

Document Number: 315168 002

LaGrande Technology

Preliminary Architecture Specification

September 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR
LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use.

No computer system can provide absolute security under all conditions. LaGrande Technology (Intel code name) is a security
technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, a
LaGrande Technology-enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other LaGrande
Technology compatible measured virtual machine monitor. In addition, LaGrande Technology requires the system to contain a
TPMv1.2 as defined by the Trusted Computing Group and specific software for some uses. See http://www.intel.com/ for more
information.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 2006 Intel Corporation

2 LaGrande Technology Architecture Specification

Contents
1 LaGrande Technology Overview ..8

1.1 Measurement and LaGrande Technology ..9
1.2 LaGrande Technology Partitioned Environment ...9
1.3 Late Launch...9

1.3.1 Launch Sequence ..10
1.4 Storing the Measurement ..11
1.5 Controlled Take-down ...11
1.6 SMX and VMX Usage...11
1.7 Authenticated Code Module..11
1.8 Chipset Support ...12
1.9 TPM Usage ..13

2 Safer Mode Extensions...14
2.1 Detecting and Enabling SMX ..14

2.1.1 SMX Functionality..15
2.1.2 Enabling SMX Capabilities...16

2.2 SMX Instruction Summary ...17
2.2.1 GETSEC[PARAMETERS] ..17
2.2.2 GETSEC[SMCTRL]..17
2.2.3 GETSEC[ENTERACCS] ..17
2.2.4 GETSEC[EXITAC] ..17
2.2.5 GETSEC[SENTER]..18
2.2.6 GETSEC[SEXIT] ..19
2.2.7 GETSEC[WAKEUP]...19
2.2.8 Launching and Shutting Down a Protected Environment19

2.3 GETSEC Leaf Functions ...21
2.3.1 IA32_FEATURE_CONTROL and GETSEC LEAVES...........................22

3 LaGrande Technology Shut-Down..58
3.1 Reset Conditions ..58
3.2 ERRORCODE Register..59

4 DMA Page Protection ...62
4.1 Overview of DMA Page Protection ...62
4.2 Requirements for Software support of MPT...62

Appendix A Authenticated-Code Module ..64
A.1 Authenticated-Code Module Format...64

A.1.1 Authenticated code module restrictions68
A.1.2 Bus snoop restrictions..68
A.1.3 Memory type cacheability restrictions ...69

Appendix B Appendix B: SMX Interaction with Platform...70
B.1 LaGrande Technology Configuration Registers...70
B.2 Platform Configuration Registers...74

LaGrande Technology Preliminary Architecture Specification 3

B.3 LT Device Space...75
Appendix C Appendix C: LT Heap Memory ...78

C.1 BIOS to OS Data Format ...79
C.2 OS to MVMM Data Format..79
C.3 OS to SINIT Data Format...80
C.4 SINIT to MVMM Data Format..81

Figures

Figure 1. CPUID Extended Feature Information ECX ...14
Figure 2. Safer Mode Entry and Exit Life Cycle...20

Tables

Table 1. CPUID Extended Feature Information in ECX...15
Table 2. Currently Defined GETSEC Leaf Functions...15
Table 3. Format of IA32_FEATURE_CONTROL MSR...16
Table 4. Capabilities Result Encoding (EBX=0) ..23
Table 5. Processor state initialization after GETSEC[ENTERACCS]...........................29
Table 6. IA32_MISC_ENABLES Functions Initialized by ENTERACCS/SENTER............30
Table 7. RLP Secure Startup Environment Data Structure37
Table 8. ILP and RLP Processor State Initialization After GETSEC[SENTER]40
Table 9. MVMM Header structure ...41
Table 10. IA32_FEATURE_CONTROL definition for SENTER control..........................44
Table 11. Supported Reporting Parameters ...49
Table 12. External Memory Types Supported Using Parameter 351
Table 13. Default Parameter Values ...51
Table 14. Supported Reporting Parameters ...53
Table 15. LT.ERRORCODE Register Bit Format...59
Table 16.Type Field Encodings for Processor-Initiated LaGrande Technology

Shutdowns...59
Table 17. Authenticated Code Module Format..64
Table 18. Configuration Registers Relevant to MVMM..70
Table 19. LT.STS Bit Definitions ..73
Table 20. Locality 4 TPM Device Space ...76
Table 21. LT Heap...78
Table 22. BIOS to OS Data Table...79
Table 23. OS to SINIT Data Table..80
Table 24. SINIT to MVMM Data Table ...81
Table 255. SINIT Memory Descriptor Record ...81

4 LaGrande Technology Architecture Specification

LaGrande Technology Preliminary Architecture Specification 5

Revision History

Revision
Number

Description Revision Date

-001 • Initial release. May 2006

-002 •

•

Established public document number

Edited throughout for clarity.

August 2006

§

6 LaGrande Technology Architecture Specification

LaGrande Technology Preliminary Architecture Specification 7

LaGrande Technology Overview

1 LaGrande Technology Overview

Intel Technology for safer computing, code named LaGrande Technology, defines
platform level enhancements that provide the building blocks for creating trusted
platforms.

Whenever the word trust is used, there must be a definition of who is doing the trust
and what is being trusted. This enhanced platform helps to provide the identity of the
controlling environment such that those wishing to rely on the platform can make an
appropriate trust decision. The enhanced platform determines the identity of the
controlling environment by accurately measuring the controlling software (see
Measurement and LaGrande Technology).

Another aspect of the trust decision is the ability of the platform to resist attempts to
change the controlling environment. The enhanced platform will resist attempts by
software processes to change the controlling environment or bypass the bounds set by
the controlling environment.

What is the controlling environment for this enhanced platform? The platform is a set
of extensions designed to work with Intel® Virtualization Technology for IA-32 Intel
Architecture (VT-x). The IA-32 Intel® Architecture Software Developer’s Manual
provides more information on VT-x and guidelines for writing Virtual Machine Monitor
software.

