

348552-003US

July 2022

Ref. # 348552-003US i

Disclaimers

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied
warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and
are subject to change without notice. Intel does not guarantee the availability of these
interfaces in any future product. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might
cause the product to deviate from published specifications. Current, characterized errata are
available on request.

Intel technologies might require enabled hardware, software, or service activation. Some
results have been estimated or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement
or other legal analysis concerning Intel products described herein. You agree to grant Intel a
non-exclusive, royalty-free license to any patent claim thereafter drafted that includes the
subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is

granted by this document.

This document contains information on products, services and/or processes in development.
All information provided here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or
other Intel literature may be obtained by calling 1-800-548-4725 or by visiting
http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Other names and brands might be claimed as the property of

others.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

Guest-Hypervisor Communication Interface (GHCI) Specification for Intel® TDX 1.5

About this Document

Ref. # 348552-003US ii

Table of Contents

Disclaimers .. i

1 About this Document .. 2

1.1 SCOPE OF THIS DOCUMENT ..2

1.2 DOCUMENT ORGANIZATION ..2

1.3 GLOSSARY ...3

1.4 REFERENCES ...4

2 TD-VMM Communication ... 6

2.1 RECAP OF INTEL® TRUST DOMAIN EXTENSIONS (INTEL® TDX) ..6

2.2 TD-VMM-COMMUNICATION OVERVIEW ..7

2.3 VIRTUALIZATION EXCEPTION (#VE) ...8

2.4 TDCALL AND SEAMCALL INSTRUCTION ...9

2.4.1 TDCALL [TDG.VP.VMCALL] leaf ..9

3 TDG.VP.VMCALL Interface ... 13

3.1 TDG.VP.VMCALL<GETTDVMCALLINFO> ... 13

3.2 TDG.VP.VMCALL<MAPGPA> .. 14

3.3 TDG.VP.VMCALL<GETQUOTE> ... 16

3.4 TDG.VP.VMCALL<REPORTFATALERROR> .. 19

3.5 TDG.VP.VMCALL<SETUPEVENTNOTIFYINTERRUPT> .. 20

3.6 TDG.VP.VMCALL<INSTRUCTION.CPUID> .. 21

3.7 TDG.VP.VMCALL<#VE.REQUESTMMIO> .. 22

3.8 TDG.VP.VMCALL<INSTRUCTION.HLT> ... 24

3.9 TDG.VP.VMCALL<INSTRUCTION.IO> ... 25

3.10 TDG.VP.VMCALL<INSTRUCTION.RDMSR> ... 25

3.11 TDG.VP.VMCALL<INSTRUCTION.WRMSR> .. 26

3.12 TDG.VP.VMCALL<INSTRUCTION.PCONFIG> .. 27

3.13 TDG.VP.VMCALL <SERVICE> ... 28

3.13.1 TDG.VP.VMCALL <Service.Query>... 32

3.13.2 TDG.VP.VMCALL <Service.MigTD> ... 32

4 TD-Guest-Firmware Interfaces ... 42

4.1 ACPI MADT MULTIPROCESSOR WAKEUP TABLE ... 42

4.2 MEMORY MAP ... 42

4.3 TD MEASUREMENT .. 45

Guest-Hypervisor Communication Interface (GHCI) Specification for Intel® TDX 1.5

About this Document

Ref. # 348552-003US iii

4.3.1 TCG-Platform-Event Log .. 45

4.3.2 EFI_CC_MEASUREMENT_PROTOCOL .. 45

4.3.3 CC-Event Log ... 55

4.4 STORAGE-VOLUME-KEY DATA ... 56

5 TD-VMM-Communication Scenarios .. 58

5.1 REQUESTING IPIS .. 58

5.2 TD-MEMORY CONVERSION AND MEMORY BALLOONING ... 58

5.3 PARAVIRTUALIZED IO ... 59

5.4 TD ATTESTATION .. 59

5.5 SERVICE TD BINDING .. 61

5.6 TD LIVE MIGRATION ... 62

5.6.1 Pre-Migration ... 63

5.6.2 Reservation and Session Setup ... 63

5.6.3 Iterative Pre-Copy of Memory State ... 65

5.6.4 Source TD Stop and Final Non-Memory State Migration ... 66

5.6.5 Commitment .. 67

5.6.6 Post-Copy of Memory State .. 67

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

About this Document

Ref. # 348552-003US 2

1 About this Document

1.1 Scope of this Document

Trust Domains (TDs) are used to enable confidential hosting of VM workloads that are

hardware-isolated from the hosting VMM and service OS environments. The Intel® Trust

Domain Extensions (Intel® TDX) architecture enables isolation of the TD-CPU context and

memory from the hosting environment.

This document specifies the guest (TD) to host (VMM) communication interface that will be

utilized for the paravirtualization interface between the TD and the VMM. This approach helps

the Intel TDX-architecture prevent the VMM from accessing any TD runtime state. The TD

must therefore volunteer information to access IO services, enumerate model-specific CPU

capabilities and measurement services, and provide feedback to the VMM on guest-OS-

triggered actions such as virtual-IPIs or shutdowns.

 For each operation within this interface, the recommended actions are described for the host

VMM (informative). The TD and the VMM are designed to use the subfunctions, which are

normative and described in this document.

This document is a work in progress and is subject to change based on customer

feedback and internal analysis. This document does not imply any product

commitment from Intel to anything in terms of features and/or behaviors.

1.2 Document Organization

Section 2 describes a general structure/ABI of the instruction TDCALL with the

TDG.VP.VMCALL leaf used for passing information to the VMM and receiving information from

the VMM.

Section 3 describes the sub-leaves of TDCALL [TDG.VP.VMCALL] that define the Application

Binary Interface (ABI) between the TD and the VMM for specific operations.

Section 4 describes example flows for the main scenarios.

Section 5 describes TD-VMM-Communication Scenarios.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

About this Document

Ref. # 348552-003US 3

1.3 Glossary

Table 1-1: Intel TDX Glossary

Acronym Full Name Description

TME Total Memory Encryption An SoC memory encryption/decryption engine used to encrypt

memory contents exposed externally from the SoC using an

ephemeral, platform key. Memory is decrypted using the TME when

memory contents are brought into the CPU caches.

MKTME Multi-Key TME This SoC capability adds support to the TME to allow software to use

separate (one or more) keys for encryption of volatile- or persistent-

memory encryption. When used with Intel TDX, it can provide

confidentiality via separate keys for memory-used TDs. MKTME may

be used with and without Intel TDX extensions.1

 TD Trust Domain Software operating in a CPU mode designed to exclude the

host/VMM software and untrusted, platform devices from the

operational TCB for confidentiality. The operational TCB for a TD

includes the CPU, the TD OS, and TD applications. A TD’s resources

are managed by an Intel TDX-aware host VMM, but its state

protection is managed by the CPU and is not accessible to the host

software.

Intel TDX Intel TDX Architecture Intel-CPU-instruction-set-architecture extensions to enable host

VMM to host Trust Domains.

Intel TDX

module

Intel Trust Domain

Extensions module

Intel TDX module is a CPU-measured software module that uses the

instruction-set architecture for Intel TDX to help enforce security

properties for hosting TDs on an Intel TDX platform. Intel TDX

module exposes the Guest-Host-Communication Interface that TDs

use to communicate with the Intel TDX module and the host VMM.

HKID Host Key ID When MKTME is activated, HKID is a key identifier for an encryption

key used by one or more memory controllers on the platform. When

Intel TDX is active, the HKID space can be partitioned into a CPU-

enforced space (for TDs) and a VMM-enforced space (for legacy

VMs).

- TD-Private Memory

(Access)

TD-Private Memory can be encrypted by the CPU using the TD-

ephemeral key (or in the future with additional, TD private keys).

- TD-Shared Memory

(Access)

TD-Shared Memory is designed to be accessible by the TD and the

host software (and/or other TDs). TD-Shared Memory uses MKTME

keys managed by the VMM for encryption.

TDVPS TD Virtual Processor

Structure

TD per-VCPU state maintained in protected memory by the Intel

TDX.

1 In this document, the term “MKTME” means both the feature and the encryption engine itself.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

About this Document

Ref. # 348552-003US 4

Acronym Full Name Description

TDCS Trust Domain Control

Structure

Multi-page-control structure for a TD. By design, TDCS is encrypted

with the TD’s ephemeral, private key, its contents are not

architectural, and its location in memory is known to the VMM.

1.4 References

Table 1-2: Technical Documents Referenced

Reference Document Version & Date

1 Intel® 64 and IA-32 Architecture Software Developer Manual May 2020

2 Intel® Trust Domain Extensions CPU architecture specification May 2021

3 Intel® Trust Domain Extensions module 1.5 base architecture

specification

September 2021

4 Intel® Multi-key Total Memory Encryption (MK-TME) specification April 2021

5 ACPI specification, version 6.5 August 2022

6 UEFI specification, version 2.10 August 2022

7 Intel® Trust Domain Extensions module 1.5 ABI reference

specification

September 2021

8 Intel® Trust Domain Extensions module 1.5 architecture

specification: TD Migration

September 2021

When specifying requirements or definitions, the level of commitment is specified following

the convention of RFC 2119: Key words for use in RFCs to indicate Requirement Levels, as

described in the following table:

Table 1-3: Requirement and Definition Commitment Levels

Keyword Description

Must
“Must," “Required,” or “Shall” means that the definition is an absolute

requirement of the specification.

Must Not
“Must Not” or “Shall Not” means that the definition is an absolute prohibition of

the specification.

Should

“Should” or “Recommended” means that there may exist valid reasons in

particular circumstances to ignore a particular item, but the full implications must be

understood and carefully weighed before choosing a different course.

https://www.ietf.org/rfc/rfc2119.txt

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

About this Document

Ref. # 348552-003US 5

Should Not

“Should Not” or the phrase “Not Recommended” means that there may exist valid

reasons in particular circumstances when the particular behavior is acceptable or even

useful, but the full implications should be understood and the case must be carefully

weighed before implementing any behavior described with this label.

May

“May” or “Optional” means that an item is discretionary. An implementation

may choose to include the item, while another may omit the same item because of

various reasons.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM Communication

Ref. # 348552-003US 6

2 TD-VMM Communication

2.1 Recap of Intel® Trust Domain Extensions (Intel® TDX)

Intel® Trust Domain Extensions (Intel® TDX) is an Intel technology that extends Virtual

Machines Extensions (VMX) and Multi-Key Total Memory Encryption (MKTME) with a new kind

of virtual machine guest called Trust Domain (TD). A TD is designed to run in a CPU mode

that protects the confidentiality of TD memory contents and the TD’s CPU state from other

software, including the hosting Virtual-Machine Monitor (VMM), unless explicitly shared by the

TD itself.

The Intel TDX module uses the instruction-set architecture for Intel TDX and the MKTME

engine in the SOC to help serve as an intermediary between the host VMM and the guest TDs.

The operation of this module is described in detail in the Intel TDX-module specification [3].

The Intel TDX module exposes the Guest-Host-Communication Interface (GHCI) for Intel

TDX (this specification) that TDs must use to communicate with both the Intel TDX module

and the host VMM.

As shown in the diagram below, an Intel TDX-aware host VMM can launch and manage both

guest TDs and legacy-guest VMs. The host VMM can maintain legacy functionality from the

legacy VMs’ perspective; the aim is for the host VMM to be restricted only with regard to the

TDs it manages.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM Communication

Ref. # 348552-003US 7

5

Intel TDX aware Host VMM

Host VMM managed access
control, enhanced with MKTME

Intel TDX Module managed access control,
leveraging MKTME and Secure EPT

Intel TDX Module
(uses Intel TDX ISA)

Trust Domain

Intel TDX
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Intel

TDX Module

Host-Side

Interface

Trust Domain

Intel TDX
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Intel TDX

Guest-Host Comm. Interface

Legacy VM

OS

Applications

Drivers

Legacy VM

OS

Applications

Drivers

Platform (Cores, Caches, Devices etc.)

Intel TDX

Guest-Host Comm. Interface

Figure 2-1: Components of Intel® Trust Domain Extensions

2.2 TD-VMM-Communication Overview

TD-VMM communication can occur via either asynchronous or synchronous (instruction) VM

exits. In response to synchronous (instruction) VM exits, Intel TDX [3] is designed to generate

a Virtualization Exception (#VE) [1] for instructions the TD would be disallowed to invoke. The

TD-guest software may respond by using the Intel TDX-provided information directly and/or

after further decoding of the instruction that caused the #VE.

The TD response must occur via a TDCALL instruction [2] requesting that the host VMM

provide (untrusted) services. Ultimately, the VMM’s goal is to 1) receive the service request via

a SEAMRET invoked by the Intel TDX module, 2) complete the service requested, and 3)

respond to the TD via SEAMCALL[TDH.VP.ENTER] to re-enter the TD.

