA384(TDINFO_STRUCT).
2. If REPORTMACSTRUCT.TEE_TCB_INFO_HASH is not 0, check that REPORTMACSTRUCT.TEE_TCB_INFO_HASH equals

SHA384(TEE_TCB_INFO). 15

If all checks pass, the measurements in the structure describe a TEE on this platform.

The size of REPORTMACSTRUCT is 256B.

Table 3.33: REPORTMACSTRUCT Definition

Name Offset
(Bytes)

Type Size
(Bytes)

Description MAC

REPORTTYPE 0 REPORTTYPE 4 Type Header Structure Yes

RESERVED 4 12 Must be zero Yes

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 41 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Name Offset
(Bytes)

Type Size
(Bytes)

Description MAC

CPUSVN 16 CPUSVN 16 CPU SVN Yes

TEE_TCB_INFO_HASH 32 SHA384_HASH 48 For TDX, SHA384 of TEE_TCB_INFO Yes

TEE_INFO_HASH 80 SHA384_HASH 48 SHA384 of TEE_INFO: a TEE-specific info
structure (TDINFO_STRUCT or SGXINFO) or
0 if no TEE is represented

Yes

REPORTDATA 128 64 A set of data used for communication
between the caller and the target.

Yes

RESERVED 192 32 Must be zero Yes

MAC 224 32 The MAC over the REPORTMACSTRUCT
with model-specific MAC

No

3.9.6. REPORTTYPE (Reference)

Note: REPORTTYPE is defined in the [TDX Arch Extensions Spec]; the definition below is provided for reference.

REPORTTYPE indicates the reported Trusted Execution Environment (TEE) type, sub-type and version.

The size of REPORTTYPE is 4B. 5

Table 3.34: TDX-Specific REPORTTYPE Definition

Name Offset
(Bytes)

Size
(Bytes)

Description Value

TYPE 0 1 Trusted Execution
Environment
(TEE) Type

0x00: SGX

0x7F-0x01: Reserved (TEE implemented by CPU)

0x80: Reserved (TEE implemented by a SEAM
module)

0x81: TDX

0xFF-0x82: Reserved (TEE implemented by a SEAM
module)

SUBTYPE 1 1 TYPE-specific
subtype

0: Standard TDX report

Other: Reserved

VERSION 2 1 TYPE-specific
version.

For TDX, VERSION may have the following values:

0: There are no bound nor pre-bound service TDs.
TDINFO_STRUCT.SERVTD_HASH is not used (its
value is 0).

1: TDINFO_STRUCT.SERVTD_HASH is used.

RESERVED 3 1 Must be zero 0

3.9.7. TDINFO_STRUCT

TDINFO_STRUCT is defined as the TDX-specific TEE_INFO part of TDG.MR.REPORT. It contains the measurements and
initial configuration of the TD that was locked at initialization and a set of measurement registers that are run-time 10

extendable. These values are copied from the TDCS by the TDG.MR.REPORT function. Refer to the [TDX Module Base
Spec] for additional details.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 42 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDINFO_STRUCT is composed of a base set of fields and an extension. The content of the extension and the overall size
of TDINFO_STRUCT depend on the report version, as specified in REPORTMACSTRUCT.REPORTTYPE.VERSION:

• For REPORTTYPE.VERSION values of 0 and 1, TDREPORT_STRUCT’s size is 512 bytes.

Table 3.35: Overall TDINFO_STRUCT Definition 5

Name Offset
(Bytes)

Size (Bytes) Description

TDINFO_BASE 0 448 Base TDINFO fields

TDINFO_EXTENSION 448 The extension field depends on REPORTMACSTRUCT.REPORTTYPE.VERSION:

REPORTTYPE.VERSION Size Description

0, 1 64 Reserved, must be zero

TDINFO_BASE

Table 3.36: TDINFO_BASE Definition

Name Offset
(Bytes)

Type Size (Bytes) Description

ATTRIBUTES 0 8 TD’s ATTRIBUTES

XFAM 8 8 TD’s XFAM

MRTD 16 SHA384_HASH 48 Measurement of the initial contents of the TD

MRCONFIGID 64 SHA384_HASH 48 Software-defined ID for non-owner-defined
configuration of the guest TD – e.g., run-time or OS
configuration

MROWNER 112 SHA384_HASH 48 Software-defined ID for the guest TD’s owner

MROWNERCONFIG 160 SHA384_HASH 48 Software-defined ID for owner-defined configuration of
the guest TD – e.g., specific to the workload rather than
the run-time or OS

RTMR 208 SHA384_HASH 4 * 48 Array of 4 run-time extendable measurement registers

SERVTD_HASH 400 SHA384_HASH 48 If there is one or more bound or pre-bound service TDs,
SERVTD_HASH is the SHA384 hash of the
TDINFO_STRUCTs of those service TDs bound.

Else, SERVTD_HASH is 0.

3.10. Metadata Access Types 10

Note: This section describes control structure field access types, as defined. Implementation may differ.

Metadata access is described in the [TDX Module Base Spec].

3.10.1. MD_FIELD_ID: Metadata Field Identifier / Sequence Header

MD_FIELD_ID is used for two purposes:

Metadata Field Identifier: Used for specifying a single element of a metadata field 15

Metadata Sequence Header: Used as the header of a metadata field sequence

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 43 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Lists of metadata field identifiers for global-scope metadata, TD-scope metadata and VCPU-scope metadata are provided
in Ch. 4. The metadata tables provide a base identifier. The table below specifies which components of MD_FIELD_ID
are taken from the base identifier; other components need to be specified as required.

Table 3.37: MD_FIELD_ID (Metadata Field Identifier / Sequence Header) Definition

Bits Size Name From
Metadata
Tables’
Base Field
ID

Single-
Element
or
Sequence
Header

Description

23:0 24 FIELD_CODE Yes Both For a single-element identifier, identifies the element that is being
accessed.

For a metadata sequence header, identifies the first field that is
being accessed in a sequence.

31:24 8 RESERVED No Both Must be 0

33:32 2 ELEMENT_SIZE_CODE Yes Both Size of a single element of a metadata field:

0: 8 bits

1: 16 bits

2: 32 bits

3: 64 bits

For backward compatibility, TDH.MNG.RD, TDH.MNG.WR,
TDH.VP.RD and TDH.VP.WR version 0 ignore this field and use a
default value based on the field code.

37:34 4 LAST_ELEMENT_
IN_FIELD

No Sequence
Header

Number of elements in a metadata field, minus 1

For a single-element identifier, the value is 0.

This field is ignored when used as input to TD*.SYS.RDALL.

46:38 9 LAST_FIELD_
IN_SEQUENCE

No Sequence
Header

Number of fields in a sequence, minus 1

For a single-element identifier, the value is 0.

This field is ignored when used as input to TD*.SYS.RDALL.

49:47 3 RESERVED Yes Both Must be 0

50 1 INC_SIZE Yes Sequence
Header

For a single-element identifier, INC_SIZE is ignored.

For a sequence header, INC_SIZE specifies how FIELD_CODE is
incremented when accessing consecutive elements in a sequence:

0: Increment FIELD_CODE by 1 for each element.

1: Increment FIELD_CODE by 2 for each element.

INC_SIZE is designed to support VMCS field encoding, where bit 0
(access type) is always 0 for full access.

51 1 WRITE_MASK_VALID No Both Indicates that a write mask is provided together with the write
value.

For backward compatibility, single-element metadata write
interface functions (e.g., TDH.MNG.WR, TDH.VP.WR etc.) and use
an implicit value of 1.

This field is ignored by metadata read interface functions.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 44 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Size Name From
Metadata
Tables’
Base Field
ID

Single-
Element
or
Sequence
Header

Description

54:52 3 CONTEXT_CODE Yes Both Specifies the context of the field:

0: Platform (whole Intel TDX module)

1: TD

2: TD VCPU

Other: Reserved

All metadata read and write interface functions (e.g.,
TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD, TDG.SYS.RDALL etc.)
ignore this field when used as an input; they use an implicit value.

55 1 RESERVED Yes Both Must be 0

61:56 6 CLASS_CODE Yes Both Identifies the class of the fields being accessed

Class codes are defined in 3.10.3.

62 1 RESERVED Yes Both Must be 0

63 1 NON_ARCH Yes Both Specifies forward compatibility, i.e., whether this field identifier
will maintain their definition in a compatible way throughout Intel
TDX module updates.

0: Field identifier will maintain forward compatibility.

1: Field identifier may not maintain forward compatibility.

Note: Even if the NON_ARCH bit value is 1, identifiers of
migratable fields will in most cases maintain forward
compatibility, to support TD migration between different
TDX module releases.

Values Reserved for Software Use

Bits 63:52 value of all-1 will never be used by the TDX module. This range is reserved for use by host VMM and guest TD
software.

3.10.2. Meaning of Field Codes 5

For some field classes, field codes have an architectural meaning, as shown below. For other classes, field codes are
arbitrarily assigned.

Table 3.38: Meaning of Field Codes

Field Class Field Code Meaning Reference

VMCS Field code is the architectural VMCS field code. The “HIGH” access type (for
accessing the upper 32b of 64b fields) is not supported.

[Intel SDM, Vol. 3,
24.11.2 and App.
B]

Bits Name Description

23:16 RESERVED Must be 0

15:0 VMCS_FIELD_CODE Bits 15:0 of the architectural VMCS field code

Note: Bits 32:16 of the VMCS field code are
implicitly 0.

MSR Bitmap Offset (in 8B units) from the beginning of the architectural MSR bitmaps page [Intel SDM, Vol. 3,
24.6.9]

Secure EPT
Root

Offset (in 8B units) from the beginning of the page

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 45 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Class Field Code Meaning Reference

Virtual APIC
Page

Offset (in 8B units) from the beginning of the architectural virtual APIC page
structure

[Intel SDM, Vol. 3,
29.1]

CPUID Config Each field contains two 64-bit element, with the values returned by CPUID for
the leaf and sub-leaf, as follows:

Element 0[31:0]: EAX Element 0[63:32]: EBX

Element 1[31:0]: ECX Element 1[63:32]: EDX

The field code is packed as shown below:

Bits Name Description

23:17 RESERVED Must be 0

16 LEAF_31 Leaf number bit 31

15:9 LEAF_6_0 Leaf number bit 6:0

Note: Leaf bits 30:7 are implicitly 0.

8 SUBLEAF_NA Sub-leaf not applicable flag

7:1 SUBLEAF_6_0 Sub-leaf number bits 6:0

If SUBLEAF_NA is 1, then SUBLEAF_6_0 is all-1.

Note: Sub-leaf bits 31:7 are implicitly 0.

0 ELEMENT_I Element index within field

GPR State Architectural GPR number

MSR State Architectural MSR index, packed as shown below:

Bits Description

23:14 Reserved, must be 0

13 Bit 31 (equal to bit 30) of the architectural MSR index

12:0 Bits 12:0 of the architectural MSR index

Extended State Offset (in 8B units) from the beginning of the page extended state buffer

Other Arbitrary field identifiers

3.10.3. Class Codes

3.10.3.1. TDX Module Global Scope Field Class Codes

TDX Module global scope field classes are defined as follows:

Table 3.39: TDX Module Global Scope Field Class Codes Definition 5

Class Code Field Class Name

0 Platform Info

8 TDX Module Version

9 TDX Module Handoff

10 TDX Module Info

16 CMR Info

17 TDMR Info

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 46 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Class Code Field Class Name

24 TD Control Structures

25 TD Configurability

26 Memory Management

27 Measurement

32 Migration

33 Service TD

34 TD Partitioning

48 TDX Connect

3.10.3.2. TD-Scope (TDR and TDCS) Field Class Codes

TD-scope field classes are defined as follows:

Table 3.40: TD Scope (TDR and TDCS) Field Class Codes Definition

Class Code Control Structure Field Class Name

0 TDR TD Management

1 TDR Key Management

2 TDR TD Preserving

3 TDR TDX I/O

16 TDCS TD Management

17 TDCS Execution Controls

18 TDCS TLB Epoch Tracking

19 TDCS Measurement

20 TDCS CPUID

21 TDCS Zero Page

22 TDCS Virt. MSR Values

24 TDCS Migration

25 TDCS Service TD

26 TDCS MIGSC Links

27 TDCS TDX I/O

32 TDCS MSR Bitmaps

33 TDCS Secure EPT Root

37 TDCS L2 Secure EPT Root [1]

41 TDCS L2 Secure EPT Root [2]

45 TDCS L2 Secure EPT Root [3]

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 47 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.10.3.3. VCPU-Scope (TDVPS) Field Class Codes

TDVPS field classes are defined as follows:

Table 3.41: TD VCPU Scope (TDVPS) Field Class Codes Definition

Class Code Field Class Name

0 TD VMCS

1 VAPIC

2 VE_INFO

16 Guest GPR State

17 Guest State

18 Guest Ext. State

19 Guest MSR State

32 Management

33 CPUID Control

34 EPT Violation Log

36 VMCS[1]

37 MSR Bitmaps[1]

38 MSR Bitmaps Shadow[1]

44 VMCS[2]

45 MSR Bitmaps[2]

46 MSR Bitmaps Shadow[2]

52 VMCS[3]

 5

3.10.4. Order of Field Identifiers

For usages such as TD migration, there is a need to define strict ordering between field identifiers. For this purpose, we
consider field identifiers to be orders by the following fields:

1. CONTEXT_CODE
2. CLASS_CODE 10

3. FIELD_CODE

3.10.5. MD_LIST_HEADER: Metadata List Header

MD_LIST_HEADER is defined below. The size of MD_LIST_HEADER is 64 bits.

Table 3.42: MD_LIST_HEADER Definition

Bits Name Description

15:0 LIST_BUFF_SIZE The size of memory buffer containing the list

The buffer may be larger than the actual space occupied by the list; in this case
the excess buffer space is ignored or read and may be overwritten on write.

31:16 NUM_SEQUENCES The number of metadata field sequences in the list.

63:32 RESERVED Reserved, set to 0

 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 48 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.10.6. Private Page List

A private page list specifies a list of HPAs of 4KB pages that are, or will become, TD private pages. The list may have up
to 512 64-bit entries, each containing a 4KB-aligned HPA (HKID bits must be 0) of a page. The list is contained in a single
4KB page and must be aligned on 4KB. The page list may contain null entries, indicated by the INVALID bit.

Table 3.43: Private Page List Entry 5

Bits Name Description

11:0 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

51:12 HPA Bits 51:12 of the host physical address (HKID bits must be 0) of the
migration buffer page

62:52 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

63 INVALID A value of 1 indicates that this entry is invalid

3.10.7. HPA_AND_SIZE: HPA and Size of a Buffer

HPA_AND_SIZE is a 64-bit structure used to provide a buffer host physical address and size details.

Table 3.44: HPA_AND_SIZE

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits) of the buffer

63:52 SIZE Size of the buffer, in bytes

 10

3.10.8. HPA_AND_LAST: HPA and Last Byte Index of a Page-Aligned Buffer

HPA_AND_LAST is a 64-bit structure used to provide a 4KB aligned buffer host physical address and size details.

Table 3.45: HPA_AND_LAST

Bits Name Description

11:0 LAST Index of the last byte in the buffer

51:12 HPA Bits 51:12 of the host physical address (including HKID bits) of the 4KB-
aligned buffer

63:52 RESERVED Reserved: must be 0

3.11. Service TD Types 15

3.11.1. SERVTD_BINDING_TABLE: Service TD Binding Table

SERVTD_BINDING_TABLE is a table of service TD binding information, held in the TDCS. For details, see the [TDX Module
Base Spec].

Table 3.46: Service TD Binding Entry Definition

Field Type Offset
(Bytes)

Size
(Bytes)

Description

STATE SERVTD_BINDING_STATE 0 1 See below and [TDX Module Base Spec]

Reserved 1 1 Must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 49 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Type Offset
(Bytes)

Size
(Bytes)

Description

TYPE SERVTD_TYPE 2 2 See below and [TDX Module Base Spec]

Reserved 4 4 Must be 0

ATTR SERVTD_ATTR 8 8 See below and [TDX Module Base Spec]

UUID 256-bit blob 16 32 See [TDX Module Base Spec]

INFO_HASH SHA384_HASH 48 48 See [TDX Module Base Spec]

Reserved 96 32 Must be 0

TD-Preserving Update TDX Module Handoff Compatibility

SERVTD_BINDING_TABLE is preserved in memory across TD-preserving updates. The table below specifies the
MODULE_HV versions for which the above MIGSC definition is appliable.

Table 3.47: SERVTD_BINDING_TABLE Compatibility with TD Preserving Updates

Module Handoff Version Value

Minimum MODULE_HV 0

Maximum MODULE_HV 0

 5

3.11.2. SERVTD_BINDING_STATE: Service TD Binding State

SERVTD_BINDING_STATE indicates the state of the service TD binding slot. For details, see the [TDX Module Base Spec].

Table 3.48: SERVTD_BINDING_STATE Values

Value Name

0 NOT_BOUND

1 PRE_BOUND

2 BOUND

3.11.3. SERVTD_TYPE: Service TD Binding Type 10

SERVTD_TYPE is a 16-bit field which specifies the binding type of a service TD. For details, see the [TDX Module Base
Spec].

Table 3.49: SERVTD_TYPE Definition

Value Meaning Multiple Bindings Metadata Access

0 Migration TD No Migration session key

Other Reserved N/A N/A

3.11.4. SERVTD_ATTR: Service TD Binging Attributes 15

SERVTD_ATTR is a 64-bit field which specifies binding attributes of a service TD. For details, see the [TDX Module Base
Spec].

Table 3.50: SERVTD_ATTR Definition

Bit(s) Name Description

31:0 RESERVED Must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 50 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit(s) Name Description

32 IGNORE_ATTRIBUTES If set to 1, a value of 0 is used instead of the service TD’s ATTRIBUTES
field when calculating SERVTD_INFO_HASH

33 IGNORE_XFAM If set to 1, a value of 0 is used instead of the service TD’s XFAM field
when calculating SERVTD_INFO_HASH

34 IGNORE_MRTD If set to 1, a value of 0 is used instead of the service TD’s MRTD field
when calculating SERVTD_INFO_HASH

35 IGNORE_MRCONFIGID If set to 1, a value of 0 is used instead of the service TD’s MRCONFIGID
field when calculating SERVTD_INFO_HASH

36 IGNORE_MROWNER If set to 1, a value of 0 is used instead of the service TD’s MROWNER
field when calculating SERVTD_INFO_HASH

37 IGNORE_MROWNERCONFIG If set to 1, a value of 0 is used instead of the service TD’s
MROWNERCONFIG field when calculating SERVTD_INFO_HASH

38 IGNORE_RTMR0 If set to 1, a value of 0 is used instead of the service TD’s RTMR0 field
when calculating SERVTD_INFO_HASH

39 IGNORE_RTMR1 If set to 1, a value of 0 is used instead of the service TD’s RTMR1 field
when calculating SERVTD_INFO_HASH

40 IGNORE_RTMR2 If set to 1, a value of 0 is used instead of the service TD’s RTMR2 field
when calculating SERVTD_INFO_HASH

41 IGNORE_RTMR3 If set to 1, a value of 0 is used instead of the service TD’s RTMR3 field
when calculating SERVTD_INFO_HASH

42 IGNORE_SERVTD_HASH If set to 1, a value of 0 is used instead of the service TD’s
SERVTD_HASH field when calculating SERVTD_INFO_HASH

Other RESERVED Must be 0

3.12. Migration Types

Enumeration: The following definitions are applicable for TDX modules which support TD migration, as enumerated
by TDX_FEATURES0.TD_MIGRATION (bit 0) or S4, as enumerated by TDX_FEATURES0.S4 (bit 13).

3.12.1. MBMD: Migration Bundle Metadata 5

MBMD is composed of a common header and a variable type-specific information.

3.12.1.1. Generic MBMD Structure

The maximum overall size of MBMD is 128 bytes.

Table 3.51: Generic MBMD Structure Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

SIZE 0 2 Overall size of the MBMD structure, in bytes Yes No

MIG_VERSION 2 2 Migration protocol version

Changes in MBMB format, other migration bundle
components format or migration protocol sequence
require updating the protocol version.

Migration protocol version is set by the MigTD before
migration session starts.

Yes No

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 51 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

MIGS_INDEX 4 2 Index of the migration stream used for migrating this
migration bundle

As 0 Yes

MB_TYPE 6 1 The type of information being migrated:

0: TD-scope immutable non-memory state

1: TD-scope mutable non-memory state

2: VCPU-scope mutable non-memory state

3–15: Reserved

16: TD private memory

17–31: Reserved

32: Epoch token

33: Abort token

Other: Reserved

Yes No

RESERVED 7 1 Reserved, must be 0 Yes No

MB_COUNTER 8 4 Per-stream migration bundle counter

Starts from 0 on each migration epoch start,
incremented by 1 on each MBMD export to the
associated stream.

Yes No

MIG_EPOCH 12 4 Migration epoch

Starts from 0 on migration session start, incremented
by 1 on each epoch token.

A value of 0xFFFFFFFF indicates out-of-order phase.

Yes No

IV_COUNTER 16 8 Monotonously incrementing counter, used as a
component in the AES-GCM IV

As 0 Yes

Type-Specific
Information

24 Variable Variable-sized additional information for each specific
type of MBMD

Yes No

MAC 24+V 16 AES-256-GCM MAC over other MBMD fields and any
associated migration data (all the migration pages)

No No

3.12.1.2. TD-Scope Immutable Non-Memory State MBMD Fields

Table 3.52: TD-Scope Immutable Non-Memory State MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

NUM_F_MIGS 24 2 Maximum number of forward migration streams that
will be used

Yes No

RESERVED 26 2 Reserved, must be 0 Yes No

NUM_SYS_MD_PAGES 28 1 Number of pages in the page list used for migrating
TDX module metadata

Yes No

RESERVED 29 3 Reserved, must be 0 Yes No

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 52 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.12.1.3. TD-Scope Mutable Non-Memory State MBMD Fields

Table 3.53: TD-Scope Mutable Non-Memory State MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

RESERVED 24 8 Reserved, must be 0 Yes No

3.12.1.4. VCPU-Scope Mutable Non-Memory State MBMD Fields

Table 3.54: VCPU-Scope Mutable Non-Memory State MBMD Fields Definition 5

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

VP_INDEX 24 2 Virtual CPU index Yes No

RESERVED 26 6 Reserved, must be 0 Yes No

3.12.1.5. TD Private Memory MBMD Fields

Table 3.55: TD Private Memory MBMD Type-Specific Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

NUM_GPAS 24 2 Number of entries in the GPA list Yes No

GPA_LIST_ATTRIBUTES 26 1 Attributes of the GPA list, see Table 3.56 below Yes No

RESERVED 27 5 Reserved, must be 0 Yes No

Table 3.56: GPA_LIST_ATTRIBUTES 10

Bits Name Description

2:0 FORMAT GPA list format

Value Name Description

0 GPA_ONLY A GPA list page is provided

1 GPA_AND_ATTR A GPA list page and a page attributes list page
are provided

Other RESERVED Reserved

7:3 RESERVED Reserved: must be 0

3.12.1.6. Epoch Token MBMD Fields

Table 3.57: Epoch Token MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

TOTAL_MB 24 8 The total number of migration bundles, including the
current one, which have been exported since the
beginning of the migration session

Yes No

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 53 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.12.1.7. Abort Token MBMD Fields

Table 3.58: Abort Token MBMD Fields Definition

Field Offset
(Bytes)

Size
(Bytes)

Description Included
In MAC

Included
in IV

RESERVED 24 8 Reserved, must be 0 Yes No

3.12.1.8. TD Migration Protocol Version Compatibility

The table below specifies the TD migration protocol versions for which the above MBMD definition is appliable. 5

Table 3.59: MBMD Compatibility with TD Migration Versions

TD Migration Version Minimum Maximum

Export version 0 0

Import version 0 0

3.12.2. GPA List

A GPA list specifies a list of GPAs to migrated by TDH.EXPORT.MEM and TDH.IMPORT.MEM, blocked for writing by
TDH.EXPORT.BLOCKW or reset to their original SEPT entry state by TDH.EXPORT.RESTORE. GPA list may have up to 512 10

entries, is contained in a single 4KB page and must be aligned on 4KB. The GPA list may contain null entries, as indicated
by OPERATION field’s value set to 0 (NOP).

3.12.2.1. GPA_LIST_INFO: HPA, First and Last Entries of a GPA List

GPA_LIST_INFO is a 64b structure used as a GPR input and output operand of multiple migration interface functions, e.g.,
TDH.EXPORT.MEM. It provides the HPA of the GPA list page in shared memory, and the index of the first entry and last 15

entries to be processed.

Table 3.60: GPA_LIST_INFO

Bits Name Description

2:0 FORMAT GPA list format

Value Name Description

0 GPA_ONLY A GPA list page is provided

1 GPA_AND_L2_ATTR GPA list and L2 page attributes list pages are
provided. This format is only used by
TDH.EXPORT.MEM and TDH.IMPORT.MEM. It is
mandatory for migrating partitioned TDs (which
contain one or more L2 VMs).

TDX module support of this feature is enumerated by
TDX_FEATURES0.PARTITIONED_TD_MIGRATION,
readable by TDH.SYS.RD* (see 3.3.3.1).

Other RESERVED Reserved

11:3 FIRST_ENTRY Index of the first entry of the list to be processed

51:12 HPA Bits 51:12 of the host physical address (including HKID) of the GPA list page, which
must be a shared HPA

54:52 RESERVED Reserved: must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 54 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Name Description

63:55 LAST_ENTRY Index of the last entry in the GPA list

3.12.2.2. GPA List Entry

Table 3.61 below shows the format of a GPA list entry as used. The GPA list entry format is designed so that the output
of TDH.EXPORT.BLOCKW can be used directly with TDH.EXPORT.MEM, and the output of TDH.EXPORT.MEM can be used
directly with TDH.IMPORT.MEM. 5

Table 3.61: GPA List Entry Definition

Bit(s) Size Name Description TDH.EXPORT.BLOCKW TDH.EXPORT.MEM TDH.IMPORT.MEM TDH.EXPORT.RESTORE

In Out In Out In Out In Out

1:0 2 LEVEL Mapping level
(size)

Must be 0
(4KB)

Unmod. Must be 0
(4KB)

Unmod. Must be 0
(4KB)

Unmod. Must be 0
(4KB)

Unmod.

2 1 PENDING See below Ignored Unmod. Ignored Yes Yes Unmod. Ignored Unmod.

6:3 4 RESERVED Reserved Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod.

9:7 3 L2_MAP See below Ignored Unmod. Ignored Yes Yes Unmod. Ignore Unmod.

11:10 2 MIG_TYPE See below Yes Unmod. Yes Unmod. Yes Unmod. Yes Unmod.

51:12 40 GPA Guest Physical
Address bits
51:12

Yes Unmod. Yes Unmod. Yes Unmod. Yes Unmod.

53:52 2 OPERATION See below Yes Yes Yes Yes Yes Yes Yes Yes

55:54 2 RESERVED Reserved Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod.

60:56 5 STATUS See below Ignored Yes Ignored Yes Ignored Yes Ignored Yes

63:61 3 RESERVED Reserved Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod. Must be 0 Unmod.

3.12.2.3. GPA List Entry Details

GPA List Details: LEVEL

Reserved for future support of page sizes other than 4KB. 10

GPA List Details: PENDING

Table 3.62: PENDING Values Definition

Value Name Description

0 MAPPED SEPT entry is MAPPED

1 PENDING SEPT entry is PENDING

GPA List Details: L2_MAP

A bitmap with indicates whether the page is mapped in one or more L2 VM. This field is provided as part of the GPA list 15

entry to enable the host VMM to prepare L2 SEPT pages before invoking TDH.IMPORT.MEM.

GPA List Details: OPERATION

The following tables describe the meaning of OPERATION, as used for each applicable interface function. Note that the
OPERATION definitions for TDH.EXPORT.BLOCKW, TDH.EXPORT.MEM and TDH.IMPORT.MEM are designed to be
compatible, so that the same GPA list can be used for all of them. 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 55 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 3.63: OPERATION Values Definition for TDH.EXPORT.BLOCKW

Value Input Output

Name Description Name Description

0 NOP No operation NOP Not blocked for writing

1 BLOCKW Block for writing BLOCKW Blocked for writing

2 NOP No operation NOP Not blocked for writing

3 BLOCKW Block for writing BLOCKW Blocked for writing

Table 3.64: OPERATION Values Definition for TDH.EXPORT.MEM

Value Input Output

Name Description Name Description

0 NOP No operation NOP Not exported

1 MIGRATE Export MIGRATE Initial export during this migration
session or following a CANCEL

2 CANCEL Cancel previous export CANCEL Cancellation of a previous export

Not applicable for S4 hibernation.

3 MIGRATE Export REMIGRATE Re-export of updated content or
attributes

Table 3.65: OPERATION Values Definition for TDH.IMPORT.MEM 5

Value Input Output

Name Description Name Description

0 NOP No operation NOP Not imported

1 MIGRATE Initial import during this migration
session or following a CANCEL

MIGRATE Imported

2 CANCEL Cancel previous import CANCEL Removed previous import

Not applicable for S4 resumption.

3 REMIGRATE Re-import of updated page content
or attributes

REMIGRATE Imported

Not applicable for S4 resumption.

Table 3.66: OPERATION Values Definition for TDH.EXPORT.RESTORE

Value Input Output

Name Description Name Description

0 NOP No operation NOP Not restored

1 RESTORE Restore SEPT entry to non-
migration state

RESTORE Restored

2 NOP Reserved NOP Not restored

3 RESTORE Restore SEPT entry to non-
migration state

RESTORE Restored

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 56 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

GPA List Details: MIG_TYPE

Table 3.67: MIG_TYPE Values Definition

Value Name Description

0 PAGE_4K 4KB private memory page

Other RESERVED Reserved for future types

GPA List Details: STATUS

Table 3.68: STATUS Values Definition 5

Value Name Description

0 SUCCESS GPA list entry was processed successfully

1 SKIPPED GPA list entry was skipped because NOP was requested

2 SEPT_WALK_FAILED Secure EPT walk failed for the requested GPA

3 SEPT_ENTRY_BUSY_HOST_PRIORITY Secure EPT entry was busy. The host VMM should retry
the operation until successful.

4 SEPT_ENTRY_STATE_INCORRECT Secure EPT entry state was incorrect for the requested
operation and the TD’s OP_STATE

5 TLB_TRACKING_NOT_DONE TLB tracking was not done for the requested GPA

6 OP_STATE_INCORRECT The TD’s OP_STATE was incorrect for the requested
operation and Secure EPT entry state

7 MIGRATED_IN_CURRENT_EPOCH Requested GPA has already been migrated during the
current migration epoch

8 MIG_BUFFER_NOT_AVAILABLE Required migration buffer was not provided

9 NEW_PAGE_NOT_AVAILABLE Required new TD page was not provided

10 INVALID_PAGE_MAC Page MAC was invalid

11 DISALLOWED_IMPORT_OVER_REMOVED Page import over a removed page is not allowed

12 TD_PAGE_BUSY_HOST_PRIORITY TD page was busy. The host VMM should retry the
operation until successful.

13 L2_SEPT_WALK_FAILED L2 Secure EPT walk failed for the requested GPA

14 ATTR_LIST_ENTRY_INVALID The L2 attributes list entry is invalid

15 GPA_LIST_ENTRY_INVALID The GPA list entry is invalid

31-16 Reserved Reserved

3.12.2.4. TD Migration Protocol Version Compatibility

The table below specifies the TD migration protocol versions for which the above GPA List definition is appliable.

Table 3.69: GPA List Compatibility with TD Migration Versions

TD Migration Version Minimum Maximum

Export version 0 0

Import version 0 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 57 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

3.12.3. Memory Migration Buffers List

A memory migration buffer list specifies a list of HPAs of 4KB pages in shared memory, to be used as output by
TDH.EXPORT.MEM and as input by TDH.IMPORT.MEM. The list may have up to 512 64-bit entries, each containing a 4KB-
aligned HPA (including HKID bits) of a page in shared memory. The list is contained in a single 4KB page and must be
aligned on 4KB. The page list may contain null entries, indicated by the INVALID bit. 5

3.12.3.1. Migration Buffers List Entry

Table 3.70: Migration Buffers List Entry

Bits Name Description

11:0 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

51:12 HPA Bits 51:12 of the host physical address (including HKID) of the migration
buffer page, which must be a shared HPA

62:52 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

63 INVALID A value of 1 indicates that this entry is invalid

3.12.4. Page Attributes List

A page attributes list specifies a list of page aliases, to be used as output by TDH.EXPORT.MEM and as input by 10

TDH.IMPORT.MEM. The list must contain an entry for each respective GPA list entry used with the same interface
functions. The list may have up to 512 64-bit entries, in page L2 attributes format as defined in 3.6.3. The list is contained
in a single 4KB page and must be aligned on 4KB. A page attributes list is mandatory for migrating partitioned TDs (which
contain one or more L2 VMs).

Enumeration: TDX module support of page attributes list is enumerated by 15

TDX_FEATURES0.PARTITIONED_TD_MIGRATION, readable by TDH.SYS.RD* (see 3.3.3.1).

3.12.5. Memory Migration Page MAC List

A page MAC list specifies a list of MACs over 4KB migrated pages, their GPA list entries and (if applicable) page L2
attributes list entries, to be used as output by TDH.EXPORT.MEM and as input by TDH.IMPORT.MEM. The list must
contain an entry for each respective GPA list entry used with the same interface functions. The list may have up to 256 20

128-bit entries, each containing a single AES-GMAC-256 of a migrated page. The list is contained in a single 4KB page and
must be aligned on 4KB.

3.12.6. Non-Memory State Migration Buffers List

A non-memory state migration buffer list specifies a list of HPAs of 4KB pages in shared memory, to be used as output by
TDH.EXPORT.STATE.* and as input by TDH.IMPORT.STATE.*. The list may have up to 512 64-bit entries, each containing 25

a 4KB-aligned HPA (including HKID bits) of a page in shared memory. The list is contained in a single 4KB page and must
be aligned on 4KB.

3.12.6.1. PAGE_LIST_INFO: HPA and Attributes of a Page List

PAGE_LIST_INFO is a 64b structure used as a GPR input and output operand of multiple migration interface functions,
e.g., TDH.EXPORT.STATE.TD. It provides the HPA of the migration buffers list page in shared memory, and the index of 30

the last entry to be processed.

Table 3.71: PAGE_LIST_INFO

Bits Name Description

11:0 RESERVED Reserved: must be 0

51:12 HPA Bits 51:12 of the host physical address (including HKID) of the page list,
which must be a shared HPA

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 58 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Name Description

54:52 RESERVED Reserved: must be 0

63:55 LAST_ENTRY Index of the last entry in the page list

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 59 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. TD Metadata (Non-Memory State)

This chapter describes the details of TD metadata, a.k.a. non-memory state or control state.

4.1. TD-Scope Metadata

TD-scope control structures TDR and TDCS are described the [TDX Module Base Spec].

Information about TDR and TDCS is provided in a separate JSON format file td_scope_metadata.json. 5

4.1.1. TDR

Note: This section describes TDR, as defined. Implementation may differ.

TDR is the root control structure of a guest TD. TDR is encrypted using the Intel TDX global private HKID. It contains the
minimal set of fields that allow TD management operation when the guest TD’s private ephemeral HKID is not known yet
or when the TD’s key state is such that memory encrypted with the guest TD’s private ephemeral key is not accessible. 10

TDR occupies a single 4KB naturally aligned page of memory. It is the first TD page to be allocated and the last to be
removed. None of the state in the TDR is migrated – it is locally initialized on the destination platform for a migrated TD.

TRD fields are divided into the following classes:

Table 4.1: TDR Field Classes Definition

Field Class Description

TD Management These fields are used to manage the TDR page, its descendent TD private memory
pages and control structure pages.

Key Management These fields are used by the Intel TDX module to manage memory encryption keys.
See the [TDX Module Base Spec] for details.

TD Preserving These fields are used by the Intel TDX module to manage the TD across TD
preserving updates.

 15

4.1.2. TDCS

Note: This section describes TDCS, as defined. Implementation may differ.

TDCS complements TDR as the logical control structure of a guest TD. TDCS is encrypted with the guest TS’s ephemeral
private key. It controls the guest TD operation and holds the state that is global to all the TD’s VCPUs. TDCS state fields
are initialized either via TDH.MNG.INIT, or via TDH.IMPORT.STATE.IMMUTABLE – the latter when the TD is the target for 20

migration.

TDCS fields are divided into the following classes:

Table 4.2: TDCS Field Classes Definition

Field Class Description

TD Management These fields are used to manage the TDCS, its descendent TD private memory pages
and control structure pages.

TD Execution Control Control the execution of the guest TD: some TD execution control fields are
provided as an input to TDH.MNG.INIT, and some of those are included in the
TDG.MR.REPORT.

TLB Epoch Tracking Track the TLB epoch of the guest TD – see the [TDX Module Base Spec] for details

Measurement TD measurement registers and associated fields – see the [TDX Module Base Spec]
for details

Migration TDCS fields that control TD migration

MIGSC Links Links to Migration Stream Context pages

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 60 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Field Class Description

Service TD TDCS fields that control Service TD binding and operation

MSR Bitmaps MSR bitmaps that control VM exit from the guest TD on RDMSR/WRMSR are
common to all TD VCPUs and thus are stored as part of TDCS.

Secure EPT Root Page The root page (PML5 or PML4) of the secure EPT

L2 Secure EPT
Root[3:1]

The root pages (PML5 or PML4) of the secure EPTs associated with L2 VM 1, 2 and 3

Following is some information about specific VMCS fields that is too extensive to provide in the JSON format files.

4.1.2.1. TDCS.TD_CTLS

TD_CTLS is a bitmap of TD controls that may be modified during TD run time.

Table 4.3: TDCS.TD_CTLS Definition 5

Bits Name Description

0 PENDING_VE_DISABLE Controls the way guest TD access to a PENDING page is processed:

0 (default): An EPT violation due to guest TD access to a PENDING page
results in a #VE(PENDING).

1: An EPT violation due to guest TD access to a PENDING page
results in a TD exit.

The above applies only to L1. L2 VM access to a PENDING pages always
results in an L2→L1 exit.

PENDING_VE_DISABLE’s initial value is copied from the TD’s
ATTRIBUTES.SEPT_VE_DISABLE. If the TD’s
CONFIG_FLAGS.FLEXIBLE_PENDING_VE is 1, the TD is allowed to modify
PENDING_VE_DISABLE using TDG.VM.WR.

Enumeration: TDX module support of PENDING_VE_DISABLE is enumerated
by TDX_FEATURES0.PENDING_EPT_VIOLATION_V2 (bit 16). If
not supported, must be 0.

1 ENUM_TOPOLOGY Controls the enumeration of virtual platform topology:

0 (default): Guest TD execution of CPUID(0xB) or CPUID(0x1F) results in a
#VE(CONFIG_PARAVIRT). CPUID(1).EBX[31:24] returns the least
significant 8 bits of the VCPU index. RDMSR of
IA32_X2APIC_APICID (0x802) results in #VE(CONFIG_PARAVIRT).

1: Guest TD execution of CPUID(0xB) or CPUID(0x1F) returns the
virtual topology information configured by the host VMM.
CPUID(1).EBX[31:24] returns the least significant 8 bits of the
virtual x2APIC_ID configured by the host VMM. RDMSR of
IA32_X2APIC_APICID (0x802) returns the virtual x2APIC_ID.

ENUM_TOPOLOGY can only be set to 1 if x2APIC_ID has been properly
configured with unique values for each VCPU. The guest TD can read
TDCS.TOPOLOGY_ENUM_CONFIGURED using TDG.VM.RD to check that.

ENUM_TOPOLOGY is implicitly set by the TDX module if the guest TD sets
REDUCE_VE.

Enumeration: TDX module support of ENUM_TOPOLOGY is enumerated by
TDX_FEATURES0.TOPOLOGY_ENUM (bit 20). If not
supported, must be 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 61 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Name Description

2 VIRT_CPUID2 Controls the virtualization of CPUID(2):

0 (default): Guest TD execution of CPUID(2) results in a
#VE(CONFIG_PARAVIRT).

1: Guest TD execution of CPUID(2) returns fixed values
EAX=0x00FEFF01, EBX=0, ECX=0 and EDX=0, meaning “cache
data is returned by CPUID leaf 0x4” and “TLB data is returned by
CPUID leaf 0x18”.

VIRT_CPUID2 is implicitly set by the TDX module if the guest TD sets
REDUCE_VE.

Enumeration: TDX module support of VIRT_CPUID2 is enumerated by
TDX_FEATURES0.CPUID2_VIRT (bit 29). If not supported,
must be 0.

3 REDUCE_VE Allows the guest TD to control the way #VE is injected by the TDX module on
guest TD execution of CPUID, RDMSR/WRMSR and other instructions:

0 (default): No change to default behavior.

1: #VE injected on guest TD execution of CPUID, RDMSR/WRMSR
and other instructions is greatly reduced. Some #VE injection
depends on CPUID configuration of paravirtualized CPU features
using TDCS.FEATURE_PARAVIRT_CTRL, see 4.1.2.2 below.

When the guest TD sets REDUCE_VE to 1, the TDX module also forces
ENUM_TOPOLOGY and VIRT_CPUID to 1. REDUCE_VE can only be set to 1 if
x2APIC_ID has been properly configured with unique values for each VCPU.
The guest TD can read TDCS.TOPOLOGY_ENUM_CONFIGURED using
TDG.VM.RD to check that.

For a list of virtual CPUID values, MSRs and instructions impacted by
REDUCE_VE, see Ch. 2.

Enumeration: TDX module support of REDUCE_VE is enumerated by
TDX_FEATURES0.VE_REDUCTION (bit 30). If not supported,
must be 0.

62:4 RESERVED Must be 0

63 LOCK Controls locking of TD-writable virtualization controls.

0 (default): No change to default behavior.

1: Control fields are locked and can’t be modified.

The following TD-writable control fields are impacted:

• TDCS.TD_CTLS

• TDCS.FEATURE_PARAVIRT_CTLS

• TDVPS.CPUID_SUPERVISOR_VE

• TDVPS.CPUID_USER_VE

• TDVPS.CPUID_CONTROL

Enumeration: TDX module support of LOCK is enumerated by
TDX_FEATURES0.VE_REDUCTION (bit 30). If not supported,
must be 0.

4.1.2.2. TDCS.FEATURE_PARAVIRT_CTRL

Enumeration: Availability of FEATURE_PARAVIRT_CTRL is enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30).

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 62 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If TDCS.TD_CTRL.REDUCE_VE is set, the guest TD can control CPU feature paravirtualization by writing to
TDCS.FEATURE_PARAVIRT_CTRL using TDG.VM.WR. The default value of TDCS.FEATURE_PARAVIRT_CTRL is all-0. The
following table shows the virtualization behavior of each of the configurable CPU features, depending on the control bits
combination as configured by the guest TD.

Table 4.4: TDCS.FEATURE_PARAVIRT_CTRL Definition 5

Bits Paravirtualized
Feature Name &
Applicable Linux
Kernel Feature
Name

Backward Compatible
(TD_CTLS.REDUCE_VE is 0)

Reduced #VE
(TD_CTLS.REDUCE_VE is 1,
FEATURE_PARAVIRT_CTLS bit
is 0)

Reduced #VE with
Paravirtualization
(TD_CTLS.REDUCE_VE is 1,
FEATURE_PARAVIRT_CTLS bit
is 1)

0 CORE_
CAPABILITIES

(X86_FEATURE_
CORE_
CAPABILITIES)

Controls IA32_CORE_CAPABILITIES paravirtualization, enumerated by virtual CPUID(7,0).EDX[30]
(support IA32_CORE_CAPABILITIES)

• Virtual CPUID(7,0).EDX[30] is
forced to 1.

• Guest TD access to applicable
MSRs results in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(7,0).EDX[30] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(7,0).EDX[30] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

1 DCA

(X86_FEATURE_
DCA)

Controls Direct Cache Access paravirtualization, enumerated by virtual CPUID(1).ECX[18] (DCA)

• Virtual CPUID(1).ECX[18] is
configured by the host VMM.

• Virtual CPUID(9) results in a
#VE(CONFIG_PARAVIRT).

• Guest TD access to applicable
MSRs may result in a #GP(0)
or #VE(CONFIG_PARAVIRT),
depending on virtual
CPUID(1).ECX[18] value.

• Virtual CPUID(1).ECX[18] is
forced to 0.

• Virtual CPUID(9) returns all-0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(1).ECX[18] is
configured by the host VMM.

• If configured as 0:

o Virtual CPUID(9) returns
all-0.

o Guest TD access to
applicable MSRs results in
a #GP(0).

• Else (configured as 1):

o Virtual CPUID(9) results in
a #VE(CONFIG_PARAVIRT).

o Guest TD access to
applicable MSRs results in
a #VE(CONFIG_PARAVIRT).

2 EST

(X86_FEATURE_
EST)

Controls Enhanced Intel SpeedStep technology paravirtualization, enumerated by Virtual
CPUID(1).ECX[7] (Enhanced Intel SpeedStep technology)

• Virtual CPUID(1).ECX[7] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(1).ECX[7] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(1).ECX[7] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

3 MCA Controls Machine Check Architecture paravirtualization, enumerated by virtual CPUID(1).EDX[7]
(Machine Check Exception) and virtual CPUID(1).EDX[14] (Machine Check Architecture)

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 63 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Paravirtualized
Feature Name &
Applicable Linux
Kernel Feature
Name

Backward Compatible
(TD_CTLS.REDUCE_VE is 0)

Reduced #VE
(TD_CTLS.REDUCE_VE is 1,
FEATURE_PARAVIRT_CTLS bit
is 0)

Reduced #VE with
Paravirtualization
(TD_CTLS.REDUCE_VE is 1,
FEATURE_PARAVIRT_CTLS bit
is 1)

(X86_FEATURE_
MCA)

• Virtual CPUID(1).EDX[7] and
virtual CPUID(1).EDX[14] are
forced to 1.

• Guest TD access to applicable
MSRs result in a
#VE(CONFIG_PARAVIRT).

• CR4.MCE is fixed-1. Guest TD
attempt to clear it result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(1).EDX[7] and
virtual CPUID(1).EDX[14] are
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• CR4.MCE is initialized to 1.
The guest TD may clear
CR4.MCE but not set it back
to 1; attempt to do so results
in a #GP(0).

• Virtual CPUID(1).EDX[7] and
virtual CPUID(1).EDX[14] are
configured by the host VMM.

• If virtual CPUID(1).EDX[14] is
0, guest TD access to
applicable MSRs results in a
#GP(0). Else, it results in a
#VE(CONFIG_PARAVIRT).

• CR4.MCE is initialized to 1. If
virtual CPUID(1).EDX[7] is 0,
the guest TD may clear
CR4.MCE but not set it back
to 1; attempt to do so results
in a #GP(0. Else, guest TD is
allowed to modify CR4.MCE.

4 MTRR

(X86_FEATURE_
MTRR)

Controls Memory Type Range Registers paravirtualization, enumerated by virtual
CPUID(1).EDX[12] (Memory Type Range Registers)

• Virtual CPUID(1).EDX[12] is
forced to 1.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(1).EDX[12] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(1).EDX[12] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

5 PCONFIG

(X86_FEATURE_
PCONFIG)

Controls PCONFIG paravirtualization, enumerated by virtual CPUID(7,0).EDX[18] (PCONFIG)

• Virtual CPUID(7,0).EDX[18] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(7,0).EDX[18] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(7,0).EDX[18] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

6 RDT_A

(X86_FEATURE_
RDT_A)

Controls RDT-A paravirtualization, enumerated by virtual CPUID(7,0).EBX[15] (RDT-A)

• Virtual CPUID(7,0).EBX[15] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(7,0).EBX[15] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(7,0).EBX[15] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

7 RDT_M

(X86_FEATURE_
CQM)

Controls RDT-M paravirtualization, enumerated by virtual CPUID(7,0).EBX[12] (RDT-M)

• Virtual CPUID(7,0).EBX[12] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(7,0).EBX[12] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(7,0).EBX[12] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

8 ACPI Controls Thermal Monitor and Software Controlled Clock Facilities paravirtualization, enumerated
by virtual CPUID(1).EDX[22] (ACPI)

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 64 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bits Paravirtualized
Feature Name &
Applicable Linux
Kernel Feature
Name

Backward Compatible
(TD_CTLS.REDUCE_VE is 0)

Reduced #VE
(TD_CTLS.REDUCE_VE is 1,
FEATURE_PARAVIRT_CTLS bit
is 0)

Reduced #VE with
Paravirtualization
(TD_CTLS.REDUCE_VE is 1,
FEATURE_PARAVIRT_CTLS bit
is 1)

(X86_FEATURE_
ACPI)

• Virtual CPUID(1).EDX[22] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(1).EDX[22] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(1).EDX[22] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

9 TM2

(X86_FEATURE_
TM2)

Controls MSR_THERM2_CTL paravirtualization, enumerated by virtual CPUID(1).ECX[8] (TM2)

• Virtual CPUID(1).ECX[8] is
configured by the host VMM.

• Guest TD access to
MSR_THERM2_CTL may
result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(1).ECX[8] is
forced to 0.

• Guest TD access to
MSR_THERM2_CTL results in
a #GP(0).

• Virtual CPUID(1).ECX[8] is
configured by the host VMM.

• Guest TD access to
MSR_THERM2_CTL may
result in a
#VE(CONFIG_PARAVIRT).

10 TME

(X86_FEATURE_
TME)

Controls Total Memory Encryption paravirtualization, enumerated by virtual CPUID(7,0).ECX[13]
(TME_EN)

• Virtual CPUID(7,0).ECX[13] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

• Virtual CPUID(7,0).ECX[13] is
forced to 0.

• Guest TD access to applicable
MSRs results in a #GP(0).

• Virtual CPUID(7,0).ECX[13] is
configured by the host VMM.

• Guest TD access to applicable
MSRs may result in a
#VE(CONFIG_PARAVIRT).

11 TSC_DEADLINE

(X86_FEATURE_
TSC_DEADLINE_
TIMER)

Controls IA32_TSC_DEADLINE MSR paravirtualization, enumerated by virtual CPUID(1).ECX[24]
(TSC deadline)

• Virtual CPUID(1).ECX[24] is
configured by the host VMM.

• Guest TD access to the
IA32_TSC_DEADLINE MSR
may result in a #GP(0) or
#VE(CONFIG_PARAVIRT),
depending on virtual
CPUID(1).ECX[24].

• Virtual CPUID(1).ECX[24] is
forced to 0.

• Guest TD access to the
IA32_TSC_DEADLINE MSR
results in a #GP(0).

• Virtual CPUID(1).ECX[24] is
configured by the host VMM.

• Guest TD access to the
IA32_TSC_DEADLINE MSR
may result in a
#VE(CONFIG_PARAVIRT).

63:12 RESERVED Must be 0

4.2. TDVPS: VCPU-Scope Metadata

Note: This section describes TDVPS, as defined. Implementation may differ.

TDVPS is described in the [TDX Module Base Spec].

Information about TDVPS is provided in a separate JSON format file vcpu_scope_metadata.json. 5

4.2.1. Overview

Logically, in the Intel TDX module’s linear address space, TDVPS is a single structure that holds the state and control
information for a single TD VCPU. The state is loaded to the LP on TD Entry and saved on TD exits.

Physically, TDVPS is composed of a root page (TDVPR) and multiple extension pages (TDCX). The pages need not be
contiguous in physical memory. 10

TDVPS is initialized by TDH.VP.INIT. For an TD being migrated, TDVPS is imported by TDH.IMPORT.STATE.VP, which
initializes some state fields and migrates some fields from the source TD VPS state.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 65 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDVPS fields are divided into the following classes:

Table 4.5: TDVPS Field Classes Definition

Field Class Description

VCPU Management These fields are used to manage the TDVPS and the TD VCPU.

TD VMCS The TD VCPU’s L1 VM architectural VMCS

VAPIC The TD VCPU’s Virtual APIC page

VE_INFO Holds Virtualization Exception (#VE) information

Guest GPR State TD VCPU’s general-purpose register state

Guest MSR State TD VCPU’s MSR state

Guest Extended State TD VCPU’s extended state

VMCS[3:1] VMCS pages of L2 VM 1, 2 and 3

MSR Bitmaps[3:1] MSR bitmap pages of L2 VM 1, 2 and 3

MSR Bitmaps Shadow[3:1] MSR bitmap shadow pages of L2 VM 1, 2 and 3

4.2.2. TDVPS (excluding TD VMCS)

Information about TDVPS is provided in a separate JSON format file vcpu_scope_metadata.json. 5

4.2.3. TD (L1) VMCS and L2 VMCS

Intel SDM, Vol. 3, 24 Virtual Machine Control Structures

Note: This section describes VMCS usage, as defined. Implementation may differ.

TD (L1) VMCS and L2 VMCS are VMX-format VMCS (with TDX ISA extensions) that are stored as part of TDVPS.

Most of the information about TD VMCS and L2 VMCS is provided in separate JSON format files td_vmcs.json and 10

l2_vmcs.json.

Following is some information about specific VMCS fields that is too extensive to provide in the JSON format files.

4.2.3.1. TD VMCS CR4 Guest/Host Mask

Table 4.6: TD VMCS CR4 Guest/Host Mask

Bit Name Value Description

6 MCE 1 Owned by the Intel TDX module

13 VMXE 1 Owned by the Intel TDX module

14 SMXE 1 Owned by the Intel TDX module

19 KL ~TDCS.ATTRIBUTES.KL Intercept writes to CR4 if KeyLocker is not
enabled

22 PKE ~TDCS.XFAM[9] Intercept writes to CR4 If PK is not enabled

24 PKS ~TDCS.ATTRIBUTES.PKS Intercept writes to CR4 if PKS is not enabled

25 UINTR ~TDCS.XFAM[14] Intercept writes to CR4 if ULI is not enabled

27 LASS ~TDCS.ATTRIBUTES.LASS Intercept writes to CR4 if LASS is not enabled

32 FRED ~virt.
CPUID(0x7,1).EAX[17]

Intercept writes to CR4 if FRED is not enabled

Applicable to TDX modules which support
FRED.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 66 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Bit Name Value Description

Any bit set to 1 in IA32_VMX_CR4_FIXED0
(i.e., a bit whose value must be 1)

1 Intercept writes of illegal values to CR4

Any bit set to 0 in IA32_VMX_CR4_FIXED1
(i.e., a bit whose value must be 0)

1 Intercept writes of illegal values to CR4

Bits known to the Intel TDX module as
reserved (bits 63:33, 31:29, 26 and bit 15)

1 Intercept writes of illegal values to CR4

Other bits 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 67 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5. Interface Functions

5.1. How to Read the Interface Function Definitions

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

A table of operands is provided for any function that has explicit and/or implicit memory operands or implicit resources. 5

Table 5.1 below describes how to read it. Most of the background is detailed in the [TDX Module Base Spec].

Table 5.1: How to Read the Operands Information Tables

Explicit/
Implicit

Reg. Ref Type Resource Resource
Type

Access Access
Semantics

Alignment
Check

Concurrency Restrictions

Resource Contain.
2MB

Contain.
1GB

The
operand
may be
specified
explicitly
or may
be
implicit

Register
used as
a
pointer
to the
operand

How the
operand is
referenced:

HPA, GPA,
GPA and
level or
index

Resource
(memory
or CPU
internal)
for this
operand

Data type
of the
resource,
as defined
in Chapter
3 or
Chapter 4

Type of
memory
or
resource
access:
R, RW,
or Ref

Shared,
Private,
Opaque or
Hidden

Required
alignment
of the
operand

Concurrency restrictions are
described in the [TDX Module Base
Spec].

For explicit memory accesses using
HPA, there are additional
concurrency restrictions on the
1GB and 2MB blocks that contain
the accessed HPA. For other types
of accesses, only the operand
concurrency is applicable.

Shared(h) and Exclusive(h)
indicate shared access with host-
side priority.

Sh./Ex.(h) indicates either shared
or exclusive access with host-side
priority, depending on the
platform type

• On platforms which do not use
ACT, access is shared.

• On platforms which use ACT,
access is exclusive.

Shared(i) and Exclusive(i) indicate
that the resource is implicitly
restricted.

