

Guest Hypervisor Communication

Interface (GHCI) for Intel® Trust Domain

Extensions (Intel® TDX) 2.0 extension

351995-001US (DRAFT)

May 2025

Ref. # 351995-001US (DRAFT) i

Disclaimers

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied
warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and
are subject to change without notice. Intel does not guarantee the availability of these
interfaces in any future product. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might
cause the product to deviate from published specifications. Current, characterized errata are
available on request.

Intel technologies might require enabled hardware, software, or service activation. Some
results have been estimated or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement
or other legal analysis concerning Intel products described herein. You agree to grant Intel a
non-exclusive, royalty-free license to any patent claim thereafter drafted that includes the
subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is

granted by this document.

This document contains information on products, services and/or processes in development.
All information provided here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or
other Intel literature may be obtained by calling 1-800-548-4725 or by visiting
http://www.intel.com/design/literature.htm.

© Intel Corporation. 2025. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Other names and brands might be claimed as the property of

others.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

Guest-Hypervisor Communication Interface (GHCI) Specification for Intel® TDX 2.0

About this Document

Ref. # 351995-001US (DRAFT) ii

Table of Contents

Disclaimers .. i

1 About this Document .. 2

1.1 SCOPE OF THIS DOCUMENT ..2

1.2 REFERENCES ...2

2 TD-VMM Communication ... 3

2.1 TDCALL AND SEAMCALL INSTRUCTION ...3

2.1.1 TDCALL [TDG.VP.VMCALL] leaf ..3

3 TDG.VP.VMCALL Interface ... 4

3.1 TDG.VP.VMCALL<GETTDVMCALLINFO> ..4

3.2 TDG.VP.VMCALL <SERVICE> (TO BE DEPRECATED) ..4

3.2.1 TDG.VP.VMCALL <Service.TDCM> (To be deprecated) ..4

3.3 TDG.VP.VMCALL<TDCM> .. 15

3.3.1 TDG.VP.VMCALL <TDCM.CheckTeeIoSupport > ... 17

3.3.2 TDG.VP.VMCALL <TDCM.Bind> .. 17

3.3.3 TDG.VP.VMCALL <TDCM.GetDeviceInfo> .. 20

3.3.4 TDG.VP.VMCALL <TDCM.GetTdiReport> .. 23

3.3.5 TDG.VP.VMCALL <TDCM.StartTdi> .. 25

3.3.6 TDG.VP.VMCALL <TDCM.GetTdiState> ... 27

3.3.7 TDG.VP.VMCALL <TDCM.Unbind> ... 29

3.3.8 TDCM Status Code ... 31

4 TD-VMM-Communication Scenarios .. 33

4.1 TDX CONNECT ARCHITECTURE .. 33

4.1.1 TDX Connect Component .. 35

4.1.2 TDX Connect Software Flow Lifecycle .. 36

4.1.3 TDX Connect Device Attestation ... 38

4.1.4 TDX Connect Device Runtime Update ... 39

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

About this Document

Ref. # 351995-001US (DRAFT) 2

1 About this Document

1.1 Scope of this Document

Intel® TDX 2.0 adds Intel® TDX Connect architecture to support direct I/O device assignment.

The GHCI 2.0 APIs for Intel® TDX Connect are defined in 3.2.1 TDG.VP.VMCALL

<Service.TDCM>. A brief Intel® TDX Connect architecture introduction is in 4.1 TDX Connect

Architecture.

This document is a work in progress and is subject to change based on customer

feedback and internal analysis. This document does not imply any product

commitment from Intel to anything in terms of features and/or behaviors.

1.2 References

Table 1-1: Technical Documents Referenced

Reference Document Version & Date

1 Intel® Trust Domain Extensions module 2.0 TDX Connect

architecture specification

January 2023

2 Device Attestation Model in Confidential Computing

Environment

September 2022

3 Software Enabling for Intel® TDX in Support of TEE-IO September 2022

4 SPDM specification (DSP0274), version 1.2.1 June 2022

5 Secured Message using SPDM specification (DSP0277), version

1.2.0

June 2024

6 PCI Express Base specification, version 6.2 January 2024

Unless otherwise specified, any reserved, undefined or unassigned values in enumerations or

other numeric ranges are reserved for future definition by this specification.

Unless otherwise specified, field values marked as Reserved shall be written as zero, ignored

when read, not modified, and not interpreted as an error if not zero.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM Communication

Ref. # 351995-001US (DRAFT) 3

2 TD-VMM Communication

2.1 TDCALL and SEAMCALL instruction

2.1.1 TDCALL [TDG.VP.VMCALL] leaf

TDG.VP.VMCALL is a leaf function 0 for TDCALL. It helps invoke services from the host VMM.

The input operands for this leaf are programmed as defined below:

Table 2-1: TDG.VP.VMCALL codes

Sub-Function Number Sub-Function Name

0x10007 TDCM (TEE-IO Device Control and Management)

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 4

3 TDG.VP.VMCALL Interface

From the perspective of the host VMM, TDCALL [TDG.VP.VMCALL] is a trap-like, VM exit into

the host VMM, reported via the SEAMRET instruction flow.

By design, after the SEAMRET, the host VMM services the request specified in the parameters

passed by the TD during the TDG.VP.VMCALL (that are passed via SEAMRET to the VMM), then

resumes the TD via a SEAMCALL [TDH.VP.ENTER] invocation.

Refer to the Intel TDX CPU Architecture specification [2] for details of the SEAMCALL and

SEAMRET instructions. This chapter describes the designed sub-functions of the TDCALL

[TDG.VP.VMCALL] interface between the TD and the VMM.

3.1 TDG.VP.VMCALL<GetTdVmCallInfo>

GetTdVmCallInfo TDG.VP.VMCALL is used to help request the host VMM enumerate which

TDG.VP.VMCALLs are supported. This leaf is reserved for enumerating capabilities defined in

this specification.

Table 3-1: TDG.VP.VMCALL< GetTdVmCallInfo>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-instruction-return code.

R11 Leaf-specific output (when R12 is 0, will be returned as 0).

If R12 is 1, bitmap for VMCALL codes

BIT4: <TDCM>

3.2 TDG.VP.VMCALL <Service> (To be deprecated)

3.2.1 TDG.VP.VMCALL <Service.TDCM> (To be deprecated)

This is used to allow TDCM manage the device.

