intel

Intel® Trust Domain Extensions (Intel® TDX) Module
TDX Connect Application Binary Interface (ABI)
Reference Specification

EXTERNAL DRAFT

2.1V0.55
June 2025

Draft - Work in Progress Copyright © 2025 Intel Corporation. All rights reserved.

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Notices and Disclaimers
Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others.

June 2025 Draft - Work in Progress Page 2 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

10

15

20

25

30

35

40

45

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table of Contents

1 About this Document 75
1.1. Scope of thisS DOCUMENTccceueviuceiiiecuiiiiiieceiicieectet sttt 75
1.2, GIOSSAIY....ceeieceeiieceeiiiiieeiet ittt e 75
.3, NOTOEION ettt ettt 86

1.4. References...

2. TDX Connect Objects and Data Model 97

2.1. System Level Objects and Types
2.1.1. TDX Connect System Enumerations.
2.1.2. HPA ARRAY T Ty ittt ettt sttt ettt ettt et ettt st et sit e ser e

2.2. _IOMMU
2.2.1. Types and Data Structures
2.2.1.1. IOMMU ID T

2.3 SPDIM ittt
2.3.1. Constants
2.3.2. Types and Data Structures...

2.3.2.1. SPDM_ID
2.3.2.2. SPDM_CONFIG INFO T
2.3.2.3. SPDM_MNG_PARAM T
2.3.2.4. SPDM DEVICE ATTESTATION INFO T. ..
2.3.3. VMM CommMON SPDM INEEIMACE. ..ttt e

2.4. IDE-Stream
2.4.1. Constants ...

2.5. Trusted Device Interface (TDI)
2.5.1. Types and Data Structures...
2.5.1.1. TDIMT IDX T
2.5.1.2. Device Interface Type (TDI TYPE T)..
2.5.1.3. TDI State Machine....
2.5.2. TDI Acceptance Flow

2.6. DMA Remapping (DMAR)

2.6.1. Types and Data Structures -

2.6.1.1. DMAR Level (DMAR LVL T).. .. 1937
2.6.1.2. DMAR INdeX (DIMAR_IDX_ T) cuutiieieitieieitieieitie e ettt ettt sttt st e

2.7 MIMIO it et et
2.7.1. Types and Data Structures
2.7.1.1. MMIO Metadata Level (MMIOMT LVL T) ..
2.7.1.2. MMIOMT IndeX (MMIOMT IDX T) tiouiiiuiiuiitiiiiiiiiitiitit ettt

2.8. 10 Invalidation
2.8.1. TD (L1) - Requested Invalidation — (change in progress) ..

3. TDX Connect Interface Functions 2321

3.1. How to Read the Interface Function Definitions

3.2. TDX Connect Host-Side (SEAMCALL) Interface Functions...
3.2.1. TDH.DMAR.ADD Leaf
3.2.2. TDH.DMAR.BLOCK Leaf....
3.2.3. TDH.DMAR.RD Leaf
3.2.4. TDH.DMAR.REMOVE Leaf
3.2.5. TDH.IDE.STREAM.BLOCK Leaf
3.2.6. TDH.IDE.STREAM.CREATE LEaT .. cuuietiitieiieiteiiesieee ettt s ee e

June 2025 Draft - Work in Progress Page 3 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

30

35

40

45

50

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.7. TDH.IDE.STREAM.DELETE Leaf ..ocuiiuiiiiiiiiiiiiiiiiiiiis it 3836
3.2.8. TDH.IDE.STREAM.KM Leaf ...
3.2.9. TDH.IQ.INV.REQUEST Leaf ...
3.2.10. TDH.IQ.INV.PROCESS Leaf...
3.2.11. TDH.IOMMU.SETUP Leaf

3.2.12. TDH.IOMMU.CLEAR Leaf

3.2.13. TDH.MEM.SHARED.SEPT.WR Leaf.
3.2.14. TDH.MMIO.BLOCK Leaf....
3.2.15. TDH.MMIO.MAP Leaf
3.2.16. TDH.MMIO.MT.ADD Leaf
3.2.17. TDH.MMIO.MT.RD Leaf ...
3.2.18. TDH.MMIO.MT.REMOVE Leaf...
3.2.19. TDH.MMIO.MT.SET Leaf
3.2.20. TDH.MMIO.UNMAP Leaf
3.2.21. TDH.SPDM.CONNECT Leaf ..
3.2.22. TDH.SPDM.CREATE Leaf...
3.2.23. TDH.SPDM.DELETE Leaf ...
3.2.24. TDH.SPDM.DISCONNECT Leaf...
3.2.25. TDH.SPDM.MNG Leaf
3.2.26. TDH.TDI.BIND Leaf (Change in Progress) ..
3.2.27. TDH.TDI.CREATE Leaf
3.2.28. TDH.TDI.GET.STATE Leaf..
3.2.29. TDH.TDI.MT.ADD Leaf
3.2.30. TDH.TDI.MT.REMOVE Leaf..
3.2.31. TDH.TDI.MT.RD Leaf
3.2.32. TDH.TDI.REMOVE Leaf (Change in Progress)
3.2.33. TDH.TDI.START Leaf ..
3.2.34. TDH.TDIL.STOP Le@f .uiiuiiuiiiiiiiiiiiiiiiiii it

3.3. TDX Connect Guest-Side (TDCALL) Interface Functions (Change in Progress)...................c.coccoceeveccoeneeuceene. 9997

3.3.1. TDG.DMAR.ACCEPT Leaf..

3.3.2. TDG.IQ.INV.REQUEST

3.3.3. TDG.MMIO.ACCEPT Leaf (Change in Progress)....

3.3.4. TDG.TDI.RD Leaf

3.3.5. TDG.TDI.START Leaf

3.3.6. TDG.TDI.VALIDATE Leaf....

About-this-Decument 5

1
ko

BB
D © ©

[L
BBk OO

June 2025 Draft - Work in Progress Page 4 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

30

35

40

45

50

55

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

£.

N
S

-

iR
NN N

Lo s Ha

Devicetnterface Fype{FBI—FYPET)

n d dn o dn dn N

I N

B B H
N NN

N

H K
G G

3 JIDX-C
3=

21

221 IDb In} 22
321 TDH-DM 2
3.2.2— TDH-DM 25
222 ID DM 27
32.3- TDH-DM 27
224 ID D 29
22€C JD IDE 21
325 TDH-IDE- —31
3.2.6—FDH-IDE 33
227 ID IDE 26
327 TDH-IDE
322 ID IDE 28
2:8- TDHIDE- 38
229 ID 101 40
3.2.9- FOH-HO- 4
2210 ID 101N 45
FDHIQIN 4
3241 HOHAOMT S 46
S TR - 48
3213 TDH-MEM.SHARE 51
3214 TDH-NMIMHO-BLOEC 53
3245 FOHAVIVHOMAP-Le
S PR e
3.2.17 TDH.MMIO.MT.RD
25 FOHAMHORATRE
32149 TOHAIHVHOIMTSE
R O A O
e TRk
3222 TOH-SPDM
3.2.23 TDH.SPDM 72
3224 HDHSPDM 43
o o o 14 TD'I CPHAA 75
225 R F
23227 TnH 21
22928 TDH 2
2229 IDb (o7~
229 TDH -86
2220 TD: | (27
3231 o= 88
3232 THH 89
2222 TD‘ | 01
June 2025 Draft - Work in Progress Page 5 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Intel TDX Connect Application Binary Interface (ABI) Reference

Q3

IDH TDISTOR Leaf

3234

331

Q9

Freaf—

IDGDMARACCEPT |

JIDGIO NV REQUEST

[e]s}

AEQH

Ty

332

100

af

IDG-TDBlLRD leaf

IDG-MMIO-ACCERPTL

VY

33
S5+

334

103

TDG-TDLSTART Leaf
IDG-TDIVALIDATE Laaf

33 C

3

36

105

92U242)9Y (1gV) @2e191u] Aseuig uonediddy 199uu0) XalL [91u]

Draft - Work in Progress Page 6 of 108

June 2025

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

1. About this Document

1.1. Scope of this Document

This document describes the TDX Connect related Application Binary Interface (ABI) of the Intel® Trust Domain Extensions
(Intel® TDX) module, implemented using the Intel TDX Instruction Set Architecture (ISA) extensions, for confidential
5 execution of Trust Domains in an untrusted hosted cloud environment.

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

Document Name

Reference

Description

TDX Module
Base Architecture Specification

[TDX Module Base
Spec]

Base TDX module architecture overview
and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

TDX Module
TD Migration Architecture Specification

[TD Migration Spec]

Architecture overview and specification for
TD migration

TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for
TD Partitioning

TDX Module
ABI Reference Specification

[TDX Module ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the entire TDX module
architecture except TDX connect

TDX Module TDX Connect Architecture
Specification

[TDX Connect Spec]

TDX Module
TDX Connect ABI Reference
Specification

[TDX Connect ABI
Spec]

Detailed TDX module Application Binary
Interface (ABI) reference specification,
covering the TDX connect architecture

TDX Module ABI Reference Tables

[TDX Module ABI
Tables]

A set of JSON format files detailing TDX
module Application Binary Interface (ABI)

TDX Module ABI Incompatibilities

[TDX Module ABI
Incompatibilities]

Description of the incompatibilities
between TDX 1.0 and TDX 1.4/1.5 that may
impact the host VMM and/or guest TDs

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
10 document does not imply any product commitment from Intel to anything in terms of features and/or behaviors.

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.

15

1.2. Glossary

See the [TDX Module Base Spec].

June 2025 Draft - Work in Progress Page 7 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

1.3. Notation
See the [TDX Module Base Spec].
1.4. References

See the [TDX Module Base Spec].

June 2025 Draft - Work in Progress

Page 8 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

2. TDX Connect Objects and Data Model

2.1. System Level Objects and Types

2.1.1. TDX Connect System Enumerations \

|VMM reads the following global fields (see TDH.SYS.RD) to provide the required number of pages during the TDX Connect
objects creation, as the object’s internal Metadata.

Table 2.1: TDX Connect Global Fields

Global Field Code [Expected Value (current Description
version)ﬂ

IOMMU_MT_PAGES_COUNT 4 Required number of pages for OMMU
metadata, see TDH.IOMMU.SETUP|

SPDM_MT_PAGES_COUNT 2 Number of pages required for the SPDM

Metadata (see TDH.SPDM.CREATE)

SPDM_DOE_PAGES_COUNT 1 Number of pages required for the SPDM
request and response buffers (see VMM

Common SPDM Interface)

SPDM_MAX_DEV_INFO_PAGES 16 rThe max number\ of pages required for the
Device Attestation Info, see

SPDM_DEVICE_ATTESTATION_INFO| T

IDE_MT_PAGES_COUNT 1 Number of pages required for the IDE
Stream Metadata, see
TDH.IDE.STREAM.CREATE

1 Number of pages required for the TDI
TDICS_MT_PAGES_COUNT Context metadata, see TDH.TDI.CREATE

1 TDISP Interface Lock flags (see [TDISP]

LOCK INTERFACE FLAGS SUPPOR supported by the TDX Module. Currently
TED T - - only NO_FW_UPDATE (bit 0) is supported.

TDISP_MAX_TDI_REPORT_PAGES 16 Number of pages required ﬂfor the TDI
Interface Report. Maximum TDI Report size
is 64KB according to the implicit TDISP 1.0
max report size

Enumeration of TDX Connect sub-features and TDISP optional capabilities support

VMM reads the TDX Connect features support enumeration by reading the TDX_CONNECT_FEATURES system Field Code
(see TDH.SYS.RD) in order to configure TEE-IO devices according to the capabilities of the TDX Module and the underlying
platform.

TDX_CONNECT_FEATURES has the following bitmap structure:

Bit and Name Description Const Value

June 2025 Draft - Work in Progress Page 9 of 108

TDX Cc

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

0-T_REQ_WO_PASID TDX Module supports TDI trusted DMA 1
requests without PASID

1-T_REQ_W_PASID TDX Module supports TDI trusted DMA 0
requests with PASID

2 -T_ATS TDX Module supports TDI trusted ATS 0
translation requests

3 — RESERVED I 0

4 —-T_PRS TDX Module supports TDI trusted PRS 0
translation requests

5-T_MSI TDX Module supports TDI trusted MSI 0
requests

6 — T_LINK_IDE TDX Module supports TDI assignment using 0
Link IDE stream

7 —-T_SEL_IDE TDX Module supports TDI assignment using 1
Selective IDE stream

8 —T_MMIOL TDX Module supports trusted MMIO low 0
access

9 - T_MMIOH TDX Module supports trusted MMIO high 1
access

10 -T_CFG TDX Module supports trusted CFG access 0

11 - T_DIRECT_P2P TDX Module supports TDI direct P2P 0

12 - T_RC_P2P TDX Module supports TDI root complex 1
access control mediated P2P

63:13 Reserved 0

2.1.2. HPA_ARRAY_T Type

HPA_ARRAY_T is a 64-bit type that addresses a buffer of 1-512 4K pages:

5 e For a buffer of 1 page, the HPA_ARRAY_T value is the HPA of a 4K shared page,
e Forabuffer of 2+ pages, the HPA_ARRAY_T has a pointer to a 4K shared auxiliary page that contains the required
number (2-512) of 4K shared pages HPAs (8 bytes x 512 max entries). Bits 52:63 and 0:11 (4K aligned) of each

HPA must be 0.

The pages are not required to be contiguous, but the logical order of the pages is preserved, which is important
10 when HPA_ARRAY_T is addresses a big output buffer.

Table 2.2: HPA_ARRAY_T

Bits Name

Description

11:0 | RESERVED

Reserved: must be 0

51:12 | HPA

Bits 51:12 of the host physical address (including HKID) of a shared
page

54:52 | RESERVED

Reserved: must be 0

63:55 | LAST_IDX

Last array Index, i.e. the number of HPAs in the array is LAST_IDX +
1.

June 2025

Draft - Work in Progress Page 10 of 108

t Application Binary Interface (ABI) Reference

10

15

20

25

30

35

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Bits Name Description

0 — The array provides 1 HPA. The HPA_ARRY_T raw value is actually
the HPA of a single shared 4K page: HPA_ARRAY_T(HPA, LAST_IDX=0) ==
HPA.

1-511 - the HPA field contains the HPA of an auxiliary page that
contains LAST_IDX+1 HPAs (64-bit), to address the required number
of shared pages.

The HPA_ARRAY_T type is used:

By the VMM as an input parameter in various TDX Connect APIs (e.g. TDH.IOMMU.SETUP, , TDH.SPDM.CREATE,
, TDH.IDE.STREAM.CREATE, TDH.TDI.CREATE) to provide the enumerated required number of pages for the TDX
Module internal objects’ Metadata. (see: TDX Connect System Enumerations).
By the VMM as an input parameter in various TDX Connect APIs (e.g. TDH.SPDM.CONNECT, TDH.SPDM.MNG,
TDH.TDI.BIND) to provide the output buffer of the enumerated required size.
o If Required_Num_Of_Pages == 1:
= VMM simply passes the HPA of the page in the input register.
o Else (Required_Num_Of_Pages > 1):
= VMM maps an auxiliary shared 4K page and fills it with Required_Num_Of_Pages pages’ HPAs.
= VMM passes HPA_ARRAY_T(HPA=aux_page_pa, LAST_IDX= Required_Num_Of Pages - 1) in
the input register.
By the TDX Module as an output parameter in various TDX Connect APIs (e.g. TDH.SPDM.DELETE,
TDH.IDE.STREAM.DELETE, TDH.TDI.REMOVE) to return the HPA(s) of the released Metadata pages’ HPAs.
o If Required_Num_Of_Pages == 1:
= TDX Module returns the HPA of the page in the output register.
= TDX Module does not use the auxiliary page (AUX_PAGE_PA parameter).
o Else (Required_Num_Of_Pages > 1):
= TDX Module writes the HPAs of the released pages to the auxiliary page (AUX_PAGE_PA
parameter.
= TDX Module returns HPA_ARRAY_T(HPA=AUX_PAGE_PA, LAST_IDX =
Required_Num_Of_Pages - 1) in the output register

See the respective TDX Connect API for specific input/output registers.

The following figure demonstrates the HPA_ARRAY_T value addressing 1 page.

Figure 2.3: One-page HPA_ARRAY_T example

HPA_ARRAY T (64 bit) Page1
Bits |Field val

0-11 0 Page data:
1251 |HPA Pagel PA bytes 0-4095
52-54 0 of the buffer
55-63|LAST IDX_|0

The following figure demonstrates the HPA_ARRAY_T value addressing 2 pages.

June 2025 Draft - Work in Progress Page 11 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Figure 2.4: Two-pages HPA_ARRAY_T example

HPA_ARRAY T (54 bit)

2.2, IoMmMU

Aux Page
03'251 Field ga' Offset|Data
12-51|HPA Aux PA L R
=3 8 Page2 HPA
5254 0)
5563 LAST IDX_|1 '
Page1 Page2
Page data: Page data:
bytes 0-4095 bytes 4096-
of the buffer 8191 of
the buffer

2.2.1. Types and Data Structures

2.2.1.1. IOMMU_ID_T

IOMMU_ID is a ‘handle ‘returned by TDH.IOMMU.SETUP and used to identify the IOMMU in other APIs. .

2.3. SPDM

2.3.1. Constants

Table 2.5: [SPDM Constants|

Constant Name

Value

Description

MAX_SPDM_SESSIONS

256

Maximum number of SPDM sessions per IOMMU
supported by the TDX module

See also the enumerated SPDM_MT_PAGES_COUNT

Enumerations.

2.3.2. Types and Data Structures

2.3.2.1. SPDM_ID

and SPDM_DOE_PAGES_COUNT in TDX Connect System

SPDM_ID is a [handle ‘returned by TDH.SPDM.CREATE and used to identify the SPDM session|.

