

DRAFT - WORK IN PROGRESS Copyright © 2025 Intel Corporation. All rights reserved.

Intel® TDX Module Architecture Specification: TD
Migration

Draft

June 2025

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 2 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Notices and Disclaimers

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps. 5

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure. 10

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided 15

here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others. 20

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 3 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Table of Contents

Table of Contents ... 3

SECTION 1: TD MIGRATION INTRODUCTION AND OVERVIEW ... 7

1. About this Document .. 8

1.1. Scope of this Document .. 8 5

1.2. Document Organization .. 8

1.3. Glossary... 9

1.4. Notation .. 9

1.5. References ... 10
1.5.1. Intel Public Documents ... 10 10

1.5.2. Intel TDX Public Documents .. 10
1.5.3. Non-Intel Public Documents ... 10

2. TD Migration Overview .. 11

2.1. Introduction .. 11

2.2. Updated: TD Migration Scenarios .. 11 15

2.2.1. Cold migration... 11
2.2.2. Live Migration ... 12
2.2.3. Image Snapshot and Jumpstart ... 12

2.3. Components Involved in TD Migration .. 12

2.4. Migrated Assets .. 13 20

2.5. Guest TD Migration Life Cycle Overview ... 14
2.5.1. Updated: Reservation and Session Setup .. 14

 Guest TD Build, Migration TD Binding and TD Execution on the Source Platform 14
 Guest TD Initial Build on the Destination Platform ... 14
 Migration TDs Session Establishment ... 14 25

 Migration Session Key and Protocol Version Exchange .. 14
2.5.2. Updated: In-Order Memory Migration Phase .. 15

 TD-Scope Immutable Metadata (Non-Memory State) Migration ... 15
 Updated: Iterative Pre-Copy of Memory State .. 16
 Updated: Source TD Pause and Final Non-Memory State Migration... 16 30

 TD-Scope and VCPU-Scope Mutable Non-Memory State Migration .. 17
2.5.3. Out-Of-Order Memory Migration Phase ... 17

 Migration of Memory State and Commitment of Import ... 17
 Updated: Post-Copy of Memory State ... 17

2.5.4. Migration Commitment .. 18 35

2.5.5. Updated: Migration Abort ... 18

2.6. Impact of Migration on Measurement and Attestation ... 18

2.7. Intel TDX Module TD Migration Interface Functions Overview ... 18

3. Updated: TD Migration Software Flows... 19

3.1. Typical TD Migration Flow Overview (Write-Blocking Based Export) ... 19 40

3.2. New: Typical TD Migration Flow Overview (Non-Blocking Export) .. 20

3.3. Successful Write-Blocking Based Export ... 20

3.4. New: Successful Non-Blocking Export .. 22

3.5. Successful Import .. 23

3.6. TD Import Abort .. 24 45

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 4 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

3.6.1. TD Import Abort During the In-Order Import Phase ... 24
3.6.2. TD Import Abort During the Out-Of-Order Import Phase ... 25

3.7. TD Export Abort ... 25
3.7.1. Export Abort During the In-Order Export Phase ... 26
3.7.2. Export Abort During the Out-Of-Order Export Phase ... 26 5

SECTION 2: TD MIGRATION ARCHITECTURE SPECIFICATION .. 27

4. Migration TD, Migration Policy and the Extended TCB ... 28

4.1. Extended TCB and the Migration Policy .. 28

4.2. Attestation of the Migration TD and its Migration Policy ... 28

4.3. Inputs to the Migration TD’s Migration Policy Evaluation .. 29 10

4.4. Migrated TD Information Provided by TDG.SERVD.RD ... 29

4.5. Migration Protocol Version Setup ... 29

4.6. Migration Session Keys (MSKs) Exchange ... 29

4.7. Example Migration Session Establishment ... 30

5. Updated: Common TD Migration Mechanisms .. 31 15

5.1. Migration Bundles ... 31
5.1.1. Overview ... 31
5.1.2. Migration Data .. 31
5.1.3. Migration Bundle Metadata (MBMD) ... 31
5.1.4. Untrusted Metadata ... 32 20

5.2. Updated: Export and Import Functions Interface ... 32
5.2.1. Migrating a Multi-Page Migration Bundle .. 32
5.2.2. Updated: Migration Functions Interruptibility ... 33

5.3. Cryptographic Protection of Migration Data .. 33
5.3.1. Encryption Algorithm .. 33 25

5.3.2. Migration Session Keys ... 33

5.4. Migration Streams and Migration Queues ... 34

5.5. Measurement and Attestation .. 36
5.5.1. TD Measurement Registers Migration .. 36
5.5.2. TD Measurement Reporting Changes ... 36 30

5.5.3. TD Measurement Quoting Changes .. 36
5.5.4. TCB Recovery and Migration ... 36

5.6. Updated: TDX Control Structure Updates .. 36
5.6.1. MIGSC: Migration Stream Context ... 36

6. Updated: Migration Session Control and State Machines .. 38 35

6.1. Updated: Overview .. 38
6.1.1. Updated: Pre-Migration ... 38
6.1.2. Updated: Successful Migration Session ... 38
6.1.3 . Aborted Migration Session ... 40

 Abort during the In-Order Phase .. 40 40

 Abort during the Out-Of-Order Phase .. 41
6.1.4. Updated: Migration Epochs ... 42

6.2. Updated: Migration Session Control .. 42
6.2.1. Migration TD Binding and Migration Key Assignment .. 42
6.2.2. Updated: Export Side (Source Platform) .. 42 45

6.2.3. Import Side (Destination Platform) ... 43
6.2.4. Details: Migration State Machine .. 43

 Details: Reminder: TD Lifecycle State Machine ... 44

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 5 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Details: OP_STATE: TD Operation State Machine ... 44
 Details: OP_STATE Summary .. 45

6.3. Migration Tokens .. 46

6.4. Migration Protocol Versioning .. 47
6.4.1. Introduction .. 47 5

6.4.2. Enumeration of Supported Migration Versions .. 47
6.4.3. Setting the Migration Protocol Version for a Migration Session .. 48

6.5. Updated: Migration Session Control Functions Summary.. 48

7. TD Non-Memory State Migration ... 50

7.1. TD Non-Memory State Migration Operation .. 50 10

7.1.1. Non-Memory State Migration Data .. 50
7.1.2. Non-Memory State MBMD ... 50
7.1.3. Immutable vs. Mutable TD State .. 50

7.2. New: Expected Configuration by the Host VMM.. 50

7.3. Non-Memory State Migration Functions Summary .. 51 15

8. Updated: TD Private Memory Migration ... 52

8.1. Updated: Overview .. 52
8.1.1. Updated: In-Order and Out-of-Order Migration .. 52
8.1.2. New: Write-Blocking Export vs. Non-Blocking Live Export .. 52

8.2. New: Conventions: SEPT Entry State Diagrams Color Coding ... 52 20

8.3. Updated: GPA Lists and Private Memory Migration Bundles .. 53
8.3.1. Overview ... 53
8.3.2. Updated: GPA List .. 53
8.3.3. Page Attributes List (Required for Partitioned TDs) .. 54
8.3.4. Private Memory Migration Buffer ... 54 25

8.4. Updated: Write-Blocking Based Memory Export ... 54
8.4.1. Edited: Host VMM Perspective .. 54

 Typical Export Session ... 55
 Live Export: Blocking for Writing, TLB Tracking and Exporting a Page ... 55
 Exporting a Page after the Source TD is Paused ... 56 30

 Unblocking for Write, Tracking Dirty Pages and Re-Exporting .. 56
 Using the same GPA List for TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM 57
 Prohibited Operations on Exported Pages and Export Cancellation... 57
 Updated: Exporting Pending Pages .. 58
 Re-Exporting a Non-Dirty Page ... 59 35

 SEPT Cleanup after Export Abort .. 59
8.4.2. Edited: Details of Write-Blocking Based Export ... 59

 Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export 59
 Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export 60
 Details: TDCS.DIRTY_COUNT: TD-Scope Dirty Page Counter .. 61 40

8.5. New: Non-Blocking Memory Export ... 61
8.5.1. Host VMM Perspective ... 61

 EPT Access and Dirty Bits Background .. 62
 Memory Export Concept: Scan and Export .. 62
 Conceptual, Simplified Page State Diagram .. 62 45

 Scanning for Candidate Pages to Export or Re-export .. 64
 Typical Non-Blocking Export Session .. 65
 Interaction with Memory Management Operations .. 67
 Exporting Pending Pages ... 67
 SEPT Cleanup after Export Abort .. 67 50

8.5.2. Details of Non-Blocking Export ... 68
 Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export 68

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 6 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export 69
 Details: TD Partitioning Considerations for Dirty Bit Operations ... 70
 Details: Pending Pages Considerations .. 71
 Details: Blocked Pages Considerations... 71
 Details: Memory Management Considerations ... 71 5

 Details: Export Completeness Tracking .. 73

8.6. Memory Import ... 74
8.6.1. Host VMM Perspective ... 74

 In-Order Import Phase .. 74
 Out-of-Order import Phase ... 74 10

 In-Place Import .. 75
8.6.2. Updated: Details of Memory Import .. 75

 Updated: Details: In-Order Import Phase ... 75
 Details: Out-of-Order import Phase ... 77

8.7. Secure EPT Concurrency Considerations ... 79 15

8.7.1. Overview ... 79
8.7.2. New: GPA List Processing Implications .. 79

8.8. Moved & Updated: Security Analysis: Achieving Memory Migration Security Objectives 79
8.8.1. Updated: General ... 79
8.8.2. Updated: Preventing Usage of Stale Memory Copies due to Mis-Ordering .. 80 20

8.8.3. New: Enforcing Export of the Entire Memory Image ... 80
8.8.4. New: Non-Blocking Export: Detecting Memory State Change .. 80
8.8.5. Updated: Preventing Usage of Stale Memory Copies due to Failure to Re-export 81
8.8.6. Updated: Preventing Usage of Missing or Stale Memory Copies due to Failure to Import 81
8.8.7. Preventing Usage of Stale Memory GPA Mapping and Attributes ... 81 25

8.8.8. Out-Of-Order Phase and Its Usage for Post Copy ... 81

8.9. Updated: Memory Migration Interface Functions Summary ... 81

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 7 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

SECTION 1:
TD MIGRATION INTRODUCTION AND OVERVIEW

 5

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 8 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

1. About this Document

1.1. Scope of this Document

This document describes the architecture and the external Application Binary Interface (ABI) of the Intel® Trust Domain
Extensions (Intel® TDX) module’s Live Migration feature, implemented using the Intel TDX Instruction Set Architecture
(ISA) extensions, for cold or live migration of Trust Domains in an untrusted hosted cloud environment. 5

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

 Document Name Reference Description

TDX Module
Base Architecture Specification

[TDX Module Base
Spec]

Base TDX module architecture overview
and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

→
TDX Module
TD Migration Architecture Specification

[TD Migration Spec] Architecture overview and specification for
TD migration

TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for
TD Partitioning

TDX Module
TDX Connect Specification

[TDX Connect Spec] Architecture overview and specification for
TDX Connect

TDX Module ABI Reference Tables [TDX Module ABI

Tables]
A set of JSON format files detailing TDX
module Application Binary Interface (ABI)

TDX Module
TDX Connect ABI Reference
Specification

[TDX Connect ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the TDX connect architecture

TDX Module
ABI Reference Specification

[TDX Module ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the entire TDX module
architecture

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors. 10

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.

1.2. Document Organization 15

The document has two main sections:

• Section 1 contains an introduction to the document, overview of TD Migration, scenarios and requirements.

• Section 2 contains the Intel TDX Module Migration architecture

The detailed reference specification of TD Migration data structures and interface functions is provided in the [TDX
Module ABI Spec]. 20

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 9 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

1.3. Glossary

For a complete TDX module glossary, see the [TDX Module Base Spec].

Table 1.2: Intel TDX Module Glossary for TD Migration

Acronym Full Name New
for
TDX

Description

 Blackout
Period

No The period where that TD does not run anymore on the source platform and does
not run yet on the destination platform.

 Cold Migration No Migration usage mode where the TD does not run during the migration session.

 In-Order Phase Yes The first phase of the TD migration session, where a strict order of memory export
vs. memory import is maintained.

 Live Migration No Migration usage mode where the TD runs during most of the migration session.

 Migration
Bundle

Yes The basic unit of migrated information, composed of headers, metadata and/or
migrated data.

 Migration
Commitment

Yes The act of committing the migration, disallowing the TD from running on the
source platform and allowing it to run of the destination platform.

 Migration
Epoch

Yes A mechanism used to enforce ordering across multiple concurrent streams. Any
specific page can be migrated only once per epoch.

 Migration
Policy

No Policy enforced by the Migration TDs, e.g., based on the source and destination
platform properties.

 Migration
Stream

Yes A sequential stream of migration bundles, where order is enforced.

MigTD Migration TD Yes A specific type of Service TD used to provide Live Migration capability for TD VMs.
A Migration TD extends the TCB of the serviced tenant TD.

MSK Migration
Session Key

Yes AES-GCM-256 key generated by the source MigTD and shared with the destination
MigTD (protected by the Migration Transport key). This key helps protect the TD
private data and is used for export and import of the TD confidential assets.

MTK Migration
Transport Key

Yes Authenticated Diffie-Helman negotiated symmetric key generated after mutual
attestation of the MigTDs and is used to help protect the transport of the
Migration Session Key from the source to the destination platform.

 Out-Of-Order
Phase

Yes The last phase of the TD migration session, where a strict order of memory export
vs. memory import is not maintained.

 Post-Copy No Migration usage mode where some of the TD memory image is migrated after the
TD is allowed to run on the destination platform.

 Pre-Copy No Migration usage mode where (most of) the TD memory image is migrated before
the TD is allowed to run on the destination platform.

TCP Transmission
Control
Protocol

No Transmission Control Protocol (TCP) is a communications standard that enables
application programs and computing devices to exchange messages over a
network. It is designed to send packets across the internet and ensure the
successful delivery of data and messages over networks.

1.4. Notation

See the [TDX Module Base Spec]. 5

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 10 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

1.5. References

1.5.1. Intel Public Documents

See the [TDX Module Base Spec].

1.5.2. Intel TDX Public Documents

See the [TDX Module Base Spec]. 5

1.5.3. Non-Intel Public Documents

Table 1.3: Non-Intel Public Documents

Reference Document Version & Date

AES-256-GCM NIST Special Publication 800-38D: Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC

November 2007

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 11 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

2. TD Migration Overview

For an overview of TDX, refer to the [TDX Module Base Spec].

2.1. Introduction

5

TDX-Aware
host VMM

Intel TDX Module
Running in SEAM

Root Mode

Host-Side

Interface

Trust Domain

TDX-
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Legacy VM

OS

Applications

Drivers

Platform (Cores, Caches, Devices etc.)

TDX-Aware
host VMM

Intel TDX Module
Running in SEAM

Root Mode

Host-Side

Interface

Trust Domain

TDX-
Enlightened

OS

Unmodified
Applications

Unmodified
Drivers

Guest-Side

Interface

Legacy VM

OS

Applications

Drivers

Platform (Cores, Caches, Devices etc.)

Destination PlatformSource Platform

Guest-Side

Interface

Figure 2.1: TD Migration 5

Analogous to legacy VM migration, a cloud-service provider (CSP) may want to relocate/migrate an executing Trust
Domain from a source TDX platform to a destination TDX platform in the cloud environment. A cloud provider may use
TD migration to meet customer SLA, while balancing cloud platform upgradability, patching and other serviceability
requirements. Since a TD runs in a CPU mode which helps protect the confidentiality of its memory contents and its CPU
state from any other platform software, including the hosting Virtual Machine Monitor (VMM), this primary security 10

objective must be maintained while allowing the TD resource manager, i.e., the host VMM to migrate TDs across
compatible platforms. The TD typically may be assigned a different HKID (and will be always assigned a different
ephemeral key) on the destination platform chosen to migrate the TD.

In this specification, the TD being migrated is called the source TD, and the TD created as a result of the migration is called
the destination TD. An extensible TD Migration Policy is associated with a TD that is used to maintain the TD’s security 15

posture. The TD Migration policy is enforced in a scalable and extensible manner using a specific type of Service TD called
the Migration TD (a.k.a. MigTD) (introduced in the Figure 2.2 below) – which is used to provide services for migrating
TDs.

The TD Live Migration process (and the Migration TD) does not depend on any interaction with the TD guest software
operating inside the TD being migrated. 20

2.2. Updated: TD Migration Scenarios

This section describes the usage scenarios addressed by this specification (and those explicitly out of scope). This
specification documents the TD Migration functionality from a Live Migration (scenario described below) perspective.
Cold Migration and other scenarios described below are effectively subset scenarios that are software managed via the
Intel TDX module interface functions in this specification. 25

2.2.1. Cold migration

• Both source and destination platforms must be alive during migration.

• The TD is suspended during migration. Blackout time is typically longer than TCP timeout, which may cause remote
connections to the TD to break up.

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 12 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Cold migration may be useful for rolling upgrades or patches and rebooting servers (non-reboot patches can be done
without migrating the TD), capacity planning and load balancing.

A TD may be cold migrated more than once using multiple sessions.

2.2.2. Live Migration

• Both source and destination platforms must be alive during migration. 5

• The TD continues executing during migration. It is paused for a short blackout time, typically shorted than TCP
timeout, so remote connections to the TD should not break up.

Live migration may be useful for customer SLA support, capacity planning and load balancing.

A TD may be live migrated more than once using multiple sessions.

2.2.3. Image Snapshot and Jumpstart 10

• Destination need not be alive during export, when the migration image is prepared.

• Source need not be alive during import, when the migration image is loaded.

• TD image may be stored for an indeterminate amount of time.

This usage has additional platform security requirements that are not comprehended in this specification. Example use
cases are saving checkpoints of TDs such that TD may be pre-loaded into memory. Alternate implementations to satisfy 15

this usage are possible. E.g., the TD could un-hibernate the image itself. This scenario/use case is out of scope for this
specification and is not supported by it.

2.3. Components Involved in TD Migration

Session Control,
Keys Exchange

Session Control,
TD Non-Memory State,

TD Private Memory,
Non-TDX Information

TDX Module

Source Platform

Migration TD

Migrated TD

Host VMM

Session
Control

Service TD
Metadata

API

Session
Control

TD Export API

Session
Keys

Exchange

Memory
State

Non-
Memory

State

TDX Module

Destination Platform

Migration TD

Migrated TD

Host VMM

Session
Control

Service TD
Metadata

API

Session
Control

TD Export API

Session
Keys

Exchange

Non-
Memory

State

Memory
State

Figure 2.2: Components Involved in TD Migration 20

Migrated TD

The migrated TD’s role is passive. It is not directly aware of it being migrated.

Migration TD (MigTD)

The Migration TDs (MigTD) exist on the source and destination platforms. Their main role is to implement a migration
policy and evaluate migration sources and destinations for adherence to that policy. The migration policy may enumerate 25

TDX platform TCB requirements, platform features and acceptable destination Migration TD TCB requirements.

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 13 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

The MigTDs securely exchange unique per-session Migration Session Key (MSK) pair. The MSKs are used to migrate
assets of a specific TD. The MigTD on each side reads an encryption key generated by the TDX module and securely
transfers it to the MigTD on the other side, where it is written as the decryption key for its side.

Migration TDs implement and use the TDX module Service TD protocol (for details, see [TDX Module Base Spec]’s Service
TDs chapter). The host VMM may bind a MigTD to one or migrated TDs. The MigTD is in the TCB of the migrated TD 5

and its measurements are in included in the migrated TD’s attestation information. Thus, the MigTD must be pre-bound
to the migrated TD before that TD’s measurement is finalized. The MigTD lifecycle does not have to be coincidental with
the migrated TD – the only requirement is that the MigTD must be bound to the migrated TD before migration can begin
and must be operational until the migration session keys has been successfully exchanged.

Host VMM 10

The host VMMs on the source and destination sides orchestrate and manage the migration session, via their respective
TDX modules and MigTDs. They are responsible for export and import of the TD’s memory and non-memory state, via
the TDX module, and for the transport of that state between the source and the destination platforms.

TDX Module

The TDX module implements a set of TD migration primitives to implement and enforce the security of migration session 15

control, TD private memory migration and TD non-memory state migration.

2.4. Migrated Assets

The table below shows the TD assets that are migrated. Metadata includes TD-scope and VCPU-scope non-memory state
(such as control state, CPU register state etc.) and memory attributes (such as GPA and access permissions). Metadata
is not migrated as-is; it is serialized into a migration format and re-created on the destination platform. 20

Table 2.1: Migrated TD Assets

TD Asset Where Held Export Functions Import Functions

Immutable Non-Memory
State (Metadata)

TDX module global

TDR

TDCS

TDH.EXPORT.STATE.IMMUTABLE TDH.IMPORT.STATE.IMMUTABLE

Mutable Non-Memory
State (Metadata)

TDCS

TDVPS

TDH.EXPORT.STATE.TD

TDH.EXPORT.STATE.VP

TDH.IMPORT.STATE.TD

TDH.IMPORT.STATE.VP

Memory State and
Metadata

TD private pages

Secure EPT

TDH.EXPORT.MEM TDH.IMPORT.MEM

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 14 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

2.5. Guest TD Migration Life Cycle Overview

2.5.1. Updated: Reservation and Session Setup

MEMORY_
IMPORT

TD May Run on Source Platform

LIVE_EXPORT

UNINITIALIZED

RUNNABLE

TDIs may be bound1

TD Build

TD Skeleton Creation

Typical Migration Session (1/3): Migration TD Binding and Session Setup

3

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.IMPORT.
STATE.

IMMUTABLE

TDG.SERVTD.
WR(dec key)2

TDG.SERVTD.
WR(dec key)2

TDH.MNG.
CREATE TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.MNG.
ADDCX

TDH.SERVTD.
BIND

TDG.SERVTD.
RD(enc key)2

TDG.SERVTD.
RD(enc key)2

Session keys exchange
by Migration TDs

So
u

rc
e

D
es

ti
n

at
io

n

TDH.SERVTD.
BIND

TDH.MR.
FINALIZE

1 Only if the TD is enabled
for TDX Connect

2 Called by the MigTDs

TDH.TDI.
BIND*

TDG.MR.
REPORT

Figure 2.3: Updated: Migration TD Binding and Session Setup

 Guest TD Build, Migration TD Binding and TD Execution on the Source Platform 5

The source TD build and execution process is described in the [TDX Module Base Spec]. To be migratable, the TD may be
initialized, using the TDH.MNG.INIT function, with ATTRIBUTES.MIGRATABLE bit set to 1.

Before a migration session can begin, the host VMM on the source platform must use TDH.SERVTD.BIND to bind a
Migration TD to the source TD. The MigTD may read selected metadata fields of the source TD, e.g., its ATTRIBUTES and
XFAM configuration, to be used in evaluating a migration policy. The bound MigTD is reflected in the migratable TD’s 10

TDREPORT.

 Guest TD Initial Build on the Destination Platform

Same as a legacy TD build process, the host VMM creates a new guest TD by using the TDH.MNG.CREATE interface
function. This destination TD is setup as a “template” to receive the state of the Source Guest TD. As with any TD build,
the host VMM configures the TD’s private HKID (which is no relation to the HKID used on the source platform) using the 15

TDH.MNG.KEY.CONFIG interface function on each package. The host VMM can then continue to build the TDCS by adding
TDCS pages using the TDH.MNG.ADDCX interface function.

Once the destination TDCS is built and before TD import can begin, the VMM on the destination platform must use
TDH.SERVTD.BIND to bind a Migration TD to the destination TD. Once migration succeeds, the MigTD bound at the
destination will be reflected in the migratable TD’s TDREPORT. 20

 Migration TDs Session Establishment

Prior to starting any TD migration session, the migration TDs on the source and destination platforms need to create a
secure connection between them. This connection may be done for supporting one or more migration sessions.
Migration TDs may be written by any vendor; thus, details may vary. Typically, the migration TDs executing on the source
and destination platforms use a TD-quote-based mutual authentication protocol to create a VMM-transport-agnostic 25

session between them. The Migration TDs typically negotiate a protected transport session (using Diffie-Hellman
exchange). Using this protected transport session, the migration policy can be evaluated by the Migration TDs.

 Migration Session Key and Protocol Version Exchange

The migration session keys are ephemeral AES-256-GCM keys used for confidentiality and integrity protection of the
migrated TD private state, and for integrity protections of the migration session control protocol. TD shared memory 30

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 15 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

state is migrated by the untrusted host VMM per legacy methods – the same network transport may be used for both by
the host VMM. The Migration Session Keys (MSKs) are exchanged between the TDX modules on both side with the help
of the Migration TDs.

The TDX module on each side generates an ephemeral migration session encryption key. The Migration TDs on each
side uses the Service TD metadata read function (TDG.SERVTD.RD) to read the encryption key and securely transfer it to 5

the peer Migration TD, which uses the Service TD metadata write function (TDG.SERVTD.WR) to write it as the migration
session decryption key.

In addition to the decryption keys, the Migration TDs on both sides write the migration protocol version to be used by
the TDX modules.

After this point, the host VMM can invoke TDX Module functions such as TDH.EXPORT.* to export state at the source 10

platform and TDH.IMPORT.* to import TD state at the destination platform.

2.5.2. Updated: In-Order Memory Migration Phase

The TD migration session has two phases: in-order and out-order. Those terms are defined in the context of TDX module
enforcement of memory import ordering vs. memory export ordering. In-order enforcement is required during the live
migration phase, until the source TD is paused and the blackout period begins. During this phase, as long as the source 15

TD pages are mutable, order enforcement is essential to help ensure the migrated memory image is correct.

TDX-Imposed Blackout

UNINITIALIZED

TD May Run on Source Platform

TDIs may be bound*

RUNNABLE

STATE_IMPORT

Typical Migration Session (2/3): In-Order Memory Migration

4

MEMORY_IMPORT

PAUSED_EXPORTLIVE_EXPORT

In-Order Memory Export Phase

In-Order Memory Import Phase

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.EXPORT.
PAUSE

TDH.EXPORT.
TRACK(DONE)

TDH.IMPORT.
STATE.

IMMUTABLE

TDH.IMPORT.
TRACK(DONE)

Start
Token

So
u

rc
e

D
es

ti
n

at
io

n

TDH.EXPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
STATE.TD TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.IMPORT.
STATE.VP

TDH.EXPORT.
STATE.TD TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.EXPORT.
STATE.VP

TDH.TDI.
UNBIND*

* Only if the TD is enabled
for TDX Connect

Figure 2.4: Updated: In-Order Migration Phase

 TD-Scope Immutable Metadata (Non-Memory State) Migration

The TDX module protects the confidentiality and integrity of a guest TD non-memory state. Control structures, which 20

hold guest TD metadata, are not directly accessible to any software (besides the Intel TDX module) or devices. These
structures are stored encrypted in memory with the TD private key and managed by TDX module interface functions.