5.2. Reserved Leaf Numbers

The following SEAMCALL and TDCALL leaf number ranges are reserved and will never be used by production TDX modules: 10

0x00F0 - 0x00FF: Range reserved for debug builds of the TDX module

0xF000 - 0xFFFF: Range reserved for debug builds of the TDX module

0xE000 - 0xEFFF: Range reserved for software use, will never be used by the TDX module

Other: Ranges available for SEAMCALL and TDCALL leaf assignments

5.3. Common Algorithms Used by Multiple Interface Functions 15

This section describes common algorithms that are used by multiple interface functions.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 68 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.3.1. VCPU Association with an LP

The following algorithm is used for associating the current VCPU with the current LP. It is used with VCPU-specific host-
side interface functions such as TDH.VP.ENTER, TDH.VP.RD etc.

1. Check that the VCPU has been initialized and is not being torn down.
2. Atomically check that the VCPU is not associated with another LP and associate it with the current LP. 5

3. If this is a new association, and the TD’s ephemeral HKID has changed since last association, update all TD VMCS
physical pointers and the TD HKID execution control.

4. Update the TD VMCS host state fields with any Intel TDX module LP-specific values.

5.3.2. Metadata Access

5.3.2.1. Single Metadata Field Read 10

The following algorithm is used when reading a single metadata field based on a provided field identifier. This algorithm
is used by TDH.MNG.RD, TDH.VP.RD and TDG.VM.RD, TDG.VP.RD.

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

1. Check that the field identifier is valid and derive a read mask depending on whether this algorithm is used by a host-15

side or a guest-side interface function, and whether the TD runs in debug mode (ATTRIBUTES.DEBUG is 1).
2. If the read mask is 0, then fail; the field in not readable.

If the above checks passed:

3. Read the field value from the control structure using the proper method per field class.
4. Mask the field value with the read mask derived above and return the resulting value. 20

4.1. In some cases, special handling is required. E.g., the field value may need to be translated to another format,
or some other action may be needed.

5.3.2.2. Single Metadata Field Write

The following algorithm is used when writing a single metadata field based on provided field identifier, input value and
write mask. This algorithm is used by TDH.MNG.WR, TDH.VP.WR, TDG.VM.WR, TDG.VP.WR and TDG.SERVTD.WR. 25

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

1. Check that the field identifier is valid and derive the field attributes (read mask, write mask) depending on whether
this algorithm is used by a host-side, guest-side or service TD interface function, and whether the TD runs in debug
mode (ATTRIBUTES.DEBUG is 1). 30

2. If the write mask is 0, then fail, the field in not writable.

If passed:

3. Calculate a combined write mask:
3.1. If a write mask is provided as an input, derive the combined write mask by bitwise-anding the field’s write mask

derived above with the write mask provided as an input. 35

3.2. Else (no write mask input), the combined write mask is set to the field’s write mask.
4. If the combined write mask is 0, then fail, the field in not writable.

If passed:

5. Read the old field value from the control structure using the proper method per field class.
6. Check for write validity. The caller must not attempt to modify any non-writable bit that is readable. 40

6.1. A bit N is considered “forbidden” if it was requested to be written (i.e., the input write mask bit N is 1) but is
not writable (i.e., the field’s write mask bit N is 0).

6.2. If a bit N is forbidden, then the input bit N’s value must be the same as the current field’s bit N’s value as would
be read by the caller, i.e., taking into account the field’s read mask.

7. Calculate a new field value based on the input value and the combined write mask. 45

7.1. Bits for which the combined write mask’s value is 1 are taken from the input value.
7.2. Other bits are taken from the current field’s value.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 69 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

8. Write the field value to the control structure using the proper method per field class.
8.1. In some cases, special handling is required. E.g., the new field value may need to be checked for validity, or

some other action may be needed.

If passed:

9. Mask the old field value with the field’s read mask derived above, and return the resulting value. 5

5.3.2.3. Multiple Metadata Fields Write based on a Metadata List

The following algorithm is used when writing multiple metadata fields based on a provided metadata list. This algorithm
is used by TDH.IMPORT.STATE.*.

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

1. Check the list header to be valid (NUM_SEQUENCES > 0).

If passed:

2. For each sequence in the list:
2.1. Check that the list did not cross 4KB page boundary.
2.2. Read the sequence header and check it is valid. 15

If the above checks passed:

2.3. For each field in the sequence:
2.3.1. Check that the list did not cross 4KB page boundary.
2.3.2. Check that the field identifier is valid and derive a write mask depending on whether this algorithm is used

by a host-side or a guest-side interface function, and whether the TD runs in debug mode 20

(ATTRIBUTES.DEBUG is 1).
2.3.3. If the write mask is 0, then fail, the field in not writable.

If the above checks passed:

2.3.4. Calculate an effective write mask:
2.3.4.1. If a write mask is provided for each field in the current sequence, derive the effective write mask 25

by bitwise-anding the write mask derived above with the write mask provided with the field.
2.3.4.2. Else, the effective write mask is the write mask derived above.

2.3.5. If the effective write mask is 0, then fail, the field in not writable.

If passed:

2.3.6. Read the existing field value from the control structure using the proper method per field class. 30

2.3.7. Calculate a new field value based on the input value and the effective write mask, and write to the control
structure using the proper method per field class.
2.3.7.1. In some cases, special handling is required. E.g., the new field value may need to be checked for

validity, or some other action may be needed.

 35

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 70 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4. Host-Side (SEAMCALL) Interface Functions

The SEAMCALL instruction enters the Intel TDX module. It is designed to call host-side Intel TDX functions, either local or
a TD entry to a guest TD, as selected by RAX.

5.4.1. SEAMCALL Instruction (Common)

This section describes the common functionality of SEAMCALL. Leaf functions are described in the following sections. 5

Table 5.2: SEAMCALL Input Operands Definition

Parameter Description

RAX Leaf and version numbers, as defined in the [TDX Module Base Spec]. See Table 5.4 below for
SEAMCALL leaf numbers.

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

Other See individual SEAMCALL leaf functions.

Table 5.3: SEAMCALL Output Operands Definition

Parameter Description

RAX If SEAMCALL failed with VMfailInvalid condition (RFLAGS.CF is 1), then RAX is unmodified.

Else, if on input RAX bit 63 was 1, then the SEAMCALL leaf function has been processed by the
P-SEAMLDR. Refer to the [TDX Loader Spec] for details.

Else, RAX contains the leaf function status return code, indicating the outcome of execution of
the SEAMCALL leaf function. See the [TDX Module Base Spec] for details

Other See individual SEAMCALL leaf functions.

Table 5.4: SEAMCALL Instruction Leaf Numbers Definition 10

Leaf

Interface Function Name Description

0 TDH.VP.ENTER Enter TDX non-root operation

1 TDH.MNG.ADDCX Add a control structure page to a TD

2 TDH.MEM.PAGE.ADD Add a 4KB private page to a TD during TD build time

3 TDH.MEM.SEPT.ADD Add and map a 4KB Secure EPT page to a TD

4 TDH.VP.ADDCX Add a control structure page to a TD VCPU

5 TDH.MEM.PAGE.RELOCATE Relocate a 4KB mapped page from its HPA to another

6 TDH.MEM.PAGE.AUG Dynamically add a 4KB private page to an initialized TD

7 TDH.MEM.RANGE.BLOCK Block a TD private GPA range

8 TDH.MNG.KEY.CONFIG Configure the TD private key on a single package

9 TDH.MNG.CREATE Create a guest TD and its TDR root page

10 TDH.VP.CREATE Create a guest TD VCPU and its TDVPR root page

11 TDH.MNG.RD Read TD metadata

12 TDH.MEM.RD Read from private memory of a debuggable guest TD

13 TDH.MNG.WR Write TD metadata

14 TDH.MEM.WR Write to private memory of a debuggable guest TD

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 71 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf

Interface Function Name Description

15 TDH.MEM.PAGE.DEMOTE Split a 2MB or a 1GB private TD page mapping into 512 4KB or 2MB page
mappings respectively

16 TDH.MR.EXTEND Extend the guest TD measurement register during TD build

17 TDH.MR.FINALIZE Finalize the guest TD measurement register

18 TDH.VP.FLUSH Flush the address translation caches and cached TD VMCS associated with a TD
VCPU

19 TDH.MNG.VPFLUSHDONE Check all of a guest TD’s VCPUs have been flushed by TDH.VP.FLUSH

20 TDH.MNG.KEY.FREEID Mark the guest TD’s HKID as free

21 TDH.MNG.INIT Initialize per-TD control structures

22 TDH.VP.INIT Initialize the per-VCPU control structures

23 TDH.MEM.PAGE.PROMOTE Merge 512 consecutive 4KB or 2MB private TD page mappings into one 2MB or
1GB page mapping respectively

24 TDH.PHYMEM.PAGE.RDMD Read the metadata of a page in a TDMR

25 TDH.MEM.SEPT.RD Read a Secure EPT entry

26 TDH.VP.RD Read VCPU metadata

27 TDH.MNG.KEY.RECLAIMID Does nothing; provided for backward compatibility

28 TDH.PHYMEM.PAGE.RECLAIM Reclaim a physical memory page owned by a TD (i.e., TD private page, Secure EPT
page or a control structure page)

29 TDH.MEM.PAGE.REMOVE Remove a private page from a guest TD

30 TDH.MEM.SEPT.REMOVE Remove a Secure EPT page from a TD

31 TDH.SYS.KEY.CONFIG Configure the Intel TDX global private key on the current package

32 TDH.SYS.INFO Get Intel TDX module information

33 TDH.SYS.INIT Globally initialize the Intel TDX module

34 TDH.SYS.RD Read a TDX Module global-scope metadata field

35 TDH.SYS.LP.INIT Initialize the Intel TDX module per logical processor

36 TDH.SYS.TDMR.INIT Partially initialize a Trust Domain Memory Region (TDMR)

37 TDH.SYS.RDALL Read all host-readable TDX Module global-scope metadata fields

38 TDH.MEM.TRACK Increment the TD’s TLB tracking counter

39 TDH.MEM.RANGE.UNBLOCK Remove the blocking of a TD private GPA range

40 TDH.PHYMEM.CACHE.WB Write back the contents of the cache on a package

41 TDH.PHYMEM.PAGE.WBINVD Write back and invalidate all cache lines associated with the specified memory
page and HKID

43 TDH.VP.WR Write VCPU metadata

44 TDH.SYS.LP.SHUTDOWN Does nothing; provided for backward compatibility

45 TDH.SYS.CONFIG Globally configure the Intel TDX module

48 TDH.SERVTD.BIND Bind a service TD to a target TD

49 TDH.SERVTD.PREBIND Pre-bind a service TD to a target TD

52 TDH.SYS.SHUTDOWN Shutdown the Intel TDX module and prepare handoff data

53 TDH.SYS.UPDATE Populate Intel TDX module state from handoff data

64 TDH.EXPORT.ABORT Abort an export session

65 TDH.EXPORT.BLOCKW Block a TD private page for writing

66 TDH.EXPORT.RESTORE Restore a list of TD private 4KB pages’ Secure EPT entry states after an export
abort

68 TDH.EXPORT.MEM Export a list of TD private pages contents and/or cancellation requests

70 TDH.EXPORT.PAUSE Pause the exported TD

71 TDH.EXPORT.TRACK End the current in-order export phase epoch and either start a new epoch or start
the out-of-order export phase

72 TDH.EXPORT.STATE.IMMUTABLE Start an export session and export the TD's immutable state

73 TDH.EXPORT.STATE.TD Export the TD's mutable state

74 TDH.EXPORT.STATE.VP Export a VCPU mutable state

75 TDH.EXPORT.UNBLOCKW Unblock a page that has been blocked for writing

80 TDH.IMPORT.ABORT Abort an import session

81 TDH.IMPORT.END End an import session

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 72 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf

Interface Function Name Description

82 TDH.IMPORT.COMMIT Commit the import session and allow the imported TD to run

83 TDH.IMPORT.MEM Import a list of TD private pages contents and/or cancellation requests based on a
migration bundle in shared memory

84 TDH.IMPORT.TRACK End the current in-order import phase epoch and either start a new epoch or start
the out-of-order import phase

85 TDH.IMPORT.STATE.IMMUTABLE Start an import session and import the TD's immutable state

86 TDH.IMPORT.STATE.TD Import the TD's mutable state

87 TDH.IMPORT.STATE.VP Import a VCPU mutable state

96 TDH.MIG.STREAM.CREATE Create a migration stream

Instruction Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

The SEAMCALL instruction itself is specified in the [TDX Arch Extensions Spec]. There are multiple cases where SEAMCALL 5

may fail. Failures may result in an exception (#UD, #GP(0)) or a VMfailInvalid condition (CF is set to 1). Failure cases
include, among other, the following:

• CPU mode is incorrect

• TDX module has not been loaded

• TDX module has been disabled 10

If RAX bit 63 is 1, then the SEAMCALL leaf function is processed by the P-SEAMLDR. Refer to the [TDX Loader Spec] for
details.

On entry, the Intel TDX module performs the checks listed below at a high level. Errors cause a SEAMRET with RAX set
to the proper completion status code.

1. The leaf number in RAX is supported by the Intel TDX module. 15

2. If the Intel TDX module’s state is not SYS_READY, only TDH.SYS.RD*, TDH.SYS.INFO, TDH.SYS.INIT, TDH.SYS.LP.INIT,
TDH.SYS.CONFIG, TDH.SYS.KEY.CONFIG and TDH.SYS.SHUTDOWN leaf functions are allowed. Those leaf functions
then perform other initialization state checks.

If all checks pass, the Intel TDX module calls the leaf function according to the leaf number in RAX. See the following
sections for individual leaf function details. 20

Completion Status Codes

Table 5.5: SEAMCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS SEAMCALL is successful.

TDX_SYS_SHUTDOWN

Other See individual leaf functions.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 73 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.2. TDH.EXPORT.ABORT Leaf

TDH.EXPORT.ABORT aborts an export session and allows the source TD to resume normal operation, depending on export
state and an abort token received from the destination platform.

Table 5.6: TDH.EXPORT.ABORT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 If an abort token is available, R8 provides the HPA and size of memory of an MBMD structure in
memory, as described below.

Otherwise, R8’s value must be 0.

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream index:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

63:16 RESERVED Reserved: must be 0

 5

Table 5.7: TDH.EXPORT.ABORT Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

Leaf Function Description

TDH.EXPORT.ABORT aborts an export session. If successful, i.e., the target TD does not run, the source TD becomes
runnable. If called during the out-of-order phase, an abort token received from the destination platform is required.

Enumeration: Availability of TDH.EXPORT.ABORT is enumerated by TDX_FEATURES0.TD_MIGRATION (bit 0),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.EXPORT.ABORT returns a 15

TDX_OPERAND_INVALID(RAX) status.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 74 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.8: TDH.EXPORT.ABORT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA MBMD buffer MBMD R Shared 128B None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive N/A N/A

TDH.EXPORT.ABORT checks the memory operands per the table above when applicable during its flow. The text below 5

does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 10

4. TDCS has been allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress but has not been committed yet: TDCS.OP_STATE is LIVE_EXPORT, PAUSED_EXPORT

or POST_EXPORT.
6. The migration stream index is 0.

If successful, the function does the following: 15

7. If the export session is in the post-copy phase (TDCS.OP_STATE is POST_EXPORT):
7.1. Check that the buffer provided for MBMD is large enough.
7.2. Copy the MBMD into a temporary buffer.
7.3. Check the MBMD fields.

If passed: 20

7.4. If the migration stream has not been initialized, initialize it.
7.5. Build the 96b IV for this migration bundle by concatenating the stream index and the MBMD’s IV_COUNTER.
7.6. Calculate MAC based on the MAC’ed fields of MBMD and check that its value is the same as the MBMD’s MAC

field’s value.
8. Else (the export session is in the pre-copy phase – TDCS.OP_STATE is LIVE_EXPORT or PAUSED_EXPORT): 25

8.1. Check that the MBMD HPA and size provided in R8 is 0.
8.2. Check that the migration stream index provided in R10 is 0.

If passed:

9. Terminate the export session:
9.1. Set all migration streams’ INITIALIZED and ENABLED flags to FALSE. 30

9.2. Set TDCS.OP_STATE to RUNNABLE.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 75 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.9: TDH.EXPORT.ABORT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INCORRECT_MBMD_MAC

TDX_INVALID_MBMD

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 76 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.3. TDH.EXPORT.BLOCKW Leaf

Block a list of TD private 4KB pages for writing and for attributes modification.

Table 5.10: TDH.EXPORT.BLOCKW Input Operands Definition

Operand Name Description

RAX Leaf and
Version

SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX GPA_LIST_INFO GPA_LIST_INFO: HPA of a GPA list page in shared memory, and first and last
entries to process, as defined in 3.12.2

FORMAT must be GPA_ONLY.

RDX TDR HPA of the source TD’s TDR page (HKID bits must be 0)

Table 5.11: TDH.EXPORT.BLOCKW Output Operands Definition 5

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RCX GPA_LIST_INFO Same as the input value, except that FIRST_ENTRY is updated to the index of the
next entry to be processed.

If all entries have been processed, FIRST_ENTRY is updated to
(LAST_ENTRY + 1) Modulo 512.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

For each 4KB page in the GPA list, if a blocking operation has been requested, TDH.EXPORT.BLOCKW finds the Secure EPT 10

entry for the provided page. If the entry state is correct (MAPPED, PENDING, EXPORTED_DIRTY or
PENDING_EXPORTED_DIRTY), TDH.EXPORT.BLOCKW blocks it for writing, by saving and clearing the W bit and setting
the Secure EPT entry state (to BLOCKEDW, PENDING_BLOCKEDW, EXPORTED_DIRTY_BLOCKEDW or
PENDING_EXPORTED_DIRTY_BLOCKEDW respectively). It records the current TD’s TLB epoch in the TD’s global
BW_EPOCH and marks the GPA list entry as ready for export. If the TD is partitioned, TDH.EXPORT.BLOCKW also blocks 15

any L2 SEPT entries mapping the 4KB page.

Enumeration: Availability of TDH.EXPORT.BLOCKW is enumerated by TDX_FEATURES0.TD_MIGRATION (bit 0),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.EXPORT.BLOCKW returns a
TDX_OPERAND_INVALID(RAX) status.

List Entry Error: If a page can’t be blocked for writing, TDH.EXPORT.BLOCKW marks its GPA list entry as unsuccessful. 20

List processing is not aborted, it continues to the next entry, if applicable. The return status in RAX
indicates the number of such cases encountered during operation.

Interruptibility: TDH.EXPORT.BLOCKW is interruptible. If a pending interrupt is detected during operation,
TDH.EXPORT.BLOCKW returns with a TDX_INTERRUPTED_RESUMABLE status in RAX. RCX is updated

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 77 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

with the next list entry index to process, so the host BMM may re-invoke TDH.EXPORT.BLOCKW
immediately after handling the interrupt.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.12: TDH.EXPORT.BLOCKW Memory Operands Information 5

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit N/A GPA TD private
pages (via GPA
list)

Block None Private 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(h) N/A N/A

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

TDH.MEM.RANGE.BLOCKW checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 10

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. Export session is in the in-order phase and the TD has not been paused yet (TDCS.OP_STATE is LIVE_EXPORT).

If passed, process the GPA list: 15

Note: Error conditions that impact a single GPA list entry do not cause an abort of TDH.EXPORT.BLOCKW. Instead, the
GPA list entry is updates with a proper status code, and the corresponding migration buffer list entry is marked
as invalid.

6. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY, if OPERATION
indicates a BLOCKW request: 20

6.1. Check the GPA list entry fields value.

If passed:

6.2. Walk the L1 Secure EPT based on the GPA operand and find the Secure EPT entry to be blocked.
6.3. Check the Secure EPT entry state: it should be either of MAPPED, PENDING, EXPORTED_DIRTY or

PENDING_EXPORTED_DIRTY. 25

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 78 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.4. If passed, update the SEPT entry and record the TD epoch:
6.4.1. Save the original value of SEPT.W into SEPT.TDW.
6.4.2. Clear SEPT.W.
6.4.3. Atomically set the SEPT entry state to BLOCKEDW, PENDING_BLOCKEDW,

EXPORTED_DIRTY_BLOCKEDW or PENDING_EXPORTED_DIRTY_BLOCKEDW as appropriate. 5

6.4.4. If the page state is MAPPED or EXPORTED_DIRTY, then for each L2 mapping of the page:
6.4.4.1. Walk the L2 SEPT tree based on the GPA operand and find the L2 Secure EPT entry to be

blocked for writing.
6.4.4.2. Save the original value of SEPT.W into SEPT.TDW.
6.4.4.3. Clear SEPT.W. 10

6.4.4.4. Set the L2 SEPT entry state to L2_BLOCKED

Note: If the page state is one of the PENDING* states, then the L2 SEPT entry state is already
L2_BLOCKED, no change is required.

6.4.5. Copy the TD’s epoch (TDCS.TD_EPOCH) to TDCS.BW_EPOCH.
6.5. Else: 15

6.5.1. Set the GPA list entry’s OPERATION field to NOP and STATUS field to the applicable status.
6.6. If this is not the last entry in the list, and there is a pending interrupt, terminate TDH.EXPORT.BLOCKW with a

TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 5.13: TDH.EXPORT.BLOCKW Completion Status Codes (Returned in RAX) Definition 20

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful.

Note: Processing of some GPA list entries may have encountered
errors, but this did not cause an abort of the overall
operation. The number such errors is reported in the lower
32 bits of the completion status.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 79 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.4. TDH.EXPORT.MEM Leaf

TDH.EXPORT.MEM exports a list of TD private pages contents and/or cancellation requests and prepares a migration
bundle in shared memory.

Table 5.14: TDH.EXPORT.MEM Input Operands Definition

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX GPA_LIST_INFO HPA of a GPA list page in shared memory, and first and last entries to process, as
defined in 3.12.2

On a new invocation, FIRST_ENTRY must be 0. On a resumed invocation,
FIRST_ENTRY must be the index of the next GPA list entry to export.

RDX TDR HPA of the source TD’s TDR page (HKID bits must be 0)

R8 MBMD HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 MIG_BUFF_LIST HPA (including HKID bits) of a migration buffer list in shared memory, corresponding
to the GPA list pointed by RCX – see 3.12.3.

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index

If N migration streams have been created by
TDH.MIG.STREAM.CREATE, then MIGS_INDEX must be
lower than N-1.

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

R11 MAC_LIST_0 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the first
256 entries of the GPA list pointed by RCX – see 3.12.3.

If GPA_LIST_INFO.FIRST_ENTRY >= 256, then MAC_LIST_0 is ignored.

R12 MAC_LIST_1 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the last
256 entries of the GPA list pointed by RCX – see 3.12.3.

If GPA_LIST_INFO.LAST_ENTRY < 256, then MAC_LIST_1 is ignored.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 80 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

R14 ATTRIB_LIST If GPA_LIST_INFO.FORMAT is GPA_AND_L2_ATTR, then R14 contains the HPA
(including HKID bits) of a page attributes list in shared memory – see 3.12.4.

Else, R14 is ignored.

An ATTRIB_LIST is mandatory for exporting partitioned TDs (which contain one or
more L2 VMs).

Enumeration: Support of this feature is enumerated by
TDX_FEATURES0.PARTITIONED_TD_MIGRATION, readable by
TDH.SYS.RD* (see 3.3.3.1).

Table 5.15: TDH.EXPORT.MEM Output Operands Definition

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RCX GPA_LIST_INFO Same as the input value, except that FIRST_ENTRY is updated to the index of the next
entry to be processed.

If all entries have been processed, FIRST_ENTRY is updated to
(LAST_ENTRY + 1) Modulo 512.

RDX NUM_EXPORTED If TDH.EXPORT.MEM is successful, RDX returns the number of exported 4KB migration
buffers, including:

• The GPA list page

• One or two MAC pages (depending on GPA_LIST_INFO.FIRST_ENTRY and
GPA_LIST_INFO.LAST_ENTRY

• Up to 512 encrypted memory pages

If TDH.EXPORT.MEM is not successful, RDX is unmodified.

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 5

vary.

Enumeration: Availability of TDH.EXPORT.MEM is enumerated by either TDX_FEATURES0.TD_MIGRATION (bit 0) or
TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not supported,
calling TDH.EXPORT.MEM returns a TDX_OPERAND_INVALID(RAX) status.

 TDX_FEATURES0.PARTITIONED_TD_MIGRATION (bit 21) enumerates TDX module support of migrating 10

partitioned TDs (which contain one or more L2 VMs).

TDH.EXPORT.MEM exports a list of up to 512 TD private 4KB pages as a migration bundle, which includes an MBMD, set
of 4KB pages encrypted with the migration session key, a 4KB page containing the GPA list, an optional 4KB containing
page attributes list, and two 4KB pages containing page MACs.

A GPA list is provided as an input. For each page in the list, the requested operation may be either of the following: 15

• Export the page (applies also to re-exporting a previously exported page).

• Cancel a previous page export.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 81 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

It is also possible to skip entries in the list by requesting no operation for specific entries. The GPA list format is described
in 3.12.2. It is designed to be compatible with the output of TDH.EXPORT.BLOCKW and the input of
TDH.EXPORT.RESTORE.

A list of 4KB page buffers is provided as an input. In case no data is exported (PENDING page, page cancellation or some
state error) TDH.EXPORT.PAGE marks the applicable list entry as invalid. 5

Blocking and TLB Tracking: If the TD may be running, the exported pages must be blocked and TLB tracked. Else (e.g.,
the TD has been paused for export), no blocking and tracking is required.

S4 Hibernation: If TDH.EXPORT.MEM is called as part of an S4 hibernation, it only supports the out-of-order
export phase. As a result, the GPA list may not contain a CANCEL operation. In addition,
blocking and TLB tracking is not required. 10

Export Error: If a page can’t be exported, TDH.EXPORT.MEM marks its GPA list entry as unsuccessful, but
does not abort. It continues to the next entry, if applicable. The return status in RAX
indicates the number of such cases encountered during operation.

Interruptibility: TDH.EXPORT.MEM is interruptible. If a pending interrupt is detected during operation,
TDH.EXPORT.MEM returns with a TDX_INTERRUPTED_RESUMABLE status in RAX. RCX is 15

updated with the next list entry index to process, so the host VMM may re-invoke
TDH.EXPORT.MEM immediately after handling the interrupt, keeping the same inputs
except setting R10.RESUME to 1.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 20

Table 5.16: TDH.EXPORT.MEM Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Migration
buffer list

PAGE_LIST RW Shared 4KB None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit R11 HPA MAC list page 1 MAC list RW Shared 4KB None None None

Explicit R12 HPA MAC list page 2 MAC list RW Shared 4KB None None None

Explicit R14 HPA attributes list
page

page
attributes

R Shared 4KB None None None

Explicit N/A GPA TD private
pages (via GPA
list)

Blob R Private 4KB None None None

Explicit N/A HPA Migration
buffer pages
(via page list)

Blob RW Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 82 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(h) N/A N/A

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

TDH.EXPORT.MEM checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress.
6. The migration stream index is lower than TDCS.NUM_MIGS. 10

7. The buffer provided for MBMD is large enough.

If successful, the function does the following:

8. If the RESUME input flag is 0, indicating that this is a new (not resumed) invocation of TDH.EXPORT.MEM:
8.1. If the migration stream has not been initialized, initialize it.
8.2. Increment the migration stream context’s IV_COUNTER 15

8.3. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s
IV_COUNTER.

8.4. Build a local copy of the MBMD.
8.5. Calculate the MBMD MAC.
8.6. Write the MBMD to memory. 20

9. Else (this is a resumption of a previously interrupted TDH.EXPORT.MEM):
9.1. Check that the migration stream has been initialized.
9.2. Check that the stream context’s INTERRUPTED_FUNC contains TDH.EXPORT.MEM’s leaf number.
9.3. Check that the current inputs are the same as saved in the stream context when the function was interrupted.

If passed, process the GPA list: 25

Note: Error conditions that impact a single GPA list entry do not cause an abort of TDH.EXPORT.MEM. Instead, the
GPA list entry is updates with a proper status code, and the corresponding migration buffer list entry is marked
as invalid.

10. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY:
10.1. If no operation is requested, mark the corresponding migration buffer list entry as invalid and continue to the 30

next GPA list entry.
10.2. Check the GPA list entry fields value.

If passed:

10.3. Walk the L1 SEPT tree based on the GPA and level operands and find the leaf entry for the page.
10.4. Check that the SEPT entry state is allowed for page export. 35

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 83 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

10.5. If the TD is running (TDCS.OP_STATE is LIVE_EXPORT) and TLB tracking is required, check TLB tracking vs.
TDCS.BW_EPOCH set previously by TDH.EXPORT.BLOCKW.

10.6. Check that the requested operation is allowed in the current export phase.
10.7. Check that the requested operation is allowed for the current SEPT entry state.
10.8. If the page has any L2 mappings, check that a page attributes list has been provided (GPA_LIST_INFO.FORMAT 5

is GPA_AND_ATTR).

Note: TDH.EXPORT.MEM does not check that the page has not been already exported in the current migration
epoch during the in-order phase. This is checked when the page is imported by TDH.IMPORT.MEM.

10.9. Initialize the page attributes list entry to 0.
10.10. If passed: 10

10.10.1. For each L2 mapping of the page:
10.10.1.1. Walk the L2 SEPT based on the GPA and level operands and find the leaf entry for the

page (if any).
10.10.2. Update the page attributes list entry.
10.10.3. Update the L1 SEPT entry state, GPA list entry and migration buffer list entry. 15

10.11. Else:
10.11.1. Update the GPA list entry and migration buffer list entry with error status.

10.12. Increment the migration stream context’s IV_COUNTER
10.13. Build the 96b IV for this page by concatenating 0 as the direction bit, the stream index and the stream

context’s IV_COUNTER. 20

10.14. Accumulate page MAC based on the GPA list entry.
10.15. If a page attributes list has been provided, accumulate MAC based on the page attributes list entry.
10.16. If the page content is to be exported, encrypt the TD private page into the migration buffer and accumulate

MAC.
10.17. Write the page MAC to the MAC list. 25

10.18. If this is not the last round and there is a pending interrupt:
10.18.1. Save intermediate state in the migration stream context.
10.18.2. Terminate TDH.EXPORT.MEM with a TDX_INTERRUPTED_RESUMABLE status.

10.19. Else, advance to the next entry in the GPA list, if applicable.
11. Once the GPA list has been fully processed, update the migration stream next MB counter field. 30

Completion Status Codes

Table 5.17: TDH.EXPORT.MEM Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_RESUMPTION

TDX_INTERRUPTED_RESUMABLE

TDX_MIGRATION_STREAM_STATE_INCORRECT

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful.

Note: Processing of some GPA list entries may have encountered
errors, but this did not cause an abort of the overall
operation. The number such errors is reported in the lower
32 bits of the completion status.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 84 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 85 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.5. TDH.EXPORT.PAUSE Leaf

TDH.EXPORT.PAUSE starts the TDX-enforced blackout period on the source platform, where the source TD is paused.

Table 5.18: TDH.EXPORT.PAUSE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX HPA of Source TD TDR page (HKID bits must be 0)

Table 5.19: TDH.EXPORT.PAUSE Output Operands Definitions 5

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.PAUSE starts the Live Migration Blackout period on the source platform. 10

Enumeration: Availability of TDH.EXPORT.PAUSE is enumerated by either TDX_FEATURES0.TD_MIGRATION (bit
0) or TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not
supported, calling TDH.EXPORT.PAUSE returns a TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.20: TDH.EXPORT.PAUSE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS Epoch
Tracking Fields

N/A RW Opaque N/A Exclusive(i) N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 86 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.EXPORT.PAUSE checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. TDCS.OP_STATE is LIVE_EXPORT.

Note: All TD VCPUs have stopped executing and no other TD-specific SEAMCALL is running. This is implicit, since
TDH.EXPORT.PAUSE has an exclusive access to TDR and TDCS. 10

If successful, the function does the following:

6. Increment the TD’s epoch counter (TDCS.TD_EPOCH).

Note: This allows memory management operations to skip the need for blocking and TLB tracking while the TD is
paused. If the export session is aborted, the first TDH.VP.ENTER on each VCPU will flush TLB.

7. Set the TDCS.OP_STATE to PAUSED_EXPORT. 15

Completion Status Codes

Table 5.21: TDH.EXPORT.PAUSE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 87 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.6. TDH.EXPORT.RESTORE Leaf

TDH.EXPORT.RESTORE restores a list of TD private 4KB pages’ Secure EPT entry states after an export abort.

Table 5.22: TDH.EXPORT.RESTORE Input Operands Definition

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX GPA_LIST_INFO GPA_LIST_INFO: HPA of a GPA list page in shared memory, and first and last
entries to process, as defined in 3.12.2

FORMAT must be GPA_ONLY.

RDX TDR HPA of the source TD’s TDR page (HKID bits must be 0)

Table 5.23: TDH.EXPORT.RESTORE Output Operands Definition 5

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RCX GPA_LIST_INFO Same as the input value, except that FIRST_ENTRY is updated to the index of
the next entry to be processed.

If all entries have been processed, FIRST_ENTRY is updated to
(LAST_ENTRY + 1) Modulo 512.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.RESTORE restores a list of TD private 4KB pages’ Secure EPT entry states after an aborted export session. It 10

reverts each L1 Secure EPT entry and any applicable L2 Secure EPT entries to their original non-exported state.

Enumeration: Availability of TDH.EXPORT.RESTORE is enumerated by TDX_FEATURES0.TD_MIGRATION (bit 0),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.EXPORT.RESTORE returns a
TDX_OPERAND_INVALID(RAX) status.

List Entry Error: If a page’s Secure EPT entry can’t be restored, TDH.EXPORT.RESTORE marks its GPA list entry as 15

unsuccessful. List process is not aborted; it continues to the next entry, if applicable. The return status
in RAX indicates the number of such cases encountered during operation.

Interruptibility: TDH.EXPORT.RESTORE is interruptible. If a pending interrupt is detected during operation,
TDH.EXPORT.RESTORE returns with a TDX_INTERRUPTED_RSUMABLE status in RAX. RCX is updated
with the next list entry index to process, so the host VMM may re-invoke TDH.EXPORT.RESTORE 20

immediately after handling the interrupt.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 88 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.24: TDH.EXPORT.RESTORE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit N/A GPA TD private
pages (via GPA
list)

Block None Private 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(h) N/A N/A

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

TDH.EXPORT.RESTORE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. TDCS.OP_STATE is RUNNABLE. 10

If passed, process the GPA list:

Note: Error conditions that impact a single GPA list entry do not cause an abort of TDH.EXPORT.RESTORE. Instead, the
GPA list entry is updates with a proper status code, and the corresponding migration buffer list entry is marked
as invalid.

6. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY, if OPERATION 15

indicates a RESTORE request:
6.1. Check the GPA list entry fields value.

If passed:

6.2. Walk the L1 SEPT based on the GPA and level operands and find the leaf entry for the page.
6.3. Check that the SEPT entry state is one of the EXPORTED_* or PENDING_EXPORTED_* states. 20

6.4. If passed, update the SEPT entry:
6.4.1. Atomically decrement TDCS.MIG_COUNT.
6.4.2. If the SEPT state is one of the *_DIRTY* states, atomically decrement TDCS.DIRTY_COUNT.
6.4.3. If the SEPT state is one of the PENDING_* states, update it to PENDING. Else, update it to MAPPED.
6.4.4. If the page has any L2 mappings, and the SEPT state was one of the non-PENDING but BLOCKEDW 25

states, then for each L2 SEPT:

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 89 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6.6.1.1. Walk the L2 SEPT tree based on the GPA operand and find the Secure EPT entry to be
blocked.

6.6.1.2. If found:
6.6.1.2.1. Save the original value of SEPT.W into SEPT.TDW.
6.6.1.2.2. Clear SEPT.W. 5

6.5. Else:
6.5.1. Set the GPA list entry’s OPERATION field to NOP and STATUS field to the applicable status.

6.6. If this is not the last entry in the list, and there is a pending interrupt, terminate TDH.EXPORT.RESTORE with a
TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes 10

Table 5.25: TDH.EXPORT.RESTORE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful.

Note: Processing of some GPA list entries may have encountered
errors, but this did not cause an abort of the overall
operation. The number such errors is reported in the lower
32 bits of the completion status.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 90 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.7. TDH.EXPORT.STATE.IMMUTABLE Leaf

TDH.EXPORT.STATE.IMMUTABLE starts a new export session and exports the TD’s immutable state as a multi-page
migration bundle.

TDH.EXPORT.STATE.IMMUTABLE is also used for starting a new S4 hibernation session.

Table 5.26: TDH.EXPORT.STATE.IMMUTABLE Input Operands Definition 5

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX TDR Source TD handle and flags

Bits Name Description

0 EXPORT_TYPE 0: TD Export

1: S4 Hibernation

11:1 Reserved Must be 0

51:12 TDR HPA HPA[51:12] of the source TD’s TDR page (HKID bits
must be 0)

63:52 Reserved Must be 0

R8 MBMD HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including
HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in
bytes

R9 PAGE_LIST_INFO Migration buffers list information – see 3.12.6.1

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 91 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.27: TDH.EXPORT.STATE.IMMUTABLE Output Operands Definition

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RDX NUM_EXPORTED Number of exported 4KB migration buffers

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 5

TDH.EXPORT.STATE.IMMUTABLE starts a new export session. It exports the TD’s immutable state as a migration bundle,
which includes an MBMD and a set of 4KB pages, encrypted with the migration session key. The migration bundle is
protected by a MAC that is stored in the MBMD.

TDH.EXPORT.STATE.IMMUTABLE is also used for starting a new S4 hibernation session.

Enumeration: Availability of TDH.EXPORT.STATE.IMMUTABLE is enumerated by either 10

TDX_FEATURES0.TD_MIGRATION (bit 0) or TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD*
(see 3.3.3.1), being set to 1. If not supported, calling TDH.EXPORT.STATE.IMMUTABLE returns a
TDX_OPERAND_INVALID(RAX) status.

Interruptibility: TDH.EXPORT.STATE.IMMUTABLE is interruptible. The host VMM is expected to invoke it in a loop
until it returns with either a success indication or with a non-recoverable error indication. 15

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.28: TDH.EXPORT.STATE.IMMUTABLE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST RW Shared 4KB None None None

Explicit R10 N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 92 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A PL.S4_STATE N/A RW Hidden N/A Exclusive N/A N/A

TDH.EXPORT.STATE.IMMUTABLE checks the memory operands per the table above when applicable during its flow. The
text below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. The TD build and measurement have been finalized, or the TD has been imported, and no export session is in progress

(TDCS.OP_STATE is either RUNNABLE or LIVE_IMPORT). 10

6. The TD is migratable: TDCS.ATTRIBUTES.MIGRATABLE is set to 1.
6.1. For S4:

6.1.1. This check is only applicable if EXPORT_TYPE is 0 (TD export).
6.1.2. If TD migration is not supported, then EXPORT_TYPE must not be 0 (TD export).

7. Any previous aborted export session has been cleaned up: TDCS.MIG_COUNT is 0. 15

8. MIGS_INDEX is 0.
9. The buffer provided for MBMD is large enough.
10. The number of pages in the page list is large enough to hold the exported state.

Note: The required number of pages is enumerated by TDH.SYS.RD*.

If successful, the function does the following: 20

11. If the RESUME input flag is 0, indicating that this is a new invocation of TDH.EXPORT.STATE.IMMUTABLE (not a
resumption of a previously interrupted one):
11.1. If EXPORT_TYPE is 0 (TD export):

11.1.1. Check that a valid migration decryption key has been set by the Migration TD. If this is not the first
migration session, then the migration key must have been set after the previous migration session has 25

started.

Note: There is no explicit check that a migration TD is bound; this is implied by the above check.

11.1.2. For S4, set TDCS.S4_MIGRATED to FALSE.

11.2. Else (EXPORT_TYPE is 1 (S4 hibernation) – only if S4 is supported):
11.2.1. Check that PL.S4_STATE is either S4_IDLE or S4_EXPORT. 30

11.2.2. Create the S4 encryption key and set TDCS.MIG_ENC_WORKING_KEY to this value.
11.2.3. Set TDCS.MIG_WORKING_VERSION to S4_MIG_VERSION (an TDX module constant).
11.2.4. If the global S4 session has not yet started, start it (set PL.S4_STATE to S4_EXPORT).
11.2.5. Set TDCS.S4_MIGRATED to TRUE.
11.2.6. Atomically increment PL.S4_EXP_INDEX. 35

If passed:

11.3. Initialize the migration context in TDCS:
11.3.1. Copy the migration keys to working migration keys that will be used throughout the export session.

If passed:

11.3.2. Set all migration streams’ INITIALIZED flags to 0 and ENABLED flags to 1. 40

11.4. Initialize the current migration stream.
11.5. Increment the migration stream context’s IV_COUNTER.
11.6. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and the

stream context’s IV_COUNTER.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 93 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

11.7. Build the MBMD in the migration stream context.
11.8. Accumulate MAC in the stream context based on the MAC’ed fields of MBMD.

12. Else (this is a resumption of a previously interrupted TDH.EXPORT.STATE.IMMUTABLE):
12.1. Check that the resumption is valid:

12.1.1. The stream context indicates there’s a valid interruption state. 5

12.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand have the same value as in the
interruption state.

12.2. Check that the migration stream is enabled.
12.3. Restore the previously saved page list index from the migration context.
12.4. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s 10

IV_COUNTER.

If passed:

13. Repeat exporting 4KB pages until all immutable state is exported or until a pending interrupt is detected:
13.1. Get the 4KB next page HPA from it from the page list.
13.2. Dump the next set of metadata fields as a metadata list of field sequences, into an internal temporary 4KB 15

buffer.
13.3. Use the migration key and the migration stream context to encrypt the 4KB internal buffer into the destination

data page and update the MAC calculation.
13.4. If all immutable state has been exported:

13.4.1. Write the accumulated MAC to the MBMD in the stream context. 20

13.4.2. Write the MBMD to the memory buffer provided by the host VMM.
13.4.3. Mark the migration stream context’s interrupted state as invalid.
13.4.4. Increment the migration stream context’s NEXT_MB_COUNTER.
13.4.5. Set TDCS.TOTAL_MB to 1.
13.4.6. Set TDCS.OP_STATE to LIVE_EXPORT. 25

13.4.7. Clear TDCS.DIRTY_COUNT to 0.
13.4.8. Terminate TDH.EXPORT.STATE.IMMUTABLE with a TDX_SUCCESS status.

13.5. Else, if there is a pending interrupt:
13.5.1. Save the interruption state to the stream context
13.5.2. Terminate TDH.EXPORT.STATE.IMMUTABLE with a TDX_INTERRUPTED_RESUMABLE status. 30

Completion Status Codes

Table 5.29: TDH.EXPORT.STATE.IMMUTABLE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_RESUMPTION

TDX_IOMMU_IOTLB_TRACKING_NOT_DONE Applicable only if TDX Connect is supported

TDX_MAX_EXPORTS_EXCEEDED

TDX_METADATA_LIST_OVERFLOW

TDX_MIGRATION_SESSION_KEY_NOT_SET

TDX_MIGRATION_STREAM_STATE_INCORRECT

TDX_MIN_MIGS_NOT_CREATED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 94 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_PREVIOUS_EXPORT_CLEANUP_INCOMPLETE

TDX_RND_NO_ENTROPY Failed to generate a random migration encryption key. This
is typically caused by an entropy error of the CPU's random
number generator, and may be impacted by RDSEED,
RDRAND or PCONFIG executing on other LPs. The operation
should be retried.

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_HAS_ATTACHED_DEVICES Applicable only if TDX Connect is supported

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_MIGRATABLE

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 95 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.8. TDH.EXPORT.STATE.TD Leaf

TDH.EXPORT.STATE.TD exports a paused TD’s mutable state as a multi-page migration bundle.

Table 5.30: TDH.EXPORT.STATE.TD Input Operands Definition

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX TDR HPA of the source TD’s TDR page (HKID bits must be 0)

R8 MBMD HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO Migration buffers list information – see 3.12.6.1

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

Table 5.31: TDH.EXPORT.STATE.TD Output Operands Definition 5

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RDX NUM_EXPORTED Number of exported 4KB migration buffers

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 96 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.EXPORT.STATE.TD exports the TD’s mutable state as a migration bundle, which includes an MBMD and a set of 4KB
pages, encrypted with the migration session key. The migration bundle is protected by a MAC that is stored in the MBMD.
The TD must have been paused by a TDH.EXPORT.PAUSE.

Enumeration: Availability of TDH.EXPORT.STATE.TD is enumerated by either TDX_FEATURES0.TD_MIGRATION (bit
0) or TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not 5

supported, calling TDH.EXPORT.STATE.TD returns a TDX_OPERAND_INVALID(RAX) status.

Interruptibility: TDH.EXPORT.STATE.TD is interruptible. The host VMM is expected to invoke it in a loop until it
returns with either a success indication or with a non-recoverable error indication.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 10

Table 5.32: TDH.EXPORT.STATE.TD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Exclusive(h) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

TDH.EXPORT.STATE.TD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress, and the TD has been paused: TDCS.OP_STATE is PAUSED_EXPORT. 20

6. Migration stream index is 0.
7. The migration stream is enabled and initialized.
8. The buffer provided for MBMD is large enough.
9. The number of pages in the page list is large enough to hold the exported state.

Note: The required number of pages is enumerated by TDH.SYS.RD*. 25

If successful, the function does the following:

10. If the RESUME input flag is 0, indicating that this is a new invocation of TDH.EXPORT.STATE.TD (not a resumption of
a previously interrupted one):
10.1. Increment the migration stream context’s IV_COUNTER.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 97 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

10.2. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index (0) and the
stream context’s IV_COUNTER.

10.3. Build the MBMD in the migration stream context.
10.4. Accumulate MAC in the stream context based on the MAC’ed fields of MBMD.

11. Else (this is a resumption of a previously interrupted TDH.EXPORT.STATE.TD): 5

11.1. Check that the resumption is valid:
11.1.1. The stream context indicates there’s a valid interruption state.
11.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand have the same value as in the

interruption state.
11.2. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s 10

IV_COUNTER.
11.3. Restore the previously saved page list index from the migration context.

If passed:

12. Repeat exporting 4KB pages until all mutable TD state is exported or until a pending interrupt is detected:
12.1. Get the 4KB next page HPA from it from the page list. 15

12.2. Dump the next set of metadata fields as a metadata list of field sequences, into an internal temporary 4KB
buffer.

12.3. Use the migration key and the migration stream context to encrypt the 4KB internal buffer into the destination
data page and update the MAC calculation.

12.4. If all TD state has been exported: 20

12.4.1. Write the accumulated MAC to the MBMD in the stream context.
12.4.2. Write the MBMD to the memory buffer provided by the host VMM.
12.4.3. Mark the migration stream context’s interrupted state as invalid.
12.4.4. Increment the migration stream context’s NEXT_MB_COUNTER.
12.4.5. Increment TDCS.TOTAL_MB. 25

12.4.6. Terminate TDH.EXPORT.STATE.TD with a TDX_SUCCESS status.
12.5. Else, if there is a pending interrupt:

12.5.1. Save the interruption state to the stream context
12.5.2. Terminate TDH.EXPORT.STATE.TD with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes 30

Table 5.33: TDH.EXPORT.STATE.TD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_RESUMPTION

TDX_METADATA_LIST_OVERFLOW

TDX_MIGRATION_STREAM_STATE_INCORRECT

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 98 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 99 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.9. TDH.EXPORT.STATE.VP Leaf

TDH.EXPORT.STATE.VP exports a paused TD’s VCPU mutable state as a multi-page migration bundle.

Table 5.34: TDH.EXPORT.STATE.VP Input Operands Definition

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX TDVPR HPA of the source TD VCPU’s TDVPR page (HKID bits must be 0)

R8 MBMD HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID
bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO Migration buffers list information – see 3.12.6.1

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index

If N migration streams have been created by
TDH.MIG.STREAM.CREATE, then MIGS_INDEX must be
lower than N-1.

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

Table 5.35: TDH.EXPORT.STATE.VP Output Operands Definition 5

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RDX NUM_EXPORTED Number of exported 4KB migration buffers

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 100 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.STATE.VP exports a TD’s VCPU mutable state as a migration bundle, which includes an MBMD and a set of
4KB pages, encrypted with the migration session key. The migration bundle is protected by a MAC that is stored in the 5

MBMD. The TD must have been paused by a TDH.EXPORT.PAUSE.

Enumeration: Availability of TDH.EXPORT.STATE.VP is enumerated by either TDX_FEATURES0.TD_MIGRATION (bit
0) or TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not
supported, calling TDH.EXPORT.STATE.VP returns a TDX_OPERAND_INVALID(RAX) status.

Interruptibility: TDH.EXPORT.STATE.VP is interruptible. The host VMM is expected to invoke it in a loop until it 10

returns with either a success indication or with a non-recoverable error indication.

VCPU Association: TDH.EXPORT.VP associates the TD VCPU with the current LP. This requires that the VCPU will not be
associated with another LP – for details, see the [TDX Module Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.36: TDH.EXPORT.STATE.VP Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Shared 4KB None None None

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

TDH.EXPORT.STATE.VP checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 20

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in progress, and the TD has been paused: TDCS.OP_STATE is PAUSED_EXPORT. 25

6. Migration stream index is lower than TDCS.NUM_MIGS.
7. The migration stream is enabled.
8. The buffer provided for MBMD is large enough.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 101 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

9. The number of pages in the page list is large enough to hold the exported state.

Note: The required number of pages is enumerated by TDH.SYS.RD*.

If successful, the function does the following:

10. Associate the VCPU with the current LP, and update TD VMCS using the algorithm described in 5.3.1.

If passed: 5

11. If the RESUME input flag is 0, indicating that this is a new invocation of TDH.EXPORT.STATE.VP (not a resumption of
a previously interrupted one):
11.1. If the migration stream has not been initialized, initialize it.
11.2. Increment the migration stream context’s IV_COUNTER.
11.3. Build the MBMD in the migration stream context. 10

11.4. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s
IV_COUNTER.

11.5. Accumulate MAC in the stream context based on the MAC’ed fields of MBMD.
12. Else (this is a resumption of a previously interrupted TDH.EXPORT.STATE.VP):

12.1. Check that the resumption is valid: 15

12.1.1. The stream context indicates there’s a valid interruption state.
12.1.2. The current SEAMCALL leaf number, and the TDVPR HPA and PAGE_OR_LIST operands are the same as

in the interruption state.
12.2. Increment the migration stream context’s IV_COUNTER.
12.3. Restore the previously saved page list index from the migration context. 20

13. Repeat exporting 4KB pages until all immutable state is exported or until a pending interrupt is detected:
13.1. Get the 4KB next page HPA from it from the page list.
13.2. Dump the next set of metadata fields as a metadata list of field sequences, into an internal temporary 4KB

buffer.
13.3. Use the migration key and the migration stream context to encrypt the 4KB internal buffer into the destination 25

data page and update the MAC calculation.
13.4. If all VCPU state has been exported:

13.4.1. Write the accumulated MAC to the MBMD in the stream context.
13.4.2. Write the MBMD to the memory buffer provided by the host VMM.
13.4.3. Mark the migration stream context’s interrupted state as invalid. 30

13.4.4. Increment the migration stream context’s NEXT_MB_COUNTER.
13.4.5. Increment TDCS.TOTAL_MB.
13.4.6. Terminate TDH.EXPORT.STATE.VP with a TDX_SUCCESS status.

13.5. Else, if there is a pending interrupt:
13.5.1. Save the interruption state to the stream context 35

13.5.2. Terminate TDH.EXPORT.STATE.VP with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 5.37: TDH.EXPORT.STATE.VP Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_RESUMPTION

TDX_METADATA_LIST_OVERFLOW

TDX_MIGRATION_STREAM_STATE_INCORRECT

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 102 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_VCPU_ALREADY_EXPORTED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 103 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.10. TDH.EXPORT.TRACK Leaf

TDH.EXPORT.TARCK ends the current in-order export phase epoch and either starts a new epoch or starts the out-of-
order export phase. Generate an epoch token to be exported to the destination platform.

Table 5.38: TDH.EXPORT.TRACK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream and flags:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 IN_ORDER_DONE Indicates that the in-order export phase is done

 5

Table 5.39: TDH.EXPORT.TRACK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

AVX, AVX2
and
AVX512
state

May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

Enumeration: Availability of TDH.EXPORT.TRACK is enumerated by either TDX_FEATURES0.TD_MIGRATION (bit 0)
or TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not
supported, calling TDH.EXPORT.TRACK returns a TDX_OPERAND_INVALID(RAX) status.

IN_ORDER_DONE: If R10.IN_ORDER_DONE is 0, TDH.EXPORT.TRACK starts a new export epoch.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 104 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Else (R10.IN_ORDER_DONE is 1), TDH.EXPORT.TRACK checks that no memory exported so far needs
to be re-exported. If so, it ends the in-order export phase and starts the out-of-order phase.

In both cases, TDH.EXPORT.TRACK generates an epoch token, to be exported on the specified
migration stream.

When called as part of S4 hibernation, R10.IN_ORDER_DONE must be 1. 5

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.40: TDH.EXPORT.TRACK Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive N/A N/A

TDH.EXPORT.TRACK checks the memory operands per the table above when applicable during its flow. The text below 10

does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 15

4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An export session is in the in-order phase: TDCS.OP_STATE is either LIVE_EXPORT or PAUSED_EXPORT.
6. The migration stream index is 0.
7. The migration stream is initialized.
8. The buffer provided for MBMD is large enough. 20

If successful, the function does the following:

9. If called as part of S4 hibernation, check that R10.IN_ORDER_DONE is 1.

If passed:

10. If R10.IN_ORDER_DONE is 0:
10.1. Increment TDCS.MIG_EPOCH 25

11. Else (R10.IN_ORDER_DONE is 1):
11.1. Check that an export session is in the in-order phase and the TD has been paused: TDCS.OP_STATE is

PAUSED_EXPORT.
11.2. Check that TDCS.DIRTY_COUNT is 0, indicating that no unexported newer versions of any memory page

exported so far remain. Memory pages that have not yet been exported may remain and may later be exported 30

(out-of-order).

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 105 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

11.3. Start the out-of-order phase:
11.3.1. Set TDCS.OP_STATE to POST_EXPORT.
11.3.2. Set TDCS.MIG_EPOCH to 0xFFFFFFFF.

12. Increment the migration stream context’s IV_COUNTER. 5

13. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s IV_COUNTER.
14. Create an epoch token MBMD with the following fields:

14.1. The number of the new epoch that have just begun. Bit 63 indicates the beginning of the out-of-order phase.
14.2. The total number of migration bundles (including the current one) that have been exported in the current

migration session. 10

15. Accumulate MAC based on the MAC’ed fields of MBMD and write to the MBMD’s MAC field’s value.
16. Write the MBMD to the provided memory buffer.

Completion Status Codes

Table 5.41: TDH.EXPORT.TRACK Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EXPORTED_DIRTY_PAGES_REMAIN

TDX_MIGRATION_EPOCH_OVERFLOW

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 106 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.11. TDH.EXPORT.UNBLOCKW Leaf

Remove the write-blocking of a 4KB TD private page previously blocked by TDH.EXPORT.BLOCKW.

Table 5.42: TDH.EXPORT.UNBLOCKW Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the page to be blocked for
writing – see 3.6.1: must be 0 (4KB)

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the GPA to be unblocked for writing

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 5.43: TDH.EXPORT.UNBLOCKW Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry where the error was detected

In other cases, RCX returns 0

RDX Extended error information part 2

In case of EPT walk error, EPT level where the error was detected

In other cases, RDX returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.EXPORT.UNBLOCKW finds the write blocked Secure EPT entry for the given GPA and level. It verifies that the entry 10

has been blocked for writing and TLB tracking has been done, then marks the entry as non-blocked for writing (MAPPED,
PENDING, EXPORTED_DIRTY or PENDING_EXPORTED_DIRTY as appropriate). If the page has any L2 mappings,
TDH.EXPORT.UNBLOCKW unblocks them.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 107 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Enumeration: Availability of TDH.EXPORT.UNBLOCKW is enumerated by TDX_FEATURES0.TD_MIGRATION (bit 0),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.EXPORT.UNBLOCKW returns a
TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 5

Table 5.44: TDH.EXPORT.UNBLOCKW Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page or TD
private page

Blob None Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(h) N/A N/A

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

TDH.EXPORT.UNBLOCKW checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 10

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. Either of the following is true: 15

5.1. An export session is in progress.
5.2. The TD is allowed to run (TDCS.OP_STATE is either RUNNABLE, LIVE EXPORT, PAUSED_EXPORT or

POST_EXPORT). In these states, TDH.EXPORT.UNBLOCKW is used to clean up after an aborted export session.
6. The specified level is 0 (4KB).