// {6270DA51-9A23-4B6B-81CE-DDD86970F296}

#define VMCALL_SERVICE_TDCM_GUID \

{0x6270da51, 0x9a23, 0x4b6b, 0x81, 0xce, 0xdd, 0xd8, 0x69, 0x70, 0xf2, 0x96}

3.2.1.1 TDG.VP.VMCALL <Service.TDCM.CheckTeeIoSupport>

This VMCALL is used by TD to check if TEE-IO is supported for the specific device.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 5

The command data buffer layout is below: (All fields are filled by TD).

Table 3-2: TDG.VP.VMCALL< Service.TDCM.CheckTeeIoSupport >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 1: CheckTeeIoSupport

Reserved 2 2 Reserved

Device

Identifier

4 4 Byte 0 [Bit0~2]: PCI Function Number

Byte 0 [Bit3~7]: PCI Device Number

BYTE 1: PCI Bus Number

BYTE 2, 3: PCI Segment Number

The response data buffer layout is shown in the following table (All fields are filled by VMM).

Table 3-3: TDG.VP.VMCALL< Service.TDCM.CheckTeeIoSupport >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 1: CheckTeeIoSupport

Status 2 1 The TDCM status. See Table 3-16.

Reserved 3 1 Reserved

3.2.1.2 TDG.VP.VMCALL <Service.TDCM.Bind>

This VMCALL is used by TDCM to ask the VMM to bind the TDI, send TDISP

LOCK_INTERFACE_REQUEST command and return the TDI Interface ID. VMM can optionally

send TDISP GET_DEVICE_INTERFACE_REPORT and cache the full TDI report. This VMCALL

shall be sent before <Serrvice.TDCM.StartTdi>.

The command data buffer layout is below: (All fields are filled by TD).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 6

Table 3-4: TDG.VP.VMCALL< Service.TDCM.Bind >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 2: Bind

Reserved 2 2 Reserved

Device

Identifier

4 4 Byte 0 [Bit0~2]: PCI Function Number

Byte 0 [Bit3~7]: PCI Device Number

BYTE 1: PCI Bus Number

BYTE 2, 3: PCI Segment Number

The response data buffer layout is below: (All fields are filled by VMM).

Table 3-5: TDG.VP.VMCALL< Service.TDCM.Bind >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 2: Bind

Status 2 1 The TDCM status. See Table 3-16.

Reserved 3 1 Reserved

TDI

Interface ID

4 12 The TDI’s INTERFACE_ID, returned by TDX module

TDH.TDI.CREATE.

The expected flow is as follows:

• TD calls VMM: TDG.VP.VMCALL<Service.TDCM.Bind>

• (*) VMM calls TDX-module: TDH.TDI.MT.ADD

• (*) VMM calls TDX-module: TDH.TDI.CREATE

• (*) VMM calls TDX-module: TDH.SYS.READ (LOCK_INTERFACE_FLAGS)

• VMM calls TDX-module: TDH.TDI.BIND (LockInterfaceFlags)  VMM sends TDISP
LOCK_INTERFACE_REQUEST and optionally GET_DEVICE_INTERFACE_REPORT.

• VMM signals EVENT:TDG.VP.VMCALL<Service.TDCM.Bind>

• TD calls TDX-Module: TDG.TDI.RD(INTERFACE_STATE)

• TD checks TDI state is in CONFIG_LOCKED.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 7

(*) means skip if it is already done before.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 8

3.2.1.3 TDG.VP.VMCALL <Service.TDCM.GetDeviceInfo>

This VMCALL is used by TDCM to get the device information including SPDM Certificate Chain

in all slots, and all SPDM Measurement Transcript. After getting the initial SPDM connection

and session information with zero nonce, the TD shall calculate the “DEVICE_INFO_HASH” and

validate it with TDX module with TDG.TDI.VALIDATE.

If the TD supports runtime update and need freshness of the information, the TD shall input a

non-zero nonce and validate the nonce returned in the device information data. Then the TD

shall validate the integrity of the certificate chain and SPDM measurement transcript with a

local verifier or a remote verifier. Usually, this VMCALL is used by TDCM after

<Service.TDCM.Bind>.NOTE: The “DEVICE_INFO_HASH” is not recalculated during

recollection. The TD shall guarantee that the SPDM device certificate is not change. Only

SPDM alias certificate (also known as DICE certificate) and the SPDM measurement can be

changed.

The command data buffer layout is below: (All fields are filled by TD).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 9

Table 3-6: TDG.VP.VMCALL< Service.TDCM.GetDeviceInfo >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 3: GetDeviceInfo

Reserved 2 2 Reserved

TDI

Interface

ID

4 12 The TDI’s INTERFACE_ID, returned by TDX module

TDH.TDI.CREATE.

Request

Nonce

16 32 A nonce value to indicate this collection.

The VMM returns the

SPDM_DEVICE_ATTESTATION_INFO_T.

Request

Flag

48 8 A 64bit flag to indicate the request to the TDX-module. This

flag is only used when Request Nonce is non-0.

• BIT0: Include device certificates.

• BIT1: Include device measurement.

• BIT2~7: Reserved to 0.

• BIT8~15: Device certificate request slot mask. BIT8

means to request slot 0, BIT9 means to request slot 1,

etc.

• BIT16~23: Device measurement request attributes used

in GET_MEASUREMENT Param1. Only

RawBitStreamRequested is valid, and the reset bits are

ignored.

• BIT24~63: Reserved to 0.

The response data buffer layout is below: (All fields are filled by VMM).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 10

Table 3-7: TDG.VP.VMCALL< Service.TDCM.GetDeviceInfo >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 3: GetDeviceInfo

Status 2 1 The TDCM status. See Table 3-16.

Reserved 3 1 Reserved

Device

Information

Data

4 N The SPDM_DEVICE_ATTESTATION_INFO_T

3.2.1.4 TDG.VP.VMCALL <Service.TDCM.GetTdiReport>

This VMCALL is used by TDCM to get a full TDI report. If VMM sends

GET_DEVICE_INTERFACE_REPORT before, the VMM can return the cached TDI report. If VMM

has not got the TDI report before, it shall send GET_DEVICE_INTERFACE_REPORT and return

the full TDI report. This VMCALL is only allowed after <Service.TDCM.Bind> and before

<Service.TDCM.Unbind>. The TD shall calculate the “TDI_REPORT_HASH” and validate it with

TDX module with TDG.TDI.VALIDATE.