This document describes the mechanisms and ABI for this interaction in various expected

scenarios.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM Communication

Ref. # 348552-003US 8

VMM (host)

TDCALL

SEAMRET

SEAMCALL

Intel TDX Module

TD (guest)

VMRESUME
VMEXIT
(due to

instruction)

#VE
handler

Guest-Host Communication
Interface for Intel® TDX

Figure 2-2: TD Guest-Host communication

Section 2 of this document describes the Virtualization Exception (#VE) for Intel TDX, and

subsequent sections describe the normative TDCALL leaves intended to get the VE

information and request services from the host VMM. Other scenarios may cause

asynchronous VM exits to the host VMM (via SEAMRET); for those scenarios, please refer to

the Intel TDX module specification [3].

Section 3 of this document describes the reference/informative TDCALL[TDG.VP.VMCALL]

interface sub-leaves intended to request services from the host VMM.

Section 4 describes the scenarios where TD-VMM communication interfaces described in this

specification can be applied.

2.3 Virtualization Exception (#VE)

Intel TDX can cause #VE to be reported to the guest-TD software in cases of disallowed

instruction execution, such as IO accesses.

The goal is for the Intel TDX module, in handling #VE delivery, to follow the architectural #VE

handling for nested #VE, as described in Intel-SDM Chapter 25.5.6.3 (Delivery of Virtualization

Exceptions). The TD OS should avoid instructions that may cause #VE in the #VE handler.

For detailed information about virtualization exception in Intel TDX, please refer to Intel TDX

module Architecture specification.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM Communication

Ref. # 348552-003US 9

2.4 TDCALL and SEAMCALL instruction

TDCALL is the instruction used by the guest TD software (in TDX non-root mode) to invoke

guest-side TDX functions. For detailed information about the TDCALL instruction, please refer

to the Intel TDX module Architecture specification.

SEAMCALL is the instruction used by the host VMM to invoke host-side TDX functions. For

detailed information about the SEAMCALL instruction, please refer to the Intel TDX module

Architecture specification.

2.4.1 TDCALL [TDG.VP.VMCALL] leaf

TDG.VP.VMCALL is a leaf function 0 for TDCALL. It helps invoke services from the host VMM.

The input operands for this leaf are programmed as defined below:

Table 2-1: TDG.VP.VMCALL-Input Operands

Operand Description

RAX TDCALL instruction leaf number per Intel TDX module Specification

(0 - TDG.VP.VMCALL).

RCX A bitmap that controls which part of the guest TD GPR and XMM

state is passed as-is to the VMM and back. Please refer to Intel TDX

module Specification TDG.VP.VMCALL.

R10 Set to 0 indicates that TDG.VP.VMCALL leaf used in R11 is defined in this
specification.

All other values 0x1 to 0xFFFFFFFFFFFFFFFF indicate TDG.VP.VMCALL is
vendor-specific (both R10 and R11).

R11 TDG.VP.VMCALL sub-function if R10 is 0 (see enumeration below)

RBX, RBP, RDI, RSI, R8-R10,

R12-R15

See each TDG.VP.VMCALL sub-function for which registers must be

used to pass values to the VMM (by setting RCX bits specified

above).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM Communication

Ref. # 348552-003US 10

Table 2-2: TDG.VP.VMCALL-Output Operands

Operand Description

RAX TDCALL instruction return code. Always returns Intel

TDX_SUCCESS (0).

RCX Unmodified.

R10 TDG.VP.VMCALL sub-function return value. See table 2-6.

0 – if no error.

Non 0 – if error happens. The error code is command specific.

R11 See each TDG.VP.VMCALL sub-function.

R12, R13, R14, R15, RBX, RDI,

RSI, R8, R9, RDX

See each TDG.VP.VMCALL sub-function. Register used in order.

XMM0–XMM15 If the corresponding bit in RCX is set to 1, the register value passed

as-is from the host VMM’s SEAMCALL (TDH.VP.ENTER) input.

Otherwise, the register value is unmodified.

TDG.VP.VMCALL-Intel TDX paravirtualization sub-functions (specified in R11 when R10 is set to 0)

Table 2-3: TDG.VP.VMCALL codes

Sub-Function Number Sub-Function Name

0x10000 GetTdVmCallInfo

0x10001 MapGPA

0x10002 GetQuote, e.g., used for sending TDREPORT_STRUCT to VMM to

request a TD Quote

0x10003 ReportFatalError

0x10004 SetupEventNotifyInterrupt

0x10005 Service

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM Communication

Ref. # 348552-003US 11

Table 2-4: TDG.VP.VMCALL-Instruction-execution sub-functions

Sub-Function Number

Bits 15:0

Sub-Function Name

10 Instruction.CPUID

12 Instruction.HLT

30 Instruction.IO

31 Instruction.RDMSR

32 Instruction.WRMSR

48 #VE.RequestMMIO

65 Instruction.PCONFIG

Note that some instructions which unconditionally cause #VE (such as WBINVD, MONITOR,

MWAIT) do not have corresponding TDCALL [TDG.VP.VMCALL <Instruction>] leaves, since the

TD has been designed with no deterministic way to confirm the result of those operations

performed by the host VMM. In those cases, the goal is for the TD #VE handler to increment

the RIP appropriately based on the VE information provided via TDCALL [TDG.VP.VEINFO.GET].

Completion-Status Codes

Table 2-5: TDCALL[TDG.VP.VMCALL]-Completion-Status Codes (Returned in RAX)

Completion-Status

Code

Value Description

TDX_SUCCESS See Intel TDX-Architecture

specification [3] for Function

Completion Status Code.

TDCALL is successful

TDX_OPERAND_INVALID Illegal leaf number

Other See individual leaf functions.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM Communication

Ref. # 348552-003US 12

Table 2-6: TDCALL[TDG.VP.VMCALL]- Sub-function Completion-Status Codes

(specified in R10 as output when R10 is set to 0 as input)

Completion-Status Code Value Description

TDG.VP.VMCALL_SUCCESS 0x0 TDCALL[TDG.VP.VMCALL] sub-

function invocation was

successful

TDG.VP.VMCALL_RETRY 0x1 TDCALL[TDG.VP.VMCALL] sub-

function invocation must be

retried

TDG.VP.VMCALL_OPERAND_INVALID 0x80000000 00000000 Invalid operand to

TDG.VP.VMCALL sub-function

TDG.VP.VMCALL_GPA_INUSE 0x80000000 00000001 GPA already mapped

TDG.VP.VMCALL_ALIGN_ERROR 0x80000000 00000002 Operand (address) alignment

error

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 13

3 TDG.VP.VMCALL Interface

From the perspective of the host VMM, TDCALL [TDG.VP.VMCALL] is a trap-like, VM exit into

the host VMM, reported via the SEAMRET instruction flow.

By design, after the SEAMRET, the host VMM services the request specified in the parameters

passed by the TD during the TDG.VP.VMCALL (that are passed via SEAMRET to the VMM), then

resumes the TD via a SEAMCALL [TDH.VP.ENTER] invocation.

Refer to the Intel TDX CPU Architecture specification [2] for details of the SEAMCALL and

SEAMRET instructions. This chapter describes the designed sub-functions of the TDCALL

[TDG.VP.VMCALL] interface between the TD and the VMM.

3.1 TDG.VP.VMCALL<GetTdVmCallInfo>

GetTdVmCallInfo TDG.VP.VMCALL is used to help request the host VMM enumerate which

TDG.VP.VMCALLs are supported. This leaf is reserved for enumerating capabilities defined in

this specification. VMMs may provide alternate enumeration schemes using vendor-specific

TDG.VP.VMCALL namespace, as defined in 2.4.1.

Table 3-1: TDG.VP.VMCALL< GetTdVmCallInfo>-Input Operands

Operand Description

R11 TDG.VP.VMCALL< GetTdVmCallInfo> sub-function per Table 2-3.

R12 Leaf to enumerate TDG.VP.VMCALL functionality from this specification

supported by the host.

R12 must be set to 0, and successful execution of this TDG.VP.VMCALL is

meant to indicate all TDG.VP.VMCALLs defined in this specification are

supported by the host VMM. This register is reserved to extend

TDG.VP.VMCALL enumeration in future versions.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 14

Table 3-2: TDG.VP.VMCALL< GetTdVmCallInfo>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-instruction-return code.

R11 Leaf-specific output (when R12 is 0, will be returned as 0).

R12 Leaf-specific output (when R12 is 0, will be returned as 0).

R13 Leaf-specific output (when R12 is 0, will be returned as 0).

R14 Leaf-specific output (when R12 is 0, will be returned as 0).

Table 3-3: TDG.VP.VMCALL< GetTdVmCallInfo> Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCE

SS

See values in

Table 2-6

TDG.VP.VMCALL is successful. The TD is free to

use the GPA as a shared, memory page.

3.2 TDG.VP.VMCALL<MapGPA>

MapGPA TDG.VP.VMCALL is used to help request the host VMM to map a GPA range as private

or shared-memory mappings. This API may also be used to convert page mappings from

private to shared. The GPA range passed in this operation can indicate if the mapping is

requested for a shared or private memory via the GPA.Shared bit in the start address.

For example, to exchange data with the VMM, the TD may use this TDG.VP.VMCALL to request

that a GPA range be mapped as a shared memory (for example, for a paravirtualized IO) via the

shared EPT. If the GPA (range) was already mapped as an active, private page, the host VMM

may remove the private page from the TD by following the “Removing TD Private Pages”

sequence in the Intel TDX-module specification [3] to safely block the mapping(s), flush the

TLB and cache, and remove the mapping(s). The VMM can then map the specified GPA (range)

in the shared-EPT structure and allow the TD to access the page(s) as a shared GPA (range).

If the Start GPA specified is a private GPA (GPA.S bit is clear), this MapGPA TDG.VP.VMCALL

can be used to help request the host VMM map the specific, private page(s) (which mapping

may involve converting the backing-physical page from a shared page to a private page). As

intended in this case, the VMM must unmap the GPA from the shared-EPT region and

invalidate the TLB and caches for the TD VCPUs, to help ensure that no stale mappings exist.

Similarly, if the shared page was assigned to any device for use with IO, then the VMM should

invalidate the IOTLB and purge any pending IO transactions (e.g. by queuing a wait descriptor)

to remove stale mappings on the IO side. Then, the content of all data caches should be

flushed.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 15

The aim is for the VMM to then follow the sequence specified in “Dynamically Adding TD

Private Pages during TD Run Time” in the Intel TDX-module specification [3] to use

TDH.MEM.PAGE.AUG to add the GPA(s) to the TD as pending, private mapping(s) in the secure-

EPT. When the VMM responds to this TDG.VP.VMCALL with success, the goal is for the TD to

execute TDCALL[TDG.MEM.PAGE.ACCEPT] to complete the process to make the page(s)

usable as a private GPA inside the TD.

Upon MapGPA from shared to private, the VMM needs to check if the page is mapped by the

IOMMU page table. If direct I/O is already enabled and the page is mapped, MapGPA should

fail. This is equivalent to removing a page from a (legacy) guest with direct I/O enabled; the

pages need to be pinned there. If the VMM provides a virtual IOMMU (vIOMMU) or cooperative

IOMMU (coIOMMU), then the guest can indicate that it is not using that memory for DMA. In

that case, MapGPA can: 1) Check that page is not pinned by vIOMMU; 2) Check that the page is

not mapped in physical IOMMU. If 1 and 2 succeed, then unmap and remap it.

Table 3-4: TDG.VP.VMCALL<MapGPA>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<MapGPA> sub function per Table 2-3.

R12 4KB-aligned Start GPA of address range (Shared bit may be set or

clear to indicate if a shared- or private-page mapping is desired).

Shared-bit position is indicated by the GPA width [Guest-Physical-

Address-Width-execution control is initialized by the host VMM for the

TD during TDH.VP.INIT].

R13 Size of GPA region to be mapped (must be a multiple of 4KB).

Table 3-5: TDG.VP.VMCALL<MapGPA> Output Operands

Operand Description

R10 TDG.VP.VMCALL-instruction-return code.

R11 GPA at which MapGPA failed (see failure or retry reason in

TDG.VP.VMCALL specific status code.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 16

Table 3-6: TDG.VP.VMCALL<MapGPA>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in

Table 2-6

TDG.VP.VMCALL is successful. The TD

is free to use the GPA (range) specified.

TDG.VP.VMCALL_RETRY TD must retry this operation for the

pages in the region starting at the GPA

specified in R11.

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand – for example, the GPA

address is invalid (beyond GPAW).

TDG.VP.VMCALL_GPA_INUSE GPA is already in use by the TD, for e.g.,

GPA used for hosting memory dedicated

for IO. R11 specifies which GPA in the

range specified was in use.