If successful, the function does the following: 20

7. Walk the Secure EPT based on the GPA operand and find the Secure EPT page or TD private page to be unblocked
for writing.

8. Check the Secure EPT entry state is blocked for writing: BLOCKEDW, PENDING_BLOCKEDW,
EXPORTED_DIRTY_BLOCKEDW or PENDING_EXPORTED_DIRTY_BLOCKEDW.

9. If the TD is allowed to run, check that TLB tracking was done. 25

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 108 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

10. If the page state is not one of the PENDING* states:
10.1. Restore the original value of SEPT.W from SEPT.TDW.

11. If the page has not been exported (Secure EPT entry state is BLOCKEDW or PENDING_BLOCKEDW), unblock the
Secure EPT entry for writing by atomically setting its state to MAPPED or PENDING, respectively. 5

12. Else (Secure EPT entry state is EXPORTED_DIRTY_BLOCKEDW or PENDING_EXPORTED_DIRTY_BLOCKEDW):
12.1. Unblock the Secure EPT entry for writing by atomically setting its state to EXPORTED_DIRTY or

PENDING_EXPORTED_DIRTY, respectively.
12.2. Atomically increment TDCS.DIRTY_COUNT.

13. If the updated page state is MAPPED or EXPORTED_DIRTY, then for each L2 mapping of the page: 10

13.1. Walk the L2 SEPT tree based on the GPA operand and find the L2 Secure EPT entry to be unblocked for
writing.

13.2. Restore the original value of SEPT.W from SEPT.TDW.
13.3. Set the L2 SEPT entry state to L2_MAPPED

Note: If the updated page state is one of the PENDING* states, then the L2 SEPT entry state is already L2_BLOCKED, 15

no change is required.

Completion Status Codes

Table 5.45: TDH.EXPORT.UNBLOCKW Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_NOT_WRITE_BLOCKED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.EXPORT.UNBLOCKW is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 109 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.12. TDH.IMPORT.ABORT Leaf

Abort an import session; after this the target TD can only be destroyed. Generate an abort token that is to be consumed
by the source platform.

Table 5.46: TDH.IMPORT.ABORT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of a memory buffer to use for MBMD:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream index – must be 0

 5

Table 5.47: TDH.IMPORT.ABORT Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

AVX, AVX2
and
AVX512
state

May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDH.IMPORT.ABORT generates an abort token MBMD and sets the destination TD’s OP_STATE to IMPORT_FAILED. In
this state, the destination TD will not run; it can only be destroyed. This is indicated by the FATAL bit (61) of the
completion status returned in RAX.

Enumeration: Availability of TDH.IMPORT.ABORT is enumerated by TDX_FEATURES0.TD_MIGRATION (bit 0),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.IMPORT.ABORT returns a 15

TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 110 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.48: TDH.IMPORT.ABORT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA Memory to use
for MBMD

MBMD RW Shared 128B None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.IMPORT.ABORT checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in progress but has not been committed yet (TDCS.OP_STATE is one of MEMORY_IMPORT, 10

STATE_IMPORT, POST_IMPORT or FAILED_IMPORT).
6. The migration stream index is 0.
7. The buffer provided for MBMD is large enough.

If successful, the function does the following:

8. Set TDCS.OP_STATE to FAILED_IMPORT. 15

9. If the migration stream has not been initialized, initialize it.
10. Increment the stream context’s IV_COUNTER.
11. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s IV_COUNTER.
12. Create an abort token MBMD.
13. Accumulate MAC based on the MAC’ed fields of MBMD and write to the MBMD’s MAC field’s value. 20

14. Write the MBMD to the provided memory buffer.
15. Increment the stream context’s NEXT_MB_COUNTER.

Completion Status Codes

Table 5.49: TDH.IMPORT.ABORT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 111 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 112 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.13. TDH.IMPORT.COMMIT Leaf

Commit an import session and allow the imported TD to run.

Table 5.50: TDH.IMPORT.COMMIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

Table 5.51: TDH.IMPORT.COMMIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.COMMIT commits an import session and allows the important TD to run. Post-copy memory import may 10

continue.

Enumeration: Availability of TDH.IMPORT.COMMIT is enumerated by TDX_FEATURES0.TD_MIGRATION (bit 0),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.IMPORT.COMMIT returns a
TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.52: TDH.IMPORT.COMMIT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

TDH.IMPORT.COMMIT checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary. 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 113 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number). 5

5. An import session is in the out-of-order phase: TDCS.OP_STATE is POST_IMPORT.

If successful, the function does the following:

6. Set TDCS.OP_STATE to LIVE_IMPORT.

Completion Status Codes

Table 5.53: TDH.IMPORT.COMMIT Completion Status Codes (Returned in RAX) Definition 10

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 114 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.14. TDH.IMPORT.END Leaf

End an import session.

Table 5.54: TDH.IMPORT.END Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

Table 5.55: TDH.IMPORT.END Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.END ends an import session and allows the important TD to run (if not already allowed by 10

TDH.IMPORT.COMMIT).

When called as part of an S4 resumption session, TDH.IMPORT.END must be called after no future replay is prevented by
calling TDH.SYS.S4_END.

Enumeration: Availability of TDH.IMPORT.END is enumerated by either TDX_FEATURES0.TD_MIGRATION (bit 0) or
TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not supported, 15

calling TDH.IMPORT.END returns a TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.56: TDH.IMPORT.END Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 115 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.IMPORT.END checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in the out-of-order phase.
6. For S4, if TDCS.S4_MIGRATED is TRUE then a global S4 session in not in progress (PL.S4_STATE is S4_IDLE).

If successful, the function does the following: 10

7. Set TDCS.OP_STATE to RUNNABLE.

Completion Status Codes

Table 5.57: TDH.IMPORT.END Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 116 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.15. TDH.IMPORT.MEM Leaf

TDH.IMPORT.MEM imports a list of TD private pages contents and/or cancellation requests based on a migration bundle
in shared memory.

Table 5.58: TDH.IMPORT.MEM Input Operands Definition

Operand Name Description

RAX Leaf and
Version

SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX GPA_LIST_INFO HPA of a GPA list page in shared memory, and first and last entries to process, as
defined in 3.12.2

On a new invocation, FIRST_ENTRY must be 0. On a resumed invocation, FIRST_ENTRY
must be the index of the next GPA list entry to export.

RDX TDR HPA of the destination TD’s TDR page (HKID bits must be 0)

R8 MBMD HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 MIG_BUFF_LIST HPA (including HKID bits) of a migration buffer list in shared memory, corresponding to
the GPA list pointed by RCX – see 3.12.3.

No migration buffers are required for PENDING pages and for migration cancellation
requests. The list entries for such pages are skipped.

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index

If N migration streams have been created by
TDH.MIG.STREAM.CREATE, then MIGS_INDEX must be lower
than N-1.

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

R11 MAC_LIST_0 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the first
256 entries of the GPA list pointed by RCX – see 3.12.3.

If GPA_LIST_INFO.FIRST_ENTRY >= 256, then MAC_LIST_0 is ignored.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 117 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

R12 MAC_LIST_1 HPA (including HKID bits) of a MAC list in shared memory, corresponding to the last 256
entries of the GPA list pointed by RCX – see 3.12.3.

If GPA_LIST_INFO.LAST_ENTRY < 256, then MAC_LIST_1 is ignored.

R13 PAGE_LIST If in-place import is requested for all pages imported for the first-time in the current
import session, or for the first-time after a previous import cancellation, R13 should be
set to NULL_PA (all 1’s).

Otherwise, if some pages are to be imported in a non-in-place mode, R13 should be set
to the HPA (including HKID bits) of a destination page list in shared memory,
corresponding to the GPA list pointed by RCX – see 3.10.6. The page list allows
selecting in-place or non-in-place import for each page imported for the first-time in
the current import session, or for the first-time after a previous import cancellation:

• To select in-place import, the page list entry’s INVALID bit should be set to 1 (it is
possible to set the whole entry to NULL_PA).

• To select non-in-place import, the page list entry should be set to the HPA
(including HKID) of the page to become a new TD private page.

R14 ATTRIB_LIST If GPA_LIST_INFO.FORMAT is GPA_AND_L2_ATTR, then R14 contains the HPA (including
HKID bits) of a page L2 attributes list in shared memory – see 3.12.4.

Else, R14 is ignored.

An ATTRIB_LIST is mandatory for exporting partitioned TDs (which contain one or more
L2 VMs).

Enumeration: Support of this feature is enumerated by
TDX_FEATURES0.PARTITIONED_TD_MIGRATION, readable by
TDH.SYS.RD* (see 3.3.3.1).

Table 5.59: TDH.IMPORT.MEM Output Operands Definition

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RCX GPA_LIST_INFO Same as the input value, except that FIRST_ENTRY is updated to the index of the next
entry to be processed.

If all entries have been processed, FIRST_ENTRY is updated to
(LAST_ENTRY + 1) Modulo 512.

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 5

vary.

TDH.IMPORT.MEM imports a list of up to 512 TD private 4KB pages based on a migration bundle, which includes an
MBMD, set of 4KB pages encrypted with the migration session key, a 4KB page containing the GPA and attributes list, an
optional 4KB containing page attributes list, and two 4KB pages containing page MACs.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 118 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

For each page in the migration bundle’s GPA list, the requested operation may either be to import the page, to re-import
a newer version of the page (after a previous import) or to cancel a previous page import. It is also possible to skip entries
in the list by requesting no operation for specific entries. The GPA list format is described in 3.12.2.

Enumeration: Availability of TDH.IMPORT.MEM is enumerated by either
TDX_FEATURES0.TD_MIGRATION (bit 0) or TDX_FEATURES0.S4 (bit 13), readable by 5

TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not supported, calling TDH.IMPORT.MEM
returns a TDX_OPERAND_INVALID(RAX) status.

 TDX_FEATURES0.PARTITIONED_TD_MIGRATION (bit 21) enumerates TDX module support
of migrating partitioned TDs (which contain one or more L2 VMs).

Re-Import: Re-import is only allowed during the in-order import phase. The imported pages replace 10

an older version of the same pages, as long as the SEPT entry state is compatible:

• If the old SEPT state is PENDING, it may be overwritten by a new version that is either
PENDING or MAPPED.

• If the old SEPT state is MAPPED, it may be overwritten by a newer version that is
MAPPED. 15

Page attributes (e.g., RWX etc.) of a new page version may be different than those of a
previously imported version.

If the out-of-order import phase, the imported pages may not overwrite an older version
of the same pages.

In-Place Import: First-time import of a page during the current import session, or following a previous 20

import cancellation, may be done in-place; the same physical pages that are provided as
input are converted to TD private pages. Alternatively, a list of 4KB pages to be used as
the destination TD new private pages may be provided. In any case, either a migration
buffer or a new page must be provided, even if the imported page is PENDING and no
content is imported. 25

Re-import of a page is always done over the TD private page that holds the previously
imported version.

Import Abort: In many cases, an error during import aborts the import session because the memory
state of the imported TD can’t be guaranteed to be correct.

If the import session has not been committed yet (by THD.IMPORT.COMMIT) and not yet 30

entered the LIVE_IMPORT state where the TD is allowed to run, a failed
TDH.IMPORT.MEM is considered fatal to the import session (except in cases where the
imported TD state has not been modified). The target TD is marked as IMPORT_FAILED
and, by design, will not run. This is indicated by the FATAL bit (61) of the completion status
returned in RAX. 35

If the import session has been committed and the entered the LIVE_IMPORT state where
the TD is allowed to run, then a failed TDH.IMPORT.MEM terminates the import session
(except in cases where the imported TD state has not been modified) but does not impact
the TD’s ability to run. This is indicated by the FATAL bit (61) of the completion status
returned in RAX. 40

S4 Resumption: If TDH.IMPORT.MEM is called as part of an S4 hibernation, it only supports the out-of-
order import phase. As a result, the GPA list may not contain CANCEL and REMIGRATE
operations.

 In case of an import error, then in addition to aborting the import of the current TD, an
abort of an S4 resumption session also generates a new S4 anti-replay nonce, preventing 45

a new S4 resumption session from starting.

Interruptibility: TDH.IMPORT.MEM is interruptible. If a pending interrupt is detected during operation,
TDH.IMPORT.MEM returns with a TDX_INTERRUPTED_RSUMABLE status in RAX. RCX is
updated with the next list entry index to process, so the host VMM may re-invoke
TDH.IMPORT.MEM immediately after handling the interrupt, keeping the same inputs 50

except setting R10.RESUME to 1.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 119 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Cache Lines Flushing (Future): The following applies to future platforms, if cache line flushing is required, as enumerated
by TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23).

For each page that is imported for the first time (i.e., MIGRATE operation) not in-place,
the host VMM should ensure that no cache lines associated with the separately provided
physical page that is to be converted to a new TD private page are in a Modified state, as 5

described in the [Base Spec].

 This is not required for pages that are imported in-place. It is also not required for re-
import (i.e., REMIGRATE operation).

Removed Page Initialization: On platforms which do not use ACT, after any private pages have been removed by a
CANCEL operation, the host VMM should initialize their content before they are reused as 10

non-private pages, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.60: TDH.IMPORT.MEM Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT 2MB5

Explicit RCX HPA GPA List page GPA_LIST RW Shared 4KB None None None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared None

Explicit R8 HPA MBMD MBMD R Shared 128B None None None None

Explicit R9 HPA Migration buffer
list

PAGE_LIST R Shared 4KB None None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A N/A

Explicit R11 HPA MAC list page 1 MAC list R Shared 4KB None None None None

Explicit R12 HPA MAC list page 2 MAC list R Shared 4KB None None None None

Explicit R13 HPA Destination page
list

Blob RW Private 4KB Exclusive Shared Shared None

Explicit R14 HPA L2 attributes list
page

L2 page
attributes

R Shared 4KB None None None None

Explicit N/A GPA TD private pages
(via GPA list)

Blob None Private 4KB None None None None

Explicit N/A HPA Migration buffer
pages (via page
list)

Blob RW Shared 4KB None None None None

Explicit N/A HPA Destination
pages (via page
list)

Blob RW Private 4KB Exclusive Shared Shared Exclusive

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A N/A

5 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 120 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT 2MB5

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Shared N/A N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A N/A

Implicit N/A GPA L1 Secure EPT
entries

SEPT Entry RW Private N/A Exclusive N/A N/A N/A

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT Entry RW Private N/A Exclusive(i) N/A N/A N/A

TDH.IMPORT.MEM checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in progress.
6. The migration stream index is lower than TDCS.NUM_MIGS. 10

If successful, the function does the following:

7. If the RESUME input flag is 0, indicating that this is a new (not resumed) invocation of TDH.IMPORT.MEM:
7.1. Initialize the migration stream if not done so far.
7.2. Copy the MBMD into a temporary buffer.
7.3. Check the MBMD fields. 15

If passed:

7.4. Build the 96b IV for this migration bundle by concatenating 0 as the direction bit, the stream index and MBMD’s
MB_COUNTER.

7.5. Check the MAC based on the MAC’ed fields of MBMD.
8. Else (this is a resumption of a previously interrupted TDH.IMPORT.MEM): 20

8.1. Check that the stream context’s INTERRUPTED_FUNC contains TDH.IMPORT.MEM’s leaf number.
8.2. Check that the current inputs are the same as saved in the stream context when the function was interrupted.

If passed, process the GPA list:

Note: Error conditions that impact a single GPA list entry, but do not cause an import session about, do not cause an
abort of TDH.IMPORT.MEM. Instead, the GPA list entry is updates with a proper status code. 25

9. For each entry in the GPA list, starting with RCX.FIRST_ENTRY and ending with RCX.LAST_ENTRY:
9.1. Increment the migration stream context’s IV_COUNTER
9.2. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s

IV_COUNTER.
9.3. Accumulate page MAC based on the GPA list entry. 30

9.4. If a page L2 attributes list was provided, accumulate page MAC based on the page L2 attributes list entry.
9.5. If no operation is requested:

9.5.1. Check that the calculated MAC value is equal to the provided page MAC value.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 121 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

9.5.2. Mark the corresponding new page list entry (if available) as invalid and continue to the next GPA list
entry.

9.6. Walk the SEPT based on the GPA and level operands and find the leaf entry for the page.
9.7. Check that the SEPT entry state is allowed for page import. 5

9.8. If import is in the out-of-order phase, check that the requested operation in first-time import.
9.9. If the requested operation if import or re-import, and the page state is not PENDING, check that a migration

buffer is provided, and its address is a valid shared address.
9.10. If the requested operation is first-time migrate:

9.10.1. Check that the SEPT entry state is either FREE or REMOVED. 10

9.10.2. If the SEPT entry state is REMOVED, check that the has not been removed in the current migration
epoch.

If passed:

9.10.3. If no new page list entry is provided, and a migration buffer is provided, this indicates in-place import.
If the page is not PENDING, copy the migration buffer content to a temporary buffer. The migration 15

buffer page will become the new TD private page.
9.10.4. Else, check that the new page list entry is a valid shared HPA.
9.10.5. If the page is not PENDING, decrypt the migration buffer or temporary buffer into the new TD page.

Use direct writes (MOVDIR64B) and accumulate MAC.
9.10.6. Check that the calculated MAC value is equal to the provided page MAC value. 20

If passed:

9.10.7. On platforms which use ACT, update the new TD page ACT bit to private.
9.10.8. Update the new TD page PAMT entry; record the current migration epoch value in PAMT.BEPOCH.
9.10.9. Update the SEPT entry.
9.10.10. If a page L2 attributes list was provided, then for each valid L2 attributes entry in the in the page 25

attributes list entry:
9.10.10.1. Check that the alias VM index is not higher than TDCS.NUM_L2VMS
9.10.10.2. Walk the L2 SEPT based on the GPA and level operands and find the FREE entry for the

page alias.
9.10.10.3. Update the L2 SEPT entry based on the page L2 attributes list entry and the new TD page 30

HPA.
9.11. Else, if the requested operation is re-migrate:

9.11.1. Check that the SEPT entry state is either MAPPED or PENDING.
9.11.2. Using the page’s PAMT.BEPOCH, check that the page has not been imported in the current migration

epoch. 35

If passed:

9.11.3. Record the current migration epoch value in PAMT.BEPOCH.
9.11.4. If the page is not PENDING, decrypt the migration buffer or temporary buffer into the new TD page.

Use direct writes (MOVDIR64B) and accumulate MAC.
9.11.5. Check that the calculated MAC value is equal to the provided page MAC value. 40

If passed:

9.11.6. For each existing L2 page mapping or, if a page attributes list was provided, each valid L2 page
attributes entry in the page attributes list entry:
9.11.6.1. In the page attributes list entry (if provided), check that the alias VM index is not higher

than TDCS.NUM_L2VMS 45

9.11.6.2. Walk the L2 SEPT based on the GPA and level operands and find the leaf entry for the L2
page.

9.11.6.3. Update the L2 SEPT entry based on the page attributes list entry (if provided). If there is
an existing L2 page mapping and no new L2 page attributes were provided, set the L2 SEPT
entry state to L2_FREE. 50

9.11.7. Update the SEPT entry.
9.12. Else, if the requested operation is migration cancel:

9.12.1. Check that the SEPT entry state indicates that the page has been exported.
9.12.2. Calculate MAC over the GPA list entry and check that the value is equal to the provided page MAC

value. 55

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 122 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

9.12.3. Using the page’s PAMT.BEPOCH, check that the page has not been imported in the current migration
epoch.

If passed:

9.12.4. For each existing L2 mapping of the page:
9.12.4.1. Walk the L2 SEPT based on the GPA and level operands and find the leaf entry for the page. 5

9.12.4.2. Set the L2 SEPT entry state to L2_FREE.
9.12.5. Update the SEPT entry; set the state to REMOVED and record the current migration epoch in the HPA.
9.12.6. On platforms which use ACT, overwrite the canceled TD page content with the TD’s random overwrite

value, using MOVDIR64B, and clear the corresponding ACT bit.
9.12.7. Update the PAMT entry of the canceled page to PT_NDA. 10

9.13. If this is not the last round and there is a pending interrupt:
9.13.1. Save intermediate state in the migration stream context.
9.13.2. Terminate TDH.EXPORT.MEM with a TDX_INTERRUPTED_RESUMABLE status.

9.14. Else, advance to the next entry in the GPA list, if applicable.
10. Once the GPA list has been fully processed, update the migration stream expected MB counter field. 15

Completion Status Codes

Table 5.61: TDH.IMPORT.MEM Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_DISALLOWED_IMPORT_OVER_REMOVED

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_IMPORT_MISMATCH

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_MBMD

TDX_INVALID_PAGE_MAC

TDX_INVALID_RESUMPTION

TDX_MIGRATED_IN_CURRENT_EPOCH

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS Operation is successful.

Note: Processing of some GPA list entries may have encountered
errors, but this did not cause an abort of the overall
operation. The number such errors is reported in the lower
32 bits of the completion status.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 123 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.16. TDH.IMPORT.STATE.IMMUTABLE Leaf

TDH.IMPORT.STATE.IMMUTABLE starts a new import session and exports the TD’s immutable state as a multi-page
migration bundle.

TDH.IMPORT.STATE.IMMUTABLE is also used for starting a new S4 resumption session.

Table 5.62: TDH.IMPORT.STATE.IMMUTABLE Input Operands Definition 5

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX TDR Destination TD handle and flags

Bits Name Description

0 Import Type 0: TD Import

1: S4 Resumption

11:1 Reserved Must be 0

51:12 TDR HPA HPA[51:12] of the destination TD’s TDR page (HKID bits
must be 0)

63:52 Reserved Must be 0

R8 MBMD HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID
bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO Migration buffers list information – see 3.12.6.1

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 124 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.63: TDH.IMPORT.STATE.IMMUTABLE Output Operands Definition

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RCX EXTENDED_
ERROR_INFO1

In case of an interruption, as indicated by RAX returning
TDX_INTERRUPTED_RESUMABLE, RCX is unmodified.

In case of an error related to non-memory state field import, as indicated by RAX,
RCX contains the offending field identifier. See the status codes table below.

In other cases, RCX returns 0.

RDX EXTENDED_
ERROR_INFO2

In case of an interruption, as indicated by RAX returning
TDX_INTERRUPTED_RESUMABLE, RDX is unmodified.

In other cases, RDX returns 0.

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 5

TDH.IMPORT.STATE.IMMUTABLE starts a new import session. It imports the TD’s immutable state migration bundle
previously exported by TDH.EXPORT.STATE.IMMUTABLE. The migration bundle includes an MBMD and a set of 4KB
pages.

TDH.IMPORT.STATE.IMMUTABLE is also used for starting a new S4 resumption session.

TD immutable state is verified by TDH.IMPORT.STATE.IMMUTABLE against target platform capabilities and Intel TDX 10

module version, capabilities and configuration. The checks are similar, but not identical, to the TD_PARAMS checks done
on the source platform by TDH.MNG.INIT.

Enumeration: Availability of TDH.IMPORT.STATE.IMMUTABLE is enumerated by either
TDX_FEATURES0.TD_MIGRATION (bit 0) or TDX_FEATURES0.S4 (bit 13), readable by
TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not supported, calling 15

TDH.IMPORT.STATE.IMMUTABLE returns a TDX_OPERAND_INVALID(RAX) status.

Interruptibility: TDH.IMPORT.STATE.IMMUTABLE is interruptible. The host VMM is expected to invoke it in a
loop until it returns with either a success indication or with a non-recoverable error indication.

Import Abort: A failed TDH.IMPORT.STATE.IMMUTABLE marks (except in cases where the imported TD state
has not been modified) the target TD as IMPORT_FAILED; by design, it will not run. This is 20

indicated by the FATAL bit (61) of the completion status returned in RAX.

S4 Resumption Abort: In addition to aborting the import of the current TD, an abort of an S4 resumption session also
generates a new S4 anti-replay nonce, preventing a new S4 resumption session from starting.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 25

Table 5.64: TDH.IMPORT.STATE.IMMUTABLE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 125 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit R8 HPA MBMD MBMD R Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Source pages
(via page list)

Blob R Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A PL.S4_STATE N/A RW Hidden N/A Exclusive N/A N/A

TDH.IMPORT.STATE.IMMUTABLE checks the memory operands per the table above when applicable during its flow. The
text below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. The TD has not been initialized (TDCS.OP_STATE is UNINITIALIZED).
6. If the TDX module doesn’t support S4: A Migration TD has been bound to the source TD, and no migration session is 10

in progress: Migration Session State is MIG_TD_BOUND.
7. The migration stream index is 0.
8. The buffer provided for MBMD is large enough and fits within a 4KB page.

If successful, the function does the following:

9. If the RESUME input flag is 0, indicating this is a new invocation of TDH.IMPORT.STATE.IMMUTABLE (not a 15

resumption of a previously interrupted one):
9.1. If IMPORT_TYPE is 0 (TD import):

9.1.1. If the TDX module supports S4: A Migration TD has been bound to the source TD, and no migration
session is in progress: Migration Session State is MIG_TD_BOUND.

9.1.2. Check that a valid migration decryption key has been set by the Migration TD. If this is not the first 20

migration session, then the migration key must have been set after the previous migration session has
started.

Note: There is no explicit check that a migration TD is bound; this is implied by the above check.

9.2. Else (IMPORT_TYPE is 1 (S4 resumption) – applicable only if the TDX module supports S4):
9.2.1. Check that PL.S4_STATE is either S4_IDLE or S4_IMPORT. 25

9.2.2. Create the S4 decryption key and set TDCS.MIG_DEC_WORKING_KEY to this value.
9.2.3. Set TDCS.MIG_WORKING_VERSION to S4_MIG_VERSION (an TDX module constant).
9.2.4. Set TDCS.S4_MIGRATED to TRUE.
9.2.5. Atomically increment PL.S4_IMP_INDEX.

If passed: 30

9.3. Initialize the migration context in TDCS:
9.3.1. Copy the migration keys to working migration keys that will be used throughout the import session.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 126 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

9.3.2. Generate a new migration encryption key, to be used in the next migration session.

If passed:

9.3.3. Set all migration streams’ INITIALIZED flag to 0 and ENABLED flags to 1.
9.4. Initialize the current migration stream.
9.5. Copy the MBMD into the migration context. 5

9.6. Check the MBMD fields.

If passed:

9.7. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s
IV_COUNTER.

9.8. Accumulate MAC based on the MAC’ed fields of MBMD. 10

10. Else (this is a resumption of a previously interrupted TDH.IMPORT.STATE.IMMUTABLE):
10.1. Check that the resumption is valid:

10.1.1. The stream context indicates there’s a valid interruption state.
10.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand are the same as in the interruption

state. 15

10.2. Check that the migration stream is enabled.
10.3. Restore the previously saved page list index from the migration context.

If passed:

11. Repeat importing 4KB pages until all immutable state is imported or until a pending interrupt is detected:
11.1. Get the 4KB next page HPA from it from the page list. 20

11.2. Use the migration key and the migration stream context to decrypt the 4KB internal buffer into an internal
temporary 4KB buffer and update the MAC calculation.

11.3. Parse the metadata list and write the control structure fields using the algorithm described in 5.3.2.3. Check
each TDR or TDCS field for compatibility.

If passed: 25

11.4. If all metadata lists have been imported:
11.4.1. Check that the accumulated MAC value is equal to the saved MBMD’s MAC value.
11.4.2. Check that all global, TDR and TDCS metadata fields required to be imported by

TDH.IMPORT.STATE.IMMUTABLE have indeed been imported.
11.4.3. Do validity checks of TDR and TDCS metadata fields that can only be checked at this stage. 30

11.4.4. Initialize TDR and TDCS fields that need to be initialized at the beginning of the import session.
11.4.5. Mark the migration stream context’s interrupted state as invalid.
11.4.6. Increment the migration stream context’s EXPECTED_MB_COUNTER.
11.4.7. Set TDCS.TOTAL_MB to 1.
11.4.8. Set TDCS.OP_STATE to MEMORY_IMPORT. 35

11.4.9. Terminate TDH.IMPORT.STATE.IMMUTABLE with a TDX_SUCCESS status.
11.5. Else, if there is a pending interrupt:

11.5.1. Save the interruption state to the stream context
11.5.2. Terminate TDH.IMPORT.STATE.IMMUTABLE with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes 40

Table 5.65: TDH.IMPORT.STATE.IMMUTABLE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INCORRECT_MBMD_MAC

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_MBMD

TDX_INVALID_METADATA_LIST_HEADER

TDX_INVALID_RESUMPTION

TDX_METADATA_FIELD_ID_INCORRECT Field ID or sequence header is returned in RCX

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 127 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_METADATA_FIELD_NOT_WRITABLE Field ID is returned in RCX

TDX_METADATA_FIELD_VALUE_NOT_VALID Field ID is returned in RCX

TDX_METADATA_LIST_OVERFLOW

TDX_MIGRATION_SESSION_KEY_NOT_SET

TDX_MIGRATION_STREAM_STATE_INCORRECT

TDX_NUM_MIGS_HIGHER_THAN_CREATED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_REQUIRED_METADATA_FIELD_MISSING Required field ID is returned in RCX

TDX_RND_NO_ENTROPY Failed to generate a random migration encryption key. This is
typically caused by an entropy error of the CPU's random
number generator, and may be impacted by RDSEED, RDRAND
or PCONFIG executing on other LPs. The operation should be
retried.

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_VIRTUAL_MSR_VALUE_NOT_VALID

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 128 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.17. TDH.IMPORT.STATE.TD Leaf

TDH.IMPORT.STATE.TD imports the TD-scope mutable state as a multi-page migration bundle.

Table 5.66: TDH.IMPORT.STATE.TD Input Operands Definition

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX TDR HPA of Destination TD TDR page (HKID bits must be 0)

R8 MBMD HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO Migration buffers list information – see 3.12.6.1

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index – must be 0

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

Table 5.67: TDH.IMPORT.STATE.TD Output Operands Definition 5

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RCX EXTENDED_
ERROR_INFO1

In case of an interruption, as indicated by RAX returning
TDX_INTERRUPTED_RESUMABLE, RCX is unmodified.

In case of an error related to non-memory state field import, as indicated by RAX,
RCX contains the offending field identifier. See the status codes table below.

In other cases, RCX returns 0.

RDX EXTENDED_
ERROR_INFO2

In case of an interruption, as indicated by RAX returning
TDX_INTERRUPTED_RESUMABLE, RDX is unmodified.

In other cases, RDX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 129 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.STATE.TD imports the TD-scope mutable state migration bundle previously exported by 5

TDH.EXPORT.STATE.TD. The migration bundle includes an MBMD and a set of 4KB pages.

TD-scope mutable state is verified by TDH.IMPORT.STATE.TD against target platform capabilities and Intel TDX module
version, capabilities and configuration.

Enumeration: Availability of TDH.IMPORT.STATE.TD is enumerated by either TDX_FEATURES0.TD_MIGRATION
(bit 0) or TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If 10

not supported, calling TDH.IMPORT.STATE.TD returns a TDX_OPERAND_INVALID(RAX) status.

Interruptibility: TDH.IMPORT.STATE.TD is interruptible. The host VMM is expected to invoke it in a loop until it
returns with either a success indication or with a non-recoverable error indication.

Import Abort: A failed TDH.IMPORT.STATE.TD marks (except in cases where the imported TD state has not been
modified) the target TD as IMPORT_FAILED; by design, it will not run. This is indicated by the 15

FATAL bit (61) of the completion status returned in RAX.

S4 Resumption Abort: In addition to aborting the import of the current TD, an abort of an S4 resumption session also
generates a new S4 anti-replay nonce, preventing a new S4 resumption session from starting.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 20

Table 5.68: TDH.IMPORT.STATE.VP Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA MBMD MBMD R Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Source pages
(via page list)

Blob R Shared 4KB None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 130 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A Service TD
bindings table

N/A R Hidden N/A Exclusive(i) N/A N/A

TDH.IMPORT.STATE.TD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in progress, but TD-scope mutable state has not been imported yet (TDCS.OP_STATE is

MEMORY_IMPORT). 10

6. The migration stream index is 0.
7. The migration stream is enabled.
8. The buffer provided for MBMD is large enough and fits within a 4KB page.

If successful, the function does the following:

9. If the RESUME input flag is 0, indicating this is a new invocation of TDH.IMPORT.STATE.TD (not a resumption of a 15

previously interrupted one):
9.1. Copy the MBMD into the migration context.
9.2. Check the MBMD fields.

If passed:

9.3. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s 20

IV_COUNTER.
9.4. Accumulate MAC based on the MAC’ed fields of MBMD.

10. Else (this is a resumption of a previously interrupted TDH.IMPORT.STATE.IMMUTABLE):
10.1. Check that the resumption is valid:

10.1.1. The stream context indicates there’s a valid interruption state. 25

10.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand are the same as in the interruption
state.

10.2. Restore the previously saved page list index from the migration context.

If passed:

11. Repeat importing 4KB pages until all immutable state is imported or until a pending interrupt is detected: 30

11.1. Get the 4KB next page HPA from it from the page list.
11.2. Use the migration key and the migration stream context to decrypt the 4KB internal buffer into an internal

temporary 4KB buffer and update the MAC calculation.
11.3. Parse the metadata list and write the control structure fields using the algorithm described in 5.3.2.3. Check

each TDR or TDCS field for compatibility. 35

If passed:

11.4. If all metadata lists have been imported:
11.4.1. Check that the accumulated MAC value is equal to the saved MBMD’s MAC value.
11.4.2. Check that all TDR and TDCS fields required to be imported by TDH.IMPORT.STATE.TD have indeed been

imported. 40

11.4.3. Initialize TDR and TDCS fields that need to be initialized at the end of the import session.
11.4.4. Mark the migration stream context’s interrupted state as invalid.
11.4.5. Increment the migration stream context’s EXPECTED_MB_COUNTER.
11.4.6. Increment TDCS.TOTAL_MB.
11.4.7. Set TDCS.OP_STATE to STATE_IMPORT. 45

11.4.8. Terminate TDH.IMPORT.STATE.TD with a TDX_SUCCESS status.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 131 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

11.5. Else, if there is a pending interrupt:
11.5.1. Save the interruption state to the stream context
11.5.2. Terminate TDH.IMPORT.STATE.TD with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 5.69: TDH.IMPORT.STATE.TD Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE

TDX_INCORRECT_MBMD_MAC

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_MBMD

TDX_INVALID_METADATA_LIST_HEADER

TDX_INVALID_RESUMPTION

TDX_METADATA_FIELD_ID_INCORRECT Field ID or sequence header is returned in RCX

TDX_METADATA_FIELD_NOT_WRITABLE Field ID is returned in RCX

TDX_METADATA_FIELD_VALUE_NOT_VALID Field ID is returned in RCX

TDX_METADATA_LIST_OVERFLOW

TDX_MIGRATION_STREAM_STATE_INCORRECT

TDX_REQUIRED_METADATA_FIELD_MISSING Required field ID is returned in RCX

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 132 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.18. TDH.IMPORT.STATE.VP Leaf

TDH.IMPORT.STATE.VP imports the VCPU-scope mutable state as a multi-page migration bundle.

Table 5.70: TDH.IMPORT.STATE.VP Input Operands Definition

Operand Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX TDVPR HPA of the destination TD VCPU’s TDVPR page (HKID bits must be 0)

R8 MBMD HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R9 PAGE_LIST_INFO Migration buffers list information – see 3.12.6.1

R10 MIG_STREAM Migration stream and resume flag:

Bits Name Description

15:0 MIGS_INDEX Migration stream index

If N migration streams have been created by
TDH.MIG.STREAM.CREATE, then MIGS_INDEX must be
lower than N-1.

62:16 RESERVED Reserved: must be 0

63 RESUME 0: This is a new invocation

1: This is resumption of a previously interrupted
operation

Table 5.71: TDH.IMPORT.STATE.VP Output Operands Definition 5

Operand Name Description

RAX STATUS SEAMCALL instruction return code, see 5.4.1

RCX EXTENDED_
ERROR_INFO1

In case of an interruption, as indicated by RAX returning
TDX_INTERRUPTED_RESUMABLE, RCX is unmodified.

In case of an error related to non-memory state field import, as indicated by RAX,
RCX contains the offending field identifier. See the status codes table below.

In other cases, RCX returns 0.

RDX EXTENDED_
ERROR_INFO2

In case of an interruption, as indicated by RAX returning
TDX_INTERRUPTED_RESUMABLE, RDX is unmodified.

In other cases, RDX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 133 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

AVX, AVX2
and
AVX512
state

 May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IMPORT.STATE.VP imports the VCPU-scope mutable state migration bundle previously exported by 5

TDH.EXPORT.STATE.VP. The migration bundle includes an MBMD and a set of 4KB pages.

VCPU-scope mutable state is verified by TDH.IMPORT.STATE.VP against target platform capabilities and Intel TDX module
version, capabilities and configuration.

Enumeration: Availability of TDH.IMPORT.STATE.VP is enumerated by either TDX_FEATURES0.TD_MIGRATION
(bit 0) or TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If 10

not supported, calling TDH.IMPORT.STATE.VP returns a TDX_OPERAND_INVALID(RAX) status.

Interruptibility: TDH.IMPORT.STATE.VP is interruptible. The host VMM is expected to invoke it in a loop until it
returns with either a success indication or with a non-recoverable error indication.

Import Abort: A failed TDH.IMPORT.STATE.VP marks (except in cases where the imported TD state has not been
modified) the target TD as IMPORT_FAILED; by design, it will not run. This is indicated by the 15

FATAL bit (61) of the completion status returned in RAX.

S4 Resumption Abort: In addition to aborting the import of the current TD, an abort of an S4 resumption session also
generates a new S4 anti-replay nonce, preventing a new S4 resumption session from starting.

VCPU Association: TDH.IMPORT.VP associates the TD VCPU with the current LP. This requires that the VCPU will not be
associated with another LP – for details, see the [TDX Module Base Spec]. 20

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.72: TDH.IMPORT.STATE.VP Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA MBMD MBMD R Shared 128B None None None

Explicit R9 HPA Page list PAGE_LIST R Shared 4KB None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Explicit N/A HPA Source pages
(via page list)

Blob R Shared 4KB None None None

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 134 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A Migration
context

N/A RW Opaque N/A None N/A N/A

TDH.IMPORT.STATE.VP checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in progress and TD-scope mutable state has been imported (TDCS.OP_STATE is STATE_IMPORT).
6. The migration stream index is lower than TDCS.NUM_MIGS. 10

7. The number of pages allocated to this TDVPS is correct.
8. The VCPU has not been initialized yet (TDVPS.VCPU_STATE is VCPU_UNINITIALIZED).
9. The buffer provided for MBMD is large enough.

If successful, the function does the following:

10. Associate the VCPU with the current LP, and update TD VMCS using the algorithm described in 5.3.1. 15

If passed:

11. If the RESUME input flag is 0, indicating this is a new invocation of a previously interrupted TDH.IMPORT.STATE.VP
(not a resumption of a previously interrupted one):
11.1. Copy the MBMD into the migration context.
11.2. Check the MBMD fields. 20

If passed:

11.3. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s
IV_COUNTER.

11.4. Accumulate MAC based on the MAC’ed fields of MBMD.
11.5. Atomically increment the TD’s migrated VCPU counter (TDCS.NUM_MIGRATED_VCPUS), and check that 25

number of VCPUs (TDCS.NUM_VCPUS) has not been exceeded.
12. Else (this is a resumption of a previously interrupted TDH.IMPORT.STATE.VP):

12.1. Check that the resumption is valid:
12.1.1. The stream context indicates there’s a valid interruption state.
12.1.2. The current SEAMCALL leaf number and the PAGE_OR_LIST operand are the same as in the interruption 30

state.

If passed:

13. Repeat importing 4KB pages until all TD-scope state is imported or until a pending interrupt is detected:
13.1. Get the 4KB next page HPA from it from the page list.
13.2. Use the migration key and the migration stream context to decrypt the 4KB internal buffer into an internal 35

temporary 4KB buffer and update the MAC calculation.
13.3. Parse the metadata list and write the control structure fields using the algorithm described in 5.3.2.3. Check

each TDVPS field for compatibility.

If passed:

13.4. If all metadata lists have been imported: 40

13.4.1. Check that the accumulated MAC value is equal to the saved MBMD’s MAC value.
13.4.2. Check that all TDVPS fields required to be imported by TDH.IMPORT.STATE.VP have indeed been

imported.
13.4.3. Check and initialize TDVPS fields that need to be initialized at the end of the import session.

13.4.3.1. If topology virtualization has been configured (as indicated by 45

TDCS.TOPOLOGY_ENUM_CONFIGURED), check that the current VCPU’s x2APIC_ID is unique.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 135 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

13.4.4. Mark the migration stream context’s interrupted state as invalid.
13.4.5. Increment the migration stream context’s EXPECTED_MB_COUNTER.
13.4.6. Increment TDCS.TOTAL_MB.
13.4.7. Terminate TDH.IMPORT.STATE.VP with a TDX_SUCCESS status. 5

13.5. Else, if there is a pending interrupt:
13.5.1. Save the interruption state to the stream context
13.5.2. Terminate TDH.IMPORT.STATE.VP with a TDX_INTERRUPTED_RESUMABLE status.

Completion Status Codes

Table 5.73: TDH.IMPORT.STATE.VP Completion Status Codes (Returned in RAX) Definition 10

Completion Status Code Description

TDX_ALL_VCPUS_IMPORTED

TDX_INTERRUPTED_RESUMABLE

TDX_INTERRUPTED_RESUMABLE

TDX_INCORRECT_MBMD_MAC

TDX_INTERRUPTED_RESUMABLE

TDX_INVALID_MBMD

TDX_INVALID_METADATA_LIST_HEADER

TDX_INVALID_RESUMPTION

TDX_METADATA_FIELD_ID_INCORRECT Field ID or sequence header is returned in RCX

TDX_METADATA_FIELD_NOT_WRITABLE Field ID is returned in RCX

TDX_METADATA_FIELD_VALUE_NOT_VALID Field ID is returned in RCX

TDX_METADATA_LIST_OVERFLOW

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_REQUIRED_METADATA_FIELD_MISSING Required field ID is returned in RCX

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_VCPU_STATE_INCORRECT

TDX_X2APIC_ID_NOT_UNIQUE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 136 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.19. TDH.IMPORT.TRACK Leaf

TDH.IMPORT.TRACK consumes an epoch token received from the source platform. It ends the current in-order import
phase epoch and either starts a new epoch or starts the out-of-order import phase.

Table 5.74: TDH.IMPORT.TRACK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

Must be 0

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX HPA of the source TD’s TDR page (HKID bits must be 0)

R8 HPA and size of memory of an MBMD structure in memory:

Bits Name Description

51:0 HPA Bits 51:0 of the host physical address (including HKID bits)

63:52 Size Size of the memory buffer containing MBMD, in bytes

R10 Migration stream index – must be 0

 5

Table 5.75: TDH.IMPORT.TRACK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code, see 5.4.1

AVX, AVX2
and
AVX512
state

May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDH.IMPORT.TRACK parses an epoch token received from the source platform. It checks that the epoch number indicated
by the token is correct, and that all migration bundles indicated by the token have been received.

If successful, it ends the current import epoch, and as indicated by the epoch token either starts a new epoch or starts
the out-of-order import phase.

Enumeration: Availability of TDH.IMPORT.TRACK is enumerated by either TDX_FEATURES0.TD_MIGRATION (bit 0) or 15

TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not supported,
calling TDH.IMPORT.TRACK returns a TDX_OPERAND_INVALID(RAX) status.

Import Abort: A failure may mark the target TD as IMPORT_FAILED; by design, it will not run. This is indicated by the
FATAL bit (61) of the completion status returned in RAX.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 137 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

S4 Resumption: When called during an S4 resumption session, TDH.IMPORT.TRACK only supports transitioning to the
out-of-order import phase, with a start token MBMD generated by TDH.EXPORT.TRACK with
IN_ORDER_DONE specified.

If an error is encountered, then in addition to aborting the import of the current TD, an abort of an S4
resumption session also generates a new S4 anti-replay nonce, preventing a new S4 resumption session 5

from starting.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.76: TDH.IMPORT.TRACK Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Explicit R8 HPA MBMD buffer MBMD R Shared 128B None None None

Explicit R10 Index Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive(i) N/A N/A

 10

TDH.IMPORT.TRACK checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 15

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS is allocated (TDR.NUM_TDCX is the required number).
5. An import session is in the in-order phase: TDCS.OP_STATE is either MEMORY_IMPORT or STATE_IMPORT.
6. An import session is in progress and the TD-scope state has been imported: TDCS.OP_STATE is STATE_IMPORT.
7. The migration stream index is 0. 20

8. The migration stream is initialized.
9. The buffer provided for MBMD is large enough.

If successful, the function does the following:

10. Copy the MBMD into a temporary buffer.
11. Check the MBMD fields: 25

11.1. Check that SIZE is large enough.
11.2. Check that MB_TYPE indicates an epoch token.
11.3. Check that MIGS_INDEX is 0.
11.4. Check that the MB_COUNTER value is equal to the migration stream’s EXPECTED_RX_COUNTER.
11.5. Check that MIG_EPOCH is higher than TDCS.MIG_EPOCH. 30

11.6. Check that TOTAL_MB is equal to TDCS.TOTAL_MB + 1.
11.7. Check that reserved fields are 0.

If passed:

12. Build the 96b IV for this migration bundle by concatenating the stream index and the stream context’s IV_COUNTER.
13. Accumulate MAC based on the MAC’ed fields of MBMD and check that the value is the same as the MBMD’s MAC 35

field’s value.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 138 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If passed:

14. If the MIG_EPOCH value provided in the MBMD is 0xFFFFFFFF, indicating the start of out-of-order phase:
14.1. Check that all VCPUs have been imported

If passed:

14.2. Start the out-of-order import phase: set TDCS.OP_STATE to POST_IMPORT. 5

15. Set the stream context’s EXPECTED_MB _COUNTER to 1.
16. Increment TDCS.TOTAL_MB.
17. Set TDCS.MIG_EPOCH to the MIG_EPOCH value provided in the MBMD.

Completion Status Codes

Table 5.77: TDH.IMPORT.TRACK Completion Status Codes (Returned in RAX) Definition 10

Completion Status Code Description

TDX_INCORRECT_MBMD_MAC

TDX_INVALID_MBMD

TDX_MIGRATION_STREAM_STATE_INCORRECT

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SOME_VCPUS_NOT_MIGRATED

TDX_SUCCESS Operation is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 139 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.20. TDH.MEM.PAGE.ADD Leaf

Add a 4KB private page to a TD, mapped to the specified GPA, filled with the given page image and encrypted using the
TD ephemeral key, and update the TD measurement with the page properties.

Table 5.78: TDH.MEM.PAGE.ADD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the EPT entry that will map the new page – see 3.6.1: must be
0

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address to be mapped for the new
Secure EPT page

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the target page to be added to the TD (HKID bits must be 0)

R9 Host physical address (including HKID bits) of the source page image

 5

Table 5.79: TDH.MEM.PAGE.ADD Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 140 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.ADD adds a 4KB private page to a TD and maps it to the provided GPA. It copies the provided source
page image to specified physical page using the TD’s ephemeral private key and updates the TD measurement with the 5

page properties. TDH.MEM.PAGE.ADD is used during TD build before the TD is initialized.

In-Place Add: It is allowed to set the TD page HPA in R8 to the same address as the source page HPA
in R9. In this case the source page is converted to be a TD private page.

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling 10

TDH.MEM.PAGE.ADD, the host VMM should ensure that no cache lines associated with
the added physical page are in a Modified state, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.80: TDH.MEM.PAGE.ADD Operands Information Definition 15

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB6

Explicit RCX GPA TD private page
(GPA)7

Blob RW Private 4KB N/A N/A N/A N/A

Explicit RDX HPA TDR page Blob RW Opaque 4KB Exclusive Shared Shared None

Explicit R8 HPA TD private page
(HPA)7

Blob RW Private 4KB Exclusive Shared Shared Exclusive

Explicit R9 HPA Source page Blob R Shared 4KB None None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A None

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Exclusive(i) N/A N/A None

Implicit N/A GPA Secure EPT entry SEPT Entry RW Private N/A Exclusive(i) N/A N/A None

TDH.MEM.PAGE.ADD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 20

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

INITIALIZED).
5. The target page metadata in PAMT must be correct (PT must be PT_NDA). 25

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf EPT entry for the 4KB page.

6 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

7 RCX and R8 denote the same TD private page operand, using HPA and GPA respectively

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 141 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If the Secure EPT entry is marked as FREE, the function does the following:

7. On platforms which use ACT:
7.1. If source and destination are overlapping, then:

7.1.1. Read 4KB of data from source image to a temporary buffer.
7.1.2. Update the destination’s page bit in ACT to private. 5

7.1.3. Write 4KB of data form temporary buffer to destination page using direct write (MOVDIR64B).
7.2. Else:

7.2.1. Update the destination’s page bit in ACT to private.
7.2.2. Copy the source image to the target TD page using the TD’s ephemeral private HKID, and direct write

(MOVDIR64B). 10

8. On platforms which do not use ACT: Copy the source image to the target TD page using the TD’s ephemeral private
HKID, and direct write (MOVDIR64B).

9. Update the parent Secure EPT entry with the target page HPA and MAPPED state.
10. Extend TDCS.MRTD with the target page GPA. Extension is done using SHA384 with a 128B extension buffer

composed as follows: 15

o Bytes 0 through 11 contain the ASCII string “MEM.PAGE.ADD”.
o Bytes 16 through 23 contain the GPA (in little-endian format).
o All the other bytes contain 0.

11. Increment TDR.CHLDCNT.
12. Update the PAMT entry with the PT_REG page type and the TDR physical address as the OWNER. 20

Completion Status Codes

Table 5.81: TDH.MEM.PAGE.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.ADD is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 142 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.21. TDH.MEM.PAGE.AUG Leaf

Dynamically add a 4KB or a 2MB private page to an initialized TD, mapped to the specified GPAs.

Table 5.82: TDH.MEM.PAGE.AUG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the EPT entry that will map the new page – see 3.6.1: must
be 0 (4KB) or 1 (2MB)

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address to be mapped for the new
Secure EPT page

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the target page to be added to the TD (HKID bits must be 0)

Table 5.83: TDH.MEM.PAGE.AUG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 143 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.AUG adds a 4KB or a 2MB private page to a TD and maps it to the provided GPA. The new page is
mapped in a pending state and can be accessed only by the guest TD after it accepts it using 5

TDCALL(TDG.MEM.PAGE.ACCEPT). TDH.MEM.PAGE.AUG does not initialize the new page and does not update the TD
measurement.

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling
TDH.MEM.PAGE.AUG, the host VMM should ensure that no cache lines associated with 10

the added physical page are in a Modified state, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.84: TDH.MEM.PAGE.AUG Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB8

Explicit RCX GPA TD private page
(GPA)9

Blob None Private 212+9*Level
Bytes

N/A N/A N/A N/A

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared None

Explicit R8 HPA TD private page
(HPA)9

Blob None Private 212+9*Level
Bytes

Exclusive Shared10 Shared Exclusive

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A N/A

Implicit N/A GPA Secure EPT tree N/A RW Private N/A Shared N/A N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive N/A N/A N/A

 15

TDH.MEM.PAGE.AUG checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 20

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must be in one of the following states:

4.1. The TD has been initialized locally by TDH.MNG.INIT and no migration session is in progress
4.2. An export session is in progress its live export phase; TDH.EXPORT.PAUSE has not been invoked yet.
4.3. An import session is in its live import phase, initiated by TDH.IMPORT.COMMIT. 25

5. The target page metadata in PAMT must be correct (PT must be PT_NDA for the entire 4KB or 2MB range).

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf EPT entry for the 4KB or 2MB page.

8 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

9 RCX and R8 denote the same TD private page operand, using HPA and GPA respectively

10 Applicable for 4KB pages only

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 144 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If the Secure EPT entry is marked as FREE, the function does the following:

7. Update the parent Secure EPT entry with the target page HPA and PENDING state.
8. Atomically increment TDR.CHLDCNT by 1 (for a 4KB page) or by 512 (for a 2MB page).
9. On platforms which use ACT, update the ACT page bit(s) to private.
10. Update the PAMT entry with the PT_REG page type and the TDR physical address as the OWNER. 5

Completion Status Codes

Table 5.85: TDH.MEM.PAGE.AUG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.AUG is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 145 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.22. TDH.MEM.PAGE.DEMOTE Leaf

Split a large private TD page (2MB or 1GB) into 512 small pages (4KB or 2MB, respectively).

Table 5.86: TDH.MEM.PAGE.DEMOTE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the large page to be split:
either 1 (2MB) or 2 (1GB) – see 3.6.1

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the large page to be
split

Depending on the level, the following least significant bits must be
0:

Level 1 (2MB): Bits 20:12

Level 2 (1GB): Bits 29:12

63:52 Reserved Reserved: must be 0

RDX TD handle and flags:

Bits Name Description

0 L2_SEPT_ADD_MODE New L2 SEPT pages addition mode:

Value Name Description

0 DENSE New L2 SEPT pages are added, if provided by R9,
R10 or R11.

1 SPARSE New L2 SEPT pages are added, if provided by R9,
R10 or R11, but only for L2 VMs where the L1
VMM has created a page alias (using
TDG.MEM.PAGE.ATTR.WR).

In both cases, a new L2 SEPT must be provided for L2 VMs where a
page alias exists.

This bit is ignored if the TD has no L2 VMs.

11:1 Reserved Reserved: must be 0

51:12 TDR_HPA Bits 51:12 of the host physical address of the parent TDR page
(HKID bits must be 0)

63:52 Reserved Reserved: must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 146 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

R8 Host physical address of the new L1 Secure EPT page to be added to the TD (HKID bits must be 0)

R9 If the number of L2 VMs is >= 1, R9 contains the host physical address of the new Secure EPT page
to be added to L2 VM #1’s SEPT tree (HKID bits must be 0).

Else (the number of L2 VMs is 0), R9 is ignored.

If the value of R9 is NULL_PA (-1), no new SEPT page is added to L2 VM #1’s SEPT. If the demoted
TD private page has an L2 page alias for L2 VM #1, this is an error.

Else, bit 63 of R9 is ignored. If L2_SEPT_ADD_MODE is 1, the new SEPT page is only used if the
demoted TD private page has an L2 page alias for L2 VM #1. Else, the new SEPT page is always
used.

R10 If the number of L2 VMs is >= 2, R10 contains the host physical address of the new Secure EPT page
to be added to L2 VM #2’s SEPT tree (HKID bits must be 0).

Else (the number of L2 VMs is 0 or 1), R10 is ignored.

If the value of R10 is NULL_PA (-1), no new SEPT page is added to L2 VM #2’s SEPT. If the demoted
TD private page has an L2 page alias for L2 VM #2, this is an error.

Else, bit 63 of R10 is ignored. If L2_SEPT_ADD_MODE is 1, the new SEPT page is only used if the
demoted TD private page has an L2 page alias for L2 VM #2. Else, the new SEPT page is always
used.

R11 If the number of L2 VMs is >= 3, R11 contains the host physical address of the new Secure EPT page
to be added to L2 VM #3’s SEPT tree (HKID bits must be 0).

Else (the number of L2 VMs is 0, 1 or 2), R11 is ignored.

If the value of R11 is NULL_PA (-1), no new SEPT page is added to L2 VM #3’s SEPT. If the demoted
TD private page has an L2 page alias for L2 VM #3, this is an error.

Else, bit 63 of R11 is ignored. If L2_SEPT_ADD_MODE is 1, the new SEPT page is only used if the
demoted TD private page has an L2 page alias for L2 VM #3. Else, the new SEPT page is always
used.