Immutable metadata is the set of TD-scope state variables that are set by TDH.MNG.INIT, may be modified during TD
build but are never modified after the TD’s measurement is finalized using TDH.MR.FINALIZE. Some of these state
variables control how the TD and its memory is migrated. Therefore, the immutable TD control state is migrated before 25

any of the TD memory state is migrated.

TD immutable state is exported via the TDH.EXPORT.STATE.IMMUTABLE interface function and imported on the
destination platform via the TDH.IMPORT.STATE.IMMUTABLE interface function. TD global immutable state migration is
described in Ch. 7.

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 16 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 Updated: Iterative Pre-Copy of Memory State

During the in-order migration phase, the VMM aims to balance TD availability with progressing the migration work. This
is generally done through an iterative pre-copy of TD memory pages and their in-order import on the destination
platform. The details of TD private memory migration covered in Ch. 8; this section explains its key concepts.

2.5.2.2.1. Updated: Migration Considerations for TD Private Memory 5

Memory Migration vs. Memory Encryption

TD Migration does not migrate the TD’s private HKID nor the keys used to encrypt its private memory. The TD’s private
assets are migrated using the migration session keys as described above. The host VMM on the destination platform
assigns a new free HKID and the TDX module generates new memory encryption keys.

Memory Modification Tracking and Iterative Migration 10

During live migration, the running source TD and, if enabled for TDX Connect, its bound TDIs may write to memory. A
memory page that has been exported and later modified must be re-migrated in order to ensure the consistency of the
migrated memory image. To enforce that, the TDX module employs a page modification tracking mechanism. Two export
modes may be supported:

• Write-blocking export is based on blocking memory for write, to detect TD attempts to modify memory that has been 15

exported.

• Non-blocking export (if supported by the TDX module) detects memory modifications based on EPT Dirty bit
indication set by the hardware.

Migration Streams

To utilize multiple LPs and improve migration bandwidth, the host VMM may create multiple migration streams for 20

concurrently transferring memory state. Migration streams are described in 5.4.

Migration Epochs

Each migration stream enforces import vs. export ordering within the stream. To enforce ordering across multiple
concurrent streams, migration epochs are used. Any specific page can be migrated only once per epoch. Migration
epochs are described in 6.1.4. 25

2.5.2.2.2. Migration Considerations for EPT Structures

Secure EPT trees are not migrated but rebuilt on the destination platform using memory page attributes, which are
migrated as metadata along with page contents. To do this, the host VMM calls the TDX module's TDH.MEM.SEPT.ADD
to build the Secure EPTs and TDH.IMPORT.MEM to import memory pages. TDH.IMPORT.MEM uses the cryptographically
protected page metadata (including GPA, Read, Write and Execute attributes, and PENDING state) to ensure Secure EPT 30

properties from the source platform are accurately recreated, preventing remap attacks during migration.

Migrating shared memory is outside the scope of TDX. Shared memory assigned to the TD can be migrated by the host
VMM using legacy mechanisms.

 Updated: Source TD Pause and Final Non-Memory State Migration

Following pre-copy of TD private memory, the host VMM must detach any connected TDIs and pause the source TD for 35

a brief period (also called the blackout period). The VMM initiates this via TDH.EXPORT.PAUSE, which checks security
pre-conditions and prevents TD VCPUs from executing any more.

2.5.2.3.1. Final Non-Memory State Migration

TD mutable non-memory state is a set of source TD state variables that might have changed since it was finalized via
TDH.MR.FINALIZE. Immutable non-memory state exists for the TD scope (as part of the TDR and TDCS control structures) 40

and the VCPU scope (as part of the TDVPS control structure).

Once the source TD is paused, the host VMM exports the final (mutable) TD non-memory state, for the TD as a whole
and for each VCPU.

Mutable TD state is exported by TDH.EXPORT.STATE.TD (per TD) and TDXPORT.STATE.VP (per VCPU) and imported by
TDH.IMPORT.STATE.TD and TDH.IMPORT.STATE.VP respectively. This is described in Ch. 7. 45

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 17 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

2.5.2.3.2. In-Order Memory State Migration Completion

Any memory state that has been migrated must be up to date when the in-order phase completes. If a memory page
had been migrated and its content or attributes were later updated by the running source TD or by a TDI, it must be re-
migrated. If the TD is enabled for TDX Connect, then all its private memory must be migrated.

The TDX Module enforces this using the commitment protocol described in 2.5.4 below. 5

 TD-Scope and VCPU-Scope Mutable Non-Memory State Migration

2.5.3. Out-Of-Order Memory Migration Phase

TDX-Imposed Blackout

STATE_IMPORT

PAUSED_EXPORT

In-Order Memory Export Phase

In-Order Memory Import Phase

TD May Run on Destination Platform

RUNNABLE

TD May Not Run on Source Platform

POST_EXPORT

LIVE_IMPORTPOST_IMPORT

Typical Migration Session (3/3): Out-of-Order Memory Migration

5

TDH.EXPORT.
TRACK(DONE)

TDH.IMPORT.
TRACK(DONE)

Start
Token

So
u

rc
e

D
es

ti
n

at
io

n

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

Out-Of-Order Memory Export Phase

Out-Of-Order Memory Import Phase

TDH.IMPORT.
COMMIT

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
END

Figure 2.5: Out-Of-Order Migration Phase

 Migration of Memory State and Commitment of Import 10

If TDX connect is not enabled for the migrated TD, memory pages that have not been migrated during the in-order phase
may be migrated during the out-of-order phase. Since the memory state on the source platform does not change at this
stage, the order of import vs. export is not enforced.

The host VMM on the destination platform commits the import by calling TDH.IMPORT.COMMIT (if post-copy is to be
used) or TDH.IMPORT.END. At that point, the TD may run on the destination platform and may not run on the source 15

platform.

 Updated: Post-Copy of Memory State

In some live migration scenarios, the host VMM may stage some memory state transfer to occur lazily after the
destination TD has started execution. In this case, the host VMM will be required to fetch the required pages as accesses
occur by the destination TD – this order of access is indeterminate and will likely differ from the order in which the host 20

VMM has queued memory state to be transferred.

In order to support that on-demand model, the order of memory migration during this post-copy stage is not enforced
by TDX. The host VMM may implement multiple migration queues with multiple priorities for memory state transfer.
For example, the host VMM on the source platform may keep a copy of each encrypted migrated page until it receives a
confirmation from the destination that the page has been successfully imported. If needed, that copy can be re-sent on 25

a high priority queue. Another option is, instead of holding a copy of exported pages, to call TDH.EXPORT.MEM again on
demand.

Also, to simplify host VMM software for this model, the TDX module interface functions used for memory import in this
post-copy stage return additional informational error codes to indicate that a stale import was attempted by the host

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 18 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

VMM to account for the case where the low latency import operation for a GPA superseded the import from the higher
latency import queue.

Post-copy migration is not supported if the TD is enabled for TDX Connect.

2.5.4. Migration Commitment

The commitment protocol is enforced by the Intel TDX Module to help ensure that a host VMM cannot violate the security 5

objectives of TD Live migration – for example, either the destination or source TD, but not both, may execute after live
migration of the source TD to a destination TD, even if an error causes the TD migration to be aborted.

On the source platform, TDH.EXPORT.PAUSE starts the blackout phase of TD live migration and
TDH.EXPORT.TRACK(DONE) ends the blackout phase of live migration (and marks the end of the transfer of TD memory
pre-copy, mutable TD VP and mutable TD global control state). TDH.EXPORT.TRACK(DONE) generates a secure start 10

token, which indicates that the TD will not run on the source platform and allows the destination TD to become runnable.
On the destination platform, TDH.IMPORT.TRACK consumes the start token. TDH.IMPORT.COMMIT (in case post-copy is
used) or TDH.IMPORT.END commits the migration and allows the TD to run on the destination.

2.5.5. Updated: Migration Abort

There are two abort scenarios: 15

Source Initiated Abort: In a live migration scenario, an error may cause migration orchestration to abort the
migration session while pre-copy is in progress, i.e., the source TD may still run or export
blackout started, but no start token has yet been generated. In such a scenario, the host
VMM on the source platform may initiate an abort via TDH.EXPORT.ABORT.

Destination Initiated Abort: If the pre-copy is complete and a start token has been generated, abort must be initiated 20

by the host VMM on the destination platform. The TD may be re-allowed to run on the
source platform unless the import session has been committed by TDH.IMPORT.COMMIT
or TDH.IMPORT.END. To do that, the host VMM can generate an abort token using
TDH.IMPORT.ABORT. The abort token, which indicates that the TD will not run on the
destination platform, is sent to the source platform where it may be consumed by 25

TDH.EXPORT.ABORT.

In both scenarios, the host VMM on the source platform must restore the SEPT state of exported pages on the source
platform, using TDH.EXPORT.RESTORE or TDH.MEM.SCAN.RANGE(EXPORT_RESTORE) (if supported).

The detailed operations are described in Ch. 6.

2.6. Impact of Migration on Measurement and Attestation 30

TD measurement is extended for the MigTD bound to the TD being migrated, and the ATTRIBUTES.MIGRATABLE bit is
part of the TD attestation. For details, see the [TDX Module Base Spec].

2.7. Intel TDX Module TD Migration Interface Functions Overview

See the [TDX Module Base Spec]’s overview chapter.

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 19 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

3. Updated: TD Migration Software Flows

This chapter summarizes the software flows used for TD migration using Intel TDX Module interface functions.

3.1. Typical TD Migration Flow Overview (Write-Blocking Based Export)

Source Platform Destination Platform

1. Create Worker Threads, disable
device optimizations

4. Receive memory layout and

device resource information

2. Save memory layout and device
resource information

5. Allocate guest memory and

reserve resources on devices

3. Send memory layout and
resource information to the
destination host

Send Migration Information → Receive Migration Information

6. Setup worker process and signal

the completion to source host

 TDH.SERVTD.BIND TDH.SERVTD.BIND

Establish DH session between
MigTDs

→
Establish DH session between
MigTDs

7. MigTDs exchange session keys,
version information etc.

TDG.SERVTD.RD, TDG.SERVTD.WR → TDG.SERVTD.RD TDG.SERVTD.WR
8. MigTDs exchange session keys,

version information etc.

TDH.EXPORT.STATE.
IMMUTABLE

→
TDH.IMPORT.STATE.
IMMUTABLE

 Memory Pre-Export Memory Pre-Import

9. Run multiple passes of memory
walker to transfer dirty guest-
memory pages

TDH.EXPORT.BLOCKW

10. Import TD memory contents

TDH.MEM.TRACK

TDH.EXPORT.MEM → TDH.IMPORT.MEM

TDH.EXPORT.UNBLOCKW

TDH.EXPORT.TRACK → TDH.IMPORT.TRACK

 TDH.EXPORT.PAUSE

11. Export mutable state
TDH.EXPORT.STATE.TD → TDH.IMPORT.STATE.TD

12. Import mutable state
TDH.EXPORT.STATE.VP → TDH.IMPORT.STATE.VP

 TDH.EXPORT.TRACK(start token) → TDH.IMPORT.TRACK(start token)

13. Export memory TDH.EXPORT.MEM → TDH.IMPORT.MEM 14. Import memory

15. (optional) Send end of export

indication
→

16. (optional) Receive end of export
indication

 TDH.IMPORT.COMMIT

 17. Resume VPs

 
18. (optional) Request post-copy of

pages

19. (optional) Export memory (post-
copy)

TDH.EXPORT.MEM → TDH.IMPORT.MEM

 TDH.IMPORT.END

Receive migration success
indication

 Send migration success indication

Indicate success to VM
Management

Indicate success to VM
Management

20. Tear-down source TD

Figure 3.1: Typical TD Migration Flow

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 20 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

3.2. New: Typical TD Migration Flow Overview (Non-Blocking Export)

Source Platform Destination Platform

1. Create Worker Threads, disable
device optimizations

4. Receive memory layout and

device resource information

2. Save memory layout and device
resource information

5. Allocate guest memory and

reserve resources on devices

3. Send memory layout and
resource information to the
destination host

Send Migration Information → Receive Migration Information

6. Setup worker process and signal

the completion to source host

 TDH.SERVTD.BIND TDH.SERVTD.BIND

Establish DH session between
MigTDs

→
Establish DH session between
MigTDs

7. MigTDs exchange session keys,
version information etc.

TDG.SERVTD.RD, TDG.SERVTD.WR → TDG.SERVTD.RD TDG.SERVTD.WR
8. MigTDs exchange session keys,

version information etc.

TDH.EXPORT.STATE.
IMMUTABLE

→
TDH.IMPORT.STATE.
IMMUTABLE

 Memory Pre-Export Memory Pre-Import

9. Initial In-Order Memory Export
Round: Run memory walker to
transfer dirty guest-memory
pages

TDH.MEM.SCAN.RANGE(DSCAN)

10. Initial In-Order Memory Import
Round: Import TD memory
contents

TDH.MEM.TRACK

IPIs

TDH.EXPORT.MEM → TDH.IMPORT.MEM

TDH.EXPORT.TRACK → TDH.IMPORT.TRACK

11. Additional In-Order Memory
Export Rounds: Run memory
walker to transfer dirty guest-
memory pages

TDH.MEM.SCAN.RANGE(DSCAN)

12. Additional In-Order Memory
Import Rounds: Import TD
memory contents

TDH.MEM.TRACK

IPIs

TDH.EXPORT.MEM → TDH.IMPORT.MEM

TDH.EXPORT.TRACK → TDH.IMPORT.TRACK

 TDH.EXPORT.PAUSE

13. Final In-Order Memory Export
Round

TDH.MEM.SCAN.COMP(DCHECK) 14. Final In-Order Memory Import
Round TDH.EXPORT.MEM → TDH.IMPORT.MEM

15. Export mutable state
TDH.EXPORT.STATE.TD → TDH.IMPORT.STATE.TD

16. Import mutable state
TDH.EXPORT.STATE.VP → TDH.IMPORT.STATE.VP

 TDH.EXPORT.TRACK(DONE) → TDH.IMPORT.TRACK

(optional) Send end of export
indication

→
(optional) Receive end of export
indication

 TDH.IMPORT.COMMIT

 16. Resume VPs

 
(optional) Request post-copy of
pages

17. (optional – non TDX Connect)
Export memory (post-copy)

TDH.EXPORT.MEM → TDH.IMPORT.MEM

 TDH.IMPORT.END

Receive migration success
indication

 Send migration success indication

Indicate success to VM
Management

Indicate success to VM
Management

18. Tear-down source TD

3.3. Successful Write-Blocking Based Export

The following sequence is typically used to export a TD from a source platform using write blocking.

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 21 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Table 3.1: Typical Write-Blocking Based TD Export Sequence

Migration
Phase

Step Description Plurality TDX Module Interface Functions

In-Order
Export

Start of
Export
Session

VMM initializes MigTD (as a non-
migratable TD) and binds it to the source
TD.

Once TDH.SERVTD.BIND

VMM/orchestration sets up transport
session between source and destination
MigTD. MigTDs setup their own protected
channel.

Once

MigTDs reads the session encryption key,
version information and other metadata
from the source TD and sends it to the
MigTD on the destination.

Once TDG.SERVTD.RD

MigTD receives the session encryption key
from the MigTD on the destination.
MigTD writes it as the session decryption
key to the source TD. It may also write
the migration version.

Once TDG.SERVTD.WR

VMM starts the export session and
exports immutable state creating a state
migration bundle.

Once TDH.EXPORT.STATE.IMMUTABLE

Live Memory
Export

Host VMM blocks a set of pages for
writing.

Multiple TDH.EXPORT.BLOCKW

Host VMM increments the TD’s TLB epoch Once per
migration
epoch

TDH.MEM.TRACK

Host VMM starts migration epoch and
creates epoch token migration bundle; a
page can be exported once per epoch.

Once per
migration
epoch

TDH.EXPORT.TRACK(epoch token)

Host VMM exports, re-exports or cancels
the export of TD private pages and creates
a memory migration bundle.

Multiple TDH.EXPORT.MEM

TD write attempt to write to page blocked
for writing results in an EPT violation. The
host VMM unblocks the page; if already
exported, it will need to be re-blocked
and re-exported.

Multiple TDH.EXPORT.UNBLOCKW

Mutable Non-
Memory
State Export

VMM pauses the source TD Once TDH.EXPORT.PAUSE

VMM exports mutable TD-scope state and
creates a state migration bundle.

Once TDH.EXPORT.STATE.TD

VMM exports mutable VCPU-scope state
and creates a state migration bundle.

Per VCPU TDH.EXPORT.STATE.VP

Out-Of-
Order
Export

Cold Memory
Export

Host VMM starts the out-of-order export
phase and creates a start token migration
bundle.

Once TDH.EXPORT.TRACK(start token)

Host VMM exports TD private pages and
creates a memory migration bundle.

Multiple TDH.EXPORT.MEM

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 22 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Migration
Phase

Step Description Plurality TDX Module Interface Functions

TD
Teardown

End Host VMM gets success notification from
the destination platform, terminates the
export session and tears down the TD on
the source platform

Once TDH.MNG.VPFLUSHDONE

TDH.PHYMEM.CACHE.WB

TDH.MNG.KEY.FREEID

TDH.PHYMEM.PAGE.RECLAIM

TDH.PHYMEM.PAGE.WBINVD

3.4. New: Successful Non-Blocking Export

The following sequence is typically used to export a TD from a source platform using the non-blocking method.

Table 3.2: Typical Non-Blocking TD Export Sequence

Migration
Phase

Step Description Plurality TDX Module Interface Functions

In-Order
Export

Start of
Export
Session

Same as above

Live Memory
Export (Initial
Round)

Host VMM scans memory for page export
candidates.

Multiple TDH.MEM.SCAN.RANGE(DSCAN)

Host VMM increments the TD’s TLB
epoch.

Once per
migration
epoch

TDH.MEM.TRACK

Host VMM exports TD private pages
reported by TDH.MEM.SCAN and creates
memory migration bundles.

Multiple TDH.EXPORT.MEM

Live Memory
Export
(Optional
Additional
Rounds)

Host VMM scans memory for page export
candidates.

Multiple TDH.MEM.SCAN.RANGE(DSCAN)

Host VMM increments the TD’s TLB epoch Once per
migration
epoch

TDH.MEM.TRACK

Host VMM starts migration epoch and
creates epoch token migration bundle; a
page can be exported once per epoch.

Once per
migration
epoch

TDH.EXPORT.TRACK(epoch token)

Host VMM exports, re-exports or cancels
the export of TD private pages reported
by TDH.MEM.SCAN and creates a memory
migration bundle.

Multiple TDH.EXPORT.MEM

Final Memory
Export and
Mutable Non-
Memory
State Export

VMM pauses the source TD Once TDH.EXPORT.PAUSE

VMM exports mutable TD-scope state and
creates a state migration bundle.

Once TDH.EXPORT.STATE.TD

VMM exports mutable VCPU-scope state
and creates a state migration bundle.

Per VCPU TDH.EXPORT.STATE.VP

Host VMM scans memory for page export
candidates.

Multiple TDH.MEM.SCAN.COMP(DCHECK)

Host VMM exports, re-exports or cancels
the export of TD private pages reported
by TDH.EXPORT.SCAN and creates a
memory migration bundle.

Multiple TDH.EXPORT.MEM

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 23 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Migration
Phase

Step Description Plurality TDX Module Interface Functions

Out-Of-
Order
Export

Cold Memory
Export

Host VMM starts the out-of-order export
phase and creates a start token migration
bundle.

Once TDH.EXPORT.TRACK(start token)

Host VMM exports TD private pages and
creates a memory migration bundle.

Multiple TDH.EXPORT.MEM

TD
Teardown

End Host VMM gets success notification from
the destination platform, terminates the
export session and tears down the TD on
the source platform

Once TDH.MNG.VPFLUSHDONE

TDH.PHYMEM.CACHE.WB

TDH.MNG.KEY.FREEID

TDH.PHYMEM.PAGE.RECLAIM

TDH.PHYMEM.PAGE.WBINVD

3.5. Successful Import

The following sequence is typically used to import a TD to a destination platform.

Table 3.3: Typical TD Import Sequence

Migration
Phase

Step Description Plurality TDX Module Interface Functions

In-Order
Import

Start of
Import
Session

VMM creates the destination TD’s
skeleton

Once TDH.MNG.CREATE

TDH.MNG.KEY.CONFIG

TDH.MNG.ADDCX

VMM initializes MigTD (as a non-
migratable TD) and binds it to the
destination TD.

Once TDH.SERVTD.BIND

VMM/orchestration sets up transport
session between source and destination
MigTD. MigTDs setup their own protected
channel.

Once

MigTDs reads the session encryption key,
version information and other metadata
from the destination TD and sends it to
the MigTD on the source.

Once TDG.SERVTD.RD

MigTD receives the session encryption key
from the MigTD on the source. MigTD
writes it as the session decryption key to
the destination TD. It may also write the
migration version.

Once TDG.SERVTD.WR

VMM starts the import session and
imports immutable state with a state
migration bundle received from the
source platform.

Once TDH.IMPORT.STATE.IMMUTABLE

Pre-Copy
Memory
Import

Host VMM builds the Secure EPT by
allocating physical pages.

Multiple TDH.MEM.SEPT.ADD

Host VMM imports TD private pages with
a memory migration bundle received from
the source platform.

Multiple TDH.IMPORT.MEM

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 24 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Migration
Phase

Step Description Plurality TDX Module Interface Functions

Host VMM starts migration epoch with an
epoch token migration bundle received
from the source platform; a page can be
imported once per epoch.

Once per
migration
epoch

TDH.IMPORT.TRACK(epoch token)

Mutable TD-
scope and
VCPU-scope
non-memory
state import

VMM imports mutable TD-scope state
with a state migration bundle received
from the source platform.

Once TDH.IMPORT.STATE.TD

VMM creates VCPU. Per VCPU TDH.VP.CREATE

VMM allocates physical pages for the
VCPU’s TDVPS.

Multiple
per VCPU

TDH.VP.ADDCX

VMM imports mutable VCPU-scope state
with a state migration bundle received
from the source platform.

Per VCPU TDH.IMPORT.STATE.VP

Out-Of-
Order
Import

Pre-Copy
Memory
Import

Host VMM starts the out-of-order import
phase with a start token migration bundle
received from the source platform.

Once TDH.IMPORT.TRACK(start token)

Host VMM builds the Secure EPT by
allocating physical pages.

Multiple TDH.MEM.SEPT.ADD

Host VMM imports TD private pages with
a memory migration bundle received from
the source platform.

Multiple TDH.IMPORT.MEM

Post-Copy
Memory
Import

Host VMM commits the import session,
allowing the TD to run on the destination
platform.

Once TDH.IMPORT.COMMIT

Host VMM can execute the TD as usual.
Memory can be imported on demand.

Per VCPU TDH.VP.ENTER

On EPT violation, host VMM requests a
page import from the source platform.

Multiple N/A

Host VMM builds the Secure EPT by
allocating physical pages.

Multiple TDH.MEM.SEPT.ADD

Host VMM imports TD private pages with
a memory migration bundle received from
the source platform.

Multiple TDH.IMPORT.MEM

End Host VMM terminates the import session Once TDH.IMPORT.END

3.6. TD Import Abort

The following sequences are typically used to abort an import of TD to a destination platform, if an error is detected.

3.6.1. TD Import Abort During the In-Order Import Phase

Table 3.4: Typical TD Import Sequence Abort During In-Order Input 5

Migration
Phase

Step Description Plurality TDX Module Interface Functions

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 25 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

Migration
Phase

Step Description Plurality TDX Module Interface Functions

In-Order
Import

Pre-Copy
Memory
Import
(Failed)

Host VMM builds the Secure EPT by
allocating physical pages.

Multiple TDH.MEM.SEPT.ADD

Host VMM imports TD private pages with
a memory migration bundle received from
the source platform.

TDH.IMPORT.MEM returns an error status
indicating a failed import session.

Multiple TDH.IMPORT.MEM

Abort Token
Transmission
(Optional)

VMM creates an abort token and
transmits it to the source platform.

Once TDH.IMPORT.ABORT

TD
Teardown

End Host VMM terminates the import session
and tears down the TD on the destination
platform

Once TDH.MNG.VPFLUSHDONE

TDH.PHYMEM.CACHE.WB

TDH.MNG.KEY.FREEID

TDH.PHYMEM.PAGE.RECLAIM

TDH.PHYMEM.PAGE.WBINVD

3.6.2. TD Import Abort During the Out-Of-Order Import Phase

Table 3.5: Typical TD Import Sequence Abort During Out-of-Order Input

Migration
Phase

Step Description Plurality TDX Module Interface Functions

In-Order
Import

Out-Of-
Order
Import

Memory
Import
(Failed)

Host VMM imports TD private pages with
a memory migration bundle received from
the source platform.

TDH.IMPORT.MEM returns an error status
indicating a failed import session.

Multiple TDH.IMPORT.MEM

Abort Token
Transmission

VMM creates an abort token and
transmits it to the source platform.

Once TDH.IMPORT.ABORT

TD
Teardown

End Host VMM terminates the import session
and tears down the TD on the destination
platform

Once TDH.MNG.VPFLUSHDONE

TDH.PHYMEM.CACHE.WB

TDH.MNG.KEY.FREEID

TDH.PHYMEM.PAGE.RECLAIM

TDH.PHYMEM.PAGE.WBINVD

3.7. TD Export Abort 5

The following sequence is typically used to export a TD from a source platform, if the export is aborted.

TDX Module TD Migration Spec Section 1: Introduction and Overview Draft

June 2025 DRAFT - WORK IN PROGRESS Page 26 of 82

Se
ct

io
n

 1
:

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

3.7.1. Export Abort During the In-Order Export Phase

Table 3.6: Typical TD Export Sequence Abort During In-Order Export

Migration
Phase

Step Description Plurality TDX Module Interface Functions

In-Order
Export

Start of
Export
Session

VMM starts the export session and
exports immutable state creating a state
migration bundle.

Once TDH.EXPORT.STATE.IMMUTABLE

Export Abort Host VMM aborts the export session. Once TDH.EXPORT.ABORT

Source TD
Run and
Restore

 Host VMM may run and manage the
source TD

Multiple TDH.VP.ENTER etc.

