intel

Trust Domain Extension (TDX) Migration
TD Design Guide

March 2023

Document Number: 348987-002

I n te I ® Introduction

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Performance varies depending on system configuration. No computer system can
be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your
system manufacturer or retailer.

The products described may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the
latest Intel product specifications and roadmaps

Copies of documents that have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or visit www.intel.com/design/literature.htm.

Intel, the Intel logo, are trademarks of Intel Corporation in the USA and/or other countries.
*Other names and brands may be claimed as the property of others.

© 2023 Intel Corporation. All rights reserved.

Document Number: 348987-002

Introduction

Contents

Lo T 11Tt o T o 6
1.1 2T T = 11 | o 6
1.2 L 1T =T 6
1.3 L1001 T o =4 8
Migration Architectural OVEIrVIEWuiuiiueiisiiiiiir e aeas 9
2.1 TD Migration Orchestrationcuvieiieisieiiii i e e 9
2.2 Keys Used in Migrationuueieiiiiiie i ea s 10
2.3 LT = I I €= o111 o 11
= I =1 =4 g T O A= o T 14
3.1 DESIZN OVEIVIEW ettt e st e et e e e s e s e s s st ne s e anse s 14

3.1.1 MIgTD deSI8N .euuiniiiiiii i 14

3.1.2 MIgTD LayOUL .ovviiiii i 15

3.1.3 7= 2 oo Yo] e 1V 15
3.2 [=] o] oo [0 L1 o 11 16
33 Security ConSIderationuveisiisiii i 16

3.3.1 Type Safe lanNgUAEEivi i e 16
MigTD Mutual AUtheNtiCatioNviuisiiie i s 17
41 Remote Attestation TLS ...iiuiiieiiiii i e 17
4.2 AESTAtioN FLOW . ..uuiii i 18
43 I 1 153 9 T T 19
4.4 Certificate REVOCAtION LiSt. . .uiuiieiiiiiiii it e e e e e eans 20
4.5 (@0 11 o LI 0 ot {1 PP 20
4.6 QIO I 3= oo T A - | - 21
4.7 OID basSed TD QUOTE ..uueutineieieiatesatsne st seeaesansane st ane st aaesassansanernsanneaeannans 21
4.8 SaMPLEe CartifiCate . oevriiii it e 22
4.9 10 2@ T T I A = 24

491 [T =3 I O 0 T 24

49.2 Verify TD QUOTE cuuutiieiiti ittt ae 24
MigTD Migration POLICY ...uuuusieiiteiiii e e 26
5.1 L= I = ey I3/ o = 26
5.2 MigTD Policy Measurementccouiiiiiiiiiiiii i 27
5.3 MigTD Policy Definitionooeveiiiiiii 27

5.3.1 MigTD Policy Propertycooviiiiiiiiiiiiiiiiiii e 27

5.3.2 MigTD POliCY FOMMAt . .eueiieiiteie it e e e e e e eeens 29

533 MigTD Policy EXample ...cuviviiiiiiiiiiiiiiii e 30
MigTD Network ComMMUNICAtIONuiite ettt e e e e s a e sane s rnerneens 35
6.1 I 1Y I 35

6.1.1 VS0ck iNformation.....uvueiiiiiiii 35

6.1.2 VSock data payloadcviiiiiiiiiiii 36
MigTD Cryptography Capabilityo.viieiiiiiiiiiii s 37

Document Number: 348987-002

I n te I ® Introduction

7.1 (0007 0 (o ==Y o 0 Y 37

7.1.1 Cryptography AlgOrithmvieiiiiiii i e 37

7.1.2 TLS Configurationuvueiiiiiiiiiiirn e e e 37

7.2 Random Number Generationcuvieiiiiiniiiiiiii e 38

8 T = 1T UV 1 T V= 39

8.1 Boot Firmware VolUumME (BFV) .uuuiiiiii i i e it e s s e s v iae s s nane e snnnaeeeas 39

8.2 Configuration Firmware Volume (CFV) ...iviiiiiiiiiiiii s s e s eeas 39

9 = Y g 41

9.1 MigTD initialization ...vueieisii i 41

9.2 MigTD Hand-Off BLOCK (HOB) ...ttt e e e e e e e e e neeeas 41

9.3 L= I I =TT [0 17 o 41

9.4 MiIgTD AP Nandling .cuueiiiiiiieiie e e e e e s 41

10 = I T U] =Y g1 o 42

10.1 NON-Secure Boot MOdeuuisiiiiiiii i e 42

10.2 SECUre BOOT MO 1iuiitiiiiitiii s e s 42

10.3 LT = I 2= 11 o 1o ¥ = 43

11 T = D NN 1= =V = - 44

12 Multiple TDS Migration ..u.uiusisesisitisesiisrns e a e raaaeas 45

12.1 Multi TDS Migration....couiuieiiiiiii i 45

12.2 Multi RA-TLS CONNECHIONS ..ttt vttt ea s 45

12.2.1 Multi destination MigT DSuuvreiiiiiiiiiiie i raesaaas 45

12.2.2 Multi SOUrCE MiIgTDS +.uviutiiiitiii i e e eeas 46

Appendix A REFEIENCE Lttt 48
Figures

LT =TT e I N 7 = = o o o 6

Figure 2-1: TD Migration Orchestration FLOWciiuiiiiiiiiii i s e e 9

Figure 2-2: Migration SeSSioN KEYS SEIUP .. .viuuiieiiiiiiiiit it s e e e s e e e s e s e raeaeaness 11

Figure 2-3: Migration TD flOWuiuiiiiiiii 13

Figure 3-T: Migration TD DeSigN ... cuciiueiiiiiitiiiii i e s e s aaaeaas 15

Figure 3-2: Migration TD LayOUL......eiueieieiteiataterestsesaeeasesas st st sesaasaasatesesesaesaeaasssnsane e annsnnss 15

Figure 3-3: Migration TD BOOt FLOWuiuuiieiitiiiie ittt st et e e s s e s e s e e s e e aern e anereaeanens 16

Figure 4-T: MigTD With RA-TLS ..e e e 17

Figure 4-2: MigTD GetQUOTE FLOW ..uviviriiiisiiii i s a s 18

L F =TT i T I I I =T oo] 4 o (U 19

Figure 4-4: MigTD VerifyQUOTE FLOWuuieieiiiie ittt e vt st st s e e s e e s e se e e s e e s e rneanereananens 19

Figure 6-1: VMCALL based communication in MigTDiciiuiiiiiiiiiiiiiiii s 35

Figure 12-1: Multiple TDS Migrationcuiuisiiiiiiiiiiiii s aaaeas 45

Figure 12-2: Multiple Destination Migration TDSuuvueieiisiisiiiiirii i e e 46

Figure 12-3: Multiple Source Migration TDSiuiiuiiiiiiiiiiiii e es 46

Document Number: 348987-002

Introduction I n te I

Tables

Table 4-1: MigTD Certificate STrUCTUIE ...uui e e s s e e aes 20
I oY L= 1 1= 0 @ 1 0 N =] o 21
Table 4-3: RA-TLS OID Field ..uueueiiieiiiiiiieiie ittt e st a e s e e s e s s e e st e s e s e st e s e e s e aans 22
Table 4-4: Open Enclave TLS OID Field ..uuiiriiuiiiiiiiiiinin s s e s 22
I o LT T IR N 1= I N oo LT YA 5/ oY 26
Table 5-2: MigTD PoliCY Property «uue ettt sttt e e et s e e e e s e st st e e e resnes 27
Table 7-1: MigTD Cryptography AlgOrithmo.vieiiiiii e 37
Table 7-2: MigTD TLS CoONfigUIation ..u.uuisivserseiueisisiseisisse st re s 37
Table 8-1: MIigTD POlICY Data . ..uvueieiiiisinseitititsas st e e st s s e st st s e e st s e s e st s s a s ans e raereanes 39
Table 10-1: TD Measurement Registers for MigTD (Non-Secure Boot)ccvviiiiiiiiiiiiiiiiiiiiiinneeas 42
Table 10-2: TD Measurement Registers for MigTD (Secure Boot)c.ccvviiiiiiiiiiiiiini e 43

Document Number: 348987-002

®

I n te I ® Introduction

Introduction

1.1

1.2

Background

Analogous to VM migration, a cloud-service provider may want to relocate/migrate an executing
Trust Domain (TD) from a source Trust Domain Extension (TDX) platform to a destination TDX
platform in the cloud environment. A cloud provider may use TD migration to meet customer
Service Level Agreement (SLA), while balancing cloud platform upgradability, patching and other
serviceability requirements. A TD runs in a CPU mode that protects the confidentiality of its
memory contents and its CPU state from any other platform software, including the hosting
Virtual Machine Monitor (VMM). This primary security objective must be maintained while
allowing the TD resource manager (the host VMM) to migrate TDs across compatible platforms.
As the figure below shows, the TD typically will be assigned a different key (and will be always
assigned a different ephemeral key) on the destination platform chosen to migrate the TD.