Table 5.87: TDH.MEM.PAGE.DEMOTE Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX In case of an interruption, as indicated by RAX returning TDX_INTERRUPTED_RESTARTABLE, RCX is
unmodified.

Else, RCX returns extended error information part 1.

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page; it may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX In case of an interruption, as indicated by RAX returning TDX_INTERRUPTED_RESTARTABLE, RDX is
unmodified.

Else, RDX returns extended error information part 2.

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 147 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

R9 If TDH.MEM.PAGE.DEMOTE terminated successfully, the number of L2 VMs is >= 1 and the page
whose HPA was provided in R9 was not used as an SEPT page for any reason, R9 is updated with
bit 63 set to 1.

Else, R9 is unmodified.

R10 If TDH.MEM.PAGE.DEMOTE terminated successfully, the number of L2 VMs is >= 2 and the page
whose HPA was provided in R10 was not used as an SEPT page for any reason, R10 is updated with
bit 63 set to 1.

Else, R10 is unmodified.

R11 If TDH.MEM.PAGE.DEMOTE terminated successfully, the number of L2 VMs is >= 3 and the page
whose HPA was provided in R11 was not used as an SEPT page for any reason, R11 is updated with
bit 63 set to 1.

Else, R11 is unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.DEMOTE splits a large TD private page (2MB or 1GB) into 512 small pages (4KB or 2MB, respectively) 5

and adds a new Secure EPT page to map those small pages. If the large page is mapped in any L2 SEPTs,
TDH.MEM.PAGE.DEMOTE splits those mapping and adds new L2 Secure EPT pages to map the demoted page.

Enumeration: TDH.MEM.PAGE.DEMOTE support of non-blocking mapping resize is enumerated by
TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35), readable using TDH.SYS.RD*.

Blocking and TLB Tracking: If the TDX module supports non-blocking mapping resize, no blocking and tracking of 10

the demoted page is required.

Else, if the TD may be running, the demoted page must be blocked and TLB tracked.
Else (e.g., TDH.MR.FINALIZE has not yet been executed, or the TD has been paused for
export), no blocking and tracking is required.

PT_TR: If the TDX module supports non-blocking mapping resize, then PT_TR pages (i.e., former 15

SEPT pages converted by TDH.MEM.PAGE.PROMOTE) owned by the same TD can be
provided as new SEPT pages. TDH.MEM.PAGE.DEMOTE checks those pages for TLB
tracking.

L2 SEPT Population: TDH.MEM.PAGE.DEMOTE supports multiple host VMM policies for populating the L2
SEPT trees. 20

• Dense mode is when the host VMM maintains an L2 SEPT page for each L1 SEPT
page. This mode is selected by setting L2_SEPT_ADD_MODE to 0.

• Sparse mode is when the host VMM only maintains an L2 SEPT page for a certain L1
SEPT page on demand, i.e., when there’s a need to map a TD private page in an L2
VM’s GPA space. This mode is selected by setting L2_SEPT_ADD_MODE to 0. The 25

host VMM provides new SEPT pages, but they are only used is a page alias exists for
the relevant L2 VM.

The host VMM may also choose to maintain L2 SEPT trees only for a subset of the L2
VMs (e.g., if a TD is created with a certain number of L2 VMs but not all of them are
currently in use). The host VMM can do so by providing NULL_PA as the new SEPT 30

page(s) HPA.

Interruptibility: TDH.MEM.PAGE.DEMOTE is interruptible but not resumable. If a pending interrupt is
detected during operation, TDH.MEM.PAGE.DEMOTE returns with a
TDX_INTERRUPTED_RESTARTABLE status in RAX. No demote operation is done and no
output operands except RAX are modified. 35

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 148 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In such case, TDH.MEM.PAGE.DEMOTE should be invoked in a loop until it terminates
successfully. The host VMM should be designed to avoid cases where interrupt storms
prevent successful completion of TDH.MEM.PAGE.DEMOTE.

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling 5

TDH.MEM.PAGE.DEMOTE, the host VMM should ensure that no cache lines associated
with the added SEPT physical pages are in a Modified state, as described in the [Base
Spec].

The table below shows the values of the SEPT HPA arguments in R9 – R11 when no error occurs (RAX returns
TDX_SUCCESS). 10

Table 5.88: Meaning of TDH.MEM.PAGE.DEMOTE’s SEPT HPA Arguments on Input and Output (No Error)

Value R9 – R11 on Input R9 – R11 on Output

NULL_PA (-1) No new SEPT page to add Unmodified

Bits 62:0: Valid HPA, HKID bits are 0

Bit 63: 0

Bits 62:0: HPA of new SEPT page to
add

Bit 63: Ignored

TDH.MEM.PAGE.DEMOTE
terminated successfully and the
new SEPT page has been added

Bits 62:0: Valid HPA, HKID bits are 0

Bit 63: 1

TDH.MEM.PAGE.DEMOTE
terminated successfully and the
new SEPT page has not been added

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.89: TDH.MEM.PAGE.DEMOTE Operands Information Definition 15

Explicit/
Implicit

Reg. Ref
Type

Resource Name Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB11

Explicit RCX GPA
and
Level

TD private page
to split

Blob None Private 212+9*level
bytes

Exclusive None None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared None

Explicit R8 HPA New L1 Secure
EPT page

SEPT_PAGE RW Private 4KB Exclusive Shared Shared Exclusive

Explicit R9,
R10,
R11

HPA New L2 Secure
EPT pages

SEPT_PAGE RW Private 4KB Exclusive Shared Shared Exclusive

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A None

Implicit N/A GPA L1 Secure EPT
Tree

N/A RW Private N/A Shared N/A N/A None

Implicit N/A GPA L1 Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A None

Implicit N/A GPA L2 Secure EPT
Trees

N/A RW Private N/A Shared(i) N/A N/A None

11 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 149 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Name Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB11

Implicit N/A GPA L2 Secure EPT
entries

SEPT Entry RW Private N/A Exclusive(i) N/A N/A None

TDH.MEM.PAGE.DEMOTE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified page level is either 1 (2MB) or 2 (1GB). See 3.6.1 for a definition of EPT level. 10

If successful, the function does the following:

6. Walk the L1 Secure EPT based on the GPA operand and locate the large TD private page to be demoted.
7. If the TDX module does not support non-blocking mapping resize, as enumerated by

TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35), and the TD may run (its OP_STATE in either RUNNING,
LIVE_EXPORT or LIVE_IMPORT), check page block and tracking: 15

7.1. Check the Secure EPT entry: It must be a leaf BLOCKED or PENDING_BLOCKED entry.
7.2. Check that TLB tracking has been done, based on the large TD page’s PAMT.BEPOCH.

8. Else (no blocking and tracking is required):
8.1. Check the Secure EPT entry: It must be a leaf MAPPED, BLOCKED, PENDING or PENDING_BLOCKED entry.

If passed: 20

9. Check that the new L1 SEPT and L2 SEPT pages metadata in PAMT is correct:
9.1. If the TDX module supports non-blocking mapping resize and PAMT.PT is PT_TR:

9.1.1. Check that the PAMT.OWNER of the PT_TR page is the current TD.
9.1.2. If the TD may run (its OP_STATE in either RUNNING, LIVE_EXPORT or LIVE_IMPORT), check page block

and tracking. 25

9.2. Else, check that PAMT.PT is PT_NDA.

If passed:

10. Split the large TD private page PAMT entry into 512 PAMT entries at the lower level:
10.1. Set the parent PAMT_2M or PAMT_1G entry state to PT_NDA.
10.2. Set the 512 child PAMT4K or PAMT_2M entries respectively to PT_REG. 30

11. On platforms which use ACT, update the ACT bit of the new SEPT page to private.
12. Initialize the new Secure EPT page’s 512 entries to MAPPED (if the original page was MAPPED or BLOCKED) or

PENDING (if the original page was PENDING or PENDING_BLOCKED) pointing to the 512 consecutive small pages
above. Use the TD’s ephemeral private HKID and direct write (MOVDIR64B).

13. Atomically set the original Secure EPT entry to NL_MAPPED non-leaf entry pointing to the new Secure EPT page. 35

14. For each L2 VM, if L2_SEPT_ADD_MODE is 0 or there is an L2 mapping of the page to be demoted:
14.1. Walk the L2 Secure EPT based on the GPA operand and locate the L2 Secure EPT parent entry of the page to be

demoted.

Note: If there is an L2 mapping of the page, this walk should not fail. The L2 SEPT entry state is implicit: It
must be a leaf, mapped (L2_MAPPED) or blocked (L2_BLOCKED) entry. Else, the walk may fail – for this 40

reason the update is done below only if all SEPT walks succeeded.

If passed:

15. For each L2 VM:
15.1. If there is an L2 mapping of the page to be demoted:

15.1.1. On platforms which use ACT, update the ACT bit of the new L2 SEPT page to private. 45

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 150 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

15.1.2. Initialize the new L2 Secure EPT page’s 512 entries to L2_MAPPED (if the original page was MAPPED or
BLOCKED) or PENDING (if the original page was PENDING or PENDING_BLOCKED) pointing to the 512
consecutive small pages above. Use the TD’s ephemeral private HKID and direct write (MOVDIR64B).

15.2. Else, if L2_SEPT_ADD_MODE is 0:
15.2.1. Initialize the new L2 Secure EPT page’s 512 entries to L2_FREE. Use the TD’s ephemeral private HKID 5

and direct write (MOVDIR64B).
15.3. Atomically set the original L2 Secure EPT entry to NL_MAPPED non-leaf entry pointing to the new L2 Secure EPT

page.
16. Atomically increment TDR.CHLDCNT by 1.

16.1. Note that CHLDCNT counts the number of 4KB pages. The change is due only to the addition of the new Secure 10

EPT page.
17. Update the PAMT entry of the new Secure-EPT page with the PT_EPT page type and the TDR physical address as the

OWNER.
18. For each L2 VM:

18.1. If there was an L2 mapping of the page and the new L2 SEPT page was used: 15

18.1.1. Update the PAMT entry of each new L2 SEPT page with the PT_EPT page type and the TDR physical
address as the OWNER.

18.1.2. Atomically increment TDR.CHLDCNT by 1.

Else:

18.1.3. Set bit 63 of the applicable output GPR (R9, R10 or R11) to 1, indicating that this page was not used as 20

an SEPT page.

Completion Status Codes

Table 5.90: TDH.MEM.PAGE.DEMOTE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_INTERRUPTED_RESTARTABLE TDH.MEM.PAGE.DEMOTE’s operation has been interrupted
by an external event; it may be restarted (from its
beginning) by calling it again.

TDX_L2_SEPT_PAGE_NOT_PROVIDED

TDX_L2_SEPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.DEMOTE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 151 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCS_NOT_ALLOCATED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 152 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.23. TDH.MEM.PAGE.PROMOTE Leaf

Merge 512 consecutive small private TD pages (4KB or 2MB) into one large page (2MB or 1GB, respectively).

Table 5.91: TDH.MEM.PAGE.PROMOTE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Versions 0 and 1 are supported. See enumeration details below.

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that will map the merged large page:
either 1 (2MB) or 2 (1GB) (see 3.6.1)

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the merged large page

Depending on the level, the following least significant bits must be 0:

Level 1 (2MB): Bits 20:12

Level 2 (1GB): Bits 29:12

63:52 Reserved Reserved: must be 0

RDX TD handle and flags:

Bits Name Description

0 NO_TRACK Large GPA range blocking and TLB tracking mode

0: The merged large GPA range is checked for blocking and TLB
tracking, and SEPT pages are removed.

1: The merged large GPA range is not checked for blocking and TLB
tracking, and SEPT pages are converted to PT_TR pages.

Enumeration: Support of NO_TRACK value of 1 is enumerated by
TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35),
readable using TDH.SYS.RD*.

11:1 Reserved Reserved: must be 0

51:12 TDR_HPA Bits 51:12 of the host physical address of the parent TDR page (HKID
bits must be 0)

63:52 Reserved Reserved: must be 0

Table 5.92: TDH.MEM.PAGE.PROMOTE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 153 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RCX If TDH.MEM.PAGE.PROMOTE succeeded, RCX returns the HPA of the removed SEPT page (HKID bits
are set to 0).

In case of an interruption, as indicated by RAX returning TDX_INTERRUPTED_RESTARTABLE, RCX is
unmodified.

Else, RCX returns extended error information part 1.

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page; it may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX In case of an interruption, as indicated by RAX returning TDX_INTERRUPTED_RESTARTABLE, RDX is
unmodified.

Else, RDX returns extended error information part 2.

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

R9 If TDH.MEM.PAGE.PROMOTE version is 1 or higher:

• If L2 VM #1’s L2 SEPT page has been removed, R9 returns the HPA of that SEPT page (HKID bits
are set to 0).

• Else, R9 returns NULL_PA (-1).

Else, R9 is unmodified.

R10 If TDH.MEM.PAGE.PROMOTE version is 1 or higher:

• If L2 VM #2’s L2 SEPT page has been removed, R10 returns the HPA of that SEPT page (HKID
bits are set to 0).

• Else, R10 returns NULL_PA (-1).

Else, R10 is unmodified.

R11 If TDH.MEM.PAGE.PROMOTE version is 1 or higher:

• If L2 VM #3’s L2 SEPT page has been removed, R11 returns the HPA of that SEPT page (HKID
bits are set to 0).

• Else, R11 returns NULL_PA (-1).

Else, R11 is unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.PROMOTE merges 512 private pages, which are consecutive both in the HPA space and in the GPA space. 5

The L1 SEPT page and all existing L2 SEPT pages at the requested GPA and level are removed.

All merged private pages must have the same Secure EPT leaf entry attributes and state, which must be either MAPPED
or PENDING. All merged private pages must have the same set of L2 mappings and L2 attributes.

Enumeration: Availability of TDH.MEM.PAGE.PROMOTE version 1 is enumerated by
TDX_FEATURES0.TD_PARTITIONING (bit 7), readable by TDH.SYS.RD* (see 3.3.3.1). If 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 154 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

not supported, calling TDH.MEM.PAGE.PROMOTE with a version number higher than 0
returns a TDX_OPERAND_INVALID(RAX) status.

Support of NO_TRACK value of 1 is enumerated by
TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35).

Blocking and TLB Tracking: If NO_TRACK is supported and its value is 1, the promoted GPA range is not checked for 5

blocking and TLB tracking. The SEPT pages mapping that range are not removed;
instead, they are converted to PT_TR pages which can later be either tracked and
reclaimed or used as new SEPT pages for TDH.MEM.PAGE.DEMOTE for the current TD.

Else, if the TD may be running, the promoted GPA range must be blocked and TLB
tracked. Else (e.g., TDH.MR.FINALIZE has not yet been executed, or the TD has been 10

paused for export), no blocking and tracking is required.

Interruptibility: TDH.MEM.PAGE.PROMOTE is interruptible but not resumable. If a pending interrupt is
detected during operation, TDH.MEM.PAGE.PROMOTE returns with a
TDX_INTERRUPTED_RESTARTABLE status in RAX. No promote operation is done and no
output operands except RAX are modified. 15

In such case, TDH.MEM.PAGE.PROMOTE should be invoked in a loop until it terminates
successfully. The host VMM should be designed to avoid cases where interrupt storms
prevent successful completion of TDH.MEM.PAGE.PROMOTE.

Removed Page Initialization: On platforms which do not use ACT, after the SEPT pages have been removed, the host
VMM should initialize their content before they are reused as non-private pages, as 20

described in the [Base Spec].

The table below shows the values of the SEPT HPA output arguments in RCX and R9 – R11 when version 1 or higher is
selected and no error occurs (RAX returns TDX_SUCCESS).

Table 5.93: Meaning of TDH.MEM.PAGE.PROMOTE’s SEPT HPA Arguments on Output (No Error)

Value RCX on Output R9 – R11 on Output

NULL_PA (-1) N/A No removed or converted SEPT page for this
L2 VM

Valid HPA L1 SEPT page HPA

If NO_TRACK is supported and its value is 1,
the page is converted to PT_TR. Else, the
page is removed.

L2 SEPT page HPA

If NO_TRACK is supported and its value is 1,
the page is converted to PT_TR. Else, the
page is removed.

 25

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.94: TDH.MEM.PAGE.PROMOTE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB12

Explicit RCX GPA
and
Level

Removed
Secure EPT
page

SEPT_PAGE R Private 212+9*Level
Bytes

Exclusive None None Exclusive

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared None

Implicit N/A HPA Merged HPA
range

Blob None Private N/A Exclusive None None None

12 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 155 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB12

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A None

Implicit N/A GPA L1 Secure EPT
Tree

N/A RW Private N/A Shared N/A N/A None

Implicit N/A GPA Large page L1
Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A None

Implicit N/A GPA Small pages L1
Secure EPT
entries

SEPT Entry RW Private N/A Exclusive N/A N/A None

Implicit N/A GPA L2 Secure EPT
Trees

N/A RW Private N/A Shared(i) N/A N/A None

Implicit N/A GPA L2 Large page
Secure EPT
entry

SEPT Entry RW Private N/A Exclusive(i) N/A N/A None

Implicit N/A GPA L2 Small pages
Secure EPT
entries

SEPT Entry RW Private N/A Exclusive(i) N/A N/A None

TDH.MEM.PAGE.PROMOTE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized or its metadata has been imported (TDR.NUM_TDCX is the required number and

TDCS.OP_STATE is either INITIALIZED, RUNNING, *_EXPORT, POST_IMPORT or LIVE_IMPORT).
5. The specified merged page level is either 1 (2MB) or 2 (1GB) – see 3.6.1 for a definition of EPT level. 10

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and locate the Secure EPT parent entry of the GPA range to be
promoted to a merged large page.

7. Get the HPA of the Secure EPT page, which currently maps the GPA range to be promoted, from the Secure EPT
above. Get its PAMT entry. 15

8. If NO_TRACK is 0, and the TD may run (its OP_STATE in either RUNNING, LIVE_EXPORT or LIVE_IMPORT):
8.1. Check the Secure EPT entry: It must be a non-leaf, blocked (NL_BLOCKED) entry.
8.2. Check that TLB tracking has been done, based on the above Secure EPT page’s PAMT.BEPOCH.

9. Else (no blocking and tracking is required):
9.1. Check the Secure EPT entry: It must be a non-leaf, mapped (NL_MAPPED) or blocked (NL_BLOCKED) entry. 20

If passed:

10. Scan the content of the above Secure EPT page and check all 512 entries:
10.1. They are leaf entries (this also implies that the corresponding pages are PT_REG).
10.2. Their state is either MAPPED or PENDING.
10.3. They have contiguous HPA mapping aligned to the promoted range size. 25

10.4. They have L2 mappings for the same set of L2 VMs.
11. For each L2 VM:

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 156 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

11.1. Walk the L2 Secure EPT based on the GPA operand and locate the L2 Secure EPT parent entry of the GPA range
to be promoted to a merged large page.

11.2. If L2 mapping was found above to exist for this L2 VM:
11.2.1. The above SEPT walk should not fail. The L2 SEPT entry state is implicit: It must be a non-leaf, mapped

(NL_MAPPED) or blocked (NL_BLOCKED) entry. 5

11.2.2. Scan the content of the above L2 Secure EPT page and check all 512 entries:
11.2.2.1. They should all have the same L2 attributes.
11.2.2.2. The following are implicit: All L2 SEPT entries are leaf entries, they all have the same state,

and they have contiguous HPA mapping aligned to the promoted range size.
11.3. Else (L2 mapping was not found above to exist for this L2 VM): 10

11.3.1. The walk may fail; this is not considered an error.
11.3.2. If the walk succeeded, it implicitly arrives at an empty SEPT page.

If successful, the above checks imply that:

• The 2MB or 1GB GPA range to be promoted has a corresponding single HPA range and a single PAMT entry
(PAMT_2M or PAMT_1G, respectively) owned by the current guest TD, and its current PAMT.PT is PAMT_NDA. 15

• The 512 child PAMT entries (PAMT_2M or PAMT_4K, respectively) of the above are owned by the current guest TD,
and their PAMT.PT is PAMT_REG.

The function then does the following:

12. Merge the corresponding 512 physical pages into a single larger physical page:
12.1. Set the small page (PAMT_4K or PAMT_2M) entries state to PT_NDA. 20

12.2. Set the parent (PAMT_2M or PAMT_1G respectively) entry to PT_REG.
13. Atomically set the promoted Secure EPT entry to MAPPED or PENDING (depending on the small pages’ Secure EPT

entry state) leaf entry pointing to the merged HPA range.
14. If NO_TRACK is 0:

14.1. Remove the L1 Secure EPT page that previously mapped the 512 physical pages: 25

14.1.1. Atomically decrement TDR.CHLDCNT by 1.
14.1.1.1. Note that CHLDCNT counts the number of 4KB pages. The change is due only to the removal

of the Secure EPT page.
14.1.2. On platforms which use ACT, overwrite the SEPT page content with the TD’s random overwrite

number, using MOVDIR64B, and clear the corresponding ACT bit. 30

14.1.3. Update the PAMT entry of the removed Secure EPT page to PT_NDA.
14.2. For each L2 VM where L2 mapping was found above to exist:

14.2.1. Remove the L2 Secure EPT page that previously mapped the 512 physical pages:
14.2.1.1. Atomically decrement TDR.CHLDCNT by 1.
14.2.1.2. On platforms which use ACT, overwrite the L2 SEPT page content with the TD’s random 35

overwrite number, using MOVDIR64B, and clear the corresponding ACT bit.
14.2.1.3. Update the PAMT entry of the removed Secure EPT page to PT_NDA.

15. Else (NO_TRACK is supported, and its value is 1), convert that Secure EPT pages that previously mapped the 512
physical pages to PT_TR pages:
15.1. Record the TD’s TD_EPOCH in the L1 SEPT page’s PAMT.BEPOCH. 40

15.2. Set the L1 SEPT page’s PAMT.PT to PT_TR.
15.3. For each L2 VM where L2 mapping was found above to exist:

15.3.1. Record the TD’s TD_EPOCH in the L2 SEPT page’s PAMT.BEPOCH.
15.3.2. Set the L2 SEPT page’s PAMT.PT to PT_TR.

Completion Status Codes 45

Table 5.95: TDH.MEM.PAGE.PROMOTE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_INVALID_PROMOTE_CONDITIONS

TDX_EPT_WALK_FAILED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 157 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_INTERRUPTED_RESTARTABLE TDH.MEM.PAGE.PROMOTE’s operation has been interrupted
by an external event; it may be restarted (from its
beginning) by calling it again.

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.PROMOTE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 158 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.24. TDH.MEM.PAGE.RELOCATE Leaf

Relocate a 4KB mapped page from its current host physical address to another.

Table 5.96: TDH.MEM.PAGE.RELOCATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the private page to be
relocated, must be 0 (i.e., 4KB) (see 3.6.1).

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the private page to be
relocated

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Host physical address of the relocated page target (HKID bits must be 0)

Table 5.97: TDH.MEM.PAGE.RELOCATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX If TDH.MEM.PAGE.RELOCATE succeeded, RCX returns the HPA of the old physical page that has
been removed (HKID bits are set to 0).

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 159 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.RELOCATE replaces a mapped 4KB page mapping target HPA by moving the current page content to a
new target HPA and updating the Secure-EPT mapping to the new target HPA. On successful operation, the previous 5

mapped HPA target is marked is free in the PAMT.

Blocking and TLB Tracking: If the TD may be running, the relocated page must be blocked and TLB tracked. Else
(e.g., TDH.MR.FINALIZE has not yet been executed, or the TD has been paused for
export), no blocking and tracking is required.

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by 10

TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling
TDH.MEM.PAGE.RELOCATE, the host VMM should ensure that no cache lines associated
with the new physical page are in a Modified state, as described in the [Base Spec].

Removed Page Initialization: On platforms which do not use ACT, after the page has been relocated, the host VMM
should initialize its content before it is reused as a non-private page, as described in the 15

[Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.98: TDH.MEM.PAGE.RELOCATE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB13

Explicit RCX GPA
and
Level

TD private page Blob R Private 4KB Exclusive None None Exclusive

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared None

Explicit R8 HPA Target physical
page

Blob RW Private 4KB Exclusive Shared Shared Exclusive

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A None

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A None

Implicit N/A GPA L1 Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A None

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A None

Implicit N/A GPA L2 Secure EPT
entries

SEPT Entry RW Private N/A Exclusive(i) N/A N/A None

 20

TDH.MEM.PAGE.RELOCATE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 25

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).

13 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 160 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED
or RUNNING).

5. The target page metadata in PAMT must be correct (PT must be PT_NDA).

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and level and find the currently mapped HPA. 5

7. If TLB tracking is required (based on the Secure EPT entry state and the TD’s OP_STATE):
7.1. Check that the SEPT entry is BLOCKED or PENDING_BLOCKED.
7.2. Check that TLB tracking was done.

Else:

7.3. Check that the SEPT entry is MAPPED, BLOCKED, BLOCKEDW, EXPORTED*, PENDING, PENDING_BLOCKED, 10

PENDING_BLOCKEDW or PENDING_EXPORTED*.
8. Check that the currently mapped HPA is different than the target HPA.

If successful, the function does the following:

9. On platforms which use ACT, set the target page’s ACT bit to 1.
10. If the page state is not one of the PENDING* states, copy the currently mapped page content to the target page, 15

using the TD’s ephemeral private HKID and direct writes (MOVDIR64B).
11. On platforms which use ACT, overwrite the old page content with the TD’s random overwrite number, using

MOVDIR64B, and clear the corresponding ACT bit.
12. Free the currently mapped HPA by setting its PAMT.PT to PT_NDA.
13. Update the target page’s PAMT entry with the PT_REG page type and the TDR physical address as the OWNER. 20

14. Update the Secure EPT entry:
14.1. Set the HPA to point to the target page.
14.2. Unblock the SEPT entry: if its state was BLOCKED or PENDING_BLOCKED, update it to MAPPED or PENDING,

respectively.
15. For each L2 VM where the page has l2 mapping: 25

15.1. Walk the L2 Secure EPT based on the GPA operand and find the leaf L2 SEPT entry mapping the page to be
relocated.

15.2. Update the L2 Secure EPT entry:
15.2.1. Set the HPA to point to the target page.
15.2.2. If the updated L1 SEPT entry state is one of the PENDING* states, set the L2 SEPT entry state to 30

L2_BLOCKED. Else, set the L2 SEPT entry state to L2_MAPPED.

Completion Status Codes

Table 5.99: TDH.MEM.PAGE.RELOCATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.RELOCATE is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 161 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 162 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.25. TDH.MEM.PAGE.REMOVE Leaf

Remove a GPA-mapped 4KB, 2MB or 1GB private page from a TD.

Table 5.100: TDH.MEM.PAGE.REMOVE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

If the TDX module supports ACT, version may be 0 or 1. Else, version
must be 0. See enumeration details below.

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the private page to be
removed: either 0 (4KB), 1 (2MB) or 2 (1GB) – see 3.6.1.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the private page to be
removed

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 5.101: TDH.MEM.PAGE.REMOVE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX If TDH.MEM.PAGE.REMOVE succeeded, RCX returns the HPA of the removed page (HKID bits are
set to 0).

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 163 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.REMOVE removes a 4KB, 2MB or 1GB private page from the TD’s Secure EPT tree (marks the SEPT entry
as FREE). If the page is mapped in any L2 Secure EPT, the applicable L2 SEPT entries are marked as L2_FREE. On successful 5

operation, TDH.MEM.PAGE.REMOVE marks the physical page as free in PAMT.

Enumeration: Availability of TDH.MEM.PAGE.REMOVE version 1 is enumerated by TDX_FEATURES0.ACT
(bit 14), readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling
TDH.MEM.PAGE.REMOVE with version higher than 0 returns a
TDX_OPERAND_INVALID(RAX) status. 10

Blocking and TLB Tracking: If the TD may be running, the removed page must be blocked and TLB tracked. Else (e.g.,
TDH.MR.FINALIZE has not yet been executed, or the TD has been paused for export), no
blocking and tracking is required.

Removed Page Initialization: On platforms which do not use ACT, after the page has been removed, the host VMM
should initialize its content before it is reused as non-private pages, as described in the 15

[Base Spec].

Interruptibility: If called with version higher than 0, TDH.MEM.PAGE.REMOVE is interruptible and
resumable. If a pending interrupt is detected during operation, TDH.MEM.PAGE.REMOVE
returns with a TDX_INTERRUPTED_RESUMABLE status in RAX. No output operands except
RAX are modified. 20

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.102: TDH.MEM.PAGE.REMOVE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB14

Explicit RCX GPA
and
Level

TD private page Blob R Private 212+9*Level
Bytes

Exclusive None None Exclusive

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A None

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A None

Implicit N/A GPA L1 Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A None

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A None

Implicit N/A GPA L2 Secure EPT
entries

SEPT Entry RW Private N/A Exclusive(i) N/A N/A None

TDH.MEM.PAGE.REMOVE checks the memory operands per the table above when applicable during its flow. The text 25

below does not explicitly mention those checks, except when necessary.

14 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 164 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must be in one of the following states: 5

4.1. The TD has been initialized locally by TDH.MNG.INIT.
4.2. An import session is in progress, and either the out-of-order phase has started (TDH.IMPORT.TRACK has been

successfully executed with an Epoch Token MBMD indicating a MIG_EPOCH value of 0xFFFFFFFF), or import has
failed.

5. The specified level is either 0 (4KB), 1 (2MB) or 2 (1GB) – see 3.6.1 for a definition of EPT level. 10

If successful:

6. Walk the Secure EPT based on the GPA operand and find the leaf entry of the page to be removed.
7. If TLB tracking is required (based on the Secure EPT entry state and the TD’s OP_STATE):

7.1. Check that the SEPT entry is BLOCKED or PENDING_BLOCKED.
7.2. Check that TLB tracking was done. 15

Else:

7.3. Check that the SEPT entry is MAPPED, BLOCKED, BLOCKEDW, PENDING, PENDING_BLOCKED or
PENDING_BLOCKEDW.

If successful:

8. For each L2 VM where the page is mapped: 20

8.1. Walk the L2 Secure EPT based on the GPA operand and find the page mapping to be removed.
8.2. Set the L2 SEPT entry state to L2_FREE.

9. If an import session is in progress:
9.1. Set the SEPT entry state to REMOVED.
9.2. Record the migration epoch in the SEPT entry. 25

Else:
9.3. Set the SEPT entry state to FREE.

10. On platforms which do not use ACT:
10.1. Atomically decrement TDR.CHLDCNT by 1, 512 or 5122 depending on the removed TD private page size (4KB,

2MB or 1GB, respectively). 30

10.2. Free the physical page: Set the PAMT entry of the removed TD private page to PT_NDA.
11. On platforms with ACT-protected memory:

11.1. If the page size is 4KB:
11.1.1. Atomically decrement TDR.CHLDCNT by 1.
11.1.2. Overwrite the page using MOVDIR64B with the TD’s random number overwrite value. 35

11.1.3. Update the page’s bit in ACT to shared.
11.1.4. Free the physical page: Set the PAMT entry of the removed TD private page to PT_NDA.

11.2. Else:
11.2.1. On first iteration, identified by PAMT.PT other than PT_PR:

11.2.1.1. Reset overwrite position to 0: Set PAMT.BEPOCH to 0. 40

11.2.1.2. Mark the physical page as pending release: Set PAMT.PT to PT_PR.
11.2.2. Overwrite the page content with the TD’s random overwrite value using MOVDIR64B. Start from the

offset value stored in PAMT.BEPOCH. Periodically, check for pending interrupts.
11.2.3. If there is a pending interrupt, then:

11.2.3.1. Save the last overwrite offset into PAMT.BEPOCH. 45

11.2.3.2. Execute SFENCE.
11.2.3.3. For version 0, execute SEAMRET without changing the VMM CPU state and without changing

the RIP.
11.2.3.4. For version 1, execute SEAMRET with TDX_INTERRUPTED_RESUMABLE status.

If passed, page is filled with random data. 50

11.2.4. Set the page’s ACT bit(s) to 0.
11.2.5. Atomically decrement TDR.CHLDCNT by 512 or 5122 depending on the removed page size (2MB or 1GB,

respectively).
11.2.6. Update the PAMT entry of the reclaimed page to PT_NDA.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 165 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.103: TDH.PHYMEM.PAGE.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.REMOVE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 166 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.26. TDH.MEM.RANGE.BLOCK Leaf

Block a TD private GPA range (i.e., a Secure EPT page or a TD private page) at any level (4KB, 2MB, 1GB, 512GB, 256TB,
etc.) from creating new GPA-to-HPA address translations.

Table 5.104: TDH.MEM.RANGE.BLOCK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the GPA range to be blocked –
see 3.6.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a
5-level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the GPA range to be blocked

Depending on the level, the following least significant bits must be 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

 5

Table 5.105: TDH.MEM.RANGE.BLOCK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 167 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.RANGE.BLOCK finds the Secure EPT entry for the given GPA and level, and it marks it as blocked (BLOCKED or 5

PENDING_BLOCKED as appropriate). It records the current TD’s TLB epoch in the PAMT entry of the physical Secure EPT
page or TD private page mapped by the blocked Secure EPT entry.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.106: TDH.MEM.RANGE.BLOCK Operands Information Definition 10

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page or TD
private page

Blob None Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Exclusive N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(h) N/A N/A

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Exclusive(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

TDH.MEM.RANGE.BLOCK checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 15

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified level is of an EPT entry – i.e., 0 to 3 for 4-level EPT or 0 to 4 for 5-level EPT. See 3.6.1 for a definition of 20

EPT level.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 168 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the Secure EPT entry to be blocked.
7. Check the Secure EPT entry is not free and not blocked (its state should be NL_MAPPED, MAPPED or PENDING).

If passed:

8. Block the Secure EPT entry. Set its state to NL_BLOCKED (if it was NL_MAPPED), BLOCKED (if it was MAPPED) or 5

PENDING_BLOCKED (if it was PENDING).
9. For each L2 VM where there is an SEPT entry for the given GPA and level:

9.1. Walk the L2 Secure EPT based on the GPA and level operand and find the L2 SEPT entry to be blocked.
9.2. If the L1 SEPT entry is a leaf entry, then set the L2 SEPT entry state to L2_BLOCKED and save its attributes. Note

that if the page was blocked for writing, then the W bit has already been saved. 10

9.3. Else (L1 SEPT entry is a non-leaf, mapping an SEPT page), set the non-leaf L2 SEPT entry state to NL_BLOCKED.
Note: There is no need to write TD_EPOCH to the L2 SEPT page’s PAMT. Blocked epoch is implicit from the

L1 SEPT page.

If passed:

10. Read the TD’s epoch (TDCS.TD_EPOCH) and write it to the PAMT entry of the blocked Secure EPT page or TD private 15

page (PAMT.BEPOCH).

Completion Status Codes

Table 5.107: TDH.MEM.RANGE.BLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.RANGE.BLOCK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 169 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.27. TDH.MEM.RANGE.UNBLOCK Leaf

Remove the blocking of a TD private GPA range (i.e., a Secure EPT page or a TD private page), at any level (4KB, 2MB,
1GB, 512GB, 256TB etc.) previously blocked by TDH.MEM.RANGE.BLOCK.

Table 5.108: TDH.MEM.RANGE.UNBLOCK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the GPA range to be unblocked
– see 3.6.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a
5-level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address range to be unblocked

Depending on the level, the following least significant bits must be 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

 5

Table 5.109: TDH.MEM.RANGE.UNBLOCK Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 170 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.RANGE.UNBLOCK finds the blocked Secure EPT entry for the given GPA and level. It checks that the entry has 5

been blocked and TLB tracking has been done, and then it marks the entry as non-blocked (MAPPED or PENDING as
appropriate).

Blocking and TLB Tracking: If the TD may be running, the unblocked GPA range must be blocked and TLB tracked. Else
(e.g., TDH.MR.FINALIZE has not yet been executed, or the TD has been paused for export),
no blocking and tracking is required. 10

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.110: TDH.MEM.RANGE.UNBLOCK Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page or TD
private page

Blob None Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Exclusive N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(h) N/A N/A

Implicit N/A GPA L2 Secure EPT
tree

N/A RW Private N/A Exclusive(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

TDH.MEM.RANGE.UNBLOCK checks the memory operands per the table above when applicable during its flow. The text 15

below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 171 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED
or RUNNING).

5. The specified level is of an EPT entry (i.e., 0 to 3 for 4-level EPT or 0 to 4 for 5-level EPT) – see 3.6.1 for a definition
of EPT level.

If successful, the function does the following: 5

6. Walk the Secure EPT based on the GPA operand and find the Secure EPT page or TD private page to be unblocked.
7. Check the page’s parent Secure EPT entry is blocked (NL_BLOCKED, BLOCKED or PENDING_BLOCKED).
8. If TLB tracking is required (based on the Secure EPT entry state and the TD’s OP_STATE):

8.1. Check that TLB tracking was done.

If successful, the function does the following: 10

9. For each L2 VM where there is an SEPT entry for the given GPA and level:
9.1. Walk the L2 Secure EPT based on the GPA operand and find the L2 SEPT entry to be unblocked.
9.2. If the updated L1 SEPT entry is a leaf entry, and its state is not one of the PENDING* states, set the L2 SEPT

entry state to L2_MAPPED and restore the L2 SEPT attributes.
9.3. Else (L1 SEPT entry is a non-leaf, mapping an SEPT page), set the non-leaf L2 SEPT entry state to NL_MAPPED. 15

10. Unblock the Secure EPT entry. Atomically set its state to NL_MAPPED (if it was NL_BLOCKED), MAPPED (if it was
BLOCKED) or PENDING (if it was PENDING_BLOCKED).

Completion Status Codes

Table 5.111: TDH.MEM.RANGE.UNBLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.RANGE.UNBLOCK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TLB_TRACKING_NOT_DONE

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 172 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.28. TDH.MEM.RD Leaf

Read a 64b chunk from a debuggable guest TD private memory.

Table 5.112: TDH.MEM.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The guest physical address of a naturally aligned 8-byte chunk of a guest TD private page

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 5.113: TDH.MEM.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

R8 Content of the memory chunk

In case of an error, as indicated by RAX, R8 returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.RD reads a 64b chunk from a debuggable guest TD private memory. 10

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 173 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.114: TDH.MEM.RD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private
memory

Blob R Private 8B None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A R Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

R Private N/A Exclusive N/A N/A

TDH.MEM.RD checks the memory operands per the table above when applicable during its flow. The text below does
not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.KEY_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The TD is debuggable (TDCS.ATTRIBUTES.DEBUG is 1). 10

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf entry.
7. Check that the Secure EPT entry state is PRESENT.

If passed:

8. Read the content of the memory chunk. 15

Completion Status Codes

Table 5.115: TDH.MEM.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_PRESENT

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NON_DEBUG

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 174 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 175 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.29. TDH.MEM.SEPT.ADD Leaf

Add and map 4KB L1 and L2 Secure EPT pages to a TD.

Table 5.116: TDH.MEM.SEPT.ADD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the non-leaf Secure EPT entry that will map the new Secure
EPT page – see 3.6.1

Level must between 1 and 3 for a 4-level EPT or between 1 and 4 for a
5-level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of to be mapped for the new
Secure EPT page

Depending on the level, the following least significant bits must be 0:

Level 1 (EPT): Bits 20:12

Level 2 (EPD): Bits 29:12

Level 3 (EPDPT): Bits 38:12

Level 4 (EPML4): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX TD handle and flags:

Bits Name Description

0 ALLOW_EXISTING Flags that TDH.MEM.SEPT.ADD should not fail if an SEPT page to be
added already exists in the L1 or L2 SEPT tree. Instead, it should just
return an indication in the output operand, as described below.

11:1 Reserved Reserved: must be 0

51:12 TDR_HPA Bits 51:12 of the host physical address of the parent TDR page (HKID
bits must be 0)

63:52 Reserved Reserved: must be 0

R8 Host physical address of the new L1 Secure EPT page to be added to the TD (HKID bits must be 0)

For TDH.MEM.SEPT.ADD version 1 or higher:

• If the value of R8 is NULL_PA (-1), no L1 SEPT page is added.

• Else, bit 63 of R8 is ignored.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 176 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

R9 For TDH.MEM.SEPT.ADD version 1 or higher, R9 specifies the HPA of a new L2 VM #1 Secure EPT
page to be added to the TD (HKID bits must be 0).

• If the value of R9 is NULL_PA (-1), no L2 VM #1 SEPT page is added.

• Else, bit 63 of R9 is ignored.

R10 For TDH.MEM.SEPT.ADD version 1 or higher, R10 specifies the HPA of a new L2 VM #2 Secure EPT
page to be added to the TD (HKID bits must be 0).

• If the value of R10 is NULL_PA (-1), no L2 VM #2 SEPT page is added.

• Else, bit 63 of R10 is ignored.

R11 For TDH.MEM.SEPT.ADD version 1 or higher, R11 specifies the HPA of a new L2 VM #3 Secure EPT
page to be added to the TD (HKID bits must be 0).

• If the value of R11 is NULL_PA (-1), no L2 VM #3 SEPT page is added.

• Else, bit 63 of R11 is ignored.

Table 5.117: TDH.MEM.SEPT.ADD Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX In case of an interruption, as indicated by RAX returning TDX_INTERRUPTED_RESUMABLE, RCX is
unmodified.

Else, RCX returns extended error information part 1.

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page; it may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX In case of an interruption, as indicated by RAX returning TDX_INTERRUPTED_RESUMABLE, RDX is
unmodified.

Else, RDX returns extended error information part 2.

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

R8 For TDH.MEM.SEPT.ADD version 1 or higher:

• If a provided L1 SEPT page has been added, R8 returns NULL_PA (-1).

• Else, if an L1 SEPT page already exists, bit 63 of R8 is set to 1, other bits are unmodified.

• Else, bit 63 of R8 is cleared to 0, other bits are unmodified.

For TDH.MEM.SEPT.ADD version 0, R8 is unmodified.

R9 For TDH.MEM.SEPT.ADD version 1 or higher:

• If a provided L2 VM #1 SEPT page has been added, R9 returns NULL_PA (-1).

• Else, if an L2 VM #1 SEPT page already exists, bit 63 of R9 is set to 1, other bits are
unmodified.

• Else, bit 63 of R9 is cleared to 0, other bits are unmodified.

For TDH.MEM.SEPT.ADD version 0, R9 is unmodified.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 177 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

R10 For TDH.MEM.SEPT.ADD version 1 or higher:

• If a provided L2 VM #2 SEPT page has been added, R10 returns NULL_PA (-1).

• Else, if an L2 VM #2 SEPT page already exists, bit 63 of R10 is set to 1, other bits are
unmodified.

• Else, bit 63 of R10 is cleared to 0, other bits are unmodified.

For TDH.MEM.SEPT.ADD version 0, R10 is unmodified.

R11 For TDH.MEM.SEPT.ADD version 1 or higher:

• If a provided L2 VM #3 SEPT page has been added, R11 returns NULL_PA (-1).

• Else, if an L2 VM #3 SEPT page already exists, bit 63 of R11 is set to 1, other bits are
unmodified.

• Else, bit 63 of R11 is cleared to 0, other bits are unmodified.

For TDH.MEM.SEPT.ADD version 0, R11 is unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.ADD adds a set of 4KB Secure EPT pages to a TD and maps them to the provided GPA and level. SEPT 5

pages can be added to the main (L1) SEPT tree and/or to one or more of the L2 VMs’ SEPT trees. TDH.MEM.SEPT.ADD
initializes the SEPT pages to hold 512 free entries using the TD’s ephemeral private key.

L2 SEPT trees may not be deeper than the L1 SEPT tree. To add an L2 SEPT page at some level, there must either already
be an L1 SEPT page at that level, or an L1 SEPT page at that level is being added by the current TDH.MEM.SEPT.ADD
invocation. 10

Enumeration: Availability of TDH.MEM.SEPT.ADD version 1 is enumerated by TDX_FEATURES0.TD_PARTITIONING (bit
7), readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.MEM.SEPT.ADD with a version
number higher than 0 returns a TDX_OPERAND_INVALID(RAX) status.

Interruptibility: If a version number higher than 0 is specified on input, TDH.MEM.SEPT.ADD is interruptible. If a
pending interrupt is detected during operation, TDH.MEM.SEPT.ADD returns with a 15

TDX_INTERRUPTED_RESUMABLE status in RAX. The SEPT page HPA values in R8, R9, R10 and R11 are
updated.

TDH.MEM.SEPT.ADD is designed to be invoked in a loop until all required SEPT pages have been added:

1. Call TDH.MEM.SEPT.ADD.
2. While RAX indicates TDX_INTERRUPTED_RESUMABLE: 20

2.1. Call TDH.MEM.SEPT.ADD with the GPR values as returned by the previous call.
2.2. If an error indication other than TDX_INTERRUPTED_RESUMABLE is returned, abort.

The table below shows the values of the SEPT HPA arguments in R8 – R11 when version 1 or higher is
selected and no error occurs (RAX returns TDX_SUCCESS or TDX_INTERRUPTED_RESUMABLE).

Table 5.118: Meaning of TDH.MEM.SEPT.ADD’s SEPT HPA Arguments on Input and Output (Version > 0, No Error) 25

Value R8 – R11 on Input R8 – R11 on Output

NULL_PA (-1) No new SEPT page to add New SEPT page has been added

Bits 62:0: Valid HPA, HKID bits are 0

Bit 63: 0

Bits 62:0: HPA of new SEPT page to
add

Bit 63: Ignored

N/A

Bits 62:0: Valid HPA, HKID bits are 0

Bit 63: 1

SEPT page already exists, new SEPT
page has not been used

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 178 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Atomicity: Unless terminated with a TDX_INTERRUPTED_RESUMABLE indication,
TDH.MEM.SEPT.ADD either fully succeeds in adding the requested SEPT pages or
doesn’t add any page.

In case of an interrupt (TDX_INTERRRUPTED_RESUMABLE), if the host VMM invokes 5

TDH.MEM.SEPT.ADD in a loop as described above and doesn’t initiate other operations
that impact TDH.MEM.SEPT.ADD (e.g., TDH.MEM.RANGE.BLOCK), then this atomicity
still holds at the end of the loop.

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling 10

TDH.MEM.SEPT.ADD, the host VMM should ensure that no cache lines associated with
the added SEPT physical pages are in a Modified state, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.119: TDH.MEM.SEPT.ADD Operands Information Definition 15

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page (GPA)15

SEPT_PAGE RW Private 212+9*Level
Bytes

N/A N/A N/A

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit R8 HPA Secure EPT
page (HPA)15

SEPT_PAGE RW Private 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
tree

N/A RW Private N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A

Implicit N/A GPA L2 Secure EPT
trees

N/A RW Private N/A Shared(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entry

SEPT Entry RW Private N/A Exclusive(i) N/A N/A

TDH.MEM.SEPT.ADD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 20

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized by TDH.MNG.INIT and not paused by THH.EXPORT.PAUSE, or an import session is

in progress, started by TDH.IMPORT.STATE.IMMUTABLE and not failed.

15 RCX and R8 denote the same Secure EPT page operand, using HPA and GPA respectively

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 179 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5. The specified level is of an EPT non-leaf entry – i.e., 1 to 3 for 4-level EPT or 1 to 4 for 5-level EPT. See 3.6.1 for a
definition of EPT level.

If successful, the function does the following:

6. SEPT physical pages checks:
6.1. Check that no non-NULL_PA address has been provided in R9, R10 or R11 for a non-existing L2 VM. 5

6.2. If the version number indicated in RAX is 1 or higher, check and lock the new SEPT physical pages:
6.2.1. For each of the SEPT page HPAs provided in R8, R9, R10 and R11, if the value is not NULL_PA, lock the

PAMT entry and check that the page metadata is correct (PT must be PT_NDA).
6.3. Else (version is 0):

6.3.1. For the L1 SEPT page HPA provided in R8, lock the PAMT entry and check that the page metadata is 10

correct (PT must be PT_NDA).

If passed:

7. SEPT trees walk and state checks:
7.1. Walk the L1 Secure EPT based on the requested GPA and level and find the SEPT entry.

If L1 SEPT walk succeeded: 15

7.2. If requested to add an L1 SEPT page (i.e., R8 is a not a NULL_PA):
7.2.1. The L1 SEPT entry state should either be FREE,
7.2.2. Or, if ALLOW_EXISTING is 1, the L1 SEPT entry state can be NL_MAPPED (i.e., there’s already an L1

SEPT page at the requested level). In this case, mark the return value in R8 to indicate that the new L1
SEPT page was not used. 20

7.2.3. On other L1 SEPT entry states, abort with an error indication in RAX.
7.3. Else (no L1 SEPT page is to be added):

7.3.1. Check that an L1 SEPT page exists (the L1 SEPT entry state is NL_MAPPED).

If passed:

7.4. If the version number indicated in RAX is 1 or higher, then for each L2 VM do the following: 25

7.4.1. Walk the L2 Secure EPT based on the requested GPA and level and find the L2 SEPT entry.

If L2 SEPT walk succeeded:

7.4.2. The L2 SEPT entry state should either be L2_FREE,
7.4.3. Or, if ALLOW_EXISTING is 1, the L2 SEPT entry state can be L2_NL_MAPPED (i.e., there’s already an L2

SEPT page at the requested level). In this case, mark the return value in R9, R10 or R11 to indicate that 30

the new SEPT page was not used.
7.4.4. On other L2 SEPT entry states, abort with an error indication in RAX.

If passed:

8. SEPT page additions:
8.1. If the L1 SEPT entry state is FREE: 35

8.1.1. On platforms which use ACT, set the new L1 SEPT page’s bit in ACT to 1.
8.1.2. Initialize the new L1 Secure EPT page, indicating 512 entries in the FREE state, using the TD’s ephemeral

private HKID and direct writes (MOVDIR64B).
8.1.3. Update the parent L1 Secure EPT entry with the new Secure EPT page HPA and NL_MAPPED state.
8.1.4. Increment TDR.CHLDCNT. 40

8.1.5. Update the new Secure EPT page’s PAMT entry with the PT_EPT page type and the TDR physical
address as the OWNER.

8.1.6. If the version number indicated in RAX is 1 or higher, set the returned value of R8 to NULL_PA,
indicating that a new SEPT page has been added.

If passed: 45

8.2. If the version number indicated in RAX is 1 or higher, then for each L2 VM do the following:
8.2.1. If the L2 SEPT entry state is L2_FREE:

8.2.1.1. If an interrupt is pending, abort with a TDX_INTERRUPTED_RESUMABLE status.
8.2.1.2. On platforms which use ACT, set the new L2 SEPT page’s bit in ACT to 1.
8.2.1.3. Initialize the new L2 Secure EPT page, indicating 512 entries in the L2_FREE state, using the 50

TD’s ephemeral private HKID and direct writes (MOVDIR64B).
8.2.1.4. Update the parent Secure EPT entry with the new Secure EPT page HPA and NL_MAPPED state.
8.2.1.5. Increment TDR.CHLDCNT.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 180 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

8.2.1.6. Update the new L2 Secure EPT page’s PAMT entry with the PT_EPT page type and the TDR
physical address as the OWNER.

8.2.1.7. Set the returned value of R9, R10 or R11 to NULL_PA, indicating that a new L2 SEPT page has
been added.

Completion Status Codes 5

Table 5.120: TDH.MEM.SEPT.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_INTERRUPTED_RESUMABLE TDH.MEM.SEPT.ADD’s operation has been interrupted by an
external event; it may be resumed from the point it was
interrupted by calling it again.

TDX_L2_SEPT_ENTRY_NOT_FREE

TDX_L2_SEPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.SEPT.ADD is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 181 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.30. TDH.MEM.SEPT.RD Leaf

Read a Secure EPT entry.

Table 5.121: TDH.MEM.SEPT.RD Input Operands Definition

Operand Description

RAX Leaf and
Version

SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

63:24 Reserved Must be 0

RCX GPA Mapping EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry to read – see 3.6.1

Level must between 0 and 3 for a 4-level EPT or between 0
and 4 for a 5-level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address for the Secure EPT
entry to read

Depending on the level, the following least significant bits
must be 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX TD Handle
and Flags

TD handle and flags:

Bits Name Description

0 READ_L2_ATTR Flags that L2 attributes should be returned in R8

11:1 Reserved Reserved: must be 0

51:12 HPA Bits 51:12 of the host physical address of the parent TDR
page (HKID bits must be 0)

63:52 Reserved Reserved: must be 0

Table 5.122: TDH.MEM.SEPT.RD Output Operands Definition 5

Operand Description

RAX Status SEAMCALL instruction return code – see 5.4.1

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 182 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RCX SEPT Entry Secure EPT entry architectural content – see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page
or a Secure EPT page; it may be different than the actual contents of the Secure EPT
entry. Software should consult the Secure EPT information returned in RDX.

• In case of successful operation, the requested entry’s architectural content is
returned.

• In case of EPT walk error, the architectural content of the Secure EPT entry where
the error was detected is returned.

In other cases, RCX returns 0.

RDX SEPT Level
and State

Secure EPT entry level and state – see 3.6.2

• In case of successful operation, the requested entry’s information is returned.

• In case of EPT walk error, the information of the Secure EPT entry where the error
was detected is returned.

In other cases, RDX returns 0.

R8 L2 Attributes If the TD’s ATTRIBUTES.DEBUG is 1 and READ_L2_ATTR is 1, R8 returns the L2
attributes of the applicable L2 SEPT entries, in the format defined in 3.6.3.

Else, R8 is unmodified.

Other N/A Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.RD reads a Secure EPT entry. If the TD’s ATTRIBUTES.DEBUG is 1, then TDH.MEM.SEPT.RD can return the 5

page’s L2 attributes.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.123: TDH.MEM.SEPT.RD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
entry

SEPT_ENTRY R Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
Tree

N/A R Private N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT Entry RW Private N/A Exclusive N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 183 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A GPA L2 Secure EPT
Tree

N/A R Private N/A Shared(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT Entry RW Private N/A Exclusive(i) N/A N/A

TDH.MEM.SEPT.RD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is either INITIALIZED

or RUNNING).
5. The specified level is of an EPT entry (i.e., 0 to 3 for 4-level EPT or 0 to 4 for 5-level EPT) – see 3.6.1 for a definition 10

of EPT level.

If successful, the function does the following:

6. If READ_L2_ATTR is set, check that TDCS.ATTRIBUTES.DEBUG is 1.

If passed:

7. Walk the L1 Secure EPT based on the GPA and level operand and find the Secure EPT entry. 15

8. Read the L1 Secure EPT entry contents.
9. If READ_L2_ATTR is set:

9.1. If the L1 SEPT entry is a leaf entry, then for each L2 VM where the page is mapped
9.1.1. Walk the L2 SEPT based on the GPA and level operand and find the L2 SEPT entry.
9.1.2. Read the leaf L2 SEPT entry and build the L2 attributes to be returned. 20

9.2. If the L1 SEPT entry is a non-leaf entry, then for each L2 VM:
9.2.1. Walk the L2 SEPT based on the GPA and level operand, and find the non-leaf L2 SEPT entry, if any.
9.2.2. Read the non-leaf L2 SEPT entry and build the L2 attributes to be returned.

9.3. Else (the L1 SEPT entry is FREE):
9.3.1. Return 0 as the L2 attributes. 25

Completion Status Codes

Table 5.124: TDH.MEM.SEPT.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.SEPT.RD is successful.

TDX_SYS_NOT_READY

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 184 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 185 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.31. TDH.MEM.SEPT.REMOVE Leaf

Remove an empty L1 Secure EPT page and any associated L2 SEPT pages from a TD.

Table 5.125: TDH.MEM.SEPT.REMOVE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Versions 0 and 1 are supported. See the enumeration details below.

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the non-leaf Secure EPT entry that maps the Secure EPT page
to be removed – see 3.6.1

Level must be between 1 and 3 for a 4-level EPT or between 1 and 4 for
a 5-level EPT.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address for the Secure EPT page to be
removed

Depending on the level, the following least significant bits must be 0:

Level 1 (EPT): Bits 20:12

Level 2 (EPD): Bits 29:12

Level 3 (EPDPT): Bits 38:12

Level 4 (EPML4): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

Table 5.126: TDH.MEM.SEPT.REMOVE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX If TDH.MEM.SEPT.REMOVE succeeded, RCX returns the HPA of the removed SEPT page (HKID bits
are set to 0).