The extensions enhance two areas. These are:

•

•

•

•

The launching of the Virtual Machine Monitor (VMM)

The protection of the VMM from potential corruption

As the enhanced platform uses VT-x, Virtual Machine Extensions (VMX) provide the
programming interface to manage and interface with the VMM. The enhanced platform
provides additional launch and control interfaces using Safer Mode Extensions (SMX).

VMX defines processor-level support for virtual machines on IA-32 processors. VMX
enables two classes of software to operate:

Virtual Machine Monitor (VMM). A VMM acts as a host for virtual machines and
has full control of the processor and other platform hardware. VMM presents guest
software (next bullet) with an abstraction of a virtual processor and allows it to
execute directly on the processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and I/O. This control
governs access permitted by guest software.

Guest Software. Each virtual machine (VM) is a guest software environment that
can support a stack consisting of an operating system (OS) and software
applications. A VM operates independently of other virtual machines and can rely on
the same interface to processor, memory, storage, graphics, and I/O. The software
stack acts as if it is running on a processor and platform with no VMM. An OS
executing in a virtual machine operates with reduced privilege because the VMM
retains control of processor and platform resources.

8 LaGrande Technology Architecture Specification

http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm

LaGrande Technology Overview

The SMX interface includes the following functions:

•

•

•

•

•

Measured launch of the VMM

Mechanisms to ensure the above measurement is protected and stored in a secure
location

Protection mechanisms that allow the VMM to control attempts to modify the VMM

Protection mechanisms that allow guest software to assure that no other guest
software can modify the guest

Detection of changes to the VMM by using measured identification of the VMM

1.1 Measurement and LaGrande Technology

LaGrande Technology uses the term measurement frequently. Measuring software
involves processing the executable such that the result is (a) unique and (b) indicates
changes in the executable. A cryptographic hash algorithm meets these needs.

A cryptographic hash algorithm is sensitive to even one-bit changes to the measured
entity. A cryptographic hash algorithm also produces outputs that are sufficiently large
so the potential of collisions (where two hash values are the same) is small. When the
term measurement is used in this specification, the meaning is that the measuring
process takes a cryptographic hash of the measured entity.

1.2 LaGrande Technology Partitioned Environment

VMMs can support a variety of guests. The amount of protection a VMM offers to a
guest depends on the policy provided by the VMM. For example, a guest can require
tight controls on the entire software stack inside of the guest, only require protection
of the guest kernel, or require no additional protections. Describing all policy
variations that VMMs can support is beyond the scope of this document.

This specification considers two types of protection for the guest software. The first
guest, or partition, is defined as a standard partition. The standard partition does not
require stringent protections and potentially executes a legacy operating system.
Legacy in this context means an operating system that is not aware of VT-x or Intel
security enhancements. The second partition is a protected partition. The protected
partition cooperates with VT-x and the enhanced platform and provides a set of
functions. One possibility for a protected partition would be a partition that executes
an Internet firewall.

The controlling environment is provided by a VMM. A VMM launched using the SMX
instructions is known as a Measured Virtual Machine Monitor (MVMM). MVMMs provide
different launch mechanisms and increased protection (offering protection from
possible software corruption).

1.3 Late Launch

A central enhanced platform objective is to provide a measurement of the VMM.

LaGrande Technology Preliminary Architecture Specification 9

LaGrande Technology Overview

One measurement is made when the platform boots, using techniques defined by the
Trusted Computing Group (TCG). The TCG defines a Root of Trust for Measurement
(RTM) that executes on each platform reset; it creates a chain of trust from reset to
the measured environment. As the measurement always executes at platform reset,
the TCG defines this type of RTM as a Static RTM (SRTM).

Maintaining a chain of trust for a length of time may be a challenging for a VMM
meant for use in LaGrande Technology; this is because a VMM may operate in an
environment that is constantly exposed to unknown software entities. To address this
issue, the enhanced platform provides another RTM with SMX instructions. The TCG
terminology for this option is Dynamic Root of Trust for Measurement (DRTM). The
advantage of a DRTM (also called the ‘late launch’ option) is that launch can occur at
any time without resorting to a platform reset. It is possible to launch a MVMM,
execute for a time, terminate the MVMM, execute without virtualization, and then
launch the MVMM again. One possible sequence is:

1. During the BIOS load: (a) launch an MVMM for use by the BIOS, (b) terminate the
MVMM when its work is done, (c) continue with BIOS processing and hand off to
an OS.

2. Then, the OS loads and launches a different MVMM.

In both instances, the platform measures each MVMM and ensures the proper storage
of the MVMM measurement value.

When launching a MVMM, the environment must load two code modules into memory.
One module is the MVMM. The other is known as an authenticated code (AC) module.
The AC module is only in use during the load and measurement process and is
chipset-specific. It is digitally signed by the chipset vendor; the launch process must
successfully validate the digital signature before continuing the launch process.

1.3.1 Launch Sequence

With the AC module and MVMM in memory, the launching environment can invoke the
GETSEC [SENTER] instruction provided by the SMX.

GETSEC [SENTER] broadcasts messages to the chipset and other logical processors in
the platform (Intel processors supporting Hyper-Threading Technology with an HT
Technology enabled chipset or processors with dual cores). In response, other logical
processors perform basic cleanup, signal readiness to proceed, and wait for messages
to join the environment created by the MVMM. As this sequence requires
synchronization, there is an initiating logical processor (ILP) and a responding logical
processor ((RLP) or processors).

After all logical processors signal their readiness to join and are in the wait state; the
initiating logical processor loads, authenticates, and executes the AC module. The AC
module tests for various chipset and processor configurations and ensures the
platform has an acceptable configuration. It then measures and launches the MVMM.