June 2025

Draft - Work in Progress Page 12 of 108

Interface (ABI) Reference

1

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

2.3.2.2. SPDM_CONFIG_INFO_T

SPDM_CONFIG_INFO_T defines the input parameters structure for TDH.ISPDMLCONNECT function.

Table 2.11: Type Definition of SPDM_CONFIG_INFO_T

Name SIZE Description
(BYTES)

VMM_SPDM_CAP 4 The Flags used in SPDM GET_CAPABILITIES message [refer to
GET_CAPABILITIES request message format in the SPDM spec]

SPDM_SESSION_POLICY 1 The SPDM SessionPolicy used in the SPDM KEY_EXCHANGE
message [refer to KEY_EXCHANGE request message format in the
SPDM spec]

CERTIFICATE_SLOT_MASK 1 Device certificate request slot mask, refer to [Certificates and

certificate chains in the SPDM spec]

RAW_BITSTREAM_REQUESTED 1 Boolean to dictate the data’s stream format, refer to
[GET_MEASUREMENTS request attributes in the SPDM spec]

RESERVED 4089 Must be zero

2.3.2.3. SPDM_MNG_PARAM_T

10 SPDM_MNG_PARAM_T defines the input parameters structure for TDH.SPDM.MNG function, for the Device Info
Recollection operation.

Table 2.12: Type Definition of SPDM_MNG_PARAM_T

Name SIZE Description
(BYTES)
NONCE 32 Nonce value, used in GET_MEASUREMENT in case of

DEV_INFO_RECOLLECTION. Zero otherwise

Reserved 4064 Reserved, must be 0.

15

2.3.2.4. SPDM_DEVICE_ATTESTATION_INFO_T

SPDM_DEVICE_ATTESTATION_INFO_T defines the SPDM session Device Attestation structure, the output for
TDH.SPDM.CONNECT and TDH.SPDM.MNG(Device Info Recollection) functions. The size of the structure is variable, up to
SPDM_MAX_DEV_INFO_PAGES pages.

20

June 2025 Draft - Work in Progress Page 13 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55
Table 2.13: Type Definition of SPDM_DEVICE_ATTESTATION_INFO_T
Name SIZE Description
(BYTES)

HEARTBEAT_PERIOD 1 The heartbeat period returned from the device in KEY_EXCHANGE_RSP

SPDM_CAPABILITIES 4 Device’s SPDM reported capabilities

TDISP_CAPABILITIES 4 The TDISP capabilities returned from the device in
GET_TDISP_CAPABILITIES response

TDISP_VERSION 2 The selected TDISP version

CERTIFICATE_O_SIZE 4 Size of CERTIFICATE_O. Zero if CERT_CAP is disabled in
VMM_SPDM_CAP|

CERTIFICATE_O Variable SPDM certificate chain in slot 0

CERTIFICATE_1_SIZE 4 Size of CERTIFICATE_1. Zero if CERT_CAP is disabled in
VMM_SPDM_CAP

CERTIFICATE_1 Variable SPDM certificate chain in slot 1
Slots 2-6 of SPDM certificates

CERTIFICATE_7_SIZE 4 Size of CERTIFICATE_7. Zero if CERT_CAP is disabled in
VMM_SPDM_CAP

CERTIFICATE_7 Variable SPDM certificate chain in slot 7

MEASUREMENT_SIZE 4 Size of MEASUREMENTS. Zero if MEAS_CAP is disabled in
VMM_SPDM_CAP

MEASUREMENT variable Concatenation of GET_MEASUREMENTS and MEASUREMENTS as
defined in the SPDM spec

2.3.3. VMM Common SPDM Interface

Some TDX Connect Host Interface Functions require sending SPDM requests to device and receiving SPDM responses
from the device (via DOE mailbox). The VMM Common SPDM Interface defines a generic call flow and input/output
operands to be used by the host Interface Functions that involve communication with devices (see: TDH.SPDM.CONNECT,

TDH.SPDM.MNG, TDI.SPDM.DISCONNECT, TDH.IDE.STREAM.KM, TDH.TDI.BIND, TDH.TDI.START and TDH.TDI.STOP).

Input Operands

SPDM_REQ_HPA_ARR —Page buffer of type HPA_ARRAY_T of size SPDM_DOE_PAGES_COUNT (see: TDX Connect
System Enumerations) for the SPDM [request generated by the TDX Module hhat the VMM will send to the device.

SPDM_RSP_HPA_ARR —Page buffer of type HPA_ARRAY_T of size SPDM_DOE_PAGES_COUNT (see: TDX Connect
System Enumerations) for the SPDM response from the device ‘(no response on the 1% Function caII).‘

SPDM_OUT_HPA_ARR - [where applicable] Page buffer of type HPA_ARRAY_T [of the length defined by the
function‘ (see: TDH.SPDM.CONNECT, TDH.SPDM.MNG, TDH.TDI.BIND), containing the operation result output, e.g.

SPDM device attestation report, TDISP Interface Report.

Output Status

%VX state can be reset on output.

If the output status in RAX:

June 2025

Draft - Work in Progress

Page 14 of 108

Intel TDX Connect Application Binary Interface (ABI) R

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 2.6: VMM Common SPDM Interfaces Output Statuses

Completion Status Code

VMM Reaction

TDX_SUCCESS

Operation is completed successfully. If Function specified the
result output (SPDM_OUT_HPA_ARR), RCX will contain the
length of the result output in bytes.

TDX_SPDM_REQUEST

VMM is required to send the DOE+SecureSPDM enveloped
request (prepared by TDX Module in SPDM_REQ_HPA_ARR) to
device and recall the Function again, with the response from
device in SPDM_RSP_HPA_ARR.

RCX contains the request length in bytes.

VMM shall not call other Functions that use the Common SPDM
Interface on same SPDM session if the status is returned.

TDX_OPERAND_BUSY

VMM is required to recall the Function again with the same
inputs. SPDM_REQ_HPA_ARR page content is unmodified.

VMM shall not call other Functions that use the Common SPDM
Interface on same SPDM session if the status is returned.

TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH

The operation is completed unsuccessfully. The SPDM session
requires a key refresh. The VMM must refresh the SPDM keys
(see TDH.SPDM.MNG) and restart the Function

TDX_SPDM_INVALID_MESSAGE

The operation is completed unsuccessfully due to an invalid
SPDM response: decryption/integrity check failure, unexpected
or incorrect response.

TDX_SPDM_INVALID_STATE

The operation is completed unsuccessfully. The associated
SPDM session is not in the connected state.

Other status

The operation is completed unsuccessfully. VMM shall handle
the error according to the error status.

Call flow

The VMM calls the Function consequently (in a loop), while the API returning status is TDX_SPDM_REQUEST, or
TDX_INTERRUPTED_RESUMABLE or TDX_OPERAND_BUSY, or operation completed successfully (TDX_SUCCESS) or
unsuccessfully (other error status). In case of TDX_SPDM_REQUEST, the VMM sends the request to device and provide

the device response as the input in the next API call.

For any other status that TDX_SPDM_REQUEST, the OnSPDM_REQ_HPA_ARR page content is unmodified on the

output.

June 2025 Draft - Work in Progress Page 15 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 2.7: VMM Common SPDM interface sequence diagram

\/ \I I/ \I |/ \|
h A A
Device VMM TDX_Module
loo [while status == TDX_SPDM_REQUEST or TDX_OPERAND_BUSY]
[[N

Same sequence for:
TDH.SPDM.CONNECT
TDH.SPDM.DISCONNECT
TDH.SPDM.MNG
TDH.IDE.KM
TDH.TDLBIND
TDH.TDL.START
TDH.TDLSTOP
TDH.TDL.GET.STATE

status = TDH.IDE/TDI.api (FUNC_ID, spdm_rsp_pa, spdm_req_pa)

status == TDX_SPDM_REQUEST

Send DOE/SPDM (spdm_req_pa, RCX)

DOE Response (spdm_rsp_pa)

>

Stop the loop if status =

= TDX_SUCCESS or other than TDX_OPERAND_BUSY

Device
P

(]
e

5 24. IDE-Stream

2.4.1. Constants

VMM

N

TDX_Module
e

|]
o

Table 2.8: IDE-Stream Constants

Constant Name Value Description

MAX_IDE_STREAMS 256 Maximum number of IDE streams supported by
TDX Connect (derived from IDE spec in PCI-SIG)

MAX_STREAM_COUNT 4

See also the enumerated IDE_MT_PAGES_COUNT in TDX Connect System Enumerations.

10 2.5, Trusted Device Interface (TDI)

June 2025

Draft - Work in Progress Page 16 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

2.5.1. Types and Data Structures

2.5.1.1. TDIMT_IDX_T

Table 2.9: Trusted Device Interface Metadata TDIMT_IDX_T Type Definition

Bits Field Description

2:0 TDIMT_LEVEL 0-TDIMT_LO
1-TDIMT_L1
2 -TDIMT_L2

3 - TDIMT_ROOT
Other — Reserved

31:3 RSVD Must be 0

63:32 FUNCTION_ID See: [PCI-SIG, TDISP] v1.0

2.5.1.2. Device Interface Type (TDI_TYPE_T)

Device Interface types enumeration

Table 2.10: TDI_TYPE_T Type Definition

Value | Name Description

0 TDI_PFVF Physical or virtual function device, identified by RID

Other Reserved

10

2.5.1.3. TDI State Machine

The TDX Module is maintaining the internal TDI state machine representing the TDI assignment state (note, the standard
TDISP interface states colored green in the table below):

15 Table 2.11: TDI_SM_T Type Definition

Value | Name Description TDX Connect API

0 UNLOCKED TDISP state is CONFIG_UNLOCKED. TDH.TDI.CREATE,
TDH.TDI.STOP

1 LOCKING LOCK_INTERFACE_REQUEST issued. TDH.TDI.BIND

2 LOCKED TDISP state is CONFIG_LOCKED. TDH.TDI.BIND

3 REPORT GET_DEVICE_INTERFACE_REPORT issued and is TDH.TDI.BIND

being processed.

4 BOUND Interface Report has been received. TDH.TDI.BIND

5 VALIDATED TD validated the device and report hashes. TDG.TDI.VALIDATE

6 ACCEPTED TD authorized starting the interface. TDG.TDI.START

Intel TDX Connect Application Binary Interface (ABI) Reference

June 2025 Draft - Work in Progress Page 17 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Value | Name Description TDX Connect API

7 STARTING START_INTERFACE_REQUEST issued. TDH.TDI.START

8 RUN TDISP state is CONFIG_RUN TDH.TDI.START

9 STOPPING STOP_INTERFACE_REQUEST issued. TDH.TDI.STOP

10 ERROR TDISP state is CONFIG_ERROR TDH.TDI.GET.STATE
Other | Reserved n/a n/a

2.5.2. ITDI Acceptance Flow‘

The following sequence diagram demonstrates the TD/VMM flow for the TD TDI acceptance of the bound TDI (see
TDH.TDI.BIND) and starting the interface:

5
Figure 2.12: Sample TDI Acceptance flow
I/ -\I I/ -\I I/ -\\
hy o L
WM TDX_Module D
TD validates dev. hash and report hash], TDG.TDL.VALIDATE(FUNC_ID, dev_hash, report_hash) |
TDX_SUCCESS |
... .
TD accepts DMAR and MMIO range(s) > < TDG.DMARACCEPT/TDG.MMIO.ACCEPT |
TDX_SUCCESS !
-- >
TD asks to Start Interface ") ¢ TDG.TDLSTART 5
DX SUCCESS >
_ TDG.VP.VMCALL <Service. TOCM.DEVIF> (START_INTERFACE) |
loo [START shorter loop version] :
status = TDH.TDI.START(FUNC_ID, inp_page. out_page) _ | Stért Interface Request/Response. |
TDG.TDLSTART is a prerequestie i
_ TDX_SPDM_REQUEST(out_page) |
L
TD verifies START_INTERFACE completed ™ » TDG.TDLRD(FUNC_ID, INTERFACE_STATE) !
State is actual for one TDG.TDI.RD call: B E
* TD has requested Start Interface and |
* The I?stTDISP response is SITART_INTERFACE_!?ESPONSE. INTERFACE_STATE(TDISP_RUN) ‘:
Otherwise the returned state will be UNKNOWN, as it >
can't be validated by |
TDX Module. !
VMM TDX_Module ™
) ') ')
o o o
10

Intel TDX Connect Application Binary Interface (ABI) Reference

June 2025 Draft - Work in Progress Page 18 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

2.6. DMA Remapping (DMAR)
2.6.1. Types and Data Structures

2.6.1.1. DMAR Level (DMAR_LVL_T)

Enumeration of DMAR page levels used by TDX Connect DMAR management functions to address specific DMAR entries

5 Table 2.13: DMAR_LVL_T Type Definition
Value Name Description
0 DMAR_PASIDTE_LVL | DMAR PASID table level
1 DMAR_PDE_LVL DMAR PASID directory level
2 DMAR_CTE_LVL DMAR context table level
3 DMAR_RTE_LVL DMAR root table level

2.6.1.2. DMAR Index (DMAR_IDX_T)

DMAR entry index used by TDX Connect DMAR management functions to address specific DMAR entries
Table 2.14: DMAR_IDX_T Type Definition

Name Bits Description

2:0 LEVEL See: DMAR_LVL_T
11:3 RSVD Must be zero
31:12 Rsvo| Must be zero
63:32 FUNCTION_ID | FUNCTION_ID

10

TDX Connect maintains DMAR entries Mapping States. A DMAR entry can be in one of the following mapping states:

Table 2.15: [DMAR Entry States

DMAR State Description

DMAR_FREE DMAR Entry is free

DMAR_PENDING DMAR Entry is pending TD
acceptance (for PASIDTE), not
mapped

DMAR_BLOCKED DMAR Entry is blocked and can be
invalidated, not mapped

DMAR_PRESENT DMAR Entry is present and mapped

15

June 2025 Draft - Work in Progress Page 19 of 108

n Binary Interface (ABI) Reference

TDX Connect

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

2.7. MMIO

2.7.1. Types and Data Structures

2.7.1.1. MMIO Metadata Level (MMIOMT_LVL_[T)

Enumeration of MMIOMT entry levels

Table 2.16: MMIOMT_LVL_T Type Definition

Value Name Description

0 MMIOMT_LO Level 0 MMIOMT entry that can have type QNODE with all present bits clear
(i.e. free) or DATA holding the metadata of a 4KB MMIO page

1 MMIOMT_L1 Level 1 MMIOMT entry that can have type QNODE or DATA holding the
metadata of a 2MB MMIO page

2 MMIOMT_L2 Level 2 MMIOMT entry that can have type QNODE or DATA holding the
metadata of a 1GB MMIO page

3 MMIOMT_L3 Level 3 MMIOMT entry of QNODE type

4 MMIOMT_L4 Level 4 MMIOMT entry of QNODE type

2.7.1.2. MMIOMT Index (MMIOMT_IDX_T)

MMIOMT entry index used by TDX Connect MMIO management functions to address specific MMIO metadata entries

Table 2.17: MMIO_IDX_T Type Definition

Name Bits Description

2:0 LEVEL See: MMIOMT_LVL_T
11:4 RSVD Must be zero

51:12 PA MMIO HPA

63:52 RSVD Must be zero

2.8. 10 Invalidation

2.8.1. TD(L1) -[Requested \Invalidation — (change in progress)

The TDX Connect provides a TD (L1 VM) ability to request GPA Ranges IOTLB invalidation (Page-Selective-Within-Domain
descriptors) and ensure the invalidations have been completed by the hardware. The invalidation procedure works as

follows.

1. L1 requests the invalidation using TDG.IQ.INV.REQUEST where it provides a 4K page of up to 512 GPA Range
invalidation requests. TBD: Request format

2. The TDX Module:

a. Initializes the TD Invalidation Tracker with the snapshot of the IOMMUs associated with L1 (by the TDIs
connected at the time of the request).

b. Requests the invalidation from the VMM with TD-EXIT and the new TDX_IOTLB_INV_REQUEST status,
providing the number of required invalidation descriptors.

June 2025

Draft - Work in Progress Page 20 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3. The VMM commits the required number of descriptors per each IOMMU associated with the TDIs connected to that
TD, using the existing invalidation flow with TDH.IQ.INV.REUQEST(TD_INV_REQ), and TDH.IQ.INV.PROCESS.
> Note. The VMM chooses the IOMMUs order and the IQ pool size for a commit. The VMM may split the request into
multiple commits (TDH.IQ.INV.REQUEST/PROCESS calls). The VMM needs a Wait Descriptor per a commit.

4. L1 verifies that the invalidation request is complete using TDG.IQ.INV.STATUS. After the invalidation request is
complete on **all** IOMMUs, the TDX Module will return TDX_SUCESS, confirming to L1 the invalidation request is
complete.

10 From L1 perspective: L1 requests invalidations and then polls the invalidation status TDG.IQ.INV.STATUS to ensure the
invalidations are complete.

From VMM perspective: TDX_IOTLB_INV_REQUEST exit is the request for VMM to commit the required number of
descriptors for each IOMMU associated with the TD.

From TDX Module perspective: TDX Module tracks the requested IOTLB invalidations’ commitment and processing on
15 each IOMMU associated with L1. After all the descriptors were completed on all IOMMUs, TDX Module returns
TDX_SUCEESS on TDG.IQ.INV.STATUS.

In the following example the TD (L1) has 2 TDIs connected to different IOMMUs.