Host VMM restores SEPT entries to their
normal non-export state

Multiple TDH.EXPORT.UNBLOCKW

TDH.EXPORT.RESTORE

3.7.2. Export Abort During the Out-Of-Order Export Phase

Table 3.7: Typical TD Export Sequence Abort During Out-Of-Order Export 5

Migration
Phase

Step Description Plurality TDX Module Interface Functions

In-Order
Export

Out-Of-
Order
Export

Export Abort Host VMM receives an abort token from
the destination platform and abort the
export session.

Once TDH.EXPORT.ABORT

Source TD
Run and
Restore

 Host VMM may run and manage the
source TD

Multiple TDH.VP.ENTER etc.

Host VMM restores SEPT entries to their
normal non-export state

Multiple TDH.EXPORT.UNBLOCKW

TDH.EXPORT.RESTORE

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 27 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

SECTION 2:
TD MIGRATION ARCHITECTURE SPECIFICATION

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 28 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

4. Migration TD, Migration Policy and the Extended TCB

This chapter describes the role of the Migration TD, the migration policy it implements and the extended TCB for migrated
TDs. For details of the Intel reference MigTD, refer to the [MigTD Spec].

4.1. Extended TCB and the Migration Policy

The TCB of a migrated TD is extended to include the Migration TD bound to it. The Migration TD builds trust relationships 5

with to other Migration TDs, and through them, with other platforms and their component. Thus, it can be said that a
migrated TD’s effective TCB extends to the whole migration pool of platforms, each with its own Migration TD, TDX
modules etc.

Platform

MCHECKNP-SEAMLDROther ACMs

TDX
Module

Host
VMM

BIOS

Legacy
VM

SMM

TD

Legacy
VM

Legacy
VM

All ACM’s and MCHECK are in
the same TCB group

TD

P-SEAMLDR

Mig
TD

A B

A trusts B

Source Platform

Destination Platform X

Mig
TD

Destination Platform Y

Mig
TD

Mig
Policy

Mig
Policy

Mig
Policy

Figure 4.1: Trust Relationship with Migration TDs 10

This extended TCB is controlled by the migration policy implemented by the Migration TD. TDX does not enforce any
specific migration policy; this is up to the migration TD’s writer.

4.2. Attestation of the Migration TD and its Migration Policy

A migrated TD’s attestation reflects the current platform on which it is running. I.e., calling TDG.MR.REPORT generates
a TDREPORT_STRUCT with CPUSVN and TEE_TCB_INFO for the current platform. However, there is no requirement to 15

re-attest a TD after migration. The initial attestation, as well as attestation done at any time during the migrated TD’s
lifetime, contains the information about the TD’s extended TCB, provided as a measurement of the Migration TD and its
migration policy.

A Migration TD is a private case of a Service TD, which is described in the [Base Spec]. As such, a hash of the bound
Migration TD’s TDREPORT_STRUCT is included in the migrated TD’s TDREPORT_STRUCT (as the SERVTD_HASH field). The 20

service TD protocol allows, at binding time, to select which field of the TDREPORT_STRUCT is included in the calculation
of SERVTD_HASH.

The static components of the Migration TD, i.e., code and data added and measured during its build, are measured by its
MRTD. This may include, for example, a baseline migration policy. Migration TD writers are expected to measure the
configurable part of the migration policy and its parameters, i.e., any change that can be made after the Migration TD 25

build was finalized, using one or more of the RTMRs (run time measurement registers) provided by the TDX architecture
via the TDG.MR.RTMR.EXTEND interface function. Those RTMRs should be included in the SERVTD_HASH calculation.
Thus, the migration policy is attested as part of the Migration TD, and as such, as part of the migrated TD.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 29 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

SERVTD_HASH is not migrated; it is recalculated at the beginning of an import session (TDH.IMPORT.STATE.IMMUTABLE)
to reflect the Migration TD which is bound at the destination.

4.3. Inputs to the Migration TD’s Migration Policy Evaluation

The following data can be read and evaluated by the Migration TD, as part of its migration policy evaluation. The
migration TD may reflect such inputs in an RTMR (using TDG.MR.RTMR.EXTEND) so that it becomes part of any migrated 5

TD’s attestation.

System-Scope Information Provided by TDG.SYS.RD*

System-scope (platform and TDX module) information can be read using TDG.SYS.RD or TDG.SYS.RDALL. Examples of
such information are:

• TDX features supported on this platform (e.g., TDX_FEATURES0 field) 10

• Supported TD features (e.g., ATTRIBUTES_FIXED0/1, XFAM_FIXED0/1, CPUID_CONFIG_VALUES and
IA32_ARCH_CAPABILITIED_CONFIG_MASK fields)

• TD Migration protocol features (e.g., MIN/MAX_EXPORT/IMPORT_VERSION fields)

The complete list of fields enumerated by TDG.SYS.RD* is provided in the [ABI Spec].

System-Scope Information Provided by TDG.MR.REPORT 15

The Migration TD may call TDG.MR.REPORT to get the TDREPORT_STRUCT, which contains information about the
platform (CPUSVN) and the TDX module (TEE_TCB_INFO).

Migration Policy Configuration

The Migration TD’s migration policy may be configured by, e.g., the host VMM.

4.4. Migrated TD Information Provided by TDG.SERVD.RD 20

Migration TDs on both sides may read migrated TD information using TDG.SERVD.RD, in order to decide whether that TD
can be migrated to a specific destination platform. Note that similar checks are also done by the TDX module on import,
so there’s no strict requirement for the Migration TD to do them.

Examples of such information are:

• ATTRIBUTES_FIXED0/1 25

• XFAM_FIXED0/1

• GPAW

• CPUID_VALUES

4.5. Migration Protocol Version Setup

The migration protocol supports versioning, to allow for future updates. 30

Before starting a migration session, the MigTDs on the source and destination should agree on migration protocol version
that is supported by both sides. To do so, each MigTD can read the following fields using TDG.SYS.RD:

• MIN_EXPORT_VERSION

• MAX_EXPORT_VERSION

• MIN_IMPORT_VERSION 35

• MAX_IMPORT_VERSION

The MigTD on each side then should write the MIG_VERSION to the migrated TD using TDG.SERVD.WR.

4.6. Migration Session Keys (MSKs) Exchange

1. The MigTD on each side reads the migration encryption key (MIG_ENC_KEY using TDG.SERVTD.RD. The TDX module
generates a new key on each such read operation. 40

2. The MigTD on each side sends the key value over a secure channel to the peer MigTD on the other side.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 30 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Note: A MigTD must never send the same key value to more than one peer MigTD. Failing to do so may expose
TDX to an attack where the same TD is migrated to more than one destination. The MigTD should always
read a new MIG_ENC_KEY value using TDG.SERVTD.RD if it needs to resend it.

3. The MigTD on each side writes the received key value as the migration decryption key (MIG_DEC_KEY), using
TDG.SERVTD.WR. 5

4.7. Example Migration Session Establishment

Note: The example below illustrates migration session establishment and doesn’t necessarily imply actual
implementation.

The goal is to stablish secure transport channel between Intel TDX Modules and MigTDs on both sides across compatible
platforms and reserve resources for the migration session. 10

1. On the source platform, TD-s to be migrated is created with MIGRATABLE attribute.
2. On the source platform, MigTD-s is created and built.
3. On the source platform, MigTD-s evaluates the platform and TDX module information using TDG.SYS.RD* and

TDG.MR.REPORT and reflects its updated migration policy in the MigTD’s RTMR[3], using TDG.MR.RTMR.EXTEND.
4. The host VMM on the source platform binds MigTDs to TD-s via an unsolicited Service TD binding using 15

TDH.SERVTD.BIND:
4.1. MigTD-s requests the host VMM to be bound to TD-s, using TDG.VP.VMCALL.
4.2. The VMM invokes TDH.SERVTD.BIND to bind TD0 to MigTD-s. As a result, the MigTD’s TDREPORT fields’ hash

is included in the migrated TD’s TDREPORT (as SERVTD_HASH).
4.3. TDH.SERVTD.BIND returns the migrated TD’s binding handle and TD_UUID. The host VMM communicates 20

them to MigTD-s.
5. The host VMM on the source platform finalizes the build of TD-s using TDH.MR.FINALIZE.
6. TD-s executes on the source platform.
7. Similar to MigTD-s above, on the destination platform, MigTD-d is created and built. It evaluates its platform and

TDX module and reflects the updated migration policy in RTMR[3]. 25

8. The migration orchestrator triggers a migration of TD-s from the source platform to the destination platform.
9. MigTD-s may read selected metadata of TD-s (e.g., its ATTRIBUTES and XFAM) using TDG.SERVTD.RD, to use as an

input to the migration policy evaluation.
10. The migration orchestrator requests the source and destination Mig TDs to establish a secure session and negotiate

the migration policy agreement. 30

11. MigTD-s verifies the MigTD-d quote and establishes a secure transport key for the session with the destination
platform (and vice-versa).

12. MigTD-s authenticates the Migration Policy and evaluates it per the capabilities (SVN etc.) of the destination
platform (learnt via the quote) for the specified live migration session.

13. On the destination platform, a destination TD-d skeleton is created via legacy process. 35

14. On the destination platform, the host VMM may bind MigTD-d to TD-d using TDH.SERVTD.BIND.
15. Migration Keys Exchange:

15.1. MigTD-s reads the source migration encryption key using TDG.SERVTD.RD. This key is used as the forward
migration session key, to encrypt information exported by the TDX module.

15.2. MigTD-s sends the forward migration session key to MigTD-d. 40

15.3. On the destination platform, MigTD-d writes the forward migration session key, as the migration decryption
key, using TDG.SERVTD.WR.

15.4. MigTD-d reads the destination migration encryption key using TDG.SERVTD.RD. This key is used as the
backward migration session key, to encrypt information sent by the TDX module on the destination.

15.5. MigTD-d sends the backward migration session key to MigTD-s. 45

15.6. On the destination platform, MigTD-d writes the backward migration session key, as the migration decryption
key, using TDG.SERVTD.WR.

16. The host VMM on the source platform can now initiate the state export via TDH.EXPORT* SEAMCALLs and import
state via TDH.IMPORT* SEAMCALLs

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 31 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

5. Updated: Common TD Migration Mechanisms

This chapter describes the infrastructure used by all Import/Export APIs to migrate TD private memory and metadata.

5.1. Migration Bundles

A migration bundle is the basic unit of information transported between the source and destination platforms. This
section describes the generic migration bundle structure. Private memory migration uses an enhanced format, described 5

in 8.3.

5.1.1. Overview

TD information is transported from the source platform to the destination platform in migration bundles. A migration
bundle consists of migration data, which may span one or more 4KB pages, and migration bundle metadata (MBMD).
The host VMM may add its own untrusted metadata to the migration bundle, for managing the migration. Migration 10

bundle transport is the responsibility of untrusted software and is out of the scope of this specification.

Destination PlatformSource Platform

Migration
Bundle

Metadata
(MBMD)

Migrated
Data

Migration Bundle

Untrusted
Metadata
(added by

host VMM)

TDH.EXPORT.*

Migration
Bundle

Metadata
(MBMD)

Migrated
Data

Migration Bundle

Untrusted
Metadata
(read by

host VMM)

TDH.IMPORT.*
Transport

Figure 5.1: Migration Bundle

5.1.2. Migration Data

Migration data contains either TD private memory contents or TD non-memory state. It is confidentiality-protected using 15

AES-GCM with the TD migration key and a running migration session counter. Migration data is integrity-protected by its
associated MBMD. For encryption details, see 5.3.

Note: Migration of shared memory pages is the responsibility of untrusted software and is out of the scope of this
specification.

In memory, migration data occupies one or more 4KB shared memory pages, managed by the host VMM. 20

5.1.3. Migration Bundle Metadata (MBMD)

A migration bundle metadata (MBMD) structure provides metadata for the migrated data in the migration bundle. In
memory, MBMD resides in a shared page, managed by the host VMM, and must be naturally aligned.

An MBMD is not confidentiality-protected. The host VMM can read the MBMD; this is required in order for the VMM to
perform the required operations. E.g., the host VMM on the destination platform reads the MBMD to decide which 25

import function to call.

The MBMD provides integrity protection for itself and for its associated migration data.

The MBMD structure consists of a fixed header and a per-type variable part. The header contains the following fields:

SIZE: Overall size of the MBMD structure, in bytes

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 32 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

MIG_VERSION: Migration protocol version

MB_TYPE: The type of information being migrated

MB_COUNTER: Per-stream migration bundle counter

MIG_EPOCH: Migration epoch number

MIGS_INDEX: Index of the migration stream 5

IV_COUNTER: Monotonically increasing counter, used as a component in the AES-GCM IV

The last field of each MBMD is an AES-256-GCM MAC over other MBMD fields and other associated migration data
(migration pages).

The detailed MBMD definition is provided in [TDX Module ABI Spec].

5.1.4. Untrusted Metadata 10

The host VMM may add its own metadata to migration bundle, e.g., to support its implementation of the migration
protocol. This metadata is untrusted and is not used by the TDX module.

5.2. Updated: Export and Import Functions Interface

On each invocation, export and import functions operate on a single migration bundle and a specific migration stream.

5.2.1. Migrating a Multi-Page Migration Bundle 15

Migration bundles may consist of multiple pages of migrated information. To export a multi-page migration bundle, the
host VMM on the source platform prepares a set of buffers in shared memory. The host VMM provides the MBMD’s HPA
and a list of HPA pointers to the migration pages as an input to the TDH.EXPORT* function. The required number of
migration pages per TDH.EXPORT.* function is enumerated by the TDX module. See the [ABI Spec] for details.

To import a multi-page migration bundle, the host VMM on the destination platform prepares the set of migration pages 20

and the MBMD, as received from the source platform, in shared memory. The host VMM provides the MBMD’s HPA and
a list of HPA pointers to the migration pages as an input to the TDH.IMPORT* function.

Destination PlatformSource Platform

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Page List

Migration
Bundle

Metadata
(MBMD)

4KB
Migration

Page

4KB
Migration

Page

4KB
Migration

Page

Multi-Page
Migration

Bundle

TDH.EXPORT.* TDH.IMPORT.*

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Page List

Transport

Migrated Data

Migration
Bundle

Metadata
(MBMD)

4KB
Migration

Page

4KB
Migration

Page

4KB
Migration

Page

Multi-Page
Migration

Bundle

Migrated Data

Untrusted
Metadata
(added by

host VMM)

Untrusted
Metadata
(read by

host VMM)

Figure 5.2: Migrating a Multi-Page Migration Bundle

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 33 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

5.2.2. Updated: Migration Functions Interruptibility

TDH.EXPORT.* and TDH.IMPORT.* functions may take relatively long time to execute. This is especially true for memory
migration, which can process up to 512 4KB pages. To avoid latency issues, such functions may be interruptible and
resumable. This is supported as follows:

• TDH.EXPORT.* and TDH.IMPORT.* functions are designed to synchronously check for a pending external event by 5

reading MSR_INTR_PENDING (once after every pre-determined number of cycles, chosen to be smaller than the
maximum allowed cycle latency).

• As described later, migration functions that work with a Migration Stream use Migration Stream Context (MIGSC). If
an external event is pending, the functions store their context in the proper MIGSC and return with a
TDX_INTERRUPTED_RESUMABLE completion status. 10

• The host VMM is expected to call the TDH.EXPORT.* or TDH.IMPORT.* function again with the same set of inputs
until the operation is completed successfully (completion status is TDX_SUCCESS) or some error occurs (completion
status indicates an error).

• An input flag indicates whether the invocation of a TDH.EXPORT.* or TDH.IMPORT.* function starts a new operation
(and possibly aborts an interrupted one) or resumes an interrupted operation. A migration function which is called 15

as a resumption of an interrupted operation checks to see if an intermediate state has been saved, and if so, it checks
that it is being invoked with the same input arguments as last time when it was interrupted.

5.3. Cryptographic Protection of Migration Data

5.3.1. Encryption Algorithm

TD migration uses AES in Galois/Counter Mode (GCM) to transfer state between the source and destination platform 20

platforms. Per [AES-256-GCM] definitions, the TD data private memory or non-memory state temporarily held in the
CPU cache during TDH.EXPORT.* forms the “Plaintext”, and some of the MBMD fields form the “Additional Authenticated
Data”. The “Plaintext” is encrypted using a Migration key (described below). The MAC size, also known as t, as defined
in [AES-256-GCM], must be 128 bits.

The Initialization Vector (IV) is 96 bits. It is composed as described below. Since 64 bits will never wrap around in practice, 25

this helps ensure a unique counter for each stream.

Table 5.1: Components of the 96-bits IV

Bits Size Name Description

63:0 64 IV_COUNTER Starts from 1, incremented by 1 every time AES-GCM is used to encrypt data
and/or generate a MAC for a migration bundle. The counter is incremented
even if the data is discarded and not used for migration.

79:64 16 MIGS_INDEX Stream index (see 5.3)

95:80 16 RESERVED Set to 0

5.3.2. Migration Session Keys

Two migration session keys are used, one in each direction: 30

• The TDX module on the source platform generates a migration session forward key for encrypting migration bundles
by the source TDX module and decrypting them by the destination TDX module.

• The TDX module on the destination platform generates a migration session backward key for encrypting migration
bundles by the destination TDX module and decrypting them by the source TDX module.

Each of the MigTDs on the source and the destination platforms reads the key generated on its side, known as the 35

migration encryption key, from the TDX module’s migrated TD’s metadata, and transfers it using a secure connection to
its peer MigTD on the other side of the migration session. The peer MigTD then writes the key, to be used as the migration
decryption key, to the TDX module’s migrated TD’s metadata. TD metadata read and write use the Service TD protocol,
as described in the [TDX Module Base Spec].

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 34 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

TDX Module TDX Module

Migrated TD s
Metadata
(in TDCS)

Migrated TD s
Metadata
(in TDCS)

Encryption
Key

Decryption
Key

Source
Platform

Destination
Platform

Decryption
Key

Encryption
Key

Migration TD Migration TD
Forward Migration Session Key

Backward Migration Session Key

Figure 5.3: Migration Session Keys Exchange

The migration keys properties are as follows:

• The key strength is 256 bits.

• A new encryption key is generated by the TDX module on TD creation (TDH.MNG.CREATE) and at the beginning of 5

each migration session (TDH.*PORT.STATE.IMMUTABLE).

• The encryption key is read by the MigTD from the migrated TD’s metadata using the Service TD metadata protocol,
as described in the [TDX Module Base Spec].

• The MigTD transfer the encryption key to its peer MigTD, over a secure channel both MigTDs have created.

• The decryption key is written by the MigTD to the migrated TD’s metadata using the Service TD metadata protocol, 10

as described in the [TDX Module Base Spec].

• The keys are accessible only by the MigTD and the Intel TDX Module.

• On migration session start by TDH.*PORT.STATE.IMMUTABLE, the Intel TDX module copies the encryption and
decryption keys into working keys that are used throughout the session.

• The keys are used by TDH.EXPORT.*/TDH.IMPORT.* to control the migration session and migrate TD memory and 15

non-memory. The migration stream AES-GCM protocol requires that state is migrated in-order between the source
and destination platform. This helps guarantee the order within each migration stream.

• The keys are destroyed when a TD holding them is torn down, or when new keys are generated or programmed.

5.4. Migration Streams and Migration Queues

Migration stream is a TDX concept. Multiple streams allow multi-threaded, concurrent export and import, and enable 20

the Intel TDX Module to enforce proper ordering of migration bundles during the in-order phase where this is essential.

Migration queue is a host VMM concept. Multiple queues allow QoS and prioritization. E.g., Post-copy of pages on
demand (triggered by an EPT violation on the destination platform) may have a higher priority than other post-copy of
pages. To avoid head-of-line blocking by waiting in the same queue as lower priority pages, a separate high priority queue
can be used by the host VMM. 25

From the migration streams and migration queues perspective, a migration session is divided into two main phases:

• In-order, where the source TD may run, and its memory and non-memory state may change. During the in-order
phase, the order of memory migration is critical. A newer export of the same memory page must be imported after
an older export of the same page. Furthermore, for any memory page that has been migrated during the in-order
phase, the most up-to-date version of that page must be migrated before the in-order phase ends. In the in-order 30

phase, one or more migration streams are mapped to each migration queue.

• Out-of-order, where the source TD does not run, and its memory and non-memory state may not change. During
out-of-order, the order of memory migration is not important – except that migration bundles exported during the

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 35 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

in-order phase can’t be imported during the out-of-order phase. Furthermore, the host VMM may assign exported
pages (even multiple copies of the same exported page) to different priority queue. This is used, e.g., for on-demand
migration after the destination TD starts running.

The start tokens, generated by TDH.EXPORT.TRACK(DONE) and verified by TDH.IMPORT.TRACK, serve as markers to
indicate the end of the in-order phase and start of the out-of-order phase. They are used to implement a rendezvous 5

point, enforcing all the in-order state (across all streams) to have been imported before the out-of-order phase starts and
the destination TD may execute.

5.3 describes how the stream context held by the source and the destination platforms and the MBMD fields included in
each migration bundle are used to construct the non-repeated AES-GCM IV. Note also that the same stream queues can
be used for both in-order and out-of-order. The semantic use of the queues is up to the host VMM. 10

STREAM_INDEX
(16 bits)

AES_GCM_CONTER
(64 bits)

AES-256-GCM Migration Session Forward Key

TDH.EXPORT.PAGE
@ LP1

Migration
Bundle 3

TDCS

Migration
Bundle 0

Migration
Bundle 2

TDCS

Encryption
Key

Decryption
Key

Migration
Bundle 3

Migration
Bundle 0

Migration
Bundle 2

TDH.EXPORT.PAGE
@ LP2

TDH.IMPORT.PAGE
@ LP1

TDH.IMPORT.PAGE
@ LP2

Source
Platform

Destination
Platform

0
(16 bits)

From MBMD

AES-256-GCM IV (96 bits)

MB 0
MB_COUNTER = 0

MB 3
MB_COUNTER = 1

Forward Migration Stream 0 (Default)

MB 1
MB_COUNTER = 0

MB 2
MB_COUNTER = 1

Forward Migration Stream 1
Migration
Bundle 1

Migration
Bundle 1

Stream
Context

Stream
Context

Stream
ContextStream

Context

Stream
Context

Stream
Context

Backward Migration Stream 0 (Default)

AES-256-GCM Migration Session Backward Key

Decryption
Key

Encryption
Key

MB
MB_COUNTER = 0

MB
MB_COUNTER = 1

TDH.IMPORT.ABORTTDH.EXPORT.ABORT

Figure 5.4: Migration Streams

Migration streams have the following characteristics:

• Within each stream, state is migrated in-order. This is enforced by the MB_COUNTER field of MBMD.

• Export or import operations using a specific migration stream must be serialized. Concurrency is supported only 15

between streams.

• The host VMM should use the same stream index to import memory on the destination TD (which should be in
MEMORY_IMPORT, STATE_IMPORT or RUNNABLE state). This is enforced by TDH.IMPORT.MEM.

• Non-memory state can only be migrated once; there is no override of older migrated non-memory state with a newer
one. Ordering requirements (e.g., TD-scope non-memory state must be imported before VCPU non-memory state) 20

are enforced by the lifecycle state machine, as described in 6.2.

• The maximum number of forward streams is implementation dependent:
o Each stream requires context space allocation.
o Stream ID requires a field in the MBMD header.

• There is one backward stream. 25

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 36 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

• The maximum total number of forward and backward migration streams is enumerated by MAX_MIGS, readable
TDH.SYS.RD*.

5.5. Measurement and Attestation

5.5.1. TD Measurement Registers Migration

TDs have two types of measurement registers: 5

MRTD: Static measurement of the TD build process and the initial contents of the TD. This state is migrated as part
of the global immutable state of the TD (via TDH.EXPORT.STATE.IMMUTABLE and
TDH.IMPORT.STATE.IMMUTABLE).

RTMR: An array of general-purpose measurement registers, available to the TD software for measuring additional
logic and data loaded into the TD at runtime. Since this measurement covers dynamic state beyond the 10

static state and can be extended by TD software via TDG.MR.RTMR.EXTEND, this state is migrated only
during the blackout period, as part of the TD’s mutable state (via TDH.EXPORT.STATE.TD and
TDH.IMPORT.STATE.TD).

All TD measurements are reflected in TD attestations.

5.5.2. TD Measurement Reporting Changes 15

The TDINFO structure is enhanced to include hashes of Service TDs’ TDINFO; for TD migration, the applicable Service TD
is the Migration TD. Refer to the [TDX Module Base Spec] for a discussion of Service TDs.

5.5.3. TD Measurement Quoting Changes

To create a remotely verifiable attestation, the TDREPORT_STRUCT must be converted into a Quote signed by a certified
Quote signing key, as described in the [TDX Module Base Spec]. 20

TDREPORT_STRUCT is HMAC’ed using an HMAC key unique to each platform and accessible only to the CPU. This protects
the integrity of the structure and can only be verified on the local platform via the SGX ENCLU(EVERIFYREPORT2)
instruction. TDREPORT_STRUCT cannot be sent off platforms for verification; it first must be converted into signed
Quotes.

If a report is generated by TDG.MR.REPORT on the source platform, but the TD is migrated to a destination platform, the 25

local HMAC key is different and hence the EVERIFYREPORT2 on the migrated TDG.MR.REPORT is expected to fail. The TD
software is typically unaware of being migrated. It is expected to retry the TDG.MR.REPORT operation if it fails.

5.5.4. TCB Recovery and Migration

The TDX architecture has several levels of TCB:

• CPU HW level, which includes microcode patch, ACMs etc. 30

• Intel TDX Module

• Attestation Enclaves, which include the TD Quoting Enclave and Provisioning Certification Enclave

The TCB Recovery story is different for each level. The existing TCB Recovery model for CPU SW level items applies
similarly to TDX and SGX and requires a restart of the platform to take effect. The Intel TDX Module can be unloaded
and reloaded to reflect an upgraded Intel TDX Module. The enclaves can be upgraded at runtime, but if the PCE is 35

upgraded, a new certificate must be downloaded.

5.6. Updated: TDX Control Structure Updates

This section discusses updates and additions to the global and TD-scope control structures.

5.6.1. MIGSC: Migration Stream Context

Migration streams are defined in 5.3. 40

MIGSC (Migration Stream Context) is an opaque control structure that holds migration stream context. MIGSC occupies
a single 4KB physical page; it is created using the TDH.MIG.STREAM.CREATE function. MIGSC can only be created if a
migration session is not in progress.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 37 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

TDCS

TDCSTDX
TDCX Page

Shared:
VMM-Managed, Shared HKID

Opaque (TD Private HKID):
VMM Allocated, Intel TDX Module Managed

TDR Page

Opaque (Intel TDX Module
Global Private HKID):

VMM Allocated,
Intel TDX Module Managed

Secure EPT Tree

SEPT_PAGE
SEPT_PAGE
SEPT Page

Migration Stream Context

SEPT_PAGE
SEPT_PAGE

MIGSC

Figure 5.5: TD-Scope Control Structures Overview

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 38 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

6. Updated: Migration Session Control and State Machines

This chapter discusses the TD migration session control, state machine and messaging protocol.