Figure 1-1 shows the TD Migration use case.

Source Platform Destination Platform
— o — -
Legacy VM Trust Domain Legacy VM Trust Domain
Applicati Unmodified Applicati Unmodified
ppiications Applications pplications Applications
. Unmodified . Unmodified
Drivers . Drivers .
Drivers Drivers
TDX- TDX-
0S Enlightened oS Enlightened
0s oS
7 t
Guest-Side Guest-Side
Interface Interface
)
o e R o] | e
Interface Interface
host VMM [] Root Mode host VMM [] Root Mode
§ [
Platform (Cores, Caches, Devices etc.) ‘ ‘ Platform (Cores, Caches, Devices etc.) ‘

Figure 1-1: TD Migration

Overview

In this specification, the TD being migrated is called the source TD, and the TD created as a result
of the migration is called the destination TD. An extensible TD Migration Policy is associated
with a TD that is used to maintain the TD's security posture. The TD Migration policy is enforced
in a scalable and extensible manner using a Migration TD (as known as MigTD) — which is used to

Document Number: 348987-002

Introduction

intel

perform common functions for migrating TDs. TD Migration does NOT depend on any interaction
with the TD guest software operating inside the TD being migrated.

TD contents is primarily protected and transferred by Intel TDX module using a Migration
Session Keys (MSKs) used only for a unique Migration session for a TD.

A Migration TD (MigTD) is used to:

1. Evaluate potential migration sources and targets for adherence to the TD Migration Policy.

2. |If approved, securely transfer a Migration Session Key from the source platform to the
destination platform to migrate assets of a specific TD.

The host VMM need bind a MigTD to one (or more TDs) via a new SEAMCALL
[TDH.SERVTD.BIND] or SEAMCALL [TDH.SERVTD.PREBIND]. The host VMM via the Intel TDX
module is responsible for export/import of the TD content. The host VMM and existing untrusted
SW stack responsible for migrating the encrypted TD content.

Since the MigTD is in the TCB of the TD being migrated, a MigTD must be pre-bound to the target
TD being migrated before the target TD measurement is finalized. The MigTD lifecycle does not
have to be coincidental with the target TD. The MigTD may be instantiated when required for Live
Migration, and must be bound to the target TD before Live Migration can begin. MigTD must be
operational until the MSKs has been successfully programmed for the target TD being migrated.

Figure 1-2 shows the TD Migration Architecture.

Source Platform Destination Platform

- == - | =
‘—‘—\ MigTD Trust Domain ‘—‘—\ MigTD Trust Domain
Leg\?a’ . Unmodified Leg\?'al L Unmodified
Wi Applications Migration Applications
Service and Service and
Policy ™ — Policy ”
Enaton Unmodified Enaon Unmodified
Drivers Drivers
Untrusted Untrusted
network network
services TDX- services TDX-
|| TDVF-shim Enlightened Ll TDVF-shim Enlightened
[oS (. 0s
Host-Side Intel TDX Host-Side Intel TDX
Interface Guest-Host Interface Interface Guest-Host Interface
TDX—Aware\ Intel TDX Module TDX—Aware\ | Intel TDX Module
host VMM Running in SEAM Root Mode host VMM = Running in SEAM Root Mode

Platform (Cores, Caches, Devices etc.)

Platform (Cores, Caches, Devices etc.)

Figure 1-1: TD Migration Architecture

The full TD migration can be found at TDX TD Migration specification. This document only

describes the software architecture for Migration TD.

Document Number: 348987-002

intel

1.3

Introduction

Terminology
Term Description

GCM Galois/Counter Mode
GKID Guest Key ID
HKID Host Key ID
HOB Hand-off Block
MigTD Migration TD
MigTD-s Migration TD on source platform
MigTD-d Migration TD on destination platform.
MKTME Multi-Key Total Memory Encryption
MSK Migration Session key
MTK Migration Transport Key
PAMT Physical Address Metadata Table
SEAM Secure Arbitration Module
TCB Trust Computing Base
TD Trust Domain
TDVF Trust Domain Virtual Firmware
TDX Trust Domain Extension
TLS Transport Layer Security
RA-TLS Remote Attestation TLS
TME Total Memory Encryption
VKMT Virtual Key ID Mapping Table

Document Number: 348987-002

i}
Migration Architectural Overview I n te I®

2 Migration Architectural Overview

2.1 TD Migration Orchestration
Figure 2-1 shows the TD Migration Orchestration Flow.

Node B is selected as 70 information refresh
migration destination @ in Orehestator.
for the TD in Node A

MigTD Attestation,

negotiate MTK and
exchange MSK
e B
1 TO-s teardawn -l o TD-d resumes
1
TD-s TD-d
T
MSK is pro w's'w:’!ed Ity -~ VMM-s nolifies MigTD-s fo MSK is provisiohed ""-., - VMM-d nalifies MigTD-d
to TDX modute | S e negotitate migration session fo TDX modute § ""‘-.._h to get ready for migration
-,
... +
: TD Migrati
kernel kvm wgration kernel kvm
Node A Node B

Figure 2-1: TD Migration Orchestration Flow

Assuming a VM orchestrator manages Node A and Node B. The VM orchestrator decides to
migration the TD in Node A to Node B. The Node A is migration source, and the Node B is
migration destination. The component in Node A is named as module-s, where s means source,
and the component in Node B is named as module-d, where d means destination.

The high level TD migration flow is below:

1) The VM orchestrator selects node B as the migration destination.

2) The VMM-d in Node B notifies the MigTD-d to get ready for migration.

3) The VMM-s in Node A notifies the MigTD-s to negotiate the migration session.

4) MigTD-s reads migration session forward key from TDX module as migration encryption key in
source platform. MigTD-d reads migration session backward key from TDX module as migration
encryption key in destination platform.

5) MigTD-s and MigTD-d negotiate with each other, including mutual attestation, Migration Policy

evaluation, negotiate Migration Transport Keys (MTKs) and exchange the Migration Session Keys
(MSKs) - the migration session forward key and migration session backward key.

Document Number: 348987-002

intel

2.2

Migration Architectural Overview

6) MigTD-s writes migration session backward key to TDX module as migration decryption key in
source platform. MigTD-d writes migration session forward key to TDX module as migration
decryption key in destination platform.

7) TD-s in Node A is migrated to TD-d in Node B, with help of VMM and QEMU.

8) TD-s is teardown by the VMM-s. TD-d is resumed by the VMM-d.

9) The migration is done. The orchestrator refreshes the TD information.

Keys used in migration

Two types of keys are used in MigTD.

Migration Transport Keys (MTKs): They are a set of keys generated during MigTD
negotiation between source platform and destination platform. We call MigTD on source
platform as MigTD-s, and MigTD on destination platform as MigTD-d. These keys are used
to protect the communication message between MigTD-s and MigTD-d. If MigTD-s and
MigTD-d use a network Transport Layer Security (TLS) protocol to set up a secure session,
then the MTKs are the TLS session keys.

Migration Session Keys (MSKs): They are a set of AES-256-GCM keys generated by TDX-
Module and exchanged by MigTD. The MSKs are protected by the MTKs during when they
are exchanged. There are two MSKs used in the migration.

* The TDX module on the source platform generates a migration session forward
key for encrypting migration bundles by the source TDX module and decrypting
them by the destination TDX module.

* The TDX module on the destination platform generates a migration session
backward key for encrypting migration bundles by the destination TDX module and
decrypting them by the source TDX module.

Each of the MigTDs on the source and the destination platforms reads the key generated on
their side, known as the migration encryption key, from the TDX module’'s target TD's
metadata, and transfer it on a secure like to its peer MigTD on the other side of the migration
session. The peer MigTD then writes the key, to be used as the migration decryption key, to
the TDX module’s target TD's metadata.

Figure 2-1 shows the Migration Session Keys used in migration setup.

