

Guest-Host-Communication Interface

(GHCI) for Intel® Trust Domain

Extensions (Intel® TDX) 1.5

348552-002US

FEBRUARY 2022

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 2

Disclaimers

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject
to change without notice. Intel does not guarantee the availability of these interfaces in any future
product. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.

The products described might contain design defects or errors known as errata, which might cause the
product to deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have
been estimated or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other
legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive,
royalty-free license to any patent claim thereafter drafted that includes the subject matter disclosed
herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by

this document.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel
literature may be obtained by calling 1-800-548-4725 or by visiting
http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or

its subsidiaries. Other names and brands might be claimed as the property of others.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 3

Table of Contents

1 About this Document .. 5

1.1 SCOPE OF THIS DOCUMENT .. 5
1.2 DOCUMENT ORGANIZATION ... 5
1.3 GLOSSARY ... 5
1.4 REFERENCES .. 7

2 TD-VMM Communication ... 8

2.1 RECAP OF INTEL® TRUST DOMAIN EXTENSIONS (INTEL® TDX) .. 8
2.2 TD-VMM-COMMUNICATION OVERVIEW ... 9
2.3 VIRTUALIZATION EXCEPTION (#VE) .. 10
2.4 TDCALL AND SEAMCALL INSTRUCTION .. 10

2.4.1 TDCALL [TDG.VP.VMCALL] leaf .. 10

3 TDG.VP.VMCALL Interface .. 13

3.1 TDG.VP.VMCALL<GETTDVMCALLINFO> ... 13
3.2 TDG.VP.VMCALL<MAPGPA> ... 14
3.3 TDG.VP.VMCALL<GETQUOTE> ... 16
3.4 TDG.VP.VMCALL<REPORTFATALERROR> .. 20
3.5 TDG.VP.VMCALL<SETUPEVENTNOTIFYINTERRUPT> .. 21
3.6 TDG.VP.VMCALL<INSTRUCTION.CPUID> ... 22
3.7 TDG.VP.VMCALL<#VE.REQUESTMMIO> .. 23
3.8 TDG.VP.VMCALL<INSTRUCTION.HLT> ... 24
3.9 TDG.VP.VMCALL<INSTRUCTION.IO> .. 25
3.10 TDG.VP.VMCALL<INSTRUCTION.RDMSR> ... 26
3.11 TDG.VP.VMCALL<INSTRUCTION.WRMSR> .. 26
3.12 TDG.VP.VMCALL<INSTRUCTION.PCONFIG> ... 27
3.13 TDG.VP.VMCALL <SERVICE> ... 28

3.13.1 TDG.VP.VMCALL <Service.Query> .. 33
3.13.2 TDG.VP.VMCALL <Service.MigTD> ... 34

4 TD-Guest-Firmware Interfaces ... 43

4.1 ACPI MADT MULTIPROCESSOR WAKEUP TABLE ... 43
4.2 MEMORY MAP .. 43
4.3 TD MEASUREMENT .. 45

4.3.1 TCG-Platform-Event Log ... 45
4.3.2 EFI_CC_MEASUREMENT_PROTOCOL ... 46
4.3.3 CC-Event Log .. 54

4.4 STORAGE-VOLUME-KEY DATA .. 55

5 TD-VMM-Communication Scenarios .. 57

5.1 REQUESTING IPIS ... 57
5.2 TD-MEMORY CONVERSION AND MEMORY BALLOONING ... 57
5.3 PARAVIRTUALIZED IO .. 57
5.4 TD ATTESTATION .. 58
5.5 SERVICE TD BINDING .. 59
5.6 TD LIVE MIGRATION ... 61

5.6.1 Pre-Migration ... 62
5.6.2 Reservation and Session Setup ... 62
5.6.3 Iterative Pre-Copy of Memory State .. 63
5.6.4 Source TD Stop and Final Non-Memory State Migration ... 65

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 4

5.6.5 Commitment .. 65
5.6.6 Post-Copy of Memory State ... 65

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 5

1 About this Document

1.1 Scope of this Document

Trust Domains (TDs) are used to enable confidential hosting of VM workloads that are hardware-isolated

from the hosting VMM and service OS environments. The Intel® Trust Domain Extensions (Intel® TDX)

architecture enables isolation of the TD-CPU context and memory from the hosting environment. This

document specifies the guest (TD) to host (VMM) communication interface that will be utilized for the

paravirtualization interface between the TD and the VMM. This approach helps the Intel TDX-

architecture prevent the VMM from accessing any TD runtime state. Hence, the TD must volunteer

information to access IO services, enumerate model-specific, CPU capabilities, measurement services,

and provide feedback to the VMM on guest-OS-triggered actions, such as virtual-IPIs, shutdown, etc.

For each operation in this interface, the recommended actions are described for the host VMM

(informative). The TD and the VMM are designed to use the subfunctions, which are normative and

described in this document.

This document is a work in progress and is subject to change based on customer feedback and

internal analysis. This document does not imply any product commitment from Intel to anything

in terms of features and/or behaviors.

1.2 Document Organization

In Section 2, the document describes a general structure/ABI of the instruction TDCALL with the

TDG.VP.VMCALL leaf used for passing information to the VMM and receiving information from the

VMM. Section 3 describes the sub-leaves of TDCALL [TDG.VP.VMCALL] that define the ABI between the

TD and the VMM for specific operations. Section 4 describes example flows for the main scenarios.

1.3 Glossary

Table 1-1: Intel TDX Glossary

Acronym Full Name Description

TME Total Memory Encryption An SoC memory encryption/decryption engine used to encrypt
memory contents exposed externally from the SoC using an
ephemeral, platform key. Memory is decrypted using the TME when
memory contents are brought into the CPU caches.

MKTME Multi-Key TME This SoC capability adds support to the TME to allow software to use
separate (one or more) keys for encryption of volatile- or persistent-
memory encryption. When used with Intel TDX, it can provide
confidentiality via separate keys for memory-used TDs. MKTME may
be used with and without Intel TDX extensions.1

1 In this document, the term “MKTME” means both the feature and the encryption engine itself.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 6

Acronym Full Name Description

 TD Trust Domain Software operating in a CPU mode designed to exclude the
host/VMM software and untrusted, platform devices from the
operational TCB for confidentiality. The operational TCB for a TD
includes the CPU, the TD OS, and TD applications. A TD’s resources
are managed by an Intel TDX-aware-host VMM, but its state
protection is managed by the CPU and is not accessible to the host
software.

Intel TDX Intel TDX Architecture Intel-CPU-instruction-set-architecture extensions to enable host
VMM to host Trust Domains

Intel TDX
module

Intel Trust Domain
Extensions module

Intel TDX module is a CPU-measured, software module that uses the
instruction-set architecture for Intel TDX to help enforce security
properties for hosting TDs on an Intel TDX platform. Intel TDX
module exposes the Guest-Host-Communication Interface that TDs
use to communicate with the Intel TDX module and the host VMM.

HKID Host Key ID When MKTME is activated, HKID is a key identifier for an encryption
key used by one or more memory controller on the platform. When
Intel TDX is active, the HKID space can be partitioned into a CPU-
enforced space (for TDs) and a VMM-enforced space (for legacy
VMs).

- TD-Private Memory
(Access)

TD-Private Memory can be encrypted by the CPU using the TD-
ephemeral key (or in the future with additional, TD private keys).

- TD-Shared Memory
(Access)

TD-Shared Memory is designed to be accessible by the TD and the
host software (and/or other TDs). TD-Shared Memory uses MKTME
keys managed by the VMM for encryption.

TDVPS TD Virtual Processor
Structure

TD per-VCPU state maintained in protected memory by the Intel
TDX.

TDCS Trust Domain Control
Structure

Multi-page-control structure for a TD. By design, TDCS is encrypted
with the TD’s ephemeral, private key, its contents are not
architectural, and its location in memory is known to the VMM.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 7

1.4 References

Table 1-2: Technical Documents Referenced

Reference Document Version & Date

1 Intel® 64 and IA-32 Architecture Software Developer Manual May 2020

2 Intel® Trust Domain Extensions CPU architecture specification May 2021

3 Intel® Trust Domain Extensions module 1.5 base architecture
specification

September 2021

4 Intel® Multi-key Total Memory Encryption (MK-TME) specification April 2021

5 ACPI specification, version 6.4 January 2021

6 UEFI specification, version 2.9 March 2021

7 Intel® Trust Domain Extensions module 1.5 ABI reference specification September 2021

8 Intel® Trust Domain Extensions module 1.5 architecture specification:
TD Migration

September 2021

When specifying requirements or definitions, the level of commitment is specified following the

convention of RFC 2119: Key words for use in RFCs to indicate Requirement Levels, as described in the

following table:

Table 1-3: Requirement and Definition Commitment Levels

Keyword Description

Must
“Must”, "Required", or "Shall" means that the definition is an absolute
requirement of the specification.

Must Not
“Must Not” or "Shall Not" means that the definition is an absolute prohibition of
the specification.

Should
“Should” or "Recommended" means that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

Should Not

“Should Not” or the phrase "Not Recommended" means that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood, and the case must be carefully weighed before
implementing any behavior described with this label.

May
“May” or "Optional" means that an item is discretionary. An implementation
may choose to include the item, while another may omit the same item because of various
reasons.

https://www.ietf.org/rfc/rfc2119.txt

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 8

2 TD-VMM Communication

2.1 Recap of Intel® Trust Domain Extensions (Intel® TDX)

Intel® Trust Domain Extensions (Intel® TDX) is an Intel technology that extends Virtual Machines

Extensions (VMX) and Multi-Key Total Memory Encryption (MKTME) with a new kind of virtual machine

guest called Trust Domain (TD). A TD is designed to run in a CPU mode that protects the confidentiality

of TD memory contents and the TD’s CPU state from other software, including the hosting Virtual-

Machine Monitor (VMM), unless explicitly shared by the TD itself.

The Intel TDX module uses the instruction-set architecture for Intel TDX and the MKTME engine in the

SOC to help serve as an intermediary between the host VMM and the guest TDs. Details of the

operation of this module are described in the Intel TDX-module specification [3]. The Intel TDX module

exposes the Guest-Host-Communication Interface (GHCI) for Intel TDX (this specification) that TDs must

use to communicate with the Intel TDX module and the host VMM.

As shown in the diagram below, an Intel TDX-aware, host VMM can launch and manage both guest TDs

and legacy-guest VMs. The host VMM can maintain legacy functionality from the legacy VMs’

perspective; the aim is for the host VMM to be restrict only with regard to the TDs it manages.

5

Intel TDX aware Host VMM

Host VMM managed access
control, enhanced with MKTME

Intel TDX Module managed access control,
leveraging MKTME and Secure EPT

Intel TDX Module
(uses Intel TDX ISA)

Trust Domain

Intel TDX
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Intel

TDX Module

Host-Side

Interface

Trust Domain

Intel TDX
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Intel TDX

Guest-Host Comm. Interface

Legacy VM

OS

Applications

Drivers

Legacy VM

OS

Applications

Drivers

Platform (Cores, Caches, Devices etc.)

Intel TDX

Guest-Host Comm. Interface

Figure 2-1: Components of Intel Trust Domain Extensions

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 9

2.2 TD-VMM-Communication Overview

TD-VMM communication can occur via asynchronous, VM exits or via synchronous (instruction), VM

exits. In response to the synchronous (instruction), VM exits, Intel TDX [3] is designed to generate a

Virtualization Exception (#VE) [1] for instructions the TD would be disallowed to invoke. The TD-guest

software may respond by using the Intel TDX-provided information directly and/or after further

decoding of the instruction that caused the #VE. The TD response must be via a TDCALL instruction [2]

requesting the host VMM to provide (untrusted) services. The goal is for the VMM to receive the

service request via a SEAMRET invoked by the Intel TDX module, complete the service requested, and

respond to the TD via the SEAMCALL[TDH.VP.ENTER] to re-enter the TD. This document describes the

mechanisms and ABI for this interaction in various scenarios expected.

VMM (host)

TDCALL

SEAMRET

SEAMCALL

Intel TDX Module

TD (guest)

VMRESUME
VMEXIT
(due to

instruction)

#VE
handler

Guest-Host Communication
Interface for Intel® TDX

Figure 2-2: TD Guest-Host communication

Section 2 of this document describes the Virtualization Exception (#VE) for Intel TDX, and subsequent

chapters describe the normative, TDCALL leaves intended to get the VE information as well as request

services from the host VMM. There are other cases that may cause asynchronous, VM exits to the host

VMM (via SEAMRET); for those scenarios, please refer to the Intel TDX module specification [3].