The command data buffer layout is below: (All fields are filled by TD).

Table 3-8: TDG.VP.VMCALL< Service.TDCM.GetTdiReport >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 4: GetTdiReport

Reserved 2 2 Reserved

TDI

Interface

ID

4 12 The TDI’s INTERFACE_ID, returned by TDX module

TDH.TDI.CREATE.

The response data buffer layout is below: (All fields are filled by VMM).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 11

Table 3-9: TDG.VP.VMCALL< Service.TDCM.GetTdiReport >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 4: GetTdiReport

Status 2 1 The TDCM status. See Table 3-16.

Reserved 3 1 Reserved

TDI Report 4 N The full TDI report, returned from multiple

GET_DEVICE_INTERFACE_REPORT commands. The TD

can calculate the “TDI_REPORT_HASH” and validate it with

TDX module TDG.TDI.VALIDATE. “TDI_REPORT_HASH”

== Hash (Full TDI Report)

3.2.1.5 TDG.VP.VMCALL <Service.TDCM.StartTdi>

This VMCALL is used by TDCM to ask VMM to send TDISP START_INTERFACE_REQUEST

command. This VMCALL is only allowed after <Service.TDCM.Bind> and before

<Service.TDCM.Unbind>. This VMCALL shall be sent right after TDG.TDI.START. After this

VMCALL, the TD shall use TDG.TDI.RD(INTERFACE_STATE) to verify if the TDI is changed to

RUN state.

The command data buffer layout is below: (All fields are filled by TD).

Table 3-10: TDG.VP.VMCALL< Service.TDCM.StartTdi >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 5: StartTdi

Reserved 2 2 Reserved

TDI

Interface

ID

4 12 The TDI’s INTERFACE_ID, returned by TDX module

TDH.TDI.CREATE.

The response data buffer layout is below: (All fields are filled by VMM).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 12

Table 3-11: TDG.VP.VMCALL< Service.TDCM.StartTdi >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 5: StartTdi

Status 2 1 The TDCM status. See Table 3-16.

Reserved 3 1 Reserved

The expected flow is as follows:

• TD calls TDX-Module: TDG.TDI.VALIDATE(DEVICE_INFO_HASH, TDI_REPORT_HASH)

• TD calls TDX-Module: TDG.DMAR.ACCEPT and TDG.MMIO.ACCEPT

• TD calls TDX-Module: TDG.TDI.START

• TD calls VMM: TDG.VP.VMCALL<Service.TDCM.StartTdi>

• VMM calls TDX-module: TDH.TDI.START  VMM sends TDISP START_INTERFACE_REQUEST

• VMM signals EVENT:TDG.VP.VMCALL<Service.TDCM.StartTdi>

• TD calls TDX-Module: TDG.TDI.RD(INTERFACE_STATE)

• TD checks TDI state is in RUN.

3.2.1.6 TDG.VP.VMCALL <Service.TDCM.GetTdiState>

This VMCALL is used by TDCM to send TDISP GET_DEVICE_INTERFACE_STATE command.

The command data buffer layout is below: (All fields are filled by TD).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 13

Table 3-12: TDG.VP.VMCALL< Service.TDCM.GetTdiState >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 6: GetTdiState

Reserved 2 2 Reserved

TDI

Interface

ID

4 12 The TDI’s INTERFACE_ID, returned by TDX module

TDH.TDI.CREATE.

The response data buffer layout is below: (All fields are filled by VMM).

Table 3-13: TDG.VP.VMCALL< Service.TDCM.GetTdiState >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 6: GetTdiState

Status 2 1 The TDCM status. See Table 3-16.

Reserved 3 1 Reserved

The expected flow is as follows:

• TD calls VMM: TDG.VP.VMCALL<Service.TDCM.GetTdiState>

• VMM calls TDX-module: TDH.TDI.GET.STATE  VMM sends TDISP
GET_DEVICE_INTERFACE_STATE.

• VMM signals EVENT:TDG.VP.VMCALL<Service.TDCM.GetTdiState>

• TD calls TDX-Module: TDG.TDI.RD(INTERFACE_STATE)

• TD gets TDI state.

3.2.1.7 TDG.VP.VMCALL <Service.TDCM.Unbind>

This VMCALL is used by TDCM to ask the VMM to unload the TDI and cleanup the

corresponding resources, including sending TDISP STOP_INTERFACE_REQUEST command,

cleanup MMIO and DMA pages associated with this TDI.

The command data buffer layout is below: (All fields are filled by TD).

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 14

Table 3-14: TDG.VP.VMCALL< Service.TDCM.Unbind >-command buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 7: Unbind

Reserved 2 2 Reserved

Device

Identifier

4 4 Byte 0 [Bit0~2]: PCI Function Number

Byte 0 [Bit3~7]: PCI Device Number

BYTE 1: PCI Bus Number

BYTE 2, 3: PCI Segment Number

The response data buffer layout is below: (All fields are filled by VMM).

Table 3-15: TDG.VP.VMCALL< Service.TDCM.Unbind >-response buffer layout

Field Offset

(Bytes)

Length

(bytes)

Description

Version 0 1 0: for this data structure

Command 1 1 7: Unbind

Status 2 1 The TDCM status. See Table 3-16.

Reserved 3 1 Reserved

The expected flow is as follows:

• TD calls VMM: TDG.VP.VMCALL<Service.TDCM.Unbind>  This step is to inform VMM to unload
the device.

• VMM calls TDX-module: TDH.TDI.STOP  VMM sends TDISP STOP_INTERFACE_REQUEST

• VMM calls TDX-module TDH.DMAR.REMOVE clean up DMA entry.

• VMM calls TDX-module TDH.MMIO.UNMAP clean up MMIO entry.

• VMM calls TDH.TDI.REMOVE  This step check (DEVIFCS.MMIO_PAGE_CNT==0 &&
DEVIFCS.DMA_MAPPED_FLAG==FALSE)

• VMM signals EVENT:TDG.VP.VMCALL<Service.TDCM.Unbind>

• TD calls TDX-module: TDG.TDI.RD(INTERFACE_STATE)]  This step is to check and ensure DEVIF
is disconnected successfully.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 15

3.2.1.8 TDCM Status Code

TDCM Status reports TDCM VMCALL result.