The MVMM initialization routine completes system configuration changes (including
redirecting INITs, SMIs, interrupts, etc.); it then issues a new SMX instruction that
wakes up responding logical processors (RLPs) and brings them into the protected
environment. At this point, all logical processors and the chipset are correctly
configured. The MVMM may, at its discretion, take control of the launching
environment and create a guest partition that contains the launching environment. It

10 LaGrande Technology Architecture Specification

https://www.trustedcomputinggroup.org/home/
https://www.trustedcomputinggroup.org/home/

LaGrande Technology Overview

is then possible for the MVMM to exit, and then be launched again (without issuing a
system reset).

1.4 Storing the Measurement

SMX operation during the launch provides an accurate measurement of the MVMM.
After creating the measurement, the initiating logical processor needs a location to
store the measurement. Requirements for the storage location are extensive; they are
met by the Trusted Platform Module (TPM), defined by the TCG. An enhanced platform
includes mechanisms that ensure that the measurement of the MVMM (completed
during the launch process) is properly reported to the TPM.

With the MVMM measurement in the TPM, the MVMM can use the measurement value
to protect sensitive information and detect potential unauthorized changes to the
MVMM itself.

1.5 Controlled Take-down

Because the MVMM controls the platform, exiting the MVMM is a controlled process.
The process includes: (a) shutting down all guest partitions, except for one; (b) and
ensuring that memory previously used does not leak sensitive information.

The MVMM cleans up after itself and terminates the MVMM control of the environment.
It turns control of the platform over to the one remaining guest partition.

1.6 SMX and VMX Usage

After the MVMM and a protected partition are launched, the MVMM operates using
interfaces defined by VMX. Control transfers (VM enters, VM exits) between a
protected partition and the MVMM are also governed by VMX.

A VM abort may occur while in SMX operation. This behavior is described in the IA-32
Intel Architecture Software Developer’s Manual, Volume 3B® . Note that entering
authenticated code execution mode or launching of a protected environment affects
the behavior and response of the logical processors to certain external pin events.

1.7 Authenticated Code Module

To support the establishment of a protected environment, SMX enables the capability
of an authenticated code execution mode. This provides the ability for a special code
module, referred to as the authenticated code module (AC module), to be loaded into
internal RAM (referred to as authenticated code execution area) within the processor.
The AC module is first authenticated and then executed using a tamper resistant
method.

Authentication is achieved through the use of a digital signature in the header of the
AC module. The processor calculates a hash of the AC module and uses the result to
validate the signature. Using SMX, a processor will only initialize processor state or
execute the AC code module if it passes authentication. Since the authenticated code

LaGrande Technology Preliminary Architecture Specification 11

LaGrande Technology Overview

module is held within internal RAM of the processor, execution of the module can
occur in isolation with respect to the contents of external memory or activities on the
external processor bus.

1.8 Chipset Support

One important feature the chipset provides is the MPT table. The MPT table, under
control of the VMM, allows the VMM to protect itself and the guest partitions from
unauthorized device access to memory. The MPT table blocks access to a specific
physical memory page and the enforcement of the block occurs for all DMA access to
the protected page.

LaGrande Technology architecture also provides extensions that access certain chipset
registers and TPM address space.

Chipset registers that interact with SMX include:

•

•

•

•

•

•

•

Public space registers. Enhanced public space registers can be accessed by
system software using memory read/write protocols. They are mapped to
uncacheable (UC) memory type. Chipset enhanced platform public space registers
are designated in this document with the convention LT.PUBLIC.REGISTER.

Private space registers. When locked, enhanced platform private space
registers are not accessible to system software until they are unlocked by SMX
instructions. When unlocked, these registers are accessed by system software
(MVMM) or an AC module using regular memory read/write protocols. SMX
instructions also provide the ability to lock the private space registers. The private
space registers are also mapped as UC. Chipset enhanced platform private space
registers are designated with the convention LT.PRIVATE.REGISTER.

The storage spaces accessible within a TPM device are grouped by a locality attribute.
The following localities are defined:

Locality 0 : Non-trusted and Legacy TPM operation

Locality 1 : An environment for use by the Trusted Operating System

Locality 2 : Trusted OS

Locality 3 : Authenticated Code Module

Locality 4 : LaGrande Technology hardware use only

12 LaGrande Technology Architecture Specification

LaGrande Technology Overview

1.9 TPM Usage

LaGrande Technology makes extensive use of the Trusted Platform Module (TPM)
defined by the Trusted Computing Group (TCG) in the TCG TPM Specification, Version
1.2. The TPM provides a repository for measurements and the mechanisms to make
use of the measurements. The system makes use of the measurements to both report
the current platform configuration and to provide long-term protection of sensitive
information.

The TPM stores measurements in Platform Configuration Registers (PCRs). PCRs
provide a storage area that allows an unlimited number of measurements in a set
amount of space. They provide this feature by an inherent property of cryptographic
hashes. Outside entities never write directly to a PCR register, they “extend” PCR
contents. The extend operation takes the current value of the PCR, appends the new
value, performs a cryptographic hash on the combined value, and the hash result is
the new PCR value. One of the properties of cryptographic hashes is that they are
order dependent. This means hashing A then B produces a different result from
hashing B then A. This ordering property allows the PCR contents to indicate the order
of measurements.

Sending measurement values from the measuring agent to the TPM is a critical
platform task. Dynamic Root of Trust of Measurement (DRTM) requires specific
messages to flow from the DRTM to the TPM. The LaGrande Technology DRTM is
GETSEC[SENTER] and the system ensures GETSEC[SENTER] has special messages to
communicate to the TPM. These special messages take advantage of TPM localities 3
and 4 to protect the messages and inform the TPM that GETSEC[SENTER] is sending
the messages.

§

LaGrande Technology Preliminary Architecture Specification 13

https://www.trustedcomputinggroup.org/specs/TPM
https://www.trustedcomputinggroup.org/specs/
https://www.trustedcomputinggroup.org/specs/

Safer Mode Extensions

2 Safer Mode Extensions

Safer Mode Extensions (SMX) provide a means for system software to launch an
MVMM and establish a protected environment within the platform to support trust
decisions by end users.