Section 3 of this document describes the reference/informative TDCALL[TDG.VP.VMCALL] interface sub-

leaves intended to request services from the host VMM.

Section 4 describes the scenarios where TD-VMM communication interfaces described in this

specification can be applied.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 10

2.3 Virtualization Exception (#VE)

Intel TDX can cause #VE to be reported to the guest-TD software in cases of disallowed, instruction

execution, i.e., IO accesses, etc.

The goal is for #VE delivery by Intel TDX module to follow the architectural #VE handling for nested #VE,

as described in Intel-SDM Chapter 25.5.6.3 (Delivery of Virtualization Exceptions). The TD OS should

avoid instructions that may cause #VE in the #VE handler.

For detailed information about virtualization exception in TDX, please refer to Intel TDX Module

Architecture specification.

2.4 TDCALL and SEAMCALL instruction

TDCALL is the instruction used by the guest TD software (in TDX non-root mode) to invoke guest-side

TDX functions. For detailed information about TDCALL instruction, please refer to Intel TDX Module

Architecture specification.

SEAMCALL is the instruction used by the host VMM to invoke host-side TDX functions. For detailed

information about SEAMCALL instruction, please refer to Intel TDX Module Architecture specification.

2.4.1 TDCALL [TDG.VP.VMCALL] leaf

TDG.VP.VMCALL is a leaf function 0 for TDCALL. It helps invoke services from the host VMM. The

input operands for this leaf are programmed as defined below:

Table 2-1: TDG.VP.VMCALL-Input Operands

Operand Description

RAX TDCALL instruction leaf number per Intel TDX Module Specification (0 -
TDG.VP.VMCALL)

RCX A bitmap that controls which part of the guest TD GPR and XMM state is
passed as-is to the VMM and back. Please refer to Intel TDX Module
Specification TDG.VP.VMCALL.

R10 Set to 0 indicates that TDG.VP.VMCALL leaf used in R11 is defined in this
specification.
All other values 0x1 to 0xFFFFFFFFFFFFFFFF indicate TDG.VP.VMCALL is
vendor-specific (both R10 and R11)

R11 TDG.VP.VMCALL sub-function if R10 is 0 (see enumeration below)

RBX, RBP, RDI, RSI, R8-R10, R12–
R15

See each TDG.VP.VMCALL sub-function for which registers must be used
to pass values to the VMM (by setting RCX bits specified above)

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 11

Table 2-2: TDG.VP.VMCALL-Output Operands

Operand Description

RAX TDCALL instruction return code. Always returns Intel TDX_SUCCESS (0).

RCX Unmodified

R10 TDG.VP.VMCALL sub-function return value See table 2-6.

0 – if no error

Non 0 – if error happens. The error code is command specific.

R11 See each TDG.VP.VMCALL sub-function.

R12, R13, R14, R15, RBX, RDI, RSI,
R8, R9, RDX

See each TDG.VP.VMCALL sub-function. Register used in order.

XMM0 – XMM15 If the corresponding bit in RCX is set to 1, the register value passed as-is
from the host VMM’s SEAMCALL (TDH.VP.ENTER) input.

Otherwise, the register value is unmodified.

TDG.VP.VMCALL-Intel TDX paravirtualization sub-functions (specified in R11 when R10 is set to 0)

Table 2-3: TDG.VP.VMCALL codes

Sub-Function Number Sub-Function Name

0x10000 GetTdVmCallInfo

0x10001 MapGPA

0x10002 GetQuote, e.g., used for sending TDREPORT_STRUCT to VMM to request a TD
Quote

0x10003 ReportFatalError

0x10004 SetupEventNotifyInterrupt

0x10005 Service

Table 2-4: TDG.VP.VMCALL-Instruction-execution sub-functions

Sub-Function Number

Bits 15:0

Sub-Function Name

10 Instruction.CPUID

12 Instruction.HLT

30 Instruction.IO

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 12

Sub-Function Number

Bits 15:0

Sub-Function Name

31 Instruction.RDMSR

32 Instruction.WRMSR

48 #VE.RequestMMIO

65 Instruction.PCONFIG

Note that some instructions that unconditionally cause #VE (such as WBINVD, MONITOR, MWAIT) do not

have corresponding TDCALL [TDG.VP.VMCALL <Instruction>] leaves, since the TD has been designed with

no deterministic way to confirm the result of those operations performed by the host VMM. In those

cases, the goal is for the TD #VE handler to increment the RIP appropriately based on the VE information

provided via TDCALL [TDG.VP.VEINFO.GET].

Completion-Status Codes

Table 2-5: TDCALL[TDG.VP.VMCALL]-Completion-Status Codes (Returned in RAX)

Completion-Status
Code

Value Description

TDX_SUCCESS See Intel TDX-Architecture
specification [3] for Function
Completion Status Code.

TDCALL is successful

TDX_OPERAND_INVALID Illegal leaf number

Other See individual leaf functions

Table 2-6: TDCALL[TDG.VP.VMCALL]- Sub-function Completion-Status Codes

(specified in R10 as output when R10 is set to 0 as input)

Completion-Status Code Value Description

TDG.VP.VMCALL_SUCCESS 0x0 TDCALL[TDG.VP.VMCALL] sub-
function invocation was successful

TDG.VP.VMCALL_RETRY 0x1 TDCALL[TDG.VP.VMCALL] sub-
function invocation must be retried

TDG.VP.VMCALL_OPERAND_INVALID 0x80000000 00000000 Invalid operand to TDG.VP.VMCALL
sub-function

TDG.VP.VMCALL_GPA_INUSE 0x80000000 00000001 GPA already mapped

TDG.VP.VMCALL_ALIGN_ERROR 0x80000000 00000002 Operand (address) alignment error

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 13

3 TDG.VP.VMCALL Interface

From the perspective of the host VMM, TDCALL [TDG.VP.VMCALL] is a trap-like, VM exit into the host
VMM reported via the SEAMRET instruction flow. By design, after the SEAMRET, the host VMM services
the request specified in the parameters passed by the TD during the TDG.VP.VMCALL (that are passed
via SEAMRET to the VMM) and resumes the TD via a SEAMCALL [TDH.VP.ENTER] invocation. Refer to
the Intel TDX CPU Architecture specification [2] for details of the SEAMCALL and SEAMRET instructions.
This chapter describes the designed sub-functions of the TDCALL [TDG.VP.VMCALL] interface between
the TD and the VMM.

3.1 TDG.VP.VMCALL<GetTdVmCallInfo>

GetTdVmCallInfo TDG.VP.VMCALL is used to help request the host VMM enumerate which
TDG.VP.VMCALLs are supported. This leaf is reserved for enumerating capabilities defined in this
specification. VMMs may provide alternate, enumeration schemes using vendor-specific,
TDG.VP.VMCALL namespace, as defined in 2.4.1.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 14

Table 3-1: TDG.VP.VMCALL< GetTdVmCallInfo>-Input Operands

Operand Description

R11 TDG.VP.VMCALL< GetTdVmCallInfo> sub-function per Table 2-3.

R12 Leaf to enumerate TDG.VP.VMCALL functionality from this specification supported by
the host.

R12 must be set to 0, and successful execution of this TDG.VP.VMCALL is meant to
indicate all TDG.VP.VMCALLs defined in this specification are supported by the host
VMM. This register is reserved to extend TDG.VP.VMCALL enumeration in future
versions.

Table 3-2: TDG.VP.VMCALL< GetTdVmCallInfo>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-instruction-return code.

R11 Leaf-specific output (when R12 is 0, will be returned as 0)

R12 Leaf-specific output (when R12 is 0, will be returned as 0)

R13 Leaf-specific output (when R12 is 0, will be returned as 0)

R14 Leaf-specific output (when R12 is 0, will be returned as 0)

Table 3-3: TDG.VP.VMCALL< GetTdVmCallInfo> Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in
Table 2-6

TDG.VP.VMCALL is successful. The TD is free to use the GPA as a
shared, memory page.

3.2 TDG.VP.VMCALL<MapGPA>

MapGPA TDG.VP.VMCALL is used to help request the host VMM to map a GPA range as private- or
shared-memory mappings – this API may also be used to convert page mappings from private to shared.
The GPA range passed in this operation can indicate if the mapping is requested for a shared or private
memory – via the GPA.Shared bit in the start address. For example, to exchange data with the VMM,
the TD may use this TDG.VP.VMCALL to request that a GPA range be mapped as a shared memory (for
example, for paravirtualized IO) via the shared EPT. If the GPA (range) was already mapped as an active,
private page, the host VMM may remove the private page from the TD by following the “Removing TD
Private Pages” sequence in the Intel TDX-module specification [3] to safely block the mapping(s), flush
the TLB and cache, and remove the mapping(s). The VMM is designed to be able to then map the
specified GPA (range) in the shared-EPT structure and allow the TD to access the page(s) as a shared
GPA (range).

If the Start GPA specified is a private GPA (GPA.S bit is clear), this MapGPA TDG.VP.VMCALL can be used
to help request the host VMM map the specific, private page(s) (which mapping may involve converting
the backing-physical page from a shared page to a private page). As intended in this case, the VMM

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 15

must unmap the GPA from the shared-EPT region and invalidate the TLB and caches for the TD vcpus to
help ensure no stale mappings and cache contents exist. The aim is for the VMM to then follow the
sequence specified in “Dynamically Adding TD Private Pages during TD Run Time” in the Intel TDX-
module specification [3] to use TDH.MEM.PAGE.AUG to add the GPA(s) to the TD as pending, private
mapping(s) in the secure-EPT. When the VMM responds to this TDG.VP.VMCALL with success, the goal
is for the TD to execute TDCALL[TDG.MEM.PAGE.ACCEPT] to complete the process to make the page(s)
usable as a private GPA inside the TD.

Upon MapGPA from shared to private, the VMM needs to check if the page is mapped by the IOMMU
page table. If direct I/O is already enabled and the page is mapped, MapGPA should fail. This is
equivalent to removing a page from a (legacy) guest with direct I/O enabled; the pages need to be
pinned there. If the VMM provides a virtual IOMMU (vIOMMU) or cooperative IOMMU (coIOMMU),
then the guest can indicate that it is not using that memory for DMA. In that case, MapGPA can: 1)
Check that page is not pinned by vIOMMU; 2) Check that the page is not mapped in physical IOMMU. If
1 and 2 succeed, then unmap and remap it.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 16

Table 3-4: TDG.VP.VMCALL<MapGPA>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<MapGPA> sub function per Table 2-3.

R12 4KB-aligned Start GPA of address range (Shared bit may be set or clear to
indicate if a shared- or private-page mapping is desired)

Shared-bit position is indicated by the GPA width [Guest-Physical-Address-
Width-execution control is initialized by the host VMM for the TD during
TDH.VP.INIT].

R13 Size of GPA region to be mapped (must be a multiple of 4KB)

Table 3-5: TDG.VP.VMCALL<MapGPA> Output Operands

Operand Description

R10 TDG.VP.VMCALL-instruction-return code.

R11 GPA at which MapGPA failed (see failure or retry reason in TDG.VP.VMCALL
specific status code.

Table 3-6: TDG.VP.VMCALL<MapGPA>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table
2-6

TDG.VP.VMCALL is successful. The TD is free to
use the GPA (range) specified

TDG.VP.VMCALL_RETRY TD must retry this operation for the pages in
the region starting at the GPA specified in R11.

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand – for example, the GPA address
is invalid (beyond GPAW).

TDG.VP.VMCALL_GPA_INUSE GPA is already in use by the TD, for e.g., GPA
used for hosting memory dedicated for IO. R11
specifies which GPA in the range specified was
in use.

TDG.VP.VMCALL_ALIGN_ERROR Alignment error for size or Start GPA.