Document Number: 348987-002

Migration Architectural Overview

2.3

intel

Forward Migration Session Key————»

Migration TD Migration TD
[<¢——————Backward Migration Session Key——
f I
. Decryption
Encryption Key
Key
Decryption Encryption
Key Key
Y Y
Migrated TD’s Migrated TD's
Metadata Metadata
(in TDCS) (in TDCS)
TDX Module TDX Module
Source Destination
Platform Platform

MigTD Gener

Figure 2-2: Migration Session Keys Setup

al Flow

A MigTD can be launched by VMM at any time, when VMM starts migration. Once the MigTD
transfers the MSKs to TDX module, the MigTD can be tear down.

See below as a typical flow:

* [MigTD-s/MigTD

-d] are launched by VMM, when VMM starts migration.

* The host VMM binds a [MigTD-s/MigTD-d] to one (or more TDs) via a new SEAMCALL

[TDH.SERVTD.B
parameter for th

* [MigTD-s/MigTD
TLS) protocol.

IND]. It gets back a binding handle. The binding handle will be part of input
e migration information.

-d] build secure channel to each other, e.g. via remote attestation TLS (RA-

+ [MigTD-s/MigTD-d] communicate with each other via network interface, such as a
vsock interface.

+ [MigTD-s/MigTD-d] generate local QUOTE via TDG.VP.VMCALL<GET_QUOTE> and
pass the QUOTE to the peer in the TLS certificate.

+ [MigTD-s/MigTD-d] do mutual authentication, via peer QUOTE attestation.

Document Number: 348987-002

I n te I " Migration Architectural Overview

. Once RA-TLS authentication is done, [MigTD-s/MigTD-d] can derive a set of TLS
session keys as the Migration Transport Keys (MTKSs). Then the secure channel is
set up.

* [MigTD-s/MigTD-d] check the Migration Policy.

* Within the secure session, [MigTD-s/MigTD-d] can check the Migration Policy to see
if the peer is allowed to migrate.

* [MigTD-s/MigTD-d] exchange Migration Session Keys (MSKs)

+ [MigTD-s] reads its own migration session forward key via
TDCALL<TDG.SERVTD.RD(MIG_ENC_KEY)>.

+ [MigTD-d] reads its own migration session backward key via
TDCALL<TDG.SERVTD.RD(MIG_ENC_KEY)>.

+ [MigTD-s/MigTD-d] transfer its own key via the secure channel protected by MTKs.

* [MigTD-s] writes peer's migration session backward key via
TDCALL<TDG.SERVTD.WR(MIG_DEC_KEY)>.

. [MigTD-d] writes peer's migration session forward key via
TDCALL<TDG.SERVTD.WR(MIG_DEC_KEY)>.

+ [MigTD-s/MigTD-d] can be tear down.

Document Number: 348987-002

]
Migration Architectural Overview I n te I@

Figure 2-2 shows the general Migration TD flow.

MigTD Flow

. TDX 3 TDX
VMM MigTD Module VMM MigTD Module
Launch (Mig TO) Launch (Mig FROM)
SEAMCALL(TDH.SERVTD.BIND) SOU rce SEAMCALL(TDH.SERVTD.BIND) DeSt
vsock vsock

RA-TLS (Quote Attestation)

vsock vsock
] Verify Mig Policy 3 Verify Policy
TDCALL(TDG.SERVTD.RD TDCALL(TDG.SERVTD RD
(MIG 'ENC_KEY, Migration Forwafd Key)) (MIG_ENC_KEY, Migration Backwaid Key))
it i S
vsock R vsock

RA-TLS (Negotiate Migration Keys)

vsock vsock
TDCALL(TDG.SERVTD.WR TDCALL(TDG.SERVTD.WR
(MIG_DEC_KEY, Migration Backward Key)) (MIG_DEC_KEY, Migration Forward Key))
——— ————————————

Figure 2-3: Migration TD flow

Care must be taken that a MigTD shall always use TDG.SERVTD.RD to read a fresh MIG_ENC_KEY
from TDX-Module once, after the MigTD setup a secure session with a peer MigTD. This
MIG_ENC_KEY shall be erased immediately after it is sent to the peer MigTD and shall never be
used again in any migration session including current session or other sessions. This rule is for
both source MigTD and destination MigTD.

Document Number: 348987-002

i
I n te I ® MigTD Design Overview

3 MigTD Design Overview

3.1 Design Overview

Migration TD is a lightweight bare-metal service TD. Because MigTD is in TCB, the code in MigTD
should be as minimal as possible.

3.1.1 MigTD design
Figure 3-1 shows the design of MigTD. It includes a shim layer and a core.
e TdShim is a generic shim layer to boot any service TD, as a transient environment.

o TdShim includes a Reset Vector that is the first instruction when a VMM launches a
TD.

e Core is the Migration TD runtime execution environment.

o Crypto and TLS are used to establish a secure communication session. It should
reuse the existing known good crypto library and TLS configuration including
version and cipher suite.

o VSockis away to pass the TLS packet to the VMM and leverage the VMM network
stack to communicate with peer MigTD.

o VMM communication should follow the Guest-Host Communication Interface
(GHCI) specification.

o Quote Attestation service is used for the mutual authentication in Remote-
Attestation TLS.

o Migration Policy is used to evaluate the migration peer according to the predefined
policy.

MigTD Core

Quote

Attest Crypto TLS
M |.g VmmCom Ve

Pollcy GHCI

TdShim

Document Number: 348987-002

]
MigTD Design Overview I n te I@

3.1.2

3.1.3

Figure 3-1: Migration TD Design

MigTD layout

Figure 3-2 shows the build time layout and runtime layout.

The left-hand side shows the build time layout. The Boot Firmware Volume (BFV) include the
TdShim and migration core.

The right-handle side shows the runtime layout. The TdShim should be loaded to the top of 4GB
memory where the reset vector sits. Then the TdShim will relocate the MigTD core to low
memory space and setup x64 long mode environment. This approach is highly recommended
because the top of 4GB is usually mapped to a flash device. Executing code in flash device may
bring some special restriction even in virtualization environment. All rest additional memory
below the top of memory (TOM) can be used as heap, and the stack can be allocated from the
heap. Avoid using the memory below 1MB, because the top of 1TMB is also mapped to legacy
flash ROM.

— 4G
TdShim TdShim
BFV MigTD Core
|:> — TOM
HEAP
MigTD Core
— 1M
Build Time Runtime Time

Figure 3-2: Migration TD Layout

MigTD boot flow
Figure 3-3 shows the Migration TD boot flow.

1. ResetVector in TdShim. The reset vector code should park all application processors (APs)
to a known place and only let bootstrap processor (BSP) to initialize the environment. The
BSP should switch to long mode, setup stack and jump to the TdShim initial program loader
(IPL).

2. IPLin TdShim. When TdShim is launched, it should get the memory information internally,
such as metadata area. Then it accepted the TD memory and set up all required protection
such as data execution prevention (DEP). The final step is to find the MigTD core, load it to
low memory and jump to the MigTD core.

Document Number: 348987-002

intel

MigTD Design Overview

Entrypoint of MigTD Core. The MigTD should initialize the final execution environment
including heap and interrupt vector etc. It should also initialize the vsock driver to prepare
the communication with VMM.

MigTD Core runtime. The MigTD should set up secure communication session with peer
MigTD. MigTD should send and receive the TLS packet via network socket interface, such as
vsock. After the secure session is established, the MigTD-s will generate the Migration
Session key and pass to MigTD-d. Then both MigTD can pass the key to the TDX module.
After that, the MigTD can tear down.

(RUNTIME)
(VMM command) M|gTD Core
Send Network request
Receive Network response Quote o Initialize Heap
Attest Crypto TLS Initalize Interrupt Vector
Intialize vsock
e M Ig VM M ‘ vsock Start Communication
Get memory info E
Accept Memory POllcy m
Setup all Protection
(DEP/ASLR/CET) Td Sh |m o Park AP
Locate/Load MigTD Core Reset Vector Swith to long mode

3.2

Jump to MigTD Core Setup stack

Jump to IPL

Figure 3-3: Migration TD Boot Flow

Reproducibility

A service TD binary should be reproducible. Please refer to “TDX Virtual Firmware Design
Guide” for the reproducible support.

3.3

Security Consideration

MigTD should adopt the Security Consideration in the “"TDX Virtual Firmware Design
Guide”.

3.3.1

Type safe language

The MigTD should consider use type safe language, such as Rust programming language to
eliminate memory safety issue.