2.1 Detecting and Enabling SMX

Software can detect support for SMX operation using CPUID instruction. If software
executes CPUID with 1 in EAX, a value of 1 in bit 6 of ECX indicates support for SMX
operation (GETSEC is available).

See Figure 1 and Table 1 for the definition of feature flag bits of CPUID.01H.ECX. For
more information on CPUID, see Chapter 3, “Instruction Set Reference, A-M,” in the
IA-32 Intel Architecture Software Developer’s Manual, Volume 2A® .

Figure 1. CPUID Extended Feature Information ECX

14 LaGrande Technology Architecture Specification

Safer Mode Extensions

Table 1. CPUID Extended Feature Information in ECX

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3. A value of 1 indicates the processor
supports Streaming SIMD Extensions 3.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this
feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates the processor
supports VMX.

6 SMX Safer Mode Extensions. A value of 1 indicates the processor supports
SMX.

7 EST Enhanced Intel Speedstep Technology. A value of 1 indicates that
the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be
set to either adaptive mode or shared mode. A value of 0 indicates
this feature is not supported. See definition of the
IA32_MISC_ENABLES MSR Bit 24 (L1 Data Cache Context Mode) for
details.

2.1.1 SMX Functionality

SMX functionality is provided in the processor through the GETSEC instruction. This
instruction supports multiple leaf functions. Leaf functions are selected by the value in
EAX at the time GETSEC is executed. Each is referred to as a GETSEC leaf function
and addressed separately in this document (even though they share the same opcode,
0F 37).

System software must use the capabilities leaf of GETSEC to discover the available
leaf functions associated with GETSEC. Table 2 summarizes available GETSEC leaf
functions.

Table 2. Currently Defined GETSEC Leaf Functions

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the
GETSEC instruction

1 Undefined Reserved

2 ENTERACCS Enter authenticated code execution mode

3 EXITAC Exit authenticated code execution mode

4 SENTER Launch a protected environment

5 SEXIT Exit the protected environment

LaGrande Technology Preliminary Architecture Specification 15

Safer Mode Extensions

Index (EAX) Leaf function Description

6 PARAMETERS Return SMX related parameter information

7 SMCTRL SMX mode control

8 WAKEUP Wake up sleeping processors in secured mode

9 - (4G-1) Undefined Reserved

2.1.2 Enabling SMX Capabilities

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before
attempting to execute GETSEC. Otherwise, execution of GETSEC results in the
processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set
CR4.SMXE[Bit 14] results in a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits
that configure operation of VMX and SMX. These bits are documented in Table 3.

Table 3. Format of IA32_FEATURE_CONTROL MSR

Bit Position Content

0 Lock bit (0 = unlocked, 1 = locked)

1 Enable VMXON in SMX operation

2 Enable VMXON outside SMX operation

7:3 Reserved

15:8 SENTER enables (See Table 10 for detail)

31: 16 Reserved

These bullets describe the information in the Table 3:

•

•

•

•

Bit 0 is a lock bit. If the lock bit is clear, VMXON will cause a general-protection
exception. Attempting to execute GETSEC[SENTER] when the lock bit is clear will
also cause a general-protection exception. If the lock bit is set, WRMSR to the
IA32_FEATURE_CONTROL MSR will cause a general-protection exception. Once the
lock bit is set, the MSR cannot be modified until a power-on reset.

System BIOS can use this bit to provide a setup option for BIOS to disable support
for VMX or both VMX and SMX.

Bit 1 enables VMXON in SMX operation (between executing the SENTER and SEXIT
leaves of GETSEC). If this bit is clear, VMXON will cause a general-protection
exception if executed in SMX operation.

Bit 2 enables VMXON outside SMX operation. If this bit is clear, VMXON will cause
a general-protection exception if executed outside SMX operation.

Bits 8 through 15 specify enabled SENTER leaf functions. Only enabled SENTER
leaf functions can be used when executing SENTER. See Table 10 for information.

16 LaGrande Technology Architecture Specification

Safer Mode Extensions

2.2 SMX Instruction Summary

System software must first query for available GETSEC leaf functions by executing
GETSEC[CAPABILITIES]. The CAPABILITIES leaf function returns a bit map of
available GETSEC leaves. An attempt to execute an unsupported leaf index results in
an undefined opcode (#UD) exception.

2.2.1 GETSEC[PARAMETERS]

If the GETSEC[PARAMETERS] leaf function is present, it is used to report attributes,
options and limitations of SMX operation. Software uses this leaf to identify operating
limits or additional options.

GETSEC[PARAMETERS] reports data using general-purpose registers. The information
reported by GETSEC[PARAMETERS] may require executing the leaf multiple times
using EBX as an index. If the GETSEC[PARAMETERS] instruction leaf or specific
parameter field is not available, then SMX operation should be interpreted to use the
default limits of respective GETSEC leaves or parameter fields defined in the
GETSEC[PARAMETERS] leaf.

2.2.2 GETSEC[SMCTRL]

The GETSEC[SMCTRL] instruction is used for providing additional control over specific
conditions associated with the SMX architecture. An input register is supported for
selecting the control operation to be performed. See the specific leaf description for
details on the type of control provided.

2.2.3 GETSEC[ENTERACCS]

The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The
ENTERACCS leaf function performs an authenticated code module load using the
chipset public key as the signature reference. ENTERACCS requires the existence of a
LaGrande Technology capable chipset since it unlocks the chipset private configuration
register space after successful authentication of the loaded module. The physical base
address and size of the authenticated code module are specified as input register
values in EBX and ECX, respectively.

While in the authenticated code execution mode, certain processor state properties
change. For this reason, the time in which the processor operates in authenticated
code execution mode should be limited to minimize impact on external system events.

Upon entry into authenticated code execution mode, the previous paging context is
disabled (since the authenticated code module image is specified with physical
addresses and can no longer rely upon external memory-based page-table structures).