TDG.VP.VMCALL_ALIGN_ERROR Alignment error for size or Start GPA.

3.3 TDG.VP.VMCALL<GetQuote>

GetQuote TDG.VP.VMCALL is a doorbell-like interface used to help send a message to the

host VMM to queue operations that tend to be long-running operations. GetQuote is

designed to invoke a request to generate a TD-Quote signing by a service hosting TD-Quoting

Enclave operating in the host environment for a TD Report passed as a parameter by the TD.

TDREPORT_STRUCT is a memory operand intended to be sent via the GetQuote

TDG.VP.VMCALL to indicate the asynchronous service requested.

For the GetQuote operation, the goal is for the TDREPORT_STRUCT to be received by the TD

via a prior TDCALL[TDG.MR.REPORT] in a buffer and placed in a shared-GPA space passed to

the VMM as an operand in the GetQuote TDG.VP.VMCALL. In the case of this operation, the

VMM can access the TDREPORT_STRUCT, queue the operation for a service hosting TD-

Quoting enclave, and, when completed, return the Quote via the same, shared-memory area.

For the TD to invoke the TDG.VP.VMCALL<GetQuote>, the host VMM can signal the event

completion to the TD OS via a notification interrupt the host VMM injects into the TD (using

the Event-notification vector registered via the SetupEventNotifyInterrupt TDG.VP.VMCALL).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 17

Table 3-7: TDG.VP.VMCALL< GetQuote >-Input Operands

Operand Description

R11 TDG.VP.VMCALL< GetQuote > sub-function per Table 2-3.

R12 Shared GPA as input – the memory contains a TDREPORT_STRUCT.

The same buffer is used as output – the memory contains a TD Quote.

R13 Size of shared GPA. The size must be 4KB-aligned.

Table 3-8: TDG.VP.VMCALL< GetQuote >-Output Operands

Operand Description

R10 TDG.VP.VMCALL return code.

Table 3-9: TDG.VP.VMCALL< GetQuote >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successfully

received by the VMM.

This status does not mean that

the TD Quote is generated or

returned.

The caller shall wait for event-

notification to evaluate the

output buffer to know if the TD

Quote is generated successfully.

TDG.VP.VMCALL_RETRY The TD should retry the

operation.

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand – for example,

the GPA may be mapped as a

private page.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 18

Table 3-10: TDG.VP.VMCALL<GetQuote> - format of shared GPA

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 8 Version for this structure. It must be 1.

This field is always filled by TD.

Status

Code

8 8 Status Code updated by VMM before the VMM returns the VMCALL

or interrupts the TD. See Table 3-11.

This field is always filled by VMM.

Input

Length

16 4 The length for data from TD as input. It must be equal to or smaller

than the size of shared GPA (R13) – 24.

This field is always filled by TD.

Output

Length

20 4 The length for data from VMM as input. It must be equal or smaller

than size of shared GPA (R13) – 24.

This field is always filled by VMM.

Data 24 Size of

shared

GPA - 24

On input, the data filled by TD with input length. The data should

include TDREPORT_STRUCT. TD should zeroize the remaining buffer

to avoid information leak if size of shared GPA (R13) > Input Length.

On output, the data filled by VMM with output length. The data

should include TD Quote.

Table 3-11: TDG.VP.VMCALL<GetQuote> - GetQuote Status Code

Error Code Value Description

GET_QUOTE_SUCCESS 0x0 TDG.VP.VMCALL<GetQuote> is

successfully completed.

GET_QUOTE_IN_FLIGHT 0xFFFFFFFF_FFFFFFFF TDG.VP.VMCALL<GetQuote> is

under processing. The shared

GPA isn’t ready for TD to

consume.

GET_QUOTE_ERROR 0x80000000_00000000 Error without specifying any

reason.

GET_QUOTE_SERVICE_UNAVAILABLE 0x80000000_00000001 Quoting service isn’t available.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 19

The following is a typical execution flow:

1) Guest TD sets up notification vector via TDG.VP.VMCALL<SetupEventNotifyInterrupt>

2) Guest TD allocates share GPA and initializes it, and then issues

TDG.VP.VMCALL<GetQuote>. The data field should include TDREPORT_STRUCT.

3) VMM receives TDG.VP.VMCALL<GetQuote> request. It checks input operands, fields in

shared GPA.

4) If the input operands and fields in shared GPA are good, the VMM updates status code

in shared GPA to GET_QUOTE_IN_FLIGHT and queues the request. Then,

TDG.VP.VMCALL<GetQuote> is returned to TD. The VMM processes the request in

background.

5) The VMM sends the data field from the TD in shared GPA to a service hosting TD-

Quoting Enclave and receives response message from it.

6) The VMM stores the data field in the received message in shared GPA and updates

output length and status code in shared GPA.

7) The VMM notifies the TD with an interruption vector specified by

TDG.VP.VMCALL<SetupEventNotifyInterrupt>.

8) The guest TD is interrupted. It checks if the GetQuote status code fields in shared GPA

are not GET_QUOTE_IN_FLIGHT. If GetQuote status code is GET_QUOTE_SUCCESS,

the data field includes the TD Quote.

TDG.VP.VMCALL<GetQuote> API allows one TD to issue multiple requests. This is

implementation specific as to how many concurrent requests are allowed. The TD should be

able to handle TDG.VP.VMCALL_RETRY if it chooses to issue multiple requests

simultaneously.

3.4 TDG.VP.VMCALL<ReportFatalError>

The FatalError TDG.VP.VMCALL can inform the host VMM that the TD has experienced a fatal-

error state, and let the VMM access debugging information. The output returned by the

TDG.VP.VMCALL by the host VMM for Debug and Production versions of the platform may be

different.

This TDG.VP.VMCALL is intended to be used by the TD OS during early boot (in guest-

firmware execution, for example) where some instructions like IN/OUT may be avoided to

prevent causing a #VE. It may be also used by the TD guest post-boot when it detects an error

(e.g., a security violation) and the TD wants to stop reliably with information exposed to the

host via the TD-specific error code (and additional information as a zero-terminated string via

the shared memory 4KB region).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 20

Table 3-12: TDG.VP.VMCALL< ReportFatalError >-Input Operands

Operand Description

R11 TDG.VP.VMCALL< ReportFatalError > sub-function per Table 2-3

R12 Bits Name Description

31:0 TD-specific error code TD-specific error code

Panic – 0x0.

Values – 0x1 to 0xFFFFFFFF

reserved.

62:32 TD-specific extended

error code

TD-specific extended error code.

TD software defined.

63 GPA Valid Set if the TD specified additional

information in the GPA parameter

(R13).

R13 4KB-aligned GPA where additional error data is shared by the TD. The

VMM must validate that this GPA has the Shared bit set. In other words,

that a shared-mapping is used, and that this is a valid mapping for the

TD. This shared memory region is expected to hold a zero-terminated

string.

Shared-bit position is indicated by the GPA width [Guest-Physical-

Address-Width-execution control is initialized by the host VMM for the

TD during TDH.VP.INIT].

Table 3-13: TDG.VP.VMCALL<ReportFatalError>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-14: TDG.VP.VMCALL< ReportFatalError >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful.

3.5 TDG.VP.VMCALL<SetupEventNotifyInterrupt>

The guest TD may request that the host VMM specify which interrupt vector to use as an

event-notify vector. This is designed as an untrusted operation; thus, the TD OS should be

designed not to use the event notification for trusted operations. Example of an operation

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 21

that can use the event notify is the host VMM signaling a device removal to the TD, in

response to which a TD may unload a device driver.

The host VMM should use SEAMCALL [TDWRVPS] leaf to inject an interrupt at the requested-

interrupt vector into the TD VCPU that executed TDG.VP.VMCALL

<SetupEventNotifyInterrupt> via the posted-interrupt descriptor. See Intel TDX-module

specification [3] for TD-interrupt handling.

Table 3-15: TDG.VP.VMCALL< SetupEventNotifyInterrupt>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Setup Event Notify Interrupt> sub-function per

Table 2-3.

R12 Interrupt vector (valid values 32:255) selected by TD.

Table 3-16: TDG.VP.VMCALL< SetupEventNotifyInterrupt >-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-17: TDG.VP.VMCALL< SetupEventNotifyInterrupt >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6. TDG.VP.VMCALL is successful.

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand.

3.6 TDG.VP.VMCALL<Instruction.CPUID>

Instruction.CPUID TDG.VP.VMCALL is designed to enable the TD-guest to request the VMM to

emulate CPUID operation, especially for non-architectural, CPUID leaves.

Table 3-18: TDG.VP.VMCALL<Instruction.CPUID>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.CPUID>-Instruction-execution sub-

functions per Table 2-3.

R12 EAX

R13 ECX

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 22

Table 3-19: TDG.VP.VMCALL<Instruction.CPUID>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R12 EAX

R13 EBX

R14 ECX

R15 EDX

Table 3-20: TDG.VP.VMCALL<Instruction.CPUID>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful.

3.7 TDG.VP.VMCALL<#VE.RequestMMIO>

This TDG.VP.VMCALL is used to help request the VMM perform emulated-MMIO-access

operation. The VMM may emulate MMIO space in shared-GPA space. The VMM can induce a

#VE on these shared-GPA accesses by mapping shared GPAs with the suppress-VE bit cleared

in the EPT Entries corresponding to these mappings.

In response to the #VE, the TD can use the TDCALL[TDG.VP.VEINFO.GET] to get the

Virtualization-Exception-Information Fields (See Intel TDX-module specification) and validate

that the #VE exit reason is 48 (EPT violation causing #VE). After the TD software decodes the

instruction causing the #VE locally and validating the accessed region and source of access,

the TD may choose to use this TDG.VP.VMCALL to request MMIO read/write operations.

The VMM may emulate the access based on the inputs provided by the TD. However, note

that, like other TDG.VP.VMCALLs, this TDCALL is designed as an untrusted operation and to be

used for untrusted IO with other cryptographic protection for the TD data provided by the TD

itself.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 23

Table 3-21: TDG.VP.VMCALL<RequestMMIO>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<RequestMMIO> sub-function per Table 2-3.

R12 Size of access. 1=1byte, 2=2bytes, 4=4bytes, 8=8bytes.

All rest value = reserved.

R13 Direction. 0=Read, 1=Write.

All rest value = reserved.

R14 MMIO Address

R15 Data to write, if R13 is 1.

Table 3-22: TDG.VP.VMCALL<Instruction.MMIO>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 Data to read, if R13 is 0.

Table 3-23: TDG.VP.VMCALL<Instruction.MMIO>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful.

TDG.VP.VMCALL_INVALID_OPERAND If invalid operands provided by

the TD, e.g., MMIO address.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 24

3.8 TDG.VP.VMCALL<Instruction.HLT>

Instruction.HLT TDG.VP.VMCALL is used to help perform HLT operation. The TD guest informs the VMM

regarding the TD’s interrupt (blocked) status via this interface.

Table 3-24: TDG.VP.VMCALL<Instruction.HLT>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.HLT>-Instruction-execution sub-functions

per Table 2-3.

R12
Interrupt Blocked Flag.

The TD is expected to clear this flag if RFLAGS.IF == 1 or the TDCALL

instruction (that invoked TDG.VP.TDVMCALL(Instruction.HLT))

immediately follows an STI instruction, otherwise this flag should be

set.

Table 3-25: TDG.VP.VMCALL<Instruction.HLT>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-26: TDG.VP.VMCALL<Instruction.HLT>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 25

3.9 TDG.VP.VMCALL<Instruction.IO>

Instruction.IO TDG.VP.VMCALL is used to help request the VMM perform IO operations.

Table 2-27: TDG.VP.VMCALL<Instruction.IO>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.IO>-Instruction-execution sub-functions per Table 2-3.

R12 Size of access. 1=1byte, 2=2bytes, 4=4bytes.

All rest value = reserved.

R13 Direction. 0=Read, 1=Write.

All rest value = reserved.

R14 Port number

R15 Data to write, if R13 is 1.

Table 2-28: TDG.VP.VMCALL<Instruction.IO>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 Data to read, if R13 is 0.

Table 2-29: TDG.VP.VMCALL<Instruction.IO>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful.

TDG.VP.VMCALL_INVALID_OPERAND Invalid-IO-Port access

3.10 TDG.VP.VMCALL<Instruction.RDMSR>

Instruction.RDMSR TDG.VP.VMCALL is used to help perform RDMSR operation.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 26

Table 2-30: TDG.VP.VMCALL<Instruction.RDMSR>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.RDMSR> Instruction execution sub-functions

per Table 2-3.

R12 MSR Index

Table 2-31: TDG.VP.VMCALL<Instruction.RDMSR>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 MSR Value

Table 2-32: TDG.VP.VMCALL<Instruction.RDMSR>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-

6

TDG.VP.VMCALL is successful.