Table 3-16: TDCM Status

Value Name Description

0 SUCCESS The TDCM call is finished successfully

1 INVALID_PARAMETER The input parameter has one or more invalid

fields, such as invalid device identifier or invalid

TDI interface ID.

2 UNSUPPORTED The input parameter is unsupported, such as

device is NOT TEE-IO capable.

3 OUT_OF_RESOURCE VMM does not have enough resource to finish the

TDVMCALL.

4 TDX_MODULE_ERROR The TDX module returns error.

5 TDXIO_DEVICE_ERROR The device returns DOE mailbox error.

6 SPDM_MESSAGE_ERROR The device returns SPDM error.

7 IDE_KM_MESSAGE_ERROR The device returns IDE_KM error.

8 TDISP_MESSAGE_ERROR The device returns TDISP error.

9 INVALID_STATE The API is called when TDI is not in invalid state,

such as GetTdiReport before Bind.

0xA~0xFF Reserved Reserved

3.3 TDG.VP.VMCALL<TDCM>

This is used to allow TD guest TEE-IO Device Control and Management (TDCM) module to

manage the device. The TDCM leaf functions are defined in the following table.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 16

Table 3-17: TDG.VP.VMCALL<TDCM>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-3.

R12 Bits [15:0] TDCM Leaf function

1: CheckTeeIoSupport

2: Bind

3: GetDeviceInfo

4: GetTdiReport

5: StartTdi

6: GetTdiState

7: Unbind

Other: Reserved

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

Others Leaf-specific

Table 3-18: TDG.VP.VMCALL<TDCM>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Others Leaf-specific

Table 3-19: TDG.VP.VMCALL<TDCM>-Status Codes

Error Code Value Description

TDG.VP.VMCALL_SUCCESS See values in Table 2-6 TDG.VP.VMCALL is

successful.

TDG.VP.VMCALL_INVALID_OPERAND Invalid operand – for

example, the GPA address

is invalid (beyond GPAW).

TDG.VP.VMCALL_SUBFUNC_UNSUPPORTED This sub-function is

unsupported

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 17

3.3.1 TDG.VP.VMCALL <TDCM.CheckTeeIoSupport >

This VMCALL is used by TD to check if TEE-IO is supported for the specific device.

Table 3-20: TDG.VP.VMCALL<TDCM.CheckTeeIoSupport>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-1.

R12 Bits [15:0] TDCM Leaf function

1: CheckTeeIoSupport

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

R13 Device Identifier:

Byte 0, Bits [2:0]: PCI Function Number

Byte 0, Bits [7:3]: PCI Device Number

Byte 1: PCI Bus Number

Byte [3:2]: PCI Segment Number

Table 3-21: TDG.VP.VMCALL<TDCM.CheckTeeIoSupport>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 0: Device does not support TEE-IO.

1: Device supports TEE-IO.

3.3.2 TDG.VP.VMCALL <TDCM.Bind>

This VMCALL is used by TDCM to ask the VMM to bind the TDI, send TDISP

LOCK_INTERFACE_REQUEST command and return the TDI Interface ID. VMM can optionally

send TDISP GET_DEVICE_INTERFACE_REPORT and cache the full TDI report. This VMCALL

shall be sent before <StartTdi>.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 18

Table 3-22: TDG.VP.VMCALL<TDCM.Bind>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-1.

R12 Bits [15:0] TDCM Leaf function

2: Bind

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

R13 Device Identifier:

Byte 0, Bits [2:0]: PCI Function Number

Byte 0, Bits [7:3]: PCI Device Number

Byte 1: PCI Bus Number

Byte [3:2]: PCI Segment Number

R14 DataBufferLength

The size in bytes of the data buffer specified in R15.

R15 DataBufferGPA

The shared GPA of the data buffer. See Table 3-24

RBX Event notification interrupt vector - (valid values 32~255) selected by

TD.

0~31: Reserved.

32~255: The interrupt vector to signal when the response is ready. The

VMM should inject the interrupt vector into the TD VCPU that executed

TDG.VP.VMCALL.

Table 3-23: TDG.VP.VMCALL<TDCM.Bind>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-24: <TDCM.Bind> Data Buffer format

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 19

Field Offset

(Bytes)

Length

(bytes)

Description

Data Status 0 8 Byte [0]

 0: Wait for VMM completion (Set by TD)

 1: VMM completed successfully (Set by VMM)

 2: VMM completed with error (Set by VMM)

Byte [1]:

 If Byte [0] is 0 or 1, then reserved.

 If Byte [0] is 2, then TDCM Status. See Table 3-40

Byte [7:2]: reserved to 0.

This field is always present.

Length 8 4 The size in bytes of the Data field, excluding the Data

Status field and this Length field.

Data 12 0 When set by TD:

None

When set by VMM:

TDI Interface ID (12 bytes) - The TDI’s

INTERFACE_ID, returned by TDX module

TDH.TDI.CREATE.

The expected flow is as follows:

• TD calls VMM: TDG.VP.VMCALL<TDCM.Bind>

• (*) VMM calls TDX-module: TDH.TDI.MT.ADD

• (*) VMM calls TDX-module: TDH.TDI.CREATE

• (*) VMM calls TDX-module: TDH.SYS.READ (LOCK_INTERFACE_FLAGS)

• VMM calls TDX-module: TDH.TDI.BIND (LockInterfaceFlags)  VMM sends TDISP
LOCK_INTERFACE_REQUEST and optionally GET_DEVICE_INTERFACE_REPORT.

• VMM signals EVENT:TDG.VP.VMCALL<TDCM.Bind>

• TD calls TDX-Module: TDG.TDI.RD(INTERFACE_STATE)

• TD checks TDI state is in CONFIG_LOCKED.

(*) means skip if it is already done before.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 20

3.3.3 TDG.VP.VMCALL <TDCM.GetDeviceInfo>

This VMCALL is used by TDCM to get the device information including SPDM Certificate Chain

in all slots, and all SPDM Measurement Transcript. After getting the initial SPDM connection

and session information with zero nonce, the TD shall calculate the “DEVICE_INFO_HASH” and

validate it with TDX module with TDG.TDI.VALIDATE.