Document Number: 348987-002

o
MigTD Mutual Authentication I n te I®

4 MigTD Mutual Authentication

Two MigTDs use mutual authentication to verify each other when they build the secure
communication channel.

4.1 Remote Attestation TLS

The network TLS protocol is a standard to allow two entities create an authenticated secure
session. A typical mutual authentication in TLS requires X.509 certificate provision. However, it is
hard to provision a private key to MigTD. A way to resolve this problem is to use remote
attestation TLS (RA-TLS).

RA-TLS does not require private key or public certificate provision. The MigTD can generate an
ephemeral keypair at runtime and include the public key in the TD report data and TD quote
data. Then the MigTD generates an X.509 certificate at runtime, includes the TD Quote in the
X.509 certificate, and send this TD certificate to peer as the TLS certificate. When the peer MigTD
receives the certificate, it gets the TD Quote, verifies the Quote, then it can trust the public key.
Finally, the peer MigTD can use the public key to verify rest TLS messages.

Figure 4-1 shows the MigTD with RA-TLS.

Remote-Attestation TLS

™
MIgTD Generate
Key Pair

I

(PESIS(Zy) TDX Module

Full TLS Handshake

ClientHello >

servertzlio
[Certificate
-+ C3d
CertificateRequest*
serverHelioDone

|
TD Report Quoting
(PubKey) Enclave

e —
ECEniﬂtale‘ |
TERREYERChang e
CertificateVerify®_ >

[ChangeCipherspec] ™.
Finished -

{ChangeCipherspec]
Finiched

v
TD Quote
(PubKey)

-

® © 6

Application Data “4———» Application Data

Certificate

®' . TD Quote

(PubKey)

- /

Figure 4-1: MigTD with RA-TLS

For more detail of RA-TLS, refer to [Intel RA-TLS] or [Open Enclave RA-TLS].

Document Number: 348987-002

i}
I n te I ® MigTD Mutual Authentication

4.2

Attestation Flow

The MigTD attestation flow is similar to the normal TD attestation flow. Figure 4-2 shows the flow
to get TD Quote in MigTD.

(5) TDG.VP.VMCALL<GetQuote>:TDREPORT
Quoting

Enclave MigTD
©

@

TDREPORT TDCALL[TDG.MR.REPORT]
get_quote(TDREPORT)
@ TDX

Module

SEAMREPORT ‘ SEAMOPS(SEAMREPORT)
@ ENCLU(EVERIFYREPORT2):
REPORTMACSTRUCT T@
MAC Key

pass

Figure 4-2: MigTD GetQuote Flow
With step 1~4, the MigTD gets a TDREPORT for itself. The integrity of TDREPORT is guaranteed
by the REPORTMACSTRUCT, which is MACed with TDX CPU with a unique MAC key. Figure 4-3
shows the TDREPORT structure.

In step 5~6, the MigTD uses the TDG.VP.VMCALL<GetQuote> and try to get the Quote from the
Quoting Enclave (QE).

In step 7~8, the QE verifies the MAC of the TD report with the TDX CPU. This verification is
needed because Quoting is requested from the VMM and is not trusted.

In step 9~10, if the verification passed, then the QE signs the TDREPORT with its attestation key
to generate the TD QUOTE and returns it to the MigTD via the VMM.

Now the MigTD can include the TD Quote in the TLS certificate and send to peer.

Document Number: 348987-002

MigTD Mutual Authentication

intel

TD_REPORT TD_Quote
I TEE_TCB_INFO TD Quote Body Quote Header
Type=TDX TEE_TCB_SVN TEE_TCB_SVN Version
Tl S MRSEAM MRSEAM AK Type
TEE_TCB_INFO_HASH b— | | MRSEAMSIGNER MRSEAMSIGNER TEE Type = TOX
= o | |(SEAMJATTRIBUTES SEAMATTRIBUTES QE Vendor ID
AT TDATTRIBUTES LEzr i
MAG TEE_INFO (TDINFO) XFAM Quote Signature
[| (TD)ATTRIBUTES MRTD
XFAM MRCONFIGID QE Report Certification Data
MESID MROWNER QE Report
MRCONFIGID MROWNERCONFIG QE Report Signature
MROWNER RTMR[0~3] QE Authentication Data
MROWNERGCONFIG QE Certificate Data
L RTMR[0~3] d PCK Cert Chain

Figure 4-3: TD Report and TD Quote structure

Once the MigTD receives the TLS certificate from the peer, it extracts the TD Quote from the TLS
certificate, and verifies integrity of the TD Quote. Figure 4-3 shows the TD Report and Quote.
Please refer to Intel TDX Module v1.5 ABI for detail of TD Report structure. Please refer to Intel
TDX DCAP Quote Generation Library and Quote Verification Library for detail of TD Quote
structure.

Verify
| Verify
MigTD
| Verify
| Verify
Verify TDINFO {MRTD/RTMR}

(Hash in Quote)

Figure 4-4: MigTD VerifyQuote Flow

4.3 Trust Anchor

The Quote is signed by the Attestation Key by the Quoting Enclave (QE). The Attestation Key
Certificate is signed with the Provision Certification Key (PCK) by Provision Certification Enclave

Document Number: 348987-002

i}
I n te I ® MigTD Mutual Authentication

4.4

4.5

(PCE), the PCK certificate is signed with PCK CA Certificate and the PCK CA Certificate is signed
with Intel root CA Certificate. See Figure 4-4. Please refer to Intel® SGX PCK Certificate and
Certificate Revocation List Profile Specification for more detail.

MigTD shall enroll the Intel Root CA certificate. And the Intel Root CA certificate shall be
measured as part of migration policy.

Certificate Revocation List

Besides Root CA certificate, the verification process shall also include the check for the revoked
certificate. See Figure 4-4.

Certificate Structure

The TD Quote Certificate shall be generated as an DER-encoded X.509 v3 format certificate. See
table 4-1.

Table 4-1: MigTD Certificate Structure

Certificate Field

Field Description Required

Version Version of the encoded certificate shall be Mandatory
present and shall be version 3 (value 0x2)

Serial Number Serial number shall be present with a positive Mandatory
integer value.

For example: Serial Number: 1

Signature Algorithm Signature algorithm shall be present. Mandatory

For example: sha384WithRSAEncryption

Issuer Issuer distinguished name shall be specified. Mandatory

For example: “CN=MigTD SDK, O=mbed TLS,

C=Us”
Subject Subject name shall be present and shall Mandatory
Name represent the distinguished name associated

with the certificate.

It shall be same as Issuer.

Validity Certificate may include this attribute. If the Mandatory
validity attribute is present, the value for
notBefore field should be assigned the

generalized 19700101000000Z time value and

Document Number: 348987-002

MigTD Mutual Authentication

4.6

4.7

intel

notAfter field should be assigned the
generalized 99991231235959Z time value.
Subject Public Key Info Device public key and the algorithm shall be Mandatory
present.
For example:
Public Key Algorithm: rsaEncryption
Modulus: ...
Exponent: 65537 (0x10001)
X509v3 Extension: CA: FALSE. Optional
Basic Constraints
X509v3 Extension: Subject Key Identifier Optional
Subject Key Identifier
X509v3 Extension: It should be same as Subject Key Identifier. Optional
Authority Key Identifier
X509v3 Extension: MigTD Quote Certificate indicator Mandatory
Extended Key Usage “1.2.840.113741.1.5.5.1.1" - Intel

TD Report Data

During MigTD attestation, a pair of asymmetric keys will be generated. The public key hash
(SHA384) is treated nonce for TD report data.

OID based TD Quote

The MigTD Quote report is X509v3 Extension OID based data.

MigTD OID Field

Table 4-2: MigTD OID Field

Field

Description

Required

OID: MigTD_quote_report

Quote Report

“1.2.840.113741.1.5.5.1.2" - Intel

Mandatory

Document Number: 348987-002

i}
I n te I ® MigTD Mutual Authentication

OID: EventLog Report Mandatory

MigTD_event_log “1.2.840.113741.1.5.5.1.3" - Intel

NOTE: Current RA-TLS and OpenEnclave are using below fields.