TDG.VP.VMCALL_INVALID_OPERAND Invalid MSR rd/wr requested or

access-denied.

3.11 TDG.VP.VMCALL<Instruction.WRMSR>

Instruction.WRMSR TDG.VP.VMCALL is used to help perform WRMSR operation.

Table 2-33: TDG.VP.VMCALL<Instruction.WRMSR>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.WRMSR>-Instruction-execution sub-

functions per Table 2-3.

R12 MSR Index

R13 MSR Value

Table 2-34: TDG.VP.VMCALL<Instruction.WRMSR>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 27

Table 2-35: TDG.VP.VMCALL<Instruction.WRMSR>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful.

TDG.VP.VMCALL_INVALID_OPERAND Invalid MSR rd/wr requested or

access-denied.

3.12 TDG.VP.VMCALL<Instruction.PCONFIG>

Instruction.VMCALL PCONFIG is used to help perform Instruction-PCONFIG operation.

Table 2-36: TDG.VP.VMCALL<Instruction.PCONFIG>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<Instruction.PCONFIG> sub-function per Table 2-

3.

R12 PCONFIG-Leaf function requested.

R13, R14, R15 Leaf-specific purpose (See PCONFIG ISA definition in MKTME

spec. [4]

Table 2-37: TDG.VP.VMCALL<Instruction.PCONFIG>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 VMM-Vendor Specific

R12, R13, R14, R15, RBX, RDI,

RSI, R8, R9, RDX

VMM-Vendor Specific

XMM0–XMM15 If RCX bit 1 is set, the XMM content is set by VMM host when

executing SEAMCALL(TDENTER).

Otherwise, the XMM content is unmodified.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 28

Table 2-38: TDG.VP.VMCALL<Instruction.PCONFIG>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is successful.

TDG.VP.VMCALL_INVALID_OPERAND If PCONFIG-operation

requested is invalid.

3.13 TDG.VP.VMCALL <Service>

In Service TD scenario, there is a need to define interfaces for the command/response that

may have long latency, such as communicating with local device via Secure Protocol and Data

Model (SPDM), communicating with remote platform via Transport Layer Security (TLS)

Protocol, or communicating with a Quoting Enclave (QE) on attestation or mutual

authentication.

There is also needed that the VMM may notify a service TD to do some actions, such as

Migration TD (MigTD).

We define Command/Response Buffer (CRB) DMA interface.

Table 3-39: TDG.VP.VMCALL< Service >-Input Operands

Operand Description

R11 TDG.VP.VMCALL< Service > sub-function per Table 2-3.

R12 Shared 4KB aligned GPA as input – the memory contains a Command.

It could be more than one 4K pages.

R13 Shared 4KB aligned GPA as output – the memory contains a Response.

It could be more than one 4K pages.

R14 Event notification interrupt vector - (valid values 32~255) selected by

TD.

0: blocking action. VMM need get response then return.

1~31: Reserved. Should not be used.

32~255: Non-block action. VMM can return immediately and signal the

interrupt vector when the response is ready. VMM should inject interrupt

vector into the TD VCPU that executed TDG.VP.VMCALL<Service>.

R15 Timeout– Maximum wait time for the command and response.

0 means infinite wait.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 29

Table 3-40: TDG.VP.VMCALL< Service >-Output Operands

Operand Description

R10 TDG.VP.VMCALL return code.

Table 3-41: TDG.VP.VMCALL< Service >-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in

Table 2-6

TDG.VP.VMCALL is successful.

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand – for example,

the GPA may be mapped as a

private page. Or the interrupt

vector is invalid.

Table 3-42: TDG.VP.VMCALL< Service >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

GUID 0 16 A unique GUID to identify the service.

This field is always filled by TD.

Length 16 4 Size in bytes of the command buffer, including the GUID

and Length. (24 + N)

This field is always filled by TD.

Reserved 20 4 Reserved

Data 24 N GUID specific command data.

This field is always filled by TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 30

Table 3-43: TDG.VP.VMCALL< Service >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

GUID 0 16 A unique GUID to identify the service.

This field is always filled by TD.

Length 16 4 Size in bytes of the response buffer, including the GUID and Length. (24

+ N)

When TD uses the VMCALL, this field is filled by TD to indicate the

maximum allocated response buffer size.

When VMM triggers interrupt vector, this field is filled by VMM to

indicate the returned response buffer size.

Status 20 4 Common Status Code for response:

0: Command is sent, and response is returned.

1: Device error

2: Timeout

3: Response buffer too small. In this case, the Length means required

response buffer size.

4: Bad command buffer size

5: Bad response buffer size

6: Service busy

7: Invalid Parameter

8: Out of resource

0xFFFFFFFE: Unsupported.

0xFFFFFFFF: Reserved – should be filled by TD, so that TD can check

if the response is returned by VMM.

This field is always filled by VMM. (*)

Data 24 N GUID specific response data.

This field is always filled by VMM.

(*) NOTE: Status field only means that the VMM sends the command and receives a

response. It does not mean that the response contains a success code. For example, an

SPDM responder may return an SPDM error in an SPDM response message. The VMM will

fill SUCCESS in this status. The SPDM requester in TD should parse the SPDM response

message to get the SPDM error code.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 31

The detail flow is:

Step 1, the TD will:

1.1) Prepare an event notification interrupt vector.

1.2) Prepare a shared command buffer and put a command there including GUID,

length, and data.

1.3) Prepare a shared response buffer and put the GUID and maximum length of

response buffer there.

1.4) Trigger TDVMCALL.

Step 2, the VMM will:

2.1) Set up the context for this TDVMCALL <Service> (For example, save the response

buffer and event notification interrupt vector).

2.2) Send command.

2.3) Prepare for response (Interrupt or Poll).

2.2) return TDVMCALL to TD.

Step 3, the TD will:

3.1) Free the shared command buffer and make it private. (Optional, if the TD wants to

reuse the buffer later).

Step 4, once VMM gets the response, the VMM will:

4.1) Check if the Response.Length is large enough to hold the response.

4.2) Fill the Response.Data field with response.

4.3) Free the context for this TDVMCALL <Service>

4.3) Trigger Event Notification Interrupt to TD.

Step 5, once TD gets the event notification, the TD will:

5.1) Read the data from the response to private.

5.2) Free the shared response buffer and make it private. (Optional, if the TD wants to

reuse the buffer later).

5.3) If the returned data includes length, offset, index, etc., apply the side channel

mitigation, such as lfence(), before parsing the data.

5.4) Parse the response in private memory. NOTE: This is from untrusted source. The

TD must check the data before using it.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 32

3.13.1 TDG.VP.VMCALL <Service.Query>

This generic service is used to allow TD to query the capability.

// {FB6FC5E1-3378-4ACB-8964-FA5EE43B9C8A}

#define VMCALL_SERVICE_COMMON_GUID \

{0xfb6fc5e1, 0x3378, 0x4acb, 0x89, 0x64, 0xfa, 0x5e, 0xe4, 0x3b, 0x9c, 0x8a}

Table 3-44: TDG.VP.VMCALL< Service.Query >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 0: Query

Reserved 2 2 Reserved

GUID 4 16 The Service GUID to query

Table 3-45: TDG.VP.VMCALL< Service.Query >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 0: Query

Status 2 1 0: Service supported

1: Service unsupported

Reserved 3 1 Reserved

GUID 4 16 The Service GUID to query

3.13.2 TDG.VP.VMCALL <Service.MigTD>

This is used to allow MigTD to get the migration information from VMM.

#define VMCALL_SERVICE_MIGTD_GUID \

{0xe60e6330, 0x1e09, 0x4387, 0xa4, 0x44, 0x8f, 0x32, 0xb8, 0xd6, 0x11, 0xe5}

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 33

3.13.2.1 TDG.VP.VMCALL <Service.MigTD.Shutdown>

This is used to allow a service TD to shutdown itself after it finishes the task.

Table 3-46: TDG.VP.VMCALL< Service.MigTD.Shutdown >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 0: Shutdown

Reserved 2 2 Reserved

No response data is required.

3.13.2.2 TDG.VP.VMCALL <Service.MigTD.WaitForRequest>

Table 3-47: TDG.VP.VMCALL< Service.MigTD.WaitForRequest >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 1: Wait for request

Reserved 2 2 Reserved

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 34

Table 3-48: TDG.VP.VMCALL< Service.MigTD.WaitForRequest >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 1: Wait for request

Operation 2 1 0: No-op

1: Start Migration

2~0xFF: reserved

This field is used to perform corresponding migration

command.

Reserved 3 1 Reserved

Migration

Information

4 Variable Migration related GUID extension HOB, including

MIGTD_MIGRATION_INFORMATION HOB and others.

3.13.2.2.1 Migration Request Information GUID Extension HOB

This GUID extension HOB reports the migration request information.

#define MIGTD_MIGRATION_INFORMATION_HOB_GUID \

{0x42b5e398, 0xa199, 0x4d30, 0xbe, 0xfc, 0xc7, 0x5a, 0xc3, 0xda, 0x5d, 0x7c}

typedef struct {

 UINT64 MigRequestID;

 BOOLEAN MigrationSource;

 UINT8 TargetTD_UUID[32];

 UINT64 BindingHandle;

 UINT64 MigPolicyID;

 UINT64 CommunicationID;

} MIGTD_MIGRATION_INFORMATION;

MigRequestID The ID for the migration request. It is used in TDG.VP.VMCALL

<Service.MigTD.ReportStatus> in TDG.VP.VMCALL

<Service.MigTD.Send> and TDG.VP.VMCALL <Service.MigTD.Receive>.

MigrationSource TRUE: This MigTD is MigTD-s; FALSE: This MigTD is MigTD-d.

TargetTD_UUID The UUID for the target TD returned from

SEAMCALL[TDH.SERVTD.BIND].

BindingHandle The BindingHandle for the MigTD and the target TD returned from

SEAMCALL[TDH.SERVTD.BIND].

MigPolicyID The ID for the migration policy.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 35

CommunicationID The ID for the VMM communication channel.

3.13.2.2.2 Stream Socket Info GUID Extension HOB

This GUID extension HOB reports the VMCALL based stream socket information.

#define MIGTD_STREAM_SOCKET_INFO_HOB_GUID \

{0x7a103b9d, 0x552b, 0x485f, 0xbb, 0x4c, 0x2f, 0x3d, 0x2e, 0x8b, 0x1e, 0xe}

typedef struct {

 UINT64 CommunicationID;

 UINT64 MigTdCid;

 UINT32 MigChannelPort;

 UINT32 QuoteServicePort;

} MIGTD_STREAM_SOCKET_INFO;

CommunicationID A unique identifier for this communication. It can be used in

MIGTD_MIGRATION_INFORMATION HOB.

MigTdCid The context ID (CID) for the MigTD.

MigChannelPort The listening port of the MigTD or VMM for the migration secure

communication channel.

QuoteServicePort The listening port of the VMM for the quote service channel.

3.13.2.2.3 Runtime Migration Policy GUID Extension HOB

This GUID extension HOB reports the runtime migration policy.

#define MIGTD_MIGPOLICY_HOB_GUID \

{0xd64f771a, 0xf0c9, 0x4d33, 0x99, 0x8b, 0xe, 0x3d, 0x8b, 0x94, 0xa, 0x61}

typedef struct {

 UINT64 MigPolicyID;

 UINT32 MigPolicySize;

 UINT8 MigPolicy[];

} MIGTD_MIGPOLICY_INFO;

MigPolicyID A unique identifier for this policy. It can be used in

MIGTD_MIGRATION_INFORMATION HOB.

MigPolicySize The size in bytes of the migration policy.

MigPolicy The migration policy data.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 36

3.13.2.3 TDG.VP.VMCALL <Service.MigTD.ReportStatus>

Table 3-49: TDG.VP.VMCALL< Service.MigTD.ReportStatus >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 2: Report Status

Operation 2 1 Same as the “Operation” in TDG.VP.VMCALL

<Service.MigTD.WaitForRequest>

Status 3 1 0: SUCCESS

1: INVALID_PARAMETER

2: UNSUPPORTED

3: OUT_OF_RESOURCE

4: TDX_MODULE_ERROR

5: NETWORK_ERROR

6: SECURE_SESSION_ERROR

7: MUTUAL_ATTESTATION_ERROR

8: MIGPOLICY_ERROR

0xFF: MIGTD_INTERNAL_ERROR

0x0A~0xFE: Reserved

MigRequestID 4 8 The MigRequestID in

MIGTD_MIGRATION_INFORMATION HOB

Table 3-50: TDG.VP.VMCALL< Service.MigTD.ReportStatus >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 2: Report Status

Reserved 2 2 Reserved

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 37

3.13.2.4 TDG.VP.VMCALL <Service.MigTD.Send>

The two MigTDs use this VMCALL and next VMCALL to transmit and receive the

communication packet to each other via the VMM.