Figure 2.1: L1-requested IOTLB Invalidation flow example

[: ' TDX Module |

TD{L1) 1. Request invalidation
> a Marks TD has TDIs on IOMMU1, 10MMU2
ITDI1 and TDI.Q qre connected J 4 Check status b Tracks the VMM invalidation flow

TDG.IQ.INV. Slﬁil'_t',l_%_,__’

3. TDH.IQ.INV.REQUEST/
TDH.IQ.INV.PROCESS for
IOMMU1. IOMMUZ

2 TDEXIT
(INV_REQUEST)

l VMM |

a. Knows the request is for [OMMU1 and IOMMUZ.
b. Calls invalidation request(s)/process on each.

o1 | [ToDR
onIOMMU1| | on1OMMUZ |

20

A generic API flow can be described by the following diagram:

Figure 2.2: TD-requested IOTLB invalidation sequence diagram

June 2025 Draft - Work in Progress Page 21 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

I N I Ty
.) W o ,./I)
TD(L1) VMM TDX Module IOMMU
TDG IQ INV.REQUEST(NUM_REQ, REQ_DATA)
NUM_REQ: N ‘ ' !
e . ' TDEXIT with the reason TD_GUEST_INV_REQUEST (NUM_REQ) !
1-512 GPA range(s) |
quE J [For each IOMMU the TDR has TDIs connected to] i
i descriptors_left = NUM_REQ; i
loop J [while descriptors_left 1= 0; j
T VMM chooses POOL_SIZE in 1..descriptors_left] |
| TDH.IQ.INV.REQUEST{IOMMU, TD_INV_REQ, POOL_SIZE) !
Enqueue POOL_SIZE
| descriptors + 1 Wait |
| Returns descriptors_left for the IOMMU |
" VMM Wait Descriptor Notification |
| TDH.IQ.INV.PROCESS(IOMMU) |
| TDX_SUCCESS |
< = |
VMM resumes TD at any time | ,
loo) [Until TDX_SWCCESS] : :
| L1 verifies (waits until)
TDG.IQLINV.STATUS() ! TODX Module confirms the
| invlidation request completion
TDX_GUEST INV_IN_PROGRESS |
Invalidation request still in progress |
TD (L1) VM TDX Module IOMMU
e) [g 7"| [
S o vy o
Notes:

1. VMM can choose any POOL_SIZE — the number of descriptors it allocates for the call.
2. TDX Module returns the remaining number of descriptors in the request for the IOMMU (0 - no more
descriptors required).

June 2025 Draft - Work in Progress Page 22 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3. TDX Connect Interface Functions

3.1.

How to Read the Interface Function Definitions

Refer to the [ABI Spec].

June 2025 Draft - Work in Progress Page 23 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2 TDX Connect Host-Side (SEAMCALL) Interface Functions

3.2.1. TDH.DMAR.ADD Leaf

Add a DMA Remapping table entry.
Table 3.1: TDH.DMAR.ADD Input Operands Definition

Operand Name Description

RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Selects the SEAMCALL interface function

Number version

63:24 | Reserved Must be 0

RCX DMAR_INDEX Index into DMAR remapping table (See: DMAR_IDX_T)

RDX DMAR_VAL_1 .15‘ QWORD value of the DMAR entry (corresponding to DMAR index)
input.

R8-R10 DMAR_VAL_2-4 2" to 4" QWORD values of the DMAR entry (corresponding to DMAR
index) input.
Must be 0 for DMAR_RTE_LVL and DMAR_PDE_LVL

R11-R14 DMAR_VAL_5-8 5t to 8™ QWORD value of the DMAR entry (corresponding to DMAR
index) input.
Must be 0 for DMAR_RTE_LVL, DMAR_CTE_LVL and DMAR_PDE_LVL

Table 3.2: TDH.DMAR.ADD Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc.
may vary.

TDH.DMAR.ADD adds a DMAR table entry (DMAR_VAL_1-8, depending on the level) for the DMAR level and the device
defined by DMAR_INDEX.

June 2025

Draft - Work in Progress Page 24 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

The function checks the following pre-conditions:

1. DMAR_INDEX is valid:
1.1. DMAR_INDEX.FUNCTION_ID is a valid FUNCTION_ID of a device on a TDX Connect-configured IOMMU.
1.2. DMAR_INDEX.LEVEL <= DMAR_RTE_LVL.
5 1.3. DMAR_INDEX reserved fields are zero.
2. DMAR_VAL_1-8 must be 0 for the respective DMAR levels, as ruled by the Input Operand Definition.

If successful, the function does the following:

1. Walk the trusted DMAR table to locate the DMAR entry indicated by DMAR_INDEX, locking the visited DMAR pages
10 in PAMT as Shared, and verifies that the entry is DMAR_FREE.

2. Check the DMAR value is valid per entry type (see the table below, the field details are in [VTd Spec]).

If successful, the function configures the entry’s attributes according to the table below.

15

Table 3.3: VMM and TDX Module Configuration per DMAR Entry Level

DMAR Entry (Level)

VMM Configurable Fields

TDX Module Checks

TDX Module Configured (Fixed)
Values

Root table entry
(DMAR_RTE_LVL)

LCTP/UCTP

HPA is valid:

e Reserved bits are 0.

e Page is free in PAMT.

e Reserved HKID bits are 0.

e LP/UP:1

Reserved: 0

Context table entry e PASIDDIRPTR HPA is valid. e P:1
(DMAR_CTE_LVL) e PDTS No PASID Directory overflow. e Reserved: 0
RID_PASID is 0. DTE, PRE, RID_PRIV: 0 (no SVM
support on GNR)
PASID directory entry | ¢ SMPTBLPTR HPA is valid. P:1
(DMAR_PDE_LVL) e FPD (Fault Processing
Disable)
PASID table entry e FPD n/a e P:0 (PASIDTE added as

(DMAR_PASIDTE_LVL)

e AW (must be 10b for
48 bit, or 11b for 57 bit
address width)

e PGTT (must be 10b)

pending)

e DID: Per PASID TD owner
unique value (DID TDX
reserved bit set)

e SLPTR: PASID TD owner secure
EPTP or first entry in Secure-
EPT EPML5 page.

e SLEE: 1 (use EPT to determine
fetch permissions for DMA)

e SLADE: Match TD EPTP

controls.
e PWSNP, PGSNP: 1
e CD:O
e METE: 1

e EMT: 6 (WB)

e PWT, PCD, PAT, SRE, ERE,
FLPM, WPE, NXE, SMEP, EAFE
and FLPTR: 0

Reserved: 0

June 2025

Draft - Work in Progress

Page 25 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.4: TDH.DMAR.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

Note the special case where the indicated operand is
TLB_EPOCH. This may happen due to a conflict with
TDH.MEM.TRACK or TDH.EXPORT.PAUSE. The host VMM may
retry TDH.DMAR.ADD.

TDX_INTERRUPTED_RESUMABLE

Interrupt is pending, the operation can be resumed

TDX_OPERAND_INVALID

TDX_DMAR_ENTRY_NOT_PRESENT

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress Page 26 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

30

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.2. TDH.DMAR.BLOCK Leaf

Block a DMA remapping table entry.
Table 3.5: TDH.DMAR.BLOCK Input Operands Definition

Operand | Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX DMAR_INDEX Index into DMAR remapping table (See: DMAR_IDX_T)

Table 3.6: TDH.DMAR.BLOCK Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc.
may vary.

TDH.DMAR.BLOCK is used by the VMM to block a DMA remapping entry, as the 1st step of DMAR removing sequence
allowing the entry invalidation.

Concurrency Note: This function may run concurrently to a TD guest TDG.DMAR.ACCEPT operation. From the host
VMM perspective the race does not exist, and the PASID table entry will always be blocked after
this operation. From guest TD perspective, the accept may compete successfully or fail with
TDX_DMAR_INVALID_MAPPING_STATE error.

The function checks the following pre-conditions:

1. DMAR_INDEX is valid:

1.1. DMAR_INDEX.FUNCTION_ID is a valid FUNCTION_ID of a device on a TDX Connect-configured IOMMU.
DMAR_INDEX.LEVEL <= DMAR_RTE_LVL.

1.2. DMAR_INDEX reserved fields are zero.

2. Walk the trusted DMAR to the DMAR_INDEX entry with locking the visited DMAR pages in PAMT as Shared is
successful.

3. The DMAR entry state is DMAR_PRESENT or DMAR_PENDING.

4. For PASIDTE DMAR entry, TDI MMIO pages must be unmapped first. The VMM is not allowed to block PASIDTE
without TD’s awareness.

If successful, the function sets the DMAR entry state to DMAR_BLOCKED state.

June 2025 Draft - Work in Progress Page 27 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.7: TDH.DMAR.BLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_DMAR_ENTRY_NOT_PRESENT

TDX_DMAR_INVALID_MAPPING_STATE

Only PRESENT or PENDING (for PASIDTE) DMAR states can be
blocked. All child nodes must be free to block the entry

TDX_MMIO_STILL_MAPPED

PASIDTE DMAR can be blocked only if the TDI’'s MMIO pages
were unmapped.

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress Page 28 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.3. TDH.DMAR.RD Leaf

Read a trusted DMAR entry.

Table 3.8: TDH.DMAR.RD Input Operands Definition

Operand | Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX DMAR_INDEX Index into DMAR remapping table (See: DMAR_IDX_T)
Table 3.9: TDH.DMAR.RD Output Operands Definition
Operand | Description
RAX SEAMCALL instruction return code
RDX DMAR state info (see: DMAR_STATE_INFO_T)
R8 1t QWORD value of the DMAR entry (corresponding to DMAR index) input.
R9-R11 2" to 4™ QWORD values of the DMAR entry (corresponding to DMAR index) input.
Unmodified for DMAR_RTE_LVL and DMAR_PDE_LVL
R12-R15 | 5" to 8™ QWORD value of the DMAR entry (corresponding to DMAR index) input.
Unmodified for DMAR_RTE_LVL, DMAR_CTE_LVL and DMAR_PDE_LVL
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc.
may vary.

TDH.DMAR.RD is used by the VMM is used by the VMM to read entry in IOMMU’s DMA Remapping structure.

The function checks the following pre-conditions:

1. DMAR_INDEX is valid:
1.1. DMAR_INDEX.FUNCTION_ID is a valid FUNCTION_ID of a device on a TDX Connect-configured IOMMU.
1.2. DMAR_INDEX.LEVEL <= DMAR_RTE_LVL.
1.3. DMAR_INDEX reserved fields are zero.

If successful, the function reads the requested DMAR entry content and returns it in RDX-R15 registers.

June 2025

Draft - Work in Progress Page 29 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.10: TDH.DMAR.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

TDX_DMAR_ENTRY_NOT_PRESENT

The DMAR entry is not present

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress Page 30 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.4. TDH.DMAR.REMOVE Leaf

Remove a trusted DMAR entry.

Table 3.11: TDH.DMAR.REMOVE Input Operands Definition

Operand | Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX DMAR_INDEX Index into DMAR remapping table (See: DMAR_IDX_T)

Table 3.12: TDH.DMAR.REMOVE Output Operands Definition

Operand | Description

RAX

SEAMCALL instruction return code

RCX

Physical address of first page of the DMAR table removed (0 for PASIDTE)

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc.

may vary.

TDH.DMAR.REMOVE is used by the VMM to remove an entry from the IOMMU’s DMA Remapping structure.

The function checks the following pre-conditions:

1.

»w

DMAR_INDEX is valid:

1.1. DMAR_INDEX.FUNCTION_ID is a valid FUNCTION_ID of a device on a TDX Connect-configured IOMMU.
DMAR_INDEX.LEVEL <= DMAR_RTE_LVL.

1.2. DMAR_INDEX reserved fields are zero.

The DMAR entry state is DMAR_BLOCKED.

The DMAR entry Invalidation is DMAR_INV_DONE.

For DMAR_RTE_LVL, DMAR_CTE_LVL and DMAR_PDE_LVL, mapping state of all child DMAR table entries must be

DMAR_FREE.

For PASIDTE entry IOTLB tracking is done.

The function then does the following:
For DMAR_RTE_LVL, DMAR_CTE_LVL and DMAR_PDE_LVL: Release the child DMAR table page by setting PT_NDA

in PAMT.
Set the DMAR entry state to DMAR_FREE.

June 2025 Draft - Work in Progress Page 31 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Completion Status Codes

Table 3.13: TDH.DMAR.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

retrying the operation.

TDH.DMAR.REMOVE.

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by

Note the special case where the indicated operand is
TLB_EPOCH. This may happen due to a conflict with
TDH.MEM.TRACK. The host VMM may retry

TDX_INTERRUPTED_RESUMABLE

Interrupt is pending, the operation can be resumed

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_DMAR_ENTRY_NOT_PRESENT

TDX_DMAR_INVALID_MAPPING_STATE

DMAR entry must be BLOCKED to be removed

TDX_DMAR_INVALID_INV_STATE

DMAR entry invalidation must complete before removal

TDX_IOMMU_IOTLB_TRACKING_NOT_DONE

before PASIDTE removal.

Outstanding IOTLB tracking and invalidation must be processed

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress

Page 32 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.5.

Block host RP IDE stream.

TDH.IDE.STREAM.BLOCK Leaf

Table 3.14: TDH.IDE.STREAM.BLOCK Input Operands Definition

Operand | Name Description
RAX Leaf and SEAMCALL instruction leaf number and version
Version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0
RCX SPDM_ID SPDM Session Id, see SPDM_ID_T
RDX STREAM_ID Bits 0-7: IDE-Stream identifier
Bits 8-63: Reserved. Must be zero
Table 3.15: TDH.IDE.STREAM.BLOCK Output Operands Definition
Operand | Description
RAX SEAMCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IDE.STREAM.BLOCK is used by the host VMM to block (disable) an IDE-Stream by clearing the IDE-ECAP and Key
Config Bar of the indicated IDE-Stream ID and moving it to IDE non-secure state as defined by the IDE spec.

The function checks the following pre-conditions:

1. SPDM_ID must be valid:

1.1. SPDM_ID reserved bits are 0.

1.2. SPDM_ID is on a TDX Connect-configured IOMMU .
2. STREAM_ID is valid:

2.1. STREAM_ID < MAX_IDE_STREAMS.

2.2. Check the IDE-Stream is configured and not already blocked.

If successful. the function then blocks the IDE stream, disables the stream in the IDE Stream Control register, clears the
stream keys from the Key Config Bar.

June 2025

Draft - Work in Progress Page 33 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.16: TDH.IDE.STREAM.BLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_STREAM_NOT_CONFIGURED

IDE-Stream is not configured

TDX_IDE_STREAM_BLOCKED

IDE-Stream is already blocked

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress Page 34 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.6. TDH.IDE.STREAM.CREATE Leaf

Create an IDE stream.

Table 3.17: TDH.IDE.STREAM.CREATE Input Operands Definition

Operand | Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX STREAM_DF_TYPE Root Port D/F and Stream Type. STREAM_DF_TYPE_T:
Name Bits Description
RP_DF 7:0 Root Port D/F
STREAM_TYPE 8 IDE-Stream type (0: LINK_IDE, 1:
SEL_IDE)
RSVD 63:9 Must be zero
RDX SPDM_ID SPDM Session Id, see SPDM_ID_T
R8 STREAM_MT_HPA_ARR | Page buffer of type HPA_ARRAY_T, with IDE_MT_PAGES_COUNT free
page(s) for hosting TDX module IDE Stream Metadata. See: TDX Connect
System Enumerations.
R9 STREAM_CONTROL Link/Selective IDE Stream Control Register (see [PCI-IDE])
R10 RID_ASSOC1 RID association register 1 (see [PCI-IDE])
R11 RID_ASSOC2 RID association register 2 (see [PCI-IDE])
R12 ADDR_ASSOC1 Address association register 1 (see [PCI-IDE])
R13 ADDR_ASSOC2 Address association register 2 (see [PCI-IDE])
R14 ADDR_ASSOC3 Address association register 3 (see [PCI-IDE])

Table 3.18: TDH.IDE.STREAM.CREATE Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

RCX Bits 0:7 - IDE stream ID assigned to the stream.
Bits 8:63 are 0

RDX Bits 0:7 - IDE_ID — ID of the RP IDE configuration register block. The value can be used for a VMM
debugging purpose.

Bits 8:63 are 0

Other Unmodified

June 2025 Draft - Work in Progress Page 35 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

30

35

40

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IDE.STREAM.CREATE is used by the VMM to create IDE-Steam object and configure it as a Link or a Selective IDE
stream in the root port IDE-ECAP registers and in the stream Key Config BAR (Note that TDX Connect devices can only use
a Selective IDE Stream).

For the TDX Connect devices, the VMM creates a Selective IDE stream, if the Device Policy (returned by
TDH.SPDM.CREATE) enumerates the IDE link security (TDX_DEVICE_POLICY_T. LINK_SECURITY == 0). Otherwise, the
VMM shall skip creation of IDE stream and move on to the TDIs assignment.

The function checks the following pre-conditions:

1. SPDM_ID is a valid ID of a connected SPDM session.

2. STREAM_DF_TYPE.RP_DF is a valid Root Port of the Configured IOMMU and the Reserved field is zero.

3. The Root Port’s IDE ECAP support the required Stream type (Link/Selective) and if there is a free IDE configuration
register block on the RP.

4. STREAM_CONTROL is valid:
4.1. Reserved bits are 0.
4.2. ENABLE must be 0.
4.3. Algorithm must be AES_GCM_256_96B_MAC.
4.4, CFG_SEL_IDE must be 0.
4.5. For Selective IDE stream: TX_AGGR_MODE_NPR, TX_AGGR_MODE_PR and TX_AGGR_MODE_CPL must be 0.

5. RID_ASSOC1 and RID_ASSOC2 operands are correct:
5.1. For a Link IDE streams these operands must be 0.
5.2. For Selective IDE streams:
5.2.1. Reserved bits are 0.
5.2.2. RID_ASSOC2. VALID must be 1.
5.2.3. RID range must be a valid RID base/limit range within the IOMMU configured range.
6. Check the ADDR_ASSOC1-3 operands:
6.1. For link IDE streams these operands must be 0
6.2. For Selective IDE streams:
6.2.1. Reserved bits are 0.
6.2.2. ADDR_ASSOC1. VALID must be 1.
6.2.3. Addresses must be valid: no bits beyond MAX_PA-1 and no HKID set.
6.2.4. Address range must be a valid MMIO range within IOMMU configured range.