Table 4-3: RA-TLS OID Field

RA-TLS OID Field

Field Description Required

OID: Attestation Report. ias_report Mandatory

ias_response_body_oid
“1.2.840.113741.1337.2" - Intel

OID: ias_root_cert_oid Attestation Report. ias_sign_ca_cert Mandatory

“1.2.840.113741.1337.3" - Intel

OID: ias_leaf_cert_oid Attestation Report. ias_sign_cert Mandatory

“1.2.840.113741.1337.4" - Intel

OID: Attestation Report. ias_report_signature Mandatory
ias_report_signature_oid

“1.2.840.113741.1337.5" - Intel

Table 4-4: Open Enclave TLS OID Field

Open Enclave OID Field

Field Description Required

OID: oe_report Quote Report Mandatory

"1.2.840.113556.10.1.1" - Microsoft

OID: oe_evidence Attestation Report Mandatory

"1.2.840.113556.10.1.2" - Microsoft

4.8 Sample Certificate

A sample structure is shown here assuming a minimum certificate structure. Field names and
structure types match the ASN.1 names in PKCS #1 [RFC8017] and PKCS #7 [RFC2315].

Document Number: 348987-002

MigTD Mutual Authentication

Certificate:
Data:
Versio
Serial
Signat
Issuer:
Validit
Not

n: 3 (Ox2)

Number: 1 (0x1)

ure Algorithm: sha256WithRSAEncryption
CN =127.0.0.1,0 = mbed TLS, C = UK

Yy
Before: Jan 1 00:00:00 2001 GMT

Not After : Dec 31 23:59:59 2030 GMT
Subject: CN = 127.0.0.1, O = mbed TLS, C = UK
Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (3072 bit)
Modulus:

00:a7:f5:93:01:2d:¢c9:d6:c6:11:ca:1c:0e:ab:31:
cf:51:6d:81:f6:8¢:49:bc:49:ee:c2:6d:da:6c:01:
1a:2d:d0:fb:23:f2:¢9:c9:9b:4b:47:47:5b:96:f2:
fa:00:bb:f9:a8:af:7f:73:1f:9d:c9:c7:73:88:3e:
¢1:98:24:87:54:db:8b:43:bb:c1:57:76:9f:a5:d0:
1¢:d6:25:bc:a2:5b:fa:cd:20:ef:bd:bd:c0:13:ac:
74:ef.a8:58:14:33:49:0f:9b:b5:f2:6f:3f:8c:ac:
42:b3:8e:a2:03:6d:7a:dc:77:b6:fc:02:87:d6:cb:
f2:43:99:¢4:75:d9:a6:98:3b:96:2b:aa:c5:3d:3d:

36:92:c5:€5:30:84:78:db:b4:26:83:6a:20:ca:08:
2b:00:c8:49:50:b4:ce:ad:e6:66:79:44:c4:79:40:
51:62:b5:79:60:€8:56:53:88:a3:47:71:5a:49:¢3:

1d:de:31:¢6:2b:96:f8:19:c3:4b:d1:c8:fa:c5:0c:
e4:ce:c3:68:89:4b:b3:64:e6:3e:70:€8:1c:3f:8e:
b2:08:7d:ab:50:9d:8b:f6:1:85:85:eb:06:80:2d:
f8:74:0f:.0e:c2:93:9b:f4:6d:34:3:54:1b:93:27:
be:48:c1:0f.de:49:70:44:2e:ad:05:26:ca:cf:23:
6d:62:7f.72:c6:e3:51:27:be:d5:ee:b5:8d:72:ce:
b6:a7:50:€a:0f:38:99:4e:db:f8:3f.ee:81:€7:11:
5a:b0:70:f4:31:f4:47:88:53:1d:9b:b9:6d:87:68:
71:€0:79:34:bc:da:79:04:f9:fc:9¢:66:22:7b:09:
€4:d4:19:90:cd:2b:0a:f8:64:f1:92:c0:da:0f:d0:
€9:9e:1f:71:2d:fb:56:5¢:53:ab:13:99:e7:36:ff:
26:47:d4:c8:3a:22:75:a6:b7:c8:a8:da:b9:0f.64:

21:d4:e1:0e:c2:76:ce:84:€6:48:5d:9b:3d:7d:08:

d0:4b:b1:fe:60:c4:db:c3:2b:4f

Exponent: 65537 (0x10001)

X509v

3 extensions:

X509v3 Basic Constraints:
CA:FALSE
X509v3 Subject Key Identifier:

EO:F1:C8:11:40:8D:3A:24:C1:9C:FA:B9:31:17:08:60:2E:E3:2A:1A

X509v3 Authority Key Identifier:

keyid:EO:F1:C8:11:40:8D:3A:24:C1:9C:FA:B9:31:17:08:60:2E:E3:2A: 1A

1.2.840.113741.1337.2:

re

port

intel

Document Number: 348987-002

intel

1.2.840.113741.1337.3:
cacert

1.2.840.113741.1337.4:
signed

1.2.840.113741.1337.5:

Signature Algorithm: sha256WithRSAEncryption

33:8d:62:27:78:0c:f8:4c:24:6f:11:37:5f.54:fd:3e:8d:c4:
93:a9:31:ff:0e:f8:f9:88:6¢:92:e2:b2:€8:d3:53:26:bd:b8:
03:fc:15:e6:8f:55:€4:7a:06:77:18:87:5d:57:dc:69:dd:e8:

45:5a:db:22:5b:73:ab:e8:b1:0c:b3:4c:00:d5:07:22:28:cb:

7b:7¢:87:19:5f:bc:9d:c5:28:b6:ac:e9:9e:c1:21:54:51:bc:
86:d0:b2:1a:41:9c:af:52:67:cc:4a:d7:3a:c1:c0:74:b8:68:
bf:22:bf:32:2e:72:46:97:ba:ad:f8:77:25:a4:3e:f9:f9:49:

79:70:2d:a4:16:20:b1:f2:34:d9:90:0e:7b:e2:84:40:b2:99:

38:ce:40:4e:fc:94:1d:70:f5:93:93:a5:fa:26:42:7b:df.08:
cf:de:3e:ca:b8:8f:ba:61:58:00:57:81:60:20:96:29:32:35:
b3:19:e6:6b:e3:40:fc:02:04:97:6¢:64:6¢:7¢C:b6:95:48:24:
a2:5a:70:0d:1f:a9:ba:d9:97:92:b3:9b:e7:46:a3:39:bf:76:
d4:e6:85:62:¢d:f2:86:49:b1:c0:04:db:a5:de:9d:da:68:59:
32:33:17:ff:94:78:77:ea:dd:f0:3f:45:d2:97:e1:cf:5b:58:
23:1e:6a:25:fc:ce:0e:89:d0:31:1b:f9:59:1a:34:4e:8a:bb:
57:2f:99:ec:f3:b2:41:ec:a2:58:60:63:0b:64:06:4b:51:5b:
4c:2f:fe:47:92:70:2d:4¢:b2:d8:31:31:9d:5b:33:52:15:96:
6f:fb:4e:6e:f5:00:39:07:f1:90:88:fd:d5:7a:71:a3:fc:cf:
15:ff:18:0c:15:0f:46:c6:4c:9a:dc:31:ce:7¢:5¢:81:19:91:
b5:53:22:d1:09:5d:d1:f2:9b:46:9a:0f:b7:7d:cb:a0:6c:fc:
€9:75:72:1d:df:35:f5:f7:2e:64:3¢:75:5d:8c:ce:1d:18:98:
95:f7:30:96:57:c1

4.9 TD Quote API

4.9.1 Get TD Quote

MigTD Mutual Authentication

In MigTD mutual authentication, the RA-TLS need get the TD Quote and put it

OID:MigTD_quote_report and create a RA-TLS certificate around it.

4.9.2 Verify TD Quote

In MigTD mutual authentication, the peer will get the RA-TLS certificate and verify the integrity of
the TD Quote. If the integrity verification fails, the TLS will be terminated.

NOTE: The MigTD policy verification is irrelevant in TD Quote attestation. MigTD policy
verification will be the next step after MigTD mutual authentication. The migration session key
(MSK) is passed after the MigTD policy verification.

Document Number: 348987-002

]
MigTD Mutual Authentication I n te I®

Document Number: 348987-002

intel

MigTD Migration Policy

5 MigTD Migration Policy

The MigTD need a set of migration policy to determine if it is allowed to migrate a TD from a
source platform to a destination platform.