3.3 TDG.VP.VMCALL<GetQuote>

GetQuote TDG.VP.VMCALL is a doorbell-like interface used to help send a message to the host VMM to
queue operations that tend to be long-running operations. GetQuote is designed to invoke a request to
generate a TD-Quote signing by a service hosting TD-Quoting Enclave operating in the host environment
for a TD Report passed as a parameter by the TD. TDREPORT_STRUCT is a memory operand intended to
be sent via the GetQuote TDG.VP.VMCALL to indicate the asynchronous service requested. For the
GetQuote operation, the goal is the TDREPORT_STRUCT be received by the TD via a prior

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 17

TDCALL[TDG.MR.REPORT] in a buffer and placed in a shared-GPA space passed to the VMM as an
operand in the GetQuote TDG.VP.VMCALL. In the case of this operation, the VMM can access the
TDREPORT_STRUCT, queue the operation for a service hosting TD-Quoting enclave, and, when
completed, return the Quote via the same, shared-memory area. For the TD to invoke the
TDG.VP.VMCALL<GetQuote>, the host VMM can signal the event completion to the TD OS via a
notification interrupt the host VMM injects into the TD (using the Event-notification vector registered
via the SetupEventNotifyInterrupt TDG.VP.VMCALL).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 18

Table 3-7: TDG.VP.VMCALL< GetQuote >-Input Operands

Operand Description

R11 TDG.VP.VMCALL< GetQuote > sub-function per Table 2-3

R12 Shared GPA as input – the memory contains a TDREPORT_STRUCT.

The same buffer is used as output – the memory contains a TD Quote.

R13 Size of shared GPA. The size must be 4KB-aligned.

Table 3-8: TDG.VP.VMCALL< GetQuote >-Output Operands

Operand Description

R10 TDG.VP.VMCALL return code.

Table 3-9: TDG.VP.VMCALL< GetQuote >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful
received by the VMM.

This status does not mean the TD
Quote is generated or returned.

The caller shall wait for event-
notification to evaluate the output
buffer to know if the TD Quote is
generated successfully.

TDG.VP.VMCALL_RETRY The TD should retry the operation

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand – for example, the
GPA may be mapped as a private
page.

Table 3-10: TDG.VP.VMCALL<GetQuote> - format of shared GPA

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 19

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 8 Version for this structure. It must be 1.

This field is always filled by TD.

Status

Code

8 8 Status Code updated by VMM before the VMM returns the VMCALL or

interrupts the TD. See Table 3-11.

This field is always filled by VMM.

Input

Length

16 4 The length for data from TD as input. It must be equal or smaller than size of

shared GPA (R13) – 24.

This field is always filled by TD.

Output

Length

20 4 The length for data from VMM as input. It must be equal or smaller than size

of shared GPA (R13) – 24.

This field is always filled by VMM.

Data 24 Size of

shared

GPA - 24

On input, the data filled by TD with input length. The data should include

TDREPORT_STRUCT. TD should zeroize the remaining buffer to avoid

information leak if size of shared GPA (R13) > Input Length.

On output, the data filled by VMM with output length. The data should

include TD Quote.

Table 3-11: TDG.VP.VMCALL<GetQuote> - GetQuote Status Code

Error Code Value Description

GET_QUOTE_SUCCESS 0x0 TDG.VP.VMCALL<GetQuote> is
successfully completed.

GET_QUOTE_IN_FLIGHT 0xFFFFFFFF_FFFFFFFF TDG.VP.VMCALL<GetQuote> is under
processing. The shared GPA isn’t
ready for TD to consume.

GET_QUOTE_ERROR 0x80000000_00000000 Error without specifying any reason.

GET_QUOTE_SERVICE_UNAVAILABLE 0x80000000_00000001 Quoting service isn’t available

The following is a typical execution flow.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 20

1) Guest TD sets up notification vector via TDG.VP.VMCALL<SetupEventNotifyInterrupt>
2) Guest TD allocates share GPA and initialize it, and then issues TDG.VP.VMCALL<GetQuote>. The data

field should include TDREPORT_STRUCT.
3) VMM receives TDG.VP.VMCALL<GetQuote> request. It checks input operands, fields in shared GPA.
4) If the input operands and fields in shared GPA are good, the VMM updates status code in shared GPA

to GET_QUOTE_IN_FLIGHT and queues the request. Then, TDG.VP.VMCALL<GetQuote> is returned to
TD. The VMM processes the request in background.

5) The VMM sends the data field from the TD in shared GPA to a service hosting TD-Quoting Enclave and
receives response message from it.

6) The VMM stores the data field in the received message in shared GPA and updates output length and
status code in shared GPA.

7) The VMM notifies the TD with an interruption vector specified by
TDG.VP.VMCALL<SetupEventNotifyInterrupt>.

8) The guest TD is interrupted. It checks if GetQuote status code fields in shared GPA is not
GET_QUOTE_IN_FLIGHT. If GetQuote status code is GET_QUOTE_SUCCESS, the data field includes the
TD Quote.

TDG.VP.VMCALL<GetQuote> API allows one TD to issue multiple requests. It’s implementation specific
that how many concurrent requests are allowed. The TD should be able to handle
TDG.VP.VMCALL_RETRY if it chooses to issue multiple requests simultaneously.

3.4 TDG.VP.VMCALL<ReportFatalError>

The FatalError TDG.VP.VMCALL can inform the host VMM that the TD has experienced a fatal-error state
and let the VMM access debug information. The output returned by the TDG.VP.VMCALL by the host
VMM for Debug and Production versions of the platform may be different. This TDG.VP.VMCALL is
intended to be used by the TD OS during early boot (in guest-firmware execution, for example) where
some instructions like IN/OUT may be avoided to prevent causing a #VE; It may be also used by the TD
guest post-boot when it detects an error (e.g., a security violation) and the TD wants to stop reliably
with information exposed to the host via the TD-specific error code (and additional information as a
zero-terminated string via the shared memory 4KB region).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 21

Table 3-12: TDG.VP.VMCALL< ReportFatalError >-Input Operands

Operand Description

R11 TDG.VP.VMCALL< ReportFatalError > sub-function per Table 2-3

R12 Bits Name Description

31:0 TD-specific error code TD-specific error code

Panic – 0x0

Values – 0x1 to 0xFFFFFFFF reserved

62:32 TD-specific extended error
code

TD-specific extended error code.

TD software defined.

63 GPA Valid Set if the TD specified additional
information in the GPA parameter
(R13)

R13 4KB-aligned GPA where additional error data is shared by the TD. The VMM
must validate that this GPA has the Shared bit set i.e., a shared-mapping is
used, and that it is a valid mapping for the TD. This shared memory region is
expected to hold a zero-terminated string.

Shared-bit position is indicated by the GPA width [Guest-Physical-Address-
Width-execution control is initialized by the host VMM for the TD during
TDH.VP.INIT].

Table 3-13: TDG.VP.VMCALL<ReportFatalError>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-14: TDG.VP.VMCALL< ReportFatalError >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

3.5 TDG.VP.VMCALL<SetupEventNotifyInterrupt>

The guest TD may request the host VMM specify which interrupt vector to use as an event-notify vector.
This is designed as an untrusted operation; thus, the TD OS should be designed to not use the event
notification for trusted operations. Example of an operation that can use the event notify is the host
VMM signaling a device removal to the TD, in response to which a TD may unload a device driver.

The host VMM should use SEAMCALL [TDWRVPS] leaf to inject an interrupt at the requested-interrupt
vector into the TD via the posted-interrupt descriptor. See Intel TDX-module specification [3] for TD-
interrupt handling.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 22

Table 3-15: TDG.VP.VMCALL< SetupEventNotifyInterrupt>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Setup Event Notify Interrupt> sub-function per Table 2-3

R12 Interrupt vector (valid values 32:255) selected by TD

Table 3-16: TDG.VP.VMCALL< SetupEventNotifyInterrupt >-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-17: TDG.VP.VMCALL< SetupEventNotifyInterrupt >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand

3.6 TDG.VP.VMCALL<Instruction.CPUID>

Instruction.CPUID TDG.VP.VMCALL is designed to enable the TD-guest to request the VMM to emulate
CPUID operation, especially for non-architectural, CPUID leaves.

Table 3-18: TDG.VP.VMCALL<Instruction.CPUID>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.CPUID>-Instruction-execution sub-

functions per Table 2-3

R12 EAX

R13 ECX

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 23

Table 3-19: TDG.VP.VMCALL<Instruction.CPUID>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R12 EAX

R13 EBX

R14 ECX

R15 EDX

Table 3-20: TDG.VP.VMCALL<Instruction.CPUID>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND Invalid CPUID requested

3.7 TDG.VP.VMCALL<#VE.RequestMMIO>

This TDG.VP.VMCALL is used to help request the VMM perform emulated-MMIO-access operation. The
VMM may emulate MMIO space in shared-GPA space. The VMM can induce a #VE on these shared-GPA
accesses by mapping shared GPAs with the suppress-VE bit cleared in the EPT Entries corresponding to
these mappings. In response to the #VE, the TD can use the TDCALL[TDG.VP.VEINFO.GET] to get the
Virtualization-Exception-Information Fields (See Error! Reference source not found.) and validate that t
he #VE exit reason is 48 (EPT violation causing #VE). After the TD software decodes the instruction
causing the #VE locally and validating the accessed region and source of access, the TD may choose to
use this TDG.VP.VMCALL to request MMIO read/write operations. The VMM may emulate the access
based on the inputs provided by the TD. However, note that, like other TDG.VP.VMCALLs, this TDCALL is
designed as an untrusted operation and to be used for untrusted IO with other cryptographic protection
for the TD data provided by the TD itself.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 24

Table 3-21: TDG.VP.VMCALL<RequestMMIO>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<RequestMMIO> sub-function per Table 2-3

R12 Size of access. 1=1byte, 2=2bytes, 4=4bytes, 8=8bytes.

All rest value = reserved.

R13 Direction. 0=Read, 1=Write.

All rest value = reserved.

R14 MMIO Address

R15 Data to write, if R13 is 1.

Table 3-22: TDG.VP.VMCALL<Instruction.MMIO>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 Data to read, if R13 is 0.

Table 3-23: TDG.VP.VMCALL<Instruction.MMIO>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND If invalid operands provided by the
TD, e.g., MMIO address

3.8 TDG.VP.VMCALL<Instruction.HLT>

Instruction.HLT TDG.VP.VMCALL is used to help perform HLT operation. The TD guest informs the VMM

regarding the TD’s interrupt (blocked) status via this interface.

Table 3-24: TDG.VP.VMCALL<Instruction.HLT>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.HLT>-Instruction-execution sub-functions per
Table 2-3

R12
Interrupt Blocked Flag.

The TD is expected to clear this flag iff RFLAGS.IF == 1 or the TDCALL instruction
(that invoked TDG.VP.TDVMCALL(Instruction.HLT)) immediately follows an STI
instruction, otherwise this flag should be set.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 25

Table 3-25: TDG.VP.VMCALL<Instruction.HLT>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-26: TDG.VP.VMCALL<Instruction.HLT>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

3.9 TDG.VP.VMCALL<Instruction.IO>

Instruction.IO TDG.VP.VMCALL is used to help request the VMM perform IO operations.

Table 2-27: TDG.VP.VMCALL<Instruction.IO>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.IO>-Instruction-execution sub-functions per
Table 2-3

R12 Size of access. 1=1byte, 2=2bytes, 4=4bytes.

All rest value = reserved.

R13 Direction. 0=Read, 1=Write.

All rest value = reserved.

R14 Port number

R15 Data to write, if R13 is 1.

Table 2-28: TDG.VP.VMCALL<Instruction.IO>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 Data to read, if R13 is 0.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 26

Table 2-29: TDG.VP.VMCALL<Instruction.IO>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND Invalid-IO-Port access

3.10 TDG.VP.VMCALL<Instruction.RDMSR>

Instruction.RDMSR TDG.VP.VMCALL is used to hep perform RDMSR operation.

Table 2-30: TDG.VP.VMCALL<Instruction.RDMSR>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.RDMSR> Instruction execution sub-functions
per Table 2-3

R12 MSR Index

Table 2-31: TDG.VP.VMCALL<Instruction.RDMSR>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 MSR Value

Table 2-32: TDG.VP.VMCALL<Instruction.RDMSR>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND Invalid MSR rd/wr requested or access-
denied

3.11 TDG.VP.VMCALL<Instruction.WRMSR>

Instruction.WRMSR TDG.VP.VMCALL is used to help perform WRMSR operation.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 27

Table 2-33: TDG.VP.VMCALL<Instruction.WRMSR>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.WRMSR>-Instruction-execution sub-

functions per Table 2-3

R12 MSR Index

R13 MSR Value

Table 2-34: TDG.VP.VMCALL<Instruction.WRMSR>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 2-35: TDG.VP.VMCALL<Instruction.WRMSR>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND Invalid MSR rd/wr requested or access-
denied

3.12 TDG.VP.VMCALL<Instruction.PCONFIG>

Instruction.VMCALL PCONFIG is used to help perform Instruction-PCONFIG operation.