7. Check that the new IDE Stream RID and Address Association ranges do not overlap with other configured streams.
8. STREAM_MT_HPA_ARR is valid: IDE_MT_PAGES_COUNT page(s) must be correct and free (PT_NDA in PAMT).

June 2025 Draft - Work in Progress Page 36 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

If all checks above passed, the function configures the stream in the root port IDE-ECAP registers and in the stream Key

Config BAR.

Completion Status Codes

Table 3.19: TDH.IDE.STREAM.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_SPDM_INVALID_STATE

SPDM session must be valid and connected

TDX_IDE_STREAM_NOT_SUPPORTED

IDE-Stream is not supported by the indicated RP

TDX_IDE_STREAM_RID_OVERLAP

Selective IDE-Stream RID association range requested
configuration overlaps with another IDE-Stream

TDX_IDE_STREAM_ADDRESS_OVERLAP

Selective IDE-Stream Address range requested configuration
overlaps with another IDE-Stream

TDX_NO_FREE_IDE_KEYS

All IDE key slots for the current IOMMU are occupied. The error
can happen if the VMM creates a stream during the IDE Key
Refresh operation with other streams on the RP. The VMM
shall finish all IDE Key Refresh operations and then repeat the
call.

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress Page 37 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.7. TDH.IDE.STREAM.DELETE Leaf

Delete an IDE Stream.

Table 3.20: TDH.IDE.STREAM.DELETE Input Operands Definition

Operand | Name Description
RAX Leaf and SEAMCALL instruction leaf number and version
Number
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0
RCX SPDM_ID SPDM Session Id, see SPDM_ID_T
RDX STREAM_ID Bits 0-7: IDE-Stream identifier

Bits 8-63: Reserved. Must be zero

R8 AUX_PAGE_PA | HPA of a shared 4K auxiliary page:
e If IDE_MT_PAGES_COUNT ==1:

TDX Module will not use the auxiliary page, although will check its validity for
forward compatilibity. The HPA of the released IDE Metadata page will be in the
output register.

e If IDE_MT_PAGES_COUNT > 1:

TDX Module uses the auxiliary page for HPA_ARRAY_T object with the released IDE
Metadata pages (acquired in TDH.IDE.STREAM.CREATE). The object is returned in
the output register, see: HPA_ARRAY_T.

Table 3.21: TDH.IDE.STREAM.DELETE Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

RCX HPA_ARRAY_T type containing the released IDE Metadata pages:

e If IDE_MT_PAGES_COUNT == 1: the value is the HPA of the released page.

e If IDE_MT_PAGES_COUNT > 1: the value is HPA_ARRAY_T(HPA == AUX_PAGE_PA, LAST_IDX ==
IDE_MT_PAGES_COUNT - 1). The VMM needs to map the AUX_PAGE_PA page to read the HPAs of
the released pages.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IDE.STREAM.DELETE is used by the host VMM to remove a blocked IDE-Stream and release its Metadata page(s).

The function checks the following pre-conditions:

1. SPDM_ID is a valid ID of a connected SPDM session.

June 2025 Draft - Work in Progress Page 38 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

2. Check STREAM_ID operand:
2.1. STREAM_ID < MAX_IDE_STREAMS

2.2. Check that the IDE-Stream is Configured and Blocked.
2.3. Check that there are no TDIs associated to this IDE-Stream.

If all checks passed, deletes the stream and returns the released Metadata page(s) to VMM.

Completion Status Codes

Table 3.22: TDH.IDE.STREAM.DELETE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_STREAM_NOT_CONFIGURED

IDE-Stream is not configured

TDX_IDE_STREAM_NOT_BLOCKED

IDE-Stream is not blocked

TDX_IDE_STREAM_HAS_DEVICE_INTERFACES

IDE-Stream has associated TDIs. VMM must remove the TDIs
before deleting the stream.

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress Page 39 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.8. TDH.IDE.STREAM.KM Leaf

Setups and programs the keys for the IDE Stream.
Table 3.23: TDH.IDE.STREAM.KM Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0
RCX SPDM_ID SPDM Session Id, see SPDM_ID_T
RDX STREAM_ID IDE-Stream identifier
R8 OP_TYPE Operation type with the IDE stream:

0 — SETUP : Setup the IDE stream. Programs the given Stream ID Tx/Rx
keys for all 3 sub-streams of the IDE stream.

1 - REFRESH : Refresh the IDE Key. Programs new Tx/Rx keys for all 3
sub-streams of the IDE stream.

2 - STOP : Stop the stream. Removes the Tx/RX keys from the stream.

Other values are reserved.

R9 SPDM_RSP_HPA_ARR Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT
free page(s) for the SPDM Response message (Input)

R10 SPDM_REQ_HPA_ARR Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT
free page(s) for the SPDM Request message (Output)

Table 3.24: TDH.IDE.STREAM.KM Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code
RCX If RAX returns TDX_SPDM_REQUEST — Generated IDE_KM output message (DOE+Secure SPDM

enveloped) length in bytes.

For other return codes — 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IDE.STREAM.KM is used by the VMM to request a Key Management operation on the stream:

e SETUP the IDE stream (program the stream keys).
e REFRESH the IDE stream keys

June 2025 Draft - Work in Progress Page 40 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

e STOP the IDE stream (issue the KEY_STOP sequence). Note, once a stream has been stopped, it cannot be setup
(programmed) again. This STOP operation is terminal and used for a graceful IDE stream stop before the stream
block and deletion.

The function creates a series of IDE_KM protocol requests (as defined by the [PCI-SIG IDE] extension) enveloped in a
5 secure SPDM message, and expects from the VMM to provide the device responses. See VMM Common SPDM
Interface chapter for more details.

At the end of the Setup or Key Refresh operation, the stream keys have been programmed, acknowledged and activated
for 3 sub-streams of the IDE stream and in both Tx/Rx directions. A random key is generated for each sub-stream and
direction.

10 The following example shows a typical VMM flow to create and setup an IDE stream (program its keys):

Table 3.25: Sample flow for the IDE Stream creation and Setup

N P

|] \]

N A
VMM TDX_Module

TDH.SYS READ(IDE_MT_PAGES_COUNT)

VMM allocates the required number cf\ IDE MT PAGES COUNT
pages for the IDE context T =

TDH.IDE.STREAM.CREATE(SPDM_ID, RP_DF, IDE_MT_PAGES)

- TDX_SUCCESS, returns STREAM_ID

loo| [status == TDX_SPDM_REQUEST or TDX_OPERAND_BUSY or TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH]
status = TDOH.IDE_.STREAM_.KM(SPDM_ID, STREAM_ID, SETUP, inp_page, out_page)

status == TDX_SPDM_REQUEST(out page, RCX)

< status == TDX_SUCCESS

MM TOX_Module
|‘/ — \'| TN

v W

15

The function checks the following pre-conditions:

1. SPDM_ID is a valid ID of a connected SPDM session.
20 2. STREAM_ID is valid:
2.1. STREAM_ID < MAX_IDE_STREAMS.
2.2. Check the IDE-Stream is configured and not blocked.

3. Validate the OP_TYPE:
3.1. Is one of the listed values (SETUP, REFRESH, STOP).
25 3.2. Another IDE operation is not active. Nested IDE operations are not allowed.
3.3. Stream is not already enabled and not in a Stopped state on a SETUP or REFRESH.
3.4. There are no active TDIs in case of a STOP.

June 2025 Draft - Work in Progress Page 41 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

If successful, the function performs the operation required.

Completion Status Codes

Table 3.26: TDH.IDE.STREAM.KM Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_SUCCESS

Operation is successful

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_IDE_STREAM_NOT_CONFIGURED

IDE-Stream must be configured

TDX_IDE_STREAM_BLOCKED

IDE-Stream must not be blocked

TDX_SPDM_ENTRY_NOT_PRESENT

The used SPDM entry ID is not configured in the SPDM
directory

TDX_IDE_STREAM_HAS_DEVICE_INTERFACES

STOP is forbidden, IDE stream should not be stopped when
there are active TDIs bound to it

TDX_SPDM_INVALID_STATE

SPDM session for this IDE-Stream is not connected or this is a
VMM pre-configured IDE-Stream

TDX_INTERRUPTED_RESUMABLE

In case an interrupt occurred while waiting for the keyset to
move to a ready state

TDX_RND_NO_ENTROPY

IDE key generation failed due to lack of entropy (VMM should
retry the call)

TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH

The SPDM session requires a key refresh

TDX_SPDM_INVALID_MESSAGE

Invalid SPDM message or decryption/integrity check failure

TDX_SPDM_REQUEST

TDX Module’s request from the VMM to send the request in
OUT_PA with the given length

3.2.9. TDH.IQ.INV.REQUEST Leaf

Enqueue the trusted 1Q descriptors for specified 1/0 invalidation type.

June 2025

Draft - Work in Progress

Page 42 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Table 3.27: TDH.IQ.INV.REQUEST Input Operands Definition

June 2025

Draft - Work in Progress

Page 43 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Operand

Name

Description

RAX

Leaf and Version

SEAMCALL instruction leaf number and version

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 | Version
Number

Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0

RCX

IOMMU_ID

IOMMU identifier

RDX

INV_REQ_TYPE

Bits 0-31: Requested invalidation type

Value | Name Description

0 IOTLB_INV_REQ IOTLB invalidation

1 RTE_INV_REQ Root Entry Invalidation

2 CTE_INV_REQ Context Entry Invalidation

3 PDE_INV_REQ PASID Directory Invalidation

4 PASIDTE_INV_REQ | PASID Cache invalidation

5 TD_INV_REQ TD Invalidation request

Other | Reserved

Bits 32-63: Invalidation Request Data. Depends on the requested invalidation
type:
TD_INV_REQ:

e Bits 0:15 - POOL_SIZE number of descriptors VMM commits in this call

for the TD invalidation request
e Bits 16:31 — Reserved, 0

All other requests — Reserved, 0.

R8

INV_TARGET

Invalidation Target

INV_REQ_TYPE Description

CTE_INV_REQ
PASIDTE_INV_REQ
RTE_INV_REQ
PDE_INV_REQ

RID/PASID:

Bits 0-15: Requestor ID (BDF)
Bits 16-31: Reserved, must be 0
Bits 32-51: PASID

Bits 52-63: Reserved, must be 0

IOTLB_INV_REQ
TD_INV_REQ

TDR page physical address of the TD

R9

WAIT_INV_DSC_1

Wait invalidation descriptor bits 63:0

R10

WAIT_INV_DSC_2

Wait invalidation descriptor bits 127:64

R11

WAIT_INV_DSC_3

Wait invalidation descriptor bits 191:128. Reserved, must be 0

R12

WAIT_INV_DSC_4

Wait invalidation descriptor bits 255:192. Reserved, must be 0

June 2025

Draft - Work in Progress Page 44 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

30

35

40

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.28: TDH.IQ.INV.REQUEST Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

RCX For TD_INV_REQ only: Remaining number of requested descriptors for this OMMU

For other requests: 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IQ.INV.REQUEST enqueues the 1Q descriptors for specified 1/0 invalidation type INV_REQ_TYPE in the IOMMU
invalidation queue.

The following descriptors are queued by this function based on the type of invalidation requested:

RTE_INV_REQ Queues an invalidation wait descriptor. Invoking this invalidation requires one free entry in the
invalidation context queue.

CTE_INV_REQ Queues a context-cache invalidation descriptor and an invalidation wait descriptor. Invoking this
invalidation requires two free entries in the invalidation queue. The context cache invalidation
descriptor is queued with granularity set to global invalidation. The function mask for
invalidation is set to 0, i.e., no bits of the SID field are masked for invalidation.

PDE_INV_REQ Queues an invalidation wait descriptor. Invoking this invalidation requires one free entry in the
invalidation context queue.

PASIDTE_INV_REQ Queues a PASID-cache invalidation descriptor, IOTLB invalidation descriptor and an invalidation
wait descriptor. Invoking this invalidation requires three free entries in the invalidation queue.
The PASID-cache invalidation descriptor is queued with granularity set to PASID-selective-within-
domain. The IOTLB invalidation descriptor is queued with granularity set to domain-selective and
the DR/DW bits set to 1.

IOTLB_INV_REQ Queues an IOTLB invalidation descriptor and invalidation wait descriptor. Invoking this
invalidation request requires two free entries in the invalidation queue. The IOTLB invalidation
descriptor is queued with granularity set to domain-selective and the DR/DW bits set to 1.

TD_INV_REQ Queues POOL_SIZE number of IOTLB invalidation descriptors from TD (L1) request for the given
IOMMU. TDX Module queues The IOTLB invalidation descriptors with DID of TD. This invalidation
request requires POOL_SIZE + 1 free entries in the invalidation queue.

The VMM is required to provide an invalidation wait descriptor with the request. The VMM must specify the fence flag
(FN) as 1 for this descriptor. The page-request drain may be specified as 1. The wait descriptor queued by the VMM
may set the IF to request an interrupt to be generated on completion of the invalidation. The VMM may set the status
write (SW) bit to 1 and provide a status address and data. The status address specified must be a shared PA.

TDH.IQ.INV.REQUEST checks the following pre-conditions:

1. IOMMU_ID is valid and the IOMMU is in the Configured state.
2. INV_REQ_TYPE must be valid and trusted 1Q must have enough space per INV_REQ_TYPE.

INV_TARGET must be valid per INV_REQ_TYPE.

For RTE, CTE, PDE, PASIDTE invalidation requests, the DMAR entry state is blocked (see TDH.DMAR.BLOCK).
For IOTLB and TD invalidation requests, TD keys are configured, and the TD is initialized for the provided TDR.
For IOTLB_INV_REQ request, IOTLB invalidation is required for the TD and IOMMU and not already in progress.
For TD_INV_REQ request, TD request is progress, and invalidations are required for the IOMMU.

No v

June 2025 Draft - Work in Progress Page 45 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

8. Check that WAIT_INV_DSC_1 is valid:
8.1. Type must be 0x05.
8.2. Reserved fields must be 0.

8.3. PD must be 0 if IOMMU ECAP_REG.PSD is 0.

8.4. FN must be 1.

9. Check that WAIT_INV_DSC_2 (STATUS_ADDRESS) is a valid, 4B aligned and shared HPA address.
10. Check that WAIT_INV_DSC_3 and WAIT_INV_DSC_4 are equal to 0.

If successful, the function queues the invalidation descriptors into the IOMMU trusted Q.

Completion Status Codes

Table 3.29: TDH.IQ.INV.REQUEST Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_IOMMU_IQ_QUEUE_FULL

IOMMU trusted IQ does not have free space for the
requested invalidation type

TDX_IOMMU_IOTLB_TRACKING_NOT_REQUIRED

I0TLB invalidation for the requested IOMMU and TD is not
required

TDX_GUEST_INV_NOT_REQUIRED

There are no uncommitted TD IOTLB descriptors for this
IOMMU, or no active TD request.

TDX_IOMMU_IOTLB_TRACKING_NOT_DONE

I0TLB tracking for the requested IOMMU and TD is in-
progress

TDX_SUCCESS

Operation is successful

June 2025 Draft - Work in Progress Page 46 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.10. TDH.IQ.INV.PROCESS Leaf

Tracks and process the completed trusted IOMMU invalidations.

Table 3.30: TDH.IQ.INV.PROCESS Input Operands Definition

Operand | Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX IOMMU_ID I0MMU identifier

Table 3.31: TDH.IQ.INV.PROCESS Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IQ.INV.PROCESS tracks completed invalidations. In each invocation the module may process 0 or more invalidation
completions.

TDH.IQ.INV.PROCESS checks the following pre-conditions:

1. IOMMU_ID is valid and the IOMMU is in the Configured state.

If successful, the function updates the internal TDX Module invalidation context/tracker and marks the completed
entries.

Completion Status Codes

Table 3.32: TDH.IQ.INV.PROCESS Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

TDX_INTERRUPTED_RESUMABLE

TDX_SUCCESS Operation is successful

June 2025 Draft - Work in Progress Page 47 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

3.2.11. TDH.IOMMU.SETUP Leaf

Setup the 1/0 stack to work in the secure (TDX) Mode.

Table 3.33: TDH.IOMMU.SETUP Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0
RCX IOMMU_VTBAR The IOMMU VTBAR address
RDX IOMMU_MT HPA of the IOMMU metadata, when called on IOMMU_INIT state,
otherwise ignored.
Table 3.34: TDH.IOMMU.SETUP Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code
RCX IOMMU_ID_T
Other Unmodified

Input Parameters

IOMMU_MT metadata is a 4K page that has the following structure:

Table 3.35: Structure of IOMMU_MT Parameter

Offset Size Description TDX Module Checks

0 8 HPA and size of the 1! contiguous buffer page. | NUM_PAGES must not exceed 128 pages
Bits 0-11: NUM PAGES and must be a power of 2.
Bits 12-: HPA The NUM_PAGES contiguous pages must
The buffer size is NUM_IQ_PAGES pages be free (PT_NDA)

8 8 HPA and size of the 2nd contiguous buffer The NUM_PAGES pages must be equal to
page. the NUM_PAGES of the 1% contiguous
Bits 0-11: NUM_PAGES buffer.
Bits 12-: HPA The NUM_PAGES contiguous pages must
The buffer size is NUM_IQ_PAGES pages be free (PT_NDA)

16 8 HPA1 of a page for OMMU metadata Page must be free (PT_NDA)

24 8 HPA2 of a page for OMMU metadata
VMM shall provide
I0MMU_MT_PAGES_COUNT HPAs of PT_NDA
pages for OMMU metadata.

June 2025 Draft - Work in Progress Page 48 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

The rest of the page from
(IOMMU_MT_PAGE_COUNT * 8 + 16) is
reserved and must be zero.