5.1 MigTD Policy Type
In general, there might be multiple types of policy:
Table 5-1: MigTD Policy Type
Type Policy Definition Example MigTD Action
Owner
TDX Module Policy | Intel TDX Module TD Global Metadata Field: MigTD
(Required) Specification optional
On export: MIG_VERSION is between checks it to
[MlN_EXPORT_VERSlON, detect error
MAX_EXPORT_VERSION] earlier.
On import: MIG_VERSION is between Codeis
[MlN_lMPORT_VERSlON, extended to
MAX_IMPORT_VERSION] MRTD or
RTMR[1] (See
TDX_Module’s MAJOR_VERSION/ below).
MINOR_VERSION is compatibility.
TD’s ATTRIBUTES/XFAM/CPUID is
compatible.
Reference: TDX Module Migration
Specification.
MigTD Default CsP MigTD Design | MigTD is compatible. (SVN, MRTD, etc.) MigTD checks
Policy Guide the migration
(Recommended) Certificate is valid and not expired. (Root policy.
CA certificate, certificate revocation list)
Policy Data is
extended to
RTMR[2]. (See
below).
MigTD Extension CspP CSP Extension. | CSP Extension. Out of scope of this CSP Extension.

Policy (Optional)

Out of scope
of this
document.

document.

Out of scope
of this
document.

Document Number: 348987-002

MigTD Migration Policy

5.2

5.3

5.3.1

MigTD Policy Measurement

intel

A MigTD should design the policy in an extensible way that the CSP/Solution vendor may add
their own policy. The policy could be:

e Code - executed by a common policy engine to evaluate

o

The code (a statically linked library or a dynamic loaded module) could be part of
MigTD Core, which is extended to MRTD in non-SecureBoot mode or RTMR[1] in
Secure Boot Mode. See more details about these two modes in Chapter 10.

If the MigTD checks the “TDX Module Policy” to detect the error earlier, then this
check can be done in the code, and then there is no need to define it as policy data.

e Data - consumed by a common policy module.

o

The data could be provisioned later in Configuration Firmware Volume (CFV) of the
MigTD, which is extended to RTMR[2].

The MigTD includes the “MigTD Default Policy” in CFV, so that it can be easily
updated. For example, the TCB SVN or QE certificate expired date. The trust anchor
“Intel Root CA Cert” and Certificate Revocation List (CRL) shall also be included in
CFV as part of migration policy.

MigTD Policy Definition

The typical MigTD policy is that the TCBs and hardware are newer than the baseline date, which
can be evaluated with TDX Quote attestation. Figure 4-3 shows the TDX Quote and TD Report

structure.

MigTD Policy Property

This document defines below default policy properties.

Table 5-2: MigTD Policy Property

Family Group Name Property Name Type Comment
Name
MigTD TEE_TCB_INFO TEE_TCB_SVN.SEAM Integer | Intel TDX module
(The integrity is SVN. (UINT16)
verified with TD
Quote) MRSEAM String Measurement of the
Intel TDX module.
(48 Bytes Hash)
MRSIGNERSEAM String Measurement of
TDX module signer if
valid. (48 Bytes
Hash)

Document Number: 348987-002

I n te I ® MigTD Migration Policy

ATTRIBUTES Integer | Additional
configuration
ATTRIBUTES if valid.

(UINT64)
TDINFO (The ATTRIBUTES Integer | TD's Attributes.
integrity is (UINT64)
verified with TD
Quote) XFAM Integer | TD's XFAM. (UINT64)
MRTD String Measurement of the

initial contents of
the TD. (48 Bytes
Hash)

MRCONFIGID String Software-defined ID
for non-owner-
defined
configuration of the
guest TD. (48 Bytes
Hash)

MROWNER String Software-defined ID
for the guest TD’s
owner. (48 Bytes
Hash)

MROWNERCONFIG String Software-defined ID
for owner-defined
configuration of the
guest TD. (48 Bytes
Hash)

RTMRO String Runtime extendable
measurement
register O. (48 Bytes
Hash)

RTMR1 String Runtime extendable
measurement
register 1. (48 Bytes
Hash)

RTMR2 String Runtime extendable
measurement
register 2. (48 Bytes
Hash)

RTMR3 String Runtime extendable
measurement
register 3. (48 Bytes
Hash)

Document Number: 348987-002

MigTD Migration Policy

intel

EventLog (The Digest.TdShim String Digest for TDShim.

integrity of (48 Bytes Hash)

“Digest” is

verified with Digest.MigTdCore String Digest for MigTD

RTMR. The Core. (48 Bytes

integrity of Hash)

“Data” is verified

with “Digest”) Digest.SecureBootKey String Digest for
SecureBootKey. (48
Bytes Hash)

Digest.MigTdPolicy String Digest for
MigTdPolicy.
(This field is only
valid with “self”
string to indicate
that the MigTdPolicy
from source and
destination must be
same.)
Data.MigTdCoreSvn Integer | MigTD Core’s SVN.

(UINT64)

QE Quote (The PckCert.ExpiredTime String Expired time for the
integrity is PCK certificate.
verified with TD
Quote) AttestationKeyCert. String Expired time for the

ExpiredTime Attestation Key
certificate.
5.3.2 MigTD Policy Format

MigTD should use the industry standard for the policy data format - JSON.

"id": <GUID>,
<Family-Name>: {
<Group-Name>: {
<Property-Name>: {
"operation": <Operation-Name>,
"reference": <Reference-Value>

}1
h

Document Number: 348987-002

5.3.3

5.3.3.1

tel.

,

MigTD Migration Policy

}
Property Type Operation- Reference-Value type Comment
Name
Integer “equal”, Integer value Not sure if we want to
“greater-or- support “greater”, “less”,
equal”, “less-or-equal”, or
“subset” “superset”

String “equal” String value

String “equal” “self” Used to ensure two
MigTDs have same data.

String “in-range” “<integer>..<integer>" The property shall be
greater-or-equal than the
begin value, and less than
the end value.

String “in-time-range” | “<integer>..<integer>" The property time shall be
within the time range. The
value in the time range is
UNIX time.

(Unit time is the number of
seconds that have elapsed
since the UNIX epoch,
minus leap seconds; the
UNIX epoch is 00:00:00
UTC on 1 January 1970.)

MigTD Policy Example

Sample Policy in non-SecureBoot Mode

In this mode, we cannot know the SVN of the MigTDCore. We use policy to indicate the MigTD

must be same.

Document Number: 348987-002

1]
MigTD Migration Policy I n te I ®

Tid™ TXXXXXXXK=XXXK=XXXK=XXXK-XXXXXXKXXXXXXK",
"MigTD": {
"TEE_TCB_INFO": {

"TEE_TCB_SVN.SEAM": {
"operation": “greater-or-equal”,
"reference": “self”

h

"MRSEAM": {
"operation": “equal”,
"reference": “self”

h

"MRSIGNERSEAM": {
"operation"; “equal”,
"reference": “self”

h

"ATTRIBUTES": {
"operation": “equal”,
"reference": “self”

}

h

"TDINFO": {

"ATTRIBUTES": {
"operation"; “equal”,
"reference": “self”

h

"XFAM": {
"operation": “equal”,
"reference": “self”

h

"MRTD": {
"operation": “equal”,
"reference": “self”

h

"MRCONFIGID": {
"operation": “equal”,
"reference": “self”

h

"MROWNER": {
"operation": “equal”,
"reference": “self”

h

"MROWNERCONFIG": {
"operation": “equal”,
"reference": “self”

Document Number: 348987-002

i
I n te I ® MigTD Migration Policy

b

// use RTMR

"RTMRO": {
"operation": “equal”,
"reference": “self”

b

"RTMR1": {
"operation": “equal”,
"reference": “self”

b

"RTMR2": {
"operation": “equal”,
"reference": “self”

h

"RTMR3": {
"operation": “equal”,
"reference": “self”

}

}
}
}
5.3.3.2 Sample Policy in Secure Boot Mode

In this mode, we can know the SVN of the MigTDCore. We use policy to indicate a set of MigTD
that the SVN in a fixed range.

{

"id™: XK= XXX X=XXXK=XXXK=XXXXXXXXXXKK"
"MigTd": {
"TEE_TCB_INFO" {
"TEE_TCB_SVN.SEAM": {
"operation": “greater-or-equal”,
"reference"; “self”

h

"MRSEAM": {
"operation": “equal”,
"reference"; “self”

h

"MRSIGNERSEAM": {
"operation": “equal”,

"reference": “self”

h
"ATTRIBUTES": {

Document Number: 348987-002

MigTD Migration Policy

}l

"operation"; “equal”,
"reference": “self”

h

"TDINFO": {

}l

"ATTRIBUTES": {
"operation"; “equal”,
"reference™ “self”

h

"XFAM": {

"operation"; “equal”,
"reference™: “self”

h

"MRTD": {
"operation": “equal”,
"reference": “self”

h

"MRCONFIGID": {
"operation": “equal”,
"reference": “self”

h

"MROWNER": {
"operation": “equal”,
"reference": “self”

h

"MROWNERCONFIG": {
"operation": “equal”,
"reference": “self”

h

"EventLog™: {

// Do not use RTMR, but SVN in event log

// Below policy means and SVN in [13, 18).