If the TD supports runtime update and need freshness of the information, the TD shall input a

non-zero nonce and validate the nonce returned in the device information data. Then the TD

shall validate the integrity of the certificate chain and SPDM measurement transcript with a

local verifier or a remote verifier. Usually, this VMCALL is used by TDCM after <TDCM.Bind>.

NOTE: The “DEVICE_INFO_HASH” is not recalculated during recollection. The TD shall

guarantee that the SPDM device certificate is not change. Only SPDM alias certificate (also

known as DICE certificate) and the SPDM measurement can be changed.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 21

Table 3-25: TDG.VP.VMCALL<TDCM.GetDeviceInfo>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-1.

R12 Bits [15:0] TDCM Leaf function

3: GetDeviceInfo

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

R13 TDI Interface ID[7:0] - The TDI’s INTERFACE_ID, returned by TDX

module TDH.TDI.CREATE.

R14 TDI Interface ID[11:8]

R15 DataBufferLength

The size in bytes of the data buffer specified in RBX.

RBX DataBufferGPA

The shared GPA of the data buffer. See Table 3-27

RDI Event notification interrupt vector - (valid values 32~255) selected by

TD.

0~31: Reserved.

32~255: The interrupt vector to signal when the response is ready. The

VMM should inject the interrupt vector into the TD VCPU that executed

TDG.VP.VMCALL.

Table 3-26: TDG.VP.VMCALL<TDCM.GetDeviceInfo>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-27: <TDCM.GetDeviceInfo> Data Buffer format

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 22

Field Offset

(Bytes)

Length

(bytes)

Description

Data Status 0 8 Byte [0]

 0: Wait for VMM completion (Set by TD)

 1: VMM completed successfully (Set by VMM)

 2: VMM completed with error (Set by VMM)

Byte [1]:

 If Byte [0] is 0 or 1, then reserved.

 If Byte [0] is 2, then TDCM Status. See Table 3-40

Byte [7:2]: reserved to 0.

This field is always present.

Length 8 4 The size in bytes of the Data field, excluding the Data

Status field and this Length field.

Data 12 0 When set by TD:

Request Nonce (32 bytes) - A nonce value to indicate

this collection.

Request Flag (8 bytes) - A 64bit flag to indicate the

request to the TDX-module. This flag is only used

when Request Nonce is non-0.

• BIT0: Include device certificates.

• BIT1: Include device measurement.

• BIT2~7: Reserved to 0.

• BIT8~15: Device certificate request slot mask.

BIT8 means to request slot 0, BIT9 means to

request slot 1, etc.

• BIT16~23: Device measurement request

attributes used in GET_MEASUREMENT

Param1. Only RawBitStreamRequested is valid,

and the reset bits are ignored.

• BIT24~63: Reserved to 0.

When set by VMM:

Device Information -

SPDM_DEVICE_ATTESTATION_INFO_T

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 23

3.3.4 TDG.VP.VMCALL <TDCM.GetTdiReport>

This VMCALL is used by TDCM to get a full TDI report. If VMM sends

GET_DEVICE_INTERFACE_REPORT before, the VMM can return the cached TDI report. If VMM

has not got the TDI report before, it shall send GET_DEVICE_INTERFACE_REPORT and return

the full TDI report. This VMCALL is only allowed after <TDCM.Bind> and before

<TDCM.Unbind>. The TD shall calculate the “TDI_REPORT_HASH” and validate it with TDX

module with TDG.TDI.VALIDATE.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 24

Table 3-28: TDG.VP.VMCALL<TDCM.GetTdiReport>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-1.

R12 Bits [15:0] TDCM Leaf function

4: GetTdiReport

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

R13 TDI Interface ID[7:0] - The TDI’s INTERFACE_ID, returned by TDX

module TDH.TDI.CREATE.

R14 TDI Interface ID[11:8]

R15 DataBufferLength

The size in bytes of the data buffer specified in RBX.

RBX DataBufferGPA

The shared GPA of the data buffer. See Table 3-30

RDI Event notification interrupt vector - (valid values 32~255) selected by

TD.

0~31: Reserved.

32~255: The interrupt vector to signal when the response is ready. The

VMM should inject the interrupt vector into the TD VCPU that executed

TDG.VP.VMCALL.

Table 3-29: TDG.VP.VMCALL<TDCM.GetTdiReport>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-30: <TDCM.GetTdiReport> Data Buffer format

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 25

Field Offset

(Bytes)

Length

(bytes)

Description

Data Status 0 8 Byte [0]

 0: Wait for VMM completion (Set by TD)

 1: VMM completed successfully (Set by VMM)

 2: VMM completed with error (Set by VMM)

Byte [1]:

 If Byte [0] is 0 or 1, then reserved.

 If Byte [0] is 2, then TDCM Status. See Table 3-40

Byte [7:2]: reserved to 0.

This field is always present.

Length 8 4 The size in bytes of the Data field, excluding the Data

Status field and this Length field.

Data 12 0 When set by TD:

None

When set by VMM:

TDI Report - The full TDI report, returned from

multiple GET_DEVICE_INTERFACE_REPORT

commands. The TD can calculate the

“TDI_REPORT_HASH” and validate it with TDX

module TDG.TDI.VALIDATE. “TDI_REPORT_HASH” ==

Hash (Full TDI Report).

3.3.5 TDG.VP.VMCALL <TDCM.StartTdi>

This VMCALL is used by TDCM to ask VMM to send TDISP START_INTERFACE_REQUEST

command. This VMCALL is only allowed after <TDCM.Bind> and before <TDCM.Unbind>. This

VMCALL shall be sent right after TDG.TDI.START. After this VMCALL, the TD shall use

TDG.TDI.RD(INTERFACE_STATE) to verify if the TDI is changed to RUN state.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 26

Table 3-31: TDG.VP.VMCALL<TDCM.StartTdi>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-1.

R12 Bits [15:0] TDCM Leaf function

5: StartTdi

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

R13 TDI Interface ID[7:0] - The TDI’s INTERFACE_ID, returned by TDX

module TDH.TDI.CREATE.

R14 TDI Interface ID[11:8]

R15 DataBufferLength

The size in bytes of the data buffer specified in RBX.

RBX DataBufferGPA

The shared GPA of the data buffer. See Table 3-33

RDI Event notification interrupt vector - (valid values 32~255) selected by

TD.