Table 2-36: TDG.VP.VMCALL<Instruction.PCONFIG>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.PCONFIG> sub-function per Table 2-3

R12 PCONFIG-Leaf function requested

R13, R14, R15 Leaf-specific purpose (See PCONFIG ISA definition in MKTME spec. [4]

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 28

Table 2-37: TDG.VP.VMCALL<Instruction.PCONFIG>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 VMM-Vendor Specific

R12, R13, R14, R15, RBX, RDI, RSI,
R8, R9, RDX

VMM-Vendor Specific

XMM0 – XMM15 If RCX bit 1 is set, the XMM content is set by VMM host when executing
SEAMCALL(TDENTER).

Otherwise, the XMM content is unmodified.

Table 2-38: TDG.VP.VMCALL<Instruction.PCONFIG>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND If PCONFIG-operation requested is
invalid

3.13 TDG.VP.VMCALL <Service>

In Service TD scenario, there is need to define interfaces for the command/response that may have long

latency, such as communicating with local device via Secure Protocol and Data Model (SPDM),

communicating with remote platform via Transport Layer Security (TLS) Protocol, or communicating

with a Quoting Enclave (QE) on attestation or mutual authentication.

There is also need that the VMM may notify a service TD to do some actions, such as Migration TD

(MigTD).

We define Command/Response Buffer (CRB) DMA interface.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 29

Table 3-39: TDG.VP.VMCALL< Service >-Input Operands

Operand Description

R11 TDG.VP.VMCALL< Service > sub-function per Error! Reference source not f

ound.

R12 Shared 4KB aligned GPA as input – the memory contains a Command.

It could be more than one 4K pages.

R13 Shared 4KB aligned GPA as output – the memory contains a Response.

It could be more than one 4K pages.

R14 Event notification interrupt vector - (valid values 32~255) selected by TD

0: blocking action. VMM need get response then return.

1~31: Reserved. Should not be used.

32~255: Non-block action. VMM can return immediately and signal the

interrupt vector when the response is ready.

R15 Timeout– Maximum wait time for the command and response.

0 means infinite wait.

Table 3-40: TDG.VP.VMCALL< Service >-Output Operands

Operand Description

R10 TDG.VP.VMCALL return code.

Table 3-41: TDG.VP.VMCALL< Service >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand – for example, the GPA

may be mapped as a private page. Or the

interrupt vector is invalid.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 30

Table 3-42: TDG.VP.VMCALL< Service >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

GUID 0 16 A unique GUID to identify the service.

This field is always filled by TD.

Length 16 4 Size in bytes of the command buffer, including the GUID and Length. (24

+ N)

This field is always filled by TD.

Reserved 20 4 Reserved

Data 24 N GUID specific command data.

This field is always filled by TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 31

Table 3-43: TDG.VP.VMCALL< Service >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

GUID 0 16 A unique GUID to identify the service.

This field is always filled by TD.

Length 16 4 Size in bytes of the response buffer, including the GUID and Length. (24

+ N)

When TD uses the VMCALL, this field is filled by TD to indicate the

maximum allocated response buffer size.

When VMM triggers interrupt vector, this field is filled by VMM to

indicate the returned response buffer size.

Status 20 4 Common Status Code for response.

0: Command is sent, and response is returned.

1: Device error

2: Timeout

3: Response buffer too small

4: Bad command buffer size

5: Bad response buffer size

6: Service busy

7: Invalid Parameter

8: Out of resource

0xFFFFFFFE: Unsupported.

0xFFFFFFFF: Reserved – should be filled by TD, so that TD can check if

the response is returned by VMM.

This field is always filled by VMM. (*)

Data 24 N GUID specific response data.

This field is always filled by VMM.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 32

(*) NOTE: Status field only means the VMM sends the command receives a response. It does not

mean the response contain a success code. For example, an SPDM responder may return an SPDM

error in a SPDM response message. The VMM will fill SUCCESS in this status. The SPDM requester in

TD should parse the SPDM response message to get the SPDM error code.

The detail flow is:

Step 1, the TD will:

1.1) Prepare an event notification interrupt vector.

1.2) Prepare a shared command buffer and put command there, including GUID, length and data.

1.3) Prepare a shared response buffer and put the GUID and maximum length of response buffer there.

1.4) Trigger TDVMCALL.

Step 2, the VMM will:

2.1) Setup the context for this TDVMCALL <Service> (For example, save the response buffer and event

notification interrupt vector)

2.2) Send command

2.3) Prepare for response (Interrupt or Poll)

2.2) return TDVMCALL to TD.

Step 3, the TD will:

3.1) Free the shared command buffer and make it private. (Optional, if the TD wants to reuse the buffer

later)

Step 4, once VMM gets the response, the VMM will

4.1) Check if the Response.Length is large enough to hold the response.

4.2) Fill the Response.Data field with response.

4.3) Free the context for this TDVMCALL <Service>

4.3) Trigger Event Notification Interrupt to TD.

Step 5, once TD gets the event notification, the TD will

5.1) Read the data from the response to private.

5.2) Free the shared response buffer and make it private. (Optional, if the TD wants to reuse the buffer

later)

5.3) If the returned data includes length, offset, index, etc, apply the side channel mitigation, such as

lfence(), before parse the data.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 33

5.4) Parse the response in private memory. NOTE: This is from untrusted source. The TD must check the

data before use it.

3.13.1 TDG.VP.VMCALL <Service.Query>

This generic service is to allow TD to query the capability.

// {FB6FC5E1-3378-4ACB-8964-FA5EE43B9C8A}

#define VMCALL_SERVICE_COMMON_GUID \

{0xfb6fc5e1, 0x3378, 0x4acb, 0x89, 0x64, 0xfa, 0x5e, 0xe4, 0x3b, 0x9c, 0x8a}

Table 3-44: TDG.VP.VMCALL< Service.Query >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 0: Query

Reserved 2 2 Reserved

GUID 4 16 The Service GUID to query

Table 3-45: TDG.VP.VMCALL< Service.Query >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 0: Query

Status 2 1 0: Service supported

1: Service unsupported

Reserved 3 1 Reserved

GUID 4 16 The Service GUID to query

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 34

3.13.2 TDG.VP.VMCALL <Service.MigTD>

This is used to allow MigTD to get the migration information from VMM.

#define VMCALL_SERVICE_MIGTD_GUID \

{0xe60e6330, 0x1e09, 0x4387, 0xa4, 0x44, 0x8f, 0x32, 0xb8, 0xd6, 0x11, 0xe5}

3.13.2.1 TDG.VP.VMCALL <Service.MigTD.Shutdown>
This is used to allow a service TD to shutdown itself after it finishes the task.

Table 3-46: TDG.VP.VMCALL< Service.MigTD.Shutdown >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 0: Shutdown

Reserved 2 2 Reserved

No response data is required.

3.13.2.2 TDG.VP.VMCALL <Service.MigTD.WaitForRequest>

Table 3-47: TDG.VP.VMCALL< Service.MigTD.WaitForRequest >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 1: Wait for request

Reserved 2 2 Reserved

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 35

Table 3-48: TDG.VP.VMCALL< Service.MigTD.WaitForRequest >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 1: Wait for request

Operation 2 1 0: No-op

1: Start Migration

2~0xFF: reserved

This field is used to perform corresponding migration command.

Reserved 3 1 Reserved

Migration

Information

4 Variable Migration related GUID extension HOB, including

MIGTD_MIGRATION_INFORMATION HOB and others.

3.13.2.2.1 Migration Request Information GUID Extension HOB

This GUID extension HOB reports the migration request information.

#define MIGTD_MIGRATION_INFORMATION_HOB_GUID \

{0x42b5e398, 0xa199, 0x4d30, 0xbe, 0xfc, 0xc7, 0x5a, 0xc3, 0xda, 0x5d, 0x7c}

typedef struct {

 UINT64 MigRequestID;

 BOOLEAN MigrationSource;

 UINT8 TargetTD_UUID[32];

 UINT64 BindingHandle;

 UINT64 MigPolicyID;

 UINT64 CommunicationID;

} MIGTD_MIGRATION_INFORMATION;

MigRequestID The ID for the migration request. It is used in TDG.VP.VMCALL
<Service.MigTD.ReportStatus> in TDG.VP.VMCALL <Service.MigTD.Send> and
TDG.VP.VMCALL <Service.MigTD.Receive>.

MigrationSource TRUE: This MigTD is MigTD-s; FALSE: This MigTD is MigTD-d.
TargetTD_UUID The UUID for the target TD returned from SEAMCALL[TDH.SERVTD.BIND].

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 36

BindingHandle The BindingHandle for the MigTD and the target TD returned from
SEAMCALL[TDH.SERVTD.BIND].

MigPolicyID The ID for the migration policy.
CommunicationID The ID for the VMM communication channel.

3.13.2.2.2 Stream Socket Info GUID Extension HOB

This GUID extension HOB reports the VMCALL based stream socket information.

#define MIGTD_STREAM_SOCKET_INFO_HOB_GUID \

{0x7a103b9d, 0x552b, 0x485f, 0xbb, 0x4c, 0x2f, 0x3d, 0x2e, 0x8b, 0x1e, 0xe}

typedef struct {

 UINT64 CommunicationID;

 UINT64 MigTdCid;

 UINT32 MigChannelPort;

 UINT32 QuoteServicePort;

} MIGTD_STREAM_SOCKET_INFO;

CommunicationID A unique identifier for this communication. It can be used in
MIGTD_MIGRATION_INFORMATION HOB.

MigTdCid The context ID (CID) for the MigTD.
MigChannelPort The listening port of the MigTD or VMM for the migration secure communication channel.
QuoteServicePort The listening port of the VMM for the quote service channel.

3.13.2.2.3 Runtime Migration Policy GUID Extension HOB

This GUID extension HOB reports the runtime migration policy.

#define MIGTD_MIGPOLICY_HOB_GUID \

{0xd64f771a, 0xf0c9, 0x4d33, 0x99, 0x8b, 0xe, 0x3d, 0x8b, 0x94, 0xa, 0x61}

typedef struct {

 UINT64 MigPolicyID;

 UINT32 MigPolicySize;

 UINT8 MigPolicy[];

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 37

} MIGTD_MIGPOLICY_INFO;

MigPolicyID A unique identifier for this policy. It can be used in MIGTD_MIGRATION_INFORMATION
HOB.

MigPolicySize The size in bytes of the migration policy.
MigPolicy The migration policy data.

3.13.2.3 TDG.VP.VMCALL <Service.MigTD.ReportStatus>

Table 3-49: TDG.VP.VMCALL< Service.MigTD.ReportStatus >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 2: Report Status

Operation 2 1 Same as the “Operation” in TDG.VP.VMCALL

<Service.MigTD.WaitForRequest>

Status 3 1 0: SUCCESS

1: INVALID_PARAMETER

2: UNSUPPORTED

3: OUT_OF_RESOURCE

4: TDX_MODULE_ERROR

5: NETWORK_ERROR

6: SECURE_SESSION_ERROR

7: MUTUAL_ATTESTATION_ERROR

8: MIGPOLICY_ERROR

0xFF: MIGTD_INTERNAL_ERROR

0x0A~0xFE: Reserved

MigRequestID 4 8 The MigRequestID in MIGTD_MIGRATION_INFORMATION HOB

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 38

Table 3-50: TDG.VP.VMCALL< Service.MigTD.ReportStatus >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 2: Report Status

Reserved 2 2 Reserved

3.13.2.4 TDG.VP.VMCALL <Service.MigTD.Send>

The two MigTDs use this VMCALL and next VMCALL to transmit and receive the communication packet

to each other via the VMM.

The communication packet is transparent to the VMM. The VMM shall treat it as binary blob and do not

parse it. The VMM shall guarantee the connection is reliable. For example, no communication packet

will be lost. No communication packet will arrive out of order.

The MigTD shall guarantee the communication request for one MigRequestID is sequential. Multiple

requests for one MigRequestID at same time are not allowed. If the VMM receives another request

while it is waiting for the response of the previous request with the same MigRequestID, the VMM shall

return Service busy error status. The MigTD may send multiple requests for different MigRequestID at

same time, the VMM shall support this case and server all requests. If the VMM may run out of resource

to create a new context to communicate with the remote, the VMM shall return Out of resource error

status.

If the VMM has hardware error and fails to send the command or receive the response, the VMM shall

return Device error status. If the VMM fails to send the command or receive the response in timeout

period indicated by the MigTD, the VMM shall return Timeout status.