"Digest.TdShim": {
"operation": “equal”,
"reference™: “self”

h

"Digest.SecureBootKey": {
"operation": “equal”,
"reference™: “self”

h
"Digest.MigTdPolicy": {

intel

Document Number: 348987-002

intel

"operation"; “equal”,
"reference": “self”

h
"Digest.MigTdCoreSvn": {
"operation": “in-range”,
"reference": “13..18"
h
}
}

}

MigTD Migration Policy

Document Number: 348987-002

]
MigTD Network Communication I n te I@

6

MigTD Network Communication

6.1

6.1.1

Two MigTD need communicate with each other to establish a secure session. Because the MigTD
is in TCB, it is not recommended to include a full TCP/IP network stack in a MigTD. Instead, the
MigTD should use the network stack in the untrusted VMM host environment.

TDVMCALL

The MigTD-s may use TDG.VP.VMCALL<Service.MigTD.Send> and
TDG.VP.VMCALL<Service.MigTD.Receive> to communicate the VMM host environment and
pass the MigTD-to-MigTD communication packet (such as TLS packet). The VMM on the source
platform need pass the communication packet to the VMM on destination platform. Then the
VMM on the destination platform can return the packet to the MigTD-d. When MigTD-d finishes
processing the input packet, MigTD-d can return the response back to MigTD-s by using the
same mechanism. Figure 6-1 shows the flow.

MigTD Agent Agent MigTD
TLS Packet Socket Socket TLS Packet
VMCl.ALL VNICIALL
VMM VMM

Figure 6-1: VMCALL based communication in MigTD

VSock information

During MigTD launch, the VMM can pass the MIGTD_STREAM_SOCKET_INFO HOB to the MigTD
to allow MigTD to communicate with the agent.

The context ID (CID) of the VMM is 2 - Well-known CID for the host. The context ID (CID) of the
MigTD can be retrieved from MIGTD_STREAM_SOCKET_INFO HOB. The VMM or the MigTD can
be client or server. The server listening port can be found in the MIGTD_STREAM_SOCKET_INFO
HOB.

Document Number: 348987-002

i
I n te I " MigTD Network Communication

6.1.2 VSock data payload

The MigTD should put the TLS packet to the VMCALL-vsock data payload.

Document Number: 348987-002

MigTD Cryptography Capability

7

intel

MigTD Cryptography Capability

7.1

7.1.1

7.1.2

MigTD needs to have cryptography for key negotiation.

Cryptography

Cryptography Algorithm

Table 7-1: MigTD Cryptography Algorithm

Cryptography Options Recommendation
Digital Signature RSA, ECDSA ECDSA-NIST_P384
Key Exchange ECDHE ECDHE-secp384r1
AEAD AES-GCM, Chacha20-Poly1305 AES-256-GCM
Hash SHA-2 SHA384

TLS Configuration

Table 7-2: MigTD TLS Configuration

TLS Options Recommendation
Configuratio

n

Version 1.2,1.3 1.3

Cipher Suite | V1.3 V1.3

TLS_AES_256_GCM_SHA384
TLS_AES_128 GCM_SHA256

TLS_CHACHA20_POLY1305_SHA256

V1.2

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA38

4

TLS_AES_256_GCM_SHA3
84

Document Number: 348987-002

i
I n te I " MigTD Cryptography Capability

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA
384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA
256

7.2 Random Number Generation

The MigTD should use Intel instruction RDSEED/RDRAND to get random number.

Document Number: 348987-002

|
MigTD Binary Image I n te I®

8

MigTD Binary Image

8.1

8.2

MigTD is a customized tiny TDVF.

Boot Firmware Volume (BFV)

The MigTD includes one Firmware Volumes (FV) - Boot Firmware Volume. The format of FV is
defined in Pl specification.

The Boot Firmware Volume includes all component required during boot.

The file system GUID must be EFI_FIRMWARE_FILE_SYSTEM2_GUID or
EFI_FIRMWARE_FILE_SYSTEM3_GUID, which is defined in PI specification.

1) TD Shim

a) ResetVector - this component provides the entrypoint for MigTD, switch to long
mode, and jumps to the Shimlpl. The FFS GUID must be

EFI_FFS_VOLUME_TOP_FILE_GUID, which is defined in Pl specification.

b) Shimlpl - This component prepares the required parameter for MigTDCore and jump
to the MigTDCore. Module type is EFI_FV_FILETYPE_SECURITY_CORE, which

is defined in Pl specification.

2) MigTDCore — The main MigTD module, which finishes all its work described in chapter 2 then
tears down itself. MigTD core includes key exchange cryptography capability and networking

capability via VMM interface. File type is EFI_FV_FILETYPE_DXE_CORE, which is

defined in Pl specification.

The BFV may include an initial static page table to assist the ResetVector switch from 32-bit
mode to 64-bit mode.

Configuration Firmware Volume (CFV)
MigTD includes a Configuration Firmware Volume (CFV) to hold the migration policy data.

The file system GUID shall be EFI_FIRMWARE_FILE_SYSTEM2_GUID or
EFI_FIRMWARE_FILE_SYSTEM3_GUID, which is defined in Pl specification, or

EFI_SYSTEM_NV_DATA_FV_GUID, which is defined in
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/System
NvDataGuid.h.

Table 8-1: MigTD Policy Data

Document Number: 348987-002

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/SystemNvDataGuid.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/SystemNvDataGuid.h

intel

MigTD Binary Image

Item Description Measurement

MigTD Policy JSON file RTMR[2]

Root CA Cert One X.509 certificate. RTMR[2]

(Trust Anchor)

Certificate One Certificate Revocation List. RTMR[2]

Revocation List

Secure Boot Key | One secure boot public key. RTMRI[O]
(only applicable for SecureBootMode)

Document Number: 348987-002

o
MigTD Launch I n te I®

9

MigTD Launch

9.1

9.2

9.4

MigTD launch is similar to TDVF launch.

MigTD initialization

The MigTD initialization is the same as TDVF initialization flow, and starts from 32-bit protected
mode with paging disabled, then switch to 64-bit long mode.

MigTD Hand-Off Block (HOB)

The TD HOB list is used to pass the information from VMM to TDVF. The HOB format is defined in
Pl specification. If the TD HOB is used, it must be extended to RTMR register.

MigTD should ignore the TD HOB passed from VMM. The TD memory information should be
indicated by MigTD in the metadata area.

After launch, the MigTD should call TDG.VP.VMCALL <Service.MigTD.WaitForRequest> to get
the new migration information.

The MigTD could be transient or persistent, the MigTD should use TDG.VP.VMCALL

<Service.MigTP.ReportStatus> to report the migration status, after it programs the MSK to the
TDX module.

MigTD teardown

MigTD can teardown itself after the migration is done with a special TDG.VP.VMCALL
<Service.MigTD.Shutdown>.

MigTD is only launched when the VMM starts to migrate.

MigTD AP handling

For simplicity, a MigTD may choose to only support one processor.

Document Number: 348987-002

intel

10

MigTD Measurement

10.1

10.2

MigTD measurement is same as a normal TDVF.

Non-Secure Boot Mode

Usually, TD-Shim is treated as firmware code and extended to MRTD. The MigTD Core is treated
as OS code and extended to RTMR[1]. The MigTD Policy is treated as application code/config and
extended to RTMR[2]. See table 10-1.

However, if we choose this approach, there is no way to know a secure version number (SVN) of a
MigTD. If we want to allow a MigTD to support a different peer MigTD identified with SVN, then
we need a different way — Secure Boot Mode.