The communication packet is transparent to the VMM. The VMM shall treat it as binary blob

and does not parse it. The VMM should guarantee the connection is reliable. For example, no

communication packet will be lost. No communication packet will arrive out of order.

The MigTD should guarantee the communication request for one MigRequestID is sequential.

Multiple requests for one MigRequestID at same time are not allowed. If the VMM receives

another request while it is waiting for the response of the previous request with the same

MigRequestID, the VMM shall return Service busy error status. The MigTD may send multiple

requests for different MigRequestID at the same time - the VMM shall support this case and

server all requests. If the VMM may run out of resources to create a new context to

communicate with the remote, the VMM shall return an Out of resource error status.

If the VMM has hardware error and fails to send the command or receive the response, the

VMM shall return Device error status. If the VMM fails to send the command or receive the

response in timeout period indicated by the MigTD, the VMM shall return Timeout status.

The MigTD shall provide a large enough response buffer. If the response buffer is too small to

hold the response from the peer MigTD, the VMM shall return Receive buffer too small error

status.

The MigTD shall provide a reasonable size command buffer and response buffer to allow

VMM allocate the memory to handle the input or output. The VMM shall support at least a

64KB command buffer and response buffer. If the MigTD request an unreasonable large

command buffer or response buffer, such as 1GB, the VMM may return Bad command

buffer size or Bad response buffer size error status.

The MigTD may input zero command buffer size, when the MigTD-d wants to wait for the

first request message from MigTD-s. The MigTD may input zero response buffer size,

when a MigTD sends the last handshake message to the peer. The VMM shall handle

those cases correctly. If the MigTD inputs zero command buffer size and zero response

buffer size at same time, the VMM shall return Invalid parameter error status.

For the detail of stream communication flow, please refer to VMCALL stream message section.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 38

Table 3-51: TDG.VP.VMCALL< Service.MigTD.Send >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 3: Send

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in

MIGTD_MIGRATION_INFORMATION HOB

Stream

Message

Header

12 32 The stream message header. See VMCALL stream

message section -

VMCALL_STREAM_MESSAGE_HEADER.

MigTD

communication

packet

44 N This field is only present when

VMCALL_STREAM_MESSAGE_HEADER.Operation is

VMCALL_STREAM_OP_RW.

Size in bytes of the MigTD communication packet to be

sent.

The format of the packet is defined by the MigTD. The

VMM shall send the binary blob to the peer MigTD.

Table 3-52: TDG.VP.VMCALL< Service.MigTD.Send >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 3: Send

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in

MIGTD_MIGRATION_INFORMATION HOB

3.13.2.5 TDG.VP.VMCALL <Service.MigTD.Receive>

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 39

Table 3-53: TDG.VP.VMCALL< Service.MigTD.Receive >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 4: Receive

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in

MIGTD_MIGRATION_INFORMATION HOB

Table 3-54: TDG.VP.VMCALL< Service.MigTD.Receive >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 4: Receive

Reserved 2 2 Reserved

MigRequestID 4 8 The MigRequestID in

MIGTD_MIGRATION_INFORMATION HOB

Stream

Message

Header

12 32 The stream message header. See VMCALL stream

message section -

VMCALL_STREAM_MESSAGE_HEADER.

MigTD

communication

packet

44 N This field is only present when

VMCALL_STREAM_MESSAGE_HEADER.Operation is

VMCALL_STREAM_OP_RW.

Size in bytes of the MigTD communication packet being

received.

The format of the packet is defined by the MigTD. The

VMM shall receive the binary blob from the peer MigTD.

3.13.2.5.1 Stream Socket Message

A service TD may set up a stream connection with a VMM. Either a service TD or a VMM can be

the client or the server. Every stream message starts with a VMCALL_STREAM_MESSAGE_HEADER,

followed by the payload if the operation is VMCALL_STREAM_OP_RW.

In order to create a stream connection, the client sends VMCALL_STREAM_OP_REQUEST packet.

If the server is listening, then it sends VMCALL_STREAM_OP_RESPONSE packet and the stream

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 40

connection is established. If the server is not listening or has no resource, then it sends

VMCALL_STREAM_OP_RESET packet.

Once the stream connection is established, both entities may send VMCALL_STREAM_OP_RW

packet to the peer.

When an entity does not need send more data or receive more data, it sends

VMCALL_STREAM_OP_SHUTDOWN packet. The peer sends VMCALL_STREAM_OP_RESET response to

confirm. The stream connection is terminated. Even if the response is not received, the

connection is still terminated with a timeout period.

typedef struct {

 UINT64 SourceCid;

 UINT64 DestinationCid;

 UINT32 SourcePort;

 UINT32 DestinationPort;

 UINT32 Length;

 UINT16 Operation;

 UINT16 Reserved;

} VMCALL_STREAM_MESSAGE_HEADER;

SourceCid The context ID of the source.

DestinationCid The context ID of the destination.

SourcePort The port of the source.

DestinationPort The port of the destination.

Length The length of the payload. It does not include this
header.

Operation The message operation. See
VMCALL_STREAM_MESSAGE_OPERATION.

typedef enum {

 VMCALL_STREAM_OP_RESERVED = 0,

 // stream connection

 VMCALL_STREAM_OP_REQUEST = 1,

 VMCALL_STREAM_OP_RESPONSE = 2,

 VMCALL_STREAM_OP_RESET = 3,

 VMCALL_STREAM_OP_SHUTDOWN = 4,

 // send payload message

 VMCALL_STREAM_OP_RW = 5,

} VMCALL_STREAM_MESSAGE_OPERATION;

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TDG.VP.VMCALL Interface

Ref. # 348552-003US 41

The VMM CID is always set to 0x2. The MigTD CID is passed from VMM dynamically. The server

listening port of VMM or MigTD can be predefined or passed from VMM dynamically.

When the MigTD acts as a client and the VMM acts as a server. Below communication flow is

used:

MigTD: {MigTdCid, VmmCid, MigTdPort, VmmListeningPort, OP_REQUEST}

VMM: {VmmCid, MigTdCid, VmmListeningPort, MigTdPort, OP_RESPONSE}

MigTD: {MigTdCid, VmmCid, MigTdPort, VmmListeningPort, OP_RW, payload}

VMM: {VmmCid, MigTdCid, VmmListeningPort, MigTdPort, OP_RW, payload}

……

MigTD: {MigTdCid, VmmCid, MigTdPort, VmmListeningPort, OP_SHUTDOWN}

VMM: {VmmCid, MigTdCid, VmmListeningPort, MigTdPort, OP_RESET}

When the MigTD acts as a server and the VMM acts as a client. Below communication flow is

used:

VMM: {VmmCid, MigTdCid, VmmPort, MigTdListeningPort, OP_REQUEST}

MigTD: {MigTdCid, VmmCid, MigTdListeningPort, VmmPort, OP_RESPONSE}

VMM: {VmmCid, MigTdCid, VmmPort, MigTdListeningPort, OP_RW, payload}

MigTD: {MigTdCid, VmmCid, MigTdListeningPort, VmmPort, OP_RW, payload}

……

VMM: {VmmCid, MigTdCid, VmmPort, MigTdListeningPort, OP_SHUTDOWN}

MigTD: {MigTdCid, VmmCid, MigTdListeningPort, VmmPort, OP_RESET}

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 42

4 TD-Guest-Firmware Interfaces

4.1 ACPI MADT Multiprocessor Wakeup Table

The guest firmware is designed to publish a multiprocessor-wakeup structure to let the guest-

bootstrap processor wake up guest-application processors with a mailbox. The mailbox is

memory that the guest firmware can reserve so each guest virtual processor can have the

guest OS send a message to them.

For detailed information about the Multiprocessor Wakeup Table, please refer to ACPI 6.4

specification.

4.2 Memory Map

The memory in the TD guest-environment can be:

1) Private memory – SEAMCALL[TDH.MEM.PAGE.ADD] by VMM or TDCALL

[TDG.MEM.PAGE.ACCEPT] by TDVF with S-bit clear in page table.

2) Shared memory – SEAMCALL[TDH.MEM.PAGE.ADD] by VMM or TDCALL

[TDG.MEM.PAGE.ACCEPT] by TDVF with S-bit set in page table.

3) Unaccepted memory – SEAMCALL[TDH.MEM.PAGE.AUG] by VMM and not accepted by

TDVF yet.

4) Memory-Mapped I/O (MMIO) - Shared memory accessed via TDVF via

TDVMCALL<#VE.RequestMMIO>.

If a TD-memory region is private memory, the TD owner shall have the final UEFI-memory

map report the region with EfiReservedMemoryType, EfiLoaderCode, EfiLoaderData,

EfiBootServiceCode, EfiBootServiceData, EfiRuntimeServiceCode,

EfiRuntimeServiceData, EfiConventionalMemory, EfiACPIReclaimMemory,

EfiACPIMemoryNVS.

If a TD-memory region is shared memory, the TD owner shall convert it to private memory

before transfer to OS kernel.

If a TD-memory region is unaccepted memory and requires TDCALL [TDG.MEM.PAGE.ACCEPT] in the
TD guest OS, then the TD owner shall have the final UEFI-memory map report this region with

EfiUnacceptedMemoryType. Please refer to UEFI 2.9 specification.

If a memory region is MMIO, it is designed to only be accessed via

TDVMCALL<#VE.RequestMMIO> and not via direct memory read or write. Accordingly, as

designed, there is no need to report this region in UEFI-memory map, because no RUNTIME

attribute is required. The full MMIO regions are designed to be reported in ACPI ASL code via

memory-resource descriptors.

https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#multiprocessor-wakeup-structure
https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#multiprocessor-wakeup-structure
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 43

Table 4-1: TDVF-memory map for OS

UEFI Memory Type Usage TD-Memory

Type

OS Action

EfiReservedMemoryTpe Firmware-Reserved

region, such as flash.

Private Reserved.

EfiLoaderCode UEFI-Loader Code Private Use after EBS.

EfiLoaderData UEFI-Loader Data Private Use after EBS.

EfiBootServicesCode UEFI-Boot-Service Code Private Use after EBS.

EfiBootServicesData UEFI-Boot-Service Data Private Use after EBS.

EfiRuntimeServicesCode UEFI-Runtime-Service

Code

Private Map-virtual address.

Reserved.

EfiRuntimeServicesData UEFI-Runtime-Service

Data

Private Map-virtual address.

Reserved.

EfiConventionalMemory Freed memory (Private) Private Use directly.

EfiACPIReclaimMemory ACPI table. Private Use after copy ACPI

table.

EfiACPIMemoryNVS Firmware Reserved for

ACPI, such as the memory

used in ACPI OpRegion

Private Reserved.

EfiMemoryMappedIO No need to report the

MMIO region, as no

RUNTIME-virtual address

is required for TD.

The full MMIO should be

reported in ACPI-ASL

code.

N/A N/A

EfiUnacceptedMemoryType UEFI-Boot-Service Data

(Shared Memory)

VMM-shared buffer.

Unaccepted Use after EBS and

converting to private

page.

==============

TDCALL[TDG.VP.VMCAL

L] <MapGPA>

TDCALL[TDG.MEM.PAG

E.ACCEPT]

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 44

For a non-UEFI system, the memory map can be reported via E820 table.

If a TD-memory region is private memory, the TD Shim shall have the final memory map

report the region with AddressRangeMemory, AddressRangeReserved, AddressRangeACPI, or

AddressRangeNVS.

If a TD-memory region is shared memory, the TD Shim shall convert it to private memory

before transfer to OS kernel.

If a TD-memory region is unaccepted memory and requires TDCALL [TDG.MEM.PAGE.ACCEPT] in the
TD guest OS, then the TD Shim shall have the final memory map report this region with

AddressRangeUnaccepted.

If a memory region is MMIO, it is designed to only be accessed via

TDVMCALL<#VE.RequestMMIO> and not via direct memory read or write. Accordingly, as

designed, there is no need to report this region in the final memory map.

Table 4-2: TDVF E820 memory map for OS

E820 Memory Type Usage TD-Memory Type OS Action

AddressRangeMemory Usable by OS. Private Use directly

AddressRangeReserved Firmware-Reserved

region, such as flash.

Private Reserved.

AddressRangeACPI ACPI table. Private Use after copy

ACPI table.

AddressRangeNVS Firmware Reserved for

ACPI, such as the memory

used in ACPI OpRegion

Private Reserved.

AddressRangeUnaccept

ed

Allocated by VMM, but

not accepted by TD guest

yet.

Unaccepted Use after

convert to

private page.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 45

4.3 TD Measurement

4.3.1 TCG-Platform-Event Log

If TD-Guest Firmware supports measurement and an event is created, TD-Guest Firmware is

designed to report the event log with the same data structure in TCG-Platform-Firmware-

Profile specification with EFI_TCG2_EVENT_LOG_FORMAT_TCG_2 format.