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 186 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

R9 If TDH.MEM.SEPT.REMOVE version is 1 or higher:

• If L2 VM #1’s L2 SEPT page has been removed, R9 returns the HPA of that SEPT page (HKID bits
are set to 0).

• Else, R9 returns NULL_PA (-1).

Else, R9 is unmodified.

R10 If TDH.MEM.SEPT.REMOVE version is 1 or higher:

• If L2 VM #2’s L2 SEPT page has been removed, R10 returns the HPA of that SEPT page (HKID
bits are set to 0).

• Else, R10 returns NULL_PA (-1).

Else, R10 is unmodified.

R11 If TDH.MEM.SEPT.REMOVE version is 1 or higher:

• If L2 VM #3’s L2 SEPT page has been removed, R11 returns the HPA of that SEPT page (HKID
bits are set to 0).

• Else, R11 returns NULL_PA (-1).

Else, R11 is unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.REMOVE removes an empty Secure EPT page or pages, with all 512 entries marked as FREE, from the 5

TD’s Secure EPT trees.

The L1 SEPT page and all existing L2 SEPT pages at the requested GPA and level are removed.

On successful operation, it TDH.MEM.SEPT.REMOVE marks the removed 4KB physical pages as free in PAMT.

Enumeration: Availability of TDH.MEM.SEPT.REMOVE version 1 is enumerated by
TDX_FEATURES0.TD_PARTITIONING (bit 7), readable by TDH.SYS.RD* (see 3.3.3.1). If not 10

supported, calling TDH.MEM.SEPT.REMOVE with a version number higher than 0 returns
a TDX_OPERAND_INVALID(RAX) status.

Blocking and TLB Tracking: If the TD may be running, the removed GPA range must be blocked and TLB tracked. Else
(e.g., TDH.MR.FINALIZE has not yet been executed, or the TD has been paused for export),
no blocking and tracking is required. 15

Atomicity: TDH.MEM.SEPT.REMOVE either fully succeeds in removing the requested SEPT pages or
doesn’t remove any page.

Removed Page Initialization: On platforms which do not use ACT, after the SEPT pages have been removed, the host
VMM should initialize their content before they are reused as non-private pages, as
described in the [Base Spec]. 20

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 187 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.127: TDH.MEM.SEPT.REMOVE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

Secure EPT
page

SEPT_PAGE R Private 212+9*Level
Bytes

Exclusive None None

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A GPA L1 Secure EPT
Tree

N/A RW Private N/A Exclusive N/A N/A

Implicit N/A GPA L1 Secure EPT
entry

SEPT Entry RW Private N/A Exclusive(h) N/A N/A

Implicit N/A GPA L2 Secure EPT
Trees

N/A RW Private N/A Exclusive(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT Entry RW Private N/A Exclusive(i) N/A N/A

TDH.MEM.SEPT.REMOVE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions: 5

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must either have been initialized by TDH.MNG.INIT, or an import session has begun by

TDH.IMPORT.STATE.IMMUTABLE. 10

5. The specified level is of a non-leaf EPT entry (i.e., 1 to 3 for 4-level EPT or 1 to 4 for 5-level EPT) – see 3.6.1 for a
definition of EPT level.

If successful, the function does the following:

6. Walk the L1 Secure EPT based on the GPA operand and find the non-leaf SEPT entry of the SEPT page to be removed.
7. If TLB tracking is required (based on the Secure EPT entry state and the TD’s OP_STATE): 15

7.1. Check the L1 Secure EPT entry is a non-leaf blocked (NL_BLOCKED) entry.
7.2. Check that TLB tracking was done.

8. Scan the L1 Secure EPT page content and check all 512 entries are FREE.

If passed:

9. For each L2 VM: 20

9.1. Walk the L2 Secure EPT based on the GPA and level operand and find the applicable non-leaf SEPT entry.
9.2. If an L2 SEPT entry was found, and its state is not FREE:

9.2.1. Atomically decrement TDR.CHLDCNT.
9.2.2. On platforms which use ACT, overwrite the removed L2 SEPT page with the TD’s random overwrite

number using MOVDIR64B. 25

9.2.3. Set the PAMT entry of the removed L2 SEPT page to PT_NDA.
9.2.4. Set the parent L2 Secure EPT entry to FREE.

If passed:

10. Set the parent L1 Secure EPT entry to FREE.
11. Atomically decrement TDR.CHLDCNT. 30

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 188 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

12. On platforms which use ACT, overwrite the removed L1 SEPT page with the TD’s random overwrite number using
MOVDIR64B.

13. Set the PAMT entry of the removed L1 Secure EPT page to PT_NDA.

Completion Status Codes

Table 5.128: TDH.MEM.SEPT.REMOVE Completion Status Codes (Returned in RAX) Definition 5

Completion Status Code Description

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.SEPT.REMOVE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TLB_TRACKING_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 189 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.32. TDH.MEM.SHARED.SEPT.WR Leaf

Add mapping of a Shared GPA range from Secure EPT into Shared EPT pages.

Table 5.129: TDH.MEM.SHARED.SEPT.WR Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Versions 0 and 1 are supported. See the enumeration details below.

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry to write

Level must be the level of the Secure EPT page which is indexed the
GPA Shared bit (i.e., GPAW + 3).

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the shared guest physical address for the Secure EPT entry
to write.

Depending on the level, the following least significant bits must be 0:

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 Reserved Reserved: must be 0

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 If the requested version is 1 or higher and the value of R8 is NULL_PA (-1), R8 is ignored.

Else, R8 specifies a value to be written to the applicable L1 EPT entry.

R9 If the requested version is 0, R9 is ignored.

Else (the requested version is 1 or higher), the number of L2 VMs is >= 1 and the value of R9 is not
NULL_PA (-1), R9 specifies a value to be written to the applicable L2 VM #1 Secure EPT entry.

Else, R9 is ignored.

R10 If the requested version is 0, R10 is ignored.

Else (the requested version is 1 or higher), the number of L2 VMs is >= 2 and the value of R10 is
not NULL_PA (-1), R10 specifies a value to be written to the applicable L2 VM #2 Secure EPT entry.

Else, R10 is ignored.

R11 If the requested version is 0, R11 is ignored.

Else (the requested version is 1 or higher), the number of L2 VMs is >= 3 and the value of R11 is
not NULL_PA (-1), R11 specifies a value to be written to the applicable L2 VM #3 Secure EPT entry.

Else, R11 is ignored.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 190 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.130: TDH.MEM.SHARED.SEPT.WR Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected –
see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page; it may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected – see
3.6.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 5

Enumeration: Availability of TDH.MEM.SHARED.SEPT.WR is enumerated by TDX_FEATURES0.TDX_CONNECT (bit 6),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.MEM.SHARED.SEPT.WR returns a
TDX_OPERAND_INVALID(RAX) status.

 Availability of TDH.MEM.SHARED.SEPT.WR version 1 or higher is enumerated by
TDX_FEATURES0.TDX_CONNECT_PARTITIONING (bit 32). 10

TDH.MEM.SHARED.SEPT.WR enables the host VMM to write Secure EPT entries associated with Shared EPT, to map
Shared EPT pages. This is required to allow TDX Connect devices DMA translations of shared GPAs using the Secure EPT
root page. Only SEPT entries at the level corresponding to the SHARED bit, and associated with a SHARED bit value of 1,
are allowed to be written.

TDH.MEM.SHARED.SEPT.WR updates the L1 SEPT tree and all L2 SEPT trees (per the number of L2 VMs configured for the 15

TD).

To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 5.131: TDH.MEM.SHARED.SEPT.WR Operands Information Definition

Explicit/
Implicit

Reg. Ref.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA
and
Level

L1 Secure EPT
entry

SEPT_ENTRY R Private 212+9*Level
Bytes

None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 191 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref.
Type

Resource Resource
Type

Access Access
Semantics

Align.
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A GPA L1 Secure EPT
Tree

N/A R Private N/A Shared N/A N/A

Implicit N/A GPA L2 Secure EPT
Trees

N/A R Private N/A Shared(i) N/A N/A

Implicit N/A GPA L2 Secure EPT
entries

SEPT Entry RW Private N/A None N/A N/A

TDH.MEM.SHARED.SEPT.WR checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR). 5

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized by TDH.MNG.INIT, or an import session is in progress, started by

TDH.IMPORT.STATE.IMMUTABLE and not failed.
5. The specified GPA is a valid shared GPA. 10

6. The specified level is the level indexed by GPA.SHARED bit (i.e., GPAW + 3).

If successful, find the SEPT entries:

7. If the specified version number is 0 or the L1 SEPT entry value provided in R8 is not NULL_PA (-1):
7.1. Walk the L1 Secure EPT based on the GPA operand and find the L1 Secure EPT entry.

8. If the specified version number is not 0: 15

8.1. For each L2 VM:
8.1.1. If the L2 SEPT entry value provided in R9, R10 or R11 is not NULL_PA (-1), walk the VM’s L2 Secure EPT

based on the GPA operand and find the L2 Secure EPT entry.

If all SEPT entries were found, commit the change:

9. If the specified version number is 0 or the L1 SEPT entry value provided in R8 is not NULL_PA (-1): 20

9.1. Write the value in R8 to the L1 SEPT entry.
10. If the specified version number is not 0:

10.1. For each L2 VM:
10.1.1. If the L2 SEPT entry value provided in R9, R10 or R11 is not NULL_PA (-1), write the value specified by

the VMM to the L2 SEPT entry. 25

Completion Status Codes

Table 5.132: TDH.MEM.SHARED.SEPT.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_TDCS_NOT_ALLOCATED

TDX_PAGE_METADATA_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 192 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SUCCESS

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 193 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.33. TDH.MEM.TRACK Leaf

Increment the TD’s TLB epoch counter.

Table 5.133: TDH.MEM.TRACK Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of the parent TDR page (HKID bits must be 0)

Table 5.134: TDH.MEM.TRACK Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.TRACK increments the TD’s TLB epoch counter. 10

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.135: TDH.MEM.TRACK Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDR RW Opaque 4KB Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS Epoch
Tracking Fields

N/A RW Opaque N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (by TDH.MNG.INIT or TDH.IMPORT.STATE.IMMUTABLE).

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 194 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following as a critical section, protected by exclusively locking the TDCS epoch tracking
fields TD_EPOCH and REFCOUNT. A concurrent TDH.VP.ENTER may cause this locking to fail with a TDX_OPERAND_BUSY
status code; in this case the caller is expected to retry TDH.MEM.TRACK.

5. Lock the TDCS epoch tracking fields in exclusive mode.
6. Check that the TD’s previous epoch’s REFCOUNT is 0. This helps ensure that no REFCOUNT information will be lost 5

when TD_EPOCH is incremented in the next step.
7. If successful, increment the TD’s epoch counter (TDCS.TD_EPOCH).
8. Release the exclusive mode locking of the epoch tracking fields.

Completion Status Codes

Table 5.136: TDH.MEM.TRACK Completion Status Codes (Returned in RAX) Definition 10

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

Note the special case where the indicated operand is
TLB_EPOCH. This may happen due to a conflict with
TDH.VP.ENTER. The host VMM should retry
TDH.MEM.TRACK.

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PREVIOUS_TLB_EPOCH_BUSY

TDX_SUCCESS TDH.MEM.TRACK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 195 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.34. TDH.MEM.WR Leaf

Write a 64b chunk from a debuggable guest TD private memory.

Table 5.137: TDH.MEM.WR Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The guest physical address of a naturally aligned 8-byte chunk of a guest TD private page

RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Data to be written to memory

Table 5.138: TDH.MEM.WR Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Secure EPT entry architectural content – see 3.6.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

• In case of successful operation, the requested entry’s architectural content is returned.

• In case of EPT walk error, the architectural content of the Secure EPT entry where the error
was detected is returned.

In other cases, RCX returns 0.

RDX Secure EPT entry level and state – see 3.6.2

• In case of successful operation, the requested entry’s information is returned.

• In case of EPT walk error, the information of the Secure EPT entry where the error was
detected is returned.

In other cases, RDX returns 0.

R8 Previous content of the memory chunk

In case of an error, as indicated by RAX, R8 returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.WR writes a 64b chunk to a debuggable guest TD private memory. 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 196 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.139: TDH.MEM.WR Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private
memory

Blob RW Private 8B None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A GPA Secure EPT tree N/A R Private N/A Shared N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

R Private N/A Exclusive N/A N/A

TDH.MEM.WR checks the memory operands per the table above when applicable during its flow. The text below does 5

not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.KEY_STATE is TD_KEYS_CONFIGURED). 10

4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The TD is debuggable (TDCS.ATTRIBUTES.DEBUG is 1).

If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf entry.
7. Check that the Secure EPT entry state is PRESENT. 15

If passed:

8. Read the content of the memory chunk.
9. Write the new content of the memory chunk.

Completion Status Codes

Table 5.140: TDH.MEM.WR Completion Status Codes (Returned in RAX) Definition 20

Completion Status Code Description

TDX_EPT_ENTRY_NOT_PRESENT

TDX_EPT_ENTRY_STATE_INCORRECT

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDX_TD_FATAL

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 197 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 198 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.35. TDH.MIG.STREAM.CREATE Leaf

Create a Migration Stream and its MIGSC control structure.

Table 5.141: TDH.MIG.STREAM.CREATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a page where MIGSC will be created

RDX The physical address of the owner TDR page (HKID bits must be 0)

Table 5.142: TDH.MIG.STREAM.CREATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MIG.STREAM.CREATE creates a new Migration Stream and its MIGSC control structure. This function can be invoked 10

at any time after the TDCS pages have been allocated.

TDH.MIG.STREAM.CREATE can only be successfully invoked if no migration session is in progress.

Enumeration: Availability of TDH.MIG.STREAM.CREATE is enumerated by
TDX_FEATURES0.TD_MIGRATION (bit 0), readable by TDH.SYS.RD* (see 3.3.3.1). If not
supported, calling TDH.EXPORT.ABORT returns a TDX_OPERAND_INVALID(RAX) status. 15

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling
TDH.MIG.STREAM.CREATE, the host VMM should ensure that no cache lines associated
with the added MIGSC physical page are in a Modified state, as described in the [Base
Spec]. 20

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.143: TDH.MIG.STREAM.CREATE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA MIGSC page MIGSC RW Opaque 4KB Exclusive Shared Shared

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 199 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(h) N/A N/A

Implicit N/A N/A Migration
context

N/A RW Opaque N/A Exclusive N/A N/A

Implicit N/A N/A Mig. Stream
context

Mig.
Stream
context

RW Opaque N/A Exclusive(i) N/A N/A

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

4. TDCS pages have been allocated (TDR.NUM_TDCX is the required number).
5. No migration session is in progress (TDCS.OP_STATE is none of *_EXPORT or *_IMPORT).
6. The MIGSC page metadata in PAMT is correct (PT is PT_NDA).
7. The number of already created migration streams is lower than the maximum allowed.

If successful, the function does the following: 10

8. Increment the number of migration streams (TDCS.NUM_MIG_STREAMS).
9. On platforms which use ACT, set the page’s ACT bit to 1
10. Initialize the MIGSC page contents using direct write (MOVDIR64B).
11. Initialize the applicable forward link entry in TDCS (TDCS.MIGSC_LINK):

o Set MIGSC_PA to the MIGSC page HPA. 15

o Clear the INITIALIZED and ENABLED flags.
12. Atomically increment TDR.CHLDCNT.
13. Initialize the MIGSC page metadata in PAMT (Set PT to PT_TDCX, OWNER to the TDR HPA).

Completion Status Codes

Table 5.144: TDH.MIG.STREAM.CREATE Completion Status Codes (Returned in RAX) Definition 20

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MIG.STREAM.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 200 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 201 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.36. TDH.MNG.ADDCX Leaf

Add a TDCS physical page to a guest TD.

Table 5.145: TDH.MNG.ADDCX Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a page where TDCX will be added (HKID bits must be 0)

RDX The physical address of the owner TDR page (HKID bits must be 0)

Table 5.146: TDH.MNG.ADDCX Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.ADDCX adds a TDCS physical page, which is a child of the specified TDR. 10

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling
TDH.MNG.ADDCX, the host VMM should ensure that no cache lines associated with the
added TDCS physical page are in a Modified state, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.147: TDH.MNG.ADDCX Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB16

Explicit RCX HPA TDCX
page

Blob RW Opaque 4KB Exclusive Shared Shared Exclusive

Explicit RDX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared None

16 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 202 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The number of TDCX pages (TDR.NUM_TDCX) is smaller than the required number.
4. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

5. The new TDCX page metadata in PAMT must be correct (PT must be PT_NDA).

If successful, the function does the following:

6. On platforms which use ACT, set the page’s ACT bit to 1.
7. Initialize the TDCX page contents using direct writes (MOVDIR64B).
8. Set the TDCX pointer entry in the TDR.TDCX_PA array. 10

9. Increment TDR.NUM_TDCX.
10. If TDR.NUM_TDCX is equal to the required number of TDCX pages:

10.1. Mark the TD as uninitialized (set TDCS.OP_STATE to UNINITIALIZED).
10.2. Generate a migration encryption key, to be used in the next migration session.

If failed: 15

10.3. Decrement TDR.NUM_TDCX.

Completion Status Codes

Table 5.148: TDH.MNG.ADDCX Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_RND_NO_ENTROPY Failed to generate a random migration encryption key. This
is typically caused by an entropy error of the CPU's random
number generator, and may be impacted by RDSEED,
RDRAND or PCONFIG executing on other LPs. The operation
should be retried.

TDX_SUCCESS TDH.MNG.ADDCX is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCX_NUM_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 203 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.37. TDH.MNG.CREATE Leaf

Create a new guest TD and its TDR root page.

Table 5.149: TDH.MNG.CREATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a page where TDR will be created (HKID bits must be 0)

RDX Bits Name Description

15:0 HKID The TD’s ephemeral private HKID

63:16 Reserved Reserved: must be 0

Table 5.150: TDH.MNG.CREATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.CREATE creates a TDR page which is the root page of a new guest TD. 10

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling
TDH.MNG.CREATE, the host VMM should ensure that no cache lines associated with the
new TDX physical page are in a Modified state, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 204 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.151: TDH.MNG.CREATE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB17

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared Exclusive

Implicit N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A None

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_NDA).
2. The value of the specified HKID must be in the range configured for TDX. 5

3. The KOT entry for the specified HKID must be marked as HKID_FREE.

If successful, the function does the following:

4. On platforms which use ACT, set the page’s ACT bit to 1.
5. Zero out the TDR page contents using direct write (MOVDIR64B).
6. Initialize the key management fields. 10

7. Initialize the state variables.
8. Initialize the TD management fields.
9. Initialize the TD preserving fields (handoff version and current SEAMDB entry’s index/nonce pair).
10. Mark the KOT entry for the specified HKID as HKID_ASSIGNED.
11. Initialize the TDR page metadata in PAMT. 15

Completion Status Codes

Table 5.152: TDH.MNG.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_HKID_NOT_FREE

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_RND_NO_ENTROPY Random TD_UUID generation (e.g., RDRAND or RDSEED)
failed because the hardware random number generator did
not have enough entropy. The host VMM should retry the
operation.

TDX_SUCCESS TDH.MNG.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

17 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 205 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.38. TDH.MNG.INIT Leaf

Initialize TD-scope control structures TDR and TDCS.

Table 5.153: TDH.MNG.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX TD handle and flags:

Bits Name Description

0 EVENT_FILTERING Flags that performance monitoring events are filtered based on the
EVENT_FILTER array specified by R8.

Enumeration: Support of this flag is enumerated by
TDX_FEATURES0.EVENT_FILTERING (bit 24). If not
supported, its value must be 0.

11:1 Reserved Reserved: must be 0

51:12 TDR_HPA Bits 51:12 of the host physical address of the parent TDR page
(HKID bits must be 0)

63:52 Reserved Reserved: must be 0

RDX The physical address (including HKID bits) of an input TD_PARAMS_STRUCT

R8 If RCX.EVENT_FILTERING is 0 or the configured ATTRIBUTES.PERFMON is 0, then R8 is ignored.

Else, R8 provides the following information:

Bits Name Description

11:0 EVENT_FILTERS_NUM The number of valid entries in the EVENT_FILTERS_ARRAY. Must
be higher than 0 and lower or equal to MAX_EVENT_FILTERS,
readable by TDH.SYS.RD*.

51:12 EVENT_FILTERS_HPA Bits 51:12 of the shared HPA (including HKID) of an array of
EVENT_FILTER entries. The entry format and array restrictions are
defined in 3.4.6.

63:52 Reserved Reserved: must be 0

Table 5.154: TDH.MNG.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 206 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

RCX Extended error information

In case of a TD_PARAMS_STRUCT.CPUID_CONFIG error, RCX returns the applicable CPUID
information as shown below.

In all other cases, RCX returns 0.

Bits Name Description

31:0 LEAF CPUID leaf number

63:32 SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(0xFFFFFFFF).

Other Unmodified

Leaf Function Latency

TDH.MNG.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description 5

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.INIT initializes the TD-scope control structures TDR and TDCS based on a set of TD parameters provided as
input.

Enumeration: Support of RCX.EVENT_FILTERING and the EVENT_FILTERS array is enumerated by 10

TDX_FEATURES0.PERFMON_EVENT_FILTERING (bit 24), readable by TDH.SYS.RD*.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.155: TDH.MNG.INIT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB18

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared None

Explicit RDX HPA TD Parameters TD_PARAMS R Shared 1024B None N/A N/A None

Explicit R819 HPA EVENT_FILTERS EVENT_FILTER
array

RW Shared 4KB None N/A N/A None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Exclusive(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A None

 15

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).

18 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

19 Only if RCX.EVENT_FILTERING is set to 1

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 207 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

4. All the required TDCS pages have been added (by TDH.MNG.ADDCX) but the TD has not have been initialized
(TDCS.OP_STATE is UNINITIALIZED).

5. RCX.EVENT_FILTERING can only be set if supported by the TDX module.

If successful, the function does the following:

6. Set the TDCS TD management fields to their initial values. 5

7. Read the input parameters structure fields.
8. Check the input parameters and initialize the TDCS logical structure.

8.1. Check that ATTRIBUTES and XFAM bits that must be fixed-0 or fixed-1 are set correctly.
8.2. Check XFAM bit groups that must have certain values (e.g., AVX bits 7:5).
8.3. Check the other input parameters. See the definition of TD_PARAMS in 3.4.5 for details. 10

8.4. If RCX.EVENT_FILTERING is supported and is set, copy the input EVENT_FILTERS array to TDCS, while checking
its validity as specified in 3.4.6.

If passed:

9. Initialize EPTP to point to TDCS.SEPT_ROOT.
10. Initialize the MSR bitmaps based on ATTRIBUTES and XFAM. 15

11. Initialize the TDCS measurement fields.
12. Mark the TD as initialized (set TDCS.OP_STATE to INITIALIZED).

Completion Status Codes

Table 5.156: TDH.MNG.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EVENT_FILTER_INVALID

TDX_EVENT_FILTER_ORDER_INVALID

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TDCX_NUM_INCORRECT

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 208 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.39. TDH.MNG.KEY.CONFIG Leaf

Configure the TD ephemeral private key on a single package.

Table 5.157: TDH.MNG.KEY.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

Table 5.158: TDH.MNG.KEY.CONFIG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Latency

TDH.MNG.KEY.CONFIG execution time may be longer than most TDX module interface functions execution time. No
interrupts (including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description 10

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.KEY.CONFIG configures the TD’s ephemeral private key on a single package.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.159: TDH.MNG.KEY.CONFIG Operands Information

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A KETs on current
package

N/A N/A Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 20

3. HKID has been assigned to the TD; TDR.LIFECYCLE_STATE is TD_HKID_ASSIGNED.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 209 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

4. Configure the TD ephemeral private key on the package.
4.1. This operation may fail due to a conflict with a concurrent TDH.MNG.KEY.CONFIG or PCONFIG running on the

same package.
4.2. A CPU-generated random key is used. The operation may fail due to lack of entropy. 5

5. If the key has been configured on all the packages, set TDR.LIFECYCLE_STATE to TD_KEYS_CONFIGURED.

Completion Status Codes

Table 5.160: TDH.MNG.KEY.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_KEY_CONFIGURED

TDX_KEY_GENERATION_FAILED Failed to generate a random key. This is typically caused by
an entropy error of the CPU's random number generator,
and may be impacted by RDSEED, RDRAND or PCONFIG
executing on other LPs. The operation should be retried.

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

Specifically, key configuration may fail due to a concurrently
running PCONFIG instruction.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.KEY.CONFIG is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 210 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.40. TDH.MNG.KEY.FREEID Leaf

End the platform cache flush sequence and mark applicable HKIDs in KOT as free.

Table 5.161: TDH.MNG.KEY.FREEID Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

Table 5.162: TDH.MNG.KEY.FREEID Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.KEY.FREEID ends the platform cache flush sequence for the HKIDs associated with the specified TD after 10

TDH.PHYMEM.CACHE.WB has been executed (unless that function is not required, as enumerated by
TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit 34)) on all the required WBINVD domains. It marks the TD’s HKIDs in
KOT as free, and the TD itself as being torn down.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.163: TDH.MNG.KEY.FREEID Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TLB and VMCS caches associated with the HKID have been flushed, and no memory associated with this HKID may 20

be accessed, i.e., all the following conditions are met:
2.1. TDR.LIFECYCLE_STATE is TD_BLOCKED.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 211 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

2.2. The KOT entry for the TD’s private HKID is marked as HKID_FLUSHED.
2.3. If TDH.PHYMEM.CACHE.WB is required, as enumerated by TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit

34) value of 0, the KOT entry for the TD’s private HKID indicates that TDH.PHYMEM.CACHE.WB has been
executed on all applicable packages or cores.

If successful, the function does the following: 5

3. Mark the KOT entry as HKID_FREE.
4. Set TDR.LIFECYCLE_STATE to TD_TEARDOWN.

Completion Status Codes

Table 5.164: TDH.MNG.KEY.FREEID Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.KEY.FREEID is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_WBCACHE_NOT_COMPLETE

 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 212 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.41. TDH.MNG.KEY.RECLAIMID Leaf (Deprecated)

This function is deprecated; it is provided for backward compatibility.

Table 5.165: TDH.MNG.KEY.RECLAIMID Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

Table 5.166: TDH.MNG.KEY.RECLAIMID Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.KEY.RECLAIMID is provided for backward compatibility. It does not do anything except returning a constant 10

TDX_SUCCESS status.

Completion Status Codes

Table 5.167: TDH.MNG.KEY.RECLAIMID Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDH.MNG.KEY.RECLAIMID is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 213 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.42. TDH.MNG.RD Leaf

Read a TD-scope metadata field (control structure field) of a TD.

Table 5.168: TDH.MNG.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Version number may be 0 or 1. See the enumeration details below.

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

For TDH.MNG.RD version 1 or higher, a value of -1 is a special case: it is not a valid field identifier;
in this case the first readable field identifier is returned in RDX.

Table 5.169: TDH.MNG.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RDX For TDH.MNG.RD version 0, RDX is unmodified.

For TDH.MNG.RD version 1 or higher:

• If the input field identifier was -1, RDX returns the first readable field identifier.

Else, in case of an error, RDX returns -1. On success, RDX returns the next readable field identifier.
A value of -1 indicates no next field identifier is available.

R8 Contents of the field

In case of no success, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.RD reads a TD-scope metadata field (control structure field) of a TD. 10

Enumeration: Availability of TDH.MNG.RD version 1 is enumerated by TDX_FEATURES0.ENHANCED_METADATA (bit
3), readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.MNG.RD with a version number
higher than 0 returns a TDX_OPERAND_INVALID(RAX) status.

If version 1 or higher is specified in RAX, RDX returns the next host-side readable field identifier. This may be used by the
host VMM to dump the host readable TD metadata. To read all the available fields, the host VMM can invoke 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 214 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.MNG.RD in a loop, starting with field identifier -1 as an input, until RDX returns -1. A status code of
TDX_METADATA_FIELD_SKIP indicates that the returned value is not applicable.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.170: TDH.MNG.RD Operands Information Definition 5

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 10

4. All the required TDCS pages have been added (TDR.NUM_TDCX is the required number).

If the above checks passed:

5. Read the control structure field using the algorithm described in 5.3.2.1.

Completion Status Codes

Table 5.171: TDH.MNG.RD Completion Status Codes (Returned in RAX) Definition 15

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_METADATA_FIRST_FIELD_ID_IN_CONTEXT Indicates that the first field ID in context is returned

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 215 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 216 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.43. TDH.MNG.VPFLUSHDONE Leaf

Check that none of the TD’s VCPUs are associated with an LP.

Table 5.172: TDH.MNG.VPFLUSHDONE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

Table 5.173: TDH.MNG.VPFLUSHDONE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.VPFLUSHDONE checks that none of the TD’s VCPUs are associated with an LP, and it then prepares for cache 10

flushing by TDH.PHYMEM.CACHE.WB.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.174: TDH.MNG.VPFLUSHDONE Operands Information

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Exclusive(i) N/A N/A

Implicit N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE None Opaque N/A Exclusive(i) N/A N/A

 15

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TDR.LIFECYCLE_STATE is either TD_HKID_ASSIGNED or TD_KEYS_CONFIGURED.
3. The KOT entry for the TD’s assigned HKID in the list must be marked as HKID_ASSIGNED.
4. None of the TD’s VCPUs are associated with an LP (either the TD has not been initialized by TDH.MNG.INIT, or 20

TDCS.NUM_ASSOC_VCPUS is 0).

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 217 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

5. Set a bitmap in the KOT entry to track the required subsequent TDH.PHYMEM.CACHE.WB operations.
6. Set TDR.LIFECYCLE_STATE to TD_BLOCKED.
7. Mark the KOT entry as HKID_FLUSHED.

Completion Status Codes 5

Table 5.175: TDH.MNG.VPFLUSHDONE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FLUSHVP_NOT_DONE

TDX_IOMMU_IOTLB_TRACKING_NOT_DONE Applicable only if the TDX module supports TDX Connect.

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.VPFLUSHDONE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_HAS_ATTACHED_DEVICES Applicable only if the TDX module supports TDX Connect.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 218 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.44. TDH.MNG.WR Leaf

Write a TD-scope metadata field (control structure field) of a TD.

Table 5.176: TDH.MNG.WR Input Operands Definitions

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a TDR page (HKID bits must be 0)

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

Table 5.177: TDH.MNG.WR Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

R8 Previous content of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.WR writes a TD-scope metadata field (control structure field) of a TD. The value (R8) is written as specified by 10

the write mask (R9). Writing is subject to the field’s internal write mask (per the TD’s ATTRIBUTES.DEBUG bit). Writing
of specific fields is also subject to additional rules.

Table 5.178: Metadata Field Write Rules

Write Mask Bit in R9 Internal Write Mask Bit Value Bit in R8

0 N/A Silently ignored

1 0 Must be the same as the current field’s bit

1 1 Written to the current field’s bit

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 219 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.179: TDH.MNG.WR Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR)
2. The TD is not in a FATAL state (TDR.FATAL is FALSE) 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED)
4. All the required TDCS pages have been added (TDR.NUM_TDCX is the required number).

If the above checks passed:

5. Write the control structure field and return its old value, using the algorithm described in 5.3.2.2.

Completion Status Codes 10

Table 5.180: TDH.MNG.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_NOT_WRITABLE

TDX_METADATA_FIELD_VALUE_NOT_VALID

TDX_METADATA_WR_MASK_NOT_VALID

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.WR is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NON_DEBUG

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 220 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.45. TDH.MR.EXTEND Leaf

Extend the MRTD measurement register in the TDCS with the measurement of the indicated chunk of a TD page.

Table 5.181: TDH.MR.EXTEND Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The GPA of the TD page chunk to be measured

RDX The physical address of the TDR page of the target TD (HKID bits must be 0)

Table 5.182: TDH.MR.EXTEND Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry where the error was detected

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, EPT level where the error was detected

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MR.EXTEND updates the MRTD measurement register in the TDCS with the measurement of the indicated chunk of 10

a TD private page. For pages whose contents need to be measured, once the page is copied into the TD memory area,
the host VMM will call TDH.MR.EXTEND multiple times to measure the pages contents into MRTD. TDEXEND can be
executed only before TDH.MR.FINALIZE.

Note: TDH.MR.EXTEND works on a 256B chunk of a page, not on a full page, due to instruction latency considerations.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 221 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.183: TDH.MR.EXTEND Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX GPA TD private page
chunk

Blob R Private 256B None None None

Explicit RDX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

Implicit N/A GPA Secure EPT tree N/A R Private N/A Exclusive(i) N/A N/A

Implicit N/A GPA Secure EPT
entry

SEPT
Entry

RW Private N/A Exclusive(i) N/A N/A

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

INITIALIZED).
5. The page must be mapped and accessible in the Secure EPT.

If successful, the function does the following: 10

6. Update the TD measurement in TDCS based on the chunk’s GPA and contents.
7. Extend TDCS.MRTD with the chunk’s GPA and contents. Extension is done using SHA384, with three 128B extension

buffers. The first extension buffer is composed as follows:
o Bytes 0 through 8 contain the ASCII string “MR.EXTEND”.
o Bytes 16 through 23 contain the GPA (in little-endian format). 15

o All the other bytes contain 0.

The other two extension buffers contain the chunk’s contents.

Completion Status Codes

Table 5.184: TDH.MR.EXTEND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_PRESENT

TDX_EPT_WALK_FAILED

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MR.EXTEND is successful.

TDX_SYS_NOT_READY

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 222 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 223 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.46. TDH.MR.FINALIZE Leaf

TDH.MR.FINALIZE completes measurement of the initial TD contents and marks the TD as ready to run.

Table 5.185: TDH.MR.FINALIZE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of the parent TDR page (HKID bits must be 0)

Table 5.186: TDH.MR.FINALIZE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MR.FINALIZE completes the measurement of the initial TD contents and marks the TD as finalized. 10

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.187: TDH.MR.FINALIZE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Exclusive(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i) N/A N/A

In addition to the memory operand checks per the table above, the function checks the following: 15

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

INITIALIZED). 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 224 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

5. Finalize the TD measurement, i.e., SHA384 calculation of TDCS.MRTD that has been accumulated so far by
TDH.MEM.PAGE.ADD and TDH.MR.EXTEND.

6. Calculate TDCS.SERVTD_HASH:
6.1. Get all service TD binding slots whose SERVTD_BINDING_STATE is not NOT_BOUND. 5

6.1.1. If no service TD binding slots apply, set TDCS.SERVTD_HASH to 0.
6.2. Sort in ascending order by SERVTD_TYPE as the primary key, SERVTD_INFO_HASH as a secondary key (if multiple

service TDs of the same type are bound).
6.3. Concatenate SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR of each slot in a temporary buffer:

6.3.1. SERVTD_INFO_HASH in bytes 5:0 10

6.3.2. SERVTD_TYPE in bytes 7:6
6.3.3. SERVTD_ATTR in bytes 15:8
6.3.4. Concatenate all buffers.
6.3.5. Calculate SHA384 and store in TDCS.SERVTD_HASH.

7. Mark the TD as finalized. 15

Completion Status Codes

Table 5.188: TDH.MR.FINALIZE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MR.FINALIZE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 225 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.47. TDH.PHYMEM.CACHE.WB Leaf

TDH.PHYMEM.CACHE.WB is an interruptible and resumable function to write back the cache hierarchy on a package or a
core.

If the value of TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit 34), readable by TDH.SYS.RD*, is 1,
TDH.PHYMEM.CACHE.WB is provided for backward compatibility. It returns immediately, indicating success. 5

Table 5.189: TDH.PHYMEM.CACHE.WB Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Command, as described below:

Value Name Description

 0 WB_START_CMD Start a new TDH.PHYMEM.CACHE.WB cycle with no cache
invalidation.

 1 WB_RESUME_CMD Resume a previously interrupted TDH.PHYMEM.CACHE.WB cycle
with no cache invalidation.

Other Reserved

Table 5.190: TDH.PHYMEM.CACHE.WB Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description 10

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.PHYMEM.CACHE.WB writes back the cache hierarchy to memory and updates the KOT state to allow reuse of HKIDs.

Enumeration: If the value of TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit 34), readable by TDH.SYS.RD*, is 1,
TDH.PHYMEM.CACHE.WB is provided for backward compatibility. It does nothing and returns 15

immediately with TDX_SUCCESS.

Interruptibility: TDH.PHYMEM.CACHE.WB is interruptible. If a pending interrupt is detected during operation,
TDH.PHYMEM.CACHE.WB returns with a TDX_INTERRUPTED_RESUMABLE status in RAX.

 The hosts VMM initially calls TDH.PHYMEM.CACHE.WB with RCX indicating WB_START_CMD. If
TDH.PHYMEM.CACHE.WB returns TDX_INTERRUPTED_RESUMABLE (or any other recoverable error) 20

status in RAX, the host VMM should call TDH.PHYMEM.CACHE.WB with RCX indicating
WB_RESUME_CMD in a loop until it completes its operation, as indicated by TDX_SUCCESS status.

Warning: When TDH.PHYMEM.CACHE.WB is interrupted, the CPU still considers this as a cache write-back
operation in progress. The host VMM should complete the cache write-back operation by resuming

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 226 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.PHYMEM.CACHE.WB (i.e., with RCX indicating WB_RESUME_CMD) until completed successfully.
Failure to do so will result in memory performance impact that would only be resolved by a restart.
The host VMM should also refrain from executing WBINVD or WBNOINVD while the
TDH.PHYMEM.CACHE.WB cycle is in progress.

Other TDH.PHYMEM.CACHE.WB characteristics: 5

• TDH.PHYMEM.CACHE.WB does not invalidate cache lines.

• The function operates on cache lines associated with any HKID.

• The function is designed to ensure write back of at least those cache lines where the state of that HKID (in the KOT)
was HKID_FLUSHED at the time of the first invocation (RCX == WB_START_CMD).

• Depending on the implementation, the instruction may write back additional cache lines. 10

• The scope at which TDH.PHYMEM.CACHE.WB operates (e.g., package or core) is determined at Intel TDX module
initialization time.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.191: TDH.PHYMEM.CACHE.WB (Implicit) Operands Information 15

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A KOT KOT N/A Hidden N/A Shared N/A N/A

Implicit N/A N/A WBT entry for
current scope

WBT_ENTRY N/A Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The command value is one of the supported ones.
2. If the command is to start a new TDH.PHYMEM.CACHE.WB cycle (RCX == 0), then:

2.1. Clear the internally saved interruption state. 20

2.2. Scan the KOT: mark those HKIDs whose state is HKID_FLUSHED in an internal table; only those HKIDs will be
later marked as written back upon successful completion of TDH.PHYMEM.CACHE.WB.

2.3. If none of the KOT entries for the requested set of HKIDs (either single or all) is in HKID_FLUSHED state, then
abort with an informational code (it achieved its goal: write back and invalidate at least the HKIDs that are in
the HKID_FLUSHED state). 25

3. Run cache write back operation on the cache hierarchy of the current WBINVD domain. This operation is long and
may be interrupted by external events.
3.1. If a previous TDH.PHYMEM.CACHE.WB has been interrupted, the operation resumes from the interruption

point which has been recorded.
3.2. In case of interruption, the current point in the write back and invalidation flow and the current HKID are 30

recorded.
4. If the operation has not been interrupted, update the KOT as follows:

4.1. For each KOT entry, if the entry was marked as HKID_FLUSHED at the start of the TDH.PHYMEM.CACHE.WB
cycle as discussed above, use the KOT entry’s bitmap to indicate that TDH.PHYMEM.CACHE.WB has been
executed on this package or core. 35

Error and Informational Codes

Table 5.192: TDH.PHYMEM.CACHE.WB Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE TDH.PHYMEM.CACHE.WB was interrupted; it is
recommended to resume it with RCX indicating
WB_RESUME_CMD

TDX_NO_HKID_READY_TO_WBCACHE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 227 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.PHYMEM.CACHE.WB is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 228 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.48. TDH.PHYMEM.PAGE.RDMD Leaf

Read the metadata of a page (or the metadata of the containing large page) in TDMR.

Table 5.193: TDH.PHYMEM.PAGE.RDMD Operands

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX A physical address of a 4KB page in TDMR (HKID bits must be 0)

Table 5.194: TDH.PHYMEM.PAGE.RDMD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Page Type (PT) – see 3.5.1

In case of an error, RCX returns 0.

RDX For most PT values, this field returns the HPA of the TD’s TDR control structure page, if applicable
(HKID bits are set to 0).

For PT value of PT_IOMMU_MT (applicable only if the TDX module supports TDX Connect), this
field returns the IOMMU_ID. See the [TDX Connect ABI].

In multiple error cases, as indicated by RAX, RDX returns 0. In other error cases, RDX still returns
the OWNER information. See the completion status codes table below for details.

R8 Bits Name Description

2:0 Size Size of the containing 4KB, 2MB or 1GB page

63:3 Reserved Set to 0

In case of an error, as indicated by RAX, R8 returns 0.

R9 BEPOCH

In case of an error, as indicated by RAX, R9 returns 0.

R10 Reserved: set to 0

R11 Reserved: set to 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.PHYMEM.PAGE.RDMD finds the containing page (4KB, 2MB or 2GB) of the given page in TDMR and reads its 10

metadata from its PAMT entry.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 229 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.195: TDH.PHYMEM.PAGE.RDMD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target
page

Blob None Opaque/
Private

4KB Shared Shared Shared

If the memory operand checks, per the table above, pass, the function does the following: 5

1. Do a PAMT walk and find the containing page and its size.

If passed:

2. Read the PAMT entry.

Completion Status Codes

Table 5.196: TDH.PHYMEM.PAGE.RDMD Completion Status Codes (Returned in RAX) Definition 10

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower 32
bits of the status. In many cases, this can be resolved by retrying the
operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.PHYMEM.PAGE.RDMD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 230 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.49. TDH.PHYMEM.PAGE.RECLAIM Leaf

Reclaim a physical 4KB, 2MB or 1GB TD-owned page (i.e., TD private page, Secure EPT page or a control structure page)
from a TD, given its HPA.

Table 5.197: TDH.PHYMEM.PAGE.RECLAIM Input Operands Definition

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0 or 1, see enumeration details below.

63:24 Reserved Must be 0

RCX PAGE The physical address of a 4KB, 2MB or 1GB page to be reclaimed (HKID bits must be 0)

 5

Table 5.198: TDH.PHYMEM.PAGE.RECLAIM Output Operands Definition

Operand Name Description

RAX STATUS SEAMCALL instruction return code – see 5.4.1

RCX PT Page Type (PT) – see 3.5.1

In multiple error cases, as indicated by RAX, RCX returns 0. In other error cases, RCX
still returns the PT information. See the completion status codes table below for
details.

RDX OWNER For most PT values, this field returns the HPA of the TD’s TDR control structure page , if
applicable (HKID bits are set to 0).

For PT value of PT_IOMMU_MT (applicable only if the TDX module supports TDX
Connect), this field returns the IOMMU_ID. See the [TDX Connect ABI].

In multiple error cases, as indicated by RAX, RDX returns 0. In other error cases, RDX
still returns the OWNER information. See the completion status codes table below for
details.

R8 SIZE Bits Name Description

2:0 Size Size of the containing 4KB, 2MB or 1GB page – see 3.5.1

63:3 Reserved Set to 0

In multiple error cases, as indicated by RAX, RDX returns 0. In other error cases, RDX
still returns the size information. See the completion status codes table below for
details.

R9 Reserved: set to 0

R10 Reserved: set to 0

R11 Reserved: set to 0

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 231 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.PHYMEM.PAGE.RECLAIM reclaims a TD-owned physical page from the TD.

Enumeration: Support of TDH.PHYMEM.PAGE.RECLAIM version 1 is enumerated by 5

TDX_FEATURES0.ACT (bit 14), readable by the host VMM using TDH.SYS.RD*.

Support of reclaiming PT_TR pages is enumerated by
TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35).

Owner TD Lifecycle State: Normally, TDH.PHYMEM.PAGE.RECLAIM can reclaim pages only if the owner TD is in the
TD_TEARDOWN state. However, if reclaiming PT_TR pages is supported, a PT_TR page 10

may be reclaimed while the TD is in its normal operating state (TD_KEYS_CONFIGURED).
In that case, if the TD may be running, the function checks the TLB tracking of the
reclaimed PT_TR page.

Reclaimed Page Initialization: After the page has been reclaimed, the host VMM should initialize its content before it
is reused as a non-private page, as described in the [Base Spec]. 15

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.199: TDH.PHYMEM.PAGE.RECLAIM Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB20

Explicit RCX HPA Target page Blob RW Opaque/
Private

4KB, 2MB
or 1GB

Exclusive Shared Shared Exclusive

Implicit N/A N/A TDR page21 TDR RW Opaque 4KB Shared N/A N/A None

Implicit N/A N/A TDCS structure22 TDCS RW Opaque N/A Shared(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE22 OP_STATE RW Opaque N/A Shared N/A N/A None

TDH.PHYMEM.PAGE.RECLAIM checks the memory operands per the table above when applicable during its flow. The 20

text below does not explicitly mention those checks, except when necessary.

The function works as follows:

1. Check that the target page metadata in PAMT are correct (PT must not be PT_NDA nor PT_RSVD).
2. If the target page is not a TDR (PT is not PT_TDR):

2.1. Get the TDR page (pointed by the target page’s PAMT.OWNER). 25

2.2. If reclaiming PT_TR pages is supported, as enumerated by TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35),
check if all the following conditions are met:
2.2.1. PAMT.PT is PT_TR.
2.2.2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
2.2.3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 30

2.2.4. The TD must have been initialized or its metadata has been imported (TDR.NUM_TDCX is the required
number and TDCS.OP_STATE is either INITIALIZED, RUNNING, *_EXPORT, POST_IMPORT or
LIVE_IMPORT).

20 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

21 Except when TDR is the target page

22 Only if the TDX module supports NON_BLOCKING_RESIZE, and TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 232 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If all conditions are met:

2.2.5. If the TD may run (its OP_STATE in either RUNNING, LIVE_EXPORT or LIVE_IMPORT), check that TLB
tracking has been done, based on the page’s PAMT.BEPOCH. If failed, abort with a
TDX_TLB_TRACKING_NOT_DONE status.

2.3. Else, check that the TD is in teardown state (TDR.LIFECYCLE_STATE is TD_TEARDOWN). 5

If passed:

2.4. On platforms which use ACT, overwrite the page content with the TD’s random overwrite value.
2.4.1. If the page size is 4KB, overwrite the page with the TD’s random overwrite value using MOVDIR64B, using

the TD’s HKID.
2.4.2. Else, the operation is done 4KB at a time, as follows: 10

2.4.2.1. If this is the first 4KB, as indicated by PAMT.PT != PT_PR:
2.4.2.1.1. Set the page’s PAMT.PT to PT_PR.
2.4.2.1.2. Set the page’s PAMT.BEPOCH to 0.

2.4.2.2. Overwrite the current 4KB with the TD’s random overwrite value using MOVDIR64B, using the
TD’s HKID. Start from the offset value stored in PAMT.BEPOCH. 15

2.4.2.3. If this is not the last 4KB block and there is a pending interrupt, then:
2.4.2.3.1. Save the last overwrite offset into PAMT.BEPOCH.
2.4.2.3.2. Execute SFENCE.
2.4.2.3.3. If the requested version number is 0, terminate without modifying any of the host

VMM’s CPU state from its value before SEAMCALL. The host VMM will typically re-20

execute the SEAMCALL after handling the interrupt.
2.4.2.3.4. Else, terminate with TDX_INTERRUPTED_RESUMABLE status.

2.5. Atomically decrement TDR.CHLDCNT by 1, 512 or 5122 depending on the removed page size (4KB, 2MB or 1GB,
respectively).

3. Else (target page is a TDR): 25

3.1. Check that the TD is in teardown state (TDR.LIFECYCLE_STATE is TD_TEARDOWN).
3.2. Check that TDR.CHLDCNT is 0.
3.3. On platforms which use ACT, overwrite the TDR page content with the TD’s random overwrite value, using the

TDX module’s HKID.

If passed: 30

4. On platforms which use ACT, set the page’s ACT bit(s) to 0. Note that the operation depends on the page size (4KB,
2MB or 1GB).

5. Update the PAMT entry of the reclaimed page to PT_NDA.
6. Return the page metadata (as they were before PAMT update above).

Completion Status Codes 35

Table 5.200: TDH.PHYMEM.PAGE.RECLAIM Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_IOMMU_MT_PAGE_IN_USE Applies only if the TDX module supports TDX Connect

TDX_LIFECYCLE_STATE_INCORRECT RCX, RDX and R8 return the actual PT, OWNER and SIZE
information.

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

If the page is not a TDR page but the owner TDR is busy,
then RCX, RDX and R8 return the actual PT, OWNER and SIZE
information.

TDX_OPERAND_INVALID If the page physical address is not aligned on its size, then
RCX, RDX and R8 return the actual PT, OWNER and SIZE
information.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 233 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.PHYMEM.PAGE.RECLAIM is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_ASSOCIATED_PAGES_EXIST RCX, RDX and R8 return the actual PT, OWNER and SIZE
information.

TDX_TLB_TRACKING_NOT_DONE Applicable only if reclaiming PT_TR pages, enumerated by
TDX_FEATURES0.NON_BLOCKING_RESIZE (bit 35), is
supported.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 234 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.50. TDH.PHYMEM.PAGE.WBINVD Leaf

Write back and invalidate all cache lines associated with the specified memory page and HKID.

Table 5.201: TDH.PHYMEM.PAGE.WBINVD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Physical address (including HKID bits) of a 4KB page in TDMR

Table 5.202: TDH.PHYMEM.PAGE.WBINVD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.PHYMEM.PAGE.WBINVD performs cache write back and invalidation on all the cache lines associated with the 10

specified page and HKID. The page must not be in use by the Intel TDX module (i.e., not assigned to a TD as a private
page or a Secure EPT page), nor used as a control structure page.

It is the responsibility of the host VMM to track which HKID is associated with the target page; the function does not
check it.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.203: TDH.PHYMEM.PAGE.WBINVD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target page Blob R Private/
Opaque

4KB Shared Shared Shared

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The target page must be marked in PAMT as not controlled by the Intel TDX module (PT must be PT_NDA). 20

If successful, the function performs the following:

2. Write back and invalidate all the cache lines for the given target HPA and HKID.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 235 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.204: TDH.PHYMEM.PAGE.WBINVD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.PHYMEM.PAGE.WBINVD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 236 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.51. TDH.SERVTD.BIND Leaf

Bind a service TD to a target TD.

Table 5.205: TDH.SERVTD.BIND Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of the target TD’s TDR page (HKID bits must be 0)

RDX The physical address of the service TD’s TDR page (HKID bits must be 0)

R8 Index (slot number) in the target TD’s service TD binding table

R9 SERVTD_TYPE: Service TD type

R10 SERVTD_ATTR: Service TD attributes

Table 5.206: TDH.SERVTD.BIND Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Binding handle

In case of an error, as indicated by RAX, RCX returns 0.

R10 TD_UUID bits 63:0

In case of an error, as indicated by RAX, R10 returns 0.

R11 TD_UUID bits 127:64

In case of an error, as indicated by RAX, R11 returns 0.

R12 TD_UUID bits 191:128

In case of an error, as indicated by RAX, R12 returns 0.

R13 TD_UUID bits 255:192

In case of an error, as indicated by RAX, R13 returns 0.

AVX, AVX2
and
AVX512
state

May be reset to the architectural RESET state

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 237 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

TDH.SERVTD.BIND binds a service TD to a target TD.

Enumeration: Availability of TDH.SERVTD.BIND is enumerated by TDX_FEATURES0.SERVICE_TD (bit 2), readable
by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.SERVTD.BIND returns a
TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 5

of the Intel TDX Module API.

Table 5.207: TDH.SERVTD.BIND Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page

TDR R Opaque 4KB Shared Shared Shared

Explicit RDX HPA Service TD’s TDR
page

TDR R Opaque 4KB Shared Shared Shared

Implicit N/A N/A Target TD’s TDCS
structure

TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A Target TD’s
TDCS.OP_STATE

OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Binding table RW Opaque N/A Exclusive None None

Implicit N/A N/A Service TD’s
TDCS structure

TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A Service TD’s
TDCS.OP_STATE

OP_STATE R Opaque N/A Shared N/A N/A

Implicit N/A N/A Service TD’s
TDCS.RTMR

SHA384_
HASH

N/A Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Target TD checks: 10

1.1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
1.2. The target TD is not in a FATAL state (TDR.FATAL is FALSE).
1.3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
1.4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).
1.5. The target TD has not been paused for export and is not in the in-order import phase. 15

2. Service TD checks:
2.1. The service TD’s TDR HPA must be different than the target TD’s TDR HPA
2.2. The service TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2.3. The service TD is not in a FATAL state (TDR.FATAL is FALSE).
2.4. The service TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 20

2.5. The service TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).
2.6. Either the service TD’s measurements have been finalized (by TDH.MR.FINALIZE) or it is being imported and

import is in the out-of-order phase.
3. Binding slot number does not exceed the number of available slots.
4. SERVTD_TYPE is supported. 25

5. If only one service TD binding instance is supported by SERVTD_TYPE, no other binding slot whose BINDIND_STATE
is not NOT_BOUND may have the same SERVTD_TYPE.

6. SERVTD_ATTR is supported.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 238 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If the above checks passed:

7. If the binding slot’s SERVTD_BINDING_STATE is NOT_BOUND (i.e., this is an initial binding):
7.1. Check that the target TD’s measurements have not been finalized (by TDH.MR.FINALIZE).
7.2. Copy the provided SERVTD_TYPE and SERVTD_ATTR to the binding slot.
7.3. Calculate the service TD’s SERVTD_INFO_HASH and write to the binding slot’s SERVTD_INFO_HASH. 5

7.4. Copy the SERVTD’s TD_UUID to the binding slot’s SERVTD_UUID.
8. Else, if the binding slot’s SERVTD_BINDING_STATE is PRE_BOUND (i.e., this is a late initial binding):

8.1. Check that the requested SERVTD_TYPE is equal to the binding slot’s SERVTD_TYPE.
8.2. Check that the requested SERVTD_ATTR is equal to the binding slot’s SERVTD_ATTR.
8.3. Calculate the service TD’s SERVTD_INFO_HASH and check that it is equal to the binding slot’s 10

SERVTD_INFO_HASH.
8.4. Copy the SERVTD’s TD_UUID to the binding slot’s SERVTD_UUID.

9. Else, if the binding slot’s SERVTD_BINDING_STATE is BOUND (i.e., this is a rebinding):
9.1. Check that the requested SERVTD_TYPE is equal to the binding slot’s SERVTD_TYPE.
9.2. Check that the requested SERVTD_ATTR is equal to the binding slot’s SERVTD_ATTR. 15

9.3. Calculate the service TD’s SERVTD_INFO_HASH.
9.4. Check that the service TD’s SERVTD_INFO_HASH is equal to the binding slot’s SERVTD_INFO_HASH.
9.5. Copy the SERVTD’s TD_UUID to the binding slot’s SERVTD_UUID.

If passed:

10. Set the binding slot’s SERVTD_BINDING_STATE to BOUND. 20

11. Calculate and return the binding handle.

Completion Status Codes

Table 5.208: TDH.SERVTD.BIND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SERVTD_ATTR_MISMATCH

TDX_SERVTD_INFO_HASH_MISMATCH

TDX_SERVTD_TYPE_MISMATCH

TDX_SERVTD_UUID_MISMATCH

TDX_SUCCESS TDH.SERVTD.BIND is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

25

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 239 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.52. TDH.SERVTD.PREBIND Leaf

Pre-bind a service TD to a target TD.