6.1. Updated: Overview

6.1.1. Updated: Pre-Migration

Prior to starting a migration session, the following should have happened: 5

• On the destination platform, the TD has been created as a skeleton (control structure pages only).

• Migration TDs should be bound as service TDs on both source and destination platforms.

• Migration TDs must have exchanged the migration session keys and decided on a migration protocol version.

MEMORY_
IMPORT

TD May Run on Source Platform

LIVE_EXPORT

UNINITIALIZED

RUNNABLE

TDIs may be bound1

TD Build

TD Skeleton Creation

Typical Migration Session (1/3): Migration TD Binding and Session Setup

3

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.IMPORT.
STATE.

IMMUTABLE

TDG.SERVTD.
WR(dec key)2

TDG.SERVTD.
WR(dec key)2

TDH.MNG.
CREATE TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.MNG.
ADDCX

TDH.SERVTD.
BIND

TDG.SERVTD.
RD(enc key)2

TDG.SERVTD.
RD(enc key)2

Session keys exchange
by Migration TDs

So
u

rc
e

D
es

ti
n

at
io

n

TDH.SERVTD.
BIND

TDH.MR.
FINALIZE

1 Only if the TD is enabled
for TDX Connect

2 Called by the MigTDs

TDH.TDI.
BIND*

TDG.MR.
REPORT

Figure 6.1: Updated: Pre-Migration 10

6.1.2. Updated: Successful Migration Session

Figure 6.3 below shows an overview of a successful migration session. This figure shows the following:

• Migration session control interface functions (TDH.EXPORT.PAUSE, TDX.EXPORT.TRACK etc.)

• States of the TD Operation State Machine (RUNNABLE, LIVE_EXPORT etc.) are also shown. The state machine itself
is discussed in 6.2.4.2 below. 15

• Phases of the export and import sessions

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 39 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

TDX-Imposed Blackout

UNINITIALIZED

TD May Run on Source Platform

TDIs may be bound*

RUNNABLE

STATE_IMPORT

Typical Migration Session (2/3): In-Order Memory Migration

4

MEMORY_IMPORT

PAUSED_EXPORTLIVE_EXPORT

In-Order Memory Export Phase

In-Order Memory Import Phase

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.EXPORT.
PAUSE

TDH.EXPORT.
TRACK(DONE)

TDH.IMPORT.
STATE.

IMMUTABLE

TDH.IMPORT.
TRACK(DONE)

Start
Token

So
u

rc
e

D
es

ti
n

at
io

n

TDH.EXPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
STATE.TD TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.IMPORT.
STATE.VP

TDH.EXPORT.
STATE.TD TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.EXPORT.
STATE.VP

TDH.TDI.
UNBIND*

* Only if the TD is enabled
for TDX Connect

Figure 6.2: Updated: Migration Session In-Order Phase (Success Case)

On the source platform, an export session’s in-order export phase starts with the host VMM invoking the
TDH.EXPORT.STATE.IMMUTABLE function. This function creates a migration bundle that is transmitted by the host VMM
to the destination platform, where TDH.IMPORT.STATE.IMMUTABLE is invoked to start the import session’s in-order 5

import phase.

TDH.EXPORT.PAUSE pauses the TD on the source platform and starts the TDX-imposed blackout period. If the TD is
configured with TDX Connect enabled, the TDX module checks that all non-migratable assets have been released (e.g.,
MMIO mappings, TDIs).

TDH.EXPORT.TRACK(DONE), when invoked on the source platform, verifies proper in-order export: 10

• The TD’s non-memory state must have been exported.

• If any TD private page has been exported, the latest version of that page must have been exported.

• If the TD is configured with TDX Connect enabled, all TD private pages must have been exported.

TDH.EXPORT.TRACK(DONE) ends the in-order memory export phase and creates a start token migration bundle that is
transmitted by the host VMM to the destination platform, where TDH.IMPORT.TRACK(DONE) is invoked to end the in-15

order import phase. See also the discussion of migration epochs in 6.1.4 below.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 40 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

TDX-Imposed Blackout

STATE_IMPORT

PAUSED_EXPORT

In-Order Memory Export Phase

In-Order Memory Import Phase

TD May Run on Destination Platform

RUNNABLE

TD May Not Run on Source Platform

POST_EXPORT

LIVE_IMPORTPOST_IMPORT

Typical Migration Session (3/3): Out-of-Order Memory Migration

5

TDH.EXPORT.
TRACK(DONE)

TDH.IMPORT.
TRACK(DONE)

Start
Token

So
u

rc
e

D
es

ti
n

at
io

n

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

Out-Of-Order Memory Export Phase

Out-Of-Order Memory Import Phase

TDH.IMPORT.
COMMIT

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
END

Figure 6.3: Migration Session Out-Of-Order Phase (Success Case)

TDH.IMPORT.COMMIT, invoked on the destination platform, commits the migration session and enables the TD to run
on it, while memory import may continue. This also helps ensure that the TD will not run on the source platform, since
an abort token can no longer be generated. 5

Optionally, TDH.IMPORT.END, invoked on the destination platform, commits the migration session and enables the TD
to run on it if not already done by TDH.IMPORT.COMMIT. TDH.IMPORT.END ends the migration session; memory import
is no longer allowed.

6.1.3. Aborted Migration Session

 Abort during the In-Order Phase 10

Figure 6.4 below shows a case where a migration session is aborted during the in-order migration phase.
TDH.EXPORT.ABORT, invoked by the host VMM, terminates the export session and enables the TD to resume running on
the source platform. By design, the TD should not be able to run on the destination platform – it is up to the host VMM
to free up any resource allocated there.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 41 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

TDX-Imposed Blackout

TD May Not Run on
Destination Platform

In-Order Memory Import Phase

TD May Run
on Source Platform

RUNNABLE

TD May Run
on Source Platform

MEMORY_IMPORT

LIVE_EXPORT

In-Order Memory Export Phase

STATE_IMPORT

Migration Session Abort (1/2): Abort During In-Order Memory Migration

6

PAUSED_EXPORT

TDH.EXPORT.
PAUSE

So
u

rc
e

D
es

ti
n

at
io

n

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.
STATE.TD TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.IMPORT.
STATE.VP

TDH.EXPORT.
STATE.TD TDH.MNG.

ADDCX

TDH.MNG.
ADDCX

TDH.EXPORT.
STATE.VP

TDH.EXPORT.
ABORT

Figure 6.4: Migration Session Control Overview (Abort During the In-Order Phase)

 Abort during the Out-Of-Order Phase

Figure 6.5 below shows a case where a migration session is aborted during the out-of-order migration phase.
TDH.IMPORT.ABORT is invoked by the host VMM on the destination platform. This function terminates the import 5

session and puts the TD in a state where, by design, it is able to run – it is up to the host VMM to free up any resource
allocated there. TDH.IMPORT.ABORT also creates an abort token, which is transmitted by the host VMM back to the
source platform.

On the source platform, the host VMM invokes TDH.EXPORT.ABORT, which checks the validity of the abort token and
enables the TD to resume running. 10

TDX-Imposed Blackout

TD May Not Run on Destination Platform

TD May Run on Source Platform

FAILED_IMPORT

Out-Of-Order Memory Import Phase

RUNNABLE

STATE_IMPORT

PAUSED_EXPORT

In-Order Memory Export Phase

In-Order Memory Import Phase

POST_EXPORT

POST_IMPORT

Migration Session Abort (2/2): Abort During Out-of-Order Memory Migration

7

TDH.EXPORT.
TRACK(DONE)

TDH.IMPORT.
TRACK(DONE)

Start
Token

So
u

rc
e

D
es

ti
n

at
io

n

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

TDH.EXPORT.
MEM

TDH.IMPORT.
MEM

Out-Of-Order Memory Export Phase

TDH.IMPORT.
ABORT

TDH.EXPORT.
ABORT

Abort
Token

Figure 6.5: Migration Session Control Overview (Abort During the Out-Of-Order Phase)

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 42 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

6.1.4. Updated: Migration Epochs

As described in 5.4, within each migration stream, proper ordering is maintained by the migration bundle counter
(MB_COUNTER) of each MBMD. However, there is no intrinsic guarantee of ordering across migration streams.

To help ensure overall ordering, the migration session is divided to migration epochs. A given page can only be imported,
or its import can be cancelled, once per migration epoch. An epoch token, generated on the source platform by 5

TDH.EXPORT.TRACK, serves as an epoch separator. It provided the total number of migration bundles exported so far.
This helps TDH.IMPORT.TRACK, which imports the epoch token, check that all migration bundles of the previous epoch
have been received. No migration bundle of an older epoch may be imported.

The start token, which starts the out-of-order phase, is a special version of the epoch token. Epoch number 0xFFFFFFFF
indicates the out-of-order phase. 10

Notes

• Do not confuse TDH.MEM.TRACK (which is used for TLB tracking) with TDH.EXPORT.TRACK (which rendezvous all
migration streams).

• Migration epoch is a TDX concept. It roughly corresponds to migration round (or migration pass) which is a usage
concept. 15

Stream
1

Stream
2

Stream
3

Stream
0

Page
0

Page
11

Page
5

Page
15

Page
3

Page
8

Page
12

Page
4

Page
13

Page
1

Page
6

Page
14

Page
2

Page
7

Page
10

Page
9

Page
6

Page
12

Page
11

Page
4

Page
8

Cancel
7

Page
7

Page
6

Cancel
8

Page
14

Page
12

Page
1

Page
8

Page
24

Page
28

Page
20

Page
23

Page
16

Page
21

Page
29

Page
18

Page
17

Page
26

Page
19

Page
17

Page
27

Page
22

Page
29

Mig. Epoch 0 Mig. Epoch 1 Mig. Epoch 2

In-Order Phase Out-Of-Order Phase

Live Migration (TD is Running on Source)
Post-Copy (TD
is Running on
Destination)

Blackout (TD is
not Running)

Epoch
Token

Epoch
Token

Start
Token

Time

Figure 6.6: Migration Epochs Overview

6.2. Updated: Migration Session Control

6.2.1. Migration TD Binding and Migration Key Assignment

Migration TD binding (using TDH.SERVTD.BIND) must happen before a migration session can start. This may happen 20

during TD build, before the measurement has been finalized (by TDH.MR.FINALIZE). Alternatively, pre-binding (using
TDH.SERVTD.PREBIND) can be done during TD build, and actual binding can happen later. On the destination platform
migration TD binding and TD import must happen before the TD is initialized (by TDH.MNG.INIT).

Migration key assignment, done by TDG.SERVTD.WR, may happen at any time after migration TD binding, except during
the PAUSED_EXPORT and POST_EXPORT states. A new migration key must be written for any migration session. 25

6.2.2. Updated: Export Side (Source Platform)

To begin an export session, the TD’s OP_STATE must either be RUNNABLE, indicating that its measurement has been
finalized (by TDH.MR.FINALIZE), or LIVE_IMPORT, indicating that this TD has been previously imported.

An export session begins with immutable TD state export (using TDH.EXPORT.STATE.IMMUTABLE). This function copies
the migration key to a working migration key. It then starts the in-order export phase. It transitions the OP_STATE to 30

LIVE_EXPORT, allowing the source TD to continue running normally while private memory is being exported.

TDH.EXPORT.PAUSE transitions the source TD’s OP_STATE into the PAUSED_EXPORT state. In this state, TD private
memory and TD non-memory state modification are prevented. None of the TD VCPUs may be running (i.e., in TDX non-

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 43 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

root mode), and no host-side (SEAMCALL) function is allowed to change any TD non-memory state that is to be exported.
For TDX Connect, all non-migratable assets have been released (e.g., MMIO mappings, TDIs). Memory export (via
TDH.EXPORT.MEM etc.) may still continue. Per-TD and per-VCPU mutable control state are exported using
TDH.EXPORT.STATE.TD and TDH.EXPORT.STATE.VP respectively.

At any time, the export may be aborted by the host VMM using TDH.EXPORT.ABORT, which returns the source TD to the 5

RUNNABLE state, where it can continue to run normally. No abort token is required at this phase since no start token
has been generated and the destination TD, by design, should not be able to run.

Note: TDH.EXPORT.STATE.TD is expected to be called by the exporting host VMM prior to TDH.EXPORT.STATE.VP, but
this is only enforced on the import side.

TDH.EXPORT.TRACK(DONE) generates a start token which the host VMM transmits to the destination VMM. It transitions 10

the source TD OP_STATE into the POST_EXPORT state, starting the out-of-order export phase. If the TD has not been
configured with TDX Connect enabled, memory export (TDH.EXPORT.MEM) may continue, to support the out-of-order
stage of the TD live migration.

In the TD Migration Session POST_EXPORT state, a TDH.EXPORT.ABORT with a valid abort token, received from the
destination VMM, indicates that the TD, by design, should not be able to run on the destination platform. It terminates 15

the export session and returns the source TD to the RUNNABLE state, where it can continue to run normally.

The host VMM can start tearing down the source TD at any time, by ensuring that no VCPU is associated with an LP (i.e.,
by executing TDH.VP.FLUSH for all VCPUs) and issuing TDH.MNG.VPFLUSHDONE. Typically, it will do so in the after it gets
a notification from the destination platform that import has been successful.

6.2.3. Import Side (Destination Platform) 20

Migration TD binding (using TDH.SERVTD.BIND) and migration key assignment (using TDG.SERVTD.WR) must happen in
the UNINITIALIZED state, where TDCS memory has already been allocated but the destination TD has not been initialized
yet. This is required since the destination TD is going to be initialized by importing immutable state from the source TD.

TDH.IMPORT.STATE.IMMUTABLE starts the in-order import phase. It initializes the destination TD’s TDCS with imported
immutable state and transitions the destination TD’s OP_STATE into MEMORY_IMPORT. In this state, TD private memory 25

can be imported using TDH.IMPORT.MEM etc.

TDH.IMPORT.STATE.TD imports the per-TD mutable state and transitions the destination TD’s OP_STATE into
STATE_IMPORT. In this state, mutable VCPU state can be imported using TDH.IMPORT.STATE.VP. TD private memory
import also continues.

Upon executing TDH.IMPORT.TRACK with a valid start token as operand, the destination TD’s OP_STATE transitions into 30

the POST_IMPORT state, starting the out-of-order import phase. Memory import (a.k.a. post-copy) may continue, but
pages can only be imported if their GPA is free (i.e., the Secure EPT state is FREE).

An import failure up to this point, e.g., improper sequence of page import vs. alias import, or executing
TDH.IMPORT.TRACK with a bad start token received from the source platform, transitions the TD’s OP_STATE to the
FAILED_IMPORT state. In addition, the host VMM can explicitly abort the import by using TDH.IMPORT.ABORT. In the 35

FAILED_IMPORT state, the TD is designed not to run; it can only be torn down. TDH.IMPORT.ABORT generates an abort
token, which can be transmitted to the source platform.

TDH.IMPORT.COMMIT transitions the destination TD’s OP_STATE transitions into the LIVE_IMPORT state. In this state,
the destination TD may run normally. Out-of-order memory import may continue as long as the destination TD is in the
LIVE_IMPORT state. An input failure in the LIVE_IMPORT terminates the import session; it transitions the TD’s OP_STATE 40

to the RUNNABLE state, where the TD can continue running normally. An abort token can no longer be generated.

TDH.IMPORT.END ends the import session and transitions the destination TD’s OP_STATE into the RUNNABLE state. This
transition is optional if TDH.IMPORT.COMMIT has already been executed; it removes any limitations on TD memory
management that exist during the out-of-order import phase.

A new export session (TDH.EXPORT.STATE.IMMUTABLE) terminates a previous out-of-order import. 45

6.2.4. Details: Migration State Machine

This section provides a detailed view of migration session control state machine. Details may be of interest to host VMM
programmers who require deeper understanding of TD Migration.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 44 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 Details: Reminder: TD Lifecycle State Machine

The whole TD migration process happens within the TD_KEYS_CONFIGURED state of the TD life cycle state machine,
where an HKID has been assigned to the TD and the keys have been configured on the hardware. As a reminder, the TD
life cycle state diagram is shown in Figure 6.7 below. For details, see the [TDX Module Base Spec].

TDH.MNG.CREATE

TD_HKID_ASSIGNED

TD private key not
configured TDH.MNG.KEY.CONFIG

[last package]

TDH.MNG.
KEY.CONFIG

[non-last
package]

TDH.PHYMEM.PAGE.RECLAIM[TDR]

TDH.MNG.VPFLUSHDONE
[no associated VCPUs]

TD_TEARDOWN

TD has no HKID

TDH.MNG.KEY.FREEID
TDH.PHYMEM.
PAGE.RECLAIM

[non-TDR]

TD_BLOCKED

TD private memory
access is blocked
and caches are
getting flushed

TDH.MNG.KEY.FREEID

TD_KEYS_CONFIGURED

TD private key is configured

TD Operation
Sub-State

 5

Figure 6.7: TD Life Cycle State Diagram

Within the TD_KEYS_CONFIGURED state, a secondary-level TD Operation state machine controls the overall TD
operation, including migration.

 Details: OP_STATE: TD Operation State Machine

The TD Operation state machine is shown in Figure 6.8 below. The baseline state machine is extended with new 10

migration-related states and transitions, highlighted in red text and lines. The export states are highlighted in purple,
and the import states are highlighted in blue.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 45 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

UNALLOCATED

TDCS memory
allocation

TDH.MNG.ADDCX
[non-last page]

INITIALIZED

TD memory
allocation and
measurement,
VCPU creation

TDH.MNG.INIT

TDH.VP.CREATE,
TDH.VP.ADDCX,

TDH.VP.INIT

TDH.MEM.*,
TDH.MR.EXTEND

TDH.MR.FINALIZE

MEMORY_IMPORT

TD memory import

STATE_IMPORT

TD memory and
non-memory state
import

TDH.IMPORT.
STATE.IMMUTABLE

TDH.IMPORT.STATE.TD

TDH.IMPORT.TRACK
[in-order done &&

all non-memory state imported]

PAUSED_EXPORT

TD memory export,
non-memory state
export

POST_EXPORT

TD memory post-
copy export

TDH.EXPORT.ABORT
[good abort token]

TDH.EXPORT.
TRACK

[in-order done]

TDH.EXPORT.PAUSE

TDH.EXPORT.MEM

TDH.EXPORT.MEM,
TDH.EXPORT.
STATE.TD/VP

TDH.IMPORT.STATE.VP,
TDH.IMPORT.MEM

TDH.IMPORT.MEM

TDH.IMPORT.ABORT /
Generate abort token

TDH.EXPORT.
ABORT

FAILED_IMPORT

Destination TD can
only be destroyed

TDH.MNG.KEY.CONFIG
[last package]

UNINITIALIZED

TDCS memory has
been allocatedTDH.MNG.ADDCX

[last page]

TDH.SERVTD.BIND
(MigTD)

TDH.SERVTD.BIND
(MigTD)

TDH.IMPORT.
TRACK

[in-order
not done]

TDH.EXPORT.
TRACK

[in-order
not done]

POST_IMPORT

Post-copy TD
memory import

TDH.IMPORT.
COMMIT

TDH.IMPORT.
MEM

TDH.MEM.*

RUNNABLE

TD is runnable

LIVE_EXPORT

TD is runnable, live
memory export can
be done

LIVE_IMPORT

TD is runnable,
post-copy memory
import can be done

TDH.MEM.*

TDH.IMPORT.ABORT /
Generate abort token

TDH.IMPORT.*
[import failed]

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.MEM.*

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.IMPORT.
MEM

TDH.EXPORT.
ABORT

TDH.IMPORT.MEM
[import failed]

TDH.IMPORT.
END TDH.IMPORT.END

TDH.EXPORT.
TRACK

[in-order
not done]

TDH.IMPORT.
TRACK

[in-order
not done]

TDH.EXPORT.MEM

Figure 6.8: TD Operation State Machine (Sub-States of TD_KEYS_CONFIGURED)

 Details: OP_STATE Summary

Table 6.1: OP_STATE Sub-States of TD_KEYS_CONFIGURED

Sub-State Source /
Destination

Description

UNALLOCATED Both TDCS memory is being allocated.

UNINITIALIZED Both • TDCS is pending initialization.

• On the destination platform, migration TD binding and migration
key assignment must happen in this state.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 46 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Sub-State Source /
Destination

Description

INITIALIZED Source • TD is being built. Memory is added and measured. VCPUs are
created.

• Migration TD binding may happen in this state.

RUNNABLE Both • TD can run.

LIVE_EXPORT Both • TD can run.

• Immutable non-memory state (TDH.EXPORT.STATE.IMMUTABLE)
has been exported.

• Live memory can be exported (TDH.EXPORT.MEM etc.).

PAUSED_EXPORT Source • No TD VCPU may run.

• TD memory can’t be written.

• Memory can be exported.

• Mutable non-memory state is being exported.

POST_EXPORT Source • Start token has been generated.

• Mutable control state has been exported.

• No TD VCPU may run.

• TD memory can’t be written.

• Memory can be exported (post-copy).

MEMORY_IMPORT Destination • TD memory can be imported.

STATE_IMPORT Destination • TD memory can be imported.

• TD VCPU non-memory state can be imported

POST_IMPORT Destination • TD memory can be imported (post-copy).

LIVE_IMPORT Destination • TD VCPUs may run.

• TD memory can be imported (post-copy).

FAILED_IMPORT Destination • Destination TD will not run.

6.3. Migration Tokens

Migration tokens are transmitted from the source platform to the destination platform and vice versa as part of the
migration session control.

An epoch token is generated by TDH.EXPORT.TRACK. it serves as a separator between migration epochs. A start token 5

is a special version of an epoch token which starts the out-of-order phase. The start token helps ensure that no newer
version of any memory page exported prior to the start token exists on the source platform.

The abort token is generated by TDH.IMPORT.ABORT on the destination platform if import fails for any reason. It helps
ensure that the TD will not run on the destination platform, and therefore may be restored on the source platform.

Migration tokens are formatted as Migration Bundles, with only an MBMD. Its format is defined in the [TDX Module ABI 10

Spec].

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 47 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Target PlatformSource Platform

TDH.EXPORT.
STATE.DONE

TDH.IMPORT.
STATE.DONE

Transport

Migration
Bundle

Metadata
(MBMD)

Abort Token

Migration
Bundle

Metadata
(MBMD)

Abort Token

TDH.EXPORT.
ABORT

Transport

If Failed

TDH.IMPORT.
ABORT

Migration
Bundle

Metadata
(MBMD)

Epoch Token

Migration
Bundle

Metadata
(MBMD)

Migration
Bundle

Metadata
(MBMD)

Migration
Bundle

Metadata
(MBMD)

Epoch Token

Migration
Bundle

Metadata
(MBMD)

Migration
Bundle

Metadata
(MBMD)

TDH.EXPORT.
STATE.DONE

TDH.EXPORT.
TRACK

TDH.IMPORT.
STATE.DONE

TDH.IMPORT.
TRACK

Figure 6.9: Migration Tokens

6.4. Migration Protocol Versioning

6.4.1. Introduction

Migration protocol version number is provided as part of the MBMD header. Migration protocol changes may require 5

migration version increment and may impact source and destination compatibility. For example, this may happen due
to:

• Incompatible MBMD format changes

• New values of MBMD fields

• New memory migration variants (e.g., support of aliases for VM nesting) 10

• Incompatible migration session state machine changes

Non-memory state (metadata) migration changes may also require migration version increment. For example, this may
happen due to:

• New exported metadata fields

• New values or format of exported metadata fields 15

6.4.2. Enumeration of Supported Migration Versions

TDX module enumerates supported migration versions using global metadata fields that can be read by the host VMM
(TDH.SYS.RD) and MigTD (TDG.SYS.RD).

On export, the TDX module can work with MIG_VERSION in the range specified by the following metadata fields:

MAX_EXPORT_VERSION: Maximum value of migration version supported for export 20

MIN_EXPORT_VERSION: Minimum value of migration version supported for export

For example, a module may be updated to support version X for new memory migration formats for VM Nesting. But it
may be written to export using version X-1 if a non-VM-Nesting TD is exported to an older module.

On import, the TDX module understands MIG_VERSION in the range specified by the following:

MAX_IMPORT_VERSION: Maximum value of migration version supported for import 25

MIN_IMPORT_VERSION: Minimum value of migration version supported for import

For example, if the module supports version X that was created to support new memory migration formats for VM
Nesting, it can still understand version X-1 that doesn’t use the new formats.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 48 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

6.4.3. Setting the Migration Protocol Version for a Migration Session

The migration protocol version to be used for a migration session is set the MigTD before the session starts. MigTDs at
the source and destination platform enumerate export and import versions support, respectively. They decide on the
version that is compatible between the platforms, to be used for the migration session. TD-scope metadata field
MIG_VERSION is writable by the MigTD using TDH.SERVTD.WR. At the start of the migration session, the TDX module 5

copies MIG_VERSION to an internal WORKING_MIG_VERSION that is used throughout the session.

6.5. Updated: Migration Session Control Functions Summary

This section provides an overview of the export session control functions. A detailed description is provided in [TDX
Module ABI Spec].

Table 6.2: Migration Session Control Interface Functions 10

Name Description Preconditions

TDH.EXPORT.STATE.IMMUTABLE Start an export session.

This function exports the TD’s
immutable state – that
functionality is discussed in Ch. 7.

• TD is runnable.

• A new migration key has been set.

• Enough migration streams contexts
have been created using
TDH.MIG.STREAM.CREATE.

TDH.EXPORT.PAUSE Pauses the source TD and starts the
TDX-enforced blackout period. This
operation is local to the source
platform and is not communicated
to the destination platform.

• TD immutable state has been
exported.

• All TD VCPUs have stopped executing
and no other TD-specific SEAMCALL is
running.

TDH.EXPORT.TRACK Starts a new migration epoch and
generate an epoch token. If so
requested, starts the out-of-order
phase and generates a start token.

• The export session is in progress, but
its out-of-order phase has not begun
yet.

• See the discussion of export
completeness checks in Ch. 8.

TDH.EXPORT.ABORT Aborts the export session. • An export session is in progress.

• If invoked during the out-of-order
phase, the abort token received from
the destination platform must be
correct.

TDH.IMPORT.STATE.IMMUTABLE Start an export session.

This function exports the TD’s
immutable state – that
functionality is discussed in Ch. 7.

• The TDCS been allocation but not
initialized.

• A new migration key has been set.