The index created by the TD-Guest Firmware in the event log should be the index for the

confidential computing (CC) measurement register.

Table 4-3: CC-Event-Log-PCR-Index Interpretation for TDX

CC Measurement

Register Index
TDX-measurement register

0 MRTD

1 RTMR[0]

2 RTMR[1]

3 RTMR[2]

4 RTMR[3]

4.3.2 EFI_CC_MEASUREMENT_PROTOCOL

If TD-Guest Firmware supports measurement, the TD Guest Firmware is designed to produce

EFI_CC_MEASUREMENT_PROTOCOL with new GUID

EFI_CC_MEASUREMENT_PROTOCOL_GUID to report event log and provide hash capability.

EFI_CC_MEASUREMENT_PROTOCOL

Summary

This protocol abstracts the confidential computing (CC) measurement operation in

UEFI guest environment.

GUID

#define EFI_CC_MEASUREMENT_PROTOCOL_GUID \

{0x96751a3d, 0x72f4, 0x41a6, {0xa7, 0x94, 0xed, 0x5d, 0xe, 0x67, 0xae,

0x6b }}

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 46

Protocol Interface Structure

typedef struct _EFI_CC_MEASUREMENT_PROTOCOL {

 EFI_CC_GET_CAPABILITY GetCapability;

 EFI_CC_GET_EVENT_LOG GetEventLog;

 EFI_CC_HASH_LOG_EXTEND_EVENT HashLogExtendEvent;

 EFI_CC_MAP_PCR_TO_MR_INDEX MapPcrToMrIndex;

} EFI_CC_MEASUREMENT_PROTOCOL;

Parameters

GetCapability

Provide protocol capability information and state information. See the

GetCapability() function description.

GetEventLog

Allow a caller to retrieve the address of a given event log and its last entry. See

the GetEventLog() function description.

HashLogExtendEvent

Provide callers with an opportunity to extend and optionally log events without

requiring knowledge of actual CC command. See the HashLogExtendEvent()

function description.

MapPcrToMrIndex

Provide callers information on TPM PCR to CC measurement register (MR)

mapping. See the MapPcrToMrIndex() function description.

Description

The EFI_CC_MEASUREMENT_PROTOCOL is used to abstract the CC measurement

related action in CC UEFI guest environment.

EFI_CC_MEASUREMENT_PROTOCOL.GetCapability

Summary

This service provides protocol capability information and state information.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_GET_CAPABILITY)(

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 47

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN OUT EFI_CC_BOOT_SERVICE_CAPABILITY *ProtocolCapability

);

Parameters

This

The protocol interface pointer.

ProtocolCapability

The caller allocates memory for an EFI_CC_BOOT_SERVICE_CAPABILITY

structure and sets the size field to the size of the structure allocated.

The callee fills in the fields with the EFI protocol capability information

and the current EFI CC state information, up to the number of fields which

fit within the size of the structure passed in.

Description

This function provides protocol capability information and state information.

Status Code Returned

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARAMETE

R

One or more of the parameters are incorrect.

The ProtocolCapability variable will not be populated.

EFI_DEVICE_ERROR The command was unsuccessful.

The ProtocolCapability variable will not be populated.

EFI_BUFFER_TOO_SMAL

L

The ProtocolCapability variable is too small to hold the full respo

nse. It will be partially populated (required Size field will be set).

Related Definitions

typedef struct {

 //

 // Allocated size of the structure

 //

 UINT8 Size;

 //

 // Version of the EFI_CC_BOOT_SERVICE_CAPABILITY structure.

 // For this version of the protocol,

 // the Major version shall be set to 1

 // and the Minor version shall be set to 0.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 48

 //

 EFI_CC_VERSION StructureVersion;

 //

 // Version of the EFI CC MEASUREMENT protocol.

 // For this version of the protocol,

 // the Major version shall be set to 1

 // and the Minor version shall be set to 0.

 //

 EFI_CC_VERSION ProtocolVersion;

 //

 // Supported hash algorithms

 //

 EFI_CC_EVENT_ALGORITHM_BITMAP HashAlgorithmBitmap;

 //

 // Bitmap of supported event log formats

 //

 EFI_CC_EVENT_LOG_BITMAP SupportedEventLogs;

 //

 // Indicate CC type

 //

 EFI_CC_TYPE CcType;

} EFI_CC_BOOT_SERVICE_CAPABILITY;

typedef struct {

 UINT8 Major;

 UINT8 Minor;

} EFI_CC_VERSION;

typedef UINT32 EFI_CC_EVENT_LOG_BITMAP;

typedef UINT32 EFI_CC_EVENT_ALGORITHM_BITMAP;

#define EFI_CC_BOOT_HASH_ALG_SHA384 0x00000004

typedef struct {

 UINT8 Type;

 UINT8 SubType;

} EFI_CC_TYPE;

#define EFI_CC_TYPE_NONE 0

#define EFI_CC_TYPE_SEV 1

#define EFI_CC_TYPE_TDX 2

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 49

EFI_CC_PROTOCOL.GetEventLog

Summary

This service allows a caller to retrieve the address of a given event log and its last

entry.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_GET_EVENT_LOG)(

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN EFI_CC_EVENT_LOG_FORMAT EventLogFormat,

 OUT EFI_PHYSICAL_ADDRESS *EventLogLocation,

 OUT EFI_PHYSICAL_ADDRESS *EventLogLastEntry,

 OUT BOOLEAN *EventLogTruncated

);

Parameters

This

The protocol interface pointer.

EventLogFormat

The type of event log for which the information is requested.

EventLogLocation

A pointer to the memory address of the event log.

EventLogLastEntry

If the event log contains more than one entry, this is a pointer to the address of

the start of the last entry in the event login memory.

EventLogTruncated

If the event log is missing at least one entry, because one event would have

exceeded the area allocated for the event, this value is set to TRUE. Otherwise,

this value will be FALSE, and the event log is complete.

Description

This function allows a caller to retrieve the address of a given event log and its last

entry.

Status Code Returned

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 50

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

Related Definitions

typedef UINT32 EFI_CC_EVENT_LOG_FORMAT;

#define EFI_CC_EVENT_LOG_FORMAT_TCG_2 0x00000002

EFI_CC_MEASUREMENT_PROTOCOL.HashLogExtendEvent

Summary

This service provides callers with an opportunity to extend and optionally log events

without requiring knowledge of actual CC command.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_GET_EVENT_LOG)(

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN UINT64 Flags,

 IN EFI_PHYSICAL_ADDRESS DataToHash,

 IN UINT64 DataToHashLen,

 IN EFI_CC_EVENT *EfiCcEvent

);

Parameters

This

The protocol interface pointer.

Flags

Bitmap providing additional information.

DataToHash

Physical address of the start of the data buffer to be hashed.

DataToHashLen

The length in bytes of the buffer referenced by DataToHash.

EfiCcEvent

Pointer to the data buffer containing information about the event.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 51

Description

This function provides callers with an opportunity to extend and optionally log events

without requiring knowledge of actual CC command. The extend operation will occur

even if the function cannot create an event log entry.

Status Code Returned

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

EFI_DEVICE_ERROR The command was unsuccessful.

EFI_VOLUME_FULL The extend operation occurred, but the event could not be wri

tten to one or more event logs.

EFI_UNSUPPORTED The PE/COFF image type is not supported.

Related Definitions

//

// This bit shall be set when an event shall be extended

// but not logged.

//

#define EFI_CC_FLAG_EXTEND_ONLY 0x0000000000000001

//

// This bit shall be set when the intent is to measure

// a PE/COFF image.

//

#define EFI_CC_FLAG_PE_COFF_IMAGE 0x0000000000000010

typedef UINT32 EFI_CC_MR_INDEX;

#pragma pack(1)

typedef struct {

 //

 // Size of the event header itself.

 //

 UINT32 HeaderSize;

 //

 // Header version. For this version of this specification,

 // the value shall be 1.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 52

 //

 UINT16 HeaderVersion;

 //

 // Index of the MR that shall be extended.

 //

 EFI_CC_MR_INDEX MrIndex;

 //

 // Type of the event that shall be extended

 // (and optionally logged).

 //

 UINT32 EventType;

} EFI_CC_EVENT_HEADER;

typedef struct {

 //

 // Total size of the event including the Size component,

 // the header and the Event data.

 //

 UINT32 Size;

 EFI_CC_EVENT_HEADER Header;

 UINT8 Event[1];

} EFI_CC_EVENT;

#pragma pack()

EFI_CC_MEASUREMENT_PROTOCOL.MapPcrToMrIndex

Summary

This service provides callers information on TPM PCR to CC measurement register (MR)

mapping.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CC_MAP_PCR_TO_MR_INDEX)(

 IN EFI_CC_MEASUREMENT_PROTOCOL *This,

 IN TCG_PCRINDEX PcrIndex,

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 53

 OUT EFI_CC_MR_INDEX *MrIndex

);

Parameters

This

The protocol interface pointer.

PcrIndex

TPM PCR index.

MrIndex

CC Measurement Register index.

Description

This function provides callers information on TPM PCR to CC measurement register

(MR) mapping.

In the current version, we use the below mapping for TDX:

TPM PCR Index
CC Measurement

Register Index
TDX-measurement register

0 0 MRTD

1, 7 1 RTMR[0]

2~6 2 RTMR[1]

8~15 3 RTMR[2]

Status Code Returned

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARA

METER

One or more of the parameters are incorrect.

EFI_DEVICE_ERROR The command was unsuccessful.

EFI_VOLUME_FULL The extend operation occurred, but the event could not be written to o

ne or more event logs.

EFI_UNSUPPORTE

D

The PE/COFF image type is not supported.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 54

Related Definitions

typedef UINT32 TCG_PCRINDEX;

EFI CC Final Events Table

All events generated after the invocation of GetEventLog SHALL be

stored in an instance of an EFI_CONFIGURATION_TABLE named by the VendorGuid

of EFI_CC_FINAL_EVENTS_TABLE_GUID. The associated table contents SHALL be

referenced by the VendorTable of EFI_CC_FINAL_EVENTS_TABLE.

#define EFI_CC_FINAL_EVENTS_TABLE_GUID \

{0xdd4a4648, 0x2de7, 0x4665, {0x96, 0x4d, 0x21, 0xd9, 0xef, 0x5f, 0xb4

, 0x46}}

typedef struct {

 //

 // The version of this structure. It shall be set to 1.

 //

 UINT64 Version;

 //

 // Number of events recorded after invocation of GetEventLog API

 //

 UINT64 NumberOfEvents;

 //

 // List of events of type CC_EVENT.

 //

 //CC_EVENT Event[1];

} EFI_CC_FINAL_EVENTS_TABLE;

#pragma pack(1)

//

// Crypto Agile Log Entry Format.

// It is similar with TCG_PCR_EVENT2 except MrIndex.

//

typedef struct {

 EFI_CC_MR_INDEX MrIndex;

 UINT32 EventType;

 TPML_DIGEST_VALUES Digests;

 UINT32 EventSize;

 UINT8 Event[1];

} CC_EVENT;

#pragma pack()

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 55

4.3.3 CC-Event Log

TD-Guest Firmware may set up an ACPI table to pass the event-log information. The event log

created by the TD owner contains the hashes to reconstruct the confidential computing (CC)

measurement registers.

Table 4-4: CC-Event-Log, ACPI Table

Field
Byte

Length

Byte

Offset
Description

Header

 Signature 4 0 ‘CCEL’ Signature.

 Length 4 4 Length, in bytes, of the entire Table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 Standard ACPI header

 OEM Table ID 8 16 Standard ACPI header

 OEM Revision 4 24 Standard ACPI header

 Creator ID 4 28 Standard ACPI header

 Creator Revision 4 32 Standard ACPI header

CC Type 1 36

Confidential computing (CC) type.

0: Reserved

1: SEV

2: TDX

CC Subtype 1 37 Confidential computing (CC) type specific sub type.

Reserved 2 38 Reserved. Must be 0.

Log-Area-Minimum

Length (LAML)
8 40

Identifies the minimum length (in bytes) of the

system’s pre-boot-CC-event-log area.

Log-Area-Start

Address (LASA)

8 48

Contains the 64-bit-physical address of the start of

the system's pre-boot-CC-event-log area in QWORD

format. Note: The log area ranges from address

LASA to LASA+(LAML-1).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 56

4.4 Storage-Volume-Key Data

In the TD-execution environment, the storage volume will typically be an encrypted volume.

In that case, by design, the TD-Guest Firmware will need to support quote generation and

attestation to be able to fetch a set of storage-volume key(s) from a remote-key server during

boot and pass the key to the guest kernel. Also by design, the key is stored in the memory,

and the information of the key is passed from TD-Guest Firmware via an ACPI table (proposed

below).