Table 5.209: TDH.SERVTD.PREBIND Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of the target TD’s TDR page (HKID bits must be 0)

RDX The physical address (including HKID bits) of SERVTD_INFO_HASH, the expected SHA384 hash of
the service TD’s TDINFO_STRUCT

R8 Index (slot number) in the target TD’s service TD binding table

R9 SERVTD_TYPE: Expected service TD type

R10 SERVTD_ATTR: Expected service TD attributes

Table 5.210: TDH.SERVTD.PREBIND Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SERVTD.PREBIND pre-binds a service TD to a target TD, by setting its expected binding parameters. 10

Enumeration: Availability of TDH.SERVTD.PREBIND is enumerated by TDX_FEATURES0.SERVICE_TD (bit 2),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.SERVTD.PREBIND returns a
TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.211: TDH.SERVTD.PREBIND Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page

TDR R Opaque 4KB Shared Shared Shared

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 240 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RDX HPA SERVTD_INFO_
HASH

SHA384_
HASH

R Shared 64B N/A N/A N/A

Implicit N/A N/A Target TD’s TDCS
structure

TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A Target TD’s
TDCS.OP_STATE

OP_STATE RW Opaque N/A Shared N/A N/A

Implicit N/A N/A Binding table RW Opaque N/A Exclusive None None

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The target TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).
5. The target TD’s measurements have not been finalized (by TDH.MR.FINALIZE).
6. Binding slot number does not exceed the number of available slots.
7. SERVTD_TYPE is supported.
8. If only one service TD binding instance is supported by SERVTD_TYPE, no other binding slot whose BINDIND_STATE 10

is not NOT_BOUND may have the same SERVTD_TYPE.
9. SERVTD_ATTR is supported.
10. The binding slot’s SERVTD_BINDING_STATE is either NOT_BOUND or PRE_BOUND.

If the above checks passed:

11. Copy the provided SERVTD_TYPE, SERVTD_ATTR and SERVTD_INFO_HASH to the binding slot. 15

12. Set the binding slot’s SERVTD_BINDING_STATE to PRE_BOUND.

Completion Status Codes

Table 5.212: TDH.SERVTD.PREBIND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SERVTD_ALREADY_BOUND_FOR_TYPE

TDX_SUCCESS TDH.SERVTD.PREBIND is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 241 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCS_NOT_ALLOCATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 242 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.53. TDH.SYS.CONFIG Leaf

Globally configure the Intel TDX module.

Table 5.213: TDH.SYS.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of an array of pointers, each containing the physical address of a single
TDMR_INFO entry (see 3.3.3).

The pointer array must be sorted such that TDMR base addresses (TDMR_INFO.TDMR_BASE) are
sorted from the lowest to the highest base address, and TDMRs do not overlap with each other.

RDX The number of pointers in the above buffer, between 1 and 64

R8 Bits Name Description

15:0 HKID Intel TDX global private HKID value

63:16 Reserved Reserved: must be 0

Table 5.214: TDH.SYS.CONFIG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.CONFIG performs global (platform-scope) configuration of the Intel TDX module. This function is intended to be 10

executed during OS/VMM boot, and thus it has relaxed latency requirements.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.215: TDH.SYS.CONFIG Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDMR Info
Pointers

Array of HPA R Shared 512B None N/A N/A

Explicit N/A HPA TDMR Info TDMR_INFO R Shared 512B None N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 243 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module
internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. PL.SYS_STATE is SYSINIT_DONE.
1.2. TDH.SYS.LP.INIT has been executed on all LPs. 5

2. The number of TDMR_INFO entries is at least 1 and does not exceed the supported number of TDMRs.
3. Check each physical address of to TDMR_INFO; read the applicable TDMR_INFO entry; check and update the internal

TDMR_TABLE with TDMR, reserved areas and PAMT setup. The order of checks is not required to be exactly the
same as described below.
o TDMRs must be sorted in an ascending base address order. 10

o For each TDMR:

• TDMR base address must be aligned on 1GB.

• TDMR size must be greater than 0 and a whole multiple of 1GB.

• Any address within the TDMR must comply with the platform’s maximum PA, and its HKID bits must be 0.

• For each PAMT region (1G, 2M and 4K) of each TDMR: 15

▪ PAMT base address must comply with the alignment requirements.
▪ Any address within the PAMT range must comply with the platform’s maximum PA, and its HKID bits

must be 0.
▪ The size of each PAMT region must be large enough to contain the PAMT for its associated TDMR.

• Reserved areas within TDMR must be sorted in an ascending offset order. 20

• A null reserved area (indicated by a size of 0) may be followed only by other null reserved areas.

• For each reserved area within TDMR:
▪ Offset and size must comply with the alignment and granularity requirements.
▪ Reserved areas must not overlap.
▪ Reserved areas must be fully contained within their TDMR. 25

o TDMRs must not overlap with other TDMRs.
o PAMTs must not overlap with other PAMTs.
o TDMRs’ non-reserved parts and PAMTs must not overlap (PAMTs may reside within TDMR reserved areas).
o TDMRs’ non-reserved parts must be contained in convertible memory – i.e., in CMRs.
o PAMTs must be contained in convertible memory – i.e., in CMRs. 30

4. Check and set the Intel TDX global private HKID. The provided HKID must be in the TDX HKID range.

If successful, the function does the following:

5. Complete the initialization of the Intel TDX module at platform scope.
6. Set PL.SYS_STATE to SYSCONFIG_DONE.

Completion Status Codes 35

Table 5.216: TDH.SYS.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INVALID_PAMT

TDX_INVALID_RESERVED_IN_TDMR

 TDX_INVALID_TDMR

TDX_NON_ORDERED_RESERVED_IN_TDMR

TDX_NON_ORDERED_TDMR

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 244 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_PAMT_OUTSIDE_CMRS

TDX_PAMT_OVERLAP

TDX_SUCCESS TDH.SYS.CONFIG is successful.

TDX_SYS_BUSY The operation was invoked when another TDX module operation
was in progress. The operation may be retried.

TDX_SYS_CONFIG_NOT_PENDING

TDX_SYS_SHUTDOWN

TDX_TDMR_ALREADY_INITIALIZED

TDX_TDMR_OUTSIDE_CMRS

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 245 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.54. TDH.SYS.INFO Leaf

Provide information about the Intel TDX module and the convertible memory.

Note: TDH.SYS.INFO is provided for backward compatibility. TDH.SYS.RDALL is the recommended method to read Intel
TDX module information.

Table 5.217: TDH.SYS.INFO Input Operands Definition 5

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address (including HKID bits) of a buffer where the output TDSYSINFO_STRUCT will be
written

RDX The number of bytes in the above buffer

R8 The physical address (including HKID bits) of a buffer where an array of CMR_INFO will be written

R9 The number of CMR_INFO entries in the above buffer

Table 5.218: TDH.SYS.INFO Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RDX The actual number of bytes written to the above buffer

In case of an error, as indicated by RAX, RDX returns 0.

R9 The number of CMR_INFO entries actually written to the above buffer

In case of an error, as indicated by RAX, R9 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 10

vary.

TDH.SYS.INFO provides information about the Intel TDX module and about the memory configuration.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 246 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.219: TDH.SYS.INFO Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDX system
information
structure

TDSYSINFO_STRUCT RW Shared 1024B None N/A N/A

Explicit R8 HPA CMR table CMR_INFO_ARRAY RW Shared 512B None N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. TDH.SYS.INIT has been executed. 5

1.2. TDH.SYS.LP.INIT has been executed on the current LP.
2. The number of bytes provided for returning TDSYSINFO_STRUCT (in RDX) must be at least the size of that structure.
3. The number of entries provided for returning CMR_INFO_ARRAY (in R9) must be at least the number of CMRs

supported by TDX.

If successful, the function does the following: 10

4. Write the TDSYSINFO_STRUCT and set RDX to the actual number of bytes written.
5. Write the CMR_INFO_ARRAY based on the CMR information in SEAMCFG and set R9 to the number of CMRs.

Completion Status Codes

Table 5.220: TDH.SYS.INFO Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.INFO is successful.

TDX_SYS_SHUTDOWN

TDX_SYSINITLP_NOT_DONE

 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 247 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.55. TDH.SYS.INIT Leaf

Globally initialize the Intel TDX module.

Table 5.221: TDH.SYS.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version
Number

Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Reserved

Bits Name Description

63:0 RESERVED Reserved: must be 0

Table 5.222: TDH.SYS.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

If RAX returns TDX_INCORRECT_CPUID_VALUE, RCX returns the applicable CPUID information as
shown below. In all other cases, RCX returns 0.

Bits Name Description

31:0 LEAF CPUID leaf number

63:32 SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(0xFFFFFFFF).

RDX Extended error information part 2

If RAX returns TDX_INCORRECT_CPUID_VALUE, RDX returns the value masks as shown below. A bit
value of 1 indicates a bit position that was checked against the required value. In all other cases,
RDX returns 0.

Bits Name Description

31:0 MASK_EAX Mask of the value returned by CPUID in EAX

63:32 MASK_EBX Mask of the value returned by CPUID in EBX

R8 Extended error information part 3

If RAX returns TDX_INCORRECT_CPUID_VALUE, R8 returns the value masks as shown below. A bit
value of 1 indicates a bit position that was checked against the required value. In all other cases,
R8 returns 0.

Bits Name Description

31:0 MASK_ECX Mask of the value returned by CPUID in ECX

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 248 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

63:32 MASK_EDX Mask of the value returned by CPUID in EDX

R9 Extended error information part 4

If RAX returns TDX_INCORRECT_CPUID_VALUE, R9 returns the expected values as shown below. In
all other cases, R9 returns 0.

Bits Name Description

31:0 VALUE_EAX Value expected to be returned by CPUID in EAX

63:32 VALUE_EBX Value expected to be returned by CPUID in EBX

R10 Extended error information part 5

If RAX returns TDX_INCORRECT_CPUID_VALUE, R10 returns the expected values as shown below.
In all other cases, R10 returns 0.

Bits Name Description

31:0 VALUE_ECX Value expected to be returned by CPUID in ECX

63:32 VALUE_EDX Value expected to be returned by CPUID in EDX

Other Unmodified

Special Environment Requirements

If the IA32_TSX_CTRL MSR is supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.TSX_CTRL (bit 7), then
the values of its following bits must be 0:

• RTM_DISABLE (bit 0) 5

• TSX_CPUID_CLEAR (bit 1)

The IA32_MISC_PACKAGE_CTRL MSR must be supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.
MISC_PACKAGE_CTRL (bit 11). IA32_MISC_PACKAGE_CTLS.ENERGY_FILTERING_ENABLE (bit 0) must be set to 1.

Leaf Function Latency

TDH.SYS.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts 10

(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.INIT performs global (platform-scope) initialization of the Intel TDX module. This function is intended to be 15

executed during OS/VMM boot and thus it has relaxed latency requirements.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.223: TDH.SYS.INIT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 249 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Check that PL.SYS_STATE is SYSINIT_PENDING.
2. Do any global Intel TDX module initializations required for running this flow.
3. Check the memory operands per the table above.
4. Check the following conditions (no specific order is implied): 5

• Enumerate CPU and platform information, and check Intel TDX module compatibility. If the Intel TDX module is
compatible with multiple variants of CPU and platform features, sample the current LP’s features enumeration
– to be later checked to be the same on all LPs by TDH.SYS.LP.INIT. Examples of compatibility checks are:
o The CPU must support any ISA that the Intel TDX module relies upon, such as SHA-NI.
o The CPU must support the WBINVD scope for which the Intel TDX module was built. 10

• Sample and check the platform configuration on the current LP – to be later checked to be the same on all LPs
by TDH.SYS.LP.INIT. For example:
o Sample SMRR and SMRR2, check they are locked and do not overlap any CMR, and store their values to be

checked later on each LP.

If successful, the function does the following: 15

5. Complete the initialization of the Intel TDX module at platform scope.
6. Set PL.SYS_STATE to SYSINIT_DONE.

Completion Status Codes

Table 5.224: TDH.SYS.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_BOOT_NT4_SET

TDX_CPUID_LEAF_1F_FORMAT_UNRECOGNIZED

TDX_CPUID_LEAF_1F_NOT_SUPPORTED

TDX_CPUID_LEAF_0D_INCONSISTENT

TDX_INCORRECT_CPUID_VALUE Additional information is provided in RCX – R10

TDX_INCORRECT_MSR_VALUE

TDX_INVALID_WBINVD_SCOPE

TDX_RND_NO_ENTROPY Random number generation (e.g., RDRAND or RDSEED)
failed because the hardware random number generator did
not have enough entropy. The host VMM should retry the
operation.

TDX_SMRR_LOCK_NOT_SUPPORTED

TDX_SMRR_NOT_LOCKED

TDX_SMRR_NOT_SUPPORTED

TDX_SMRR_OVERLAPS_CMR

TDX_SUCCESS TDH.SYS.INIT is successful.

TDX_SYS_BUSY The operation was invoked when another TDX module
operation was in progress. The operation may be retried.

TDX_SYS_SHUTDOWN

TDX_SYS_INIT_NOT_PENDING

 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 250 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.56. TDH.SYS.KEY.CONFIG Leaf

Configure the Intel TDX global private key on the current package.

Table 5.225: TDH.SYS.KEY.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

Table 5.226: TDH.SYS.KEY.CONFIG Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Latency

TDH.SYS.KEY.CONFIG execution time may be longer than most TDX module interface functions execution time. No
interrupts (including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description 10

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.KEY.CONFIG performs package-scope Intel TDX global private key configuration.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.227: TDH.SYS.KEY.CONFIG Operands Information

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Check that TDH.SYS.CONFIG has completed successfully (PL.SYS_STATE is SYSCONFIG_DONE).

If successful, the function does the following: 20

2. Do the following as an atomic operation (e.g., LOCK BTS) on PL.PKG_CONFIG_BITMAP:
2.1. Check the package has not yet been configured.
2.2. Mark it as configured.

3. Execute PCONFIG to configure the Intel TDX global private HKID on the package with a CPU-generated random key.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 251 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

PCONFIG may fail due to an entropy error or a device busy error. In these cases, the VMM should retry
TDH.SYS.KEY.CONFIG.

If successful:

4. If this was the last package on which TDH.SYS.KEY.CONFIG has executed:
4.1. On platforms with ACT-protected memory: Enable ACT lookup. 5

4.2. Set PL.STATE to SYS_READY.

Completion Status Codes

Table 5.228: TDH.SYS.KEY.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_KEY_CONFIGURED

TDX_KEY_GENERATION_FAILED Failed to generate a random key. This is typically caused by an
entropy error of the CPU's random number generator, and may
be impacted by RDSEED, RDRAND or PCONFIG executing on
other LPs. The operation should be retried.

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

Specifically, key configuration may fail due to a concurrently
running PCONFIG instruction.

TDX_SUCCESS TDH.SYS.KEY.CONFIG is successful.

TDX_SYS_BUSY The operation was invoked when another TDX module operation
was in progress. The operation may be retried.

TDX_SYS_KEY_CONFIG_NOT_PENDING

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 252 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.57. TDH.SYS.LP.INIT Leaf

Initialize the Intel TDX module at the current logical processor scope.

Table 5.229: TDH.SYS.LP.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

Table 5.230: TDH.SYS.LP.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RCX Extended error information part 1

If RAX returns TDX_INCONSISTENT_CPUID_FIELD, RCX returns the applicable CPUID information as
shown below.

In all other cases, RCX returns 0.

Bits Name Description

31:0 LEAF CPUID leaf number

63:32 SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(0xFFFFFFFF).

RDX Extended error information part 2

If RAX returns TDX_INCONSISTENT_CPUID_FIELD, RDX returns the value masks as shown below. A
bit value of 1 indicates a bit position that was checked against the same CPUID leaf value checked
during TDH.SYS.INIT.

In all other cases, RDX returns 0.

Bits Name Description

31:0 MASK_EAX Mask of the value returned by CPUID in EAX

63:32 MASK_EBX Mask of the value returned by CPUID in EBX

R8 Extended error information part 3

If RAX returns TDX_INCONSISTENT_CPUID_FIELD, R8 returns the value masks as shown below. A
bit value of 1 indicates a bit position that was checked against the same CPUID leaf value checked
during TDH.SYS.INIT.

In all other cases, R8 returns 0.

Bits Name Description

31:0 MASK_ECX Mask of the value returned by CPUID in ECX

63:32 MASK_EDX Mask of the value returned by CPUID in EDX

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 253 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

Other Unmodified

Special Environment Requirements

If the IA32_TSX_CTRL MSR is supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.TSX_CTRL (bit 7), then
the values of its following bits must be 0:

• RTM_DISABLE (bit 0) 5

• TSX_CPUID_CLEAR (bit 1)

The IA32_MISC_PACKAGE_CTRL MSR must be supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.
MISC_PACKAGE_CTRL (bit 11). IA32_MISC_PACKAGE_CTLS.ENERGY_FILTERING_ENABLE (bit 0) must be set to 1.

Leaf Function Latency

TDH.SYS.LP.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts 10

(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.LP.INIT performs LP-scope initialization of the Intel TDX module. This function is intended to be executed during 15

OS/VMM boot, and thus it has relaxed latency requirements.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.231: TDH.SYS.LP.INIT Operands Information

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Shared N/A N/A

 20

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. TDH.SYS.INIT has completed successfully (PL.SYS_STATE is SYSINIT_DONE).
2. This is the first invocation of TDH.SYS.LP.INIT on the current LP.

If successful, the function does the following:

3. Do a global EPT flush (INVEPT type 2). 25

4. Initialize the Intel TDX module’s LP-scope variables.
5. Check the compatibility and uniformity of features and configuration. Once per LP, core or package, depending on

the scope of the checked feature or configuration:
5.1. Check features compatibility with the Intel TDX module. In cases where the Intel TDX module supports several

options, check that the features on the current LP are the same as sampled during TDH.SYS.INIT. 30

5.2. Check configuration uniformity. For example, the SMRR and SMRR2 must be locked and configured in the same
way as sampled during TDH.SYS.INIT.

6. Mark the current LP as initialized.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 254 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.232: TDH.SYS.LP.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INCONSISTENT_CPUID_FIELD Additional information is provided in RCX – R8

TDX_INCONSISTENT_MSR

TDX_INCORRECT_MSR_VALUE

TDX_INVALID_PKG_ID

TDX_RND_NO_ENTROPY Random number generation (e.g., RDRAND or RDSEED) failed
because the hardware random number generator did not have
enough entropy. The host VMM should retry the operation.

TDX_SUCCESS TDH.SYS.LP.INIT is successful.

TDX_SYS_BUSY The operation was invoked when another TDX module operation
was in progress. The operation may be retried.

TDX_SYS_LP_INIT_DONE

TDX_SYS_LP_INIT_NOT_PENDING

TDX_SYS_SHUTDOWN

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 255 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.58. TDH.SYS.LP.SHUTDOWN Leaf (Deprecated)

This function is deprecated; it is provided for backward compatibility.

Table 5.233: TDH.SYS.LP.SHUTDOWN Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

Table 5.234: TDH.SYS.LP.SHUTDOWN Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.LP.SHUTDOWN does nothing. 10

Completion Status Codes

Table 5.235: TDH.SYS.LP.SHUTDOWN Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDH.SYS.LP.SHUTDOWN is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 256 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.59. TDH.SYS.RD Leaf

Read a TDX Module global-scope metadata field.

Table 5.236: TDH.SYS.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

Table 5.237: TDH.SYS.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RDX If the input field identifier was -1, RDX returns the first readable field identifier.

Else, in case of an error, RDX returns -1. On success, RDX returns the next readable field identifier.
A value of -1 indicates no next field identifier is available.

R8 Contents of the field

In case of no success, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.RD reads a TDX Module global-scope metadata field. 10

Enumeration: Availability of TDH.SYS.RD is enumerated by TDSYSINFO_STRUCT.SYS_RD, returned by TDH.SYS.INFO
(see 3.3.5). It is also enumerated by TDX_FEATURES0.ENHANCED_METADATA (bit 3), readable by
TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.SYS.RD returns a
TDX_OPERAND_INVALID(RAX) status.

RDX returns the next host-side readable field identifier. This may be used by the host VMM to enumerate the TDX 15

Module’s capabilities and configuration. To read all the available fields, the host VMM can invoke TDH.SYS.RD in a loop,
starting with field identifier -1 as an input, until RDX returns -1. A status code of TDX_METADATA_FIELD_SKIP indicates
that the returned value is not applicable. Alternatively, the host VMM can use TDH.SYS.RDALL.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 257 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.238: TDH.SYS.RD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

There are no relevant memory operands.

The function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. TDH.SYS.INIT has been executed. 5

1.2. TDH.SYS.LP.INIT has been executed on the current LP.

If successful, the function does the following:

2. Read the requested field using the algorithm described in 5.3.2.1.
3. Return the next readable field identifier, or a value of 0 if none exists.
4. Return the field value. 10

Completion Status Codes

Table 5.239: TDH.SYS.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIRST_FIELD_ID_IN_CONTEXT Indicates that the first field ID in context is returned

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.RD is successful.

TDX_SYS_SHUTDOWN

TDX_SYSINITLP_NOT_DONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 258 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.60. TDH.SYS.RDALL Leaf

Read all host-readable TDX Module global-scope metadata fields.

Table 5.240: TDH.SYS.RDALL Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RDX The physical address (including HKID bits) of a 4KB page where a metadata list will be returned

In case of error, some field value entries might not contain valid data.

R8 Initial field identifier – see 3.10

If R8’s value is -1, then TDG.SYS.RDALL will start from the first global-scope metadata field
identifier.

Else, LAST_ELEMENT_IN_FIELD, LAST_FIELD_IN_SEQUENCE, WRITE_MASK_VALID and
CONTEXT_CODE fields are ignored. The FIELD_CODE must be the code of the first element of a
metadata field.

Table 5.241: TDH.SYS.RDALL Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

R8 Next field identifier. A value of -1 means all applicable field identifiers have been returned in the
metadata list.

In case of an error, as indicated by RAX, R8 returns -1.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.RDALL reads all host-readable TDX Module global-scope metadata fields into a metadata list in the provided 10

page.

If one or more applicable fields do not fit in the provided list buffer, the function can be invoked in a loop, each invocation
providing an initial field identifier returned as the next field identifier of the previous invocation, as shown in the following
example:

1. NEXT_FIELD_ID = -1 15

2. Repeat:
2.1. Set LIST_BUFFER to the next 4K buffer
2.2. Invoke TDH.SYS.RDALL(RDX = LIST_BUFFER, RDX = NEXT_FIELD_ID)
2.3. STATUS = RAX, NEXT_FIELD_ID = R8
Until ((STATUS is a non-recoverable error) or (NEXT_FIELD_ID is -1)) 20

The function never returns an empty list if there’s no error.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 259 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Enumeration: Availability of TDH.SYS.RDALL is enumerated by TDSYSINFO_STRUCT.SYS_RD, returned by
TDH.SYS.INFO (see 3.3.5). It is also enumerated by TDX_FEATURES0.ENHANCED_METADATA (bit 3),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.SYS.RDALL returns a
TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 5

of the Intel TDX Module API.

Table 5.242: TDH.SYS.RDALL Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RDX HPA Metadata list MD_LIST RW Shared 4KB None None None

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done: 10

1.1. TDH.SYS.INIT has been executed.
1.2. TDH.SYS.LP.INIT has been executed on the current LP.

If successful, the function does the following:

2. Dump the list of next host-readable metadata fields into the provided page.

Completion Status Codes 15

Table 5.243: TDH.SYS.RDALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.SYS.RDALL is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 260 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.61. TDH.SYS.S4_END Leaf

Help prevent replay attacks, by preventing future S4 restoration using the current global S4 session’s anti-replay nonce,
which was generated during the S4 hibernation session.

Table 5.244: TDH.SYS.S4_END Input Operands Definition

Operand Name Description

RAX Leaf and
Version

SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

 5

Table 5.245: TDH.SYS.S4_END Output Operands Definition

Operand Name Description

RAX Status SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDH.SYS.S4_END generates a new anti-replay nonce. This helps prevent replay attack which may attempt to start a new
S4 resumption session and resume the TDs using the anti-replay nonce generated during the S4 hibernation session.

Enumeration: Availability of TDH.SYS.S4_END is enumerated by TDX_FEATURES0.S4 (bit 13), readable by TDH.SYS.RD*
(see 3.3.3.1). If not supported, calling TDH.SYS.S4_END returns a TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.246: TDH.SYS.S4_END Operands Information

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

PL.S4_STATE N/A N/A PL.S4_STATE N/A RW Hidden N/A Exclusive None None

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Check that a global S4 resumption session is in progress (PL.S4_STATE is S4_IMPORT). 20

2. Generate a new anti-replay NONCE by calling SEAMOPS[SEAMNONCE](0).
3. Set PL.S4_STATE to S4_IDLE.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 261 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.247: TDH.SYS. S4_END Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDH.SYS.S4_END is successful.

TDX_OPERAND_BUSY

TDX_SYS_NOT_READY TDH.SYS. S4_END was called when TDX module’s lifecycle
state is not SYS_READY.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 262 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.62. TDH.SYS.SHUTDOWN Leaf

Initiate Intel TDX module shutdown and generate handoff data for the next Intel TDX module.

Table 5.248: TDH.SYS.SHUTDOWN Input Operands Definition

Operand Name Description

RAX Leaf and
Version

SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX REQ_HV Requested handoff version

Table 5.249: TDH.SYS.SHUTDOWN Output Operands Definition 5

Operand Name Description

RAX Status SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

Enumeration: Availability of TDH.SYS.SHUTDOWN is enumerated by TDX_FEATURES0.TD_PRESERVING (bit 1), 10

readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.SYS.SHUTDOWN returns a
TDX_OPERAND_INVALID(RAX) status.

TDH.SYS.SHUTDOWN initiates Intel TDX module shutdown and generates handoff data for the next Intel TDX module.
Following this function, no further TDX module interface functions can be called.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.250: TDH.SYS.SHUTDOWN Operands Information

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The requested handoff version (REQ_HV) is legal: 20

1.1. PL.MIN_UPDATE_HV <= REQ_HV <= PL.MODULE_HV
1.2. If PL.NO_DOWNGRADE == 1 then REQ_HV == PL.MODULE_HV

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 263 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful:

2. Set TDX module’s PL.STATE to SYS_SHUTDOWN to fail further TDX module interface function calls.
3. Check that all other LPs are not executing in SEAM mode.
4. Prepare handoff data in handoff pages, according to REQ_HV, from module’s variables.
5. Mark the handoff data as valid (ready for consumption). 5

Completion Status Codes

Table 5.251: TDH.SYS.SHUTDOWN Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID The requested handoff version is invalid.

TDX_SUCCESS TDH.SYS.SHUTDOWN is successful.

TDX_SYS_BUSY The operation was invoked when another TDX module
operation was in progress. The operation may be retried.

TDX_SYS_NOT_READY TDH.SYS.SHUTDOWN was called when TDX module’s lifecycle
state is not SYS_READY.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 264 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.63. TDH.SYS.TDMR.INIT Leaf

Partially initialize a Trust Domain Memory Region (TDMR) and its associated PAMT.

Table 5.252: TDH.SYS.TDMR.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical base address of a TDMR (HKID bits must be 0)

Table 5.253: TDH.SYS.TDMR.INIT Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RDX On successful completion, RDX returns the TDMR next-to-initialize address. This is the physical
address of the last byte that has been initialized so far, rounded down to 1GB.

In all other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.TDMR.INIT partially initializes the metadata (PAMT) associated with a Trust Domain Memory Region (TDMR), 10

while adhering to latency considerations. It can run concurrently on multiple LPs as long as each concurrent flow
initializes a different TDMR. After each 1GB range of a TDMR has been initialized, that 1GB range becomes available for
use by any Intel TDX function that creates a private TD page or a control structure page – e.g., TDH.MEM.PAGE.ADD,
TDH.VP.ADDCX, etc.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.254: TDH.SYS.TDMR.INIT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDMR Blob None None 1GB Exclusive N/A N/A

Implicit N/A HPA PAMT region
associated with
TDMR

Blob RW Hidden N/A Exclusive N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 265 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The provided TDMR start address belongs to one of the TDMRs set during TDH.SYS.INIT.
2. The TDMR has not been completely initialized yet.

If successful, the function does the following: 5

3. If the TDMR has been completely initialized, there is nothing to do.

Else, the function does the following:

4. On platforms which use ACT, set the ACT bit of each page containing PAMT entries to 1.
5. Initialize the next implementation defined un-initialized number of PAMT entries. The maximum number of PAMT

entries to be initialized is set to help avoid latency issues. 10

5.1. PAMT_4K entries associated with a physical address that is within a reserved range are marked with PT_RSVD.
5.2. Other PAMT_4K entries are marked with PT_NDA.
5.3. PAMT_2M and PAMT_1G entries are marked with PT_NDA.

6. If the PAMT for a 1GB block of TDMR has been fully initialized, mark that 1GB block as ready for use. This means that
4KB pages in this 1GB block may be converted to private pages – e.g., by SEAMCALL(TDH.MEM.PAGE.ADD). This can 15

be done concurrently with initializing other TDMRs.
7. Return the next-to-initialize address rounded down to 1GB. This is done so the host VMM will not attempt to use a

1GB block that is not fully initialized.

Completion Status Codes

Table 5.255: TDH.SYS.TDMR.INIT Completion Status Codes (Returned in RAX) Definition 20

Completion Status Code Description

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.TDMR.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TDMR_ALREADY_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 266 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.64. TDH.SYS.UPDATE Leaf

Populate Intel TDX module internal variables from the handoff data prepared by the previous Intel TDX module.

Table 5.256: TDH.SYS.UPDATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

Table 5.257: TDH.SYS.UPDATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

Enumeration: Availability of TDH.SYS.UPDATE is enumerated by TDX_FEATURES0.TD_PRESERVING (bit 1), readable by 10

TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.SYS.UPDATE returns a
TDX_OPERAND_INVALID(RAX) status.

TDH.SYS.UPDATE reads the handoff data prepared by the previous Intel TDX module. The operation may fail in the
following cases:

• No valid handoff data 15

• The old module’s handoff data’s version is too old for the current TDX module

• The old module’s handoff data’s version is newer than the current TDX module’s handoff data version

On such failures the host VMM is expected to do one of the following:

• Request the Persistent SEAMLDR to update to another TDX module (UPDATE scenario). If that update is successful,
existing TDs are preserved. 20

• Keep the current TDX module and continue with the non-update sequence (TDH.SYS.CONFIG, TDH.SYS.KEY.CONFIG
etc.). In this case all existing TDs are lost.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.258: TDH.SYS.UPDATE Operands Information 25

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A All Intel TDX
module internal
variables

N/A RW Hidden N/A Exclusive N/A N/A

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 267 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDX module’s PL.STATE is SYSINIT_DONE.
2. All LPs have been initialized.
3. The handoff data in memory is valid and its handoff version (HV) is legal. 5

If successful:

4. Populate HV-specific variables within SEAM range from the handoff data.
5. Mark the handoff data as invalid (consumed).
6. Set the TDX module’s PL.STATE to SYS_READY.

Completion Status Codes 10

Table 5.259: TDH.SYS.UPDATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_CONNECT_INVALID_STATE Applicable only for TDX module and CPUs that support TDX
Connect

TDX_SUCCESS TDH.SYS.UPDATE is successful.

TDX_SYS_BUSY The operation was invoked when another TDX module
operation was in progress. The operation may be retried.

TDX_SYS_STATE_INCORRECT TDH.SYS.SHUTDOWN was called when the TDX module’s
lifecycle state in not SYSINIT_DONE or some LPs have not yet
been initialized by TDH.SYS.LP.INIT.

TDX_SYS_INVALID_HANDOFF The handoff data in SEAM range is invalid.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 268 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.65. TDH.VP.ADDCX Leaf

Add a physical page to a TDVPS.

Table 5.260: TDH.VP.ADDCX Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a page where the TDCX page will be added (HKID bits must be 0)

RDX The physical address of a TDVPR page (HKID bits must be 0)

Table 5.261: TDH.VP.ADDCX Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.ADDCX adds a physical page to a TDVPS, as a child of a given TDVPR. 10

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling TDH.VP.ADDCX,
the host VMM should ensure that no cache lines associated with the added TDVPS
physical page are in a Modified state, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.262: TDH.VP.ADDCX Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB23

Explicit RCX HPA TDCX page Blob RW Opaque 4KB Exclusive Shared Shared Exclusive

Explicit RDX HPA TDVPR page Blob RW Opaque 4KB Exclusive Shared Shared None

Implicit N/A HPA TDR page TDR RW Opaque N/A Shared None None None

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A None

23 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 269 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB23

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A None

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

4. The TD has been initialized (by TDH.MNG.INIT).
5. The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).
6. The TD VCPU has not been initialized (by TDH.VP.INIT) and is not being torn down (TDVPS.VCPU_STATE is

VCPU_UNINITIALIZED).
7. The new TDCX page metadata in PAMT must be correct (PT must be PT_NDA). 10

8. The maximum number of TDCX pages per TDVPS (as enumerated by TDH.SYS.RD* or TDH.SYS.INFO) has not been
exceeded.

If successful, the function does the following:

9. On platforms which use ACT, set the TDCX page’s ACT bit to 1.
10. Zero out the TDCX page contents using direct writes (MOVDIR64B). 15

11. Increment the VCPU’s TDCX counter and set a pointer in the parent TDVPR page to the new TDCX page.
12. Increment TDR.CHLDCNT.
13. Initialize the TDCX page metadata in PAMT.

Completion Status Codes

Table 5.263: TDH.VP.ADDCX Completion Status Codes (Returned in RAX) Definition 20

Completion Status Code Description

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.ADDCX is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TDCX_NUM_INCORRECT

TDX_VCPU_STATE_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 270 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 271 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.66. TDH.VP.CREATE Leaf

Create a guest TD VCPU and its TDVPS root page (TDVPR).

Table 5.264: TDH.VP.CREATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a page where TDVPR will be added (HKID bits must be 0)

RDX The physical address of the owner TDR page (HKID bits must be 0)

Table 5.265: TDH.VP.CREATE Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.CREATE begins the build of a new guest TD VCPU. It adds a TDVPR page as a child of a TDR page. 10

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES0.CLFLUSH_BEFORE_ALLOC (bit 23), then before calling TDH.VP.CREATE,
the host VMM should ensure that no cache lines associated with the added TDVPR
physical page are in a Modified state, as described in the [Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

Table 5.266: TDH.VP.CREATE Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

ACT
2MB24

Explicit RCX HPA TDVPR page Blob RW Opaque 4KB Exclusive Shared Shared Exclusive

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared None

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Shared(i) N/A N/A None

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A None

24 ACT is enumerated by TDX_FEATURES0.ACT, readable using TDH.SYS.RD.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 272 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 5

4. The TD must either have been initialized but not finalized (TDR.NUM_TDCX is the required number and
TDCS.OP_STATE is INITIALIZED), or a migration session is in progress as state migration has begun by
TDH.IMPORT.STATE.TD (OP_STATE is STATE_IMPORT).

5. The TDVPR page metadata in PAMT must be correct (PT must be PT_NDA).

If successful, the function does the following: 10

6. On platforms which use ACT, set the TDVPR page’s ACT bit to 1.
7. Zero out the TDVPR page contents using direct write (MOVDIR64B).
8. Increment TDR.CHLDCNT.
9. Initialize the TDVPS management fields, which all reside in the TDVPR page.
10. Initialize the TDVPR page metadata in PAMT. 15

Completion Status Codes

Table 5.267: TDH.VP.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 273 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.67. TDH.VP.ENTER Leaf

Enter TDX non-root operation.

From the host VMM’s point of view, TDH.VP.ENTER is a complex operation that normally involves TD entry followed by a
TD exit. Therefore, input and output operands are specified by multiple tables below.

5.4.67.1. Inputs 5

TDH.VP.ENTER output format depends on how the previous TDH.VP.ENTER was terminated. There are two cases:

• Initial entry or following a previous asynchronous TD exit

• Following a previous TDCALL(TDG.VP.VMCALL)

Input Format for Initial Entry or Following a Previous Asynchronous TD Exit

The following table details TDH.VP.ENTER input operands for initial entry or following a previous asynchronous TD exit. 10

Table 5.268: TDH.VP.ENTER Input Operands Format #1 Definition: For Initial Entry or Following a Previous
Asynchronous TD Exit

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX VCPU handle and flags

Bit(s) Name Description

11:0 RESERVED Must be 0

51:12 TDVPR_HPA Bits 51:12 of the physical address of the TD VCPU’s TDVPR page
(HKID bits must be 0)

52 HOST_RECOVERABILITY_
HINT

Applicable only following a previous trap-like asynchronous TD
exit, where bit 60 (HOST_RECOVERABILITY_HINT) of the
previous TDH.VP.ENTER completion status (returned in RAX)
was set to 1. In all other cases this bit must be 0.

0: The host VMM hints that the guest-side function may
possibly be retried (e.g., the host may have corrected some
conditions).

1: The host VMM hints that the error is probably not
recoverable.

This bit is reflected to the guest TD in bit 60 of RAX.

53 RESUME_L1 For partitioned TDs, indicates that the L1 VMM should be
resumed. Applicable after TD exits from an L2 VM.

0: TDH.VP.ENTER resumes the L2 VM it last exited from.

1: TDH.VP.ENTER resumes L1 VMM, even if the previous TD
exit was from an L2 VM.

63:54 RESERVED Must be 0

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 274 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Input Format following a Previous TDCALL(TDG.VP.VMCALL)

The following table details TDH.VP.ENTER input operands for following a previous synchronous TD exit
(TDG.VP.VMCALL).

Table 5.269: TDH.VP.ENTER Input Operands Format #2 Definition: Following a Previous TDCALL(TDG.VP.VMCALL) 5

Operand Description

RAX SEAMCALL instruction leaf and version numbers – see 5.4.1

RCX VCPU handle and flags

Bit(s) Name Description

11:0 RESERVED Must be 0

51:12 TDVPR_HPA Bits 51:12 of the physical address of the TD VCPU’s TDVPR page
(HKID bits must be 0)

52 RESERVED Must be 0

53 RESUME_L1 For partitioned TDs, indicates that the L1 VMM should be
resumed. Applicable after TD exits from an L2 VM.

0: TDH.VP.ENTER resumes the L2 VM it last exited from.

1: TDH.VP.ENTER resumes L1 VMM, even if the previous TD
exit was from an L2 VM.

63:54 RESERVED Must be 0

RBX, RDX,
RBP, RSI,
RDI,
R8 – R15

If the corresponding bit of RCX at the previous TD exit (i.e., previous TDH.VP.ENTER termination)
was set to 1, the register value is passed as-is to the guest TD – see the description of
TDG.VP.VMCALL in 5.5.21 for details.

Else, the register value is not used as an input.

If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP can’t be used to pass values to the
guest TD. See the enumeration note below.

XMM0 –
XMM15

If the corresponding bit of RCX at the previous TD exit (i.e., previous TDH.VP.ENTER termination)
was set to 1, the register value is passed as-is to the guest TD – see the description of
TDG.VP.VMCALL in 5.5.21 for details.

Else, the register value is not used as an input.

5.4.67.2. Outputs

TDH.VP.ENTER output format depends on how the function was terminated. There are multiple cases:

1. Error (No TD Entry)
2. Asynchronous TD exit following a TD entry (with a VMX architectural exit reason) 10

3. Asynchronous TD exit following a TD entry (with a non-VMX TD exit status)
4. Asynchronous TD exit following a TD entry (with cross-TD exit details)
5. TD exit due to a TDCALL(TDG.VP.VMCALL) following a TD entry
6. TD exit due to a guest TD request

All the TD exit cases formats share some fields, as described below. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 275 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Output Format #1: Error (No TD Entry)

The following table details TDH.VP.ENTER output operands when an error occurs, and the interface function returns
without entering the TD.

Table 5.270: TDH.VP.ENTER Output Operands Format #1 Definition: On Error (No TD Entry)

Operand Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

63 ERROR Set to 1

47:32 CLASS and
DETAILS_L1

None of the values detailed in the table below

Other See the function completion status definition in 5.4.1.

Other
GPRs

Unmodified

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) may be cleared to its
architectural RESET state.

 5

Common Output Format on TD Exits

The following table details the common format of TDH.VP.ENTER output operands when TD entry succeeds, and later a
TD exit occurs. The following tables provide information for each specific case.

Table 5.271: TDH.VP.ENTER Common Output Operands Format on TD Exits Following a TD Entry

Operand Name Description

RAX Status SEAMCALL instruction return code – see the function completion status definition in
5.4.1.

RCX Common
Exit
Information

Index of the VM from which the TD exit occurred

Bit(s) Name Description

31:0 Format Dependent See specific output formats below

33:32 VM Index of the VM that was running at the time of TD
exit

63:34 RESERVED Reserved, set to 0

RBX,
RDX, RSI,
RDI, R8 –
R15

Format
Dependent

See specific output formats below

RBP None If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP is unmodified. See the
enumeration note below.

Else, RBP may be modified.

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural
RESET state.

In case of a TDCALL(TDG.VP.VMCALL) following a TD entry, XMM may contain output operands. See
below for details.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 276 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Output Format #2: Asynchronous TD Exits Following a TD Entry (with a VMX Architectural Exit Reason)

The following table details TDH.VP.ENTER output operands when TD entry succeeds, and later an asynchronous TD exit
occurs due to a VMX architectural exit reason.

Table 5.272: TDH.VP.ENTER Output Operands Format #2 Definition: On Asynchronous TD Exits Following a TD Entry 5

(with a VMX Architectural Exit Reason)

Operand Name Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

31:0 DETAILS_L2: Exit
Reason

VMCS exit reason

Note: Exit reason TDCALL (77) is a special case,
indicating a synchronous TD exit initiated by
TDG.VP.VMCALL; see below.

47:32 CLASS and
DETAILS_L1

May have the following values:

• TDX_SUCCESS, indicating a normal TD exit

• TDX_NON_RECOVERABLE_VCPU, indicating that
the VCPU is disabled

• TDX_NON_RECOVERABLE_TD, indicating that
the TD is disabled

• TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE,
indicating that the TD is disabled, and its private
memory can’t be accessed

• TDX_TD_EXIT_ON_L2_VM_EXIT and
TDX_TD_EXIT_ON_L2_TO_L1, indicating a debug
TD exit on L2 transitions

Other See the function completion status definition in
5.4.1.

RCX Exit
Information

Index of the VM from which the TD exit occurred

Bit(s) Name Description

31:0 EXIT_QUALIFICATION VMCS exit qualification bits 31:0

Note: VMCS exit qualification bits 63:32 are always
0.

When exit is due to an EPT violation, bits 12:7 are
cleared to 0.

33:32 VM Index of the VM that was running at the time of TD
exit

63:34 RESERVED Reserved, set to 0

RDX Extended
Exit
Qualification

Additional non-VMX, TDX-specific information – see 3.7.1

R8 Guest
Physical
Address

When exit is due to EPT violation or EPT misconfiguration, format is similar to the
VMCS guest-physical address, except that bits 11:0 are cleared to 0.

In other cases, R8 is cleared to 0.

R9 VM-Exit
Interruption
Information

When exit is due to a vectored event, format of bits 31:0 is similar to the VMCS VM -
exit interruption information. Bits 63:32 are cleared to 0.

In other cases, R9 is cleared to 0.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 277 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

RBX, RSI,
RDI,
R10 –
R15

Reserved Cleared to 0

RBP None If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP is unmodified. See the
enumeration note below.

Else, RBP is cleared to 0.

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural
RESET state.

Output Format #3: Asynchronous TD Exits Following a TD Entry (with a non-VMX TD Exit Status)

The following table details TDH.VP.ENTER output operands when TD entry succeeds, and later an asynchronous TD exit
occurs with a non-VMX TD exit status as described below.

Table 5.273: TDH.VP.ENTER Output Operands Format #3 Definition: On Asynchronous TD Exits Following a TD Entry 5

(with a non-VMX TD Exit Status)

Operand Name Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

47:32 CLASS and
DETAILS_L1

May have the following values:

• TDX_HOST_PRIORITY_BUSY_TIMEOUT

• TDX_NON_RECOVERABLE_TD_CORRUPTED_MD

• TDX_TD_EXIT_BEFORE_L2_ENTRY

Other See the function completion status definition in
5.4.1.

RCX Exit
Information

TD exit information

Bit(s) Name Description

31:0 RESERVED Reserved, set to 0

33:32 VM Index of the VM that was running at the time of TD
exit

63:34 RESERVED Reserved, set to 0

RDX, RBX,
RSI, RDI,
R8 – R15

Reserved Cleared to 0

Note: In the future, if this format will be used with new status codes, these GPRs
may be used to return additional information.

RBP None If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP is unmodified. See
the enumeration note below.

Else, RBP is cleared to 0.

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural
RESET state.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 278 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Output Format #4: Asynchronous TD Exits Following a TD Entry (with Cross-TD Exit Details)

The following table details TDH.VP.ENTER output operands when TD entry succeeds, and later an asynchronous TD exit
occurs due to a cross-TD operation, i.e., the current TD operating on another TD.

Table 5.274: TDH.VP.ENTER Output Operands Format #4 Definition: On Asynchronous TD Exits Following a TD Entry
(with Cross-TD Exit Details) 5

Operand Name Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

47:32 CLASS and
DETAILS_L1

May have the following values:

• TDX_CROSS_TD_FAULT, indicating a fault-like
asynchronous TD exit, with non-VMX cross-TD
status.

• TDX_CROSS_TD_TRAP, indicating a trap-like
asynchronous TD exit, with non-VMX cross-TD
status.

Other See the function completion status definition in
5.4.1.

RCX Exit
Information

TD exit information

Bit(s) Name Description

32:0 RESERVED Reserved, set to 0

33:32 VM Index of the VM that was running at the time of TD
exit

63:34 RESERVED Reserved, set to 0

RDX Cross-TD
Status

Status code of the error which caused the TD exit, using the same format as TDCALL
instruction return code

R8 Target TD HPA of the TDR page of the TD which was the target of the cross -TD operation

RBX, RSI,
RDI,
R9 – R15

Reserved Cleared to 0

RBP None If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP is unmodified. See
the enumeration note below.

Else, RBP is cleared to 0.

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural
RESET state.

Output Format #5: TD Exit due to TDCALL(TDG.VP.VMCALL) Following a TD Entry

The following table details TDH.VP.ENTER output operands when TD entry succeeds, and later a synchronous TD exit,
triggered by TDG.VP.VMCALL, occurs.

Table 5.275: TDH.VP.ENTER Output Operands Format #5 Definition: On TDCALL(TDG.VP.VMCALL) Following a TD 10

Entry

Operand Name Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 279 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

31:0 DETAILS_L2: Exit
Reason

VMCS exit reason, indicating TDCALL (77)

47:32 CLASS and
DETAILS_L1

Indicating TDX_SUCCESS

Other See the function completion status definition in
5.4.1.

RCX Exit
Information

TD exit information

Bit(s) Name Description

31:0 PARAMS_MASK Value as passed in to TDCALL(TDG.VP.VMCALL) by
the guest TD: indicates which part of the guest TD
GPR and XMM state is passed as-is to the VMM and
back. For details, see the description of
TDG.VP.VMCALL in 5.5.21.

33:32 VM Index of the VM that was running at the time of TD
exit

63:34 RESERVED Reserved, set to 0

RBX, RDX,
RBP, RDI,
RSI,
R8 – R15

GPRs If the corresponding bit in RCX is set to 1, the register value is passed as-is from the
guest TD’s input to TDG.VP.VMCALL.

Else, the register value cleared to 0.

If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP can’t be used to pass
values from the guest TD and is not modified from its input value. See the
enumeration note below.

XMM0 –
XMM15

XMMs If the corresponding bit in RCX is set to 1, the register value is passed as -is from the
guest TD’s input to TDG.VP.VMCALL.

Else, the register value cleared to 0.

Extended
State
except
XMM

Any extended state, except XMM, that the TD is allowed to use (per TDCS.XFAM) is cleared to its
architectural RESET state.

Output Format #6: TD Exit due to a Guest TD Request

The following table details TDH.VP.ENTER output operands when TD entry succeeds, and later on the TD requests calls a
TDX module guest-side function that eventually results in a request from the host VMM.

Table 5.276: TDH.VP.ENTER Output Operands Format #6 Definition: On TD Exit due to a Guest TD Request 5

Operand Name Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

47:32 CLASS and
DETAILS_L1

May have the following values:

• TDX_IOTLB_INV_REQUEST25

Other See the function completion status definition in
5.4.1.

25 This status code is applicable if the TDX module supports TDX Connect, as enumerated by TDX_FEATURES0.TDX_CONNECT (bit 6),
readable using TDH.SYS.RD*.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 280 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

RCX Exit
Information

TD exit information

Bit(s) Name Description

31:0 RESERVED Reserved, set to 0

33:32 VM Index of the VM that was running at the time of TD
exit

63:34 RESERVED Reserved, set to 0

RDX, RBX,
RSI, RDI,
R8 – R15

Reserved Cleared to 0

Note: In the future, if this format will be used with new status codes, these GPRs
may be used to return additional information.

RBP None If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP is unmodified. See
the enumeration note below.

Else, RBP is cleared to 0.

Extended
State

Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural
RESET state.

5.4.67.3. CPU State Preservation Following a Successful TD Entry and a TD Exit

Following a successful TD entry and a TD exit, some CPU state is modified:

• Registers DR0, DR1, DR2, DR3, DR6 and DR7 are set to their architectural INIT value.

• XCR0 is set to the TD’s user-mode feature bits of XFAM (bits 7:0, 9). 5

• MSR state preservation across TD entry and exit is detailed in a separate JSON format file msr_preservation.json.

5.4.67.4. Special Environment Requirements

The value read from IA32_TSC_ADJUST MSR must be the same as it was during TDH.SYS.INIT.

5.4.67.5. Guest TD State Loading or VM Entry Failure

TDH.VP.ENTER may fail loading guest TD state in the cases shown in the table below. TDH.VP.ENTER returns with 10

information detailing the failure case. Such failures may happen due to the following reasons:

• The TD is being debugged (its ATTRIBUTES.DEBUG bit is set) and the debugger set some wrong guest state value
using TDH.VP.WR. For a debuggable TD, the completion status (in RAX[63:32]) is set in such cases to TDX_SUCCESS,
and the details are provided as described below. The debugger may update the VCPU state using TDH.VP.WR and
invoke TDH.VP.ENTER again. 15

• The TD has been migrated, and some of its state is not compatible with the destination platform. The TDX module
does its best effort to check guest state values during import, but there might still be cases where incompatible guest
TD state gets migrated. For a non-debuggable TD, the completion status (in RAX[63:32]) is set in such cases to
TDX_NON_RECOVERABLE_TD, and the details are provided as described below. The host VMM should tear down
the TD. 20

Table 5.277: Guest State Loading Errors

Guest State Loading Error VM Exit Reason in RAX[31:0] Extended Exit Qualification in RDX

Error while loading guest MSR
values from TDVPS

34: VM-entry failure due to MSR
loading

TD_ENTRY_MSR_LOAD_FAILURE
with the MSR index

Error while loading CPU extended
state from TDVPS

33: VM-entry failure due to invalid
guest state

TD_ENTRY_XSTATE_LOAD_FAILURE

VM entry (VMLAUNCH or
VMRESUME) which loads guest
state from VMCS

33: VM-entry failure due to invalid
guest state

NONE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 281 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.67.6. Leaf Function Latency

In some cases (e.g., suspected single/zero step attack mitigation), TDH.VP.ENTER execution time may be longer than most
TDX module interface functions execution time. No interrupts (including NMI and SMI) are processed by the logical
processor during that time.

5.4.67.7. Leaf Function Description 5

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.ENTER enters TDX non-root operation. It returns immediately if TD entry failed. If TD entry succeeded,
TDH.VP.ENTER returns when TD exit is initiated.

For partitioned TDs, the TD VCPU may operate in the L1 VM or one of the L2 VMs, if any. TD exit may be initiated from 10

each of the TD’s VMs. If last TD exit was from an L2 VM, TDH.VP.ENTER resumes the same L2 VM, unless the RESUME_L1
input flag is set to 1, instructing TDH.VP.ENTER to resume the L1 VM.

Enumeration: Control of RBP usage as an input/output parameter by the TD’s CONFIG_FLAG.NO_RBP_MOD is
enumerated by TDX_FEATURES0.NO_RBP_MOD (bit 18), readable by TDH.SYS.RD* (see 3.3.3.1). If
not supported, then RBP can be used by TDG.VP.VMCALL to pass information between the guest TD 15

and the host VMM, although highly discouraged since it contradicts normal calling conventions ABI.

VCPU Association: TDH.VP.ENTER associates the target TD VCPU with the current LP. This requires that the VCPU will
not be associated with another LP. For details, see the [TDX Module Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 20

Table 5.278: TDH.VP.ENTER Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared(c)26 Shared(c)26 Shared(c)26

Implicit N/A HPA TDR page TDR RW Opaque N/A Shared(c)26 N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i,c)26 N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared(t)27 N/A N/A

Implicit N/A N/A TDCS TLB
Tracking Fields

N/A RW Opaque N/A Shared(t)27 N/A N/A

Implicit N/A N/A SEPT tree N/A R Opaque N/A Exclusive(t)27 N/A N/A

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

Note: For brevity, some details (e.g., zero-step mitigation) have been omitted.

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR). 25

2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been finalized and is allowed to run (TDR.NUM_TDCX is the required number, and TDCS.OP_STATE

is either RUNNING, LIVE_EXPORT or LIVE_IMPORT).

26 The shared locking of TDVPS, TDR, TDCS, TDCS.OP_STATE is for the whole duration of running in TDX non-root mode; the locks are
released on TD exit.

27 The locking of OP_STATE, SEPT tree and the TLB tracking fields is until before entering TDX non-root mode; the locks are released
before VM entry into the TD VCPU.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 282 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

5. Associate the VCPU with the current LP, and update TD VMCS using the algorithm described in 5.3.1.
6. If requested to resume into L1:

6.1. Check that the current VM is an L2 VM.
6.2. Set a sticky flag for resuming into L1. 5

If passed:

7. Update the TLB tracking state. This is done as a critical section allowing concurrent TDH.VP.ENTERs but no concurrent
TDH.MEM.TRACK. A concurrent TDH.MEM.TRACK may cause this locking to fail; in this case, the caller is expected
to retry TDH.VP.ENTER.
7.1. Lock the TDCS epoch tracking fields in shared mode. 10

7.2. Sample the TD’s epoch counter (TDCS.TD_EPOCH) into the VCPU’s TDVPS.VCPU_EPOCH.
7.3. Atomically increment the TD’s REFCOUNT that is associated with the sampled epoch

(TDCS.REFCOUNT[TD_EPOCH % 2]).
7.4. Release the shared mode locking of the epoch tracking fields.

If successful: 15

8. If TDVPS.VCPU_EPOCH was updated above, and this is not a new VCPU association:
8.1. Execute single-context (type 1) INVEPT.
8.2. Invalidate all soft-translated GPAs.

9. If current VM is an L2 VM:
9.1. If the sticky flag for resuming into L1 is set: 20

9.1.1. If last TD exit was synchronous (due to TDG.VP.VMCALL):
9.1.1.1. Save the host VMM’s GPR and XMM register values into TDVPS.

9.1.2. If the sticky flag for resuming into L1 indicates a synchronous TD exit from L2:
9.1.2.1. Translate the TDG.VP.ENTER guest state GPA.

If failed, emulate an EPT violation TD exit. 25

If passed:

9.1.2.2. Write the TDG.VP.ENTER output to memory.
9.1.3. Do a virtual L2→L1 exit:

9.1.3.1. Update the GPR image in TDVPS to emulate TDG.VP.ENTER output on L2->L1 exit.
9.1.3.2. Clear the sticky flag. 30

9.1.3.3. Make L1 the current VM.
10. If entering to an L2 VM, translate soft-translated GPAs, if required.

If failed, emulate an EPT violation TD exit.
11. If the TD VCPU to be entered is different than the last TD VCPU entered on the current LP, issue an indirect branch

prediction barrier command to the CPU by writing to the IA32_PRED_CMD MSR with the IBPB bit set. 35

12. Set TDVPS.VCPU_STATE to VCPU_ACTIVE.
13. Restore guest TD state:

13.1. If previous TD exit was due to a TDG.VP.VMCALL:
13.1.1. Restore guest XMM and GPR state that is not passed as-is from the host VMM, as controlled by the

value of guest TD RCX input to TDG.VP.VMCALL. 40

13.1.2. Set guest RAX to 0.
13.2. Else (TD exit was an asynchronous exit):

13.2.1. Restore CPU extended state from TDVPS (per TDCS.XFAM).
13.3. Restore other guest state from TDVPS.

14. Execute VMLAUNCH or VMRESUME depending on whether the entered VCPU and VM (i.e., the current VMCS) has 45

been launched on this LP since the VCPU’s last association with the LP (TDVPS.LAUNCHED[VM]).