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.IOMMU.SETUP Setups the IOMMU(VTBAR), HIOP, KCBAR, PCle Root Ports and other I/0O hardware IPs to work in the
Secure TDX Mode.

The IOMMU and Root Ports hardware configuration can be time consuming, therefore the VMM is required to call this
function repeatedly, in case it returns TDX_INTERRUPTED_RESUMABLE or TDX_BUSY statuses.

The VMM shall read the IOMMU_MT_PAGES value, prepare the required number of pages for the IOMMU metadata and
the invalidation contiguous buffers, then call the function, as demonstrated in the flow below:

Table 3.36: TDH.IOMMU.SETUP flow

I/r 7\I \/7 7\\
o s
VMM TDX_Module

TDH.SYS READ(IOMMU_MT PAGES COUNT)

VMM allocates two contiguous buffers for &
the Invalidation Queue + IOMMU_MT_PAGES_ | o IOMMU_MT PAGES COUNT e
COUNT pages for IOMMU Metadata

loo [while status == TDX_INTERRUPTED_RESUMABLE or TDX_BUSY]
status = TDH.IOMMU_SETUP (vtbar, iommu_mt)

>

< Repeat the loop while status == TDX_INTERRUPTED_RESUMABLE or TDX_BUSY

Finish the loop on status == TDX_SUCCESS or error, returns IOMMU_ID on success

VMM TDX_Module
I/ \I \/ \\
o s

June 2025 Draft - Work in Progress Page 49 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

TDH.IOMMU.SETUP checks the following pre-conditions:

1. Thereis the IOMMU with the VTBAR address IOMMU_VTBAR, and the IOMMU is not in Configured state.
2. IOMMU_MT is a valid shared HPA and the content is correct (see the TDX Module Checks column in the
IOMMU_MT structure definition above).
3. VTBARIs in the valid state. Fail with TDX_IOMMU_INVALID_STATE in case of an invalid VTBAR state:
a. ECRSP_REG.IP == 0 (No enhanced command in progress).
ESTSO_REG.TMS == 0 (IOMMU not in TDX mode).
GSTS.RTPS == 1 (VMM’s RTADDR is latched).
GSTS.QIES == 1 (VMM’s queued invalidations enabled).
GSTS.TES == 1 (DMA translations enabled).
PMEN.EPM == 0 (DMA access to PRM disabled).
PMEN.PRS == 0 (PRM status disabled).
RTADDR_REG.TTM == 01b (DMA translation is in scalable mode).
4. No pre-configured VMM IDE-Streams exist in the KCBAR.

S®m 0 a0 o

If successful, the function configures the hardware and returns TDX_SUCCESS upon the configuration is complete and the
IOMMU is in the Configured state.

I0OMMU and Root Ports hardware configuration can be time consuming. The function checks for pending interrupts and
may return TDX_INTERRUPTED_RESUMABLE. In this case the VMM must repeat TDH.IOMMU.SETUP call while
TDX_INTERRUPTED_RESUMABLE or TDX_BUSY are returned.

Completion Status Codes

Table 3.37: TDH.IOMMU.SETUP Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS

TDX_IOMMU_INVALID_STATE

TDX_IOMMU_RP_INVALID_CONFIGURATION Invalid RP registers configuration

TDX_IOMMU_ECMD_ERROR IOMMU TDX Mode programming error

TDX_INTERRUPTED_RESUMABLE Interrupt is pending or IOMMU ECMD command timeout. VMM
shall repeat the call

3.2.12. TDH.IOMMU.CLEAR Leaf

Releases the Root Ports and the IOMMU to VMM.

June 2025 Draft - Work in Progress Page 50 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.38: TDH.IOMMU.CLEAR Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 Version Number | Selects the SEAMCALL interface function version
63:24 Reserved Must be 0
RCX IOMMU_ID The IOMMU ID
RDX RELEASED_IOMMU_MT_PA | HPA of a 4K shared page, where the TDX Module writes the HPAs of
the released pages (acquired during TDH.IOMMU.SETUP).
The TDX Module will return (IOMMU_MT_PAGES_COUNT +
INVALIDATION_IQ_SIZEfrom the setup * 2) HPAs to the VMM.
Table 3.39: TDH.IOMMU.CLEAR Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.IOMMU.CLEAR terminates the TDX Mode on the IOMMU, restores the H/W access to VMM.

The IOMMU and Root Ports hardware teardown can be time consuming, therefore the VMM is required to call this
function repeatedly, in case it returns TDX_INTERRUPTED_RESUMABLE or TDX_BUSY statuses.

June 2025

Draft - Work in Progress Page 51 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

TDH.IOMMU.CLEAR checks the following pre-conditions:

1. IOMMU_ID is valid and the IOMMU is in the Configured state.

HwnN

There are no active SPDM sessions.
There are no invalidations in progress.
The Trusted DMAR Root table is empty.

If successful, the function performs the 1/0 stack (IOMMU and Root Ports) teardown and returns TDX_SUCCESS upon the
teardown is complete and the IOMMU is in the Init state.

IOMMU and Root Ports hardware teardown can be time consuming. The function checks for IOMMU timeout and may
return TDX_INTERRUPTED_RESUMABLE. In this case the VMM must repeat TDH.IOMMU.CLEAR call while
TDX_INTERRUPTED_RESUMABLE or TD_BUSY are returned.

Completion Status Codes

Table 3.40: TDH.IOMMU.CLEAR Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_SUCCESS

TDX_IOMMU_INVALID_STATE

TDX_INTERRUPTED_RESUMABLE

Interrupt is pending, the operation shall be resumed

TDX_IOMMU_ECMD_ERROR

IOMMU TDX Mode programming error

June 2025

Draft - Work in Progress Page 52 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.13. TDH.MEM.SHARED.SEPT.WR Leaf

Add mapping from SEPT into shared GPA pages under VMM control,to allow TDX Connect devices DMA into shared GPA
space of a TD.

Table 3.41: TDH.MEM.SHARED.SEPT.WR Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the Secure EPT entry to write

Level must be the level of the Secure EPT page which is indexed the
GPA Shared bit (i.e. GPAW + 3).

11:3 Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the shared guest physical address for the Secure EPT entry
to write.

Depending on the level, the following least significant bits must be 0:
Level 3 (EPML4E): Bits 38:12
Level 4 (EPML5E): Bits 47:12

63:52 | Reserved Reserved: must be 0
RDX Host physical address of the parent TDR page (HKID bits must be 0)
R8 EPT entry value

Table 3.42: TDH.MEM.SHARED.SEPT.WR Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code
RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see [ABI Spec]

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see [ABI
Spec]

In other cases, RDX returns 0.

June 2025 Draft - Work in Progress Page 53 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Operand Description

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

Add mapping of SEPT shared entries to shared EPT pages for DMA translations of shared GPAs using the Secure-EPT.
The function checks the following conditions:

1. TheTDR s valid and the TD is initialized.
2. The GPA shared bit is set, and the specified level is the level indexed by GPA.SHARED bit (i.e., GPAW +3)

If successful, the function walks the Secure EPT based on the GPA operand and find the Secure EPT entry and write the
EPT entry value specified by the VMM into it.

Completion Status Codes

Table 3.43: TDH.MEM.SHARED.SEPT.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_TDCS_NOT_ALLOCATED

TDX_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

June 2025 Draft - Work in Progress Page 54 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.14. TDH.MMIO.BLOCK Leaf

Block an MMIO page.

Table 3.44: TDH.MMIO.BLOCK Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the EPT entry that will map the blocked page: must be 0
(4KB), 1 (2MB) or 2 (1GB)
11:3 Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the guest physical address to be mapped for the blocked
Secure EPT page
63:52 | Reserved Reserved: must be 0
RDX Host physical address of the parent TDR page (HKID bits must be 0)
Table 3.45: TDH.MMIO.BLOCK Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code
RCX Extended error information part 1
In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see [ABI Spec]
The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.
In other cases, RCX returns 0.
RDX Extended error information part 2
In case of EPT walk error, Secure EPT entry level and state where the error was detected — see [ABI
Spec]
In other cases, RDX returns 0.
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MMIO.BLOCK is used by the VMM to block a MMIO private GPA mapping.

June 2025

Draft - Work in Progress Page 55 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

The function checks the following conditions:

1. The TDRis valid, and the TD is initialized.

If successful, the function blocks the MMIO page if it’s state is MAPPED or PENDING.

Completion Status Codes

Table 3.46: TDH.MMIO.BLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

10

June 2025

Draft - Work in Progress

Page 56 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.15. TDH.MMIO.MAP Leaf

Map MMIO page to a TD as private GPA.

Table 3.47: TDH.MMIO.MAP Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number and version

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the EPT entry that will map the new page: must be 0 (4KB), 1
(2MB) or 2 (1GB)

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the guest physical address to be mapped for the new
Secure EPT page

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

R8

Host physical address of the target MMIO page to be mapped to the TD (HKID bits must be 0)

Table 3.48: TDH.MMIO.MAP Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code

RCX

Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see [ABI Spec].

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX

Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see [ABI
Spec].

In other cases, RDX returns 0.

Other

Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

June 2025

Draft - Work in Progress Page 57 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

TDH.MMIO.MAP adds a 4KB, 2MB or a 1GB private MMIO page mapping to a TD. The MMIO page is mapped in a pending
state and can be accessed only by the guest TD after it accepts it using TDCALL(TDG.MMIO.ACCEPT). TDH.MMIO.MAP

does not access the MMIO page.
The function checks the following conditions:

1. The TDRis valid, and the TD is initialized.

2. The target MMIO metadata is correct and the TD is the owner of the MMIO page.

If successful, the function updates the Secure EPT entry with the target page HPA and MMIO_PENDING state.

Completion Status Codes

Table 3.49: TDH.MMIO.MAP Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

Operation is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

June 2025 Draft - Work in Progress Page 58 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.16. TDH.MMIO.MT.ADD Leaf

Add MMIO metadata page.

Table 3.50: TDH.MMIO.MT.ADD Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0

RCX MMIOMT_IDX - MMIOMT index (MMIOMT_IDX_T)

RDX MMIOMT_PA - The physical address of the new allocated MMIONT page

Table 3.51: TDH.MMIO.MT.ADD Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MMIO.MT.ADD used by the VMM to build the MMIOMT tree. The VMM provides the HPA address to allocate the
new MMIOMT page and the MMIOMT index (MMIO HPA address and parent entry level).

The function checks the following conditions:

1. MMIOMT_IDX is valid:
1.1. Reserved fields must be 0.
1.2. LEVEL must be valid.
1.3. PA must be a valid 4KB aligned HPA with HKID bits equal to 0.
2. MMIOMT_PA page is free (PT_NDA type in PAMT).

If successful, the function does the following:

1. Walk MMIOMT tree using MMOMT_IDX to get the new MMIOMT page parent entry.

e wN

Completion Status Codes

Check that the parent entry is not already mapped. Fail otherwise.
Map the MMIOMT parent entry to point the new MMIOMT page.
Initialize the new MMIOMT page to 0 using MOVDIR64 and TDX reserved HKID.
Update PAMT of the new MMIOMT page with type PT_MMIOMT.

Table 3.52: TDH.MMIO.MT.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_ADDR_RANGE_ERROR

June 2025

Draft - Work in Progress Page 59 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Completion Status Code

Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

June 2025

Draft - Work in Progress

Page 60 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

3.2.17. TDH.MMIO.MT.RD Leaf

Read MMIOMT entry.
Table 3.53: TDH.MMIO.MT.RD Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0

RCX MMIOMT_IDX - MMIOMT index (MMIOMT_IDX_T)

Table 3.54: TDH.MMIO.MT.RD Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code

RCX, RDX, MMIOMT DATA or QNODE entry value
R8, R9

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MMIO.MT.RD This function is used by the VMM to read MMIOMT entry content (e.g. for debug purposes). The

module is not required to be in debug mode since the MMIOMT itself never holds any secrets.
The function checks the following conditions:

1. MMIOMT_IDX is valid:

1.1. Reserved fields must be 0.

1.2. LEVEL must be valid.

1.3. PA must be a valid 4KB aligned HPA with HKID bits equal to 0.
If successful, the function does the following:

1. Walk MMIOMT tree using MMOMT_IDX to get the new MMIOMT page parent entry.
If passed:

2. Return MMIOMT entry 32-byte content in RCX, RDX, R8 and R9.

Completion Status Codes

Table 3.55: TDH.MMIO.MT.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

June 2025 Draft - Work in Progress

Page 61 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Completion Status Code

Description

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

June 2025

Draft - Work in Progress

Page 62 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.18. TDH.MMIO.MT.REMOVE Leaf

Remove an empty MMIOMT page.
Table 3.56: TDH.MMIO.MT.REMOVE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0

RCX MMIOMT_IDX - MMIOMT index (MMIOMT_IDX_T)

Table 3.57: TDH.MMIO.MT.REMOVE Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code
RCX Removed MMIOMT page HPA
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MMIO.MT.REMOVE reclaims a page from the MMIOMT tree. The VMM provides the MMIOMT index (MMIO HPA
address and level) of the MMIOMT page parent entry.

Before removing the MMIOY page, the function verifies that the page is indeed empty (none of the entries is present or
is of MMIOMT_DATA type).

The function checks the following conditions:

1. MMIOMT_IDX is valid:

1.1. Reserved fields must be 0.

1.2. LEVEL must be valid be valid.

1.3. PA must be a valid 4KB aligned HPA with HKID bits equal to 0.
If successful, the function does the following:

2. Walk MMIOMT tree using MMOMT_IDX to get the target MMIOMT page parent entry.
If passed:

3. Check that parent MMIOMT entry is valid and MMIOMT page is empty:
3.1. Parent entry type must be QNODE and with present bit set.
3.2. Map MMIOMT target page (R permissions using TDX reserved HKID).
3.3. Verify all entries in MMIOMT are free QNODE entries.

If passed:

4. Unmap the MMIOMT parent entry by clearing its present bit.
5. Update PAMT type of the removed MMIOMT to PT_NDA.

June 2025 Draft - Work in Progress Page 63 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Completion Status Codes

Table 3.58: TDH.MMIO.MT.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

June 2025 Draft - Work in Progress

Page 64 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.19. TDH.MMIO.MT.SET Leaf

Set or release MMIOMT leaf entry ownership.

Table 3.59: TDH.MMIO.MT.SET Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0
RCX MMIOMT_IDX - MMIOMT index (MMIOMT_IDX_T)
RDX MMIOMT_INFO — MMIO metadata information
Bits Field Description
0:0 IS_DATA 0 — Release ownership (QNODE), 1 — Set ownership (DATA)
11:1 RSVD Reserved — must be 0
43:12 | FUNCTION_ID FUNCTION_ID of the owner device
Only valid when Type is DATA (1)
63:44 | RSVD Reserved - must be 0
Table 3.60: TDH.MMIO.MT.SET Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MMIO.MT.SET sets the TDI ownership of the MMIOMT entry or releases the ownership (in case the MMIO page is
not mapped) and makes it free again. In the MMIOMT terminology, the free entry state is called QNODE and the owned
state is called DATA.

The function checks the following conditions:

1. MMIOMT_IDX is valid:

1.1.
1.2,
1.3.

Reserved fields must be 0.
LEVEL must be valid.
PA must be a valid 4KB aligned HPA with HKID bits equal to 0.

2. MMIOMT_INFO is valid:

2.1.
2.2,
2.3.
2.4.

Reserved fields must be 0.

TYPE must be DATA (1) or QNODE (0).

If TYPE is Release Ownership (QNODE), OWNER and FUNCTION_ID must be 0.
If TYPE is Set Ownership (DATA), FUNCTION_ID fields must be valid.

June 2025 Draft - Work in Progress Page 65 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

If successful, the function sets/releases the MMIOMT ownership.

For Set Ownership (DATA), the entry must be free.

For Release Ownership (QNODE), the entry must be present and the MMIO page not mapped.

Completion Status Codes

Table 3.61: TDH.MMIO.MT.SET Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_TDIMT_NOT_PRESENT

TDX_SUCCESS:

June 2025 Draft - Work in Progress Page 66 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.20. TDH.MMIO.UNMAP Leaf

Unmap MMIO page from a TD.
Table 3.62: TDH.MMIO.UNMAP Input Operands Definition

mterrace (Abrj Rerterence

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 Version Number Selects the SEAMCALL interface function version
63:24 Reserved Must be 0
EPT mapping information:
RCX Bits Name Description
2:0 Level Level of the EPT entry that will map the new page: must be 0 (4KB), 1
(2MB) or 2 (1GB)
11:3 Reserved Reserved: must be 0 g
51:12 GPA Bits 51:12 of the guest physical address to be mapped for the new Secure 3
EPT page
63:52 Reserved Reserved: must be 0 1
RDX Host physical address of the parent TDR page (HKID bits must be 0) §
.IC
k)
5 Table 3.63: TDH.MMIO.UNMAP Output Operands Definition §
2
Operand Description <
s}
RAX SEAMCALL instruction return code g
IS}
[&]
RCX Extended error information part 1 %
In case of EPT walk error, Secure EPT entry architectural content where the error was detected — %
see [ABI Spec] 5
The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.
In other cases, RCX returns 0.
RDX Extended error information part 2
In case of EPT walk error, Secure EPT entry level and state where the error was detected — see [ABI
Spec]
In other cases, RDX returns 0.
R8 Unmapped MMIO HPA
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

June 2025 Draft - Work in Progress Page 67 of 108

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

TDH.MMIO.UNMAP is used by the VMM to un-map MMIO private GPA from a TD. The MMIO page mapping can only be
removed when the device interface TDISP state is UNLOCKED or the IDE stream is blocked.