Table 4-5: Storage-Volume-Key-Location-ACPI Table

Field Byte Length Byte Offset Description

Header

 Signature 4 0 ‘SVKL’ Signature.

 Length 4 4 Length, in bytes, of the entire Table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 Standard ACPI header

 OEM Table ID 8 16 Standard ACPI header

 OEM Revision 4 24 Standard ACPI header

 Creator ID 4 28 Standard ACPI header

 Creator Revision 4 32 Standard ACPI header

Key Count (C) 4 36 The count of key structure

Key Structure 16 * C 40 The key structure

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-Guest-Firmware Interfaces

Ref. # 348552-003US 57

Table 4-6: Storage-Volume-Key Structure

Field Byte Length Byte Offset Description

Key Type 2 0

The type of the key.

0: the main storage volume key

1~0xFFFF: reserved.

Key Format 2 2

The format of the key.

0: raw binary.

1~0xFFFF: reserved.

Key Size 4 4 The size of the key in bytes.

Key Address 8 8 The guest-physical address (GPA) of the key. The

address must be in ACPI-Reserved Memory.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 58

5 TD-VMM-Communication Scenarios

5.1 Requesting IPIs

Various TD-VMM-communication scenarios require the TD to request that the host generate

IPIs to TD VCPUs – for example, synchronizing, guest-TD-kernel-managed-IA-page-table

updates. This operation is supported via the TDCALL [TDG.VP.VMCALL <Instruction.WRMSR>]

to the x2APIC ICR MSR.

To perform a cross-VCPU IPI, the guest-TD ILP is designed to request an operation from the

host VMM using this TDCALL (TDG.VP.VMCALL <Instruction.WRMSR>). The VMM can then

inject an interrupt into the guest TD’s RLPs using the posted-interrupt mechanism. This is an

untrusted operation; thus, the TD OS must track its completion and not rely on the host VMM

to faithfully deliver IPIs to all the TD VCPUs.

5.2 TD-memory conversion and memory ballooning

Recall that, by design, guest-physical memory used by a TD is encrypted with a TD-private key

or with a VMM-managed key based on the GPA-shared bit (GPA [47 or 51] based on GPAW). A

TD OS may operate on a fixed, private-GPA space configured by the host VMM. Typically, the

OS manages a physical-page-frame database for state of (guest) physical-memory allocations.

Instead of expanding these PFN databases for large swaths of shared-GPA space, the TD OS

can manage an attribute for the state of physical memory to indicate whether it is encrypted

with the TD-private key or a VMM key. The TD-guest OS can then use

TDG.VP.VMCALL(MapGPA) so that, within the fixed-GPA map, the TD OS can request that the

host VMM map Shared-IO memory aliased as shared memory in that GPA space. So in this

case, the OS can select a page of the private-GPA space and make a

TDG.VP.VMCALL(MapGPA(GPA) with GPA.S=1) to map that GPA using the S=1 alias.

The VMM can then TDH.MEM.RANGE.BLOCK, TDH.MEM.TRACK, and TDH.MEM.SEPT.REMOVE

the affected GPA from the S-EPT mapping; and the VMM can then re-claim the page using

direct-memory stores and map the alias-shared GPA for the TD OS in the shared EPT

(managed by the VMM).

At a later point, the TD OS may need to use the GPA as a private page via the same

TDG.VP.VMCALL(MapGPA) with the GPA specified as a private GPA (GPA.S=0) – the intent is

for this to allow the host VMM to unlink the page from the shared EPT and then perform a

TDH.MEM.PAGE.AUG to set up a pending-EPT mapping for the private GPA. The successful

completion of the TDG.VP.VMCALL flow can be used by the TD guest to

TDG.MEM.PAGE.ACCEPT to re-initialize the page using the TD-private key and mark the S-EPT

mapping as active.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 59

5.3 Paravirtualized IO

The TD guest can use paravirtualized-IO interfaces (for example, using virtio API in KVM)

exposed by the host VMM to use physical and virtual devices on the host platform that are

managed by the VMM. For this scenario, Virtualized IO is typically enumerated over emulated

PCIe (port I/O or MMIO). The TD drivers can help ensure that the data passed via memory

referenced in emulated-MMIO accesses are placed in the TD’s shared-GPA-memory space.

Paravirtualized drivers could pre-allocate a primary-shared buffer during initialization.

Subsequently, drivers can allocate a portion of the shared-GPA-space buffer for each

individual transfer and reclaim the buffer after a specific transfer is completed. In this

scenario, the primary buffer can expand and shrink as needed.

Shared buffers can be deallocated during driver-stack tear-down. This scenario is optimal, as

allocating shared buffer can involve at least one TDG.VP.VMCALL (for mapping shared page)

and TDCALL[TDG.MEM.PAGE.ACCEPT] for mapping back as a private-TD page, as described in

Section 4.3.

The guest TD may employ VMM functions for IO to participate in the emulation of MMIO

accesses from legacy-device drivers. To support this scenario, if the TD OS opts-in, the host

VMM can host the emulated-device-MMIO space in shared-GPA space of the TD OS. Legacy-

device-driver accesses to the emulated region can cause EPT violations that can be mutated

to the TD-#VE handler, which can then support emulation of the MMIO.

The enlightened-TD-OS-#VE handler can emulate the access causing the #VE by decoding the

instruction (within the TD) and invoking the Instruction.IO functions hosted by the VMM using

TDCALL [TDG.VP.VMCALL <Instruction.MMIO>]. From that point on, like the paravirtualized

I/O model, the TD software should ensure that data buffers passed via memory referenced by

parameters in function TDG.VP.VMCALL are placed in the TD’s shared -GPA space.

5.4 TD attestation

Goals of TD Attestation are to enable the TD OS to request a TDREPORT that contains version

information about the Intel TDX module, measurement of the TD, along with a TD-specified

nonce. By design, the TDREPORT is locally MAC’d and used to generate a quote for the TD via

a quoting enclave (QE). The remote verifier can verify the quote to help verify the

trustworthiness of the TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 60

Trust Domain

Host VMM

Host or Dom 0

CPU

MAC Key

TD Quoting Enclave

EVERIFYREPORT
Instruction

Attest Key

Quote
(Signed)

Intel TDX
Module

SEAMREPORT
Instruction

SEAM
Measurements

DataTDREPORT
(SEAM Report

+ TD Info)

TDCS

SEAM
REPORT
(MACed)

TDG.MR.REPORT
Function

TDREPORT
(SEAM Report

+ TD Info)

Figure 5-1: TD-Attestation flow

1. Guest-TD software invokes the TDCALL(TDG.MR.REPORT)-API function.

2. The Intel TDX module uses the SEAMOPS[SEAMREPORT] instruction to create a MAC’d

TDREPORT_STRUCT with the Intel TDX-module measurements from CPU and TD

measurements from the TDCS.

3. Guest-TD software uses the TDCALL(TDG.VP.VMCALL) interface to request the

TDREPORT_STRUCT be converted into a Quote.

4. The TD-Quoting enclave uses ENCL[EVERIFYREPORT2] to verify the TDREPORT_STRUCT.

This allows the Quoting Enclave to help verify the report without requiring direct access to

the CPU’s HMAC key. Once the integrity of the TDREPORT_STRUCT has been verified, the

TD-Quoting Enclave signs the TDREPORT_STRUCT body with an ECDSA-384-signing key.

5. The Quote can then be used by TD software to perform a remote-attestation protocol with

a verifying-remote party.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 61

5.5 Service TD Binding

Service TD is a Trust Domain (TD) VM used to provide a dedicated service/utility. The

service TD extends the TCB of the tenant TD to which the TD provides service. Migration

TD (MigTD) is an example Service TD.

One or more service TDs may be bound to a target TD. Service TD binding relationship has

the following characteristics:

• A service TD has a type (SERVTD_TYPE).

• A service TD may read and/or write certain target TD metadata. Access permission to

target TD metadata fields depends on SERVTD_TYPE.

• Unsolicited service TD binding is done without target TD approval. The target TD

needs not be aware of the binding.

• The target TD’s TDREPORT indicates binding to service TDs.

• The service TD protocol consists of:

o Binding

o Metadata access

• Service TD to target TD binding relationship is many-to-many:

o Multiple service TDs of different types may be bound to a single target TD.

o Multiple target TDs may be bound to a single service TD.

• A service TD may itself be a target TD to other service TDs.

Typical Unsolicited Service TD Binding and Metadata Access Use Case

1. Optional Pre-Binding: During target TD build, before calling

SEAMCALL[TDH.MR.FINALIZE], the host VMM calls SEAMCALL[TDH.SERVTD.PREBIND] to

write the binding fields (SERVTD_HASH etc.) in the target TD’s service TD table.

2. Binding: Sometime later, the host VMM calls SEAMCALL[TDH.SERVTD.BIND] to bind the

service TD. It gets back a binding handle. The VMM communicates the binding handle,

target TD_UUID and other binding parameters to the service TD.

3. Metadata Access: The service TD uses TDCALL[TDG.SERVTD.RD and TDG.SERVTD.WR] to

access target TD metadata.

4. Rebinding: May be required, for example because both the target TD and service TD have

been migrated, or a new service TD instance replaces the original one. The host VMM calls

SEAMCALL[TDH.SERVTD.BIND] to rebind the service TD. It gets back a binding handle.

The VMM communicates the binding handle, target TD_UUID and other binding

parameters to the service TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 62

NOT_BOUND PRE_BOUND

TDH.SERVTD.PREBIND
[OP_STATE in {UNINITIALIZED, INITIALIZED}]

BOUND

TDH.SERVTD.BIND
[SERVTD_INFO_HASH, SERVTD_TYPE

and SERVTD_ATTR match
(per SERVTD_ATTR)]

TDH.SERVTD.BIND

Figure 5-2: Service TD Binding State Machine

For more detail on service TD, please refer to Intel TDX module Specification.

5.6 TD Live Migration

Analogous to legacy VM migration, a cloud-service provider (CSP) may want to

relocate/migrate an executing Trust Domain from a source TDX platform to a destination

TDX platform in the cloud environment. A cloud provider may use TD migration to meet

customer Service Level Agreement (SLA), while balancing cloud platform upgradability,

patching and other serviceability requirements.

Since a TD runs in a CPU mode that protects the confidentiality of its memory contents and its

CPU state from any other platform software, including the hosting Virtual Machine Monitor

(VMM), this primary security objective should be maintained while allowing the TD resource

manager, i.e., the host VMM to migrate TDs across compatible platforms. The TD typically may

be assigned a different HKID (and will be always assigned a different ephemeral key) on the

destination platform chosen to migrate the TD.

The TD being migrated is called the source TD, and the TD created as a result of the migration

is called the destination TD. An extensible TD Migration Policy is associated with a TD that is

used to maintain the TD’s security posture. The TD Migration policy is enforced in a scalable

and extensible manner using a specific type of Service TD called the Migration TD (a.k.a.

MigTD) – which is used to provide services for migrating TDs.

The TD Live Migration process (and the Migration TD) does not depend on any interaction with

the TD guest software operating inside the TD being migrated.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 63

Figure 5 shows the lifecycle of a TD Live Migration process and the corresponding Intel TDX

module APIs involved.

TDX-controlled Blackout period

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

(CANCEL)

TDH.IMPORT.
TRACK

TD may run on source Optional software-controlled downtime
(if cold migration is used)

TDH.EXPORT.
MEM

(MIGRATE)

TDH.EXPORT.
(UN)BLOCKW

TDH.EXPORT.
MEM

(CANCEL)

TDH.EXPORT.
TRACK

TD may run
on destination

Source
Platform

TDCONFIGKEY
TDCONFIGKEY

TDH.MNG.
CREATE

(legacy)

TDH.MNG.
KEY.CONFIG

(legacy)

HKID

per package

TDH.MNG.
ADDCX

(legacy)

TDH.IMPORT.
STATE.

IMMUTABLE

per TDCS page

TDH.EXPORT.
STATE.

IMMUTABLE

TD
Immutable
Config

Target
Platform

ReservationPre-Migration

TDH.IMPORT.
TRACK

(consumes
epoch token

– starts Out-of-
order

TDH.
EXPORT.
PAUSE

token

TDH.EXPORT.
MEM

(MIGRATE)

TDH.IMPORT.
MEM

Iterative pre-copy Commitment

TDH.IMPORT.
STATE.VP

TDH.IMPORT.
STATE.TD

At this point migration is
enabled for this TD and MigTD
is bound to TD for attestation

MigTD
Verifies Mig

Policy via
TDH.SERVTD.

RD

MigTD
Verifies Mig

Policy via
TDG.