Table 10-1: TD Measurement Registers for MigTD (Non-Secure Boot)

MigTD Measurement

Typical Usage Register | Event | Extended by Content
Log
Firmware Code MRTD NO VMM: SEAMCALL TD-Shim

[TDH.MR.EXTEND]

Firmware Config | RTMR[0] | YES TD-Shim: TDCALL N/A
[TDG.MR.RTMR.EXTEND]
OS code / RTMR[1] | YES TD-Shim: TDCALL MigTD Core
Config [TDG.MR.RTMR.EXTEND]
APP code/ RTMR [2] | YES MigTD Core: TDCALL MigTD Policy (Including
Config [TDG.MR.RTMR.EXTEND] | JSON style policy, Root CA
Certand CRL)

Secure Boot Mode

In Secure Boot Mode, only TD-Shim is extended to MRTD. TD-Shim can follow secure boot policy
to verify the signature of MigTD and its SVN. The secure boot key is treated as firmware config
and extended to RTMR[0]. The MigTD Core and its SVN are treated as OS code and config. They
are extended to RTMR[1]. The MigTD policy is still treated as APP config and extended to
RTMR[2]. See table 10-2.

With this approach, the verifier can get the MigTD core SVN. If TD-Shim and secure boot key are
same and MigTD Core and SVN are updated, the MigTD can verify peer by using the SVN.

Document Number: 348987-002

o
MigTD Measurement I n te I@

10.3

Table 10-2: TD Measurement Registers for MigTD (Secure Boot)

Typical Usage Register | Event | Extended by Content
Log
Firmware Code MRTD NO VMM: SEAMCALL TD-Shim

[TDH.MR.EXTEND]

Firmware Config | RTMR[0] | YES TD-Shim: TDCALL Secure Boot Key
[TDG.MR.RTMR.EXTEND]

OS code / RTMR[1] | YES TD-Shim: TDCALL MigTD Core, MigTdCore

Config [TDG.MR.RTMR.EXTEND] | SVN

APP code/ RTMR[2] | YES MigTD Core: TDCALL MigTD Policy (Including

Config [TDG.MR.RTMR.EXTEND] | JSON style policy, Root CA
Certand CRL)

MigTD Binding

MigTD should be bound with the target TD to be migrated. If VMM chooses to keep MigTD alive,
the VMM can launch the MigTD at first then use of SEAMCALL[TDH.SERVTD.BIND] to bind the
target TD. Then the VMM gets the TargetTD_UUID and BindingHandle and passes them to
MigTD in MIGTD_MIGRATION_INFORMATION.

If VMM chooses to launch MigTD when it is required, then the VMM can use
SEAMCALL[TDH.SERVTD.PREBIND] to prebind the target TD. The VMM shall calculate the
MigTD’s TDINFO_STRUCT then SERVTD_INFO_HASH. The SERVTD_INFO_HASH shall be input as
parameter during prebind.

Document Number: 348987-002

i}
I n te I ® MigTD Metadata

11 MigTD Metadata

MigTD uses the same metadata defined as required for TDVF. BFV and payload are required to
indicate the MigTD image. CFV might be required, if CFV based policy is supported. The temp
memory (stack / heap) and permanent memory are required to indicate the memory to be used
by MigTD. TD HOB is NOT required in the MigTD. VMM shall follow the entries in TDVF descriptor
to create the MigTD memory one by one.

Document Number: 348987-002

m
Multiple TDs Migration I n te I®

12

Multiple TDs Migration

12.1

12.2

12.2.1

Multi TDs Migration

A VMM might need migration multiple TDs at one time. If one source MigTD and one destination
MigTD set up the RA-TLS connection with mutual authentication, this connection can be used to
migrate multiple TDs. See figure 12-1.

This model should be supported by default, because there is no need to set up multiple RA-TLS
sessions if source MigTD and destination MigTD are same.

Source . - Destination
MigTD . RA-TLS MigTD
T~ i+ TD-1: Mig Key
TD-1 Mig Pol ’

/‘_-_““‘--.,_____/ é
T T— i TD-2: Mig Key

TD-2 Mig Pol

—

TD-n Mig Pol
e

TD-n : Mig Key |

Figure 12-1: Multiple TDs Migration

Multi RA-TLS connections

One migration TD might support multiple RA-TLS connection sessions to or from different
migration TDs.

Multi destination MigTDs

In some case, a VMM might need migration multiple TDs to different platforms. As such, one
source MigTD need setup connection to multiple destination MigTDs. See figure 12-2.

Document Number: 348987-002

intel

Source
MigTD
TD-A1 Mig Pol
TD-A2 Mig Pol
TD-A3 Mig Pol
TD-B1 Mig Pol
TD-C1 Mig Pol

TD-C2 Mig Pal

TD-A1 : Mig Key
TD-AZ : Mig Key
TD-A3 : Mig Key

RA-TLS-C
TD-C1 : Mig Key

TD-C2 : Mig Key

Multiple TDs Migration

Destination
MigTD-A

Destination
MigTD-B

Destination
MigTD-C

Figure 12-2: Multiple Destination Migration TDs

12.2.2

Multi source MigTDs

Similar to above case, a VMM might launch a destination and migration TD from different
platforms. As such, one destination MigTD need wait for the connection from multiple source

MigTDs. See figure 12-3.

w
o)
E
3
®
=
@
_|
T
o

TD-a1 Mig Pol
TD-a2 Mig Pol

TD-a3 Mig Pol

Source MigTD-b
TD-b1 Mig Pol

TD-c1 Mig Pol

TD-c2 Mig Fol

w
(o]
c
o
1]
=
[(a]
—
2
(9]

TD-a1 : Mig Key
TD-a2 : Mig Key
TD-a3 : Mig Key

TD-c1 : Mig Key

TD-c2 : Mig Key

Mmoo -

Destination
MigTD

Figure 12-3: Multiple Source Migration TDs

Document Number: 348987-002

]
Multiple TDs Migration I n te I®

Document Number: 348987-002

i
I n te I ® Multiple TDs Migration

Appendix A Reference

[TDVF] Intel TDX Virtual Firmware Design Guide,
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[GHCI] Guest Hypervisor Communication Interface v1.5,
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[TDX Module EAS] Intel TDX Module v1.5 Base Architecture, Intel TDX Module v1.5 ABI,
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[TDX Migration] Intel TDX Module v1.5 TD Migration Architecture,
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-
extensions.html

[Intel Attestation] Intel Attestation Service,
https://api.portal.trustedservices.intel.com/documentation

[Intel PCK Service] Intel Provisioning Certificate Service,
https://api.portal.trustedservices.intel.com/provisioning-certification

[Intel PCK CRL] Intel® SGX PCK Certificate and Certificate Revocation Llst Profile Specification,

[Intel SGX DCAP Quote Lib] Intel® SGX Data Center Attestation Primitive: ECDSA Quote Library
API, https://download.01.org/intel-sgx/latest/dcap-
latest/linux/docs/Intel SGX_ECDSA_QuotelibReference DCAP_API.pdf

[Intel TDX DCAP Quote Lib] Intel® Trust Domain Extensions Data Center Attestation Primitives
(Intel® TDX DCAP): Quote Generation Library and Quote Verification Library,
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/TDX_Quoting_Library APl.pdf

[Intel SGX DCAP Grace Periods] Quote Verification Grace Periods with Intel® Software Guard
Extensions Data Center Attestation Primitive,

[JSON] JSON data model, https://www.json.org/json-en.html

[CBOR] Concise Binary Object Representation, http://cbor.io/

[Intel RA-TLS] Intel Remote Attestation TLS, https://github.com/cloud-security-research/sgx-ra-
tls

[Open Enclave RA-TLS] open enclave Remote Attestation TLS,
https://github.com/openenclave/openenclave/tree/master/samples/attested_tls,
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/att
ester.h,

Document Number: 348987-002

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://api.portal.trustedservices.intel.com/documentation
https://api.portal.trustedservices.intel.com/provisioning-certification
https://api.trustedservices.intel.com/documents/Intel_SGX_PCK_Certificate_CRL_Spec-1.5.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_SGX_ECDSA_QuoteLibReference_DCAP_API.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_SGX_ECDSA_QuoteLibReference_DCAP_API.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/TDX_Quoting_Library_API.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/grace-periods-for-intel-sgx-dcap.html
https://www.intel.com/content/www/us/en/developer/articles/technical/grace-periods-for-intel-sgx-dcap.html
https://www.json.org/json-en.html
https://github.com/cloud-security-research/sgx-ra-tls
https://github.com/cloud-security-research/sgx-ra-tls
https://github.com/openenclave/openenclave/tree/master/samples/attested_tls
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/attester.h
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/attester.h

]
Multiple TDs Migration I n te I®

https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/ver
ifier.h

Document Number: 348987-002

https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/verifier.h
https://github.com/openenclave/openenclave/blob/master/include/openenclave/attestation/verifier.h