2.2.4 GETSEC[EXITAC]

GETSEC[EXITAC] takes the processor out of authenticated code execution mode.
When this instruction leaf is executed, the contents of the authenticated code

LaGrande Technology Preliminary Architecture Specification 17

Safer Mode Extensions

execution area are scrubbed and control is transferred to the non-authenticated
context defined by a near pointer passed with the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of
GETSEC[EXITAC]. RBX (or EBX) holds the address of the near absolute indirect target
to be taken. The locations of all descriptor tables, page tables, and any other memory-
based data structures used after exiting authenticated code execution mode must be
held outside of the authenticated code module boundaries. This is so they can
continue to be accessible after GETSEC[EXITAC].

2.2.5 GETSEC[SENTER]

The GETSEC[SENTER] leaf function is used to launch a protected environment.
GETSEC[SENTER] can be considered a superset of the ENTERACCS leaf as it enters
authenticated code execution mode as part of the protected environment launch.

Protected environment startup consists of the following steps:

•

•

•

•

Rendezvous other logical processors into a controlled mode

Load and authenticate the specified code (AC) module

Unlock the private register space of the enhanced-technology enabled chipset

Enter authenticated code execution mode with an enhanced-technology chipset
authenticated code module

The rendezvous process is performed using messages between the logical processor(s)
and the chipset. At the completion of this handshake, all logical processors except for
the logical processor initiating the protected environment launch (by executing
GETSEC[SENTER]) are placed in a newly defined SENTER sleep state. These logical
processor(s) are then activated in a controlled manner to join the protected
environment, after the initiating logical processor executes GETSEC function WAKEUP.

The purpose of executing an AC module as part of the GETSEC[SENTER] process is to
facilitate the accurate measurement of the MVMM and to help ensure a standard
starting configuration for the MVMM. AC module execution also operates in a manner
that is tamper-resistant. The processor and chipset must both be LaGrande
Technology enabled to successfully execute GETSEC[SENTER].

SENTER initializes and extends into TPM PCR 17 the measurement of the AC module
measurement and initiating GETSEC[SENTER] parameters.

Completion of the authenticated code module is achieved by execution of the
GETSEC[EXITAC] instruction function. Refer to the definitions of GETSEC[SENTER] and
GETSEC[ENTERACCS] for details. A LaGrande Technology-capable chipset may also
carry out tighter enforcement actions when a secured processor rendezvous is active.

18 LaGrande Technology Architecture Specification

Safer Mode Extensions

2.2.6 GETSEC[SEXIT]

Exit the protected environment by executing the instruction GETSEC[SEXIT]. This
instruction sends a message that rendezvous other logical processors for exiting from
the protected environment. External events (if left masked) are unmasked, LaGrande
Technology-capable chipset private configuration space is re-locked, and the internal
processor SENTER state flag is cleared.

Upon completion of the GETSEC[SEXIT] instruction, processor execution (ILP)
continues with the next instruction in the code stream. Responding logical processors,
in response to a bus message, also continue execution with the next instruction that
was to be executed at the time the original event was recognized. If other logical
processor(s) are still in the SENTER sleep state, then they are transitioned to the wait-
for-SIPI state, with a state initialization performed comparable to a soft reset (INIT).
Then, a conventional APIC based startup inter-processor interrupt can be delivered to
reactivate such processors.

2.2.7 GETSEC[WAKEUP]

Responding logical processors (RLPs) are placed in the SENTER sleep state after the
initiating logical processor (ILP) executes GETSEC[SENTER]. The ILP can wake up
RLPs to join the protected environment by using GETSEC[WAKEUP]. The ILP can
execute GETSEC[WAKEUP] under the following conditions:

•

•

the ILP is in the protected environment

the ILP has exited authenticated code execution mode with GETSEC[EXITAC]

When the RLPs in SENTER sleep state wake up, these logical processors begin
execution at the entry point defined in a data structure held in system memory
(pointed to by the LaGrande Technology-capable chipset register LT.MVMM.JOIN).

2.2.8 Launching and Shutting Down a Protected Environment

Figure 2 illustrates the life cycle of safer mode operation from a protected
environment launch to its shut-down. The life cycle starts with the execution of the
GETSEC[SENTER] instruction by system software on the initiating logical processor
(ILP). In a multi-threaded or multi-processing environment, this should be done with
other logical processors in an idle loop, or asleep (such as after executing HLT).

After the SENTER rendezvous handshake is performed between all logical processors
in the platform, the ILP loads the chipset authenticated code module and performs an
authentication check. If the check passes, the processor execution context is switched
to the authenticated code module at the designated entry point (as defined in the
module header). Execution continues within the authenticated code module until the
GETSEC[EXITAC] instruction is executed.

LaGrande Technology Preliminary Architecture Specification 19

Safer Mode Extensions

Figure 2. Safer Mode Entry and Exit Life Cycle

At this point, the authenticated code execution area within the processor is scrubbed
by processor hardware and a near jump to a register-designated location in system
memory is performed. If the AC module has performed the necessary functions to
configure the platform against unauthorized access from other bus agents, the
platform is now considered to be operating in a protected environment.

While executing in a protected environment, the VMM can access the TPM in locality 2.
The VMM has complete access to all TPM commands and may use the TPM to report
current measurement values or use the measurement values to protect information
such that only when the PCR registers contain the same value is the information
released from the TPM. This protection mechanism is known as sealing.

A protected environment shutdown is ultimately completed by executing
GETSEC[SEXIT]. Prior to this step; system software is responsible for scrubbing
sensitive information left in the processor caches, system memory, or I/O state.