0~31: Reserved.

32~255: The interrupt vector to signal when the response is ready. The

VMM should inject the interrupt vector into the TD VCPU that executed

TDG.VP.VMCALL.

Table 3-32: TDG.VP.VMCALL<TDCM.StartTdi>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 TDCM Status. See Table 3-40

Table 3-33: <TDCM.StartTdi> Data Buffer format

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 27

Field Offset

(Bytes)

Length

(bytes)

Description

Data Status 0 8 Byte [0]

 0: Wait for VMM completion (Set by TD)

 1: VMM completed successfully (Set by VMM)

 2: VMM completed with error (Set by VMM)

Byte [1]:

 If Byte [0] is 0 or 1, then reserved.

 If Byte [0] is 2, then TDCM Status. See Table 3-40

Byte [7:2]: reserved to 0.

This field is always present.

Length 8 4 The size in bytes of the Data field, excluding the Data

Status field and this Length field.

Data 12 0 When set by TD:

None

When set by VMM:

None

The expected flow is as follows:

• TD calls TDX-Module: TDG.TDI.VALIDATE(DEVICE_INFO_HASH, TDI_REPORT_HASH)

• TD calls TDX-Module: TDG.DMAR.ACCEPT and TDG.MMIO.ACCEPT

• TD calls TDX-Module: TDG.TDI.START

• TD calls VMM: TDG.VP.VMCALL<TDCM.StartTdi>

• VMM calls TDX-module: TDH.TDI.START  VMM sends TDISP START_INTERFACE_REQUEST

• VMM signals EVENT:TDG.VP.VMCALL<TDCM.StartTdi>

• TD calls TDX-Module: TDG.TDI.RD(INTERFACE_STATE)

• TD checks TDI state is in RUN.

3.3.6 TDG.VP.VMCALL <TDCM.GetTdiState>

This VMCALL is used by TDCM to send TDISP GET_DEVICE_INTERFACE_STATE command.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 28

Table 3-34: TDG.VP.VMCALL<TDCM.GetTdiState>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-1.

R12 Bits [15:0] TDCM Leaf function

6: GetTdiState

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

R13 TDI Interface ID[7:0] - The TDI’s INTERFACE_ID, returned by TDX

module TDH.TDI.CREATE.

R14 TDI Interface ID[11:8]

R15 DataBufferLength

The size in bytes of the data buffer specified in RBX.

RBX DataBufferGPA

The shared GPA of the data buffer. See Table 3-36

RDI Event notification interrupt vector - (valid values 32~255) selected by

TD.

0~31: Reserved.

32~255: The interrupt vector to signal when the response is ready. The

VMM should inject the interrupt vector into the TD VCPU that executed

TDG.VP.VMCALL.

Table 3-35: TDG.VP.VMCALL<TDCM.GetTdiState>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

R11 TDCM Status. See Table 3-40

Table 3-36: <TDCM.GetTdiState> Data Buffer format

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 29

Field Offset

(Bytes)

Length

(bytes)

Description

Data Status 0 8 Byte [0]

 0: Wait for VMM completion (Set by TD)

 1: VMM completed successfully (Set by VMM)

 2: VMM completed with error (Set by VMM)

Byte [1]:

 If Byte [0] is 0 or 1, then reserved.

 If Byte [0] is 2, then TDCM Status. See Table 3-40

Byte [7:2]: reserved to 0.

This field is always present.

Length 8 4 The size in bytes of the Data field, excluding the Data

Status field and this Length field.

Data 12 0 When set by TD:

None

When set by VMM:

None

The expected flow is as follows:

• TD calls VMM: TDG.VP.VMCALL<TDCM.GetTdiState>

• VMM calls TDX-module: TDH.TDI.GET.STATE  VMM sends TDISP
GET_DEVICE_INTERFACE_STATE.

• VMM signals EVENT:TDG.VP.VMCALL<TDCM.GetTdiState>

• TD calls TDX-Module: TDG.TDI.RD(INTERFACE_STATE)

• TD gets TDI state.

3.3.7 TDG.VP.VMCALL <TDCM.Unbind>

This VMCALL is used by TDCM to ask the VMM to unload the TDI and cleanup the

corresponding resources, including sending TDISP STOP_INTERFACE_REQUEST command,

cleanup MMIO and DMA pages associated with this TDI.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 30

Table 3-37: TDG.VP.VMCALL<TDCM.Unbind>-Input Operands

Operand Description

R11 TDG.VP.VMCALL<TDCM> sub-function per Table 2-1.

R12 Bits [15:0] TDCM Leaf function

7: Unbind

Bits [23:16] TDCM API Version – 0 for this data structure.

Bits [63:24] Reserved; must be 0.

R13 Device Identifier:

Byte 0, Bits [2:0]: PCI Function Number

Byte 0, Bits [7:3]: PCI Device Number

Byte 1: PCI Bus Number

Byte [3:2]: PCI Segment Number

R14 DataBufferLength

The size in bytes of the data buffer specified in R15.

R15 DataBufferGPA

The shared GPA of the data buffer. See Table 3-39

RBX Event notification interrupt vector - (valid values 32~255) selected by

TD.

0~31: Reserved.

32~255: The interrupt vector to signal when the response is ready. The

VMM should inject the interrupt vector into the TD VCPU that executed

TDG.VP.VMCALL.

Table 3-38: TDG.VP.VMCALL<TDCM.Unbind>-Output Operands

Operand Description

R10 TDG.VP.VMCALL-return code.

Table 3-39: <TDCM.Unbind> Data Buffer format

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 31

Field Offset

(Bytes)

Length

(bytes)

Description

Data Status 0 8 Byte [0]

 0: Wait for VMM completion (Set by TD)

 1: VMM completed successfully (Set by VMM)

 2: VMM completed with error (Set by VMM)

Byte [1]:

 If Byte [0] is 0 or 1, then reserved.

 If Byte [0] is 2, then TDCM Status. See Table 3-40

Byte [7:2]: reserved to 0.

This field is always present.

Length 8 4 The size in bytes of the Data field, excluding the Data

Status field and this Length field.

Data 12 0 When set by TD:

None

When set by VMM:

None

The expected flow is as follows:

• TD calls VMM: TDG.VP.VMCALL<TDCM.Unbind>  This step is to inform VMM to unload the
device.