• Enough migration streams contexts
have been created using
TDH.MIG.STREAM.CREATE.

TDH.IMPORT.TRACK Starts a new migration epoch based
on an imported epoch token. If the
token is a start token, starts the out-
of-order phase.

• The import session is in progress, but
its out-of-order phase has not begun
yet.

• The epoch token migration bundle is
imported successfully.

• If a start token is received, all
mutable state must have been
imported.

TDH.IMPORT.COMMIT Enable the TD to run. • The import session out-of-order
phase is in progress.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 49 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Name Description Preconditions

TDH.IMPORT.END Ends the import session. • The import session out-of-order
phase is in progress.

TDH.IMPORT.ABORT Aborts the import session (if not
already aborted) and generates an
abort token.

• The import session is in progress.

• The TD is not allowed to run yet
(OP_STATE is not LIVE_IMPORT).

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 50 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

7. TD Non-Memory State Migration

This chapter discusses all non-memory state migration, immutable and mutable.

TD-scope non-memory state resides in control structures TDR and TDCS. TD VCPU state resides (while the VCPU is not
running) in TDVPS, which includes the TD VMCS. This chapter discusses how non-memory state is migrated.

7.1. TD Non-Memory State Migration Operation 5

7.1.1. Non-Memory State Migration Data

Non-memory state migration data is used for migrating immutable state, at the beginning of the migration process, by
TDH.EXPORT.STATE.IMMUTABLE and TDH.IMPORT.STATE.IMMUTABLE, and for migrating mutable state, at the end of
the migration process, by TDH.EXPORT.STATE.TD, TDH.IMPORT.STATE.TD, TDH.EXPORT.STATE.VP and
TDH.IMPORT.STATE.VP. 10

The non-memory state is migrated in a way that abstracts the actual TD control structure format, allowing that format to
remain implementation-dependent and vary between the source and destination platforms.

7.1.2. Non-Memory State MBMD

The MBMD for each non-memory state migration bundle contains the following type-specific fields:

• Metadata type: Immutable TD-scope metadata or mutable L1 VCPU-scope metadata 15

• VM index and VCPU index (if applicable).

Details of the non-memory state MBMD are defined in the [TDX Module ABI Spec].

7.1.3. Immutable vs. Mutable TD State

In the scope of TD migration, immutable state is defined as any TD state that may not change after TD build, i.e., after
TD measurement has been finalized (by TDH.MR.FINALIZE). 20

Migrated immutable state includes the following:

• Platform-scope immutable state required so that the TDX module on the destination platform can verify
compatibility. Namely, it includes the source TDX module’s version information.

• TD-scope immutable state of the source TD

Immutable TD state export and import functions (TDH.EXPORT.STATE.IMMUTABLE, TDH.IMPORT.STATE.IMMUTABLE) 25

start the migration session. Migration session control is discussed in Ch. 6.

Migrated mutable state includes the following:

• TD-scope mutable state

• VCPU-scope mutable state

Mutable TD state export is done after the TD has been paused (by TDH.EXPORT.PAUSE); it helps ensure that the state 30

will not change anymore until TD export completes. TDH.EXPORT.STATE.TD exports TD-scope mutable state, followed
by multiple, per-VCPU TDH.EXPORT.STATE.VP calls which export VCPUs mutable state.

Mutable TD state import must begin with TD-scope state import (by TDH.IMPORT.STATE.TD), followed by multiple, per-
VCPU TDH.IMPORT.STATE.VP calls which import VCPUs state.

7.2. New: Expected Configuration by the Host VMM 35

The host VMM is expected to configure a migratable TD in a way that will be compatible with the set of possible
destination platforms and their Intel TDX module configurations. For example:

• The configured TD ATTRIBUTES and XFAM bits should be supported by all destination platforms and their Intel TDX
module configurations.

• The configured virtual CPUID values should be supported by all destination platforms and their Intel TDX module 40

configurations.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 51 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

7.3. Non-Memory State Migration Functions Summary

This section provides a short summary of the non-memory state migration interface functions. A detailed specification
is provided in [TDX Module ABI Spec].

Table 7.1: Non-Memory State Migration Interface Functions

Name Description Preconditions

TDH.EXPORT.STATE.IMMUTABLE Export the TD’s immutable state as
a multi-page migration bundle.

This function starts the export
session; that functionality is
described in Ch. 6.

• TD is runnable.

• A new migration key has been set.

TDH.EXPORT.STATE.TD Export the TD-scope mutable state
as a multi-page migration bundle.

• The export session is in the in-order
phase and the TD has been paused.

TDH.EXPORT.STATE.VP Export the VCPU-scope mutable
state as a multi-page migration
bundle.

• The export session is in the in-order
phase and the TD has been paused.

TDH.IMPORT.STATE.IMMUTABLE Import the TD’s immutable state
as a multi-page migration bundle.

This function starts the import
session; that functionality is
described in Ch. 6.

• TD has not been initialized.

• A new migration key has been set.

TDH.IMPORT.STATE.TD Import the TD’s mutable state as a
multi-page migration bundle.

• TD immutable state has been
imported.

TDH.IMPORT.STATE.VP Imports a VCPU mutable state as a
multi-page migration bundle.

• TDVPS pages have been allocated
by the host VMM, but the VCPU has
not been initialized.

• TD-scope state has been imported.

 5

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 52 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

8. Updated: TD Private Memory Migration

This chapter described how Intel TDX Module manages TD private memory and guest-physical (GPA) address translation
metadata migration.

8.1. Updated: Overview

8.1.1. Updated: In-Order and Out-of-Order Migration 5

TD private memory migration can happen in the in-order migration phase and out-of-order migration phase.

During the in-order phase, the host VMM may implement live migration pre-copy, by exporting memory content (using
TDH.EXPORT.MEM etc.) while the TD is running (TDCS.OP_STATE is LIVE_EXPORT). This is not enforced by TDX; the host
VMM may implement cold migration by avoiding memory export until the TD is paused.

During the out-of-order phase, the host VMM may implement post-copy by allowing the TD to run on the destination 10

platform (using TDH.IMPORT.COMMIT). This is not enforced by TDX; the host VMM can first complete all memory
migration before allowing the TD to run, yet benefit from the simpler and potentially higher performance operation
supported during the out-of-order phase.

Note: Even if the TDX module supports post-copy with non-blocking export, post-copy is only allowed if TDX Connect
is not enabled for the TD. 15

8.1.2. New: Write-Blocking Export vs. Non-Blocking Live Export

During live migration, the TDX module tracks exported page modification to enforce consistent memory image migration.
The TDX module supports two modes of memory live export:

Write Blocking: Memory pages are blocked for writing before being exported. A guest TD attempt to modify exported
memory results in an EPT violation TD exit. The host VMM is expected to unblock the page and later 20

block it again and re-export it. TDX module support of write-blocking based export is enumerated by
TDX_FEATURES0.TD_MIGRATION (bit 0), readable by TDH.SYS.RD*.

Non-Blocking: Memory pages are not blocked for writing. If a memory page is modified by the guest TD, DMA or by
the TDX module, its SEPT entry’s Dirty bit is set. The host VMM is expected to call a TDX module
interface function that scans the TD’s GPA space for dirty pages, and re-export those pages. TDX 25

module support of non-blocking export is enumerated by TDX_FEATURES0.NON_BLOCKING_EXPORT
(bit 41), readable by TDH.SYS.RD*.

The export mode is a TDX module configuration parameter, selected by the host VMM via a setting as part of the TDX
module initialization sequence.

• By default, write blocking export is used. 30

• Non-blocking export can be configured during first-time module initialization (by TDH.SYS.CONFIG).

• On TD-preserving TDX module update, the export mode may be updated from the default write blocking mode to
non-blocking mode, if no export session has been used before.

8.2. New: Conventions: SEPT Entry State Diagrams Color Coding

This chapter contains multiple SEPT entry state diagrams. For …, which use the following color-coding conventions. 35

GPA is guest accessible

GPA is blocked, TLB entries may still be
cached

GPA is not guest accessible, GPA may not be
reused, physical page still associated

GPA is not guest accessible, GPA may not be
reused, no physical page is associated

GPA is not guest accessible, no physical page
is associated

GPA is guest accessible for read and execute
only

GPA is not guest accessible, GPA may not be
reused, no physical page is associated

GPA is not guest accessible, no physical page
is associated

Figure 8.1: Secure EPT Entry State Diagrams Color Conventions

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 53 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

8.3. Updated: GPA Lists and Private Memory Migration Bundles

8.3.1. Overview

Destination PlatformSource Platform

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Mig. Buffers List

MBMD

4KB
Migration

Page

4KB
Migration

Page

Up to
512 * 4KB
Encrypted
Migration

Pages

Multi-Page
Migration Bundle

TDH.EXPORT.MEM TDH.IMPORT.MEM

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Mig. Buffers List

Transport

Migrated Data

MBMD

4KB
Migration

Page

4KB
Migration

Page

Up to
512 * 4KB
Encrypted
Migration

Pages

Multi-Page
Migration Bundle

Migrated Data

Page GPA
List

4KB
Migration

Page

4KB
Migration

Page

Up to
512 * 4KB

Pages

Page GPA
List

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

New Pages List*

*HPA is null for in-
place import and for
re-import

Page MAC
List

Page MAC
List

Page MAC
List

Page MAC
List

Optional
Encrypted

Page
Attributes

List

Optional
Encrypted

Page
Attributes

List

Figure 8.2: Private Memory Migration

Unlike the generic migration bundle structure described in 5.1, private memory migration bundle is composed of multiple 5

MAC-protected components:

• MAC-protected MBMD

• For each 4KB page:
o Encrypted and MAC-protected 4KB migration buffer
o MAC-protected page GPA and additional metadata 10

o Optionally, for partitioned TDs, encrypted and MAC-protected page attributes

This structure allows the export and import functions to process the MBMD and each page and its metadata separately,
avoiding the need to perform SEPT walks twice and to hold intermediate SEPT entry states. The separate parts of the
migration bundle are cryptographically bound together as follows:

• A per-stream monotonically incrementing IV_COUNTER and the migration steam index are used for calculating the 15

AES-GCM IV value, as described in 5.3.

• This is first done for the migration bundle’s MBMD MAC.

• For each page, the IV_COUNTER is incremented by 1 and a new IV value is calculated and used for the page metadata
MAC.

• The MBMD specifies the number of pages migrated by the migration bundle. This helps check that the whole 20

migration bundle is imported on the destination platform.

8.3.2. Updated: GPA List

As shown in the example in the diagram above, a GPA list is used as part of the private memory migration bundle. It is
also used as an input and output of multiple memory migration interface functions: TDH.EXPORT.BLOCKW,
TDH.EXPORT.MEM, TDH.EXPORT.RESTORE, TDH.IMPORT.MEM and TDH.MEM.SCAN. 25

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 54 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

A GPA list contains up to 512 entries, each containing the following information:

Table 8.1: Updated: GPA List Entry Abstract Definition

Field Usage for Page Migration Encrypted? Details

Page Size 4KB No

GPA GPA bits 51:12 No

State MAPPED or PENDING No

Operation NOP, MIGRATE, REMIGRATE or CANCEL No

Attributes Page attributes for each L2 VM Yes Optional, provided in a separate list (see
below)

MAC Integrity protection for the above
fields and for the migrated page
content

N/A Provided in a separate list

A single GPA list entry, a separate page MAC list entry and an optional separate page attributes list entry compose the
page metadata. 5

The GPA list is MAC-protected but is not encrypted. This allows the host VMM on the destination to parse the GPA list in
order to prepare for calling TDH.IMPORT.MEM; e.g., build the Secure EPT to map the imported pages.

A detailed definition of the GPA list is provided in the [TDX Module ABI Spec].

8.3.3. Page Attributes List (Required for Partitioned TDs)

If the migrated TD is partitioned, the GPA list entry is extended with L2 page attributes. These are provided in a separate 10

page attributes list, containing the same number of entries as the GPA list. Each page attributes list entry contains the
migratable page attributes for each L2 VM: R, W, Xs, Xu, SSS, VGP, PWA and SVE. The page attributes list is encrypted
and MAC-protected.

A detailed definition of the page attributes list is provided in the [TDX Module ABI Spec].

8.3.4. Private Memory Migration Buffer 15

The migration buffer holds the encrypted migrated page content; thus, it is included only if the page metadata indicates
a MIGRATE or a REMIGRATE request, and the page is MAPPED. The migration buffer is allocated by the host VMM and
resides in shared memory. The migration buffer is encrypted and MAC-protected.

On first time import of a page (MIGRATE request), the host VMM can select in-place import: the migration buffer
becomes the TD private page which holds the imported and decrypted content. 20

8.4. Updated: Write-Blocking Based Memory Export

This section describes private memory export using the write-blocking method.

8.4.1. Edited: Host VMM Perspective

This section describes write-blocking based export from the host VMM perspective. This is a simplified view; a more
detailed view is discussed later. 25

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 55 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 Typical Export Session

Stream
1

Stream
2

Stream
3

Stream
0

Page
0

Page
11

Page
5

Page
15

Page
3

Page
8

Page
12

Page
4

Page
13

Page
1

Page
6

Page
14

Page
2

Page
7

Page
10

Page
9

Page
6

Page
12

Page
11

Page
4

Page
8

Cancel
7

Page
7

Page
6

Cancel
8

Page
14

Page
12

Page
1

Page
8

Page
24

Page
28

Page
20

Page
23

Page
16

Page
21

Page
29

Page
18

Page
17

Page
26

Page
19

Page
17

Page
27

Page
22

Page
29

Mig. Epoch 0 Mig. Epoch 1 Mig. Epoch 2

In-Order Phase Out-Of-Order Phase

Time

Live Migration (TD is Running on Source)
Post-Copy (TD may be

Running on Destination)
Blackout (TD is not Running)

Epoch
Token

Epoch
Token

TDH.EXPORT.

TRACK

TDH.EXPORT.

BLOCKW
TDH.EXPORT.

BLOCKW
TDH.EXPORT.

MEM
TDH.EXPORT.

MEM

Export Round 0 Export Round 1 Export Round 2 (Final)

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

Out-Of-Order Export

Mig. Epoch 0xFFFFFFFF

IPIsIPIs
TDH.MEM.

TRACK

TDH.EXPORT.

STATE.IMMUTABLE

TDH.MEM.

TRACK

TDH.EXPORT.

TRACK

TDH.EXPORT.

MEM

TDH.EXPORT.

PAUSE
TDH.EXPORT.

STATE.TD TDH.EXPORT.

STATE.VP

TDH.EXPORT.

STATE.VP

TDH.EXPORT.

STATE.VP

VP
State

TD
State

VP
State

VP
State

Start
Token

TDH.EXPORT.

TRACK(DONE)

TD
State

TDH.EXPORT.

UNBLOCKW
TDH.EXPORT.

UNBLOCKW
TDH.EXPORT.

UNBLOCKW

Figure 8.3: Typical Write-Blocking Based Export Session

Typical expected usage divides the export session to export rounds (or passes). An export round may have the following
steps: 5

1. If the TD has not been paused by TDH.EXPORT.PAUSE, ensure TLB shootdown:
1.1. Invoke TDH.EXPORT.BLOCKW with a list of pages to be exported.
1.2. Invoke TDH.MEM.TRACK.
1.3. Issue IPIs to ensure TD re-entry on all VCPUs and TLB invalidation.

2. Start a new migration epoch by invoking TDH.EXPORT.TRACK. 10

3. Invoke TDH.EXPORT.MEM with a list of pages.
3.1. If a page is being exported, mark its list entry as MIGRATE.
3.2. If a page has been exported before but needs to be removed, promoted or demoted, cancel its migration by

marking its list entry as CANCEL.

Note: In the example above, steps 1 and 2 need to be performed before step 3, but there is no strict requirement for 15

the order of step 2 vs. step 1.

 Live Export: Blocking for Writing, TLB Tracking and Exporting a Page

During the live export phase (when TDCS.OP_STATE is LIVE_EXPORT), exporting a private memory page requires that
page modification must be tracked by the TDX module. This includes:

• Page content 20

• Page attributes

• For partitioned TDs, L2 page attributes

To achieve this, the page’s L1 SEPT entry and any L2 SEPT entries must be blocked for writing by TDH.EXPORT.BLOCKW.

If the TD has not been paused, the host VMM must execute the TLB tracking sequence below, which together with the
checks done by TDH.EXPORT.MEM helps ensure that no cached TLB entries that have been created before blocking for 25

writing are left.

1. Execute TDH.EXPORT.BLOCKW on each page to be exported, blocking subsequent creation of writable TLB
translations to that page. Note that cached translations may still exits at this stage.

2. Execute TDH.MEM.TRACK, advancing the TD’s epoch counter.
3. Send an IPI (Inter-Processor Interrupt) to each RLP (Remote Logical Processor) on which any of the TD’s VCPUs is 30

currently scheduled.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 56 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

4. Upon receiving the IPI, each RLP will TD exit to the host VMM.

At this point the blocked pages are considered tracked for export. Even though some LPs may still hold writable TLB
entries to the target GPA ranges, those are designed to be flushed on the next TD entry. Normally, the host VMM on
each RLP will treat the TD exit as spurious and will immediately re-enter the TD.

5. Export each page using TDH.EXPORT.MEM. 5

 Exporting a Page after the Source TD is Paused

After the source TD is paused, no blocking is required since the TD is not running. This reduces the amount of work that
needs to be done by the host VMM during the TD’s blackout period. This is shown in the dashed transitions in Figure 8.8
below.

 Unblocking for Write, Tracking Dirty Pages and Re-Exporting 10

8.4.1.4.1. Overview

During the live export phase (when TDCS.OP_STATE is LIVE_EXPORT), the source TD may attempt to write a page that has
been blocked for writing, or to modify the page attributes (for partitioned TDs, this includes L2 attributes). The TDX
migration architecture allows the host VMM to unblock the page. The Intel TDX module tracks such pages as “dirty”. All
dirty pages must be re-exported by the host VMM for the in-order migration phase to be completed. This assures that 15

either the latest version of a page has been exported by the time the source TD is paused, or that page has not been
exported at all.

8.4.1.4.2. Unblocking for Write and Re-Exporting a Page

If the source TD attempts to write to a page that has been blocked for writing, a TD exit will occur, indicating an EPT
violation due to a write attempt to a non-writable page. 20

Note: No indication is directly provided to the host VMM whether this page is blocked for writing by
TDH.EXPORT.BLOCKW or whether writing is disabled due to some other reason (e.g., the page is BLOCKED).

Host VMM
Intel TDX
Module

Guest TD

VM Exit (EPT Violation)

TD Exit (EPT Violation)

TDH.EXPORT.UNBLOCKW

TDH.VP.ENTER

VM entry

Write attempt
(failed)

Write attempt
(success)

Remove write protection, mark
the page as dirty if exported

Figure 8.4: Typical Sequence for Unblocking a Page on Guest TD Write Attempt

To enable access to the page, the host VMM is expected to execute TDH.EXPORT.UNBLOCKW and then resume the TD 25

VCPU by TDH.VP.ENTER.

• If the page has not yet been exported, TDH.EXPORT.UNBLOCKW restores its SEPT entry’s original MAPPED state.

• If the page has been exported, TDH.EXPORT.UNBLOCKW updates its SEPT state to EXPORTED_DIRTY. This state is
similar to MAPPED from the guest TD’s memory access perspective, but it indicates that the page is dirty and needs
to be re-exported. 30

• For partitioned TDs, if the page has any L2 mappings, TDH.EXPORT.UNBLOCKW unblocks their L2 SEPT entries by
restoring their W bit value.

The host VMM re-exports the page by TDH.EXPORT.BLOCKW, TLB tracking and TDH.EXPORT.MEM as described below.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 57 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 Using the same GPA List for TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM

TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM use GPA lists with compatible formats. This allows the same list to be used
for blocking and exporting memory, as follows:

1. The host VMM on the source platform may prepare a GPA list with MIGRATE and CANCEL commands (see later), and
provide it as input to TDH.EXPORT.BLOCKW. 5

2. TDH.EXPORT.BLOCKW will attempt to block pages whose command is MIGRATE, and update the GPA list depending
on the success of the operation.

3. The same GPA list can be provided as input to TDH.EXPORT.MEM, which then updates it depending on the success
of the operation and whether this is a first-time export (MIGRATE) or re-export (REMIGRATE), and adds page
attributes information. 10

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Mig. Buffers List

MBMD

4KB
Migration

Page

4KB
Migration

Page

Up to
512 * 4KB
Encrypted
Migration

Pages

Multi-Page
Migration Bundle

TDH.EXPORT.MEM

Migrated Data

Page GPA &
Attributes

Lists

Page MAC
List

Page MAC
ListTDH.EXPORT.BLOCKW

Page GPA
List

Page GPA
List

TDH.MEM.TRACK

Update operation
and status

Update operation,
status and attributes

Figure 8.5: Typical Write-Blocking Based Memory Export Round and the GPA List

A detailed definition of the GPA list is provided in the [TDX Module ABI Spec].

 Prohibited Operations on Exported Pages and Export Cancellation

Once a page has been exported during the current export session, it can’t be blocked, removed, promoted, demoted or 15

relocated. This prevents the destination platform from using a stale copy of that page.

In order to perform such memory management operations on an exported page, the host VMM must first execute
TDH.EXPORT.MEM indicating a CANCEL operation for the page. No migration buffer is required for this GPA list entry.
When the GPA list is processed on the destination platform by TDH.IMPORT.MEM, the previously migrated page is

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 58 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

removed from the destination TD. TDH.EXPORT.MEM restores the page SEPT entry to its pre-export MAPPED or PENDING
state.

Source
Host VMM

Source
TDX Module

TDH.MEM.PAGE.BLOCK(page X)

failure indication

TDH.EXPORT.MEM(CANCEL page X)

TDH.EXPORT.MEM(MIGRATE page X)

Destination
Host VMM

Destination
TDX Module

TDH.IMPORT.TRACK

TDH.IMPORT.MEM(CANCEL page X)

TDH.IMPORT.MEM(MIGRATE page X)

Migration Bundle(MIGRATE page X)

TDH.EXPORT.TRACK

Epoch Token

Migration Bundle(CANCEL page X)

TDH.MEM.PAGE.BLOCK(page X)

success

Figure 8.6: Typical Sequence for Cancelling a Page Export

 Updated: Exporting Pending Pages 5

The host VMM is not directly aware if a page is in a PENDING state or not; the guest TD may accept a PENDING page by
TDG.MEM.PAGE.ACCEPT at any time. If supported, the guest may release a MAPPED page by TDG.MEM.PAGE.RELEASE,
converting it to a PENDING page. The page content of a PENDING page is not exported, and no migration buffer is used.
The page attributes (including the optional page attributes list entry) are exported. On the destination platform,
TDH.IMPORT.MEM creates the page in a PENDING state. 10

If the guest TD accepts a pending page that has been exported, TDG.MEM.PAGE.ACCEPT results in an EPT violation. The
host VMM is expected to call TDH.EXPORT.UNBLOCKW, which marks the page as PENDING_EXPORT_DIRTY, and resumes
the guest TD. TDH.MEM.PAGE.ACCEPT then re-executes; it initialized the page and updates the SEPT state to mark the
page as EXPORTED_DIRTY (where the page is mapped and accessible to the guest TD). The host VMM can then re-export
the page, as described in 8.4.1.4 above. 15

Host VMM
Intel TDX
Module

Guest TD

TD Exit (EPT Violation)

TDH.EXPORT.UNBLOCKW

TDH.VP.ENTER

VM entry

Remove write protection, mark
the page as dirty if exported

TDG.MEM.PAGE.ACCEPT

TDG.MEM.PAGE.ACCEPT

Success

Figure 8.7: Typical Sequence for Unblocking a PENDING Page on TDG.MEM.PAGE.ACCEPT Attempt

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 59 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 Re-Exporting a Non-Dirty Page

In the out-of-order phase, where strict migration order is not enforced, the host VMM may re-export a previously
exported page even if it has not been unblocked for writing and its contents have not been modified.

This allows a page to be re-exported and transferred to the destination platform over a high-priority stream. This helps
reduce destination TD latency while waiting for a page to be imported. 5

Such an operation is tagged MIGRATE, not REMIGRATE, in the exported GPA list. This is because the exact same version
of the page is being exported.

 SEPT Cleanup after Export Abort

After an export session is aborted (by TDH.EXPORT.ABORT), the source TD is allowed to run. However, SEPT entries and,
for partitioned TDs, L2 SEPT entries, that have been modified during the aborted export session keep their state. Such 10

SEPT entries must be cleaned up by the host VMM before memory management operations are allowed on them, and/or
before a new export session is attempted, as follows:

• Cleanup of SEPT entries that have been blocked for writing is done by TDH.EXPORT.UNBLOCKW (if the page is to be
written) or TDH.RANGE.BLOCK (is the page is to be blocked for some memory management operation).

• Cleanup of SEPT entries that have been exported is done by TDH.EXPORT.RESTORE. 15

The TDX module holds a TDCS field called MIG_COUNT, which counts the number of exported pages that require cleanup.
This field is readable by the host VMM, using TDH.MNG.RD. The counter is initialized to 0. To start a new migration
session, its value must be 0.

8.4.2. Edited: Details of Write-Blocking Based Export

This section provides a detailed view of write-blocking based export. Details may be of interest to host VMM 20

programmers who require deeper understanding of TD Migration.

 Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export

Figure 8.8 below shows a partial SEPT entry state diagram for exporting mapped pages. The following sections describe
the details. The color-coding convention used in this diagram is described in 8.2.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 60 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

MAPPED

Page is mapped and
accessible to guest
TD

BLOCKEDW

Page is mapped but
new write
translations are
blocked

TDH.EXPORT.BLOCKW
[TD is not paused]

TDH.EXPORT.UNBLOCKW

EXPORTED_
BLOCKEDW

Page is exported and
blocked for writing

TDH.EXPORT.MEM(MIGRATE) /
MIGRATE,

MIG_COUNT++

TDH.MEM.
RANGE.BLOCK

TDH.EXPORT.MEM(MIGRATE)
[out-of-order] /

MIGRATE

EXPORTED_
DIRTY

Page is mapped and
accessible to guest
TD

TDH.EXPORT.UNBLOCKW /
DIRTY_COUNT++

TDH.EXPORT.BLOCKW

EXPORTED_
DIRTY_BLOCKEDW

Page is exported and
blocked for writing

TDH.EXPORT.MEM
(MIGATE) /

REMIGRATE,
DIRTY_COUNT--

TDH.EXPORT.UNBLOCKW

BLOCKED

Page is mapped but
new translations are
blocked

See Leaf Entry
State Diagram

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(MIGRATE)
[TD is paused] /

MIGRATE,
MIG_COUNT++

TDH.EXPORT.MEM
(MIGRATE)

[TD is paused] /
REMIGRATE,

DIRTY_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
MIG_COUNT--

Figure 8.8: Partial L1 SEPT Leaf Entry State Diagram for Mapped Page Write-Blocking Based Export

 Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export

The figure below shown the partial state diagram for PENDING page export.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 61 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

PENDING

Page is pending guest
TD acceptance

PENDING_
BLOCKEDW

TDH.EXPORT.BLOCKW
[TD is not paused]

TDH.EXPORT.UNBLOCKW

PENDING_
EXPORTED_
BLOCKEDWTDH.EXPORT.MEM(MIGRATE) /

MIGRATE,
MIG_COUNT++

TDH.MEM.
RANGE.BLOCK

TDH.EXPORT.MEM
(MIGRATE) /

MIGRATE

PENDING_
EXPORTED_

DIRTY

TDH.EXPORT.UNBLOCKW /
DIRTY_COUNT++

TDH.EXPORT.BLOCKW

PENDING_
EXPORTED_

DIRTY_BLOCKEDW

TDH.EXPORT.MEM
(MIGRATE) /
REMIGRATE,

DIRTY_COUNT--

TDH.EXPORT.UNBLOCKW

PENDING_BLOCKED

Page is pending and
blocked

See Leaf Entry
State Diagram

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(MIGRATE)
[TD is paused] /

MIGRATE, MIG_COUNT++

TDH.EXPORT.MEM
(MIGRATE)

[TD is paused] /
REMIGRATE,

DIRTY_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
MIG_COUNT--

TDG.MEM.
PAGE.ACCEPT

EXPORTED_
DIRTY

Page is mapped and
accessible to guest
TD

See Mapped
Leaf Entry
Export State
Diagram

Figure 8.9: Partial L1 SEPT Leaf Entry State Diagram for Pending Page Write-Blocking Based Export

 Details: TDCS.DIRTY_COUNT: TD-Scope Dirty Page Counter

TDCS.DIRTY_COUNT is a TD-scope dirty page counter.

• DIRTY_COUNT is cleared when a new migration session begins (by TDH.EXPORT.STATE.IMMUTABLE). 5

• DIRTY_COUNT is incremented when a page that has previously been exported in the current session is unblocked for
writing by TDH.EXPORT.UNBLOCKW.

• DIRTY_COUNT is decremented when a newer version of a page, which has previously been exported in the current
session, is exported by TDH.EXPORT.MEM.

For successful start token generation by TDH.EXPORT.TRACK, the value of the DIRTY_COUNT must be 0, indicating that 10

all pages exported so far have their newest pages exported. At this point, since the source TD is paused, no newer
versions of any page can be created, and the destination TD can start execution. Private pages which have not been
exported yet in the current session may still be remaining for post copy export. Note that exported pages may not have
been transported yet. The start token MBMD’s TOTAL_MB field verification enforces that all exported state has been
imported (in-order) on the destination – see the [TDX Module ABI Spec] for details. 15

8.5. New: Non-Blocking Memory Export

8.5.1. Host VMM Perspective

This section describes non-blocking export from the host VMM perspective. This is a simplified view; a more detailed
view is discussed later.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 62 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 EPT Access and Dirty Bits Background

Intel SDM, Vol. 3, 30.3.5 Accessed and Dirty Flags for EPT

The Dirty Bit

Non-blocking live export relies on detecting memory changes using the Secure EPT entry’s Dirty bit (9). This bit is set by
the h/w (CPU or IOMMU) in the leaf EPT entry for a certain GPA when it performs an EPT walk for translating that GPA 5

for a write operation. The Dirty bit is sticky – the h/w may only set it to 1 but never clear it. The Dirty bit is only cleared
by s/w – in case of Secure EPT, by the TDX module.

Implication of Address Translation Caching

The CPU and IOMMU cache page address translations and paging structures. An EPT entry’s Dirty bit is only set during
an EPT walk, when there is a need to do address translation, and the applicable entries are not cached. This means that 10

even if the TDX module clears the Dirty bit of an SEPT entry, the h/w may not be aware of this since it holds a cached
entry; it will not set the Dirty bit if there’s a new write access. Since page modification detection relies on the correct
value of the Dirty bit, there is a need to do a TLB shootdown, as described in the following sections. TLB shootdown is
tracked by the TDX module as a prerequisite to page export, to help ensure secure operation.

 Memory Export Concept: Scan and Export 15

Non-blocking export is based on the concept of scan and export. Export typically consists of multiple rounds, with the
following steps per round:

1. Scan the TD’s GPA space for memory export candidates.
2. Do a TLB shootdown.
3. Based on the scan results, prepare a list of pages and export them. 20

TDH.MEM.SCAN.*
Export

Candidate
Page GPA List

TDH.EXPORT.MEM
Export Page

GPA List

Prepare
Export

Lists

TDH.MEM.TRACK

TLB Shootdown:
• Send IPIs
• Invalidate IOTLBs

Figure 8.10: Memory Export Round Concept: Scan and Export

The host VMM is not required to track the state of the TD private pages. It can rely on the provided scan functions to
provide the required information.

 Conceptual, Simplified Page State Diagram 25

Although the host VMM is not required to track the TD private page state, it is worthwhile to understand how the TDX
module tracks page state using the Secure EPT state. This section provides a conceptual view of the page state machine,
which serves as a simplified overview of the export operation from the host VMM's perspective.

Note: The actual SEPT entry state machine is more complex. It is described in the following sections and in the [Base
Spec]. 30

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 63 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

The following table lists the conceptual state machine’s states and their handling by the memory scan functions (which
are described later):

Table 8.2: Conceptual, Simplified Page States for Dirty Bit Based Export

State Description TDH.MEM.SCAN.*

NOT_EXPORTED Pages that either have not been exported
during the current migration session, or that
were exported but their export was later
cancelled.

Page GPA is reported by
TDH.MEM.SCAN.*, to let the host
VMM know it needs to be exported.

EXPORTED Pages that were exported. Pages may have
their Dirty bit set due to content modifications
by the CPU, DMA or the TDX module, or due to
attributes modifications by the guest TD (e.g.,
TDG.MEM.PAGE.ACCEPT or
TDG.MEM.PAGE.ATTR.WR).

If the page’s SEPT entry’s Dirty bit
is set, TDH.MEM.SCAN.* clears the
Dirty bit, sets the page state to
EXPORTED_MODIFIED and reports
the page GPA to let the host VMM
know it needs to be re-exported.

EXPORTED_MODIFIED Pages that were exported, and later either
scanned and found to require re-export since
their Dirty bit was set, or their attributes were
changed by some TDX module memory
management function.

TDH.MEM.SCAN.* reports the page
GPA to let the host VMM know it
needs to be re-exported.

EXPORT_CANCEL_
REQUIRED

Pages that were exported but their export
must be cancelled, due to memory
management operations (such as
TDH.MEM.RANGE.BLOCK) by the host VMM.

Note: This conceptual state represents
multiple states, shown in the detailed
diagram later; those are required since
different memory management
operations are handled differently.

TDH.MEM.SCAN.* reports the page
GPA to let the host VMM know it
needs to be re-exported.

BLOCKED When a page that was in an
EXPORT_CANCEL_REQUIRED state due to
blocking is exported (as a CANCEL operation),
the page state becomes the normal BLOCKED
state.

Note: This conceptual state represents
multiple states, shown in the detailed
diagram later; those are required since
different memory management
operations are handled differently.

Page GPA is not reported by
TDH.MEM.SCAN.RANGE(DSCAN)
since it is not exported.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 64 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

NOT_EXPORTED

Page is not exported

EXPORTED

Page is exported

TDH.EXPORT.MEM
[TLB tracked] /

Export(MIGRATE)

EXPORTED_
MODIFIED

export(REMIGRATE)
is required

TDH.MEM.SCAN(DSCAN)
[D == 1] /

Clear D, add to GPA list

TDH.MEM.SCAN(DSCAN) /
Clear D, add to GPA list

TDH.EXPORT.MEM /
Export(CANCEL)

TDH.MEM.RANGE.BLOCK

TDH.MEM.RANGE.BLOCK

TDH.MEM.SCAN(DSCAN) /
Clear D, add to GPA list

TDH.MEM.SCAN(DSCAN) /
Clear D, add to GPA list

EXPORT_
CANCEL_REQUIRED

Export(CANCEL) is
required

TDH.MEM.SCAN(DCHECK) /
Inc. DIRTY_COUNT,

add to GPA list

TDH.MEM.SCAN(DCHECK) /
add to GPA list

TDH.MEM.SCAN(DCHECK)
[D == 1] /
Clear D,

add to GPA list

TDH.MEM.SCAN(DCHECK) /
add to GPA list

Note:
This is a conceptual diagram.
State names are not actual SEPT
state names. Some transitions
are simplified or not shown.

BLOCKED

Page is blocked

TDH.EXPORT.MEM /
Export(CANCEL)

TDH.EXPORT.MEM
[(D == 0) && TLB tracked] /

Export(REMIGRATE)

Figure 8.11: Conceptual Page State Diagram for Dirty Bit Based Export

 Scanning for Candidate Pages to Export or Re-export

8.5.1.4.1. Overview

During the live export phase, memory pages may be modified asynchronously to the host VMM’s operations, by the 5

running TD or its bound TDIs. The host VMM does not need to know the SEPT entry states. It uses the export candidates
list provided by following interface functions:

TDH.MEM.SCAN.RANGE(DSCAN): This function is used iteratively by the host VMM during the LIVE_EXPORT phase of
TD migration to identify pages in the specified GPA range needing export.
Identification is based on the SEPT entry’s page state and the Dirty bit. The function 10

returns a list of pages that the host VMM can use to prepare export requests (as an
input to TDH.EXPORT.MEM).

TDH.MEM.SCAN.COMP(DCHECK): This function is used by the host VMM during the export blackout period, after the
TD is paused and all TDIs are unbound. The function performs a comprehensive
scan of the TD’s GPA address space and identifies the remaining pages needing 15

export and returns a page list. It ensures migration consistency by requiring that
the whole GPA range will be scanned and maintaining a counter of pages that need
to be exported. TDH.EXPORT.TRACK(DONE) then checks that those pages have
indeed been exported, as a precondition for generating a start token.

Although memory export only supports 4KB page mapping, the scanning functions return information for 4KB, 2MB and 20

1GB page mapping sizes. The host VMM is responsible for demoting 2MB and 1GB pages before calling
TDH.EXPORT.MEM.

The host VMM is expected to maintain an export GPA list:

• A GPA should be added to the list when it is reported by TDH.MEM.SCAN.*.

• A GPA should be removed from the list when it is successfully exported by TDH.EXPORT.MEM. 25

TDH.MEM.SCAN.* returns a list of export candidates regardless of whether pages in that list have been returned by a
previous call to TDH.MEM.SCAN.*. I.e., if page X has been reported as an export candidate, and had not yet been
exported, it may be reported again.

8.5.1.4.2. Using the Memory Scanning Functions

To help reduce the scan time, especially during the export blackout period, TDH.MEM.SCAN.* can be called concurrently 30

on multiple LPs.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 65 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

A comprehensive scan of the whole GPA range is done as follows:

• The host VMM needs to configure the comprehensive scan using TDH.MEM.SCAN.CONFIG. The host VMM can divide
the TD’s GPA address space into ranges, typically to optimize the scan for NUMA configurations. The configuration
is not migrated with the TD; it needs to be redone if the TD is to be migrated again.

• The host VMM can call TDH.MEM.SCAN.COMP on multiple threads, specifying the pre-configured GPA range to scan 5

by each instance (multiple instances can concurrently scan the same range).

• If the scan fails (e.g., there are blocked pages), the host VMM can reset the comprehensive scan using
TDH.MEM.SCAN.RESET and then retry the scan.

For further details, see the [TDX Module ABI Spec].

 Typical Non-Blocking Export Session 10

Typical expected usage divides the export session to export rounds (or passes). The diagram below shows a typical export
session, which is composed of several live migration export rounds and a final export round during the blackout period,
when the TD is not running. It also shows post-copy (which is not applicable if the TD is configured for TDX Connect).

The diagram below shows 4 migration streams and the usage of migration epochs to synchronize them. Migration epochs
are defined in 6.1.4. 15

Stream
1

Stream
2

Stream
3

Stream
0

Page
0

Page
11

Page
5

Page
15

Page
3

Page
8

Page
12

Page
4

Page
13

Page
1

Page
6

Page
14

Page
2

Page
7

Page
10

Page
9

Page
6

Page
12

Page
11

Page
4

Page
8

Cancel
7

Page
7

Page
6

Cancel
8

Page
14

Page
12

Page
1

Page
8

Page
24

Page
28

Page
20

Page
23

Page
16

Page
21

Page
29

Page
18

Page
17

Page
26

Page
19

Page
17

Page
27

Page
22

Page
29

Mig. Epoch 0 Mig. Epoch 1 Mig. Epoch 2

In-Order Phase Out-Of-Order Phase

Time

Live Migration (TD is Running on Source)
Post-Copy (non TDX
Connect, TD may be

Running on Destination)
Blackout (TD is not Running)

Epoch
Token

Epoch
Token

TDH.EXPORT.

TRACK

TDH.MEM.SCAN

(DSCAN)
TDH.MEM.SCAN

(DSCAN)
TDH.EXPORT.

MEM
TDH.EXPORT.

MEM

Export Round 0 Export Round 1 Export Round 2 (Final)

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

Out-Of-Order Export
(non TDX Connect)

Mig. Epoch 0xFFFFFFFF

IPIsIPIs

TDH.MEM.

TRACK

TDH.EXPORT.

STATE.IMMUTABLE

TDH.MEM.

TRACK

TDH.EXPORT.

TRACK

TDH.MEM.SCAN

(DCHECK)
TDH.EXPORT.

MEM

TDH.EXPORT.

PAUSE
TDH.EXPORT.

STATE.TD TDH.EXPORT.

STATE.VP

TDH.EXPORT.

STATE.VP

TDH.EXPORT.

STATE.VP

VP
State

TD
State

VP
State

VP
State

Start
Token

TDH.EXPORT.

TRACK(DONE)

TD
State

Inval.
IOTLB

Inval.
IOTLB

Figure 8.12: Typical Non-Blocking Export Session

8.5.1.5.1. Typical Live Export Round

Note: Do not confuse TDH.MEM.TRACK (which is used for TLB tracking) with TDH.EXPORT.TRACK (which rendezvous
all migration streams). 20

An export round during the live migration phase of the export session typically has the following steps:

1. Prepare a list of pages to be exported by calling TDH.MEM.SCAN.RANGE(DSCAN) one or more times.
1.1. TDH.MEM.SCAN.RANGE(DSCAN) can be called concurrently on multiple LPs.

2. Do the TDX TLB (and IOTLB, if the TD is enabled for TDX Connect) shootdown sequence. This is required to ensure
that, after the following export, the CPU or IOMMU will indeed set the Dirty bit if a page is written. 25

2.1. Call TDH.MEM.TRACK.
2.2. Issue IPIs (Inter-Processor Interrupts) to all RLP (Remote Logical Processors) on which any of the TD’s VCPUs is

currently scheduled. This causes TD re-entry and TLB (and IOTLB, if the TD has bound TDI) invalidation on all
VCPUs.

3. Start a new migration epoch by invoking TDH.EXPORT.TRACK. This is required for the TDX module on the destination 30

to ensure proper ordering on import.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 66 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

4. Call TDH.EXPORT.MEM with a list of pages based of the export candidates list reported by
TDH.MEM.SCAN.RANGE(DSCAN) above.
4.1. The host VMM may choose not to include pages reported as blocked, since this is an interim state as a

preparation to some memory management operation.
4.2. TDH.EXPORT.MEM determines the required export operation (MIGRATE, REMIGRATE or CANCEL) based on 5

each page state.
4.3. TDH.EXPORT.MEM checks that the TLB shootdown above has indeed been done, using the TDX TLB tracking

mechanism (see the [TDX Module Base Spec] for details).
4.4. TDH.EXPORT.MEM can be called concurrently on multiple LPs, each exporting to a different migration stream.

Concurrency and Order during Live Export 10

• There is no strict ordering requirement between steps 2 and 3, as long as they precede step 4.

• TDH.MEM.SCAN.RANGE(DSCAN) can run concurrently with TDH.EXPORT.MEM, as long as different pages are
processed. E.g., it is possible to scan a certain GPA range while exporting memory of a different GPA range.

• If TDH.MEM.SCAN.RANGE(DSCAN) encounters a busy SEPT entry due to a conflict with some other function, it skips
that entry. The page will be processed by the next TDH.MEM.SCAN.RANGE(DSCAN) or 15

TDH.MEM.SCAN.COMP(DCHECK) . For details, see the [ABI Spec].

• If TDH.EXPORT.MEM encounters a busy SEPT entry due to a conflict with some other function, it skips that entry. It
writes the status into the GPA list; the host VMM may read that list and call TDH.EXPORT.MEM to export pages that
have not been exported. For details, see the [ABI Spec].

8.5.1.5.2. Typical Final Export Round 20

The final export round ensures that the full up-to-date memory image (and non-memory state) is exported. It typically
consists of the following steps:

1. Pause the TD using TDH.EXPORT.PAUSE. This requires no pages to be blocked and, if the TD is enabled for TDX
Connects, no TDIs to be attached.

2. Export the TD’s non-memory immutable state using TDH.EXPORT.STATE.TD and TDH.EXPORT.STATE.VP. 25

3. Prepare a list remaining of pages to be exported in the final round by calling TDH.MEM.SCAN.COMP(DCHECK) one or
more times until the whole GPA range has been scanned.
3.1. TDH.MEM.SCAN.CONFIG should be called prior to TDH.MEM.SCAN.COMP to configure the GPA ranges for

scanning.
3.2. TDH.MEM.SCAN.COMP(DCHECK) can be called concurrently on multiple LPs. 30

4. There is no need to do a TLB shootdown since the TD is paused and no TDI is bound to the TD.
5. Start a new migration epoch by invoking TDH.EXPORT.TRACK. This is required for the TDX module on the destination

to ensure proper ordering on import.
6. Call TDH.EXPORT.MEM with a list of pages. The TDX module determines the required export operation (MIGRATE,

REMIGRATE or CANCEL) based on each page state. 35

6.1. All the pages detected by TDH.MEM.SCAN.COMP(DCHECK) as requiring re-export must be exported.
6.2. If post-copy is supported (for a TD where TDX Connect is not enabled), pages identified by

TDH.MEM.SCAN.COMP(DCHECK) as never having been exported may be exported later during the out-of-order
phase.

6.3. TDH.EXPORT.MEM may be called concurrently on multiple LPs, each exporting to a different migration stream. 40

7. End the in-order export phase by calling TDH.EXPORT.TRACK(DONE).

Concurrency and Order during Final Export

• TDH.MEM.SCAN.COMP(DCHECK) can run concurrently with TDH.EXPORT.MEM, as long as different pages are
processed. E.g., it is possible to scan a certain GPA range while exporting memory of a different GPA range.

• Unlike TDH.MEM.SCAN.RANGE(DSCAN), if TDH.MEM.SCAN.COMP(DCHECK) encounters a busy SEPT entry due to a 45

conflict with some other function, it returns to the host VMM indicating an interrupted operation. The host VMM is
expected to resume TDH.MEM.SCAN.COMP(DCHECK) . For details, see the [ABI Spec].

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 67 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 Interaction with Memory Management Operations

8.5.1.6.1. Memory Management Restrictions on Pages that Have Been Exported

Exported Page Blocking and Removal

A page that has been exported can still be blocked (TDH.MEM.RANGE.BLOCK) and/or removed
(TDH.MEM.PAGE.REMOVE) by the host VMM, subject to other restrictions (e.g., no attached TDIs for TDs configured for 5

TDX Connect).

Synchronization with the destination is done by exporting a CANCEL operation for this page, so that the destination can
remove it. A blocked or removed page is put in one of several special states (together called EXPORT_CANCEL_REQUIRED
in the conceptual state diagram above). Pages in those states are detected by TDH.MEM.SCAN.RANGE(DSCAN) and
TDH.MEM.SCAN.COMP(DCHECK) so that the host VMM can include them in the GPA list for TDH.EXPORT.MEM. Once 10

TDH.EXPORT.MEM has exported a CANCEL operation for such page, the page state is set to one of the NON_EXPORTED
states.

Exported Page Promotion or Demotion

A page that has been exported can’t be promoted (TDH.MEM.PAGE.PROMOTE). Since an exported page mapping size is
4KB, it can’t be demoted (TDH.MEM.PAGE.DEMOTE) either. 15

Note: Even without migration, the host VMM should always be prepared for a Promote operation to fail. E.g., L1 may
set the attributes of some of the small pages to be merged differently than the other small pages, preventing
promotion.

8.5.1.6.2. Memory Management Restrictions During the Export Blackout Period

The following memory management restriction apply during the PAUSED_EXPORT state, which begins when the TD is 20

paused by TDH.EXPORT.PAUSE and ends when a start token is generated by TDH.EXPORT.TRACK(DONE). These
restrictions exist to facilitate export completeness tracking (for details, see 8.5.2.7 below).

No Blocked Pages

No page may be blocked while in the PAUSED_EXPORT state. This condition is checked by TDH.EXPORT.PAUSE and
TDH.MEM.SCAN.COMP(DCHECK). TDH.MEM.RANGE.BLOCK and TDH.MEM.RANGE.UNBLOCK are not allowed. 25

Note: TDH.MEM.PAGE.DEMOTE and TDH.MEM.PAGE.RELOCATE are allowed without blocking in the PAUSED_EXPORT
state.

Other Restrictions

• Page addition and removal by TDH.MEM.PAGE.AUG and TDH.MEM.PAGE.REMOVE is not allowed while in the
PAUSED_EXPORT state. Note that TDH.MEM.PAGE.ADD is also not allowed since the TD build has been, by definition, 30

finalized.

• SEPT tree changes by TDH.MEM.PAGE.PROMOTE, TDH.MEM.SEPT.ADD, and TDH.MEM.SEPT.REMOVE are not
allowed while in the PAUSED_EXPORT state.

 Exporting Pending Pages

The host VMM is not directly aware if a page is in a PENDING state or not: 35

• The guest TD may accept a PENDING page by TDG.MEM.PAGE.ACCEPT at any time, converting it to a MAPPED page.

• If supported, the guest TD may release a MAPPED page by TDG.MEM.PAGE.RELEASE, converting it to a PENDING
page.

Thus, TDH.EXPORT.MEM may export a pending page. This is indicated by the GPA list entry, and no migration buffer is
used since the page content is not exported. The page attributes (including the optional page attributes list entry) are 40

exported. On the destination platform, TDH.IMPORT.MEM creates the page in a PENDING state.

 SEPT Cleanup after Export Abort

After an export session is aborted (by TDH.EXPORT.ABORT) the source TD is allowed to run. However, SEPT entries and,
for partitioned TDs, L2 SEPT entries, that have been modified during the aborted export session keep their state. Such
SEPT entries must be cleaned up by the host VMM before memory management operations that are not allowed on 45

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 68 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

migrated pages (such as TDH.MEM.PAGE.PROMOTE) are attempted on them, and/or before a new export session is
attempted.

Cleanup is done either by TDH.EXPORT.RESTORE, which receives a list of up to 512 pages, or (if supported) by
TDH.MEM.SCAN.RANGE(EXPORT_RESTORE), which scans a GPA range.

The TDX module holds a TDCS field called MIG_COUNT, which counts the number of exported pages that require cleanup. 5

This field is readable by the host VMM, using TDH.MNG.RD. The counter is initialized to 0. To start a new migration
session, its value must be 0.

8.5.2. Details of Non-Blocking Export

This section provides a detailed view of non-blocking export. Details may be of interest to host VMM programmers who
require deeper understanding of TD Migration. 10

 Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export

To support non-blocking export of Mapped pages, the following SEPT states are added. Their main goal is to help keep
the destination TD memory image in sync with the source TD memory image. The next section describes the states added
for Pending pages.

Table 8.3: L1 SEPT Entry States Related to Mapped Page Export 15

State Name Description

EXPORTED The page has been exported. This state indicates that any change in the
page content or attributes would require a re-export.

EXPORTED_MODIFIED The page was exported and later either identified as dirty based on the
Dirty bit (which was atomically cleared by the same operation that
checked its value) or some memory management operation changed the
page attributes or state. This state indicates that the page must be re-
exported, as a REMIGRATE operation.

EXPORTED_BLOCKED The page was exported and later blocked by TDH.MEM.RANGE.BLOCK.
This state indicates that the page must be re-exported, as a CANCEL
operation.

EXPORTED_REMOVED The page was exported and later removed by TDH.MEM.PAGE.REMOVE.
This state indicates that the page should be re-exported, as a CANCEL
operation.

EXPORTED_REMOVE_IN_PROGRESS The page was exported and later partially removed by
TDH.MEM.PAGE.REMOVE. This state indicates that the page should be
re-exported, as a CANCEL operation.

This state is only applicable for client platforms, which used ACT-based
memory protection.

A partial SEPT entry state diagram for exporting Mapped pages using the Dirty bit method is shown below. The following
sections describe the details. The color-coding convention used in this diagram is described in 8.2.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 69 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

MAPPED

Page is mapped and
accessible to guest
TD

EXPORTED

Page is exportedTDH.EXPORT.MEM
[TLB tracked || TD paused] /

Export(MIGRATE), inc. MIG_COUNT,
if TD is paused, clear D

TDH.EXPORT.MEM
[out-of-order] /

Export(MIGRATE)

EXPORTED_
MODIFIED

export(REMIGRATE)
is required

TDH.MEM.SCAN
(DSCAN) [D == 1] /

Clear D, set BEPOCH
inc. DIRTY_COUNT

add to GPA list

See Leaf
Entry State
Diagram

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN(EXPORT_RESTORE) /

Dec. MIG_COUNT

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN(EXPORT_RESTORE) /

Dec. MIG_COUNT

EXPORTED_
REMOVE_

IN_PROGRESS1

Page removal is in
progress,
export(CANCEL) is
required

TDH.MEM.SCAN(DSCAN) /
Add to GPA list

TDH.MEM.SCAN(DSCAN) /
Clear D, set BEPOCH,

add to GPA list

TDG.MEM.PAGE.ACCEPT /
Inc. DIRTY_COUNT

TDG.MEM.PAGE.RELEASE /
Inc. DIRTY_COUNT

BLOCKED

Page is mapped but
new translations are
blocked

TDH.EXPORT.MEM /
Export(CANCEL),

dec. MIG_COUNT,
dec. DIRTY_COUNT

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN

(EXPORT_RESTORE) /
Dec. MIG_COUNT

TD
H

.M
EM

.R
A

N
G

E.
B

LO
C

K
 /

In
c.