20 LaGrande Technology Architecture Specification

Safer Mode Extensions

2.3 GETSEC Leaf Functions

These sections describe the leaf functions of the GETSEC instruction that are
supported by SMX in detail. GETSEC is available only if CPUID.01H.ECX[Bit 6] = 1.
This indicates the availability of SMX and the GETSEC instruction. Before GETSEC can
be executed, SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the
GETSEC[CAPABILITIES] function. Attempts to access a GETSEC leaf index not
supported by the processor, or if CR4.SMXE is 0, results in the signaling of an
undefined opcode exception.

All GETSEC leafs are available in protected mode, compatibility sub-mode of IA-32e
mode, and 64-bit sub-mode of IA-32e mode. Unless otherwise noted, the behavior of
all GETSEC functions and interactions related to the authenticated code execution
mode or protected environment are independent of IA-32e mode. This also applies to
the interpretation of register widths1 passed as input parameters to GETSEC functions
and to register results returned as output parameters.

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a LaGrande
Technology capable-chipset to be present in the platform. The GETSEC[CAPABILITIES]
returned bit vector in position 0 indicates if a LaGrande Technology-capable chipset
has been sampled present2 by the processor.

The processor’s operating mode also affects the execution of the following GETSEC
leaf functions: SMCTRL, ENTERACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These
functions are only allowed in protected mode at CPL = 0. They are not allowed while
in SMM in order to prevent potential intra-mode conflicts. Further execution
qualifications exist to prevent potential architectural conflicts (for example: nesting of
the protected environment or authenticated code execution mode). See the definitions
of the GETSEC leaf functions for specific requirements.

For the purpose of performance monitor counting, the execution of GETSEC functions
is counted as a single instruction with respect to retired instructions. The response by
a responding logical processor (RLP) to messages associated with GETSEC[SENTER] or
GETSEC[SEXIT] is transparent to the retired instruction count on the ILP.

1This document uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor
registers because most processors that support VMX operation also support Intel
EM64T. MVMM can be launched in IA-32e mode or outside IA-32e mode. The 64-bit
notation of processor registers also refer to its 32-bit forms if SMX operation occurs in
32-bit environment. In some places, notation such as EAX, EBX is used to refer
specifically to lower 32 bits of the indicated register.

2Sampled present means that the CPU sent a message to the chipset and the chipset
responded that it (a) knows about the message and (b) is capable of executing
SENTER. This means that the chipset CAN support LaGrande Technology, and is
configured and WILLING to support it.

LaGrande Technology Preliminary Architecture Specification 21

Safer Mode Extensions

2.3.1 IA32_FEATURE_CONTROL and GETSEC LEAVES

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides additional platform
level control over the launch of the protected environment. The properties controlled
by IA32_FEATURE_CONTROL must be initialized at power-up by the system BIOS. On
power-up reset, the MSR resets to zero, indicating the SENTER function is disabled by
default.

The MSR must first be programmed by system BIOS to a configuration consistent with
its parameter control usage (see the SENTER leaf description for more details) and
locked before system software can execute GETSEC[SENTER]. If SMX functionality is
not available (CPUID.01H.ECX[Bit 6] = 0), then the bit fields in the
IA32_FEATURE_CONTROL MSR pertaining to SMX control are reserved. The same is
true for fields applying to other functions not present for a given processor product.
More information about this MSR as it pertains to SMX can be found in the
GETSEC[SENTER] instruction description.

22 LaGrande Technology Architecture Specification

Safer Mode Extensions

GETSEC[CAPABILITIES] – Report the SMX
Capabilities

Opcode Instruction Description

0F 37
(EAX = 0)

GETSEC[CAPABILITIES] Report the SMX capabilities.

The capabilities index is input in EBX with the
result returned in EAX.

Description

The GETSEC[CAPABILITIES] instruction returns a bit vector of supported GETSEC leaf
functions. EBX is used as the selector for returning the bit vector field in EAX.
GETSEC[CAPABILITIES] may be executed at all privilege levels, but the CR4.SMXE bit
must be set, or an undefined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector
representing status on the presence of a LaGrande Technology-capable chipset and
the first 30 available GETSEC leaf functions. The format of the returned bit vector is
provided in Table 4.

Refer to Table 4. If bit 0 is set to 1, then a LaGrande Technology-capable chipset is
present. If bits in the range of 1-30 are set, then the corresponding GETSEC leaf
function is available. If the bit vector position is 0, then the GETSEC leaf function
corresponding to that index is unsupported and attempted execution results in a #UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit
31 is set, then additional leaf functions are accessed by repeating
GETSEC[CAPABILITIES] with EBX incremented by one. When the most significant bit
of EAX is not set, then additional GETSEC leaf functions are not supported; indexing
EBX to a higher value results in EAX returning zero.

Table 4. Capabilities Result Encoding (EBX=0)

Field
Bit

position Description

Chipset present 0 LaGrande Technology-capable chipset is present

Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available

EXITAC 3 GETSEC[EXITAC] is available

SENTER 4 GETSEC[SENTER] is available

SEXIT 5 GETSEC[SEXIT] is available

PARAMETERS 6 GETSEC[PARAMETERS] is available

SMCTRL 7 GETSEC[SMCTRL] is available

WAKEUP 8 GETSEC[WAKEUP] is available

Undefined 9-30 Reserved

ExtendedLeafs 31 Reserved for Extended Information Reporting

LaGrande Technology Preliminary Architecture Specification 23

Safer Mode Extensions

The available leafs as reported in EAX is independent of the processor mode, even
though in certain processor contexts some or all of GETSEC leafs may not be
accessible.

Flags Affected

None.

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

All others Ignored

Protected Mode Exceptions

#UD IF CR4.SMXE = 0.

Real-Address Mode Exceptions

#UD IF CR4.SMXE = 0.

Virtual-8086 Mode Exceptions

#UD IF CR4.SMXE = 0.

Compatibility Mode Exceptions

#UD IF CR4.SMXE = 0.

64-bit Mode Exceptions

#UD IF CR4.SMXE = 0.