The function checks the following conditions:

1. The TDRis valid, the TD keys are configured, and the TD has been initialized:
1.1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
1.2. The TDis not in a FATAL state (TDR.FATAL is FALSE).
1.3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
1.4. The TD has been initialized locally by TDH.MNG.INIT and no migration session is in progress
2. The corresponding Secure EPT leaf entry for 4KB, 2MB or 1GB page is marked as MMIO_BLOCKED and both IOTLB

and TLB tracking are done.

3. The owner TDI's TDISP state is CONFIG_UNLOCKED, or the corresponding IDE stream is blocked.

If successful, the function updates the Secure EPT state as FREE.

Completion Status Codes

Table 3.64: TDH.MMIO.UNMAP Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

June 2025

Draft - Work in Progress Page 68 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.21. TDH.SPDM.CONNECT Leaf

Establish a new SPDM session with the device.

Table 3.65: TDH.SPDM.CONNECT Input Operands Definition

Operand | Name Description
RAX Leaf and Number SEAMCALL instruction leaf number and version
Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX SPDM_ID SPDM Session Id, see SPDM_ID_T
RDX SPDM_CONFIG_PA HPA of a page containing the SPDM configuration info, see

SPDM_CONFIG_INFO_T

Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free

R8 SPDM_RSP_HPA_ARR
page(s) for the SPDM Response message (Input)
R9 SPDM_REQ_HPA_ARR Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
- - - page(s) for the SPDM Request message (Output)
R10 SPDM OUT HPA ARR | Page buffer of type HPA_ARRAY_T, with SPDM_MAX_DEV_INFO_PAGES

shared 4KB page HPAs containing the device’s configuration info, see
SPDM_DEVICE_ATTESTATION_INFO_T

Table 3.66: TDH.SPDM.CONNECT Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

RCX If RAX returns TDX_SPDM_REQUEST — Generated SPDM output message length in bytes.
If RAX returns TDX_SUCCESS — SPDM_DEVICE_ATTESTATION_INFO_T length in bytes.

If RAX returns TDX_SPDM_MESSAGE_ERROR / TDX_TDISP_MESSAGE_ERROR, then the length of the
SPDM extended error information, returned in SPDM_REQ_HPA_ARR buffer.

For other RAX values — 0.

RDX 0. Reserved for future use.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SPDM.CONNECT establishes a new SPDM session with the device.

The function checks the following conditions:

Intel TDX Connect Application Binary Interface (ABI) Reference

June 2025 Draft - Work in Progress Page 69 of 108

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

1. SPDM_ID must be valid session id, returned by TDH.SPDM.CREATE.
2. Input parameters SPDM_RSP_HPA_ARR, SPDM_REQ_HPA_ARR, SPDM_OUT_HPA_ARR are valid.

3. SPDM session state is DISCONNECTED.

If successful, the function prepares the SPDM session connect request and returns TDX_SPDM_REQUEST. The VMM will
send the request to the device and recall the function, see [the VMM Common SPDM Interface]. When the function
returns TDX_SUCCESS, the SPDM session has been established.

Completion Status Codes

Table 3.67: TDH.SPDM.CONNECT Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_SPDM_ENTRY_NOT_PRESENT

TDX_SPDM_INVALID_MESSAGE

Invalid SPDM message or decryption/integrity check failure

TDX_SPDM_REQUEST

TDX Module requires VMM to send the request in OUT_PA with
length

TDX_SPDM_INVALID_STATE

The associated SPDM session is in CONNECTED state

TDX_SUCCESS

Operation is successful

TDX_INTERRUPTED_RESUMABLE

Interrupt is pending, the operation can be resumed

TDX_SPDM_SESSION_ERROR

The SPDM operation failed

TDX_SPDM_MESSAGE_ERROR

The SPDM session establishment failed

June 2025

Draft - Work in Progress

Page 70 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.22. TDH.SPDM.CREATE Leaf

Create a new SPDM session metadata.

Table 3.68: TDH.SPDM.CREATE Input Operands Definition

Operand | Name Description
RAX Leaf and Number SEAMCALL instruction leaf number and version
Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX FUNCTION_ID Bits Field Description

31:0 FUNCTION_ID TDISP FUNCTION_ID of the device PF
(the segment and bus define the |10
stack)

63:32 Reserved Must be 0

Page buffer of type HPA_ARRAY_T, with SPDM_MT_PAGES_COUNT free
page(s) for hosting the TDX Module SPDM Metadata and internal secure
buffer(s). See: TDX Connect System Enumerations.

RDX SPDM_MT_HPA_ARR

Table 3.69: TDH.SPDM.CREATE Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code
RCX SPDM_ID handle
RDX Bits 7:0 TDI bind policy see TDX_DEVICE_POLICY_T

Bits 63:8 Reserved, 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SPDM.CREATE allocates a metadata page to hold the device SPDM session information.

The function checks the following conditions:

1. FUNCTION_ID is a valid FUNCTION_ID of a device on a TDX Connect-configured IOMMU.
2. SPDM_MT_HPA_ARR is valid, and SPDM_MT_PAGES_COUNT shared pages are available.
3. The number of created SPDM sessions is less than MAX_SPDM_SESSIONS.

June 2025 Draft - Work in Progress Page 71 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

If successful, the function creates and initializes the SPDM context.

The output TDX_DEVICE_POLICY_T tells the VMM the setup required for TDI assignment.
Table 3.70: TDX_DEVICE_POLICY_T

Bit Name Description

0:0 LINK_SECURITY Link Security Enumeration:

0 — IDE: VMM must create and setup a Selective IDE stream for the SPDM
session before initiating a TDI assignment (TDH.TDI.BIND).

1 - IDE Not required. VMM shall bypass IDE stream creation and proceed to
the TDI assignment (see TDH.TDI.BIND) over the connected SPDM session.

7:1 Reserved 0

5
Below is a sample VMM flow for SPDM session creation and checking the TDX_DEVICE_POLICY_T if the IDE Stream needs
to be created:
10 Table 3.71: Sample TDH.SPDM.CREATE and Device Policy checking flow
VMM TDX ‘
TDH.SYS READ(SPDM_SECURE_PAGES_COUNT) ‘_:
VMM . N |
allocates the required number of SECURE PAGES COUNT |
pages for the SPDM session secure buffers | <€ S 5 |
TDH.SPDM.CREATE(FUNC_ID, SECURE_PAGES_COUNT pages) _ |
o TDX_SUCCESS, returns SPDM_ID, TDX_DEVICE _POLICY | |
alt /) [TDX_DEVICE_POLICY.LINK_SECURITY == 0] |
VMM creates IDE stream if the returnad B TDH.IDE.STREAM.CREATE(SPDM_ID,...) :
Device Policy reports IDE Link Security = - >
TDH.IDE.STREAM.KM|...) o
VMM TDX
15

Intel TDX Connect Application Binary Interface (ABI) Reference

June 2025 Draft - Work in Progress Page 72 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.72: TDH.SPDM.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_NO_FREE_SPDM_SESSIONS

Max number of SPDM sessions reached, no free SPDMDIR entry
for a new session

TDX_OPERAND_INVALID

TDX_SUCCESS

Operation is successful

June 2025

Draft - Work in Progress Page 73 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.23. TDH.SPDM.DELETE Leaf

Delete SPDM session metadata structure.

Table 3.73: TDH.SPDM.DELETE Input Operands Definition

Operand | Name Description
RAX Leaf and Number SEAMCALL instruction leaf number and version

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 | Version Selects the SEAMCALL interface function version

Number
63:24 | Reserved Must be 0
RCX SPDM_ID SPDM Session Id, see SPDM_ID_T
RDX AUX_PAGE_PA HPA of a shared 4K auxiliary page:

e |f SPDM_MT_PAGES_COUNT == 1:

TDX Module will not use the auxiliary page, although will check its validity
for forward compatilibity. The HPA of the released IDE Metadata page
will be in the output register.

e |f SPDM_MT_PAGES_COUNT > 1:

TDX Module uses the auxiliary page for HPA_ARRAY_T object with the

released SPDM Metadata pages (acquired in TDH.SPDM.CREATE). The

object is returned in the output register, see: HPA_ARRAY_T.
Table 3.74: TDH.SPDM.DELETE Output Operands Definition
Operand | Description
RAX SEAMCALL instruction return code
RCX HPA_ARRAY_T type containing the released SPDM Metadata pages:

e If SPDM_MT_PAGES_COUNT == 1: the value is the HPA of the released page.

e |f SPDM_MT_PAGES_COUNT > 1: the value is HPA_ARRAY_T(HPA == AUX_PAGE_PA, LAST_IDX ==
SPDM_MT_PAGES_COUNT). The VMM needs to map the AUX_PAGE_PA page to read the HPAs of
the released pages.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.SPDM.DELETE deletes an SPDM session metadata page after checking there are no IDE Streams attached to it.

The function checks the following conditions:

1. SPDM_ID must be valid session id, returned by TDH.SPDM.CREATE.
2. The active IDE streams count for the session must be 0.

June 2025

Draft - Work in Progress Page 74 of 108

Intel TDX Connect Application Binary Interfa

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

If all checks passed, the function releases the SPDM session metadata page(s). Note, the VMM can delete the SPDM
session without a graceful session disconnect by TDH.SPDM.DISCONNECT.

Completion Status Codes

Table 3.75: TDH.SPDM.DELETE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS

Operation is successful

3.2.24. TDH.SPDM.DISCONNECT Leaf

Disconnect (end) the SPDM session on the device.

Table 3.76: TDH.SPDM.DISCONNECT Input Operands Definition

Operand | Name Description
RAX Leaf and Number SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Selects the SEAMCALL interface function version
Number
63:24 | Reserved Must be 0
RCX SPDM_ID SPDM Session Id, see SPDM_ID_T
RDX SPDM_RSP_HPA_ARR Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
page(s) for the SPDM Response message (Input)
R8 SPDM_REQ HPA ARR Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
- - - page(s) for the SPDM Request message (Output)
June 2025 Draft - Work in Progress Page 75 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.77: TDH.SPDM.DISCONNECT Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

RCX If RAX returns TDX_SPDM_REQUEST — Generated SPDM output message length in bytes.
If RAX returns TDX_SPDM_MESSAGE_ERROR / TDX_TDISP_MESSAGE_ERROR, then the length of the
SPDM extended error information, returned in SPDM_REQ_HPA_ARR buffer. The SPDM extended error
information is defined in [SPDM]
For other return codes — 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

The function gracefully ends the SPDM session on the device.

The function checks the following conditions:

HwnNeE

SPDM_ID must be valid session id, returned by TDH.SPDM.CREATE.

SPDM state is Connected.

The active IDE streams count for the session must be 0.

No other SPDM-related operations are in progress (see: VMM Common SPDM Interface).

If successful, the function prepares the SPDM END_SESSION request and returns TDX_SPDM_REQUEST. The VMM wiill
send the request to the device and recall the function, see [the VMM Common SPDM Interface]. When the function
returns TDX_SUCCESS, the SPDM session has been disconnected.

June 2025

Draft - Work in Progress Page 76 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.78: TDH.SPDM.DISCONNECT Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_SPDM_ENTRY_NOT_PRESENT

TDX_SPDM_INVALID_MESSAGE

Invalid SPDM message or decryption/integrity check failure

TDX_SPDM_REQUEST

TDX Module requires VMM to send the request in OUT_PA with
length

TDX_SPDM_INVALID_STATE

The associated SPDM session is not in CONNECTED state

TDX_SUCCESS

Operation is successful

TDX_INTERRUPTED_RESUMABLE

Interrupt is pending, the operation can be resumed

TDX_SPDM_SESSION_ERROR

The SPDM operation failed

TDX_SPDM_MESSAGE_ERROR

The SPDM session establishment failed

June 2025

Draft - Work in Progress Page 77 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.25. TDH.SPDM.MNG Leaf

Manages the SPDM session.

Table 3.79: TDH.SPDM.MNG Input Operands Definition

Operand Name Description

RAX Leaf and Number SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number Selects the SEAMCALL interface function

version
63:24 | Reserved Must be 0
RCX SPDM_ID SPDM Session Id, see SPDM_ID_T
RDX SPDM_OPERATION SPDM operation type:
HEARTBEAT -0
KEY_UPDATE -1
DEV_INFO_RECOLLECTION -2
ABORT -3

R8 MNG_PARAM_PA In case of DEV_INFO_RECOLLECTION, HPA of a page with 32B nonce, used in
case of DEV_INFO_RECOLLECTION, see MNG_PARAM_T.
Otherwise, NULL PA.

R9 SPDM_RSP_HPA_ARR Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
page(s) for the SPDM Response message (Input)

R10 SPDM_REQ_HPA_ARR Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
page(s) for the SPDM Request message (Output)

R11 SPDM_OUT_HPA_ARR In case of DEV_INFO_RECOLLECTION, page buffer of type HPA_ARRAY_T,
with SPDM_MAX_DEV_INFO_PAGES shared 4KB page HPAs containing the
device’s configuration info, see SPDM_DEVICE_ATTESTATION_INFO_T.
Otherwise, NULL PA.

Table 3.80: TDH.SPDM.MNG Output Operands Definition
Operand | Description
RAX SEAMCALL instruction return code
RCX If RAX returns TDX_SPDM_REQUEST — Generated SPDM output message length in bytes.
If RAX returns TDX_SUCCESS — DEVICE_SPDM_INFO length in bytes.
If RAX returns TDX_SPDM_MESSAGE_ERROR / TDX_TDISP_MESSAGE_ERROR, then the length of the
SPDM extended error information, returned in SPDM_REQ_HPA_ARR buffer. The SPDM extended error
information is defined in [TPA Spec]. Zero means no SPDM extended error information returned.
Zero otherwise.
Other Unmodified
June 2025 Draft - Work in Progress Page 78 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SPDM.MNG performs the management operations on the given SPDM session in the Connected state.

5 The operations supported:
HEARTBEAT — Issue SPDM heartbeat.
KEY_UPDATE — Issue SPDM Key Update.
DEV_INFO_RECOLLECTION — Issue the Device Attestation Info recollection.
ABORT — Abort the SPDM Session.

10
To understand the table and text below, please refer to the [TDX Module Spec] chapter discussing general aspects of the
Intel TDX Module API.

Table 3.81: TDH.SPDM.MNG Operands Information Definition
Explicit/ | Reg. | Ref. Resource Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit RCX | Index | SPDM Info IOMMU RW Hidden N/A Exclusive N/A N/A
Entry metadata

Explicit R8 HPA VMM page N/A RW Opaque 4KB N/A N/A N/A

Explicit | R9 HPA VMM page N/A RW Opaque 4KB N/A N/A N/A

Explicit | R10 | HPA VMM page N/A R Opaque 4KB N/A N/A N/A

Explicit | R11 | HPA_ | VMM page N/A RW Opaque 4KB N/A N/A N/A

ARRA
Y
15 TDH.SPDM.MNG checks the memory operands per the table above when applicable during its flow. The text below does
not explicitly mention those checks, except when necessary.
The function checks the following conditions:
20 1. SPDM_ID must be valid session id, returned by TDH.SPDM.CREATE.
2. SPDM state is Connected.
3. No other SPDM-related operations are in progress (see: VMM Common SPDM Interface).
If successful, the function does the following:

25 For HEARTBEAT, KEY_UPDATE and DEV_INFO_RECOLLECTION: prepares the SPDM management request according to the
operation requested and returns TDX_SPDM_REQUEST. The VMM will send the request to the device and recall the
function, see [the VMM Common SPDM Interface]. When the function returns TDX_SUCCESS, the management
operation has been completed.

30 For ABORT: SPDM Session is aborted. No SPDM operations will be allowed for the session. The VMM may only release

the resources of the TDIs that are in not UNLOCKED state.

June 2025 Draft - Work in Progress Page 79 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.82: TDH.SPDM.MNG Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_IOMMU_INVALID_STATE

IOMMU is not in IOMMU_CONFIGURED state

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS

Operation is successful

TDX_SPDM_REQUEST

TDX Module requires VMM to send the request in OUT_PA with
length

TDX_INTERRUPTED_RESUMABLE

Interrupt is pending, the operation can be resumed

TDX_SPDM_SESSION_ERROR

The SPDM operation failed

TDX_SPDM_MESSAGE_ERROR

The SPDM session establishment failed

TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH

The SPDM session requires a key refresh

June 2025

Draft - Work in Progress Page 80 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.2.26. TDH.TDIL.BIND Leaf (Change in Progress)

Start TDI binding 1t step: lock the Interface configuration and obtain the Interface Report.

Note: This ABI is ongoing changes to add VMM input for guest virtual function ID as well as add TDISP report checks to

verify that TEE MMIO ranges are not assigned to any TDI and DMA entry for FUNCTION_ID (bdf) is not already mapped.

Table 3.83: TDH.TDI.BIND Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:0 Function ID TDI Function ID
63:32 Reserved Must be 0
RDX TDISP_PARAM TDISP-related parameters for TDI binding
Bits Field Description
15:0 LOCK_FLAGS Interface Lock flags, only bits reported by
the global field
LOCK_INTERFACE_FLAGS_SUPPORTED can
be set to 1.
63:16 | Reserved Must be 0
R8 SPDM_RSP_HPA_ARR- Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
page(s) for the SPDM Response message (Input)
R9 SPDM_REQ_HPA_ARR - Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
page(s) for the SPDM Request message (Output)
R10 SPDM_OUT_HPA_ARR - Page buffer of type HPA_ARRAY_T, with TDISP_MAX_TDI_REPORT_PAGES
free page(s) for the TDI Interface report output.
Table 3.84: TDH.TDI.BIND Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code
RCX If RAX returns TDX_SUCCESS — TDISP Interface Report length in SPDM_OUT_HPA_ARR in bytes.
SPDM_REQ_HPA_ARR — Unused.
If RAX returns TDX_SPDM_REQUEST — Generated in SPDM_REQ_HPA_ARR TDISP output message
(DOE+Secure SPDM enveloped) length in bytes.
If RAX returns TDX_TDISP_ERROR — Returns the TDISP ERROR_CODE (bytes 0-3), TDISP
ERROR_DATA (bytes 0-3), see [TDISP] (bytes 4-8), see [TDISP].
For other return codes — unmodified.
June 2025 Draft - Work in Progress Page 81 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

RDX If RAX returns TDX_TDISP_ERROR — Returns the TDISP request message type (see [TDISP] that
caused the error (byte 0), bytes 1-7 are 0.