The MigTD shall provide a big enough response buffer. If the response buffer is too small to hold the

response from the peer MigTD, the VMM shall return Receive buffer too small error status.

The MigTD shall provide a reasonable size command buffer and response buffer to allow VMM

allocate the memory to handle the input or output. The VMM shall supports at least 64KB

command buffer and response buffer. If the MigTD request an unreasonable large command buffer

or response buffer, such as 1GB, the VMM may return Bad command buffer size or Bad response

buffer size error status.

The MigTD may input zero command buffer size, when the MigTD-d wants to wait for the first

request message from MigTD-s. The MigTD may input zero response buffer size, when a MigTD

sends the last handshake message to the peer. The VMM shall handle those cases correctly. If the

MigTD inputs zero command buffer size and zero response buffer size at same time, the VMM shall

return Invalid parameter error status.

For the detail of stream communication flow, please refer to VMCALL stream message section.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 39

Table 3-51: TDG.VP.VMCALL< Service.MigTD.Send >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 3: Send

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in MIGTD_MIGRATION_INFORMATION HOB

Stream

Message

Header

12 32 The stream message header. See VMCALL stream message section -

VMCALL_STREAM_MESSAGE_HEADER.

MigTD

communication

packet

44 N This field is only present when

VMCALL_STREAM_MESSAGE_HEADER.Operation is

VMCALL_STREAM_OP_RW.

Size in bytes of the MigTD communication packet to be sent.

The format of the packet is defined by the MigTD. The VMM shall send the

binary blob to the peer MigTD.

Table 3-52: TDG.VP.VMCALL< Service.MigTD.Send >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 3: Send

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in MIGTD_MIGRATION_INFORMATION HOB

3.13.2.1 TDG.VP.VMCALL <Service.MigTD.Receive>

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 40

Table 3-53: TDG.VP.VMCALL< Service.MigTD.Receive >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 4: Receive

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in MIGTD_MIGRATION_INFORMATION HOB

Table 3-54: TDG.VP.VMCALL< Service.MigTD.Receive >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 4: Receive

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in MIGTD_MIGRATION_INFORMATION HOB

Stream

Message

Header

12 32 The stream message header. See VMCALL stream message section -

VMCALL_STREAM_MESSAGE_HEADER.

MigTD

communication

packet

44 N This field is only present when

VMCALL_STREAM_MESSAGE_HEADER.Operation is

VMCALL_STREAM_OP_RW.

Size in bytes of the MigTD communication packet being received.

The format of the packet is defined by the MigTD. The VMM shall receive

the binary blob from the peer MigTD.

3.13.2.1.1 Stream Socket Message

A service TD may setup a stream connection with a VMM. Either a service TD or a VMM can be the client

or the server. Every stream message starts with a VMCALL_STREAM_MESSAGE_HEADER, followed by the

payload if the operation is VMCALL_STREAM_OP_RW.

In order to create a stream connection, the client sends VMCALL_STREAM_OP_REQUEST packet. If the

server is listening, then it sends VMCALL_STREAM_OP_RESPONSE packet and the stream connection is

established. If the server is not listening or has no resource, then it sends VMCALL_STREAM_OP_RESET

packet.

Once the stream connection is established, both entities may send VMCALL_STREAM_OP_RW packet to

the peer.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 41

When an entity does not need send more data or receive more data, it sends

VMCALL_STREAM_OP_SHUTDOWN packet. The peer sends VMCALL_STREAM_OP_RESET response to

confirm. The stream connection is terminated. Even if the response is not received, the connection is

still terminated with a timeout period.

typedef struct {

 UINT64 SourceCid;

 UINT64 DestinationCid;

 UINT32 SourcePort;

 UINT32 DestinationPort;

 UINT32 Length;

 UINT16 Operation;

 UINT16 Reserved;

} VMCALL_STREAM_MESSAGE_HEADER;

SourceCid The context ID of the source.
DestinationCid The context ID of the destination.
SourcePort The port of the source.
DestinationPort The port of the destination.
Length The length of the payload. It does not include this header.
Operation The message operation. See VMCALL_STREAM_MESSAGE_OPERATION.

typedef enum {

 VMCALL_STREAM_OP_RESERVED = 0,

 // stream connection

 VMCALL_STREAM_OP_REQUEST = 1,

 VMCALL_STREAM_OP_RESPONSE = 2,

 VMCALL_STREAM_OP_RESET = 3,

 VMCALL_STREAM_OP_SHUTDOWN = 4,

 // send payload message

 VMCALL_STREAM_OP_RW = 5,

} VMCALL_STREAM_MESSAGE_OPERATION;

The VMM CID is always set to 0x2. The MigTD CID is passed from VMM dynamically. The server listening

port of VMM or MigTD can be predefined or passed from VMM dynamically.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 42

When the MigTD acts as a client and the VMM acts as a server. Below communication flow is used:

MigTD: {MigTdCid, VmmCid, MigTdPort, VmmListeningPort, OP_REQUEST}

VMM: {VmmCid, MigTdCid, VmmListeningPort, MigTdPort, OP_RESPONSE}

MigTD: {MigTdCid, VmmCid, MigTdPort, VmmListeningPort, OP_RW, payload}

VMM: {VmmCid, MigTdCid, VmmListeningPort, MigTdPort, OP_RW, payload}

……

MigTD: {MigTdCid, VmmCid, MigTdPort, VmmListeningPort, OP_SHUTDOWN}

VMM: {VmmCid, MigTdCid, VmmListeningPort, MigTdPort, OP_RESET}

When the MigTD acts as a server and the VMM acts as a client. Below communication flow is used:

VMM: {VmmCid, MigTdCid, VmmPort, MigTdListeningPort, OP_REQUEST}

MigTD: {MigTdCid, VmmCid, MigTdListeningPort, VmmPort, OP_RESPONSE}

VMM: {VmmCid, MigTdCid, VmmPort, MigTdListeningPort, OP_RW, payload}

MigTD: {MigTdCid, VmmCid, MigTdListeningPort, VmmPort, OP_RW, payload}

……

VMM: {VmmCid, MigTdCid, VmmPort, MigTdListeningPort, OP_SHUTDOWN}

MigTD: {MigTdCid, VmmCid, MigTdListeningPort, VmmPort, OP_RESET}

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 43

4 TD-Guest-Firmware Interfaces

4.1 ACPI MADT Multiprocessor Wakeup Table

The guest firmware is designed to publish a multiprocessor-wakeup structure to let the guest-bootstrap

processor wake up guest-application processors with a mailbox. The mailbox is memory that the guest

firmware can reserve so each guest, virtual processor can have the guest OS send a message to them.

For detailed information about the Multiprocessor Wakeup Table, please refer to ACPI 6.4 specification.

4.2 Memory Map

The memory in the TD guest-environment can be:

1) Private memory – SEAMCALL[TDH.MEM.PAGE.ADD] by VMM or TDCALL [TDG.MEM.PAGE.ACCEPT] by

TDVF with S-bit clear in page table.

2) Shared memory – SEAMCALL[TDH.MEM.PAGE.ADD] by VMM or TDCALL [TDG.MEM.PAGE.ACCEPT] by

TDVF with S-bit set in page table.

3) Unaccepted memory – SEAMCALL[TDH.MEM.PAGE.AUG] by VMM and not accepted by TDVF yet.

4) Memory-mapped IO (MMIO) - Shared memory accessed via TDVF via

TDVMCALL<#VE.RequestMMIO>.

If a TD-memory region is private memory, the TD owner shall have the final UEFI-memory map report

the region with EfiReservedMemoryType, EfiLoaderCode, EfiLoaderData,

EfiBootServiceCode, EfiBootServiceData, EfiRuntimeServiceCode,

EfiRuntimeServiceData, EfiConventionalMemory, EfiACPIReclaimMemory,

EfiACPIMemoryNVS.

If a TD-memory region is shared memory, the TD owner shall convert it to private memory before

transfer to OS kernel.

If a TD-memory region is unaccepted memory and requires TDCALL [TDG.MEM.PAGE.ACCEPT] in the TD

guest OS, then the TD owner shall have the final UEFI-memory map report this region with

EfiUnacceptedMemoryType. Please refer to UEFI 2.9 specification.

If a memory region is MMIO, it is designed to only be accessed via TDVMCALL<#VE.RequestMMIO> and

not via direct memory read or write. Accordingly, as designed, there is no need to report this region in

UEFI-memory map, because no RUNTIME attribute is required. The full, MMIO regions is designed to be

reported in ACPI ASL code via memory-resource descriptors.

https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#multiprocessor-wakeup-structure
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 44

Table 4-1: TDVF-memory map for OS

UEFI Memory Type Usage TD-Memory

Type

OS Action

EfiReservedMemoryTpe Firmware-Reserved

region, such as flash.

Private Reserved.

EfiLoaderCode UEFI-Loader Code Private Use after EBS.

EfiLoaderData UEFI-Loader Data Private Use after EBS.

EfiBootServicesCode UEFI-Boot-Service Code Private Use after EBS.

EfiBootServicesData UEFI-Boot-Service Data Private Use after EBS.

EfiRuntimeServicesCode UEFI-Runtime-Service

Code

Private Map-virtual address.

Reserved.

EfiRuntimeServicesData UEFI-Runtime-Service

Data

Private Map-virtual address.

Reserved.

EfiConventionalMemory Freed memory (Private) Private Use directly.

EfiACPIReclaimMemory ACPI table. Private Use after copy ACPI table.

EfiACPIMemoryNVS Firmware Reserved for

ACPI, such as the memory

used in ACPI OpRegion

Private Reserved.

EfiMemoryMappedIO No need to report the

MMIO region, as no

RUNTIME-virtual address

is required for TD.

The full MMIO should be

reported in ACPI-ASL

code.

N/A N/A

EfiUnacceptedMemoryT

ype

UEFI-Boot-Service Data

(Shared Memory)

VMM-shared buffer.

Unaccepted Use after EBS and

converting to private page.

==============

TDCALL[TDG.VP.VMCALL]

<MapGPA>

TDCALL[TDG.MEM.PAGE.AC

CEPT]

For non-UEFI system, the memory map can be reported via E820 table.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 45

If a TD-memory region is private memory, the TD Shim shall have the final memory map report the

region with AddressRangeMemory, AddressRangeReserved, AddressRangeACPI, or

AddressRangeNVS.

If a TD-memory region is shared memory, the TD Shim shall convert it to private memory before transfer

to OS kernel.

If a TD-memory region is unaccepted memory and requires TDCALL [TDG.MEM.PAGE.ACCEPT] in the TD

guest OS, then the TD Shim shall have the final memory map report this region with

AddressRangeUnaccepted.

If a memory region is MMIO, it is designed to only be accessed via TDVMCALL<#VE.RequestMMIO> and

not via direct memory read or write. Accordingly, as designed, there is no need to report this region in

the final memory map.

Table 4-2: TDVF E820 memory map for OS

E820 Memory Type Usage TD-Memory Type OS Action

AddressRangeMemory Usable by OS. Private Use directly

AddressRangeReserved Firmware-Reserved

region, such as flash.

Private Reserved.

AddressRangeACPI ACPI table. Private Use after copy

ACPI table.

AddressRangeNVS Firmware Reserved

for ACPI, such as the

memory used in ACPI

OpRegion

Private Reserved.

AddressRangeUnaccepted Allocated by VMM,

but not accepted by

TD guest yet.

Unaccepted Use after

convert to

private page.

4.3 TD Measurement

4.3.1 TCG-Platform-Event Log

If TD-Guest Firmware supports measurement and an event is created, TD-Guest Firmware is designed to

report the event log with the same data structure in TCG-Platform-Firmware-Profile specification with

EFI_TCG2_EVENT_LOG_FORMAT_TCG_2 format.

The index created by the TD-Guest Firmware in the event log should be the index for the confidential

computing (CC) measurement register.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 46

Table 4-3: CC-Event-Log-PCR-Index Interpretation for TDX

CC Measurement

Register Index
TDX-measurement register

0 MRTD

1 RTMR[0]

2 RTMR[1]

3 RTMR[2]

4 RTMR[3]

4.3.2 EFI_CC_MEASUREMENT_PROTOCOL

If TD-Guest Firmware supports measurement, the TD Guest Firmware is designed to produce

EFI_CC_MEASUREMENT_PROTOCOL with new GUID EFI_CC_MEASUREMENT_PROTOCOL_GUID to

report event log and provide hash capability.