24 LaGrande Technology Architecture Specification

Safer Mode Extensions

GETSEC[ENTERACCS] – Execute Authenticated
Chipset Code

Opcode Instruction Description

0F 37
(EAX=2)

GETSEC[ENTERACCS] Enter authenticated execution code mode.

EBX holds the authenticated code module physical
base address. ECX holds the authenticated code
module size (bytes).

Description

The GETSEC[ENTERACCS] instruction loads, authenticates and executes an
authenticated code module using an SMX supporting chipset’s public key. The
ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the
GETSEC[ENTERACCS] instruction:

•

•

•

•

•

•

•

•

Execution is not allowed unless the processor is in protected mode with CPL = 0
and EFLAGS.VM = 0.

Processor cache must be available and not disabled using the CR0.CD and NW
bits.

For processor packages containing more than one logical processor, CR0.CD is
checked to ensure consistency between enabled logical processors.

For enforcing consistency of operation with numeric exception reporting using
Interrupt 16, CR0.NE must be set.

A LaGrande Technology-capable chipset must be present as communicated to the
processor by sampling of the power-on configuration capability field after reset.

The processor can not already be in authenticated code execution mode as
launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction
without a subsequent exiting using GETSEC[EXITAC].

To avoid potential operability conflicts between modes, the processor is not
allowed to execute this instruction if it currently is in SMM or VMX operation.

To insure consistent handling of SIPI messages, the processor executing the
GETSEC[ENTERACCS] instruction must also be designated the BSP (boot-strap
processor) as defined by the register bit in the IA32_APIC_BASE MSR.

Failure to conform to the above conditions results in the processor signaling a general
protection exception.

Prior to execution of the ENTERACCS leaf, other logical processor(s) in the system
must be idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset
for non-BSP designated processors). Alternatively other logical processor(s) may be in
the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical
processor. If other logical processor(s) in the same package are not idle in one of
these states, execution of ENTERACCS signals a general protection exception. The

LaGrande Technology Preliminary Architecture Specification 25

Safer Mode Extensions

same requirement and action applies if the other logical processor(s) of the same
package do not have CR0.CD = 0.

A successful execution of ENTERACCS results in the processor entering an
authenticated code execution mode. Prior to reaching this point, the processor
performs several checks. These include:

•

•

•

•

•

•

•

•

•

Establish and check the location and size of the specified authenticated code
module to be executed by the processor.

Broadcast a message to the chipset to enable protection of memory and I/O from
activities from other processor agents.

Load the designated code module into authenticated code execution area.

Isolate the contents of authenticated code execution area from further state
modification by external agents.

Authenticate the contents of the authenticated code module.

Initialize the initiating logical processor state based on information contained in
the authenticated code module header.

Unlock the LaGrande Technology-capable chipset private configuration space and
TPM locality 3 space.

Begin execution in the authenticated code module at the defined entry point.

Inhibit the processor response to the external events: INIT, A20M, NMI and SMI.

The processor masks the response to the assertion of the external signals INIT#,
A20M, NMI#,and SMI#. This masking remains active until optionally unmasked by
GETSEC[EXITAC] (This defined unmasking behavior assumes GETSEC[ENTERACCS]
was not executed by a prior SENTER). The purpose of this masking control is to
prevent exposure to existing external event handlers that may not be under the
control of the authenticated code module. Once the authenticated code module is
launched at the completion of ENTERACCS, it is free to enable interrupts by setting
EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-
established interrupt handling support under the authenticated execution context
through initialization of the IDT, GDT, and corresponding interrupt handling code.

SMI# remains masked throughout authenticated code execution mode and can not be
unmasked until this mode is exited via GETSEC[EXITAC]. The state of the A20M pin is
likewise masked and forced internally to a de-asserted state so that any external
assertion is not recognized during authenticated code execution mode. A20M masking
stays in effect until exiting authenticated code execution mode.

The GETSEC[ENTERACCS] function requires two additional input parameters input
using the general purpose registers EBX and ECX. EBX holds the authenticated code
(AC) module physical base address (the AC module must reside below 4 GBytes in
physical address space) and ECX holds the programmer specified AC module size (in
bytes). The physical base address and size are used to retrieve the code module from
system memory and load into the internal authenticated code execution area. The
base physical address is checked to verify it is on a modulo-4096 byte boundary. The
size is verified to be a multiple of 64, that it does not exceed the internal
authenticated code execution area capacity, and that the top address of the AC
module does not exceed 32 bits. An error condition results in an abort of the
authenticated code execution launch and the signaling of a general protection
exception.

26 LaGrande Technology Architecture Specification

Safer Mode Extensions

As an integrity check for proper processor hardware operation, execution of
GETSEC[ENTERACCS] will also check the contents of all the machine check status
registers (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable
error condition. In addition, the global machine check status register
IA32_MCG_STATUS MCIP bit must be cleared and the IERR processor package pin
must not be asserted, indicating that no machine check exception processing is
currently in progress. These checks are performed prior to initiating the load of the
authenticated code module. Any outstanding valid uncorrectable machine check error
condition present in these status registers at this point will result in the processor
signaling a general protection violation.

To prevent other (logical) processors from interfering with the ILP operating in
authenticated code execution mode, the chipset enforces protection on memory
(excluding implicit write-back transactions) or I/O activities originating from other
processor agents. This protection starts when the ILP enters into authenticated code
execution mode. The chipset registers the agent ID of the ILP and only allows memory
or I/O transactions initiated from this registered agent. Exiting authenticated code
execution mode is done by executing GETSEC[EXITAC]. The protection of bus access
remains in effect until the ILP executes GETSEC[EXITAC].

Once the authenticated code module has been loaded into authenticated code
execution area, it is protected against further modification from external bus snoops.
There is also a requirement that the memory type for the authenticated code module
address range be WB (via initialization of the MTRRs prior to execution of this
instruction). If this condition is not satisfied, it is a violation of security and the
processor may generate an external shutdown condition by writing an error code to
the LaGrande Technology-capable chipset ERRORCODE register, and then writing to
the LaGrande Technology-capable chipset CMD.SYS-RESET register. This action is
referred to as a LaGrande Technology shutdown condition. It is performed when it is
considered unreliable to signal an error through the conventional exception reporting
mechanism. For details on memory type restrictions associated with authenticated
code modules, see Appendix A, “Authenticated-Code Module.”