For other return codes — unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.TDI.BIND initiates TDI assignment (see LOCK_INTERFACE and GET_DEVICE_INTERFACE_REPORT in [TDISP]) for a
previously unassigned (UNLOCKED) interface.

The function checks the following conditions:

1. FUNCTION_ID is valid.

2. TDISP_PARAM.LOCK_FLAGS are in the allowed global field LOCK_INTERFACE_FLAGS_SUPPORTED bitmask.
Reserved field is 0.

3. No other SPDM operation is in progress, see VMM Common SPDM Interface.

4. TDl is in UNLOCKED state.

5. The secure session with physical device is connected and active: SPDM session is Connected, IDE Stream is
configured and not blocked.

If successful, the function prepares a serious the binding requests, returning TDX_SPDM_REQUEST so the VMM will send
the request to the device and recall the function, see [the VMM Common SPDM Interface] and the Figure below. When
the function returns TDX_SUCCESS, the TDI is bound, the device Interface Report is written into SPDM_OUT_HPA_ARR
pages and RCX has the Interface Report length in bytes.

Important note: if TDH.TDI.BIND returns a failure status, the TDI state is unknown (can be either LOCKED or UNLOCKED).
In case a failure, the VMM shall sync with the actual interface by calling either TDH.TDI.GET.STATE or TDH.TDI.STOP.

Figure 3.85: TDH.TDI.BIND Sample flow sequence

I/- -\I I/- -\\ I/- -\I
oy o o
Device VMM TDX_Module

TDH SYS READ(LOCK_INTERFACE_FLAGS_SUPPORTED
TDISP_MAX_TDI_REPORT_PAGES)

For TOH.TDL.BIND the VMM reads the LOCK_|NTEFACE N LOCK INTERFACE FLAGS SUPPORTED.

supported flags and the number of pages for max TDISP MAX TDI REPORT PAGES
size Interface Report PRt e ST EIET B USSR !
loo [while status = TDX_SPDM_REQUEST or TDX_OPERAND_BUSY

Bind operation: Lock Interface and Interface Report requestsiresponses]
status = TDH.TDI.BIND(FUNC_ID, lock_flags, report_pages
inp_page, out_page)

TDX_SPDM_REQUEST(out_page)
_ Send DOE/SPDM (out_page, RCX)

. DOE Response (inp_page) -

_ status == TDX_SUCCESS or error

Device WViM TDX_Module

f | {) f |
oy o S

June 2025 Draft - Work in Progress Page 82 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Codes

Table 3.86: TDH.TDI.BIND Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_TDI_NOT_PRESENT

TDX_TDI_INVALID_METADATA

Invalid TDIMT_IDX path, or the path for the entry index already
exists

TDX_SPDM_ENTRY_NOT_PRESENT

TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH The SPDM session requires a key refresh

TDX_SPDM_INVALID_MESSAGE

Invalid SPDM message or decryption/integrity check failure

TDX_SPDM_REQUEST

TDX Module requires VMM to send the request in OUT_PA with
length

TDX_SPDM_INVALID_STATE

The associated SPDM session is not in CONNECTED state

TDX_IDE_STREAM_INVALID_STATE

The IDE stream is not configured or blocked

TDX_TDISP_INVALID_MESSAGE

Unexpected/invalid TDISP response

TDX_TDISP_ERROR

TDSP Error Response returned

TDX_TDI_INVALID_TDI_CONFIGURATION

Interface Report INTERFACE_INFO capability(ies) is not
supported by TDX Module and doesn’t allow to make the
Interface secure

TDX_SUCCESS

3.2.27. TDH.TDI.CREATE Leaf

Create a TDI interface control structure and metadata.

June 2025

Draft - Work in Progress Page 83 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.87: TDH.TDI.CREATE Input Operands Definition

Operand Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface
function
23:16 | Version Selects the SEAMCALL interface
Number function version
63:24 | Reserved Must be 0
RCX STREAM_ID IDE-Stream identifier
RDX TDI_INFO Device interface ID
Name Bits Description
TDISP_FUNC_ID 31:0 TDI FUNCTION_ID See: [TDISP]
Type 39:32 | Device Interface Type (see:
TDI_TYPE_T)
Reserved 63:40 | Reserved. Must be zero.
R8 TDR Host physical address of the parent TDR page (HKID bits must be
0)
R9 TDICS_MT_HPA_ARR Page buffer of type HPA_ARRAY_T, with
TDICS_MT_PAGES_COUNT free page(s) for hosting a new TDI
Metadata. See: TDX Connect System Enumerations.
Table 3.88: TDH.TDI.CREATE Output Operands Definition
Operand | Description
RAX SEAMCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.TDI.CREATE creates and initializes the TDI metadata. The TDI is identified by the FUNCTION_ID and TDI type). The

TDI will be assigned to the TD (identified by TDR) with the STREAM_ID being their communication channel.

The function checks the following conditions:

1. TDI_INFO.type == TDI_TYPE::PFVF
2. TDI_INFO. FUNCTION_ID is valid.
3. The TDR is valid and the TD is in operational state.

4. The secure session with physical device is connected and active: SPDM session is Connected, IDE Stream is

configured and not blocked.
5. The FUNCTION_ID's (Requestor ID) is inside the Stream’s Extended Info IDE RID Association range.

June 2025

Draft - Work in Progress

Page 84 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55
If successful, the function initializes the TDI metadata and marks the TDI assigned to the TD.
Figure 3.89: TDH.TDI.CREATE Sample flow
Y T Py
|] |]))
o o o
Device VM TDX_Module
oEl) [TDIMT creation can be a part of some previous flow]
TDH.TDLMT.ADD(FUNC_ID) "multiple calls for L3,L.2,L1
DK SUCCESS eeeeeeeeeeeeeeeeeeeeeeeeeee e
TDH.5YS.READ(TDICS_MT_PAGES_COUNT) N
For TDH.TDI.CREATE the VMM reads the number by TDICS MT PAGES COUNT
of pages for TDI context < R =
TDH.TDI.CREATE(FUNC_ID, SPDM_ID, STREAM_ID, TDR, TDICS_MT_PAGES)
TDX_SUCCESS
Device VM TDX_Module
I/-\\I I/-\\I I/\\
o o o
5
10 Completion Status Codes
Table 3.90: TDH.TDI.CREATE Completion Status Codes (Returned in RAX) Definition
Completion Status Code Description
TDX_OPERAND_INVALID
TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower

retrying the operation.

32 bits of the status. In many cases, this can be resolved by

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCS_NOT_ALLOCATED

TDX_OP_STATE_INCORRECT

TDX_IOMMU_INVALID_STATE IOMMU is not in IOMMU_CONFIGURED state

TDX_SPDM_INVALID_STATE SPDM session must be valid and connected

TDX_IDE_STREAM_INVALID_STATE IDE-Stream metadata in TDX module is not configured or it is
blocked

TDX_SUCCESS Operation is successful

3.2.28. TDH.TDI.GET.STATE Leaf

Queries the TDI TDISP Interface State.

June 2025 Draft - Work in Progress

Page 85 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.91: TDH.TDI.GET.STATE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:0 Function ID TDI Function ID
63:32 Reserved Must be 0
RDX SPDM_RSP_PA- HPA of a page with SPDM response message input.
R8 SPDM_REQ_HPA_ARR - HPA of a page for the TDISP request message output.

Table 3.92: TDH.TDI.GET.STATE Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code
RCX If RAX returns TDX_SUCCESS — TDISP Interface State (see [TDISP]).

If RAX returns TDX_SPDM_REQUEST — Generated TDISP output message (DOE+Secure SPDM
enveloped) length in bytes.

If RAX returns TDX_TDISP_ERROR — Returns the TDISP ERROR_CODE (bytes 0-3) and ERROR_DATA
(bytes 4-7), see [TDISP].

For other return codes — 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.TDI.GET.STATE issues an Interface State request (see GET_INTERFACE_STATE in [TDISP]) and processes the response
to get the TDISP state of TDI.

The function checks the following conditions:

1. FUNCTION_ID is valid.

2. No other SPDM operation is in progress, sese VMM Common SPDM Interface.

3. The secure session with physical device is connected and active: SPDM session is Connected, IDE Stream is
configured and not blocked.

If successful, the function prepares the GET_STATE request and returns TDX_SPDM_REQUEST. The VMM will send the
request to the device and recall the function, see [the VMM Common SPDM Interface]. When the function returns
TDX_SUCCESS, the TDI Interface state is returned in RCX.

June 2025 Draft - Work in Progress Page 86 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55
The following sequence diagram demonstrates the flow with TDH.TDI.GET.STATE.
5 Figure 3.93: TDH.TDI.GET.STATE in a Sample GET_INTERFACE_STATE flow
I/ \I I/ -\\I I/ -\\I
Ny - -
VM TDX_Module TD
loo, [shorter version of the loop]

status = TDH.TDLGET.STATE(FUNC_ID, inp_page, out page) | Interface State requestiresponse)

< TDX_SPDM_REQUEST (out_page)

TDX_SUCCESS (RCX == INTERFACE_STATE)

.ﬁ ...
[. . AN
TD doesn't need a special API.
It can read the Interface State known
to TDX Module with TDG. TDLRD. _ TDG.TDIRD(FUNC_ID, INTERFACE_STATE)
TDX Module tracks the known state with h
every TDISP response.
Known Interface State
..)
VM TDX_Module T
) O ')
S S S
Completion Status Codes
10 Table 3.94: TDH.TDI.GET.STATE Completion Status Codes (Returned in RAX) Definition
Completion Status Code Description
TDX_OPERAND_BUSY
TDX_OPERAND_INVALID
June 2025 Draft - Work in Progress Page 87 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Code

Description

TDX_TDI_NOT_PRESENT

TDX_TDI_INVALID_METADATA

Invalid TDIMT_IDX path, or the path for the entry index already
exists

TDX_SPDM_ENTRY_NOT_PRESENT

TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH

The SPDM session requires a key refresh

TDX_SPDM_INVALID_MESSAGE

Invalid SPDM message or decryption/integrity check failure

TDX_SPDM_REQUEST

TDX Module requires VMM to send the request in OUT_PA with
length

TDX_SPDM_INVALID_STATE

The associated SPDM session is not in CONNECTED state

TDX_IDE_STREAM_INVALID_STATE

The IDE stream is not configured or blocked

TDX_TDISP_ERROR

TDSP Error Response returned

TDX_TDISP_INVALID_MESSAGE

Unexpected/invalid TDISP response

TDX_SUCCESS

3.2.29. TDH.TDI.MT.ADD Leaf

Add a page for TDI Metadata.

Table 3.95: TDH.TDI.MT.ADD Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0
RCX TDIMT_IDX — Parent entry index (See: TDIMT_IDX_T)
RDX TDIMT_PA - The physical address of the new allocated TDIMT page

Table 3.96: TDH.TDI.MT.ADD Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

June 2025 Draft - Work in Progress Page 88 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

TDH.TDI.MT.ADD used by the VMM to build the TDIMT tree. The VMM provides the HPA of a free page to be used as the
TDIMT page and the TDIMT parent entry index.

The function checks the following conditions:

1. TDIMT_IDX is valid:
1.1. Reserved fields must be 0.
1.2. LEVEL must be valid.

2. TDIMT_PA must be a free 4KB aligned HPA with HKID bits equal to 0.

3. Parent entry is not

already mapped.

If successful, the function adds the new page to TDIMT page structure.

Completion Status Codes

Table 3.97: TDH.TDI.MT.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_TDI_INVALID_M

ETADATA

Invalid TDIMT_IDX path, or the path for the entry index already
exists

TDX_SUCCESS

3.2.30. TDH.TDL.MT.R

EMOVE Leaf

Remove empty TDI Metadata page.

Table 3.98: TDH.TDI.MT.REMOVE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0
RCX TDIMT_IDX - Parent entry index (See: TDIMT_IDX_T)
Table 3.99: TDH.TDI.MT.REMOVE Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code
RCX Removed TDIMT page HPA
Other Unmodified

June 2025

Draft - Work in Progress Page 89 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.TDI.MT.REMOVE reclaims an unused (containing no entries) page from the TDIMT tree.

The function checks the following conditions:
1. TDIMT_IDX is valid level and reserved fields are 0.
2. Parent entry is valid and TDIMT page is empty.

If successful, the function removes the page from the TDIMT structure and returns its HPA to the VMM.

Completion Status Codes

Table 3.100: TDH.TDI.MT.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_TDI_INVALID_METADATA Invalid TDIMT_IDX path, or the path to the index doesn’t exist

TDX_SUCCESS

3.2.31. TDH.TDI.MT.RD Leaf

Read TDI Metadata entry.
Table 3.101: TDH.TDI.MT.RD Input Operands Definition

Intel TDX Connect Application Binary Interface (ABI) Reference

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0

RCX TDIMT_IDX — Entry index (See: TDIMT_IDX_T)

June 2025 Draft - Work in Progress Page 90 of 108

10

15

20

25

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Table 3.102: TDH.TDI.MT.RD Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code
RCX TDIMT entry data

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.
TDH.TDI.MT.RD used by the VMM to read the TDIMT entry (e.g. for debugging purposes).
The function checks the following conditions:

1. TDIMT_IDX is valid:
1.1. Reserved fields must be 0.
1.2. LEVEL must be valid.
If successful, the function does the following:

2. Walk TDIMT tree using TDIMT_IDX to get the new TDIMT page parent entry.
If passed:

3. Return TDIMT entry 64-bit value in RCX.

Completion Status Codes

Table 3.103: TDH.TDI.MT.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDX_TDIMT_NOT_PRESENT

3.2.32. TDH.TDI.REMOVE Leaf (Change in Progress)

Removes the TDI control structure and releases the metadata page(s).

Note: This ABI is ongoing changes to remove the MMIO and DMA removal pre-condition for TDI removal. These pre-

conditions will move to TDH.TDI.BIND time instead.

June 2025 Draft - Work in Progress

Page 91 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.104: TDH.TDI.REMOVE Input Operands Definition

Operand | Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL interface function

23:16 Version Number Selects the SEAMCALL interface function

version

63:24 Reserved Must be 0

RCX FUNCTION_ID FUNCTION_ID Bits Field Description
31:0 Function | TDI
ID Function ID
63:32 | Reserved | Must be 0
RDX AUX_PAGE_PA HPA of a shared 4K auxiliary page:

e If TDICS_MT_PAGES_COUNT ==1:

TDX Module will not use the auxiliary page, although will check its validity for
forward compatilibity. The HPA of the released IDE Metadata page will be in
the output register.

e |f TDICS_MT_PAGES_COUNT > 1:

TDX Module uses the auxiliary page for HPA_ARRAY_T object with the released

TDI Metadata pages (acquired in TDH.TDI.CREATE). The object is returned in the

output register, see: HPA_ARRAY_T.

Table 3.105: TDH.TDI.REMOVE Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

RCX HPA_ARRAY_T type containing the released IDE Metadata pages:

e If TDICS_MT_PAGES_COUNT == 1: the value is the HPA of the released page.

e If TDICS_MT_PAGES_COUNT > 1: the value is HPA_ARRAY_T(HPA == AUX_PAGE_PA, LAST_IDX ==
TDICS_MT_PAGES_COUNT). The VMM needs to map the AUX_PAGE_PA page to read the HPAs of
the released pages.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.TDI.REMOVE reclaims the TDI control and metadata page(s) after all TDI resources were released.
The function the following pre-conditions:

1. The TDlis in TDISP UNLOCKED state (see TDH.TDI.STOP). In case the device had to be forcefully removed by the
VMM, its associated IDE stream must be blocked.
. All MMIO pages were unmapped, unless the TD is in the FATAL state and the VMM needs forcefully remove the TDI.
3. PASIDTE DMAR entry was removed.

June 2025 Draft - Work in Progress Page 92 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

If successful, the function removes the TDI control structure and releases its metadata pages to the VMM.

Completion Status Codes

Table 3.106: TDH.TDI.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_TDI_INVALID_STATE

TDI_CS TDISP state is not CONFIG_UNLOCKED and its
associated IDE-Stream is not blocked

TDX_TDI_HAS_BOUND_PASIDS

TDISP bound PASIDs must be removed

TDX_TDI_HAS_MAPPED_MMIO

Device MMIO mappings must be removed

TDX_SUCCESS

Operation is successful

3.2.33. TDH.TDI.START Leaf

Start the TDI and complete the TDI assignment.

Table 3.107: TDH.TDIL.START Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number | Selects the SEAMCALL interface function version
63:24 | Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:0 Function ID TDI Function ID
63:32 Reserved Must be 0
RDX SPDM_RSP_HPA_ARR- Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
page(s) for the SPDM Response message (Input)
R8 SPDM_REQ_HPA_ARR - Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free
page(s) for the SPDM Request message (Output)
June 2025 Draft - Work in Progress Page 93 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.108: TDH.TDIL.START Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code
RCX If RAX returns TDX_SPDM_REQUEST — Generated TDISP output message (DOE+Secure SPDM

enveloped) length in bytes.

If RAX returns TDX_TDISP_ERROR — Returns the TDISP ERROR_CODE (bytes 0-3) and ERROR_DATA
(bytes 4-7), see [TDISP].

For other return codes — 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.TDI.START issues the START request (see START_INTERFACE in [TDISP]) and processes the response, as the final step
of the TDI assignment.

The function checks the following conditions:

1. FUNCTION_ID is valid.

2. No other SPDM operation is in progress, sese VMM Common SPDM Interface.

3. The secure session with physical device is connected and active: SPDM session is Connected, IDE Stream is
configured and not blocked.