• VMM calls TDX-module: TDH.TDI.STOP  VMM sends TDISP STOP_INTERFACE_REQUEST

• VMM calls TDX-module TDH.DMAR.REMOVE clean up DMA entry.

• VMM calls TDX-module TDH.MMIO.UNMAP clean up MMIO entry.

• VMM calls TDH.TDI.REMOVE  This step check (DEVIFCS.MMIO_PAGE_CNT==0 &&

DEVIFCS.DMA_MAPPED_FLAG==FALSE)

• VMM signals EVENT:TDG.VP.VMCALL<TDCM.Unbind>

• TD calls TDX-module: TDG.TDI.RD(INTERFACE_STATE)]  This step is to check and ensure DEVIF
is disconnected successfully.

3.3.8 TDCM Status Code

TDCM Status reports TDCM VMCALL result from VMM.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TDG.VP.VMCALL Interface

Ref. # 351995-001US (DRAFT) 32

Table 3-40: TDCM Status

Value Name Description

10 TDX_MODULE_ERROR The TDX module returns error.

11 TDXIO_DEVICE_ERROR The device returns DOE mailbox error.

12 SPDM_MESSAGE_ERROR The device returns SPDM error.

13 IDE_KM_MESSAGE_ERROR The device returns IDE_KM error.

14 TDISP_MESSAGE_ERROR The device returns TDISP error.

15 INVALID_STATE The API is called when TDI is not in invalid state,

such as GetTdiReport before Bind.

Other

value

Reserved Reserved

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 33

4 TD-VMM-Communication Scenarios

4.1 TDX Connect Architecture

TDX 1.0 and 1.5 only support software-based IO virtualization. The untrusted VMM exposes a

virtual device to a TD using shared (untrusted) synthetic IO and para-virtualized device

interfaces managed by the VMM. The VMM, the device, and the IO channel are out of TCB.

The synthetic IOs have two limitations:

1) The communication between a TD and a physical device must be done through shared

memory bounce-buffers. In order to help prevent attack from VMM, the data in the

bounce buffer needs to be encrypted back and forth to private memory buffers inside

the TD. This will bring performance overhead.

2) Because the device is untrusted, the TD cannot offload the computation to the device

accelerator.

The goal of TDX Connect is to support direct assignment if IO devices to TDs increasing its IO

performance and enabling new secure IO use cases. Figure 5-4 shows the TDX Connect

component.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 34

Figure 4-1: TDX Connect Component

Host
VMM

CPU

(Host)

TD1

Device

Bridges & Switches

TD2

2

Host

ABI
TDX

Module
(TSM)

Guest

ABI

DSM

Secure SPDM

Session

(VF)
TDI1

(VF)
TDI2Trusted

DMA/MMIO

CPU

IOMMU

Root Port

EP Port

Trusted

DMA/MMIO

Selective

IDE Stream

1

3 4

PF Device selective trust

Not trusted by any TD

Trusted by all TDs

Software encryption

Hardware encryption

SPDM

Session Key

SPDM

Session Key

IDE

Keys

IDE

Keys

Trusted IO

Page Tables

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 35

4.1.1 TDX Connect Component

4.1.1.1 TDX Connect Capable Device

A TDX Connect capable device needs support below industry standard:

• DMTF Secure Protocol and Data Model (SPDM) specification. SPDM is used for device

authentication, measurement collection and secure session. With SPDM session, the

Trusted Execution Environment (TEE) Security Manager (TSM) can establish a secure

software link with the device security manager (DSM).

• PCI-SIG PCI Express Base specification – Data Object Exchange (DOE). DOE is a

mechanism to allow the host software send or receive SPDM message.

• PCI-SIG PCI Express Base specification – Component Measurement and

Authentication (CMA). With CMA, the host can collect the device identity and

measurement via standard SPDM command.

• PCI-SIG PCI Express Base specification – Integrity and Data Encryption (IDE). IDE

provides confidentiality, integrity, and replay protection for PCIE Transaction Layer

Packets (TLPs) Transmitted and Received between two Ports. IDE provides a secure

hardware link between host PCIE Root Port and device PCIE endpoint. The IDE

hardware link is protected by an IDE key. The IDE key is transmitted from the host via

IDE key management (IDE_KM) protocol, which runs in an SPDM session.

• PCI-SIG Trusted Execution Environment (TEE) Device Interface (TDI) Security

Protocol (TDISP). A TEE Virtual Machine (TVM) can use TDISP to attach and detach a

TDI in a trusted manner. The TDISP message is transmitted in an SPDM session.

For more detail on these technologies, please refer to the corresponding specifications.

4.1.1.2 TDX Connect Capable Silicon

A TDX Connect capable silicon need support below features:

• PCI-SIG PCI Express Base specification – Integrity and Data Encryption (IDE). The PCIE

or CXL root port need support IDE for link encryption.

• Trusted IO Memory Management Unit (IOMMU). This IOMMU engine should be

partitioned to trust world and untrusted world. The TDX module owes the trusted

IOMMU register, which manages the DMA for the trusted device for the TD. The VMM

must be TDX module API to access the IOMMU engine.

• Trusted DMA. The TDX Connect silicon allows the trusted device DMA to a TD private

memory. It helps prevent a DMA attack, such as remapping and alias attack, device ID

spoofing, man-in-the-middle attack, confused deputy attack, etc.

• Trusted MMIO. The TDX Connect silicon allows the TD to access the trusted device

MMIO. It helps prevent an MMIO attack, such as untrusted software access, untrusted

device access, remap/swizzle attack, region overlap attack, etc.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 36

4.1.1.3 TDX Module

TDX module acts as a TEE security manager (TSM) for a TD, which is a TEE virtual machine

(TVM). It enforces all security policies, such as SPDM secure session, IDE setup, trusted IOMMU

manager, etc.

The relationship between device, interface, SPDM and IDE is as follows.

• There is one SPDM session between TDX module and each physical device.

• Each physical device link can be protected by one or more selective IDE streams.

• A physical device may host one or more device interfaces.

• A device interface is bound to the default IDE stream between the SOC and device.

Please refer to TDX Module v2.0 architecture specification for more detail.

4.1.1.4 Virtual Machine Monitor

Host VMM manages all system resources, including managing TDX Connect device. In TDX

Connect architecture, multiple components may be involved in the device communication.