EFI_CC_MEASUREMENT_PROTOCOL

Summary

This protocol abstracts the confidential computing (CC) measurement operation in UEFI guest

environment.

GUID

#define EFI_CC_MEASUREMENT_PROTOCOL_GUID \

{0x96751a3d, 0x72f4, 0x41a6, {0xa7, 0x94, 0xed, 0x5d, 0xe, 0x67, 0xae,

0x6b }}

Protocol Interface Structure

typedef struct _EFI_CC_MEASUREMENT_PROTOCOL {

 EFI_CC_GET_CAPABILITY GetCapability;

 EFI_CC_GET_EVENT_LOG GetEventLog;

 EFI_CC_HASH_LOG_EXTEND_EVENT HashLogExtendEvent;

 EFI_CC_MAP_PCR_TO_MR_INDEX MapPcrToMrIndex;

} EFI_CC_MEASUREMENT_PROTOCOL;

Parameters

GetCapability

Provide protocol capability information and state information. See the GetCapability()

function description.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 47

GetEventLog

Allow a caller to retrieve the address of a given event log and its last entry. See the

GetEventLog() function description.

HashLogExtendEvent

Provide callers with an opportunity to extend and optionally log events without requiring

knowledge of actual CC command. See the HashLogExtendEvent() function

description.

MapPcrToMrIndex

Provide callers information on TPM PCR to CC measurement register (MR) mapping.

See the MapPcrToMrIndex() function description.

Description

The EFI_CC_MEASUREMENT_PROTOCOL is used to abstract the CC measurement related

action in CC UEFI guest environment.

EFI_CC_MEASUREMENT_PROTOCOL.GetCapability

Summary

This service provides protocol capability information and state information.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_GET_CAPABILITY)(

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN OUT EFI_CC_BOOT_SERVICE_CAPABILITY *ProtocolCapability

);

Parameters

This

The protocol interface pointer.

ProtocolCapability

The caller allocates memory for an EFI_CC_BOOT_SERVICE_CAPABILITY

structure and sets the size field to the size of the structure allocated.

The callee fills in the fields with the EFI protocol capability information

and the current EFI CC state information up to the number of fields which

fit within the size of the structure passed in.

Description

This function provides protocol capability information and state information.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 48

Status Code Returned

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARAME

TER

One or more of the parameters are incorrect.

The ProtocolCapability variable will not be populated.

EFI_DEVICE_ERROR The command was unsuccessful.

The ProtocolCapability variable will not be populated.

EFI_BUFFER_TOO_SMA

LL
The ProtocolCapability variable is too small to hold the full

 response.

It will be partially populated (required Size field will be set).

Related Definitions

typedef struct {

 //

 // Allocated size of the structure

 //

 UINT8 Size;

 //

 // Version of the EFI_CC_BOOT_SERVICE_CAPABILITY structure.

 // For this version of the protocol,

 // the Major version shall be set to 1

 // and the Minor version shall be set to 0.

 //

 EFI_CC_VERSION StructureVersion;

 //

 // Version of the EFI CC MEASUREMENT protocol.

 // For this version of the protocol,

 // the Major version shall be set to 1

 // and the Minor version shall be set to 0.

 //

 EFI_CC_VERSION ProtocolVersion;

 //

 // Supported hash algorithms

 //

 EFI_CC_EVENT_ALGORITHM_BITMAP HashAlgorithmBitmap;

 //

 // Bitmap of supported event log formats

 //

 EFI_CC_EVENT_LOG_BITMAP SupportedEventLogs;

 //

 // Indicate CC type

 //

 EFI_CC_TYPE CcType;

} EFI_CC_BOOT_SERVICE_CAPABILITY;

typedef struct {

 UINT8 Major;

 UINT8 Minor;

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 49

} EFI_CC_VERSION;

typedef UINT32 EFI_CC_EVENT_LOG_BITMAP;

typedef UINT32 EFI_CC_EVENT_ALGORITHM_BITMAP;

#define EFI_CC_BOOT_HASH_ALG_SHA384 0x00000004

typedef struct {

 UINT8 Type;

 UINT8 SubType;

} EFI_CC_TYPE;

#define EFI_CC_TYPE_NONE 0

#define EFI_CC_TYPE_SEV 1

#define EFI_CC_TYPE_TDX 2

EFI_CC_PROTOCOL.GetEventLog

Summary

This service allows a caller to retrieve the address of a given event log and its last entry.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_GET_EVENT_LOG)(

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN EFI_CC_EVENT_LOG_FORMAT EventLogFormat,

 OUT EFI_PHYSICAL_ADDRESS *EventLogLocation,

 OUT EFI_PHYSICAL_ADDRESS *EventLogLastEntry,

 OUT BOOLEAN *EventLogTruncated

);

Parameters

This

The protocol interface pointer.

EventLogFormat

The type of event log for which the information is requested.

EventLogLocation

A pointer to the memory address of the event log.

EventLogLastEntry

If the event log contains more than one entry, this is a pointer to the address of the start of

the last entry in the event log in memory.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 50

EventLogTruncated

If the event log is missing at least one entry because one event would have exceeded the

area allocated for the event, this value is set to TRUE. Otherwise, this value will be

FALSE and the event log is complete.

Description

This function allows a caller to retrieve the address of a given event log and its last entry.

Status Code Returned

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

Related Definitions

typedef UINT32 EFI_CC_EVENT_LOG_FORMAT;

#define EFI_CC_EVENT_LOG_FORMAT_TCG_2 0x00000002

EFI_CC_MEASUREMENT_PROTOCOL.HashLogExtendEvent

Summary

This service provides callers with an opportunity to extend and optionally log events without

requiring knowledge of actual CC command.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_GET_EVENT_LOG)(

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN UINT64 Flags,

 IN EFI_PHYSICAL_ADDRESS DataToHash,

 IN UINT64 DataToHashLen,

 IN EFI_CC_EVENT *EfiTdEvent

);

Parameters

This

The protocol interface pointer.

Flags

Bitmap providing additional information.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 51

DataToHash

Physical address of the start of the data buffer to be hashed.

DataToHashLen

The length in bytes of the buffer referenced by DataToHash.

EfiCcEvent

Pointer to the data buffer containing information about the event.

Description

This function provides callers with an opportunity to extend and optionally log events without

requiring knowledge of actual CC command. The extend operation will occur even if the function

cannot create an event log entry.

Status Code Returned

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARA

METER

One or more of the parameters are incorrect.

EFI_DEVICE_ERROR The command was unsuccessful.

EFI_VOLUME_FULL The extend operation occurred, but the event could not be written to

one or more event logs.

EFI_UNSUPPORTED The PE/COFF image type is not supported.

Related Definitions

//

// This bit is shall be set when an event shall be extended

// but not logged.

//

#define EFI_CC_FLAG_EXTEND_ONLY 0x0000000000000001

//

// This bit shall be set when the intent is to measure

// a PE/COFF image.

//

#define EFI_CC_FLAG_PE_COFF_IMAGE 0x0000000000000010

typedef UINT32 EFI_CC_MR_INDEX;

#pragma pack(1)

typedef struct {

 //

 // Size of the event header itself.

 //

 UINT32 HeaderSize;

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 52

 //

 // Header version. For this version of this specification,

 // the value shall be 1.

 //

 UINT16 HeaderVersion;

 //

 // Index of the MR that shall be extended.

 //

 EFI_CC_MR_INDEX MrIndex;

 //

 // Type of the event that shall be extended

 // (and optionally logged).

 //

 UINT32 EventType;

} EFI_CC_EVENT_HEADER;

typedef struct {

 //

 // Total size of the event including the Size component,

 // the header and the Event data.

 //

 UINT32 Size;

 EFI_CC_EVENT_HEADER Header;

 UINT8 Event[1];

} EFI_CC_EVENT;

#pragma pack()

EFI_CC_MEASUREMENT_PROTOCOL.MapPcrToMrIndex

Summary

This service provides callers information on TPM PCR to CC measurement register (MR)

mapping.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_MAP_PCR_TO_MR_INDEX)(

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN TCG_PCRINDEX PcrIndex,

 OUT EFI_CC_MR_INDEX *MrIndex

);

Parameters

This

The protocol interface pointer.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 53

PcrIndex

TPM PCR index.

MrIndex

CC Measurement Register index.

Description

This function provides callers information on TPM PCR to CC measurement register (MR)

mapping.

In current version, we use below mapping for TDX:

TPM PCR Index
CC Measurement

Register Index
TDX-measurement register

0 0 MRTD

1, 7 1 RTMR[0]

2~6 2 RTMR[1]

8~15 3 RTMR[2]

Status Code Returned

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARA

METER

One or more of the parameters are incorrect.

EFI_DEVICE_ERROR The command was unsuccessful.

EFI_VOLUME_FULL The extend operation occurred, but the event could not be written to

one or more event logs.

EFI_UNSUPPORTED The PE/COFF image type is not supported.

Related Definitions

typedef UINT32 TCG_PCRINDEX;

EFI CC Final Events Table

All events generated after the invocation of GetEventLog SHALL be

stored in an instance of an EFI_CONFIGURATION_TABLE named by the VendorGuid

of EFI_CC_FINAL_EVENTS_TABLE_GUID. The associated table contents SHALL be
referenced by the VendorTable of EFI_CC_FINAL_EVENTS_TABLE.

#define EFI_CC_FINAL_EVENTS_TABLE_GUID \

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 54

{0xdd4a4648, 0x2de7, 0x4665, {0x96, 0x4d, 0x21, 0xd9, 0xef, 0x5f, 0xb4

, 0x46}}

typedef struct {

 //

 // The version of this structure. It shall be set ot 1.

 //

 UINT64 Version;

 //

 // Number of events recorded after invocation of GetEventLog API

 //

 UINT64 NumberOfEvents;

 //

 // List of events of type CC_EVENT.

 //

 //CC_EVENT Event[1];

} EFI_CC_FINAL_EVENTS_TABLE;

#pragma pack(1)

//

// Crypto Agile Log Entry Format.

// It is similar with TCG_PCR_EVENT2 except MrIndex.

//

typedef struct {

 EFI_CC_MR_INDEX MrIndex;

 UINT32 EventType;

 TPML_DIGEST_VALUES Digests;

 UINT32 EventSize;

 UINT8 Event[1];

} CC_EVENT;

#pragma pack()

4.3.3 CC-Event Log

TD-Guest Firmware may set up an ACPI table to pass the event-log information. The event log created by

the TD owner contains the hashes to reconstruct the confidential computing (CC) measurement

registers.

Table 4-4: CC-Event-Log, ACPI Table

Field Byte Length Byte Offset Description

Header

 Signature 4 0 ‘CCEL’ Signature.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 55

 Length 4 4 Length, in bytes, of the entire Table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 Standard ACPI header

 OEM Table ID 8 16 Standard ACPI header

 OEM Revision 4 24 Standard ACPI header

 Creator ID 4 28 Standard ACPI header

 Creator Revision 4 32 Standard ACPI header

CC Type 1 36

Confidential computing (CC) type.

0: Reserved

1: SEV

2: TDX

CC Subtype 1 37
Confidential computing (CC) type specific

sub type.

Reserved 2 38 Reserved. Must be 0.

Log-Area-Minimum

Length (LAML)
8 40

Identifies the minimum length (in bytes) of

the system’s pre-boot-CC-event-log area

Log-Area-Start

Address (LASA)

8 48

Contains the 64-bit-physical address of the

start of the system's pre-boot-CC-event-log

area in QWORD format.

Note: The log area ranges from address

LASA to LASA+(LAML-1).

4.4 Storage-Volume-Key Data

In TD-execution environment, the storage volume will typically be an encrypted volume. In that case, by

design, the TD-Guest Firmware will need to support quote generation and attestation to be able to fetch

a set of storage-volume key(s) from a remote-key server during boot and pass the key to the guest

kernel. Also by design, the key is stored in the memory, and the information of the key is passed from

TD-Guest Firmware via an ACPI table (proposed below).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 56

Table 4-5: Storage-Volume-Key-Location-ACPI Table

Field Byte Length Byte Offset Description

Header

 Signature 4 0 ‘SVKL’ Signature.

 Length 4 4 Length, in bytes, of the entire Table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 Standard ACPI header

 OEM Table ID 8 16 Standard ACPI header

 OEM Revision 4 24 Standard ACPI header

 Creator ID 4 28 Standard ACPI header

 Creator Revision 4 32 Standard ACPI header

Key Count (C) 4 36 The count of key structure

Key Structure 16 * C 40 The key structure

Table 4-6: Storage-Volume-Key Structure

Field Byte Length Byte Offset Description

Key Type 2 0
The type of the key.
0: the main storage volume key
1~0xFFFF: reserved.