4. TD has approved the Interface Start (see TDG.TDI.START).

If successful, the function prepares START_INTERFACE request and returns TDX_SPDM_REQUEST. The VMM will send the
request to the device and recall the function, see [the VMM Common SPDM Interface]. When the function returns
TDX_SUCCESS, the TDI Interface is in the RUNNING state.

Completion Status Codes

Table 3.109: TDH.TDI.START Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

June 2025 Draft - Work in Progress Page 94 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Completion Status Code

Description

TDX_TDI_NOT_PRESENT

TDX_TDI_INVALID_METADATA

Invalid TDIMT_IDX path, or the path for the entry index already
exists

TDX_SPDM_ENTRY_NOT_PRESENT

TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH

The SPDM session requires a key refresh

TDX_SPDM_INVALID_MESSAGE

Invalid SPDM message or decryption/integrity check failure

TDX_SPDM_REQUEST

TDX Module requires VMM to send the request in OUT_PA with
length

TDX_SPDM_INVALID_STATE

The associated SPDM session is not in CONNECTED state

TDX_IDE_STREAM_INVALID_STATE

The IDE stream is not configured or blocked

TDX_TDISP_ERROR

TDSP Error Response returned

TDX_TDISP_INVALID_MESSAGE

Unexpected/invalid TDISP response

TDX_TDI_INVALID_STATE

The interface is in invalid TDISP state or TD hasn’t requested
Start Interface

TDX_SUCCESS

3.2.34. TDH.TDI.STOP Leaf

Stop TDI Interface.

Table 3.110: TDH.TDIL.STOP Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number Selects the SEAMCALL interface function version

63:24 | Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:.0 Function ID TDI Function ID
63:32 Reserved Must be 0
RDX SPDM_RSP_HPA_ARR- Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free

page(s) for the SPDM Response message (Input)

R8 SPDM_REQ_HPA_ARR - Page buffer of type HPA_ARRAY_T, with SPDM_DOE_PAGES_COUNT free

page(s) for the SPDM Request message (Output)

June 2025 Draft - Work in Progress Page 95 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.111: TDH.TDI.STOP Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code
RCX If RAX returns TDX_SPDM_REQUEST — Generated TDISP output message (DOE+Secure SPDM

enveloped) length in bytes.

If RAX returns TDX_TDISP_ERROR — Returns the TDISP ERROR_CODE (bytes 0-3) and ERROR_DATA
(bytes 4-7), see [TDISP].

For other return codes — 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.TDI.STOP issues the STOP_INTERFACE request (see [TDISP]) and processes the response, as the first step of the TDI
tear down.

The function checks the following conditions:

1. FUNCTION_ID is valid.

2. No other SPDM operation is in progress, sese VMM Common SPDM Interface.

3. The secure session with physical device is connected and active: SPDM session is Connected, IDE Stream is
configured and not blocked.

If successful, the function prepares the STOP_INTERFACE request and returns TDX_SPDM_REQUEST. The VMM will send
the request to the device and recall the function, see [the VMM Common SPDM Interface]. When the function returns
TDX_SUCCESS, the TDI Interface state is UNLOCKED.

Important note: if TDH.TDI.STOP returns a failure, the TDI state is unknown (can be either LOCKED or UNLOCKED). In
case a failure, the VMM shall sync with the actual interface by calling either TDH.TDI.GET.STATE or retrying
TDH.TDIL.STOP.

June 2025 Draft - Work in Progress Page 96 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Figure 3.112: TDH.TDI.STOP in a Sample TDI Disconnect flow

I/"\I I/"\I
oy oy
VM TDX_Module
TDH.DMAR BLOCK(PASIDTE) o
TDX_SUCCESS
*_ ...
loo, [Block MMIO pages]

TDH.MMIO.BLOCK(GPA, TOR) o

. TDX_SUCCESS

loop /) [status == TDX_SPDM_REQUEST]
status = TDH.TDI.STOP{FUNC_ID, inp_page, out_page) _

. TDX_SPDM_REQUEST(out_page)

TDX_SUCCESS

* ..
TDH.IDE.STREAM BLOCK(SPDM_ID, STREAM_ID) o
_, TDX_SUCCESS
loo| [Unmap MMIO pages]
TDH.MMIO. UNMAP(GPA, TOR) o
_, TDX_SUCCESS
TDH.IQ.INV.REQUEST/PROCESS (PASIDTE) -
TDX_SUCCESS
*. - P,
TDH.DMAR REMOVE(PASIDTE) -
L
TDH.TDI.REMOVE(FUNC_ID, STREAM_ID) -
__ TDX_SUCCESS
VM TDX_Module
P P
|)| |)|
S S

Notes. If the known TDI state is INTERFACE_UNLOCKED, the TDX Module will return TDX_SUCCESS immediately.

Completion Status Codes

Table 3.113: TDH.TDI.STOP Completion Status Codes (Returned in RAX) Definition

June 2025 Draft - Work in Progress Page 97 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Completion Status Code

Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

TDX_TDI_NOT_PRESENT

TDX_TDI_INVALID_METADATA

Invalid TDIMT_IDX path, or the path for the entry index already
exists

TDX_SPDM_ENTRY_NOT_PRESENT

TDX_SPDM_SESSION_KEY_REQUIRE_REFRESH

The SPDM session requires a key refresh

TDX_SPDM_INVALID_MESSAGE

Invalid SPDM message or decryption/integrity check failure

TDX_SPDM_REQUEST

TDX Module requires VMM to send the request in OUT_PA with
length

TDX_SPDM_INVALID_STATE

The associated SPDM session is not in a CONNECTED state

TDX_IDE_STREAM_INVALID_STATE

The IDE stream is not configured or blocked

TDX_TDISP_ERROR

TDSP Error Response returned

TDX_TDISP_INVALID_MESSAGE

Unexpected/invalid TDISP response

TDX_SUCCESS

June 2025

Draft - Work in Progress

Page 98 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

3.3. TDX Connect Guest-Side (TDCALL) Interface Functions (Change in Progress)

Note: The TD guest ABI commands in this section are changing to use function ID input as guest virtual function ID that
the VMM allocates during TDI bind.

5 3.3.1. TDG.DMAR.ACCEPT Leaf
Accept a PASID table entry.
Table 3.114: TDG.DMAR.ACCEPT Input Operands Definition
Operand | Name Description
RAX Leaf and Version SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 Version Number Selects the SEAMCALL interface function version
63:24 Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:0 Function ID TDI Function ID
63:32 Reserved Must be 0
RDX TARGET: Bits 0-7: VM_IDX, 0 — for non-partitioned TD or L1, 1-3 - L2 VM 1-3
Bits 8-27: Reserved for Gen2. Must be 0.
Bits 28-63: Reserved for Gen2. Must be 0
R8-R15 RSVD — Must be 0
Table 3.115: TDG.DMAR.ACCEPT Output Operands Definition
Operand | Description
RAX SEAMCALL instruction return code
Other Unmodified
10
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
TDG.DMAR.ACCEPT is used by the TD to enable DMA access from the trusted device.
15 Before enabling the DMA access by setting the present bit of the DMAR PASID table entry, the TDX Module checks that
the device interface is assigned to and validated by the TD accepting it (see TDG.TDI.VALIDATE).
For the partitioned TD only: the L1 may choose the TARGET: an L2 VM to assign the DMA to. Value 0 assigns the DMA to
the L1, values 1-3 assign the DMA to VMs 1-3 respectively.
Work in progress!
20 Before reassigning the DMA to another VM, the L1 must ensure the PASID was invalidated, see TDG.DMAR.RELEASE.

June 2025 Draft - Work in Progress Page 99 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

The function checks the following conditions:

1. FUNCTION_ID is valid and the TDI is owned by the TD.
2. TDI has been validated, see TDG.TDI.VALIDATE.
3. DMAR PASIDTE table entry is DMAR_PENDING and the invalidation is done.

If successful, the function marks the DMAR present (setting the PASID table entry Present), allowing DMA access to the
TD private memory via its secure EPT.

Completion Status Codes

Table 3.116: TDG.DMAR.ACCEPT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

TDX_SUCCESS Operation is successful

3.3.2. TDG.IQ.INV.REQUEST

Request L1 GPA Range IOTLB invalidations. Work in progress!
Table 3.117: TDG.IQ.INV.REQUEST Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the TDCALL interface function

23:16 | Version Number | Selects the TDCALL interface function version

63:24 | Reserved Must be 0
RCX NUM_INV_DESCS - Number of invalidation descriptors provided in REQ_PA
RDX REQ_PA - GPA of the 4K page containing invalidation descriptors
Table 3.118: TDG.IQ.INV.REQUEST Output Operands Definition
Operand Description
RAX TDCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

June 2025 Draft - Work in Progress Page 100 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

TDG.IQ.INV.REQUEST is called by a TD to request IOTLB invalidations.

The function checks the following conditions:

1. There is no outstanding invalidation request.
2. There are TDIs attached to the TD, or TDX_GUEST_INV_NOT_REQUIRED is returned.
3. The DMAR PASIDTE is Present (mapped).

If successful, the function invokes TDEXIT to the VMM with TDX_IOTLB_INV_REQUEST status and number of descriptors
requested, so the VMM can request and process the invalidations. The VMM resumes the TD at some point.

Completion Status Codes

Table 3.119: TDG.IQ.INV.REQUEST Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

TDX_GUEST_INV_INVALID_DESC

Invalid invalidation descriptor

TDX_GUEST_INV_NOT_REQUIRED

I0TLB invalidation is not required

TDX_GUEST_INV_IN_PROGRESS

TD already requested the invalidation request and it’s in progress

TDX_SUCCESS

3.3.3. TDG.MMIO.ACCEPT Leaf (Change in Progress)

Accept a pending private MMIO page.

Note: This ABI is changing now to accept TDI guest function ID and operate on MMIO ranges from the TDISP report
instead of MMIO page GPA and HPA addresses.

June 2025

Draft - Work in Progress Page 101 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.120: TDG.MMIO.ACCEPT Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the TDCALL interface function

23:16 | Version Number | Selects the TDCALL interface function version

63:24 | Reserved Must be 0
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the Secure EPT entry that maps the private page to be

accepted: either 0 (4KB), 1 (2MB) or 2 (1GB).

11:3 | Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the guest physical address of the private MMIO page to
be accepted
63:52 | Reserved Reserved: must be 0
RDX MMIO page offset (see: [TDISP] spec)

Table 3.121: TDG.MMIO.ACCEPT Output Operands Definition

Operand Description
RAX TDCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.MMIO.ACCEPT is used by the guest TD to verify and accept MMIO private GPA mapping.
The function checks the following conditions:

1. The Secure EPT walk based on the GPA operand is the requested level is succeeded and the page in the
MMIO_PENDING state.

If successful, the function sets the MMIO page as mapped (MMIO_MAPPED).

Completion Status Codes

Table 3.122: TDG.MMIO.ACCEPT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY

June 2025 Draft - Work in Progress Page 102 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

Completion Status Code Description

TDX_MMIO_INVALID_HPA_OFFSET

TDX_PAGE_ALREADY_ACCEPTED

TDX_PAGE_SIZE_MISMATCH

TDX_MMIOMT_RANGE_MISMATCH

TDX_SUCCESS TDG.MMIO.ACCEPT is successful.

3.3.4. TDG.TDILRD Leaf

Read device interface related fields.

Table 3.123: TDG.TDI.RD Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the TDCALL interface function
23:16 | Version Number Selects the TDCALL interface function version
63:24 | Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:0 FUNCTION_ID TDI Function ID
63:32 Reserved Must be 0
RDX Field code:
Bits Field Description
7:0 Field code Code Description
0x1 (TDISP version) TDISP version negotiated by TSM and
DSM
0x2 (INTERFACE_STATE) TDI TDISP Known Interface State
63:8 Reserved Must be 0
Table 3.124: TDG.TDI.RD Output Operands Definition
Operand Description
RAX TDCALL instruction return code
RCX Field value
Other Unmodified

June 2025 Draft - Work in Progress

Page 103 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

20

25

30

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.TDI.RD returns device interface related information based on input field code and parameter.
The function checks the following conditions:

1. FUNCTION_ID is valid and TDI is assigned to the TDI.
2. Field code and code parameter combination is valid, reserved fields are zero.

If the above conditions are satisfied, the function returns the requested TDI_CS field in RCX.

INTERFACE_STATE field can be used by the guest to peek the TDI’s Known TDISP state. The TDX Module updates the
known state on each TDISP response, therefore it would represent the actual TDISP state most of the times. Since TDI
can change the state any time, TD can’t fully rely on the Known RUN state in any scenario. However, TD can rely on the
Known RUN state after TDG.TDI.START as a confirmation of the Interface Start.

From the Guest perspective, querying the INTERFACE_STATE is a correct way for TD to query the TDI status. If the call
status is TDX_SUCCESS then the TDI is BOUND. Other statuses indicate that the TDI is UNBOUND:

TDX_TDIMT_NOT_PRESENT or TDX_TDI_INVALID_METADATA mean the TDI is UNBOUND and the TDI control structure
has been removed or reassigned.

TDX_TDI_INVALID_STATE means TDI is UNBOUND or in the ERROR state (TDI in TDISP ERROR state is considered
UNBOUND from TD's perspective).

Completion Status Codes

Table 3.125: TDG.TDI.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_TDI_INVALID_STATE TDI is UNBOUND

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower 32 bits
of the status. In many cases, this can be resolved by retrying the
operation.

TDX_TDI_INVALID_METADATA TDI is UNBOUND

TDX_TDIMT_NOT_PRESENT TDI is UNBOUND

TDX_OPERAND_INVALID

TDX_SUCCESS TDI is in BOUND state

3.3.5. TDG.TDI.START Leaf

TD requests (authorizes) to Start the Interface.

June 2025 Draft - Work in Progress Page 104 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

Table 3.126: TDG.TDI.START Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version
Bits Field Description
15:0 | Leaf Number Selects the TDCALL interface function

23:16 | Version Number | Selects the TDCALL interface function version

63:24 | Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:0 Function ID TDI Function ID associated with TDI_CS
63:32 Reserved Must be 0

Table 3.127: TDG.TDI.START Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.TDI.START indicates the TD’s readiness to start the TDI interface. TD must call the function after it accepted DMA
and MMIO (see TDG.DMAR.ACCEPT, TDG.MMIO.ACCEPT).

The function checks the following pre-conditions:

1. Function ID is valid and assigned to the TD.
2. TDIis validated, see TDG.TDI.VALIDATE

If successful, the TDX Module allows the VMM to start the TDI, see TDH.TDI.START.

Completion Status Codes

Table 3.128: TDG.TDI.START Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY

TDX_OPERAND_INVALID

June 2025 Draft - Work in Progress Page 105 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interfa

ce (ABI) Reference 2.1V0.55

Completion Status Code Description

TDX_TDI_NOT_PRESENT

TDX_TDI_INVALID_METADATA

exists

Invalid TDIMT_IDX path, or the path for the entry index already

TDX_TDI_INVALID_STATE The interface is in in

Start Interface

valid TDISP state or TD hasn’t requested

TDX_SUCCESS

3.3.6. TDG.TDI.VALIDATE Leaf

Validates the integrity of the TDI’s Device Attestation info and Interface Report that the VMM exchanges directly with

TD.
5 Table 3.129: TDG.TDI.VALIDATE Input Operands Definition
Operand | Description
RAX TDCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the TDCALL interface function
23:16 Version Number Selects the TDCALL interface function version
63:24 Reserved Must be 0
RCX FUNCTION_ID Bits Field Description
31:0 Function ID TDI Function ID associated with TDI_CS
63:32 Reserved Must be 0
RDX GPA of the TD private page containing the device interface hashes:
Name Bytes Description
TDI_PKH 47:0 Device interface certificate public key hash (SHA384)
TDI_IRH 95:48 Actual device Interface Report hash (SHA384)
Reserved 4095:96 | Reserved, must be 0.
Table 3.130: TDG.TDI.VALIDATE Output Operands Definition
Operand Description
RAX TDCALL instruction return code
Other Unmodified
Leaf Function Description
10 Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

June 2025 Draft - Work in Progress

Page 106 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

10

15

Intel TDX Connect Application Binary Interface (ABI) Reference 2.1V0.55

T
a
T

T

1.

2.
3.
4

his function verifies that the TDI is assigned and bound to the TD (see TDH.TDI.BOUND) and that the Device Attestation
nd Interface Report hashes (the VMM provided to the TD as the result of the SPDM session establishment, see
DH.SPDM.CONNECT and TDI Bind) were not replaced or tampered with.

he function checks the following pre-conditions:

Function ID is valid and assigned to the TD.

TDI is bound.

TDI_PKH matches the SPDM session’s Device Attestation Information.
TDI_IRH matches the Device Interface Report.

If successful, the function returns TDX_SUCCESS, indicating that the TD can accept the TDI's MMIO and DMAR, see

T

C

DG.DMAR.ACCEPT and TDG.MMIO.ACCEPT.

ompletion Status Codes

Table 3.131: TDG.TDI.VALIDATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_TDI_ALREADY_VALID

TDX_TDI_SPDM_PKH_MISMATCH Interface Public Key hash mismatch

TDX_TDI_SPDM_IRH_MISMATCH Interface Report hash mismatch, or there is no actual Interface Report
for the interface (TDH.TDI.BIND wasn’t executed successfully).

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower 32 bits
of the status. In many cases, this can be resolved by retrying the
operation.

TDX_OPERAND_INVALID

TDX_SUCCESS

J

une 2025 Draft - Work in Progress Page 107 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

Intel TDX Connect Application Binary Interface (ABI) Reference

2.1V0.55

June 2025

Draft - Work in Progress

Page 108 of 108

Intel TDX Connect Application Binary Interface (ABI) Reference