Note: Logically, from the point of view of the host VMM, a successful TDH.VP.ENTER is terminated by the next TD exit.

5.4.67.8. Completion Status Codes

Table 5.279: TDH.VP.ENTER Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INCONSISTENT_MSR IA32_TSC_ADJUST MSR value is different than the value
sample by TDH.SYS.INIT.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 283 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_INCORRECT_MSR_VALUE

TDX_L2_EXIT_HOST_ROUTED_ASYNC

TDX_L2_EXIT_HOST_ROUTED_TDVMCALL

TDX_NON_RECOVERABLE_TD TDH.VP.ENTER launched or resumed TD VCPU operation
(TDX non-root mode) – followed later by a TD exit. The TD
state is non-recoverable – further TD entry is prohibited.
Exit reason is in RAX bits 31:0.

TDX_NON_RECOVERABLE_VCPU TDH.VP.ENTER launched or resumed TD VCPU operation
(TDX non-root mode) – followed later by a TD exit. The TD
VCPU state is non-recoverable – further TD entry to this
VCPU is prohibited. Exit reason is in RAX bits 31:0.

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

Note the special case where the indicated operand is
TLB_EPOCH. This may happen due to a conflict with
TDH.MEM.TRACK or TDH.EXPORT.PAUSE. The host VMM
may retry TDH.VP.ENTER.

Another special case is where the indicated operand is
SEPT_TREE. In some cases, TDH.VP.ENTER may acquire
exclusive access on the SEPT tree for a short period of time
and may fail due to a concurrent operation. The host VMM
should retry TDH.VP.ENTER.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.ENTER launched or resumed TD VCPU operation
(TDX non-root mode) – followed later by a TD exit. Exit
reason is in RAX bits 31:0.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TDCX_NUM_INCORRECT

TDX_TSC_ROLLBACK

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 284 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 285 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.68. TDH.VP.FLUSH Leaf

Flush the address translation caches and cached TD VMCS associated with a TD VCPU on the current logical processor.

Table 5.280: TDH.VP.FLUSH Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

Table 5.281: TDH.VP.FLUSH Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.FLUSH flushes the address translation caches and cached TD VMCS associated with a TD VCPU on the current LP. 10

It then marks the VCPU as not associated with any LP.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.282: TDH.VP.FLUSH Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive Shared Shared

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

 15

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED.
3. The current VCPU must be currently associated with the current LP.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 286 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If the above checks pass, the function does the following:

4. For each L2 VM:
4.1. Flush the TLB context and extended paging structure (EPxE) caches associated with the L2 VM using INVEPT

single-context invalidation (type 1).
4.2. Flush the cached L2 VMCS content to TDVPS using VMCLEAR. 5

5. Flush the TLB context and extended paging structure (EPxE) caches associated with the TD using INVEPT single-
context invalidation (type 1).

6. Flush the cached TD VMCS content to TDVPS using VMCLEAR.
7. Mark the current VCPU as not associated with any LP.
8. Atomically decrement (using LOCK XADD) the associated VCPUs counter (TDCS.NUM_ASSOC_VCPUS). 10

Completion Status Codes

Table 5.283: TDH.VP.FLUSH Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.FLUSH is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TDCX_NUM_INCORRECT

TDX_VCPU_NOT_ASSOCIATED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 287 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.69. TDH.VP.INIT Leaf

Initialize the saved state of a TD VCPU.

Operands

Table 5.284: TDH.VP.INIT Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

May be 0 or 1 (see the enumeration note below)

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

RDX Initial value of the guest TD VCPU RCX

R8 If the version number provided in RAX[23:16] is 0, R8 is ignored.

Else, R8 provides the following information:

Bits Field Description

31:0 X2APIC_ID VCPU’s virtual x2APIC ID

Must be unique across all VCPUs of the current TD.

63:32 Reserved Must be 0

 5

Table 5.285: TDH.VP.INIT Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

Other Unmodified

Leaf Function Latency

TDH.VP.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time. 10

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.INIT initializes the saved state of a VCPU in the TDVPR and TDPX pages.

Enumeration: TDH.VP.INIT’s support of version 1 or higher is enumerated by TDX_FEATURES0.TOPOLOGY_ENUM 15

(bit 20), readable by TDH.SYS.RD* (see 3.3.3.1), being set to 1. If not supported, calling TDH.VP.INIT
with a version number higher than 0 returns a TDX_OPERAND_INVALID(RAX) status.

VCPU Association: TDH.VP.INIT associates the target TD VCPU with the current LP – for details, see the [TDX Module
Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 20

of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 288 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.286: TDH.VP.INIT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive(h) Shared Shared

Implicit N/A HPA TDR page TDR R Opaque 4KB Exclusive(h)/
Shared(h)28

N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque 4KB Exclusive(i)/
Shared(i)28

N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Exclusive(i)/
Shared(h)29

N/A N/A

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE). 5

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized but not finalized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is

INITIALIZED).
5. The number of pages allocated to this TDVPS is correct.
6. The TD VCPU has not been initialized (by TDH.VP.INIT) and is not being torn down (TDVPS.VCPU_STATE is 10

VCPU_UNINITIALIZED).

If successful, the function does the following:

7. Atomically increment the TD’s VCPU counter (TDCS.NUM_VCPUS), and check that maximum number of VCPUs
(TDCS.MAX_VCPUS) has not been exceeded.

If passed: 15

8. Assign VCPU_ID, a unique sequential identifier to the VCPU.
9. If TDH.VP.INIT was called with version >= 1:

9.1. Check that the X2APIC_ID provided in R8 is different than all other VCPUs’ X2APIC_ID values.

If passed:

9.2. Set the VCPU’s virtual x2APIC_ID to the X2APIC_ID provided in R8. 20

10. Else (TDH.VP.INIT was called with version 0):
10.1. Clear TDCS.TOPOLOGY_ENUM_CONFIGURED to indicate that the TD’s virtual topology configuration is not

valid.

If passed:

11. Initialize the VCPU state fields in the logical TDVPS structure (TDVPR and TDCX pages). 25

12. Associate the VCPU with the current LP and update the VMCS physical pointers and HKID execution control with the
TD’s HKID.

13. Set the TDVPS.LAST_TD_EXIT to ASYNC_FAULT since the first TD entry is the same as TD entry following an
asynchronous fault-like TD exit.

28 For backward compatibility, if TDH.VP.INIT is called with version == 0, then TDR is acquired in shared mode. Else, TDR is acquired in
exclusive mode. TDCS is implicitly acquired with the same concurrency mode as TDR.

29 If TDH.VP.INIT is called with version == 0, then TDCS.OP_STATE is acquired in shared mode. Else, TDCS.OP_STATE is implicitly
acquired in exclusive mode, since TDR (and thus the whole TD) is acquired in exclusive mode.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 289 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.287: TDH.VP.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_MAX_VCPUS_EXCEEDED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCX_NUM_INCORRECT

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

TDX_X2APIC_ID_NOT_UNIQUE

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 290 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.70. TDH.VP.RD Leaf

Read a VCPU-scope metadata fields (control structure field) of a TD.

Table 5.288: TDH.VP.RD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Version number may be 0 or 1. See the enumeration details below.

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

For TDH.VP.RD version 1 or higher, a value of -1 is a special case: it is not a valid field identifier; in
this case the first readable field identifier is returned in RDX.

Table 5.289: TDH.VP.RD Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

RDX For TDH.VP.RD version 0, RDX is unmodified.

For TDH.VP.RD version 1 or higher:

• If the input field identifier was -1, RDX returns the first readable field identifier.

Else, in case of an error, RDX returns -1. On success, RDX returns the next readable field identifier.
A value of -1 indicates no next field identifier is available.

R8 Field content

In case of no success, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.RD reads a TDVPS field, given its field code. Reading is subject to the field’s readability (per the TD’s 10

ATTRIBUTES.DEBUG bit).

If version 1 or higher is specified in RAX, RDX returns the next host-side readable field identifier. This may be used by the
host VMM to dump the host readable VCPU metadata. To read all the available fields, the host VMM can invoke
TDH.VP.RD in a loop, starting with field identifier -1 as an input, until RDX returns -1. A status code of
TDX_METADATA_FIELD_SKIP indicates that the returned value is not applicable. 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 291 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Enumeration: Availability of TDH.VP.RD version 1 is enumerated by TDX_FEATURES0.ENHANCED_METADATA (bit
3), readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDH.VP.RD with a version number
higher than 0 returns a TDX_OPERAND_INVALID(RAX) status.

VCPU Association: TDH.VP.RD associates the target TD VCPU with the current LP. This requires that the VCPU will not
be associated with another LP – for details, see the [TDX Module Base Spec]. 5

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.290: TDH.VP.RD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared Shared Shared

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following: 10

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is not

UNALLOCATED nor UNINITIALIZED). 15

5. The provided field code is valid.
6. The provided TDVPS field is readable per the TD’s debug attribute (TDCS.ATTRIBUTES.DEBUG).

If successful, the function does the following:

7. Associate the VCPU with the current LP, and update TD VMCS using the algorithm described in 5.3.1.

If passed: 20

8. Read the control structure field using the algorithm described in 5.3.2.1.

Completion Status Codes

Table 5.291: TDH.VP.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_METADATA_FIRST_FIELD_ID_IN_CONTEXT Indicates that the first field ID in context is returned

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 292 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_TDCX_NUM_INCORRECT

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 293 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.4.71. TDH.VP.WR Leaf

Write a VCPU-scope metadata field (control structure field) of a TD.

Table 5.292: TDH.VP.WR Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version, see 5.4.1

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX The physical address of a TDVPR page (HKID bits must be 0)

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

R8 64b value to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

Table 5.293: TDH.VP.WR Output Operands Definition 5

Operand Description

RAX SEAMCALL instruction return code – see 5.4.1

R8 Previous content of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.VP.WR writes a TDVPS field, given its field code. The value (R8) is written as specified by the write mask (R9). Writing 10

is subject to the field’s internal write mask (per the TD’s ATTRIBUTES.DEBUG bit). Writing of specific fields is also subject
to additional rules as detailed in 4.2.

Table 5.294: Metadata Field Write Rules

Write Mask Bit in R9 Internal Write Mask Bit Value Bit in R8

0 N/A Silently ignored

1 0 Must be the same as the current field’s bit

1 1 Written to the current field’s bit

TDH.VP.WR returns the previous content of the field masked by the field’s readability (per the TD’s ATTRIBUTES.DEBUG
bit). 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 294 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

VCPU Association: TDH.VP.WR associates the target TD VCPU with the current LP. This requires that the VCPU will not
be associated with another LP – for details, see the [TDX Module Base Spec].

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.295: TDH.VP.WR Operands Information Definition 5

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared Shared Shared

Implicit N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i) N/A N/A

Implicit N/A N/A TDCS.OP_STATE OP_STATE RW Opaque N/A Shared N/A N/A

In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. The TD is not in a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED). 10

4. The TD must have been initialized (TDR.NUM_TDCX is the required number and TDCS.OP_STATE is not
UNALLOCATED nor UNINITIALIZED).

5. The provided field code is valid.
6. The provided TDVPS field is writable per the TD’s debug attribute (TDCS.ATTRIBUTES.DEBUG).

If successful, the function does the following: 15

7. Associate the VCPU with the current LP, and update TD VMCS using the algorithm described in 5.3.1.

If passed:

8. Write the control structure field and return its old value, using the algorithm described in 5.3.2.2.
8.1. Writes of some fields are subject to rules, as detailed per field in 4.2 – e.g., the value of fields that contain

Shared physical address, such as the Shared EPT Pointer, must have a Shared HKID value and must comply with 20

some alignment rules.
8.2. In most cases, writes of guest state fields are subject to the same rules as if the write is done by the guest itself

– e.g., writing to guest CR4 is subject to the rules described in the [TDX Module Base Spec]. If the write
operation is invalid, TDH.VP.WR fails and returns a proper error code.

8.3. In debug mode (ATTRIBUTES.DEBUG == 1), there are some TDVPS fields where the TDH.VP.WR does not check 25

whether the written values are architecturally valid. It is the responsibility of the host VMM, and failing to do
so will later cause a VM entry failure leading to a fatal shutdown of the Intel TDX module. The security of any
guest TD is not impacted.

8.4. In other cases, in debug mode (ATTRIBUTES.DEBUG == 1), TDH.VP.WR allows setting of TDVPS fields to values
that may impact the correct operation of the TD under debug. It is the responsibility of the host VMM to take 30

this into consideration.

• TDH.VP.WR is allowed to enable BTM by setting guest IA32_DEBUGCTL[7:6] to 0x1.

• TDH.VP.WR is allowed to modify the state of IA32_DEBUCTL[13] (ENABLE_UNCORE_PMI).

• TDH.VP.WR is allowed to enable VM exits on exceptions other than MCE by setting the TD VMCS exception
bitmap execution control. The Intel TDX module does not take this into account when handling VM exits 35

that occur during event delivery.

Completion Status Codes

Table 5.296: TDH.VP.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 295 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_NOT_WRITABLE

TDX_METADATA_FIELD_VALUE_NOT_VALID

TDX_METADATA_WR_MASK_NOT_VALID

TDX_OP_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.WR is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_VMCS_FIELD_NOT_INITIALIZED

TDX_TDCS_NOT_ALLOCATED

TDX_TDCX_NUM_INCORRECT

TDX_TDVPS_FIELD_NOT_WRITABLE

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

TDX_TD_VMCS_FIELD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 296 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5. Guest-Side (TDCALL) Interface Functions

The TDCALL instruction causes a VM exit to the Intel TDX module. It is used to call guest-side Intel TDX functions, either
local or a TD exit to the host VMM, as selected by RAX.

5.5.1. TDCALL Instruction (Common)

This section describes the common functionality of TDCALL. Leaf functions are described in the following sections. As 5

used by the Intel TDX module, TDCALL is allowed only in 64b mode.

Table 5.297: TDCALL Input Operands Definition

Operand Description

RAX Leaf and version numbers, as defined in the [TDX Module Base Spec]. See Table 5.299 below
for TDCALL leaf numbers.

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

63:24 Reserved Must be 0

Other See individual TDCALL leaf functions.

Table 5.298: TDCALL Output Operands Definition

Operand Description

RAX Instruction return code, indicating the outcome of execution of the instruction – see the [TDX
Module Base Spec] for details.

Other See individual TDCALL leaf functions.

 10

Table 5.299: TDCALL Instruction Leaf Numbers Definition

Leaf

Interface Function Name Description

0 TDG.VP.VMCALL Call a host VM service

1 TDG.VP.INFO Get TD execution environment information

2 TDG.MR.RTMR.EXTEND Extend a TD run-time measurement register

3 TDG.VP.VEINFO.GET Get Virtualization Exception Information for the recent #VE exception

4 TDG.MR.REPORT Creates a cryptographic report of the TD

5 TDG.VP.CPUIDVE.SET Control delivery of #VE on CPUID instruction execution

6 TDG.MEM.PAGE.ACCEPT Accept a pending private page into the TD

7 TDG.VM.RD Read a TD-scope metadata field

8 TDG.VM.WR Write a TD-scope metadata field

9 TDG.VP.RD Read a VCPU-scope metadata field

10 TDG.VP.WR Write a VCPU-scope metadata field

11 TDG.SYS.RD Read a TDX Module global-scope metadata field

12 TDG.SYS.RDALL Read all gust-readable TDX Module global-scope metadata fields

18 TDG.SERVTD.RD Read a target TD metadata field

20 TDG.SERVTD.WR Write a target TD metadata field

22 TDG.MR.VERIFYREPORT Verify a cryptographic report of a TD, generated on the current platform

23 TDG.MEM.PAGE.ATTR.RD Read the GPA mapping and attributes of a TD private page

24 TDG.MEM.PAGE.ATTR.WR Write the attributes of a private page

25 TDG.VP.ENTER Enter L2 VCPU operation

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 297 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf

Interface Function Name Description

26 TDG.VP.INVEPT Invalidate cached EPT translations for selected L2 VMs

27 TDG.VP.INVGLA Invalidate cached translations for selected pages in an L2 VM

Instruction Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This section describes how TDCALL leaf functions are implemented by the Intel TDX module. 5

The TDCALL instruction itself is specified in the [TDX Arch Extensions Spec]. There are multiple cases where TDCALL may
fail. Failures may result in an exception (#UD, #GP(0)). Failure cases include, among other, the following:

• CPU mode is incorrect

• Privilege level is not 0

TDCALL results in a VM exit to the TDX module. On VM exit, the Intel TDX module performs the following checks: 10

1. If the CPU mode is not 64b ((IA32_EFER.LMA == 1) && (CS.L == 1)), the Intel TDX module injects a #GP(0) fault into
the guest TD.

2. If the leaf number in RAX is not supported by the Intel TDX module, it returns a TDX_OPERAND_INVALID(0) status
code in RAX.

If all checks pass, the Intel TDX module calls the leaf function according to the leaf number in RAX – see the following 15

sections for individual leaf function details.

Completion Status Codes

Table 5.300: TDCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDCALL is successful.

TDX_OPERAND_INVALID Invalid leaf number

Other See individual leaf functions

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 298 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.2. TDG.MEM.PAGE.ACCEPT Leaf

Accept a pending private page and initialize it to all-0 using the TD ephemeral private key.

Table 5.301: TDG.MEM.PAGE.ACCEPT Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT leaf entry that maps the private page to be
accepted: either 0 (4KB) or 1 (2MB) – see 3.6.1.

11:3 Reserved Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the private page to be
accepted

63:52 Reserved Reserved: must be 0

Table 5.302: TDG.MEM.PAGE.ACCEPT Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.MEM.PAGE.ACCEPT accepts a pending private page, previously added by TDH.MEM.PAGE.AUG, into the TD. It 10

initializes the page to 0. If page attributes have been set by the guest TD, using TDG.MEM.PAGE.ATTR.WR, while the
page was pending, they become effective when the page is accepted.

SEPT Mapping Size Considerations

In most cases, the guest TD is unaware of how TD private pages are mapped by the host VMM in SEPT. However,
TDG.MEM.PAGE.ACCEPT operation specifies a page mapping size and may fail if the specified size is different than the 15

actual mapping size.

• If the page is mapped at a lower level than requested, the function returns TDX_PAGE_SIZE_MISMATCH. The guest
may re-invoke TDG.MEM.PAGE.ACCEPT specifying a 4KB page size.

• If the page is mapped at a higher level than requested, this results in an EPT violation TD exit, with extended exit
qualification indicating the error SEPT entry level and state, and the guest-requested mapping level. The host VMM 20

is expected to demote the page, then re-enter the guest TD so TDG.MEM.PAGE.ACCEPT is re-invoked.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 299 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Other Conditions that Prevent Page Acceptance

• If the page has already been accepted, the function returns TDX_PAGE_ALREADY_ACCEPTED.

• If the page is not PENDING nor PENDING_EXPORTED_DIRTY, this result in an EPT violation TD exit, with extended exit
qualification indicating the error SEPT entry level and state, and the guest-requested accept level.

Interruptibility 5

If, during its execution, TDG.MEM.PAGE.ACCEPT detects that an external interrupt is pending, it may resume the guest
TD with the CPU state unmodified. The progress so far is recorded in the page’s Secure EPT entry. This allows the external
interrupt to be recognized, causing a TD exit or a posted interrupt delivery. Typically, TDG.MEM.PAGE.ACCEPT will be re-
invoked and continue its work.

Guest TD software is not directly involved. Guest TD should not precede the TDCALL with an STI instruction or a MOV to 10

SS instruction. Posted interrupts may be delivered when the TDCALL flow is interrupted.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.303 TDG.MEM.PAGE.ACCEPT Operands Information Definition 15

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RCX GPA TD private page Blob RW Private 212+9*Level
Bytes

None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared(i)

Implicit N/A N/A Secure EPT tree N/A RW Private N/A None

Implicit N/A GPA Secure EPT entry SEPT Entry RW Private N/A Exclusive(h)

TDG.MEM.PAGE.ACCEPT checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

In addition to the memory operand checks per the table above, the function does the following (no specific order is
implied): 20

1. Walk the Secure EPT based on the GPA operand and requested level. The walk is successful if arrived at a leaf entry
whose state is PENDING. In case of error, return a status code or TD exit as described in the [TDX Module Base Spec].

If successful, do the following:

2. Loop until the whole page has been initialized, or until interrupted:
2.1. Initialize the next 4KB chunk to 0 using the TD’s ephemeral private HKID and direct writes (MOVDIR64B). 25

2.2. If not done and there is a pending interrupt, abort TDG.MEM.PAGE.ACCEPT and resume the guest TD without
updating RIP and any GPR.

If done initializing the page, do the following:

3. Set the SEPT entry to MAPPED.
4. For each L2 VM where the page is mapped: 30

4.1. Walk the L2 Secure EPT based on the GPA operand and find the L2 SEPT entry for the page to be accepted.
4.2. Restore the L2 SEPT entry attributes.
4.3. Set the L2 SEPT entry state to L2_MAPPED.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 300 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.304: TDG.MEM.PAGE.ACCEPT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower 32 bits of
the status. In many cases, this can be resolved by retrying the operation.

Specifically, it may indicate that a concurrent TDG.MEM.PAGE.ACCEPT is
using the same Secure EPT entry

TDX_PAGE_ALREADY_ACCEPTED

TDX_PAGE_SIZE_MISMATCH Requested page size is 2MB, but the page GPA is not mapped at 2MB size

TDX_SUCCESS TDG.MEM.PAGE.ACCEPT is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 301 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.3. TDG.MEM.PAGE.ATTR.RD Leaf

Read the GPA mapping and attributes of a TD private page or a private MMIO page30.

Table 5.305: TDG.MEM.PAGE.ATTR.RD Input Operands Definition

Operand Name Description

RAX Leaf and Version TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX GPA Guest physical address

Table 5.306: TDG.MEM.PAGE.ATTR.RD Output Operands Definition 5

Operand Name Description

RAX STATUS TDCALL instruction return code – see 5.5.1

RCX GPA_MAPPING Actual GPA mapping of the page:

Bits Name Description

2:0 LEVEL Level of the Secure EPT leaf entry that maps the private
page: either 0 (4KB), 1 (2MB) or 2 (1GB) – see 3.6.1.

11:3 RESERVED Reserved: set to 0

51:12 GPA Bits 51:12 of the guest physical start address of the
private page

Depending on the level, the following least significant bits
are always 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

61:52 RESERVED Reserved: set to 0

62 PENDING Flags that the page is PENDING

This is applicable to all PENDING states; if the TDX module
supports TDX Connect, it is also applicable to
MMIO_PENDING pages.

63 RESERVED Reserved: set to 0

RDX GPA_ATTR Guest-visible page attributes. See the GPA_ATTR definition in 3.6.3.

Other Unmodified

30 Applicable only if the TDX module supports TDX Connect.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 302 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.ATTR.RD reads the GPA mapping and attributes of a TD private page. Given a GPA (which can be
anywhere within a page) it returns the actual mapping level – either 0 (4KB), 1 (2MB) or 2 (1GB) – and the guest-readable 5

attributes. TDH.MEM.PAGE.ATTR.RD can read the attributes of a PENDING page.

GPA mapping level is exposed to the guest TD since page acceptance (TDH.MEM.PAGE.ACCEPT) and page attributes
modifications and L2 page aliases management (TDH.MEM.PAGE.ATTR.WR) are done at mapping granularity.

Enumeration: Availability of TDG.MEM.PAGE.ATTR.RD is enumerated by TDX_FEATURES0.TD_PARTITIONING (bit 7),
readable by TDG.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.MEM.PAGE.ATTR.RD returns a 10

TDX_OPERAND_INVALID(RAX) status.

 Support of TDX Connect is enumerated by TDX_FEATURES0.TDX_CONNECT (bit 6) and
TDX_FEATURES0.TDX_CONNECT_PARTITIONING (bit 32).

EPT Violation: If the requested GPA is not guest-readable and not pending acceptance, TDH.MEM.PAGE.ATTR.RD
causes an EPT violation TD exit. 15

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.307 TDG.MEM.PAGE.ATTR.RD Memory Operands Information Definition

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RCX GPA TD private page Blob RW Private None None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i)

Implicit N/A N/A Secure EPT tree N/A R Private N/A None

Implicit N/A N/A L2 Secure EPT trees N/A RW Private N/A None

Implicit N/A GPA Secure EPT entry SEPT Entry R Private N/A Exclusive(h)

Implicit N/A GPA L2 Secure EPT entries SEPT Entry RW Private N/A Exclusive(i)

TDG.MEM.PAGE.ATTR.RD checks the memory operands per the table above when applicable during its flow. The text 20

below does not explicitly mention those checks, except when necessary.

In addition to the memory operand checks per the table above, the function does the following (no specific order is
implied):

1. Check that the requested GPA is valid.
2. Walk the L1 Secure EPT based on the GPA operand. 25

2.1. The walk is successful if arrived at a leaf entry whose state is either guest accessible (MAPPED,
EXPORTED_DIRTY, *BLOCKEDW*) or pending but not blocked (PENDING, or PENDING_EXPORTED_*).

2.2. Else, do an EPT violation TD exit.

If successful, do the following:

3. For each L2 page alias to the L1 SEPT entry: 30

3.1. Walk that L2 VM’s SEPT and locate the page alias L2 SEPT leaf entry.
3.2. Read the L2 SEPT entry and assemble the returned attributes. If the page is pending or blocked for writing, the

L2 SEPT entry’s original access permission bits are read from their saved locations in the L2 SEPT entry.
4. Return the page mapping and attributes.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 303 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.308: TDG.MEM.PAGE.ATTR.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.MEM.PAGE.ATTR.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 304 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.4. TDG.MEM.PAGE.ATTR.WR Leaf

Write the attributes of a private page or a private MMIO page31. Create or remove L2 page aliases as required.

Table 5.309: TDG.MEM.PAGE.ATTR.WR Input Operands Definition

Operand Name Description

RAX Leaf and
Version

TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX GPA_MAPPING GPA mapping information:

Bits Name Description

2:0 LEVEL Level of the Secure EPT leaf entry that maps the private page:
either 0 (4KB), 1 (2MB) or 2 (1GB) – see 3.6.1.

11:3 RESERVED Reserved: must be 0

51:12 GPA Bits 51:12 of the guest physical address of the private page

Depending on the level, the following least significant bits
must be 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

63:52 RESERVED Reserved: must be 0

RDX GPA_ATTR Guest-visible page attributes. See the GPA_ATTR definition in 3.6.3.

To avoid writing the attributes of a certain VM, all 16 attribute bits
(GPA_ATTR_SINGLE_VM) for that VM should be set to 0.

Attribute bits for non-existent VMs must be 0.

R8 ATTR_FLAGS Attributes masks and invalidate EPT flags

Bits Field Description

15:0 RESERVED Must be 0

30:16 ATTR_MASK1 A bit value of 1 indicates that the applicable attributes bit is
to be written. Otherwise, the attributes bit is unmodified.

Must be 0 if the TD has no VM #1.

31 INVEPT1 Invalidate EPT for L2 VM #1

Must be 0 if the TD has no VM #1.

46:32 ATTR_MASK2 A bit value of 1 indicates that the applicable attributes bit is
to be written. Otherwise, the attributes bit is unmodified.

31 Applicable only if the TDX module supports TDX Connect.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 305 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

Must be 0 if the TD has no VM #2.

47 INVEPT2 Invalidate EPT for L2 VM #2

Must be 0 if the TD has no VM #2.

62:48 ATTR_MASK3 A bit value of 1 indicates that the applicable attributes bit is
to be written. Otherwise, the attributes bit is unmodified.

Must be 0 if the TD has no VM #3.

63 INVEPT3 Invalidate EPT for L2 VM #3

Must be 0 if the TD has no VM #3.

Table 5.310: TDG.MEM.PAGE.ATTR.WR Output Operands Definition

Operand Name Description

RAX STATUS TDCALL instruction return code – see 5.5.1

RCX GPA_MAPPING Actual GPA mapping of the page:

Bits Name Description

2:0 LEVEL Level of the Secure EPT leaf entry that maps the private
page: either 0 (4KB), 1 (2MB) or 2 (1GB) – see 3.6.1.

11:3 RESERVED Reserved: set to 0

51:12 GPA Bits 51:12 of the guest physical start address of the private
page

Depending on the level, the following least significant bits
are always 0:

Level 0 (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

61:52 RESERVED Reserved: set to 0

62 PENDING Flags that the page is PENDING

This is applicable to all PENDING states; if the TDX module
supports TDX Connect, it is also applicable to
MMIO_PENDING pages.

63 RESERVED Reserved: set to 0

RDX GPA_ATTR On success, if the attribute bits (GPA_ATTR_SINGLE_VM) for a specific VM were 0 on
input, they remain unmodified. For other VMs, RDX returns the updated guest-visible
page attributes.

In case of an error, RDX returns the current value of page attributes when possible. If
the current attributes for a certain VM have not been read, that VM’s attributes VALID
bit returns 0.

See the GPA_ATTR definition in 3.6.3.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 306 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.ATTR.WR writes the specified set of attributes of a TD private page, including L2 page alias attributes.
Only the bits selected by the attributes mask are updated. The private page can be either writable by the TD (MAPPED 5

or EXPORTED_DIRTY) or pending acceptance (PENDING or PENDING_EXPORTED_DIRTY). If the page is pending
acceptance, the written attributes will become effective when the page is later accepted by the guest TD, using
TDG.MEM.PAGE.ACCEPT.

TDH.MEM.PAGE.ATRR.WR ignores any VM’s GPA attributes set whose VALID bit is 0.

TDH.MEM.PAGE.ATTR.WR creates or removes L2 page aliases as required: 10

• If any of the requested L2 attributes VALID bit is set, and the R, W, Xs, Xu and PWA bits combination has a legal, non-
0 value, then if the L2 page alias does not exist, it is created. The rules for checking the legal combination of attributes
bits are described in 3.6.3.1.

• If any of the requested L2 attributes VALID bit is set, and the R, W, Xs, Xu and PWA bits are all 0, then if the L2 page
alias exists, it is removed. 15

Note: For the above operations, the Xu and PWA bits are always considered, regardless of the L2 VMCS setting of the
“mode-based execute control for EPT” (MBEC) and “EPT paging-write control” VM-execution controls.

Enumeration: Availability of TDG.MEM.PAGE.ATTR.WR is enumerated by TDX_FEATURES0.TD_PARTITIONING (bit 7),
readable by TDG.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.MEM.PAGE.ATTR.WR returns a
TDX_OPERAND_INVALID(RAX) status. 20

 Support of TDX Connect is enumerated by TDX_FEATURES0.TDX_CONNECT (bit 6) and
TDX_FEATURES0.TDX_CONNECT_PARTITIONING (bit 32).

SEPT Mapping Size Considerations

In most cases, the guest TD is unaware of how TD private pages are mapped by the host VMM in SEPT. However,
TDG.MEM.PAGE.ATTR.WR operation specifies a page mapping size and may fail if the specified size is different than the 25

actual mapping size.

• If the page is mapped at a lower level than requested, the function returns TDX_PAGE_SIZE_MISMATCH. The guest
may re-invoke TDG.MEM.PAGE.ATTR.WR specifying the actual mapping size as returned in RCX.

• If the page is mapped at a higher level than requested, this results in an EPT violation TD exit, with extended exit
qualification indicating the error SEPT entry level and state, and the guest-requested mapping level. The host VMM 30

is expected to demote the page, then re-enter the guest TD so TDG.MEM.PAGE.ATTR.WR is re-invoked.

Other Conditions that Prevent Page Attributes Modifications

• If the page is not guest-writable and is not pending, this results in an EPT violation TD exit, indicating a failed write
operation.

• If an L2 SEPT walk fails, meaning there’s a missing non-leaf L2 SEPT page, the operation depends on the setting of 35

the host writable TDCS field VM_CTLS, which is an array of 4 bitmaps, one per VM (only L2 VMs are applicable). Bit
0 controls the operation on L2 SEPT walk fails in TDCALL flows:
o The default value of 0 means that a TDX_L2_SEPT_WALK_FAILED status is returned to the L1 VMM.
o If the value is 1, the TDX module does an EPT violation TD exit, indicating a failed write operation exit, with

extended exit qualification indicating the error L2 SEPT level and VM index. The host VMM may then add the 40

missing L2 SEPT page using TDH.MEM.SEPT.ADD.

In any of the above cases, the page attributes are not modified.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.311 TDG.MEM.PAGE.ATTR.WR Memory Operands Information Definition 45

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RCX GPA TD private page Blob RW Private 212+9*Level
Bytes

None

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 307 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Addr.
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i)

Implicit N/A N/A L1 Secure EPT tree N/A R Private N/A None

Implicit N/A N/A L2 Secure EPT trees N/A RW Private N/A None

Implicit N/A GPA L1 Secure EPT entry SEPT Entry RW Private N/A Exclusive(h)

Implicit N/A GPA L2 Secure EPT entries SEPT Entry RW Private N/A Exclusive(i)

TDG.MEM.PAGE.ATTR.WR checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

In addition to the memory operand checks per the table above, the function does the following (no specific order is
implied): 5

1. Check that the requested page attributes and attributes mask operands are valid:
1.1. Non-0 attributes and mask are only allowed for existing L2 VMs.

2. Check that the requested GPA and level are valid.

If successful, do the following:

3. Walk the L1 Secure EPT based on the GPA operand and requested level. 10

3.1. If failed, do an EPT violation TD exit, indicating a failed write operation. Extended exit information provides the
host VMM with details.

3.2. If arrived at a non-leaf entry, return a TDX_PAGE_SIZE_MISMATCH status.
3.2.1. The guest TD may request the host VMM to demote the page mapping.

If passed: 15

4. Check SEPT entry state. TDG.MEM.PAGE.ATTR.WR is allowed for guest-writable or non-blocked pending leaf pages.
4.1. If failed, do an EPT violation TD exit, indicating a failed write operation. Extended exit information provides the

host VMM with details.

If passed, check and prepare the update L2 attributes:

5. For each L2 VM: 20

5.1. Calculate the combined attributes value for this L2 VM based on the provided attributes and mask.
5.2. If the combined attributes are valid:

5.2.1. If an L2 page alias exists, find the existing page alias L2 SEPT leaf entry:
5.2.1.1. Walk that L2 VM’s SEPT and locate the page alias L2 SEPT leaf entry.
5.2.1.2. Get the current L2 attributes and calculate the effective new attributes to be updated. 25

5.2.1.3. Check that the new attributes are legal.
5.2.2. Else (L2 page alias does not exist), if the combined attributes indicate that an L2 alias should be created:

5.2.2.1. Walk that L2 VM’s SEPT and locate the page alias L2 SEPT leaf entry.
5.2.2.2. If failed, then depending on the setting of TDCS.VM_CTLS either do an EPT violation TD exit or

return a status code. 30

If all checks passed, commit the updates:

6. For each L2 VM:
6.1. If an L2 alias exists:

6.1.1. If the combined attributes are valid, update the existing L2 alias leaf SEPT entry:
6.1.1.1. If the combined attributes indicate that an L2 mapping is present, update the L2 SEPT entry. 35

6.1.1.2. Else, mark the L2 SEPT entry as free.
6.2. Else (L2 alias dons exist),

6.2.1. If an existing L2 was found earlier, update it.
6.3. If requested by the INVEPT flag, flush the TLB context and extended paging structure (EPxE) caches associated

with the L2 VM, using INVEPT single-context invalidation (type 1). 40

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 308 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.312: TDG.MEM.PAGE.ATTR.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

TDX_PAGE_ATTR_INVALID The combination of page attributes to be set, after considering the
requested attributes, the requested attributes mask and the current
page attributes, is invalid.

TDX_PAGE_SIZE_MISMATCH Requested page size does not match its GPA mapping size

TDX_SUCCESS TDG.MEM.PAGE.ATTR.WR is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 309 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.5. TDG.MR.REPORT Leaf

TDG.MR.REPORT creates a TDREPORT_STRUCT structure that contains the measurements/configuration information of
the guest TD that called the function, measurements/configuration information of the Intel TDX module and a
REPORTMACSTRUCT.

Table 5.313: TDG.MR.REPORT Input Operands Definition 5

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Guest physical address of newly created report structure.

• For version 0, the buffer must be aligned on 1024B.

RDX 64B-aligned guest physical address of additional data to be signed

R8 Bits Name Description

7:0 Report sub type Must be 0

63:8 Reserved Reserved: must be 0

Table 5.314: TDG.MR.REPORT Output Operands Definition

Operand Description

RAX TDCALL instruction return code – see 5.5.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 10

vary.

This function creates a TDREPORT_STRUCT structure that contains the measurements/configuration information of the
guest TD that called the function, measurements/configuration information of the Intel TDX module and a
REPORTMACSTRUCT. The REPORTMACSTRUCT is integrity-protected with a MAC, and it contains the hash of the
measurements and configuration as well as additional REPORTDATA provided by the TD software. 15

The created TDREPORT_STRUCT version (REPORTTYPE.VERSION) is the lowest version that contains all the TD’s reported
information:

• If any service TD has been bound or pre-bound (i.e., SERVTD_HASH is not 0), then the version is 1.

• Else, the version is 0.

Additional REPORTDATA, a 64-byte value, is provided by the guest TD to be included in the TDG.MR.REPORT. 20

Note: Although not enforced by TDG.MR.REPORT, the guest TD should normally place REPORTDATA in private memory
to help ensure secure report generation.

Interruptibility If, during its execution, TDG.MR.REPORT detects that an external interrupt is pending, it may resume
the guest TD with the CPU state unmodified. The progress so far is recorded internally. This allows the

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 310 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

external interrupt to be recognized, causing a TD exit or a posted interrupt delivery. Typically,
TDG.MR.REPORT will be re-invoked and continue its work.

Guest TD software is not directly involved. Guest TD should not precede the TDCALL with an STI
instruction or a MOV to SS instruction. Posted interrupts may be delivered when the TDCALL flow is
interrupted. 5

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.315: TDG.MR.REPORT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align Check Concurrency
Restrictions

Explicit RCX GPA Output report TDREPORT_STRUCT RW Private/
Shared

1024B None

Explicit RDX GPA Input report data REPORTDATA R Private/
Shared

64B None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDCS.RTMR SHA384_HASH N/A Opaque N/A Shared

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared(i)

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific 10

order is implied):

1. R8 must specify report sub type 0.

If passed:

2. Determine REPORTTYPE.VERSION:
2.1. If there is any bound or pre-bound service TDs, then REPORTTYPE.VERSION is 1. 15

2.2. Else REPORTTYPE.VERSION is 0.

If passed:

3. Assemble a REPORTTYPE structure.
4. Assemble the output report’s TDINFO_STRUCT base fields from the TDCS reported fields (ATTRIBUTES, XFAM, MRTD,

MRCONFIGID, MROWNER, MROWNERCONFIG and RTMRs). 20

5. If REPORTTYPE.VERSION is 0, add the SERV_TD hash field as 0, and the RESREVED field.
6. If REPORTTYPE.VERSION is 1, add the SERV_TD hash field from TDCS, and the RESREVED field.
7. Calculate a SHA384 hash over TDINFO (size depends on REPORTTYPE.VERSION).
8. If the TDX module supports TD preserving updates:

8.1. Execute SEAMOPS(SEAMDB_REPORT) to complete the output report, based on the input report data, the 25

TDINFO hash calculated above, the report type structure and the SEAMDB entry’s index/nonce pair of the TDR.
8.2. If SEAMDB_REPORT returns an error (unrecognized index/nonce pair), then mark the TD state as FATAL and do

a TD exit with a TDX_NON_RECOVERABLE_TD_CORRUPTED_MD status code.
9. Else, execute SEAMOPS(SEAM_REPORT) to complete the output report, based on the input report data, the TDINFO

hash calculated above and the report type structure. 30

If successful:

10. Write the output report to memory.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 311 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.316: TDG.MR.REPORT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.MR.REPORT is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 312 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.6. TDG.MR.RTMR.EXTEND Leaf

Extend a TDCS.RTMR measurement register.

Table 5.317: TDG.MR.RTMR.EXTEND Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX 64B-aligned guest physical address of a 48B extension data buffer

RDX Index of the measurement register to be extended

Table 5.318: TDG.MR.RTMR.EXTEND Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This function extends one of the RTMR measurement registers in TDCS with the provided extension data in memory. 10

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.319 TDG.MR.RTMR.EXTEND Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RCX GPA EXTEND_DATA Blob R Private 64B None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i)

Implicit N/A N/A TDCS.RTMR SHA384_HASH N/A Opaque N/A Exclusive

Implicit N/A N/A TDVPR page TDVPS None Opaque N/A Shared(i)

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific 15

order is implied):

1. RDX must contain a valid RTMR index.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 313 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If successful, the function does the following:

2. Extend the RTMR indexed by RDX with the extension data. Extension is done by calculating SHA384 hash over a 96B
buffer, composed as follows:
o Bytes 0 through 47 contain the current RTMR value.
o Bytes 48 through 95 contain the extension data. 5

Completion Status Codes

Table 5.320: TDG.MR.RTMR.EXTEND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower 32 bits of the
status. In many cases, this can be resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.MR.RTMR.EXTEND is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 314 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.7. TDG.MR.VERIFYREPORT

Verify a cryptographic REPORTMACSTRUCT that describes the contents of a TD, to determine that it was created on the
current TEE on the current platform.

Table 5.321: TDG.MR.VERIFYREPORT Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX 256B-aligned guest physical address of the REPORTMACSTRUCT to be verified.

 5

Table 5.322: TDG.MR.VERIFYREPORT Output Operands Definition

Operand Description

RAX TDCALL instruction return code – see 5.5.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDG.MR.VERIFYREPORT computes a MAC over the provided REPORTMACSTRUCT structure; it then checks that the
computed value is the same as the MAC field of that structure.

Enumeration: Availability of TDG.MR.VERIFYREPORT is enumerated by TDX_FEATURES0.LOCAL_ATTESTATION (bit 8),
readable by TDG.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.MR.VERIFYREPORT returns a
TDX_OPERAND_INVALID(RAX) status. 15

Retry on Failure: As described in the [Base Spec], there can be cases where report verification fails due to, e.g., microcode
update or migration of the reporting TD and the verifying TD to another platform. In such cases it is
recommended that a fresh report will be generated by the reporting TD, using TDG.MR.REPORT, and
that TDG.MR.VERIFYREPORT will be called again.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 20

of the Intel TDX Module API.

Table 5.323: TDG.MR.VERIFYREPORT Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RCX GPA Input report REPORTMACSTRUCT R Private 256B None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDCS.RTMR SHA384_HASH N/A Opaque N/A Shared

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared(i)

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 315 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

The function performs the memory operand checks per the table above.

If passed, the function does the following:

1. Calculate MAC over the input REPORTMACSTRUCT fields that are included in the MAC calculation.
2. Compare the calculated MAC to the REPORTMACSTRUCT.MAC field are return a proper status. 5

Completion Status Codes

Table 5.324: TDG.MR.VERIFYREPORT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INVALID_CPUSVN See the above note about retrying the operation.

TDX_INVALID_REPORTMACSTRUCT See the above note about retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.MR.VERIFYREPORT is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 316 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.8. TDG.SERVTD.RD Leaf

As a service TD, read a metadata field (control structure field) of a target TD.

Table 5.325: TDG.SERVTD.RD Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Binding handle

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

R10 Target TD’s TD_UUID bits 63:0

R11 Target TD’s TD_UUID bits 127:64

R12 Target TD’s TD_UUID bits 191:128

R13 Target TD’s TD_UUID bits 255:192

Table 5.326: TDG.SERVTD.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

RDX RDX returns the next readable field identifier. A value of -1 indicates no next field identifier is
available.

If the input field identifier was -1, RDX returns the first readable field identifier. In case of another
error, RDX returns -1.

R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

R10 Updated target TD’s TD_UUID bits 63:0 – see the description below.

R11 Updated target TD’s TD_UUID bits 127:64 – see the description below.

R12 Updated target TD’s TD_UUID bits 191:128 – see the description below.

R13 Updated target TD’s TD_UUID bits 255:192 – see the description below.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 317 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SERVTD.RD reads a metadata field (control structure field) of a target TD.

Enumeration: Availability of TDG.SERVTD.RD is enumerated by TDX_FEATURES0.SERVICE_TD (bit 2), readable by 5

TDG.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.SERVTD.RD returns a
TDX_OPERAND_INVALID(RAX) status.

TD_UUID Update: TD_UUID is updated when the target TD is imported. If the service TD binding to the target TD
happened before the target TD was imported, the TD_UUID provided in R13:R10 may no longer be
correct. In this case, if the TD_UUID provided in R13:R10 is equal to the pre-import TD_UUID of 10

the target TD, TDG.SERVTD.RD returns TDX_TARGET_UUID_MISMATCH status in RAX, and updates
R13:R10 with the imported value of TD_UUID. The called should retry the operation with the new
TD_UUID.

Cross-TD Traps: Failure to access the metadata of the target TD may result in a cross-TD trap TD exit to the host
VMM. This TD exit is trap like, meaning it happens after TDG.SERVTD.RD has completed its 15

operation. On the following TDH.VP.ENTER, the host VMM may set a HOST_RECOVERABILITY_HINT
flag, indicating that TDG.SERVTD.RD may be retried. From the guest TD’s perspective, this flag
appears in bit 60 of the status code returned in RAX. See the [TDX Module Base Spec] for details.

RDX returns the next host-side readable field identifier. This may be used by the Service TD to dump the target TD
metadata readable by the Service TD. To read all the available fields, the service TD can invoke TDG.SERVTD.RD in a loop, 20

starting with field identifier -1 as an input, until RDX returns -1. A status code of TDX_METADATA_FIELD_SKIP indicates
that the returned value is not applicable.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.327 TDG.SERVTD.RD Operands Information Definition 25

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page (from
binding handle)

TDR R Opaque N/A Shared(h) Shared(h) Shared(h)

Implicit N/A N/A Service (this) TD’s
TDR page

TDR None Opaque N/A Shared(i) None None

Implicit N/A N/A Service (this) TD’s
TDCS structure

TDCS R Opaque N/A Shared(i) None None

Implicit N/A N/A Service (this) TD’s
TDCS.RTMR

SHA384_
HASH

N/A Opaque N/A Shared N/A N/A

Implicit N/A N/A Service (this) TD’s
TDVPS structure

TDVPS None Opaque N/A Shared(i) Shared(i) Shared(i)

Implicit N/A N/A Target TD’s TDCS
structure

TDCS RW Opaque N/A Shared(i) None None

Implicit N/A N/A Target TD’s
TDCS.OP_STATE

OP_STATE RW Opaque N/A Shared(h) N/A N/A

Implicit N/A N/A Target TD’s
Binding table

 R Opaque N/A Shared(h) None None

Implicit N/A N/A Target TD’s TD
metadata

N/A R Opaque N/A None None None

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 318 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

If the memory operand checks, per the table above, pass:

1. Based on the provided binding handle and the current (service) TD’s TD_UUID, calculate the target TD’s TDR HPA and
binding slot number.

2. Check that the calculated binding slot number does not exceed target TD’s the number of available slots32. 5

3. Acquire access to the target TD’s TDR in a shared mode.
3.1. If failed due to HOST_PRIORITY, do a TD exit.

4. Check the target TD state:
4.1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
4.2. The target TD is not in a FATAL state (TDR.FATAL is FALSE). 10

4.3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4.4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).

If passed:

5. Check that the target TD’s TD_UUID is the same as specified.
5.1. If failed, and the target TD’s PRE_IMPORT_UUID is the same as the specified TD_UUID, abort and return the 15

current target TD’s TD_UUID.

If passed:

6. Check that the target TD’s binding slot’s SERVTD_BINDING_STATE is BOUND.
7. Calculate the current (service) TD’s TD_UUID and check it is equal to the target TD’s binding slot’s SERVTD_UUID.
8. Calculate the current (service) TD’s TDINFO_HASH and check it is equal to the target TD’s binding slot’s 20

SERVTD_TDINFO_HASH.

If passed:

9. Read the control structure field using the algorithm described in 5.3.2.1.

Completion Status Codes

Table 5.328: TDG.SERVTD.RD Completion Status Codes (Returned in RAX) Definition 25

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_METADATA_FIRST_FIELD_ID_IN_CONTEXT Indicates that the first field ID in context is returned

TDX_METADATA_FIELD_VALUE_NOT_VALID

TDX_OP_STATE_INCORRECT This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_OPERAND_ADDR_RANGE_ERROR This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

32 This value is a property of the TDX module and is the same for all TDs.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 319 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_PAGE_METADATA_INCORRECT This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SERVTD_INFO_HASH_MISMATCH This service TD5’s info hash doesn’t match the service TD
info hash in the target TD’s binding information. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SERVTD_NOT_BOUND This service TD is not bound to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SERVTD_UUID_MISMATCH This service TD5’s TD_UUID doesn’t match the service TD
UUID in the target TD’s binding information. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SUCCESS TDG.SERVTD.RD is successful.

TDX_TARGET_UUID_MISMATCH The target TD’s TD_UUID value provided in R13:R10 doesn’t
match the actual value.

TDX_TARGET_UUID_UPDATED The target TD’s TD_UUID value provided in R13:R10 doesn’t
match the current actual value, but it does match the
TD_UUID that target TD had before it was imported. In this
case, the current TD_UUID value is provided in R13:R10, and
the operation can be retried.

TDX_TD_FATAL This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_TD_KEYS_NOT_CONFIGURED This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_TDCS_NOT_ALLOCATED This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 320 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.9. TDG.SERVTD.WR Leaf

As a service TD, write a metadata field (control structure field) of a target TD.

Table 5.329: TDG.SERVTD.WR Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Binding handle

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

R10 Target TD’s TD_UUID bits 63:0

R11 Target TD’s TD_UUID bits 127:64

R12 Target TD’s TD_UUID bits 191:128

R13 Target TD’s TD_UUID bits 255:192

Table 5.330: TDG.SERVTD.WR Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

R8 Previous contents of the field

In case of an error, R8 returns 0.

R10 Updated target TD’s TD_UUID bits 63:0 – see the description below.

R11 Updated target TD’s TD_UUID bits 127:64 – see the description below.

R12 Updated target TD’s TD_UUID bits 191:128 – see the description below.

R13 Updated target TD’s TD_UUID bits 255:192 – see the description below.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 321 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SERVTD.WR writes a metadata field (control structure field) of a target TD. The value (R8) is written as specified by
the write mask (R9). Writing is subject to the field’s internal write mask (per the TD’s ATTRIBUTES.DEBUG bit). Writing 5

of specific fields is also subject to additional rules.

Table 5.331: Metadata Field Write Rules

Write Mask Bit in R9 Internal Write Mask Bit Value Bit in R8

0 N/A Silently ignored

1 0 Must be the same as the current field’s bit

1 1 Written to the current field’s bit

Enumeration: Availability of TDG.SERVTD.WR is enumerated by TDX_FEATURES0.SERVICE_TD (bit 2), readable by
TDG.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.SERVTD.WR returns a 10

TDX_OPERAND_INVALID(RAX) status.

TD_UUID Update: TD_UUID is updated when the target TD is imported. If the service TD binding to the target TD
happened before the target TD was imported, the TD_UUID provided in R13:R10 may no longer be
correct. In this case, if the TD_UUID provided in R13:R10 is equal to the pre-import TD_UUID of
the target TD, TDG.SERVTD.WR returns TDX_TARGET_UUID_MISMATCH status in RAX, and updates 15

R13:R10 with the imported value of TD_UUID. The called should retry the operation with the new
TD_UUID.

Cross-TD Traps: Failure to access the metadata of the target TD may result in a cross-TD trap TD exit to the host
VMM. This TD exit is trap like, meaning it happens after TDG.SERVTD.WR has completed its
operation. On the following TDH.VP.ENTER, the host VMM may set a HOST_RECOVERABILITY_HINT 20

flag, indicating that TDG.SERVTD.WR may be retried. From the guest TD’s perspective, this flag
appears in bit 60 of the status code returned in RAX. See the [TDX Module Base Spec] for details.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.332 TDG.SERVTD.WR Operands Information Definition 25

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Explicit RCX HPA Target TD’s TDR
page (from
binding handle)

TDR RW Opaque N/A Shared(h) Shared(h) Shared(h)

Implicit N/A N/A Service (this) TD’s
TDR page

TDR None Opaque N/A Shared(i) None None

Implicit N/A N/A Service (this) TD’s
TDCS structure

TDCS R Opaque N/A Shared(i) None None

Implicit N/A N/A Service (this) TD’s
TDCS.RTMR

SHA384_
HASH

N/A Opaque N/A Shared N/A N/A

Implicit N/A N/A Service (this) TD’s
TDVPS structure

TDVPS None Opaque N/A Shared(i) Shared(i) Shared(i)

Implicit N/A N/A Target TD’s TDCS
structure

TDCS RW Opaque N/A Shared(i) None None

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 322 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency Restrictions

Operand Contain.
2MB

Contain.
1GB

Implicit N/A N/A Service (this) TD’s
TDCS.OP_STATE

OP_STATE R Opaque N/A Shared(h) N/A N/A

Implicit N/A N/A Target TD’s
Binding table

 R Opaque N/A Shared(h) None None

Implicit N/A N/A Target TD’s TD
metadata

N/A RW Opaque N/A None None None

If the memory operand checks, per the table above, pass:

1. Based on the provided binding handle and the current (service) TD’s TD_UUID, calculate the target TD’s TDR HPA and
binding slot number.

2. Check that the calculated binding slot number does not exceed target TD’s the number of available slots33. 5

3. Acquire access to the target TD’s TDR in a shared mode.
3.1. If failed due to HOST_PRIORITY, do a TD exit.

4. Check the target TD state:
4.1. The target TD’s TDR page metadata in PAMT must be correct (PT must be PT_TDR).
4.2. The target TD is not in a FATAL state (TDR.FATAL is FALSE). 10

4.3. The target TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4.4. The target TD’s TDCS pages must have been allocated (TDR.NUM_TDCX is the required number).
4.5. The target TD has not been paused for export.

If passed:

5. Check that the target TD’s TD_UUID is the same as specified. 15

5.1. If failed, and the target TD’s PRE_IMPORT_UUID is the same as the specified TD_UUID, abort and return the
current target TD’s TD_UUID.

If passed:

6. Check that the target TD’s binding slot’s SERVTD_BINDING_STATE is BOUND.
7. Calculate the current (service) TD’s TD_UUID and check it is equal to the target TD’s binding slot’s SERVTD_UUID. 20

8. Calculate the current (service) TD’s TDINFO_HASH and check it is equal to the target TD’s binding slot’s
SERVTD_TDINFO_HASH.

If passed:

9. Write the control structure field and return its old value, using the algorithm described in 5.3.2.2.

Completion Status Codes 25

Table 5.333: TDG.SERVTD.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_NOT_WRITABLE

TDX_METADATA_FIELD_VALUE_NOT_VALID

TDX_METADATA_WR_MASK_NOT_VALID

33 This value is a property of the TDX module and is the same for all TDs.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 323 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_OP_STATE_INCORRECT This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_OPERAND_ADDR_RANGE_ERROR This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_PAGE_METADATA_INCORRECT This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SERVTD_INFO_HASH_MISMATCH This service TD5’s info hash doesn’t match the service TD
info hash in the target TD’s binding information. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SERVTD_NOT_BOUND This service TD is not bound to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SERVTD_UUID_MISMATCH This service TD5’s TD_UUID doesn’t match the service TD
UUID in the target TD’s binding information. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_SUCCESS TDG.SERVTD.WR is successful.

TDX_TARGET_UUID_MISMATCH The target TD’s TD_UUID value provided in R13:R10 doesn’t
match the actual value.

TDX_TARGET_UUID_UPDATED The target TD’s TD_UUID value provided in R13:R10 doesn’t
match the current actual value, but it does match the
TD_UUID that target TD had before it was imported. In this
case, the current TD_UUID value is provided in R13:R10, and
the operation can be retried.

TDX_TD_FATAL This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

TDX_TD_KEYS_NOT_CONFIGURED This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 324 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Code Description

TDX_TDCS_NOT_ALLOCATED This status code refers to the target TD. Bit 60
(HOST_RECOVERABILITY_HINT) contains a hint from the host
VMM that the error condition has been resolved and the
service TD can retry the operation.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 325 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.10. TDG.SYS.RD Leaf

Read a TDX Module global-scope metadata field.