The role and responsibility are below:

1) VMM is the physical device manager. VMM allocates system resource for the device,

such as assigning MMIO base address register, setting up IOMMU table for the device,

locking the device, etc. Finally, VMM need assign the device interface to a TD.

2) TD is the device interface owner. TD should verify the device identity via certificate

and device version via measurement and accept the device interface. TD should also

verify the device resource and policy setting by VMM and accept the configuration.

Only after the device is verified and accepted, the TD can start the device interface.

3) TDX-module is a device security state maintainer. It helps ensure that the device

security state is not tampered by the VMM when TD uses the device interface. For

example, TDX-Module maintains the trusted-IOMMU configuration, maintains the

SPDM session for IDE_KM and TDISP and maintains the hardware IDE session

configuration.

4.1.2 TDX Connect Software Flow Lifecycle

4.1.2.1 TDX Connect Setup Sequence

Figure 5-4 shows the high-level setup sequence:

1) SOC initialization and IOMMU setup. VMM launches the TDX-module and sets up

IOMMU.

2) Device SPDM session start. VMM invokes TDX-module to start SPDM session and gets

the device information such as certificate and measurement.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 37

3) Device IDE start. VMM allocates IDE stream and uses IDE_KM to set up IDE session

with help of TDX-module.

4) Device Interface Start. VMM configures the device resource such as MMIO and DMA,

then assigns the deice interface to a TD. TD verifies the device, accepts the device

interface, then uses TDISP to start the device interface.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 38

4.1.2.2 TDX Connect Communication Maintenance

At runtime, the VMM need maintain the communication with the device:

5) Device SPDM session maintenance. If an SPDM session requires HEARTBEAT or

KEY_UPDATE, the VMM invokes TDX-module to perform the HEARTBEAT or

KEY_UPDATE action to keep SPDM session alive.

6) Device Information Data recollection. If device supports runtime update, the TD may

recollect the device information such as certificate and measurement again. VMM need

invoke the TDX-module to perform such recollection action and return the device

information data to TD.

4.1.2.3 TDX Connect Teardown Sequence

The high-level graceful teardown sequence is:

7) Device Interface Stop. The TD or VMM uses TDISP to stop the device interface. The

device interface resource can be freed as well, such as MMIO and DMA.

8) Device IDE Stop. VMM used IDK_KM to stop the IDE session with help of TDX-module

and removes IDE stream.

9) Device SPDM session Stop. After all interfaces are stopped, VMM invokes TDX-module

to stop SPDM session.

10) SOC IOMMU reset. Once all SPDM sessions are stopped, VMM can reset IOMMU state.

For the device management detail, please refer to TDX Connect Architecture specification:

Device Setup and TDI Assignment Life-Cycle.

4.1.3 TDX Connect Device Attestation

Once a TD, acting as TVM, finds a device interface on the platform, the TD need verify the

device before accepting and using the device. The TDX-module, acting as TSM, collects the

device evidence (including device certificate and device measurement) and presents to the TD

in a secure way. The TEE device verifier in the TD needs to verify the device evidence based on

the endorsement (such as a root certificate), reference manifest (such as device certificate and

reference measurement), and a predefined policy from TVM owner. Figure 5-6 shows an

example.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 39

Figure 4-2: TDX Connect Device Attestation Flow Example

Please refer to the white paper “Device Attestation Model in Confidential Computing

Environment” for more information.

4.1.4 TDX Connect Device Runtime Update

A device may want to perform an update when it is connected to a TD. Usually, a VMM should

detach the device from TD, perform the update, and re-attach the device to a TD. However, it

may bring some latency concern if the TD is using the device, such as network interface card. If

a device supports runtime update without reset, then the TDX Connect architecture can

support to keep the device attaching to the TD when the device performs runtime update.

There are two policies to be set up for runtime update capability.

4.1.4.1 SPDM 1.2 Session Policy - TerminationPolicy

According to the SPDM 1.2 specification, TerminationPolicy specifies behavior of the

Requester when the Responder completes a runtime code or configuration update that affects

the hardware or firmware measurement of the Responder. If not set, the Responder shall

terminate the session when the runtime update has taken effect. If set, the Responder shall

decide whether to terminate or continue with the session based on its own policy.

The VMM shall input the TerminationPolicy as SPDM Policy Data to the TDX-module. The

TDX-module shall include the policy in DEVICE_INFO_DATA for the TD. Finally, the TD should

verify the TerminationPolicy in the DEVICE_INFO_DATA to decide if the TD accepts this

setting.

The VMM should check the TD manifest to determine what TerminationPolicy should be used

to avoid unnecessary device rejection by TD.

Guest-Host Communication Interface (GHCI) Specification for Intel® TDX 2.0

TD-VMM-Communication Scenarios

Ref. # 351995-001US (DRAFT) 40

4.1.4.2 TDISP LOCK_INTERFACE – NO_FW_UPDATE

According to TDISP specification, NO_FW_UPDATE controls whether firmware update is

allowed.

When set, this bit indicates that when this TDI is in CONFIG_LOCKED or RUN state, the device

must not accept firmware updates. This option allows certain TVM to opt-out of further

firmware updates to the device once the TVM starts using the TDI. A VMM must detach from

the TEEs all TDI that are locked with NO_FW_UPDATE=1 from the TVM, and move them to

CONFIG_UNLOCKED state to perform a firmware update.

The VMM shall select the policy and construct the LOCK_INTERFACE command.

The NO_FW_UPDATE flag is reported in TDISP DEVICE_INTERFACE_REPORT response. The

TD can verify the REPORT to decide whether the TD accepts the flag.

The VMM should check the TD manifest to determine if NO_FW_UPDATE flag should be used

to avoid unnecessary device rejection by TD.

4.1.4.3 Device Runtime Update Requirement

If the device supports runtime update without session termination, the device shall report

secure version number (SVN) of all mutable firmware in the device. The device shall only allow

updates to the firmware with equal or higher SVN. Downgrading to lower SVN shall be

forbidden.

4.1.4.4 Device Re-attestation

When the device is runtime updated, the TD may need to reevaluate the device certificate and

measurement. The TD may use TDG.VP.VMCALL<Service.TDCM.GetDeviceInfo> with a nonce

to get the fresh device information from VMM. Then the TD needs to verify the device again.

~~ End of document ~~