Key Format 2 2
The format of the key.
0: raw binary.
1~0xFFFF: reserved.

Key Size 4 4 The size of the key in bytes.

Key Address 8 8 The guest-physical address (GPA) of the key. The
address must be in ACPI-Reserved Memory.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 57

5 TD-VMM-Communication Scenarios

5.1 Requesting IPIs

Various. TD-VMM-communication scenarios require the TD to request the host generate IPIs to TD

vCPUs – for example, synchronizing, guest-TD-kernel-managed-IA-page-table updates. This operation is

supported via the TDCALL [TDG.VP.VMCALL <Instruction.WRMSR>] to the x2APIC ICR MSR.

To perform a cross-VCPU IPI, the guest-TD ILP is designed to request an operation from the host VMM

using this TDCALL (TDG.VP.VMCALL <Instruction.WRMSR>). The VMM can then inject an interrupt into

the guest TD’s RLPs using the posted-interrupt mechanism. This is an untrusted operation; thus, the TD

OS must track its completion and not rely on the host VMM to faithfully deliver IPIs to all the TD vCPUs.

5.2 TD-memory conversion and memory ballooning

Recall that, by design, guest-physical memory used by a TD is encrypted with a TD-private key or with a

VMM-managed key based on the GPA-shared bit (GPA [47 or 51] based on GPAW). A TD OS may

operate on a fixed, private-GPA space configured by the host VMM. Typically, the OS manages a

physical-page-frame database for state of (guest) physical-memory allocations. Instead of expanding

these PFN databases for large swaths of shared-GPA space, the TD OS can manage an attribute for the

state of physical memory to indicate whether it is encrypted with the TD-private key or a VMM key.

Such a TD-guest OS can use TDG.VP.VMCALL(MapGPA) so that, within this fixed-GPA map, the TD OS can

request the host VMM map Shared-IO memory aliased as shared memory in that GPA space - so in this

case, the OS can select a page of the private-GPA space and make a TDG.VP.VMCALL(MapGPA(GPA) with

GPA.S=1) to map that GPA using the S=1 alias. The VMM can then TDH.MEM.RANGE.BLOCK,

TDH.MEM.TRACK, and TDH.MEM.SEPT.REMOVE the affected GPA from the S-EPT mapping; and the

VMM can then re-claim the page using direct-memory stores and map the alias-shared GPA for the TD

OS in the shared EPT (managed by the VMM).

At a later point, the TD OS may desire to use the GPA as a private page via the same

TDG.VP.VMCALL(MapGPA) with the GPA specified as a private GPA (GPA.S=0) – the intent is for this to

allow the host VMM to unlink the page from the Shared EPT and then perform a TDH.MEM.PAGE.AUG

to set up a pending-EPT mapping for the private GPA. The successful completion of the TDG.VP.VMCALL

flow can be used by the TD guest to TDG.MEM.PAGE.ACCEPT to re-initialize the page using the TD-

private key and mark the S-EPT mapping as active.

5.3 Paravirtualized IO

The TD guest can use paravirtualized-IO interfaces (for example, using virtio API in KVM) exposed by the
host VMM to use physical and virtual devices on the host platform that are managed by the VMM. For
this scenario, Virtualized IO is typically enumerated over emulated PCIe (port I/O or MMIO). The TD
drivers can help ensure that the data passed via memory referenced in emulated-MMIO accesses are
placed in the TD’s shared-GPA-memory space. Paravirtualized drivers could pre-allocate a primary-

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 58

shared buffer during initialization. Subsequently, drivers can allocate a portion of the shared-GPA-space
buffer for each individual transfer and reclaim the buffer after a specific transfer is completed. In this
scenario, the primary-buffer can expand and shrink as needed. Shared buffers can be deallocated
during driver-stack tear-down. This scenario is optimal, as allocating shared buffer can involve at least
one TDG.VP.VMCALL (for mapping shared page) and TDCALL[TDG.MEM.PAGE.ACCEPT] for mapping back
as a private-TD page, as described in Section 4.3.

The guest TD may employ VMM functions for IO to participate in the emulation of MMIO accesses from

legacy-device drivers. To support this scenario, if the TD OS opts-in, the host VMM can host the

emulated-device-MMIO space in shared-GPA space of the TD OS. Legacy-device-driver accesses to the

emulated region can cause EPT violations that can be mutated to the TD-#VE handler that can then

support emulation of the MMIO. The enlightened-TD-OS-#VE handler can emulate the access causing

the #VE by decoding the instruction (within the TD) and invoking the Instruction.IO functions hosted by

the VMM using TDCALL [TDG.VP.VMCALL <Instruction.MMIO>]. From that point on, like the previous

paravirtualized IO model, the TD software must ensure that the data buffers passed via memory

referenced in parameters that are passed in function TDG.VP.VMCALL are placed in the TD’s shared -

GPA space.

5.4 TD attestation

Goals of TD Attestation are to enable the TD OS to request a TDREPORT that contains version

information about the Intel TDX module, measurement of the TD, along with a TD-specified nonce. By

design, the TDREPORT is locally MAC’d and used to generate a quote for the TD via a quoting enclave

(QE). The remote verifier can verify the quote to help verify the trustworthiness of the TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 59

Trust Domain

Host VMM

Host or Dom 0

CPU

MAC Key

TD Quoting Enclave

EVERIFYREPORT
Instruction

Attest Key

Quote
(Signed)

Intel TDX
Module

SEAMREPORT
Instruction

SEAM
Measurements

DataTDREPORT
(SEAM Report

+ TD Info)

TDCS

SEAM
REPORT
(MACed)

TDG.MR.REPORT
Function

TDREPORT
(SEAM Report

+ TD Info)

Figure 5-1: TD-Attestation flow

1. Guest-TD software invokes the TDCALL(TDG.MR.REPORT)-API function.
2. The Intel TDX module uses the SEAMOPS[SEAMREPORT] instruction to create a MAC’d

TDREPORT_STRUCT with the Intel TDX-module measurements from CPU and TD measurements
from the TDCS.

3. Guest-TD software uses the TDCALL(TDG.VP.VMCALL) interface to request the TDREPORT_STRUCT
be converted into a Quote.

4. The TD-Quoting enclave uses ENCL[EVERIFYREPORT2] to verify the TDREPORT_STRUCT. This allows
the Quoting Enclave to help verify the report without requiring direct access to the CPU’s HMAC key.
Once the integrity of the TDREPORT_STRUCT has been verified, the TD-Quoting Enclave signs the
TDREPORT_STRUCT body with an ECDSA-384-signing key.

5. The Quote can then be used by TD software to perform a remote-attestation protocol with a
verifying-remote party.

5.5 Service TD Binding

Service TD is a Trust Domain (TD) VM used to provide a dedicated service/utility. The service TD extends
the TCB of the tenant TD which the service TD provides the service to. Migration TD (MigTD) is an example
Service TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 60

One or more service TDs may be bound to a target TD. Service TD binding relationship has the following

characteristics:

• A service TD has a type (SERVTD_TYPE).

• A service TD may read and/or write certain target TD metadata. Access permission to target TD metadata fields
depends on SERVTD_TYPE.

• Unsolicited service TD binding is done without target TD approval. The target TD needs not be aware of the
binding.

• The target TD’s TDREPORT indicates binding to service TDs.

• The service TD protocol consists of:
o Binding
o Metadata access

• Service TD to target TD binding relationship is many-to-many
o Multiple service TDs of different types may be bound to a single target TD.
o Multiple target TDs may be bound to a single service TD.

• A service TD may itself be a target TD to other service TDs.

Typical Unsolicited Service TD Binding and Metadata Access Use Case

1. Optional Pre-Binding: During target TD build, before calling SEAMCALL[TDH.MR.FINALIZE], the host VMM calls
SEAMCALL[TDH.SERVTD.PREBIND] to write the binding fields (SERVTD_HASH etc.) in the target TD’s service TD
table.

2. Binding: Sometime later, the host VMM calls SEAMCALL[TDH.SERVTD.BIND] to bind the service TD. It gets back
a binding handle. The VMM communicates the binding handle, target TD_UUID and other binding parameters
to the service TD.

3. Metadata Access: The service TD uses TDCALL[TDG.SERVTD.RD and TDG.SERVTD.WR] to access target TD
metadata.

4. Rebinding: May be required due to, e.g., both target TD and service TD have been migrated or a new service
TD instance replaces the original one. The host VMM calls SEAMCALL[TDH.SERVTD.BIND] to rebind the service
TD. It gets back a binding handle. The VMM communicates the binding handle, target TD_UUID and other
binding parameters to the service TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 61

NOT_BOUND PRE_BOUND

TDH.SERVTD.PREBIND
[OP_STATE in {UNINITIALIZED, INITIALIZED}]

BOUND

TDH.SERVTD.BIND
[SERVTD_INFO_HASH, SERVTD_TYPE

and SERVTD_ATTR match
(per SERVTD_ATTR)]

TDH.SERVTD.BIND

Figure 5-2: Service TD Binding State Machine

For more detail on service TD, please refer to Intel TDX Module Specification.

5.6 TD Live Migration

Analogous to legacy VM migration, a cloud-service provider (CSP) may want to relocate/migrate an

executing Trust Domain from a source TDX platform to a destination TDX platform in the cloud

environment. A cloud provider may use TD migration to meet customer Service Level Agreement (SLA),

while balancing cloud platform upgradability, patching and other serviceability requirements. Since a TD

runs in a CPU mode which protects the confidentiality of its memory contents and its CPU state from

any other platform software, including the hosting Virtual Machine Monitor (VMM), this primary

security objective should be maintained while allowing the TD resource manager, i.e., the host VMM to

migrate TDs across compatible platforms. The TD typically may be assigned a different HKID (and will be

always assigned a different ephemeral key) on the destination platform chosen to migrate the TD.

The TD being migrated is called the source TD, and the TD created as a result of the migration is called

the destination TD. An extensible TD Migration Policy is associated with a TD that is used to maintain

the TD’s security posture. The TD Migration policy is enforced in a scalable and extensible manner using

a specific type of Service TD called the Migration TD (a.k.a. MigTD) – which is used to provide services

for migrating TDs.

The TD Live Migration process (and the Migration TD) does not depend on any interaction with the TD

guest software operating inside the TD being migrated.

Figure 5 shows the lifecycle of a TD Live Migration process and the corresponding Intel TDX Module APIs

involved.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 62

TDX-controlled Blackout period

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

(CANCEL)

TDH.IMPORT.
TRACK

TD may run on source Optional software-controlled downtime
(if cold migration is used)

TDH.EXPORT.
MEM

(MIGRATE)

TDH.EXPORT.
(UN)BLOCKW

TDH.EXPORT.
MEM

(CANCEL)

TDH.EXPORT.
TRACK

TD may run
on destination

Source
Platform

TDCONFIGKEY
TDCONFIGKEY

TDH.MNG.
CREATE

(legacy)

TDH.MNG.
KEY.CONFIG

(legacy)

HKID

per package

TDH.MNG.
ADDCX

(legacy)

TDH.IMPORT.
STATE.

IMMUTABLE

per TDCS page

TDH.EXPORT.
STATE.

IMMUTABLE

TD
Immutable
Config

Target
Platform

ReservationPre-Migration

TDH.IMPORT.
TRACK

(consumes
epoch token

– starts Out-of-
order

TDH.
EXPORT.
PAUSE

token

TDH.EXPORT.
MEM

(MIGRATE)

TDH.IMPORT.
MEM

Iterative pre-copy Commitment

TDH.IMPORT.
STATE.VP

TDH.IMPORT.
STATE.TD

At this point migration is
enabled for this TD and MigTD
is bound to TD for attestation

MigTD
Verifies Mig

Policy via
TDH.SERVTD.

RD

MigTD
Verifies Mig

Policy via
TDG.