 B
LO

C
K

ED
_C

O
U

N
T,

 in
c.

 D
IR

TY
_C

O
U

N
T,

cl
ea

r
D

FREE

GPA is not allocated
to the TD

TDH.EXPORT.MEM /
Export(CANCEL),

dec. MIG_COUNT,
dec. DIRTY_COUNT

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN

(EXPORT_RESTORE) /
Dec. MIG_COUNT

TDH.MEM.SCAN(DSCAN) /
Add to GPA list

TDH.MEM.PAGE.REMOVE
[TLB tracked || TD paused] /

Dec. BLOCKED_COUNT

TDH.MEM.PAGE.REMOVE

REMOVE_
IN_PROGRESS1

Page removal is in
progress

TDH.EXPORT.MEM /
Export(CANCEL),

dec. MIG_COUNT,
dec. DIRTY_COUNT

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN(EXPORT_RESTORE) /

Dec. MIG_COUNT

TD
H

.M
EM

.R
A

N
G

E.
B

LO
C

K
 /

In
c.

 B
LO

C
K

E
D

_
C

O
U

N
T

PENDING_EXPORTED

[interrupted]

PENDING_EXPORTED
_MODIFIED

TDG.MEM.PAGE.ACCEPT

TDG.MEM.PAGE.RELEASE /
Clear D

See PENDING Entry
Export State Diagram

See PENDING Entry
Export State Diagram

See Leaf Entry
State Diagram

See Leaf Entry
State Diagram

See Leaf Entry
State Diagram

TDG.MEM.PAGE.ATTR.WR /
Update SEPT

TD
H

.M
EM

.R
A

N
G

E.
U

N
BL

O
CK

,
T

D
H

.M
E

M
.P

A
G

E
.R

E
LO

C
A

T
E

 /
D

e
c.

 B
LO

C
K

E
D

_
C

O
U

N
T

[success]

[success] [interrupted]

TDH.MEM.SCAN(DSCAN) /
Clear D, set BEPOCH, add to GPA list

TDH.MEM.SCAN(DCHECK) /
Add to GPA list

TDH.MEM.SCAN(DCHECK) /
Add to GPA list

TDH.MEM.SCAN(DSCAN) /
Add to GPA list

EXPORTED_BLOCKED

Page is blocked for
new address
translations,
export(CANCEL) is
required

EXPORTED_
REMOVED

Page is removed,
export(CANCEL) is
required

TDH.MEM.SCAN(DCHECK) /
Add to GPA list

TDH.MEM.SCAN
(DCHECK) [D == 1] /
inc. DIRTY_COUNT,

add to GPA list

TDH.MEM.SCAN(DCHECK) /
Add to GPA list

Notes
1 These states are only applicable for platforms that use ACT-based memory protection.

Color Conventions

TDG.MEM.PAGE.
ATTR.WR /

Update SEPT,
Inc. DIRTY_COUNT

TDH.EXPORT.MEM
[((D == 0) &&

TLB tracked) ||
 TD paused] /

Export(REMIGRATE),
dec. DIRTY_COUNT,

if TD is paused, clear D

State where D may be 0 or 1 State where D is always 0

Figure 8.13: Partial L1 SEPT Leaf Entry State Diagram for MAPPED Page Non-Blocking Export

 Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export

The state diagram for PENDING page export is very similar to the one above. Note that PENDING pages are considered
non-present from the h/w perspective, so the CPU and DMA do not normally set the Dirty bit. An exception to this is 5

pages converted to PENDING by TDG.MEM.PAGE.RELEASE where the h/w may hold a TLB translation.

Table 8.4: L1 SEPT Entry State Related to Pending Page Export

State Name Description

PENDING_EXPORTED The page has been exported. This state indicates that any change in the
page attributes would require a re-export.

PENDING_EXPORTED_MODIFIED The page was exported and later identified as dirty based on the Dirty
bit (which was atomically cleared by the same operation that checked
its value). This state indicates that the page must be re-exported, as a
REMIGRATE operation.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 70 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

State Name Description

PENDING_EXPORTED_BLOCKED The page was exported and later blocked by TDH.MEM.RANGE.BLOCK.
This state indicates that the page must be re-exported, as a CANCEL
operation.

A partial SEPT entry state diagram for exporting Pending pages using the Dirty bit method is shown below. The following
sections describe the details. The color-coding convention used in this diagram is described in 8.2.

PENDING

Page is pending
acceptance by the
guest TD

PENDING_EXPORTED

Page is exported

TDH.EXPORT.MEM2 /
Export(MIGRATE), inc. MIG_COUNT

TDH.EXPORT.MEM
[out-of-order] /

Export(MIGRATE)

PENDING_EXPORTED
_MODIFIED

export(REMIGRATE)
is required

See Leaf
Entry State
Diagram

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN(EXPORT_RESTORE) /

Dec. MIG_COUNT

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN(EXPORT_RESTORE) /

Dec. MIG_COUNT

EXPORTED_
REMOVE_

IN_PROGRESS1

Page removal is in
progress,
export(CANCEL) is
required

TDH.MEM.SCAN(DSCAN) /
Add to GPA list

TDG.MEM.PAGE.RELEASE /
Inc. DIRTY_COUNT, clear D

TDG.MEM.PAGE.ACCEPT /
Inc. DIRTY_COUNT

PENDING_BLOCKED

Page is pending and
blocked

TDH.EXPORT.MEM /
Export(CANCEL),

dec. MIG_COUNT,
dec. DIRTY_COUNT

TDH.EXPORT.RESTORE,
TDH.MEM.SCAN

(EXPORT_RESTORE) /
Dec. MIG_COUNT

TD
H

.M
EM

.R
A

N
G

E.
B

LO
C

K
/

In
c.

 P
EN

D
IN

G
_B

LO
CK

ED
_C

O
U

N
T,

in
c.

 D
IR

T
Y

_
C

O
U

N
T

TDH.MEM.PAGE.REMOVE
[TLB tracked || TD paused] /

Dec. PENDING_BLOCKED_COUNT
TD

H
.M

EM
.R

A
N

G
E.

B
LO

C
K

/
In

c.
 P

EN
D

IN
G

_B
LO

CK
ED

_C
O

U
N

T

EXPORTED

[interrupted]

EXPORTED_
MODIFIED

TDG.MEM.PAGE.RELEASE /
Clear D

TDG.MEM.PAGE.ACCEPT

See MAPPED Entry
Export State Diagram

See MAPPED Entry
Export State Diagram

See Leaf Entry
State Diagram

TDG.MEM.PAGE.ATTR.WR /
Update SEPT

TD
H

.M
EM

.R
A

N
G

E.
U

N
B

LO
C

K
,

TD
H

.M
EM

.P
A

G
E.

R
EL

O
C

A
TE

 /
D

ec
. P

EN
D

IN
G

_B
LO

CK
ED

_C
O

U
N

T

[success]

[success] [interrupted]

TDH.MEM.SCAN(DSCAN) /
Add to GPA list

TDH.MEM.SCAN(DSCAN) /
Add to GPA list

PENDING_EXPORTED
_BLOCKED

Page is pending and
blocked,
export(CANCEL) is
required

EXPORTED_
REMOVED

Page is removed,
export(CANCEL) is
required

TDH.MEM.SCAN(DCHECK) /
Inc. UNEXPORTED_COUNT,

Add to GPA list

TDH.MEM.SCAN(DCHECK) /
Add to GPA list

TDG.MEM.PAGE.
ATTR.WR /

Update SEPT,
Inc. DIRTY_COUNT

See Mapped
Entry Export

State Diagram

See Mapped
Entry Export

State Diagram

TDH.EXPORT.MEM2 /
Export(REMIGRATE),
dec. DIRTY_COUNT

TD
H

.M
EM

.P
A

G
E.

A
U

G
 /

In
c.

 D
IR

TY
_C

O
U

N
T

TD
H

.M
EM

.P
A

G
E.

A
U

G
 /

In
c.

 D
IR

TY
_C

O
U

N
T

Notes
1 These states are only applicable for platforms that use ACT-based memory protection.

2 No TLB tracking is required

Color Conventions

State where D may be 0 or 1 State where D is always 0

Figure 8.14: Partial L1 SEPT Leaf Entry State Diagram for PENDING Page Non-Blocking Export 5

 Details: TD Partitioning Considerations for Dirty Bit Operations

With TD partitioning, in addition to the main SEPT tree used by L1, each L2 VM has its own L2 SEPT tree. TD private
memory writes by an L2 VM, by devices associated with that L2 VM or by TDX module flows that run in the context of
that L2 VM set the Dirty bits in L2 SEPT entries.

Thus, when the logical Dirty bit is discussed, the actual operation may involve the L1 SEPT entry’s Dirty bit and/or one or 10

more of the L2 SEPT entries’ Dirty bits. The following table describes the various operations done on the Dirty bit and
their actual meaning for partitioned TDs.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 71 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Table 8.5: Logical Dirty Bit vs. Actual L1 and L2 Dirty Bits

Logical Operation Actual Operation

Is the Dirty bit 0? Logical Dirty is 0 if the Dirty bit is 0 in the L1 SEPT
entry and all L2 SEPT entries.

Is the Dirty bit 1? Logical Dirty is 1 if the Dirty bit is 1 in the L1 SEPT
entry or any of the L2 SEPT entries.

Atomically clear the Dirty bit and return its previous
value.

Atomically test and clear the Dirty bit in L1 and each
L2 SEPT entries. Return true if the Dirty bit was 1 in
any of the SEPT entries.

Clear the Dirty bit. Clear the Dirty bit in L1 and each L2 SEPT entries.

Set the Access and Dirty bits as a result of reading or
writing to the TD private page by a TDX module flow
operating in the context of the TD, e.g.,
TDG.MR.REPORT.

Set the A and D bits as part of the soft SEPT walk
done by the TDX module.

Set the Access and Dirty bits as a result of translating
GPAs to HPAs and caching the HPA values to be used
by the CPU (as VMCS fields) and by the TDX module,
e.g., as part of L1→L2 entry.

Set the A and D bits as part of the soft SEPT walk
done by the TDX module.

 Details: Pending Pages Considerations

As described in 8.5.1.7 above, page state may change from PENDING to MAPPED (by TDG.MEM.PAGE.ACCEPT) and vice
versa (by TDG.MEM.PAGE.RELEASE). Both operations are considered a change of page attributes and thus require re-5

export if the page has been exported.

 Details: Blocked Pages Considerations

As described in 8.5.1.6.2 above, no blocked pages are allowed during the export blackout period (PAUSED_EXPORT
phase). This applies to the following SEPT entry states: BLOCKED, EXPORTED_BLOCKED, PENDING_BLOCKED,
PENDING_EXPORTED_BLOCKED. 10

There are two reasons for that:

• Blocked pages are not exported. The blocked state is always an interim state; the host VMM blocks a page when it
intends to perform some other operation, such as page removal.

• Not allowing blocked pages during the PAUSED_EXPORT phase simplified the tracking of export completeness by
TDH.MEM.SCAN.COMP(DCHECK) and TDH.EXPORT.MEM. 15

 Details: Memory Management Considerations

8.5.2.6.1. Details: Host-Side Memory Management Considerations

The tables below summarize special consideration for the interaction of non-blocking export and TD private memory
management operations done by the host VMM and guest TD.

Table 8.6: Host-Side Memory Management Considerations of Non-Blocking Export 20

Operation Details

TDH.MEM.PAGE.AUG A page that has been exported and then removed is put in an
EXPORTED_REMOVED state (see below). While in this state, the host VMM can
call TDH.MEM.PAGE.AUG to add a new page at the same GPA. The page state is
set to EXPORTED_PENDING_MODIFIED.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 72 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Operation Details

TDH.MEM.PAGE.DEMOTE It is possible to demote a non-exported 2MB or 1GB page whose state is
MAPPED, BLOCKED or PENDING or PENDING_BLOCKED.

If the page state before the demote operation was MAPPED and a non-blocking
export session is in the LIVE_EXPORT phase, the TDX module sets all the
demoted pages’ Dirty bits1. Otherwise, it clears them.

A page that has been exported is mapped at 4KB, so it can’t be demoted.

TDH.MEM.PAGE.PROMOTE It is possible to promote a 2MB or 1GB GPA range if all the small pages within
that range are non-exported whose state is MAPPED or PENDING. The TDX
module sets the promoted page’s Dirty bit2.

It is not possible to promote a page that has been exported. Supporting that
would complicate the SEPT state machine (e.g., handle the case where some
4KB pages have different states than other, add new states that indicate the
need to export a CANCEL operation etc.). Note that the host VMM should
already be able to handle situations where promotion is not possible, e.g., due
to different L2 attributes set by L1.

TDH.MEM.PAGE.RELOCATE A blocked page in the EXPORTED_BLOCKED or PENDING_EXPORTED_BLOCKED
state can be relocated. This unblocks the page, and the page state is set to
EXPORTED_MODIFIED or PENDING_EXPORTED_MODIFIED respectively.

TDH.MEM.PAGE.REMOVE A page that has been exported can be removed. The page is put in an
EXPORTED_REMOVED state to track the need for exporting a CANCEL operation
for it, after which the page state is set to the regular FREE state.

TDH.MEM.SEPT.REMOVE A page that has been exported and then removed is put in an
EXPORTED_REMOVED state (see above). While in that state, the L1 SEPT entry
mapping the page is not free. Thus, the L1 SEPT page where it resides cannot
be removed.

TDH.MEM.RANGE.BLOCK A page that has been exported can be blocked (and later removed or
unblocked). Depending on whether the page is pending, the page is put in an
EXPORTED_BLOCKED or PENDING_EXPORTED_BLOCKED state to track the need
for exporting a CANCEL operation for it, after which the page state is set to the
regular BLOCKED or PENDING_BLOCKED state respectively.

TDH.MEM.RANGE.UNBLOCK A blocked page in the EXPORTED_BLOCKED or PENDING_EXPORTED_BLOCKED
state can be unblocked. The page state is set to EXPORTED_MODIFIED or
PENDING_EXPORTED_MODIFIED respectively.

8.5.2.6.2. Details: Guest-Side Memory Management Considerations

The guest TD is not directly aware of memory export; memory management operations are still available to it.

Table 8.7: Guest-Side Memory Management Considerations of Non-Blocking Export

Operation Details

TDG.MEM.PAGE.ACCEPT The guest TD may accept a PENDING_EXPORTED or a
PENDING_EXPORTED_MODIFIED page. The page state becomes
EXPORTED_MODIFIED so that TDH.MEM.SCAN.RANGE(DSCAN) or
TDH.MEM.SCAN.COMP(DCHECK) will detect the need to re-export the page.

1 With block-less demote, the h/w may still set the Dirty bit of the large page’s SEPT entry while TDH.MEM.PAGE.DEMOTE is running
and before it updated that SEPT entry to be a non-leaf entry. Thus, setting the Dirty bity of the small pages SEPT entries is necessary.

2 This is done for simplification of implementation, since the page will have to be demoted in any case for migration.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 73 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Operation Details

TDG.MEM.PAGE.ATTR.WR The guest TD may update the attributes of an EXPORTED or
EXPORTED_MODIFIED. The page state becomes EXPORTED_MODIFIED so that
TDH.MEM.SCAN.RANGE(DSCAN) or TDH.MEM.SCAN.COMP(DCHECK) will detect
the need to re-export the page.

Similarly, the guest TD may update the attributes of a PENDING_EXPORTED, or
PENDING_EXPORTED_MODIFIED page. The page state becomes
PENDING_EXPORTED_MODIFIED.

TDG.MEM.PAGE.RELEASE If supported, the guest TD may release an EXPORTED or an EXPORTED_DIRTY
page. The page state becomes PENDING_EXPORTED_MODIFIED so that
TDH.MEM.SCAN.RANGE(DSCAN) or TDH.MEM.SCAN.COMP(DCHECK) will detect
the need to re-export the page.

 Details: Export Completeness Tracking

8.5.2.7.1. Overview

After the TD is paused by TDH.EXPORT.PAUSE, the TDX module needs to enforce memory export completeness before a
start token can be exported to enable the TD to run on the destination platform. This means that the exported memory 5

image reflects the up-to-date state of the source TD memory image. Note that the migration protocol ensures that the
imported memory image is in sync with the exported one.

The host VMM is expected to do the following:

1. Run a comprehensive scan of the TD’s GPA space, by calling TDH.MEM.SCAN.COMP(DCHECK).
2. Export all memory pages reported by TDH.MEM.SCAN.COMP(DCHECK) as export candidates, using 10

TDH.EXPORT.MEM.

The above operations can be done concurrently.

8.5.2.7.2. Memory Counters and Checking by TDH.EXPORT.TRACK(DONE)

The TDX module holds the following counters in TDCS. They are reset when a migration session starts
(TDH.EXPORT.STATE.IMMUTABLE). 15

MEM_COUNT Counts the number of TD private memory pages, in multiples of 4KB. MEM_COUNT is incremented
when a new page is added to the TD, and decremented when a page is removed from the TD.

MIG_COUNT Counts of the number of 4KB pages that have been exported at least once in the current migration
session.

DIRTY_COUNT Counts the number of 4KB pages that have been exported but either their content or their attributes 20

have changed since, so a re-export is required. Counting is in units of 4KB. DIRTY_COUNT is
incremented by any function which transitions the page state out of EXPORTED or
PENDING_EXPORTED; it is decremented by TDH.EXPORT.MEM.

TDH.EXPORT.TRACK(DONE) checks the counter values as follows:

• TDH.MEM.SCAN.COMP(DCHECK) was called and completed a comprehensive scan of the TD’s GPA space. 25

• DIRTY_COUNT is 0 – i.e., all memory pages that required a re-export were indeed re-exported.

• If the TDX module does not support post-copy for non-blocking export, or if the TD is enabled for TDX Connect
(TD_PARAMS.CONFIG_FLAGS.TDX_CONNECT), MIG_COUNT is equal to MEM_COUNT – i.e., all memory pages have
been exported.

Note: If the TDX module supports post-copy for non-blocking export and the TD is not enabled for TDX Connect, the 30

host VMM is allowed not to export some of the memory image at this point. Typically, unexported pages are
exported on-demand during the post-copy phase. Failure to export (but not re-export) memory is considered a
denial of service, which is not prevented by TDX.

The host VMM can read the above counters, if required, using TDH.MNG.RD.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 74 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Tracking of export completeness is based on the following properties, which are true during the PAUSED_EXPORT state,
once the TD is paused by TDH.EXPORT.PAUSE and before a start token is generated by TDH.EXPORT.TRACK(DONE):

• TD private memory is immutable.
o The TD is paused.
o No TDIs are bound. 5

o Host-side memory management operations are restricted, as described in 8.5.1.6.2. Specifically, no page may
be blocked. Note that BLOCKED and PENDING_BLOCKED are intermediate states, as preparations for some
memory management operation. Not allowing blocked pages simplifies tracking for correctness.

• TDH.MEM.SCAN.COMP(DCHECK) scans each TD private page exactly once.

• TDH.EXPORT.MEM can only export a page once. 10

8.5.2.7.3. Backward Compatibility

The migrated TD may had been created by an older TDX module that didn’t support non-blocking export, and later the
TDX module was updated using TD-preserving update. In this case, TDH.MEM.SCAN may be less efficient; some metadata
maintained by a TDX module that supports non-blocking export during the TD lifecycle for optimizing the scan may be
missing. 15

8.6. Memory Import

8.6.1. Host VMM Perspective

This section describes memory import from the host VMM perspective. This is a simplified view; a more detailed view is
discussed later.

 In-Order Import Phase 20

8.6.1.1.1. Overview of In-order Import

During the in-order import phase, a page may be imported multiple times. In addition, a page import may be cancelled.
Ordering is maintained by the MBMD’s MB_COUNTER and the requirement that a page can only be imported once per
migration epoch.

8.6.1.1.2. Memory Management During In-Order Import 25

During the in-order import phase, no blocking and no TLB tracking is required, since the destination TD is not running yet.

Addition and removal of Secure EPT pages are allowed during the in-order phase – they are required as part of building
the TD on the destination platform. To import a page that has L2 pages mappings, the host VMM on the destination
platform must have built the L2 SEPT for the applicable L2 VMs, using TDH.MEM.SEPT.ADD, down to the proper page
mapping level. 30

Page management operations are prohibited during the in-order import phase. These include:

• Page addition by TDH.MEM.PAGE.ADD and TDH.MEM.PAGE.AUG

• Page removal by TDH.MEM.PAGE.REMOVE

• Page promotion and demotion by TDH.MEM.PAGE.PROMOTE and TDH.MEM.PAGE.DEMOTE

• Page relocation by TDH.MEM.PAGE.RELOCATE 35

• GPA range blocking and unblocking by TDH.MEM.RANGE.BLOCK and TDH.MEM.RANGE.UNBLOCK

 Out-of-Order import Phase

8.6.1.2.1. Overview of Out-of-Order Import

When the out-of-order import phase begins, any pages that have been imported are designed to be up to date. A page
may only be imported if its GPA mapping does not exist yet (SEPT entry’s state is FREE). An import attempt of a page that 40

has been imported before during the out-of-order phase is dropped but not considered an error; this is normally the
result of the same page being migrated on a high-priority queue. Source memory state is immutable, so ordering is not
required.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 75 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

8.6.1.2.2. Memory Management During Out-of-Order Import

During the out-of-order import phase, TLB tracking is required in the LIVE_IMPORT OP_STATE, since the TD may be
running on the destination platform.

Secure EPT Management

Addition and removal of Secure EPT pages are allowed during the out-of-order phase – they are required as part of 5

building the TD on the destination platform.

Page Addition

TDH.MEM.PAGE.ADD is prohibited (since the TD had been finalized before the migration session began).
TDH.MEM.PAGE.AUG is allowed after TDH.IMPORT.COMMIT, when the TD is allowed to run on the destination platform
while the import session continues. 10

If a page was not imported but was added locally (TDH.MEM.PAGE.AUG), this is equivalent to the VMM removing a page
without coordinating with the TD, then adding a new page. The TD should not accept (TDG.MEM.PAGE.ACCEPT) such a
page since from its point of view this is a page that already exists in its GPA space. The secure EPT entry state for the
locally added page is PENDING, and if a page is imported to the same GPA, import will fail.

Promotion and Demotion 15

Page promotion and demotion are allowed during the out-of-order phase.

Page Removal

Page removal (TDH.MEM.PAGE.REMOVE) is allowed during the out-of-order import phase. However, the page’s SEPT
entry is not marked as FREE when the page is removed. Instead, the SEPT entry state is set to REMOVED. The REMOVED
state is equivalent to the FREE state, except for the following limitations that apply after TDH.IMPORT.COMMIT, when 20

the TD is allowed to run on the destination platform while the import session continues, until TDH.IMPORT.END:

• Page import is not allowed to this GPA.

• Removal of the parent SEPT page is not allowed.

Page Relocation

Page relocation is supported at any stage without any changes. 25

 In-Place Import

In-place import repurposes the physical pages holding the imported data as private memory pages that hold the
decrypted data. This saves the host VMM on the destination platform the need to allocate memory for the imported
data, at the cost of a small fixed-sized intermediate buffer that needs to be held by Intel TDX Module, and some other
complications. In-place import may be selected for each page imported for the first time, or following a previous CANCEL, 30

but not for re-import of a new version of a previously imported page.

8.6.2. Updated: Details of Memory Import

 Updated: Details: In-Order Import Phase

8.6.2.1.1. Updated: Details: Overview of In-Order Import

Once out-of-order import phase begins, any pages that have been imported are designed to be up to date. 35

The state diagram below shows the L1 SEPT entry state during in-order import. The color-coding convention used in this
diagram is described in 8.2.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 76 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

FREE

SEPT entry is not
mapped to the TD

MAPPED

Page is mapped and
accessible to guest
TD

PENDING

Page is pending guest
TD acceptance

TDH.IMPORT.MEM
(REMIGRATE)

[mapped]

TDH.IMPORT.MEM(MIGRATE)
[mapped]

TDH.IMPORT.MEM(MIGRATE)
[pending]

TDH.IMPORT.MEM(CANCEL)

TDH.IMPORT.MEM(CANCEL)

TDH.IMPORT.MEM(REMIGRATE)
[mapped]

TDH.IMPORT.MEM(REMIGRATE)
[pending]

REMOVED

Page is removed
from the TD, but GPA
is reserved

TDH.IMPORT.MEM(MIGRATE)
[mapped]

TDH.IMPORT.MEM(MIGRATE)
[pending]

TDH.IMPORT.MEM
(REMIGRATE)

[pending]

Figure 8.15: Updated: Partial L1 SEPT Entry State Diagram for Page In-Order Import Phase

An SEPT page can only be removed if all its entries are FREE; specifically, it can’t be removed if any entry state is
REMOVED.

8.6.2.1.2. Details: Enforcing a Single Import Operation per Migration Epoch 5

When a page is imported during the in-order phase, the current migration epoch is recorded. Page re-import and import
cancel operations check the recorded migration epoch. For the import to succeed, it should be older than the current
migration epoch.

When a page import is cancelled during the in-order phase, the physical page is removed but its SEPT entry is put into a
REMOVED state, and the current migration epoch is recorded. For partitioned TDs, any L2 SEPT entries that map the 10

page become L2_FREE. A page first-time import operation checks the recorded migration epoch. For the import to
succeed, it should be older than the current migration epoch.

8.6.2.1.3. Updated: Importing L2 Page Mappings During In-Order Import

For partitioned TDs, L2 page mappings are imported as part of a page import, and follow these rules:

• When a page is imported or re-imported, its L2 page mappings, if any, are created or updated in the L2 SEPT leaf 15

entry.

• When a page is re-imported, and a previously imported page mapping does not exist in the new import, the L2 SEPT
leaf entry is set to L2_FREE.

• When a page import is cancelled, its L2 SEPT leaf entries, if any, are set to L2_FREE.