SERVTD.
RD

TD Migration
Transport
Session

At this point the TD has been paused –
final state can be migrated and memory
reclaimed - unless migration fails

per TD

per mig. page
per vcpu

per TD

MigTD sets Mig key
TDG.SERVTD.WR

TDH.EXPORT.
STATE.VP

TDH.EXPORT.
STATE.TD

per TD
per TD

TD
memory

state

Mutable
TD VP
State and
TD state

TDH.MNG.
CREATE/

KEY.CONFIG/
ADDCX
(legacy)

TDH.MNG.INIT

Attr.
Migratable

=1

TDH.SERVTD.
[PRE]BIND

(TD,Mig TD)

TDH.SERVTD.
[PRE]BIND
(MigTD, TD)

Stop and copy control state

TDH.EXPORT.
TRACK
(generates
Epoch Token
– ends in order)

TDH.EXPORT.
MEM

Data (TD
Migration
Session
Key)

TDH.IMPORT.
MEM

Post-copy

Pending
TD memory

state

Post-copy

per mig.
page

TD
memory

state

TDH.IMPORT.
MEM

TDH.
EXPORT.
ABORT
(TD
unpaused)

Src
TD

Teardown

TDH.EXPORT.
MEM

Post-copy

token

TDH.
IMPORT.
ABORT

TDH.EXPORT.
(UN)BLOCKW

TDH.EXPORT.
MEM

(CANCEL)

TDH.IMPORT.
MEM

(CANCEL)

per mig. page

TDH.
IMPORT.
COMMIT

TDH.
EXPORT.
RESTORE

TDH.EXPORT.
TRACK

TDH.IMPORT.
TRACK

MigTD sets Mig key
TDG.SERVTD.WR

TDH.MIG.STREAM.
CREATE

TDH.MIG.STREAM.
CREATE

Figure 5-3: TD Migration Lifecycle Overview

5.6.1 Pre-Migration

5.6.1.1 Intel TDX module Enumeration

The host VMM uses SEAMCALL[TDH.SYS.RD] or SEAMCALL[TDH.SYS.RDALL] to enumerate

Intel TDX module functionality and learns from the TDX_FEATURES that the Intel TDX module

supports TD Migration.

5.6.2 Reservation and Session Setup

5.6.2.1 Source Guest TD Build and Execution

The host VMM uses SEAMCALL[TDH.MNG.INIT] function to initialize a TD, with

ATTRIBUTES.MIGRATABLE bit set to 1.

Before a migration session can begin, the VMM on the source platform must use

SEAMCALL[TDH.SERVTD.BIND] to bind a Migration TD to the source TD.

5.6.2.2 Destination Guest TD Initial Build

The host VMM creates a new guest TD by using the SEAMCALL[TDH.MNG.CREATE] function.

This destination TD is set up as a “template” to receive the state of the Source Guest TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 64

The host VMM programs the HKID and HW-generated encryption key assigned to the TD into

the MKTME encryption engines, using the SEAMCALL[TDH.MNG.KEY.CONFIG] function on

each package.

The host VMM can then continue to build the TDCS by adding TDCS pages using the

SEAMCALL[TDH.MNG.ADDCX] interface function.

Once the destination TDCS is built and before TD import can begin, the VMM on the

destination platform must use SEAMCALL[TDH.SERVTD.BIND] to bind a Migration TD to the

destination TD.

5.6.2.3 Migration Session Key Negotiation

The host VMMs in source platform and destination platform notify the MigTD on the source

and destination platform on the migration request.

The MigTDs executing on the source and destination platforms use a TD-quote-based mutual

authentication protocol to create a VMM-transport-agnostic secure session between them,

such as remote-attestation TLS (RA-TLS). Using this secure session, the migration policy can

be evaluated by the MigTDs. After a policy check, the Migration TD transfers the Migration

Session Key (MSK) to the peer. The MSK is an ephemeral AES-256-GCM key used for

confidentiality and integrity of the TD private state exported from the source platform and

imported on the destination platform.

The Service TD binding mechanism supported by the TDX module allows the Migration TD to

access target TD metadata – specifically the Migration Session Key. The MigTD can read/write

the TD metadata using TDCALL[TDG.SERVTD.RD/WR*] guest-side interface functions. The

Migration TDs on both the source and destination platforms must use this interface to

read/write the Migration Session Key (as metadata) to the target TD’s control structures.

After this point, the host VMM can invoke TDX module functions such as

SEAMCALL[TDH.EXPORT.*] to export state at the source platform and

SEAMCALL[TDH.IMPORT.*] to import TD state at the destination platform.

5.6.2.4 TD Global Immutable Metadata (Non-Memory State) Migration

Immutable metadata is the set of TD state variables that are set by

SEAMCALL[TDH.MNG.INIT], may be modified during TD build but are never modified after the

TD’s measurement is finalized using SEAMCALL[TDH.MR.FINALIZE]. Some of these state

variables control how the TD and its memory are migrated. Therefore, the immutable TD

control state is migrated before any of the TD memory state is migrated.

The host VMMs use SEAMCALL[TDH.EXPORT.STATE.IMMUTABLE] to export TD immutable

state at the source platform and use SEAMCALL[TDH.IMPORT.STATE.IMMUTABLE] to import

TD immutable state at the destination platform.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 65

5.6.3 Iterative Pre-Copy of Memory State

5.6.3.1 Migration Considerations for TD Private Memory

Intel TDX helps protect guest TD state in private memory from a malicious VMM, using

MKTME (memory encryption and integrity protection) and the Intel TDX module. The Intel

TDX module performs ephemeral key ID management to enforce the TDX security objectives.

Memory encryption is performed by encryption engines that reside at each memory

controller, with no software access (including the TDX module) to the ephemeral keys. The

memory encryption engine holds a table of encryption keys, in the Key Encryption Table (KET).

The encryption key selected for memory transactions is based on a Host Key Identifier (HKID)

provided with the memory access transaction.

The Intel TDX module API functions enable the host VMM to manage HKID assignment to

guest TDs, configure the memory encryption engines etc., while assuring proper operation to

maintain TDX’s security objectives. The host VMM also does not have access to the TD

encryption keys.

TD Migration does not migrate the HKIDs – a free HKID is assigned to the TD created on the

destination platform to receive migratable assets of the TD from the source platform. All TD

private memory is protected during transport from the source platform to the destination

platform using an intermediate encryption performed using the MSK negotiated via the

Migration TDs on the source and destination platform.

On the destination platform, the memory is encrypted via the destination ephemeral key as it

is imported into the destination platform memory assigned to the destination TD. The import

operation on the destination TDX module verifies and decrypts the TD private data using the

MSK and uses the MKTME engine to encrypt (and integrity protect) while writing it to memory

using the destination TD HKID.

Shared memory assigned to the TD is migrated using legacy mechanisms used by the host

VMM.

5.6.3.2 Migration Considerations for EPT Structures

Guest Physical Address (GPA) space is divided into private and shared sub-spaces, determined

by the SHARED bit of GPA. The CPU translates shared GPAs using the shared EPT, which

resides in host VMM memory, and is directly managed by the host VMM, same as with legacy

VMX. The CPU translates private GPAs using a separate Secure EPT. Secure EPT pages are

encrypted, and integrity protected with the TD’s ephemeral private key.

As there is no guarantee of allocating the same physical memory addresses to the TD being

migrated on the destination platform, the memory used for Secure EPT structures is not

migrated across platforms. Hence, the VMM must invoke the TDX module’s

SEAMCALL[TDH.MEM.SEPT.*] interface functions on the destination platform to re-create the

private GPA mappings on the destination platform (per the assigned HPAs). The Intel TDX

module uses the cryptographically protected exported metadata (generated via

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 66

SEAMCALL[TDH.EXPORT.MEM]) to verify and enforce (via the SEAMCALL[TDH.IMPORT.MEM])

that the Secure EPT security properties from the source platform are recreated correctly as TD

private memory contents are migrated, thus helping prevent remap attacks during migration.

Even though Secure EPT structures are not migrated, the source SEPT structures track the

state of the mappings when a page is exported and then modified by the TD OS in the pre-

copy stage. The TD OS may be allowed to modify such a page and the TDX module enforces

that the modified and previously exported page is re-exported by the source host VMM and

re-imported by the destination host VMM.

5.6.3.3 Post Copy: Destination Guest TD Execution during Memory Migration

In a typical live migration scenario, the TD is expected to resume executing on the destination

platform shortly after it is paused on the source platform. The destination TD can only begin

executing after the pre-copy stage completes and the destination TD control state has been

imported – memory transfer may continue after that in a post-copy stage.

The pre-copy stage imports the working set of memory pages; the host VMM must have

paused the source TD, exported the final mutable control state, and imported the final

mutable control state to the destination TD virtual processors and control state. The Intel

TDX module enforces the security objectives of this Commitment protocol, with the remaining

memory state transferred in the post-copy stage, which also happens via TDX module

interfaces SEAMCALL[TDH.EXPORT.MEM] and SEAMCALL[TDH.IMPORT.MEM].

5.6.4 Source TD Stop and Final Non-Memory State Migration

Following pre-copy of TD private memory, the host VMM must pause the source TD for a brief

period (also called the blackout period) so that the VMM may export the final control state (for

all VCPUs and for the TD overall). The VMM initiates this via SEAMCALL[TDH.EXPORT.PAUSE],

which checks security pre-conditions and helps prevent TD VCPUs from executing anymore. It

then allows export of final (mutable) TD non-memory state.

5.6.4.1 Final Memory State Migration

The host VMMs use SEAMCALL[TDH.EXPORT.MEM] and SEAMCALL[TDH.IMPORT.MEM] to

migrate memory contents during this source (and destination) TD paused state. The TDX

module enforces that all exported state for the source TD must be imported before the

destination TD may run using the commitment protocol described below.

5.6.4.2 TD-Scope and VCPU-Scope Mutable Non-Memory State migration

TD mutable non-memory state is a set of source TD state variables that might have changed

since it was finalized via SEAMCALL[TDH.MR.FINALIZE]. Immutable non-memory state exists

for the TD scope (as part of the TDR and TDCS control structures) and the VCPU scope (as part

of the TDVPS control structure).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 67

Mutable TD state is exported by SEAMCALL[TDH.EXPORT.STATE.TD] (per TD) and

SEAMCALL[TDH.EXPORT.STATE.VP] (per VCPU) and imported by

SEAMCALL[TDH.IMPORT.STATE.TD] and SEAMCALL[TDH.IMPORT.STATE.VP] respectively.

5.6.5 Commitment

The commitment protocol is enforced by the Intel TDX module to help ensure that a host

VMM cannot violate the security objectives of TD Live migration.

This protocol is enforced via the following TDX module interface functions:

• On the source platform, SEAMCALL[TDH.EXPORT.PAUSE] starts the blackout phase of TD

live migration and SEAMCALL[TDH.EXPORT.TRACK] ends the blackout phase of live

migration (and marks the end of the transfer of TD memory pre-copy, mutable TD VP and

mutable TD global control state). SEAMCALL[TDH.EXPORT.TRACK] generates an MSK-

based cryptographically-authenticated start token to allow the destination TD to become

runnable. On the destination platform, SEAMCALL[TDH.IMPORT.TRACK] – which

consumes the cryptographic start token, allows the destination TD to be un-paused.

• In error scenarios, the migration process may be aborted proactively by the host on the

source platform via SEAMCALL[TDH.EXPORT.ABORT] before a start token was generated.

If a start token was already generated (i.e. pre-copy completed), the destination platform

can generate an abort token using SEAMCALL[TDH.IMPORT.ABORT]. This generates an

abort token that may be consumed by SEAMCALL[TDH.EXPORT.ABORT] from the source

TD platform TDX module, to abort the migration process and again allow the source TD to

become runnable.

5.6.6 Post-Copy of Memory State

In some live migration scenarios, the host VMM may stage some memory state transfer to

occur lazily after the destination TD has started execution. In this case, the host VMM will be

required to fetch the required pages as accesses occur by the destination TD – this order of

access is indeterminate and will likely differ from the order in which the host VMM has queued

memory state to be transferred.

In order to support that on-demand model, the order of memory migration during this post-

copy stage is not enforced by TDX. The host VMM may implement multiple migration queues

with multiple priorities for memory state transfer. For example, the host VMM on the source

platform may keep a copy of each encrypted migrated page until it receives a confirmation

from the destination that the page has been successfully imported. If needed, that copy can

be re-sent on a high priority queue. Another option is, instead of holding a copy of exported

pages, to call SEAMCALL[TDH.EXPORT.MEM] again on demand.

Also, to simplify host VMM software for this model, the TDX module interface functions used

for memory import in this post-copy stage return additional informational error codes to

indicate that a stale import was attempted by the host-VMM to account for the case where the

low-latency import operation for a GPA superseded the import from the higher latency import

queue.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5

TD-VMM-Communication Scenarios

Ref. # 348552-003US 68

For more detail on TD Live Migration, please refer to Intel TDX module TD Migration

Specification and Migration TD design guide.

~~ End of document ~~