SERVTD.
RD

TD Migration
Transport
Session

At this point the TD has been paused –
final state can be migrated and memory
reclaimed - unless migration fails

per TD

per mig. page
per vcpu

per TD

MigTD sets Mig key
TDG.SERVTD.WR

TDH.EXPORT.
STATE.VP

TDH.EXPORT.
STATE.TD

per TD
per TD

TD
memory

state

Mutable
TD VP
State and
TD state

TDH.MNG.
CREATE/

KEY.CONFIG/
ADDCX
(legacy)

TDH.MNG.INIT

Attr.
Migratable

=1

TDH.SERVTD.
[PRE]BIND

(TD,Mig TD)

TDH.SERVTD.
[PRE]BIND
(MigTD, TD)

Stop and copy control state

TDH.EXPORT.
TRACK
(generates
Epoch Token
– ends in order)

TDH.EXPORT.
MEM

Data (TD
Migration
Session
Key)

TDH.IMPORT.
MEM

Post-copy

Pending
TD memory

state

Post-copy

per mig.
page

TD
memory

state

TDH.IMPORT.
MEM

TDH.
EXPORT.
ABORT
(TD
unpaused)

Src
TD

Teardown

TDH.EXPORT.
MEM

Post-copy

token

TDH.
IMPORT.
ABORT

TDH.EXPORT.
(UN)BLOCKW

TDH.EXPORT.
MEM

(CANCEL)

TDH.IMPORT.
MEM

(CANCEL)

per mig. page

TDH.
IMPORT.
COMMIT

TDH.
EXPORT.
RESTORE

TDH.EXPORT.
TRACK

TDH.IMPORT.
TRACK

MigTD sets Mig key
TDG.SERVTD.WR

TDH.MIG.STREAM.
CREATE

TDH.MIG.STREAM.
CREATE

Figure 5-3: TD Migration Lifecycle Overview

5.6.1 Pre-Migration

5.6.1.1 Intel TDX Module Enumeration
The host VMM uses SEAMCALL[TDH.SYS.RD] or SEAMCALL[TDH.SYS.RDALL] to enumerate Intel TDX

Module functionality and learns from the TDX_FEATURES that the Intel TDX Module supports TD

Migration.

5.6.2 Reservation and Session Setup

5.6.2.1 Source Guest TD Build and Execution
The host VMM uses SEAMCALL[TDH.MNG.INIT] function to initialize a TD, with

ATTRIBUTES.MIGRATABLE bit set to 1.

Before a migration session can begin, the VMM on the source platform must use

SEAMCALL[TDH.SERVTD.BIND] to bind a Migration TD to the source TD.

5.6.2.2 Destination Guest TD Initial Build
The host VMM creates a new guest TD by using the SEAMCALL[TDH.MNG.CREATE] function. This

destination TD is setup as a “template” to receive the state of the Source Guest TD.

The host VMM programs the HKID and HW-generated encryption key assigned to the TD into the

MKTME encryption engines using the SEAMCALL[TDH.MNG.KEY.CONFIG] function on each package.

The host VMM can then continue to build the TDCS by adding TDCS pages using the

SEAMCALL[TDH.MNG.ADDCX] interface function.

Once the destination TDCS is built and before TD import can begin, the VMM on the destination

platform must use SEAMCALL[TDH.SERVTD.BIND] to bind a Migration TD to the destination TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 63

5.6.2.3 Migration Session Key Negotiation
The host VMMs in source platform and destination platform notify the MigTD on the source and

destination platform on the migration request.

The MigTDs executing on the source and destination platforms use a TD-quote-based mutual

authentication protocol to create a VMM-transport-agnostic secure session between them, such as

remote-attestation TLS (RA-TLS). Using this secure session, the migration policy can be evaluated by the

MigTDs. After policy check, the Migration TD transfer the Migration Session Key (MSK) to the peer. The

MSK is an ephemeral AES-256-GCM key used for confidentiality and integrity of the TD private state

exported from the source platform and imported on the destination platform.

The Service TD binding mechanism supported by the TDX module allows the Migration TD to access

target TD metadata – specifically the Migration Session Key. The MigTD can read/write the TD metadata

using TDCALL[TDG.SERVTD.RD/WR*] guest-side interface functions. The Migration TDs on both the

source and destination platforms must use this interface to read/write the Migration Session Key (as

meta-data) to the target TD’s control structures.

After this point, the host VMM can invoke TDX Module functions such as SEAMCALL[TDH.EXPORT.*] to

export state at the source platform and SEAMCALL[TDH.IMPORT.*] to import TD state at the destination

platform.

5.6.2.4 TD Global Immutable Metadata (Non-Memory State) Migration
Immutable metadata is the set of TD state variables that are set by SEAMCALL[TDH.MNG.INIT], may be

modified during TD build but are never modified after the TD’s measurement is finalized using

SEAMCALL[TDH.MR.FINALIZE]. Some of these state variables control how the TD and its memory is

migrated. Therefore, the immutable TD control state is migrated before any of the TD memory state is

migrated.

The host VMMs use SEAMCALL[TDH.EXPORT.STATE.IMMUTABLE] to export TD immutable state at the

source platform and use SEAMCALL[TDH.IMPORT.STATE.IMMUTABLE] to import TD immutable state at

the destination platform.

5.6.3 Iterative Pre-Copy of Memory State

5.6.3.1 Migration Considerations for TD Private Memory
Intel TDX protects guest TD state in private memory from a malicious VMM, using MKTME (memory

encryption and integrity protection) and the Intel TDX Module. The Intel TDX Module performs

ephemeral key id management to enforce the TDX security objectives. Memory encryption is performed

by encryption engines that reside at each memory controller, with no software access (including the TDX

module) to the ephemeral keys. The memory encryption engine holds a table of encryption keys, in the

Key Encryption Table (KET). The encryption key selected for memory transactions is based on a Host Key

Identifier (HKID) provided with the memory access transaction.

The Intel TDX Module API functions enable the host VMM to manage HKID assignment to guest TDs,

configure the memory encryption engines etc., while assuring proper operation to maintain TDX’s

security objectives. The host VMM also does not have access to the TD encryption keys.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 64

TD Migration does not migrate the HKIDs – a free HKID is assigned to the TD created on the destination

platform to receive migratable assets of the TD from the source platform. All TD private memory is

protected during transport from the source platform to the destination platform using an intermediate

encryption performed using the MSK negotiated via the Migration TDs on the source and destination

platform. On the destination platform the memory is encrypted via the destination ephemeral key as it

is imported into the destination platform memory assigned to the destination TD. The import operation

on the destination TDX module verifies and decrypts the TD private data using the MSK, and uses the

MKTME engine to encrypt (and integrity protect) while writing it to memory using the destination TD

HKID.

Shared memory assigned to the TD is migrated using legacy mechanisms used by the host VMM.

5.6.3.2 Migration Considerations for EPT Structures
Guest Physical Address (GPA) space is divided into private and shared sub-spaces, determined by the

SHARED bit of GPA. The CPU translates shared GPAs using the Shared EPT, which resides in host VMM

memory, and is directly managed by the host VMM, same as with legacy VMX. The CPU translates

private GPAs using a separate Secure EPT. Secure EPT pages are encrypted, and integrity protected with

the TD’s ephemeral private key.

As there is no guarantee of allocating the same physical memory addresses to the TD being migrated on

the destination platform, the memory used for Secure EPT structures is not migrated across platforms.

Hence, the VMM must invoke the TDX module’s SEAMCALL[TDH.MEM.SEPT.*] interface functions on the

destination platform to re-create the private GPA mappings on the destination platform (per the

assigned HPAs). The Intel TDX module uses the cryptographically protected exported meta-data

(generated via SEAMCALL[TDH.EXPORT.MEM]) to verify and enforce (via the

SEAMCALL[TDH.IMPORT.MEM]) that the Secure EPT security properties from the source platform are

rec-created correctly as TD private memory contents are migrated, thus preventing remap attacks

during migration.

Even though Secure EPT structures are not migrated, the source SEPT structures track the state of the

mappings when a page is exported and then modified by the TD OS in the pre-copy stage. The TD OS

may be allowed to modify such a page and the TDX module enforces that the modified and previously

exported page is re-exported by the source host VMM and re-imported by the destination host VMM.

5.6.3.3 Post Copy: Destination Guest TD Execution during Memory Migration
In a typical live migration scenario, the TD is expected to resume executing on the destination platform

shortly after it is paused on the source platform. The destination TD can only begin executing after the

pre-copy stage completes and the destination TD control state has been imported – memory transfer

may continue after that in a post-copy stage. Pre-copy stage imports the working set of memory pages,

the host VMM must have paused the source TD, exported the final mutable control state and imported

the final mutable control state to the destination TD virtual processors and control state. The Intel TDX

module enforces the security objectives of this Commitment protocol, with the remaining memory state

transferred in the post-copy stage which also happens via TDX Module interfaces –

SEAMCALL[TDH.EXPORT.MEM] and SEAMCALL[TDH.IMPORT.MEM].

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 65

5.6.4 Source TD Stop and Final Non-Memory State Migration

Following pre-copy of TD private memory, the host VMM must pause the source TD for a brief period

(also called the blackout period) so that the VMM may export the final control state (for all VCPUs and

for the TD overall). The VMM initiates this via SEAMCALL[TDH.EXPORT.PAUSE], which checks security

pre-conditions and prevents TD VCPUs from executing any more. It then allows export of final (mutable)

TD non-memory state.

5.6.4.1 Final Memory State Migration
The host VMMs use SEAMCALL[TDH.EXPORT.MEM] and SEAMCALL[TDH.IMPORT.MEM] to migrate

memory contents during this source (and destination) TD paused state. The TDX Module enforces that

all exported state for the source TD must be imported before the destination TD may run using the

commitment protocol described below.

5.6.4.2 TD-Scope and VCPU-Scope Mutable Non-Memory State migration
TD mutable non-memory state is a set of source TD state variables that might have changed since it was

finalized via SEAMCALL[TDH.MR.FINALIZE]. Immutable non-memory state exists for the TD scope (as

part of the TDR and TDCS control structures) and the VCPU scope (as part of the TDVPS control

structure).

Mutable TD state is exported by SEAMCALL[TDH.EXPORT.STATE.TD] (per TD) and

SEAMCALL[TDH.EXPORT.STATE.VP] (per VCPU) and imported by SEAMCALL[TDH.IMPORT.STATE.TD] and

SEAMCALL[TDH.IMPORT.STATE.VP] respectively.

5.6.5 Commitment

The commitment protocol is enforced by the Intel TDX Module to help ensure that a host VMM cannot

violate the security objectives of TD Live migration.

This protocol is enforced via the following TDX Module interface functions:

• On the source platform, SEAMCALL[TDH.EXPORT.PAUSE] starts the blackout phase of TD live migration and
SEAMCALL[TDH.EXPORT.TRACK] ends the blackout phase of live migration (and marks the end of the transfer of
TD memory pre-copy, mutable TD VP and mutable TD global control state). SEAMCALL[TDH.EXPORT.TRACK]
generates a MSK-based cryptographically-authenticated start token to allow the destination TD to become
runnable. On the destination platform, SEAMCALL[TDH.IMPORT.TRACK] – which consumes the cryptographic
start token, allows the destination TD to be un-paused.

• In error scenarios, the migration process may be aborted proactively by the host on the source platform via
SEAMCALL[TDH.EXPORT.ABORT] before a start token was generated; if a start token was already generated (i.e.
pre-copy completed), the destination platform can generate an abort token using
SEAMCALL[TDH.IMPORT.ABORT] which generates an abort token which may be consumed by
SEAMCALL[TDH.EXPORT.ABORT] by the source TD platform TDX Module to abort the migration process and
again allows the source TD to become runnable again.

5.6.6 Post-Copy of Memory State

In some live migration scenarios, the host VMM may stage some memory state transfer to occur lazily

after the destination TD has started execution. In this case, the host VMM will be required to fetch the

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

Ref. # 348552-002 66

required pages as accesses occur by the destination TD – this order of access is indeterminate and will

likely differ from the order in which the host VMM has queued memory state to be transferred.

In order to support that on-demand model, the order of memory migration during this post-copy stage

is not enforced by TDX. The host VMM may implement multiple migration queues with multiple

priorities for memory state transfer. For example, the host VMM on the source platform may keep a

copy of each encrypted migrated page until it receives a confirmation from the destination that the page

has been successfully imported. If needed, that copy can be re-sent on a high priority queue. Another

option is, instead of holding a copy of exported pages, to call SEAMCALL[TDH.EXPORT.MEM] again on

demand.

Also, to simplify host VMM software for this model, the TDX module interface functions used for

memory import in this post-copy stage return additional informational error codes to indicate that a

stale import was attempted by the host-VMM to account for the case where the low-latency import

operation for a GPA superseded the import from the higher latency import queue.

For more detail on TD Live Migration, please refer to Intel TDX Module TD Migration Specification and

Migration TD design guide