The state diagram below shows the L2 SEPT entry state during in-order import. The color-coding convention used in this 20

diagram is described in 8.2.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 77 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

L2_FREE

L2 SEPT entry is not
mapped to the TD

L2_MAPPED

L2 SEPT entry is
mapped as a page
alias and accessible
to L2 VM

TDH.IMPORT.MEM(REMIGRATE)
[page alias doesn t exist]

TDH.IMPORT.MEM(MIGRATE or REMIGRATE)
[mapped, page alias exists]

TDH.IMPORT.MEM(CANCEL)

TDH.IMPORT.MEM
(REMIGRATE)

[mapped,
page alias exists]

L2_BLOCKED

L2 SEPT entry is
mapped as a page
alias but not
accessible to L2 VM

TDH.IMPORT.MEM(MIGRATE or REMIGRATE)
[pending, page alias exists]

TDH.IMPORT.MEM(CANCEL)

TDH.IMPORT.MEM(REMIGRATE)
[page alias doesn t exist]

TDH.IMPORT.MEM
(REMIGRATE)

[pending,
page alias exists]

TDH.IMPORT.MEM
(REMIGRATE)

[mapped,
page alias exists]TDH.IMPORT.MEM

(REMIGRATE)
[pending,

page alias exists]

Figure 8.16: Updated: Partial L2 SEPT Leaf Entry State Diagram for L2 Page Mapping Import During the In-Order
Phase

 Details: Out-of-Order import Phase

8.6.2.2.1. Details: Overview of Out-of-Order Import 5

The state diagram below shows the L1 SEPT entry state during out-of-order import. The color-coding convention used in
this diagram is described in 8.2.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 78 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

FREE

SEPT entry is not
mapped to a physical
page

MAPPED

Page is mapped and
accessible to guest
TD

PENDING

Page is pending guest
TD acceptance

TDH.IMPORT.MEM(MIGRATE)
[mapped]

TDH.IMPORT.MEM(MIGRATE)
[pending]

TDH.MEM.PAGE.DEMOTE /
Entry becomes non-leaf,

NL_MAPPED

TDH.MEM.PAGE.PROMOTE[non-leaf NL_MAPPED entry] /
Entry becomes leaf, MAPPED

From Non-Leaf Entry
State Diagram

TDH.MEM.PAGE.DEMOTE /
New leaf, MAPPED

TDH.MEM.PAGE.DEMOTE /
Entry becomes non-leaf,

NL_MAPPED

TDH.MEM.PAGE.DEMOTE /
New leaf, PENDING

To Non-Leaf
Entry State
Diagram

To Non-Leaf
Entry State
Diagram

REMOVED

SEPT entry is not
mapped to a physical
page. If OP_STATE is
not LIVE_IMPORT,
equivalent to FREE.

TDH.MEM.PAGE.REMOVE

BLOCKED

Page is mapped but
new translations are
blockedTDH.MEM.RANGE.BLOCK

PENDING_BLOCKED

Page is pending but
guest TD acceptance
is blockedTDH.MEM.RANGE.BLOCK

TDH.MEM.PAGE.REMOVE

TDH.IMPORT.MEM(MIGRATE)
[mapped,

previous CANCEL during in-order import]

TDH.IMPORT.MEM(MIGRATE)
[pending,

previous CANCEL during in-order import]

Figure 8.17: Partial L1 SEPT Entry State Diagram for Page Out-of-Order Import Phase

An SEPT page can only be removed if all its entries are FREE; specifically, it can’t be removed if any entry state is
REMOVED.

8.6.2.2.2. Details: Importing L2 Page Mappings During Out-of-Order Import 5

During out-of-order import, L2 page mappings may be created as part of a page import. L2 SEPT leaf entries don’t need
the REMOVED state; thus, the L2 state transitions are very simple. The state diagram below shows the L2 SEPT entry
state during out-of-order import. The color-coding convention used in this diagram is described in 8.2.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 79 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

L2_FREE

L2 SEPT entry is not
mapped to the TD

L2_MAPPED

L2 SEPT entry is
mapped as a page
alias and accessible
to L2 VM

TDH.IMPORT.MEM(MIGRATE)
[mapped, page alias exists]

L2_BLOCKED

L2 SEPT entry is
mapped as a page
alias but not
accessible to L2 VM

TDH.IMPORT.MEM(MIGRATE)
[pending, page alias exists]

Figure 8.18: Partial L2 SEPT Leaf Entry State Diagram for Page Out-of-Order Import Phase

8.7. Secure EPT Concurrency Considerations

8.7.1. Overview

To support high performance migration, memory migration interface functions are allowed to run concurrently on 5

multiple LPs. However, no concurrent operation is allowed on any single Secure EPT entry. Interface functions that work
on specific Secure EPT entries acquire an exclusive lock to that entry.

8.7.2. New: GPA List Processing Implications

On the source side, export functions that process a GPA list (TDH.EXPORT.BLOCKW, TDH.EXPORT.MEM,
TDH.EXPORT.RESTORE) that encounter a busy SEPT entry skip the processing of that GPA. In this case, they set the 10

STATUS field of the GPA list entry to SEPT_ENTRY_BUSY_HOST_PRIORITY and the OPERATION field to NOP. The host
VMM can scan the GPA list to detected skipped entries and retry the operation later.

On the destination side, if TDH.IMPORT.MEM encounters a busy SEPT entry, its behavior depends on the import phase.
During the in-order phase, any SEPT entry error causes the import session to fail. In the out-of-order phase,
TDH.IMPORT.MEM skips the busy entry, similar to TDH.EXPORT.MEM. 15

8.8. Moved & Updated: Security Analysis: Achieving Memory Migration Security Objectives

8.8.1. Updated: General

The key security design goal for TD Private memory migration is to ensure integrity and freshness of the TD private
memory at the destination TD after migration – this helps ensure that a malicious VMM cannot execute the TD after
migration with any stale or modified data. 20

Integrity of memory includes the memory contents as well as the guest physical to host physical mapping and attributes
that control TD access to private memory.

Using PAMT and Secure EPT, Intel TDX Module enforces the following properties for TD private GPA accesses:

Unique TD Association: A physical page used as a TD private page, Secure EPT page or a control structure can only be
assigned to single guest TD. 25

Unique GPA Mapping: A TD private page or a Secure EPT page can be mapped at most by single guest TD GPA.

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 80 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

These security properties are maintained for a TD during migration with some additional functionality afforded to allow
for live migration.

• Private TD pages and Secure EPT entries (for partitioned TDs, this includes L2 Secure EPT entries) are initialized in a
single operation (via TDH.IMPORT.MEM) for pages migrated using TDH.EXPORT.MEM. Like the pre-conditions for
the non-migration TDH.MEM.PAGE.ADD, the parent Secure EPT entry must be free (unmapped). 5

• When write-blocking based export is used on the source platform, a private page may be mapped as non-writable
(a.k.a. blocked for writing) to allow for the page contents to be exported. For partitioned TDs, this any L2 mapping
of a page is also mapped as non-writable. Following from previous security requirements, this mapping update also
requires TLB tracking to help ensure that no active writable cached GPA address translations exist to the to-be-
migrated GPA range. 10

• When non-blocking export is used on the source platform, a private page is detected as requiring export based on
an atomic test-and-clear of the SEPT entry’s Dirty bit set by the h/w. For partitioned TDs, this includes applicable L2
SEPT entries. Following from previous security requirements, this scan also requires TLB tracking prior to export to
help ensure that no active writable cached GPA address translations prevent further updates of the SEPT entry’s
Dirty bit. 15

• For 1GB and 2MB pages, secure EPT mapping demotion (to a 4KB page size) is required as a pre-condition to exporting
contents of a page for migration.

• The Migration key used for exporting and important TD memory and CPU state is distinct from keys used for other
operations such as Paging.

8.8.2. Updated: Preventing Usage of Stale Memory Copies due to Mis-Ordering 20

Multiple versions of a page that are exported in a certain order are imported in the same order. This is achieved using
the following mechanisms:

• Migration streams help ensure ordering within each stream.

• Migration epochs, limiting migration of a specific page to no more than one time per epoch, help ensure total
ordering per page. 25

8.8.3. New: Enforcing Export of the Entire Memory Image

TDX Connect

When the TD is enabled for TDX Connect, while TDIs are bound and have DMA access to the TD memory, DMA must not
fail. Therefore, TDX Connect requires that all the TD mapped pages remain pinned as long as TDI can access them. The
entire TD private memory image must be migrated intact. This is enforced by the TDX module as described below. 30

Only non-blocking export is supported when TDX Connect is enabled for a TD. A counter of unexported pages
(TDCS.UNEXPORTED_COUNT) is maintained by the TDX module at the source platform based on a comprehensive scan
of the TD’s GPA space by TDH.MEM.SCAN.COMP(DCHECK) and on TDH.EXPORT.MEM. If the value of that counter is not
0, then TDH.EXPORT.TRACK fails. See 8.5.2.7 for details.

Non TDX Connect 35

If the TD is not configured for TDX Connect, the TDX module does not enforce exporting all memory. If a page is not
migrated, an EPT violation happens when the guest TD attempts to access it on the destination platform. This is normal
behavior for the post-copy method of migration, and at the worst case is considered a denial of service.

8.8.4. New: Non-Blocking Export: Detecting Memory State Change

Memory state change is detected by scanning the SEPT tree and detecting pages where the Dirty bit is set. 40

1. TDH.MEM.SCAN.RANGE(DSCAN) does the following with the SEPT entry exclusively locked (but Accessed/Dirty bits
can be set by h/w):
1.1. Detect that an EXPORTED page is dirty (either L1 or any L2 SEPT entries’ Dirty bit is 1).
1.2. Clears the Dirty bit in each of L1 and L2 SEPT entries.
1.3. Update the page state to EXPORTED_MODIFIED. 45

1.4. Records the TD epoch in the page’s PAMT.
2. TDH.EXPORT.MEM does the following with the SEPT entry exclusively locked (but Accessed/Dirty bits can be set by

h/w):
2.1. Find that the page state is MODIFIED.
2.2. Check the TLB tracking conditions. 50

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 81 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

2.3. Export the page.
2.4. Update the page state to EXPORTED.

The above sequence helps ensure the following:

• Setting the EXPORTED_MODIFIED state in step 1.3 means that this page will be detected later by DSCAN or DCHECK
and will be re-exported as a precondition to start token generation (see below). 5

• The order of TLB tracking check (in step 2.2) before the page is exported (in step 2.3) means that any write access by
either the TD s/w, by the TDX module working on behalf of the TD s/w or by a TDI will result in an SEPT walk and
setting of the Dirty bit. The page will be detected later by DSCAN or DCHECK and will be re-exported again as a
precondition to start token generation (see below).

8.8.5. Updated: Preventing Usage of Stale Memory Copies due to Failure to Re-export 10

Running the destination TD with a stale copy of a memory page, because the source VMM failed to re-export a newer
copy of a page, is prevented as described below.

Assume for example that the source VMM exported an older version (v1) of page but never re-exported a newer version
(v2) of that page. In this case, generating a start token by TDH.EXPORT.TRACK is prevented.

• With write-blocking based export, a counter of dirty pages (TDCS.DIRTY_COUNT) is maintained by the TDX module 15

at the source platform, based on tracking the TDH.EXPORT.MEM and TDX.EXPORT.UNBLOCKW operations. If the
value of that counter is not 0, then TDH.EXPORT.TRACK fails. See 8.4.2.38.4.2.3 for details.

• With non-blocking export, the same counter is maintained by the TDX module based on a comprehensive scan of the
TD’s GPA space by TDH.MEM.SCAN.COMP(DCHECK) and on TDH.EXPORT.MEM. If the value of that counter is not 0,
then TDH.EXPORT.TRACK(DONE) fails. See 8.5.2.7 for details. 20

8.8.6. Updated: Preventing Usage of Missing or Stale Memory Copies due to Failure to Import

Running the destination TD with a missing or a stale copy of a memory page, because the destination VMM failed to
import a copy of a page, is prevented as described below.

The in-order phase commitment protocol is designed to ensure that the export will fail, and the destination TD will not
run. As discussed above, TDH.EXPORT.TRACK(DONE) generates a start token that is dependent of the exact export 25

sequence; it checks that no unexported newer versions of previously exported pages remain. If the TD is enabled for TDX
Connect, TDH.EXPORT.TRACK(DONE) checks that no unexported pages remain.

The start token is verified by TDH.IMPORT.TRACK; the out-of-order migration phase may start, and the destination TD
may run only if the start token verifies correctly. For migration session control details see Ch. 6.

8.8.7. Preventing Usage of Stale Memory GPA Mapping and Attributes 30

The destination TD is preventing from running with a copy of a memory page with stale GPA mapping, access permissions
and other attributes (for partitioned TD, this included L2 mapping) as follows:

• GPA mappings and attributes are migrated together with their respective pages.

• Any change to GPA mappings or attributes is considered a change to the page and requires re-migration.

8.8.8. Out-Of-Order Phase and Its Usage for Post Copy 35

In the in-order import phase the host VMM can import pages for GPA addresses that are free, and it may also reload
newer versions of pages to previously imported and present GPA addresses. In the out-of-order import phase, import is
only allowed to non-present GPA addresses. At this stage, all memory state on the source platform is designed to be
immutable, and the latest version of all pages exported so far will be imported. Thus, the order of out-of-order import is
not relevant – except that memory content exported during the in-order phase can’t be imported during the out-of-order 40

phase. This allows using a separate migration stream for high-priority, low-latency updates, e.g., to implement post-copy
by allowing the TD to run and migrate memory pages on demand at a high priority, based on EPT violation.

8.9. Updated: Memory Migration Interface Functions Summary

This section provides a short summary of the memory migration interface functions. A detailed specification is provided
in [TDX Module ABI Spec]. 45

TDX Module TD Migration Spec Section 2: TD Migration Architecture Specification Draft

June 2025 DRAFT - WORK IN PROGRESS Page 82 of 82

Se
ct

io
n

 2
:

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

Table 8.8: Memory Migration Interface Functions

Name Export
Mode

Description Preconditions

TDH.EXPORT.BLOCKW Write
Blocking

Block a list of 4KB pages for writing,
as a preparation for export.

Write-blocking based export session
is in the in-order phase and the TD
has not been paused yet

TDH.EXPORT.MEM Any Export, re-export or sends an
export cancellation request for a
list of 4KB pages.

Export session is in progress

TDH.EXPORT.RESTORE Any Restore a list of 4KB pages after an
export session abort.

Export session is not in progress

TDH.EXPORT.UNBLOCKW Write
Blocking

Unblock a single 4KB page that has
been blocked for writing.

The TD is configured for write-
blocking based export, and either
an export session is in progress but
committed export phase has not
begun, or the TD is allowed to run

TDH.IMPORT.MEM Any Import, re-import or cancel a
previous import for a list of 4KB
pages.

Import session is in progress

TDH.MEM.SCAN.COMP(DCHECK) Non-
Blocking

Do a comprehensive scan of the TD
private memory and detect pages
that must be exported for the
export session to complete.

Non-blocking export session is in
the EXPORT_PAUSED state.

TDH.MEM.SCAN.CONFIG Non-
Blocking

Configure comprehensive scan
parameters

TDH.MEM.SCAN.RANGE(DSCAN) Non-
Blocking

Scan a TD private memory GPA
range and detect pages that need
to be exported.

TDH.MEM.SCAN.RANGE
(EXPORT_RESTORE)

Any Scan the TD private memory and
restore SEPT after an export session
abort.

Export session is not in progress

TDH.MEM.SCAN.RESET Non-
Blocking

Reset comprehensive scan state

	Notices and Disclaimers
	Table of Contents
	SECTION 1: TD MIGRATION INTRODUCTION AND OVERVIEW
	1. About this Document
	1.1. Scope of this Document
	1.2. Document Organization
	1.3. Glossary
	1.4. Notation
	1.5. References
	1.5.1. Intel Public Documents
	1.5.2. Intel TDX Public Documents
	1.5.3. Non-Intel Public Documents

	2. TD Migration Overview
	2.1. Introduction
	2.2. Updated: TD Migration Scenarios
	2.2.1. Cold migration
	2.2.2. Live Migration
	2.2.3. Image Snapshot and Jumpstart

	2.3. Components Involved in TD Migration
	Migrated TD
	Migration TD (MigTD)
	Host VMM
	TDX Module

	2.4. Migrated Assets
	2.5. Guest TD Migration Life Cycle Overview
	2.5.1. Updated: Reservation and Session Setup
	2.5.1.1. Guest TD Build, Migration TD Binding and TD Execution on the Source Platform
	2.5.1.2. Guest TD Initial Build on the Destination Platform
	2.5.1.3. Migration TDs Session Establishment
	2.5.1.4. Migration Session Key and Protocol Version Exchange

	2.5.2. Updated: In-Order Memory Migration Phase
	2.5.2.1. TD-Scope Immutable Metadata (Non-Memory State) Migration
	2.5.2.2. Updated: Iterative Pre-Copy of Memory State
	2.5.2.2.1. Updated: Migration Considerations for TD Private Memory
	Memory Migration vs. Memory Encryption
	Memory Modification Tracking and Iterative Migration
	Migration Streams
	Migration Epochs

	2.5.2.2.2. Migration Considerations for EPT Structures

	2.5.2.3. Updated: Source TD Pause and Final Non-Memory State Migration
	2.5.2.3.1. Final Non-Memory State Migration
	2.5.2.3.2. In-Order Memory State Migration Completion

	2.5.2.4. TD-Scope and VCPU-Scope Mutable Non-Memory State Migration

	2.5.3. Out-Of-Order Memory Migration Phase
	2.5.3.1. Migration of Memory State and Commitment of Import
	2.5.3.2. Updated: Post-Copy of Memory State

	2.5.4. Migration Commitment
	2.5.5. Updated: Migration Abort

	2.6. Impact of Migration on Measurement and Attestation
	2.7. Intel TDX Module TD Migration Interface Functions Overview

	3. Updated: TD Migration Software Flows
	3.1. Typical TD Migration Flow Overview (Write-Blocking Based Export)
	3.2. New: Typical TD Migration Flow Overview (Non-Blocking Export)
	3.3. Successful Write-Blocking Based Export
	3.4. New: Successful Non-Blocking Export
	3.5. Successful Import
	3.6. TD Import Abort
	3.6.1. TD Import Abort During the In-Order Import Phase
	3.6.2. TD Import Abort During the Out-Of-Order Import Phase

	3.7. TD Export Abort
	3.7.1. Export Abort During the In-Order Export Phase
	3.7.2. Export Abort During the Out-Of-Order Export Phase

	SECTION 2: TD MIGRATION ARCHITECTURE SPECIFICATION
	4. Migration TD, Migration Policy and the Extended TCB
	4.1. Extended TCB and the Migration Policy
	4.2. Attestation of the Migration TD and its Migration Policy
	4.3. Inputs to the Migration TD’s Migration Policy Evaluation
	System-Scope Information Provided by TDG.SYS.RD*
	System-Scope Information Provided by TDG.MR.REPORT
	Migration Policy Configuration

	4.4. Migrated TD Information Provided by TDG.SERVD.RD
	4.5. Migration Protocol Version Setup
	4.6. Migration Session Keys (MSKs) Exchange
	4.7. Example Migration Session Establishment

	5. Updated: Common TD Migration Mechanisms
	5.1. Migration Bundles
	5.1.1. Overview
	5.1.2. Migration Data
	5.1.3. Migration Bundle Metadata (MBMD)
	5.1.4. Untrusted Metadata

	5.2. Updated: Export and Import Functions Interface
	5.2.1. Migrating a Multi-Page Migration Bundle
	5.2.2. Updated: Migration Functions Interruptibility

	5.3. Cryptographic Protection of Migration Data
	5.3.1. Encryption Algorithm
	5.3.2. Migration Session Keys

	5.4. Migration Streams and Migration Queues
	5.5. Measurement and Attestation
	5.5.1. TD Measurement Registers Migration
	5.5.2. TD Measurement Reporting Changes
	5.5.3. TD Measurement Quoting Changes
	5.5.4. TCB Recovery and Migration

	5.6. Updated: TDX Control Structure Updates
	5.6.1. MIGSC: Migration Stream Context

	6. Updated: Migration Session Control and State Machines
	6.1. Updated: Overview
	6.1.1. Updated: Pre-Migration
	6.1.2. Updated: Successful Migration Session
	6.1.3. Aborted Migration Session
	6.1.3.1. Abort during the In-Order Phase
	6.1.3.2. Abort during the Out-Of-Order Phase

	6.1.4. Updated: Migration Epochs
	Notes

	6.2. Updated: Migration Session Control
	6.2.1. Migration TD Binding and Migration Key Assignment
	6.2.2. Updated: Export Side (Source Platform)
	6.2.3. Import Side (Destination Platform)
	6.2.4. Details: Migration State Machine
	6.2.4.1. Details: Reminder: TD Lifecycle State Machine
	6.2.4.2. Details: OP_STATE: TD Operation State Machine
	6.2.4.3. Details: OP_STATE Summary

	6.3. Migration Tokens
	6.4. Migration Protocol Versioning
	6.4.1. Introduction
	6.4.2. Enumeration of Supported Migration Versions
	6.4.3. Setting the Migration Protocol Version for a Migration Session

	6.5. Updated: Migration Session Control Functions Summary

	7. TD Non-Memory State Migration
	7.1. TD Non-Memory State Migration Operation
	7.1.1. Non-Memory State Migration Data
	7.1.2. Non-Memory State MBMD
	7.1.3. Immutable vs. Mutable TD State

	7.2. New: Expected Configuration by the Host VMM
	7.3. Non-Memory State Migration Functions Summary

	8. Updated: TD Private Memory Migration
	8.1. Updated: Overview
	8.1.1. Updated: In-Order and Out-of-Order Migration
	8.1.2. New: Write-Blocking Export vs. Non-Blocking Live Export

	8.2. New: Conventions: SEPT Entry State Diagrams Color Coding
	8.3. Updated: GPA Lists and Private Memory Migration Bundles
	8.3.1. Overview
	8.3.2. Updated: GPA List
	8.3.3. Page Attributes List (Required for Partitioned TDs)
	8.3.4. Private Memory Migration Buffer

	8.4. Updated: Write-Blocking Based Memory Export
	8.4.1. Edited: Host VMM Perspective
	8.4.1.1. Typical Export Session
	8.4.1.2. Live Export: Blocking for Writing, TLB Tracking and Exporting a Page
	8.4.1.3. Exporting a Page after the Source TD is Paused
	8.4.1.4. Unblocking for Write, Tracking Dirty Pages and Re-Exporting
	8.4.1.4.1. Overview
	8.4.1.4.2. Unblocking for Write and Re-Exporting a Page

	8.4.1.5. Using the same GPA List for TDH.EXPORT.BLOCKW and TDH.EXPORT.MEM
	8.4.1.6. Prohibited Operations on Exported Pages and Export Cancellation
	8.4.1.7. Updated: Exporting Pending Pages
	8.4.1.8. Re-Exporting a Non-Dirty Page
	8.4.1.9. SEPT Cleanup after Export Abort

	8.4.2. Edited: Details of Write-Blocking Based Export
	8.4.2.1. Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export
	8.4.2.2. Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export
	8.4.2.3. Details: TDCS.DIRTY_COUNT: TD-Scope Dirty Page Counter

	8.5. New: Non-Blocking Memory Export
	8.5.1. Host VMM Perspective
	8.5.1.1. EPT Access and Dirty Bits Background
	The Dirty Bit
	Implication of Address Translation Caching

	8.5.1.2. Memory Export Concept: Scan and Export
	8.5.1.3. Conceptual, Simplified Page State Diagram
	8.5.1.4. Scanning for Candidate Pages to Export or Re-export
	8.5.1.4.1. Overview
	8.5.1.4.2. Using the Memory Scanning Functions

	8.5.1.5. Typical Non-Blocking Export Session
	8.5.1.5.1. Typical Live Export Round
	Concurrency and Order during Live Export

	8.5.1.5.2. Typical Final Export Round
	Concurrency and Order during Final Export

	8.5.1.6. Interaction with Memory Management Operations
	8.5.1.6.1. Memory Management Restrictions on Pages that Have Been Exported
	Exported Page Blocking and Removal
	Exported Page Promotion or Demotion

	8.5.1.6.2. Memory Management Restrictions During the Export Blackout Period
	No Blocked Pages
	Other Restrictions

	8.5.1.7. Exporting Pending Pages
	8.5.1.8. SEPT Cleanup after Export Abort

	8.5.2. Details of Non-Blocking Export
	8.5.2.1. Details: L1 SEPT Leaf Entry Partial State Diagram for Mapped Page Export
	8.5.2.2. Details: L1 SEPT Leaf Entry Partial State Diagram for Pending Page Export
	8.5.2.3. Details: TD Partitioning Considerations for Dirty Bit Operations
	8.5.2.4. Details: Pending Pages Considerations
	8.5.2.5. Details: Blocked Pages Considerations
	8.5.2.6. Details: Memory Management Considerations
	8.5.2.6.1. Details: Host-Side Memory Management Considerations
	8.5.2.6.2. Details: Guest-Side Memory Management Considerations

	8.5.2.7. Details: Export Completeness Tracking
	8.5.2.7.1. Overview
	8.5.2.7.2. Memory Counters and Checking by TDH.EXPORT.TRACK(DONE)
	8.5.2.7.3. Backward Compatibility

	8.6. Memory Import
	8.6.1. Host VMM Perspective
	8.6.1.1. In-Order Import Phase
	8.6.1.1.1. Overview of In-order Import
	8.6.1.1.2. Memory Management During In-Order Import

	8.6.1.2. Out-of-Order import Phase
	8.6.1.2.1. Overview of Out-of-Order Import
	8.6.1.2.2. Memory Management During Out-of-Order Import
	Secure EPT Management
	Page Addition
	Promotion and Demotion
	Page Removal
	Page Relocation

	8.6.1.3. In-Place Import

	8.6.2. Updated: Details of Memory Import
	8.6.2.1. Updated: Details: In-Order Import Phase
	8.6.2.1.1. Updated: Details: Overview of In-Order Import
	8.6.2.1.2. Details: Enforcing a Single Import Operation per Migration Epoch
	8.6.2.1.3. Updated: Importing L2 Page Mappings During In-Order Import

	8.6.2.2. Details: Out-of-Order import Phase
	8.6.2.2.1. Details: Overview of Out-of-Order Import
	8.6.2.2.2. Details: Importing L2 Page Mappings During Out-of-Order Import

	8.7. Secure EPT Concurrency Considerations
	8.7.1. Overview
	8.7.2. New: GPA List Processing Implications

	8.8. Moved & Updated: Security Analysis: Achieving Memory Migration Security Objectives
	8.8.1. Updated: General
	8.8.2. Updated: Preventing Usage of Stale Memory Copies due to Mis-Ordering
	8.8.3. New: Enforcing Export of the Entire Memory Image
	TDX Connect
	Non TDX Connect

	8.8.4. New: Non-Blocking Export: Detecting Memory State Change
	8.8.5. Updated: Preventing Usage of Stale Memory Copies due to Failure to Re-export
	8.8.6. Updated: Preventing Usage of Missing or Stale Memory Copies due to Failure to Import
	8.8.7. Preventing Usage of Stale Memory GPA Mapping and Attributes
	8.8.8. Out-Of-Order Phase and Its Usage for Post Copy

	8.9. Updated: Memory Migration Interface Functions Summary