Table 5.334: TDG.SYS.RD Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

Table 5.335: TDG.SYS.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

RDX If the input field identifier was -1, RDX returns the first readable field identifier.

Else, in case of an error, RDX returns -1. On success, RDX returns the next readable field
identifier. A value of -1 indicates no next field identifier is available.

R8 Contents of the field

In case of no success, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SYS.RD reads a TDX Module global-scope metadata field. 10

RDX returns the next guest-side readable field identifier. This may be used by the guest TD to enumerate the TDX
Module’s capabilities and configuration. To read all the available fields, the guest TD can invoke TDG.SYS.RD in a loop,
starting with field identifier -1 as an input, until RDX returns -1. A status code of TDX_METADATA_FIELD_SKIP indicates
that the returned value is not applicable. Alternatively, the guest TD can use TDG.SYS.RDALL.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 15

of the Intel TDX Module API.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 326 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.336 TDG.SYS.RD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared(i)

1. Read the requested field using the algorithm described in 5.3.2.1.
2. Return the next readable field identifier, or a value of 0 if none exists.
3. Return the field value. 5

Completion Status Codes

Table 5.337: TDG.SYS.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_METADATA_FIRST_FIELD_ID_IN_CONTEXT Indicates that the first field ID in context is returned

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.SYS.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 327 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.11. TDG.SYS.RDALL Leaf

Read all guest-readable TDX module global-scope metadata fields.

Table 5.338: TDG.SYS.RDALL Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RDX The GPA of a 4KB buffer where a metadata list will be returned

The buffer must be aligned on 4KB.

In case of error, some field value entries might not contain valid data.

R8 Initial field identifier – see 3.10

If R8’s value is -1, then TDG.SYS.RDALL will start from the first global-scope metadata field
identifier.

Else, LAST_ELEMENT_IN_FIELD, LAST_FIELD_IN_SEQUENCE, WRITE_MASK_VALID and
CONTEXT_CODE fields are ignored. The FIELD_CODE must be the code of the first element of a
metadata field.

Table 5.339: TDG.SYS.RDALL Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

R8 Next field identifier. A value of -1 means all applicable field identifiers have been returned in the
metadata list.

In case of an error, as indicated by RAX, R8 returns -1.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.SYS.RDALL reads all host-readable TDX Module global-scope metadata fields into a metadata list in the provided 10

page.

If one or more applicable fields do not fit in the provided list buffer, the function can be invoked in a loop, each invocation
providing an initial field identifier returned as the next field identifier of the previous invocation, as shown in the following
example:

1. NEXT_FIELD_ID = -1 15

2. Repeat:
2.1. Set LIST_BUFFER to the next 4K buffer
2.2. Invoke TDG.SYS.RDALL(RDX = LIST_BUFFER, RDX = NEXT_FIELD_ID)
2.3. STATUS = RAX, NEXT_FIELD_ID = R8
Until ((STATUS is a non-recoverable error) or (NEXT_FIELD_ID is -1)) 20

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 328 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

The function never returns an empty list if there’s no error.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.340: TDG.SYS.RDALL Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RDX GPA Metadata List MD_LIST RW Private 4096 None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared(i)

 5

If the memory operand checks, per the table above, pass:

1. Dump all guest-readable metadata fields into the provided list buffer.

Completion Status Codes

Table 5.341: TDG.SYS.RDALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.SYS.RDALL is successful.

 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 329 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.12. TDG.VM.RD Leaf

Read a TD-scope metadata field (control structure field) of a TD.

Table 5.342: TDG.VM.RD Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Version number may be 0 or 1. See the enumeration details below.

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

For TDG.VM.RD version 1 or higher, a value of -1 is a special case: it is not a valid field identifier;
in this case the first readable field identifier is returned in RDX.

Table 5.343: TDG.VM.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

RDX For TDG.VM.RD version 0, RDX is unmodified.

For TDG.VM.RD version 1 or higher:

• If the input field identifier was -1, RDX returns the first readable field identifier.

• Else, in case of an error, RDX returns -1. On success, RDX returns the next readable field
identifier. A value of -1 indicates no next field identifier is available.

R8 Contents of the field

In case of no success, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VM.RD reads a VM-scope metadata field (control structure field) of a TD. 10

Enumeration: Availability of TDG.VM.RD version 1 is enumerated by TDX_FEATURES0.ENHANCED_METADATA (bit 3),
readable by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.VM.RD with a version number
higher than 0 returns a TDX_OPERAND_INVALID(RAX) status.

If version 1 or higher is specified in RAX, RDX returns the next host-side readable field identifier. This may be used by the
guest TD to dump the guest readable TD metadata. To read all the available fields, the guest TD can invoke TDG.VM.RD 15

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 330 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

in a loop, starting with field identifier -1 as an input, until RDX returns -1. A status code of TDX_METADATA_FIELD_SKIP
indicates that the returned value is not applicable.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.344 TDG.VM.RD Operands Information Definition 5

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared(i)

Implicit N/A N/A TD metadata (guest-
side access)

N/A R Opaque N/A Shared

If the memory operand checks, per the table above, pass:

10. Read the control structure field using the algorithm described in 5.3.2.1.

Completion Status Codes

Table 5.345: TDG.VM.RD Completion Status Codes (Returned in RAX) Definition 10

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_METADATA_FIRST_FIELD_ID_IN_CONTEXT Indicates that the first field ID in context is returned

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VM.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 331 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.13. TDG.VM.WR Leaf

Write a TD-scope metadata field (control structure field) of a TD.

Table 5.346: TDG.VM.WR Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

Table 5.347: TDG.VM.WR Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

R8 Previous contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VM.WR writes a VM-scope metadata field (control structure field) of a TD. The value (R8) is written as specified by 10

the write mask (R9). Writing is subject to the field’s internal write mask (per the TD’s ATTRIBUTES.DEBUG bit). Writing
of specific fields is also subject to additional rules.

Table 5.348: Metadata Field Write Rules

Write Mask Bit in R9 Internal Write Mask Bit Value Bit in R8

0 N/A Silently ignored

1 0 Must be the same as the current field’s bit

1 1 Written to the current field’s bit

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 332 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.349 TDG.VM.WR Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource
Type

Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared(i)

Implicit N/A N/A TD metadata (guest-
side access)

N/A R Opaque N/A Shared

If the memory operand checks, per the table above, pass: 5

1. Write the control structure field and return its old value, using the algorithm described in 5.3.2.2.

Completion Status Codes

Table 5.350: TDG.VM.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_NOT_WRITABLE

TDX_METADATA_FIELD_VALUE_NOT_VALID

TDX_METADATA_WR_MASK_NOT_VALID

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VM.WR is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 333 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.14. TDG.VP.CPUIDVE.SET Leaf

TDG.VP.CPUIDVE.SET controls unconditional #VE on CPUID execution by the guest TD.

Note: TDG.VP.CPUIDVE.SET is provided for backward compatibility. The guest TD may control the same settings by
writing to the VCPU-scope metadata fields CPUID_SUPERVISOR_VE and CPUID_USER_VE using TDG.VP.WR.

Table 5.351: TDG.VP.CPUIDVE.SET Input Operands Definition 5

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Controls whether CPUID executed by the guest TD will cause #VE(CONFIG_PARAVIRT)
unconditionally

Bits Name Description

0 SUPERVISOR Flags that when CPL is 0, a CPUID executed by the guest TD will cause a
#VE(CONFIG_PARAVIRT) unconditionally

1 USER Flags that when CPL > 0, a CPUID executed by the guest TD will cause a
#VE(CONFIG_PARAVIRT) unconditionally

63:2 RESERVED Reserved: must be 0

Table 5.352: TDG.VP.CPUIDVE.SET Output Operands Definition

Operand Description

RAX TDCALL instruction return code – see 5.5.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may 10

vary.

This function controls whether execution of CPUID by the guest TD, when running in supervisor mode and/or in user
mode, will unconditionally result in a #VE(CONFIG_PARAVIRT).

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.353 TDG.VP.CPUIDVE.SET Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 334 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared(i)

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific
order is implied):

1. Reserved bits of RCX must be 0.

If successful, the function does the following: 5

2. Update the TDVPS.CPUID_VE flags which control unconditional #VE(CONFIG_PARAVIRT) injection for CPUID for the
current VCPU.

Completion Status Codes

Table 5.354: TDG.VP.CPUIDVE.SET Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.CPUIDVE.SET is successful.

 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 335 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.15. TDG.VP.ENTER Leaf

Enter L2 VCPU operation.

From the L1 VMM’s point of view, TDG.VP.ENTER is a complex operation that normally involves L1→L2 VM entry and
L2→L1 VM exit; however, it may fail before L2 VM entry and may also involve TD exits and entries. Therefore, output
operands are specified by multiple tables below. 5

Inputs

Table 5.355: TDG.VP.ENTER Input Operands Definition

Operand Name Description

RAX Leaf and Version TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX VM_FLAGS VM identifier and flags

Bits Name Description

1:0 INVD_TRANSLATIONS Controls how TDG.VP.ENTER flushes the TLB context
and extended paging structure (EPxE) caches
associated with the L2 VM before entering the L2
VCPU

51:2 Reserved Reserved: must be 0

53:52 VM L2 virtual machine index (must be 1 or higher)

63:54 Reserved Reserved: must be 0

RDX GUEST_STATE_GPA The GPA of a 256-bytes aligned L2_ENTER_GUEST_STATE structure - see 3.8.1 for
details.

Table 5.356: INVD_TRANSLATION Definition

Value Address Translation Invalidation Underlying Mechanism Comments

0 No invalidation None

1 Invalidate all TLB entries and extended
paging-structure translations (EPxE)
associated with the L2 VM being
entered

INVEPT single-context invalidation
(type 1)

2 Invalidate all TLB entries associated
with the L2 VM being entered

INVVPID single-context invalidation
(type 1)

See enumeration
details below.

3 Invalidate TLB entries associated with
the L2 VM being entered, excluding
global translations

INVVPID single-context invalidation,
retaining global translations (type 3)

See enumeration
details below.

 10

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 336 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Outputs

TDG.VP.ENTER output format depends on how the function was terminated.

The following table details TDG.VP.ENTER output operands when the interface function returns without entering the L2
VCPU due to an error or some other condition.

Table 5.357: TDG.VP.ENTER Output Operands Definition on No L2 VM Entry 5

Operand Name Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

47:32 CLASS and
DETAILS_L1

May have the following values:

• TDX_PENDING_INTERRUPT, indicating that an
interrupt is pending for L1

• Any other value not in the table below

Other See the function completion status definition in
5.5.1

Other Unmodified

The following table details TDG.VP.ENTER output operands when L2 VM entry succeeds, and later an L2 VM exit occurs
due to a VMX architectural exit reason.

Table 5.358: TDG.VP.ENTER Output Operands Definition on an L2→L1 Exits Following an L1→L2 Entry

Operand Name Description

RAX Status SEAMCALL instruction return code

Bit(s) Name Description

31:0 DETAILS_L2: Exit
Reason

L2 VMCS exit reason

47:32 CLASS and
DETAILS_L1

May have the following values:

• TDX_SUCCESS, indicating a normal L2→L1 exit

• TDX_L2_EXIT_PENDING_INTERRUPT, indicating an
L2→L1 exit due to an interrupt posted to L1

• TDX_L2_EXIT_HOST_ROUTED_*, indicating a TD
exit from L2 where the host VMM requested
resumption of L1

Other values in the range 0x1100 through 0x111F are
reserved for future additional status codes that
indicate an L2→L1 exit following an L1→L2 entry.

Other See the function completion status definition in 5.5.1

RCX Exit
Qualification

exit qualification from L2 VMCS

RDX Guest Linear
Address

guest-linear address from L2 VMCS

RSI CS Info CS selector, AR and limit

Bits Details

15:0 CS Selector

31:16 CS AR bit 15:0

63:32 CS Limit

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 337 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Name Description

RDI CS Base CS base address

R8 Guest
Physical
Address

guest-physical address from L2 VMCS

R9 VM-Exit
Interruption
Information

The following information is provided for L2 VM exits due to vectored events.

In other cases, R9 content should be ignored.

Bits Details

31:0 VM-Exit Interruption Information

63:32 VM-Exit Interruption Error Code

R10 IDT-
Vectoring
Information

The following information is provided for L2 VM exits that occur during event
delivery.

In other cases, R10 content should be ignored.

Bits Details

31:0 IDT-Vectoring Information

63:32 IDT-Vectoring Error Code

R11 VM-Exit
Instruction
Information

The following information is provided for L2 VM exits due to instruction execution.

In other cases, R11 content should be ignored.

Bits Details

31:0 VM-Exit Instruction Information

63:32 VM-Exit Instruction Length

R12 Additional
Exit
Information

Additional exit information

Bits Details

1:0 CPL (from GuestSS.AR.DPL)

63:2 Reserved, cleared to 0

R13 Extended
Exit
Qualification

Extended exit qualification

3:0 Extended exit qualification type

Value Name Description

0 NONE No extended exit qualification

6 PENDING_EPT_VIOLATION Extended exit qualification for an EPT
violation due to L2 VM access to a
PENDING page

Other Reserved

63:4 Reserved, set to 0

R14 VM-Exit
Extended
Instruction
Information

If both the TDX module and the CPU support Intel® APX (Advanced Performance
Extensions), as enumerated by TDX_FEATURES0.APX (bit 28), then R14 returns the L2
VMCS’ VM-Exit Extended Instruction Information field.

Else, R14 returns 0.

RBX, R15 None Cleared to 0

Other
state

Any state that the L2 VM is allowed to use may be modified.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 338 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

CPU State Preservation Following a Successful L1→L2 VM Entry and an L2→L1 VM Exit

Following a successful L1→L2 VM entry and an L2→L1 VM exit, some CPU state is modified:

• General purpose register (GPR) values are not preserved.

• Any state that the L2 VM is allowed to use may be modified.

Leaf Function Description 5

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.ENTER transitions the VCPU into L2 VM operation. The function returns either if failed to enter L2 VM or after
successful entry to L2 VM and then exit from L2 VM.

Enumeration: Availability of TDG.VP.ENTER is enumerated by TDX_FEATURES0.TD_PARTITIONING (bit 7), readable by 10

TDG.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.VP.ENTER returns a
TDX_OPERAND_INVALID(RAX) status.

 Available INVD_TRANSLATION values are enumerated by TDX_FEATURES0.L2_TLB_INVD_OPT (bit 19).

Availability of PENDING_EPT_VIOLATION indication in R13 is enumerated by
TDX_FEATURES.PENDING_EPT_VIOLATION_V2 (bit 16). 15

The following table lists non-error TDG.VP.ENTER termination conditions:

Table 5.359: TDG.VP.ENTER Termination Cases

Case Status in RAX[63:32] Description

Normal TDX_SUCCESS L1→L2 entry was successful, followed by an L2→L1 exit. L2 VM
exit information is provided in output GPRs.

Host Requested
L2 Exit

TDX_L2_EXIT_HOST_
ROUTED_ASYNC

L1→L2 entry was successful. Later, following direct TD exit from
L2, the host VMM requested resumption of L1. L2 CPU state is
updated in the register list. L2 VM exit information is provided in
output GPRs. This information was provided to the host VMM on
TD exit; it may or may not be meaningful to the L1 VMM.

In case of TDG.VP.VMCALL, the L2 CPU state is the state after
completion of that function, e.g., GPR values are as returned by
the host VMM as inputs to TDH.VP.ENTER.

This condition is sticky. I.e., if resumption of L1 encountered a
problem that required a TD exit (e.g., an EPT violation) the
following TD entry resumes L1 and provides the same
TDX_L2_EXIT_HOST_ROUTED status.

Host Requested
L2 Exit
following
TDG.VP.VMCALL

TDX_L2_EXIT_HOST_
ROUTED_TDVMCALL

L1→L2 entry was successful. Later, following TDG.VP.VMCALL that
caused a direct TD exit from L2, the host VMM requested
resumption of L1.

L2 CPU state is updated in the L2_ENTER_GUEST_STATE structure.
The L2 CPU state is the state after completion of TDG.VP.VMCALL,
e.g., GPR values are as returned by the host VMM as inputs to
TDH.VP.ENTER.

L2 VM exit information is provided in output GPRs. This
information was provided to the host VMM on the last TD exit; it
may or may not be meaningful to the L1 VMM.

This condition is sticky. I.e., if resumption of L1 encountered a
problem that required a TD exit (e.g., an EPT violation) the
following TD entry resumes L1 and provides the same
TDX_L2_EXIT_HOST_ROUTED_TDVMCALL status. Note that in such
case the L2 VM exit information reflects, e.g., the EPT violation,
not the original TDG.VP.VMCALL exit.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 339 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Case Status in RAX[63:32] Description

Pending
Interrupt L2 Exit

TDX_L2_EXIT_PENDING_
INTERRUPT

L1→L2 entry was successful. Later, an L2→L1 exit happened due
to an interrupt that was posted to L1. L2 CPU state is updated in
the register list. L2 VM exit information is provided in output
GPRs but is not necessarily meaningful to the L1 VMM (e.g., VM-
exit interruption information is for the external interrupt that
triggered the L2→L1 exit).

No L2 Entry Other L1→L2 entry was aborted because of some condition, which may
or may not be an error, as indicated by RAX bit 63.

E.g., entry may have been aborted due to a pending virtual
interrupt. In this case, the L1 VMM typically sets RFLAGS.IF to 1,
handles the interrupt and then invokes TDG.VP.ENTER again.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.360: TDG.VP.ENTER Memory Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RDX GPA Guest state L2_ENTER_GUEST_
STATE

RW Private 256B None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS None Opaque N/A Shared(i)

 5

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. VM_FLAGS:
1.1. VM index must be between 1 and TDCS.NUM_L2_VMS.
1.2. The reserved fields must be 0.

2. GUEST_STATE_GPA is a valid private GPA. 10

If passed:

3. Check if there is a pending virtual interrupt to L1. This is indicated by RVI[7:4] > VPPR[7:4]. If so, terminate with a
TDX_PENDING_INTERRUPT status.

If no interrupt is pending:

4. Translate GPAs: 15

4.1. Translate TDG.VP.ENTER memory output operands GPAs. Translation needs to be done in one of the following
cases:

• The GPA is different than stored in TDVPS from last time TDG.VP.ENTER was called for this VM.

• The GPA has been blocked since last translated.

• HPA shadow for this GPA is NULL_PA. 20

Translation failure leads to an EPT violation TD exit.

If passed:

4.2. Translate GPAs of L2 VMCS fields. Translation needs to be done in one of the following cases:

• The GPA has been blocked since last translated.

• HPA shadow for this GPA is NULL_PA. 25

If passed:

5. If INVD_TRANSLATIONS is not 0:
5.1. Execute INVEPT type 1, INVVPID type 1 or INVVPID type 3 to flush address translations of the L2 VM.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 340 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

6. Read the provided register list
6.1. Write VMCS-stored register values (e.g., RSP) to the L2 VMCS.
6.2. Load GPR values to the CPU’s GPRs.

7. Execute VMLAUNCH or VMRESUME depending on whether the entered VCPU and L2 VM (i.e., the current L2 VMCS)
has been launched on this LP since the VCPU’s last association with the LP (TDVPS.LAUNCHED[VM]). 5

Completion Status Codes

Table 5.361: TDG.VP.ENTER Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_L2_EXIT_HOST_ROUTED_ASYNC L1→L2 entry succeeded. Later, following an asynchronous
TD exit from L2, the host VMM requested resumption of L1.

TDX_L2_EXIT_HOST_ROUTED_TDVMCALL L1→L2 entry succeeded. Later, following a TDG.VP.VMCALL
TD exit from L2, the host VMM requested resumption of L1.

TDX_L2_EXIT_PENDING_INTERRUPT L1→L2 entry succeeded, and later L2→L1 exit happened due
to an interrupt that was posted to L1 and is pending.

TDX_OPERAND_INVALID

TDX_PENDING_INTERRUPT L1→L2 entry was aborted because an interrupt is pending
for the L1 VMM. This indication is returned even if the L1
VMMs cleared RFLAGS.IF.

TDX_SUCCESS

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 341 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.16. TDG.VP.INFO Leaf

Get guest TD execution environment information.

Table 5.362: TDG.VP.INFO Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

Table 5.363: TDG.VP.INFO Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1 – returns a constant value of TDX_SUCCESS (0)

RCX Bits Name Description

5:0 GPAW The effective GPA width (in bits) for this TD (do not confuse with MAXPA).
SHARED bit is at GPA bit GPAW-1.

Only GPAW values 48 and 52 are possible.

63:6 RESERVED Reserved: 0

RDX The TD’s ATTRIBUTES (provided as input to TDH.MNG.INIT)

R8 Bits Name Description

31:0 NUM_VCPUS Number of Virtual CPUs that are usable (i.e., either active or ready)

63:32 MAX_VCPUS TD's maximum number of Virtual CPUs (provided as input to
TDH.MNG.INIT)

R9 Bits Name Description

31:0 VCPU_INDEX Virtual CPU index, starting from 0 and allocated sequentially on each
successful TDH.VP.INIT

63:32 RESERVED Reserved for enumerating future Intel TDX module capabilities, etc.: set to
0

R10 Bits Name Description

0 SYS_RD Indicates that the TDG.SYS.RD/RDM/RDALL functions are available.
Further enumeration can be done using these functions.

63:1 RESERVED Reserved – set to 0

R11 Reserved for enumerating future Intel TDX module capabilities, etc.: set to 0

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 342 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.INFO provides the TD software with execution environment information – beyond information that is provided
by CPUID. 5

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.364: TDG.VP.INFO Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS R Opaque N/A Shared(i)

Completion Status Codes 10

Table 5.365: TDG.VP.INFO Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS TDG.VP.INFO is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 343 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.17. TDG.VP.INVEPT Leaf

Invalidate cached EPT translations for selected L2 VMs.

Table 5.366: TDG.VP.INVEPT Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX VM index bitmap

Bit N value of 1 indicates a request to invalidate EPT for VM index N. N must be between 1 and
the number of L2 VMs in this TD.

Bits Name Description

0 Reserved Reserved: must be 0

1 L2_VM_1 Invalidate EPT for L2 VM #1

2 L2_VM_2 Invalidate EPT for L2 VM #2

3 L2_VM_3 Invalidate EPT for L2 VM #3

63:4 Reserved Reserved: must be 0

Table 5.367: TDG.VP.INVEPT Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.INVEPT executes INVEPT to invalidate the EPT translations of the specified L2 VMs. 10

Enumeration: Availability of TDG.VP.INVEPT is enumerated by TDX_FEATURES0.TD_PARTITIONING (bit 7), readable
by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.VP.INVEPT returns a
TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 15

Table 5.368 TDG.VP.RD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 344 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS R Opaque N/A Shared(i)

If the memory operand checks, per the table above, pass:

1. Check the validity of the VM index bit mask
2. Execute INVEPT type 1 (single context invalidation) for the specified L2 VMs’ EPTP.

Completion Status Codes 5

Table 5.369: TDG.VP.INVEPT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.INVEPT is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 345 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.18. TDG.VP.INVGLA Leaf

Invalidate Guest Linear Address (GLA) mappings in the translation lookaside buffers (TLBs) and paging-structure caches
for a specified L2 VM and a specified list of 4KB-aligned linear addresses.

Table 5.370: TDG.VP.INVGLA Input Operands Definition

Operand Name Description

RAX Leaf and Version TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version
Number

Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX VM_AND_FLAGS VM identifier and flags

Bits Name Description

0 LIST 0: RDX contains a single GLA list entry

1: RDX contains the GPA and other information of a GLA
list in memory.

51:1 Reserved Reserved: must be 0

53:52 VM L2 virtual machine index (must be 1 or higher)

63:54 Reserved Reserved: must be 0

RDX GLA_LIST_ENTRY
or GLA_LIST_INFO

Depending on the LIST flag in RCX, RDX contains either of the following:

• A single GLA_LIST_ENTRY, specifying up to 512 consecutive guest linear addresses,
each aligned on 4KB.

• GLA_LIST_INFO, specifying the GPA of a guest linear address (GLA) list in private
memory. Each entry in the GLA list specifies up to 512 consecutive guest linear
addresses, each aligned on 4KB. GLA_LIST_INFO also specifies the first and last GLA
list entries to process.

See 3.6.4 for details.

 5

Table 5.371: TDG.VP.INVGLA Output Operands Definition

Operand Description

RAX Status TDCALL instruction return code

RDX GLA_LIST_ENTRY
or GLA_LIST_INFO

Depending on the LIST flag provided as input in RCX, RDX contains either of the
following:

• If LIST was 0, RDX contains the single GLA_LIST_ENTRY provided as an input,
unmodified.

• If LIST was 1, RDX contains the GLA_LIST_INFO provided as input, but with the
FIRST_ENTRY and NUM_ENTRIES fields updated to reflect the number of entries
processed so far. If all entries have been processed successfully, NUM_ENTRIES is
set to 0.

Other Unmodified

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 346 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.INVGLA executes INVVPID type 0 to invalidate the cached translations for the specified list of 4KB page Guest
Linear Addresses (GLA) of the specified L2 VM. 5

Enumeration: Availability of TDG.VP.INVGLA is enumerated by TDX_FEATURES0.TD_PARTITIONING (bit 7), readable
by TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.VP.INVGLA returns a
TDX_OPERAND_INVALID(RAX) status.

Interruptibility If, during its execution, TDG.VP.INVGLA detects that an external interrupt is pending, it may resume the
guest TD with the CPU state unmodified, except for the following: 10

• GLA_LIST_INFO in RDX is updated to reflect the GLAs processed so far.

This allows the external interrupt to be recognized, causing a VM exit or a posted interrupt delivery.
Typically, TDG.VP.INVGLA will be re-invoked (since RIP has not changed) and continue its work. Guest
TD software is not directly involved.

Guest TD software is not directly involved. Guest TD should not precede the TDCALL with an STI 15

instruction or a MOV to SS instruction. Posted interrupts may be delivered when the TDCALL flow is
interrupted.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.372 TDG.VP.INVGLA Operands Information Definition 20

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Explicit RDX GPA GLA list page GLA_LIST R Private 4096 None

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS R Opaque N/A Shared(i)

If the memory operand checks, per the table above, pass, the function checks the following conditions (no specific order
is implied):

1. VM is the index of an existing L2 VM.

If passed: 25

2. If the LIST flag in RCX is 0, process a single GLA_LIST_ENTRY in RDX:
2.1. With current GLA starting from BASE_GLA, repeat for each page through LAST_PAGE:

2.1.1. Execute INVVPID type 0, providing the current GLA and the VM’s VPID.
2.1.2. Advance the current GLA by 4KB.

3. Else (LIST flag in RCX is 1), process a GLA list: 30

3.1. Check the validity of GLA_LIST_INFO.

If passed:

3.2. Translate the GPA list’s GPA.
3.2.1. On translation error, do a TD exit with an EPT violation indication.

3.3. Repeat for NUM_ENTRIES from FIRST_ENTRY: 35

3.3.1. Read the current GLA_LIST_ENTRY.
3.3.2. Process the current entry as described in the single-entry case above.
3.3.3. If there is a pending interrupt and this was not the last entry:

3.3.3.1. Update RDX to reflect the work done so far: set FIRST_ENTRY to the index of the next entry and
NUM_ENTRIES to the remaining number of entries. 40

3.3.3.2. Resume the guest TD without updating RIP or any other state except for RDX.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 347 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.373: TDG.VP.INVGLA Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.INVGLA is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 348 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.19. TDG.VP.RD Leaf

Read a VCPU-scope metadata field (control structure field) of a TD.

Table 5.374: TDG.VP.RD Input Operands

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and ELEMENT_SIZE_CODE components of the field
identifier are ignored.

A value of -1 is a special case: it is not a valid field identifier; in this case the first readable field
identifier is returned in RDX.

Table 5.375: TDG.VP.RD Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

RDX If the input field identifier was -1, RDX returns the first readable field identifier.

Else, in case of an error, RDX returns -1. On success, RDX returns the next readable field identifier.
A value of -1 indicates no next field identifier is available.

R8 Contents of the field

In case of no success, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.RD reads a VCPU-scope metadata field (control structure field) of a TD. 10

RDX returns the next host-side readable field identifier. This may be used by the guest TD to dump the guest readable
VCPU metadata. To read all the available fields, the guest TD can invoke TDG.VP.RD in a loop, starting with field identifier
-1 as an input, until RDX returns -1. A status code of TDX_METADATA_FIELD_SKIP indicates that the returned value is not
applicable.

Enumeration: Availability of TDG.VP.RD enumerated by TDX_FEATURES0.ENHANCED_METADATA (bit 3), readable by 15

TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.VP.RD returns a TDX_OPERAND_INVALID(RAX)
status.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 349 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.376 TDG.VP.RD Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS R Opaque N/A Shared(i)

If the memory operand checks, per the table above, pass: 5

1. Read the control structure field using the algorithm described in 5.3.2.1.

Completion Status Codes

Table 5.377: TDG.VP.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_SKIP Indicates that the field value being read is not applicable
and needs to be skipped. If called in a loop, use RDX as the
identifier of the next field to be read, if any.

TDX_METADATA_FIRST_FIELD_ID_IN_CONTEXT Indicates that the first field ID in context is returned

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.RD is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 350 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.20. TDG.VP.VEINFO.GET Leaf

Intel SDM, Vol. 3, 24.9.4 Information for VM Exits Due to Instruction Execution
Intel SDM, Vol. 3, 25.5.6 Virtualization Exceptions
Intel SDM, Vol. 3, 27.2.5 Information for VM Exits Due to Instruction Execution

Get Virtualization Exception Information for the recent #VE exception. 5

Table 5.378: TDG.VP.VEINFO.GET Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Version 0 is always supported.

Version 1 is supported if the TDX module enumerates
TDX_FEATURES0.VE_REDUCTION (bit 30) as 1.

Version 2 is supported if both the TDX module and the CPU support
Intel® APX, as enumerated by TDX_FEATURES0.APX (bit 28).

63:24 Reserved Must be 0

Table 5.379: TDG.VP.VEINFO.GET Output Operands Definition

Operand Description

RAX TDCALL instruction return code – see 5.5.1

RCX Bits Name Description

31:0 Exit Reason The 32-bit value that would have been saved into the VMCS as an exit
reason if a VM exit had occurred instead of the virtualization exception

39:32 #VE
Category

If TDG.VP.VEINFO.GET was called with version 0, this field returns 0.

Else, this field returns the #VE category, as defined in the [Base FAS].

63:40 Reserved Reserved: 0

In case of an error, RCX returns 0.

RDX Exit Qualification: the 64-bit value that would have been saved into the VMCS as an exit
qualification if a legacy VM exit had occurred instead of the virtualization exception

In case of an error, RDX returns 0.

R8 Guest Linear Address: the 64-bit value that would have been saved into the VMCS as a guest-
linear address if a legacy VM exit had occurred instead of the virtualization exception

In case of an error, R8 returns 0.

R9 Guest Physical Address: the 64-bit value that would have been saved into the VMCS as a guest-
physical address if a legacy VM exit had occurred instead of the virtualization exception

In case of an error, R9 returns 0.

R10 Bits Name Description

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 351 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Operand Description

31:0 VM-exit
instruction
length

The 32-bit value that would have been saved into the VMCS as VM-exit
instruction length if a legacy VM exit had occurred instead of the
virtualization exception

63:32 VM-exit
instruction
information

The 32-bit value that would have been saved into the VMCS as VM-exit
instruction information if a legacy VM exit had occurred instead of the
virtualization exception

The content of R10 is only applicable for TDX-extended #VE (injected by the TDX module), where
Exit Reason is not EPT violation (48). It should be ignored for EPT violations converted by the CPU
to #VE.

In case of an error, R10 returns 0.

R11 If TDG.VP.VEINFO.GET was called with version 0, then R11 is unmodified.

Else:

• If both the TDX module and the CPU support Intel® APX, as enumerated by
TDX_FEATURES0.APX (bit 28), and there was no error, then R11 returns Extended Instruction
Information: the 64-bit value that would have been saved into the VMCS as an extended
instruction information if a legacy VM exit had occurred instead of the virtualization
exception.

• Else R11 returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.VEINFO.GET returns the virtualization exception information of a #VE exception that was previously delivered to 5

the guest TD.

Enumeration: Support of version 1 is enumerated by TDX_FEATURES0.VE_REDUCTION (bit 30). Support of version 2 is
enumerated by TDX_FEATURES0.APX (bit 28). TDX_FEATURES0 is readable by TDG.SYS.RD.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 10

Table 5.380: TDG.VP.VEINFO.GET Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS None Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared(i)

The function checks the following conditions (no specific order is implied):

• The VALID field in TDVPS.VE_INFO must non-0 to indicate that a valid virtualization information is available.

If successful, the function does the following: 15

1. Return the EXIT_REASON, EXIT_QUALIFICATION, GLA, GPA, INSTRUCTION_LENGTH and
INSTRUCTION_INFORMATTION from TDVPS.VE_INFO in GPRs.

2. Clear the VALID field in TDVPS.VE_INFO to 0 to indicate that the virtualization information has been read.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 352 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Completion Status Codes

Table 5.381: TDG.VP.VEINFO.GET Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_NO_VE_INFO There is no Virtualization Exception information.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.VEINFO.GET is successful.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 353 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.21. TDG.VP.VMCALL Leaf

Perform a TD Exit to the host VMM.

Table 5.382: TDG.VP.VMCALL Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX A bitmap that controls which part of the guest TD GPR and XMM state is passed as -is to the VMM
and back

A bit value of 0 indicates that the corresponding register is saved by the Intel TDX module,
scrubbed to 0 before SEAMRET to the host VMM, and restored by the Intel TDX module on the
following TDH.VP.ENTER.

A bit value of 1 indicates that the corresponding register is passed as -is to the host VMM, and on
the following TDH.VP.ENTER, the register value is used as input from the host VMM and passed as -
is to the guest TD.

The value of RCX is passed to the host VMM.

Bits Name Description

15:0 GPR Mask Controls the transfer of GPR values:

Bit 0: RAX – must be 0
Bit 1: RCX – must be 0
Bit 2: RDX
Bit 3: RBX
Bit 4: RSP – must be 0
Bit 5: RBP – if the TD’s CONFIG_FLAG.NO_RBP_MOD is 1, then

this bit must be 0. See the enumeration note below.
Bit 6: RSI
Bit 7: RDI
Bits 15:8: R15 – R8

31:16 XMM Mask Controls the transfer of XMM15 – XMM0 register values

63:32 Reserved Reserved: must be 0

RBX, RDX,
RBP, RSI,
RDI,
R8 – R15

If the corresponding bit in RCX is set to 1, the register value passed as-is to the host VMM on
SEAMRET.

Else, the register value is not used as an input and is preserved.

If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP can’t be used to pass values to the
host VMM. See the enumeration note below.

XMM0 –
XMM15

If the corresponding bit in RCX is set to 1, the register value passed as -is to the host VMM on
SEAMRET.

Else, the register value is not used as an input and is preserved.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 354 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Table 5.383: TDG.VP.VMCALL Output Operands Definition

Operand Description

RAX TDCALL instruction return code: returns a constant value of TDX_SUCCESS (0)

RCX Unmodified

RBX, RDX,
RBP, RDI,
RSI,
R8 – R15

If the corresponding bit in RCX is set to 1, the register value passed as-is from the host VMM’s
SEAMCALL(TDH.VP.ENTER) input.

Else, the register value is unmodified.

If the TD’s CONFIG_FLAGS.NO_RBP_MOD is set to 1, then RBP can’t be used to pass values from
the host VMM and is not modified from its input value. See the enumeration note below.

XMM0 –
XMM15

If the corresponding bit in RCX is set to 1, the register value passed as -is from the host VMM’s
SEAMCALL(TDH.VP.ENTER) input.

Else, the register value is unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.VMCALL performs a TD exit to the host VMM. From the VMM’s point of view, this is the termination of a previous 5

SEAMCALL(TDH.VP.ENTER). Selected GPR and XMM state is passed to the VMM host, controlled by RCX as shown above.
The rest of the CPU state is saved in TDVPS and replaced with a synthetic state.

From the guest TD’s point of view, a subsequent SEAMCALL(TDH.VP.ENTER) from the host VMM terminates the
TDG.VP.VMCALL function. Most GPR state, and if the value of RCX bit 1 is set, all XMM state, is passed to the TD guest as
shown above. 10

Enumeration: Control of RBP usage as an input/output parameter by the TD’s CONFIG_FLAG.NO_RBP_MOD is
enumerated by TDX_FEATURES0.NO_RBP_MOD (bit 18), readable by TDH.SYS.RD* (see 3.3.3.1). If not
supported, then RBP can be used by TDG.VP.VMCALL to pass information between the guest TD and
the host VMM, although highly discouraged since it contradicts normal calling conventions ABI.

L2 VM Details: TDG.VP.VMCALL may be invoked by an L2 VM, if enabled by the L1 VMM for the current VCPU (by 15

setting TDVPS.L2_CTLS.ENABLE_TDVMCALL). If not enabled, then TDG.VP.VMCALL results in an L2→L1
exit.

 On subsequent TD resumption, the host VMM may request resumption into L1 by setting
TDH.VP.ENTER’s RESUME_L1 flag. In this case, L1 is resumed (i.e., the TDG.VP.ENTER it has invoked is
terminated) with a TDX_L2_EXIT_HOST_ROUTED_TDVMCALL status. The L2 VCPU state reflects the 20

successful completion of TDG.VP.VMCALL.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API.

Table 5.384: TDG.VP.VMCALL Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS None Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared(i)

 25

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 355 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

1. If invoked from an L2 VM, and TDVPS.L2_CTLS.ENABLE_TDVMCALL is 0, do an L2→L1 exit.
2. Save guest TD CPU state to TDVPS (including TD VMCS):

2.1. Save extended state per TDCS.XFAM. There is no strict requirement to save XMM state that will be passed to
the host VMM as controlled by RCX. This state will be overwritten on the next TD entry.

2.2. Save GPR state. There is no strict requirement to save GPR state that will be passed to the host VMM as 5

controlled by RCX (but RCX itself must be saved). This state will be overwritten on the next TD entry.
2.3. Advance the saved RIP to the instruction following TDCALL.

3. Adjust the TDCS TLB tracking counters.
4. Release the shared locking – acquired on TDH.VP.ENTER of TDR, TDCS and TDVPS.
5. Load host VMM state: 10

5.1. Clear the extended state except XMM (per TDCS.XFAM) to synthetic INIT values.
5.2. As controlled by RCX, either clear or set to the guest TD’s value the state of XMM0 – XMM15.
5.3. As controlled by RCX, either clear or set to the guest TD’s value the state of RBX, RDX, RBP, RDI, RSI and R8 – R15.
5.4. Set RCX to the guest TD’s value.
5.5. Set RAX to the TDCALL exit reason. 15

5.6. Restore other host VMM state – saved during TDH.VP.ENTER.
6. Execute SEAMRET to return to the host VMM.

Note: Logically, from the point of view of the guest TD, TDG.VP.VMCALL is terminated by the next TDH.VP.ENTER.

Completion Status Codes

Table 5.385: TDG.VP.VMCALL Completion Status Codes (Returned in RAX) Definition 20

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.VMCALL is successful. TD exit was done, resulting a in a completion of
SEAMCALL(TDH.VP.ENTER) on the host VMM side. Later, the host VMM
executed SEAMCALL(TDH.VP.ENTER) again, and execution returned to the
guest TD VCPU (in TDX non-root mode) completing TDG.VP.VMCALL.

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 356 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

5.5.22. TDG.VP.WR Leaf

Write a VCPU-scope metadata field (control structure field) of a TD.

Table 5.386: TDG.VP.WR Input Operands

Operand Description

RAX TDCALL instruction leaf number and version, see 5.5.1

Bits Field Description

15:0 Leaf Number Selects the TDCALL interface function

23:16 Version Number Selects the TDCALL interface function version

Must be 0

63:24 Reserved Must be 0

RCX Reserved, must be 0

RDX Field identifier – see 3.10

The LAST_ELEMENT_IN_FIELD and LAST_FIELD_IN_SEQUENCE components of the field identifier
must be 0.

WRITE_MASK_VALID, INC_SIZE, CONTEXT_CODE and FIELD_SIZE components of the field identifier
are ignored.

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field

Table 5.387: TDG.VP.WR Output Operands Definition 5

Operand Description

RAX TDCALL instruction return code – see 5.5.1

R8 Previous contents of the field

In case of an error, as indicated by RAX, R8 returns 0.

Other Unmodified

Leaf Function Description

Intel SDM, Vol.3, Appendix A VMX Capabilities Reporting Facility

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary. 10

TDG.VP.WR writes a VCPU-scope metadata field (control structure field) of a TD. The value (R8) is written as specified by
the write mask (R9). Writing is subject to the field’s internal write mask (per the TD’s ATTRIBUTES.DEBUG bit).

Table 5.388: Metadata Field Write Rules

Write Mask Bit in R9 Internal Write Mask Bit Value Bit in R8

0 N/A Silently ignored

1 0 Must be the same as the current field’s bit

1 1 Written to the current field’s bit

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 357 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

Writing of specific fields is also subject to additional rules, e.g.:

• Writing of L2 VMCS fields is subject to the VMX capabilities reported by the applicable virtual values
of IA32_VMX_* MSRs, as described in [Intel SDM, Vol.3, Appendix A].

• Guest CR0 and CR4 values are subject to the CR0/4 guest host mask and read shadow settings. For
details, see the [TD Partitioning Spec]. 5

Enumeration: Availability of TDG.VP.WR enumerated by TDX_FEATURES0.ENHANCED_METADATA (bit 3), readable by
TDH.SYS.RD* (see 3.3.3.1). If not supported, calling TDG.VP.WR returns a
TDX_OPERAND_INVALID(RAX) status.

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects
of the Intel TDX Module API. 10

Table 5.389 TDG.VM.WR Operands Information Definition

Explicit/
Implicit

Reg. Ref
Type

Resource Resource Type Access Access
Semantics

Align
Check

Concurrency
Restrictions

Implicit N/A N/A TDR page TDR None Opaque N/A Shared(i)

Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared(i)

If the memory operand checks, per the table above, pass:

1. Write the control structure field and return its old value, using the algorithm described in 5.3.2.2.

Completion Status Codes 15

Table 5.390: TDG.VP.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_METADATA_FIELD_ID_INCORRECT

TDX_METADATA_FIELD_NOT_READABLE

TDX_METADATA_FIELD_NOT_WRITABLE

TDX_METADATA_FIELD_VALUE_NOT_VALID

TDX_METADATA_WR_MASK_NOT_VALID

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.WR is successful.

TDX_TD_VMCS_FIELD_NOT_INITIALIZED

 Intel TDX Application Binary Interface (ABI) Reference 348551-005US

October 2024 . Page 358 of 358

In
te

l T
D

X
 A

p
p

lic
at

io
n

 B
in

ar
y

In
te

rf
ac

e
(A

B
I)

 R
ef

er
en

ce

	Notices and Disclaimers
	Table of Contents
	1. About this Document
	1.1. Scope of this Document
	1.2. Glossary
	1.3. Notation
	1.4. References

	2. CPU Virtualization Tables
	2.1. MSR Virtualization
	2.1.1. IA32_ARCH_CAPABILITIES (MSR 0x10A)
	2.1.2. IA32_MISC_ENABLE (MSR 0x1A0)
	2.1.3. IA32_DEBUGCTL (MSR 0x1D9)
	2.1.4. IA32_X2APIC_* (MSRs 0x800 – 0x8FF)

	2.2. CPUID Virtualization

	3. Data Types
	3.1. Interface Function Completion Status
	3.1.1. Function Completion Status Structure
	3.1.2. Function Completion Status Code Classes (Bits 47:40)
	3.1.3. Function Completion Status Codes and Operand IDs

	3.2. Basic Crypto Types
	3.3. TDX Module Configuration, Enumeration and Initialization Types
	3.3.1. CPUID_CONFIG
	3.3.2. TDX Module Version
	3.3.3. Global-Scope (TDX Module) Metadata
	3.3.3.1. TDX Features Enumeration
	3.3.3.2. Global Metadata Fields

	3.3.4. CMR_INFO
	3.3.5. TDSYSINFO_STRUCT
	3.3.6. TDMR_INFO
	Notes:

	3.4. TD Parameter Types
	3.4.1. ATTRIBUTES
	Notes

	3.4.2. XFAM
	3.4.3. CONFIG_FLAGS
	3.4.4. CPUID_VALUES
	3.4.5. TD_PARAMS
	3.4.6. EVENT_FILTER and the EVENT_FILTERS Array
	EVENT_FILTER Entry
	EVENT_FILTERS Array

	3.5. Physical Memory Management Types
	3.5.1. PAMT Page Type (PT) Values
	3.5.2. Physical Page Size

	3.6. TD Private Memory Management Data Types: Secure EPT
	3.6.1. Secure EPT Levels
	3.6.2. Secure EPT Entry Information as Returned by TDX Module Functions
	3.6.2.1. Returned L1 Secure EPT Entry Content
	3.6.2.2. Returned L2 Secure EPT Entry Content
	3.6.2.3. Additional Returned Secure EPT Information

	3.6.3. GPA_ATTR: GPA Attributes
	3.6.3.1. GPA Attributes Rules

	3.6.4. GLA List
	3.6.4.1. GLA_LIST_ENTRY
	3.6.4.2. GLA_LIST
	3.6.4.3. GLA_LIST_INFO: GLA List GPA and Additional Information

	3.7. TD Entry and Exit Types
	3.7.1. Extended Exit Qualification

	3.8. L2 VM Transition Types
	3.8.1. L2_ENTER_GUEST_STATE

	3.9. Measurement and Attestation Types
	3.9.1. CPUSVN
	3.9.2. TDREPORT_STRUCT
	3.9.3. TEE_TCB_INFO (Reference)
	3.9.4. TEE_TCB_SVN (Reference)
	3.9.5. REPORTMACSTRUCT (Reference)
	3.9.6. REPORTTYPE (Reference)
	3.9.7. TDINFO_STRUCT
	TDINFO_BASE

	3.10. Metadata Access Types
	3.10.1. MD_FIELD_ID: Metadata Field Identifier / Sequence Header
	Values Reserved for Software Use

	3.10.2. Meaning of Field Codes
	3.10.3. Class Codes
	3.10.3.1. TDX Module Global Scope Field Class Codes
	3.10.3.2. TD-Scope (TDR and TDCS) Field Class Codes
	3.10.3.3. VCPU-Scope (TDVPS) Field Class Codes

	3.10.4. Order of Field Identifiers
	3.10.5. MD_LIST_HEADER: Metadata List Header
	3.10.6. Private Page List
	3.10.7. HPA_AND_SIZE: HPA and Size of a Buffer
	3.10.8. HPA_AND_LAST: HPA and Last Byte Index of a Page-Aligned Buffer

	3.11. Service TD Types
	3.11.1. SERVTD_BINDING_TABLE: Service TD Binding Table
	TD-Preserving Update TDX Module Handoff Compatibility

	3.11.2. SERVTD_BINDING_STATE: Service TD Binding State
	3.11.3. SERVTD_TYPE: Service TD Binding Type
	3.11.4. SERVTD_ATTR: Service TD Binging Attributes

	3.12. Migration Types
	3.12.1. MBMD: Migration Bundle Metadata
	3.12.1.1. Generic MBMD Structure
	3.12.1.2. TD-Scope Immutable Non-Memory State MBMD Fields
	3.12.1.3. TD-Scope Mutable Non-Memory State MBMD Fields
	3.12.1.4. VCPU-Scope Mutable Non-Memory State MBMD Fields
	3.12.1.5. TD Private Memory MBMD Fields
	3.12.1.6. Epoch Token MBMD Fields
	3.12.1.7. Abort Token MBMD Fields
	3.12.1.8. TD Migration Protocol Version Compatibility

	3.12.2. GPA List
	3.12.2.1. GPA_LIST_INFO: HPA, First and Last Entries of a GPA List
	3.12.2.2. GPA List Entry
	3.12.2.3. GPA List Entry Details
	GPA List Details: LEVEL
	GPA List Details: PENDING
	GPA List Details: L2_MAP
	GPA List Details: OPERATION
	GPA List Details: MIG_TYPE
	GPA List Details: STATUS

	3.12.2.4. TD Migration Protocol Version Compatibility

	3.12.3. Memory Migration Buffers List
	3.12.3.1. Migration Buffers List Entry

	3.12.4. Page Attributes List
	3.12.5. Memory Migration Page MAC List
	3.12.6. Non-Memory State Migration Buffers List
	3.12.6.1. PAGE_LIST_INFO: HPA and Attributes of a Page List

	4. TD Metadata (Non-Memory State)
	4.1. TD-Scope Metadata
	4.1.1. TDR
	4.1.2. TDCS
	4.1.2.1. TDCS.TD_CTLS
	4.1.2.2. TDCS.FEATURE_PARAVIRT_CTRL

	4.2. TDVPS: VCPU-Scope Metadata
	4.2.1. Overview
	4.2.2. TDVPS (excluding TD VMCS)
	4.2.3. TD (L1) VMCS and L2 VMCS
	4.2.3.1. TD VMCS CR4 Guest/Host Mask

	5. Interface Functions
	5.1. How to Read the Interface Function Definitions
	5.2. Reserved Leaf Numbers
	5.3. Common Algorithms Used by Multiple Interface Functions
	5.3.1. VCPU Association with an LP
	5.3.2. Metadata Access
	5.3.2.1. Single Metadata Field Read
	5.3.2.2. Single Metadata Field Write
	5.3.2.3. Multiple Metadata Fields Write based on a Metadata List

	5.4. Host-Side (SEAMCALL) Interface Functions
	5.4.1. SEAMCALL Instruction (Common)
	Instruction Description
	Completion Status Codes

	5.4.2. TDH.EXPORT.ABORT Leaf
	Leaf Function Description
	Leaf Function Description
	Completion Status Codes

	5.4.3. TDH.EXPORT.BLOCKW Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.4. TDH.EXPORT.MEM Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.5. TDH.EXPORT.PAUSE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.6. TDH.EXPORT.RESTORE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.7. TDH.EXPORT.STATE.IMMUTABLE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.8. TDH.EXPORT.STATE.TD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.9. TDH.EXPORT.STATE.VP Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.10. TDH.EXPORT.TRACK Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.11. TDH.EXPORT.UNBLOCKW Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.12. TDH.IMPORT.ABORT Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.13. TDH.IMPORT.COMMIT Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.14. TDH.IMPORT.END Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.15. TDH.IMPORT.MEM Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.16. TDH.IMPORT.STATE.IMMUTABLE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.17. TDH.IMPORT.STATE.TD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.18. TDH.IMPORT.STATE.VP Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.19. TDH.IMPORT.TRACK Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.20. TDH.MEM.PAGE.ADD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.21. TDH.MEM.PAGE.AUG Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.22. TDH.MEM.PAGE.DEMOTE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.23. TDH.MEM.PAGE.PROMOTE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.24. TDH.MEM.PAGE.RELOCATE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.25. TDH.MEM.PAGE.REMOVE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.26. TDH.MEM.RANGE.BLOCK Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.27. TDH.MEM.RANGE.UNBLOCK Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.28. TDH.MEM.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.29. TDH.MEM.SEPT.ADD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.30. TDH.MEM.SEPT.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.31. TDH.MEM.SEPT.REMOVE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.32. TDH.MEM.SHARED.SEPT.WR Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.33. TDH.MEM.TRACK Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.34. TDH.MEM.WR Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.35. TDH.MIG.STREAM.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.36. TDH.MNG.ADDCX Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.37. TDH.MNG.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.38. TDH.MNG.INIT Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	5.4.39. TDH.MNG.KEY.CONFIG Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	5.4.40. TDH.MNG.KEY.FREEID Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.41. TDH.MNG.KEY.RECLAIMID Leaf (Deprecated)
	Leaf Function Description
	Completion Status Codes

	5.4.42. TDH.MNG.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.43. TDH.MNG.VPFLUSHDONE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.44. TDH.MNG.WR Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.45. TDH.MR.EXTEND Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.46. TDH.MR.FINALIZE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.47. TDH.PHYMEM.CACHE.WB Leaf
	Leaf Function Description
	Error and Informational Codes

	5.4.48. TDH.PHYMEM.PAGE.RDMD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.49. TDH.PHYMEM.PAGE.RECLAIM Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.50. TDH.PHYMEM.PAGE.WBINVD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.51. TDH.SERVTD.BIND Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.52. TDH.SERVTD.PREBIND Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.53. TDH.SYS.CONFIG Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.54. TDH.SYS.INFO Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.55. TDH.SYS.INIT Leaf
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	5.4.56. TDH.SYS.KEY.CONFIG Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	5.4.57. TDH.SYS.LP.INIT Leaf
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	5.4.58. TDH.SYS.LP.SHUTDOWN Leaf (Deprecated)
	Leaf Function Description
	Completion Status Codes

	5.4.59. TDH.SYS.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.60. TDH.SYS.RDALL Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.61. TDH.SYS.S4_END Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.62. TDH.SYS.SHUTDOWN Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.63. TDH.SYS.TDMR.INIT Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.64. TDH.SYS.UPDATE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.65. TDH.VP.ADDCX Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.66. TDH.VP.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.67. TDH.VP.ENTER Leaf
	5.4.67.1. Inputs
	Input Format for Initial Entry or Following a Previous Asynchronous TD Exit
	Input Format following a Previous TDCALL(TDG.VP.VMCALL)

	5.4.67.2. Outputs
	Output Format #1: Error (No TD Entry)
	Common Output Format on TD Exits
	Output Format #2: Asynchronous TD Exits Following a TD Entry (with a VMX Architectural Exit Reason)
	Output Format #3: Asynchronous TD Exits Following a TD Entry (with a non-VMX TD Exit Status)
	Output Format #4: Asynchronous TD Exits Following a TD Entry (with Cross-TD Exit Details)
	Output Format #5: TD Exit due to TDCALL(TDG.VP.VMCALL) Following a TD Entry
	Output Format #6: TD Exit due to a Guest TD Request

	5.4.67.3. CPU State Preservation Following a Successful TD Entry and a TD Exit
	5.4.67.4. Special Environment Requirements
	5.4.67.5. Guest TD State Loading or VM Entry Failure
	5.4.67.6. Leaf Function Latency
	5.4.67.7. Leaf Function Description
	5.4.67.8. Completion Status Codes

	5.4.68. TDH.VP.FLUSH Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.69. TDH.VP.INIT Leaf
	Operands
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	5.4.70. TDH.VP.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.4.71. TDH.VP.WR Leaf
	Leaf Function Description
	Completion Status Codes

	5.5. Guest-Side (TDCALL) Interface Functions
	5.5.1. TDCALL Instruction (Common)
	Instruction Description
	Completion Status Codes

	5.5.2. TDG.MEM.PAGE.ACCEPT Leaf
	Leaf Function Description
	SEPT Mapping Size Considerations
	Other Conditions that Prevent Page Acceptance
	Interruptibility
	Completion Status Codes

	5.5.3. TDG.MEM.PAGE.ATTR.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.4. TDG.MEM.PAGE.ATTR.WR Leaf
	Leaf Function Description
	SEPT Mapping Size Considerations
	Other Conditions that Prevent Page Attributes Modifications
	Completion Status Codes

	5.5.5. TDG.MR.REPORT Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.6. TDG.MR.RTMR.EXTEND Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.7. TDG.MR.VERIFYREPORT
	Leaf Function Description
	Completion Status Codes

	5.5.8. TDG.SERVTD.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.9. TDG.SERVTD.WR Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.10. TDG.SYS.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.11. TDG.SYS.RDALL Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.12. TDG.VM.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.13. TDG.VM.WR Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.14. TDG.VP.CPUIDVE.SET Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.15. TDG.VP.ENTER Leaf
	Inputs
	Outputs
	CPU State Preservation Following a Successful L1(L2 VM Entry and an L2(L1 VM Exit
	Leaf Function Description
	Completion Status Codes

	5.5.16. TDG.VP.INFO Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.17. TDG.VP.INVEPT Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.18. TDG.VP.INVGLA Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.19. TDG.VP.RD Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.20. TDG.VP.VEINFO.GET Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.21. TDG.VP.VMCALL Leaf
	Leaf Function Description
	Completion Status Codes

	5.5.22. TDG.VP.WR Leaf
	Leaf Function Description
	Completion Status Codes