To conform to the minimum granularity of MTRR MSRs for specifying the memory
type, authenticated RAM is allocated to the processor in 4096 byte granular blocks. If
an AC module size as specified in ECX is not a multiple of 4096, then the processor
will allocate up to the next 4096 byte boundary for mapping as authenticated RAM
with indeterminate data. This pad area will not be visible to the authenticated code
module as external memory nor can it depend on the value of this data used to fill the
pad area.

An authenticated code module is required to conform to a specific format. At the top
level the module is composed of three sections: Module header, internal working
scratch space, and user code and data. The module header contains critical
information necessary for the processor to properly authenticate the entire module,
including the encrypted signature and RSA based public key. The processor also uses
other fields of the AC module for initializing the remaining processor state after
authentication. The definition of the authenticated code module format can be found
in Appendix A.

Authentication is performed after loading of the code module into the authenticated
code execution area. Information from the authenticated code module header is used
to support the authentication process. The RSAPubKey header field contains a public
key plus a 32 bit exponent used for decrypting the signature of the authenticated code
module. The signature is held in encrypted form in the RSASig header field and it
represents the PKCS #1.5 RSA Signature of the module. The RSA Signature signs an

LaGrande Technology Preliminary Architecture Specification 27

Safer Mode Extensions

area that includes the sum of the module header and all of the USER AREA data field,
which represents the body of the module. Those parts of the module header not
included are: the RSA Signature, the public key, and the scratch field. An inconsistent
authenticated code module format, inconsistent comparison of the public key hash, or
mismatch of the decrypted signature against the computed hash of the authenticated
module or a corrupted signature padding value results in an abort of the
authentication process and signaling of a LaGrande Technology shutdown condition.
As part of the authentication step, the processor stores the decrypted signature of the
AC module in the first 20 bytes of the ‘Scratch’ field of the AC module header (see
Appendix A).

After authentication has completed successfully, the private configuration space of the
LaGrande Technology-capable chipset is unlocked. At this point, only the
authenticated code module or system software executing in authenticated code
execution mode is allowed to gain access to the restricted chipset state for the
purpose of securing the platform.

The architectural state of the processor is partially initialized from contents held in the
header of the authenticated code module. The processor GDTR, CS, and DS selectors
are initialized from fields within the authenticated code module defined in Table 5.
Since the authenticated code module must be relocatable, all address references must
be relative to the authenticated code module base address in EBX. The processor
GDTR base value is initialized to the AC module header field GDT BasePtr + module
base address held in EBX and the GDTR limit is set to the value in the GDT Limit field.
The CS selector is initialized to the AC module header SegSel field, while the DS
selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized
to BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and
execute/read access for CS. The processor begins the authenticated code module
execution with the EIP set to the AC module header EntryPoint field + module base
address (EBX). The AC module based fields used for initializing the processor state are
checked for consistency and any failure results in a shutdown condition.

A summary of the processor state initialization after successful completion of
GETSEC[ENTERACCS] is given for the processor in Table 5. The paging is disabled
upon entry into the secure execution. The authenticated code module is loaded and
initially executed using physical addresses. It is up to the system software after
execution of GETSEC[ENTERACCS] to establish a new trusted paging environment
with an appropriate mapping to meet new protection requirements for the
authenticated execution. EBP is initialized to the authenticated code module base
physical address for initial execution in the authenticated environment. As a result,
the authenticated code can reference EBP for relative address based references given
that the authenticated code module must be position independent.

28 LaGrande Technology Architecture Specification

Safer Mode Extensions

Table 5. Processor state initialization after GETSEC[ENTERACCS]

Processor state Status

CR0 Clear PG, AM, WP

CR4 Clear MCE

EFLAGS 00000002h

IA32_EFER 0

EIP AC.base (EBX) + [EntryPoint]

[E|R]BX [E|R]IP of the instruction after GETSEC[ENTERACCS]

[E|R]CX Pre-ENTERACCS state: [31:16]=GDTR.limit; [15:0]=CS.sel

[E|R]DX Pre-ENTERACCS state: GDTR.base

EBP AC.base (EBX)

CS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1, AR=9Bh

DS Sel=[SegSel] + 8, base=0, limit=FFFFFh, G=1, D=1, AR=93h

GDTR Base= AC.base (EBX) + [GDTBasePtr], Limit=[GDTLimit]

DR7 00000400h

IA32_DEBUGCTL 0

IA32_MISC_ENABLE MSR See Table 6

The segmentation related processor state that has not been initialized by
GETSEC[ENTERACCS] requires appropriate initialization before use. Since a new GDT
context has been established, the previous state of the segment selector values held
in ES, SS, FS, GS, TR, and LDTR might not be valid. The IDTR will also require
reloading with a new IDT context after entering authenticated code execution mode,
before any exceptions or the external interrupts INTR and NMI can be handled. Since
external interrupts are re-enabled at the completion of authenticated code execution
mode (as terminated with EXITAC), it is recommended that a new IDT context be
established before this point. Until such a new IDT context is established, the
programmer must take care in not executing an INT n instruction or any other
operation that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of
GETSEC[ENTERACCS]. This is achieved by resetting DR7, TF in EFLAGs, and the MSR
IA32_DEBUGCTL. These debug functions are free to be re-enabled once supporting
exception handler(s), descriptor tables, and debug registers have been properly
initialized following entry into authenticated code execution mode. Also, any pending
single-step trap condition will have been cleared upon entry into this mode.

In 64-bit mode, RBX holds the RIP of the next instruction, RCX holds the CS selector
value and GDTR limit in the lower 32 bits while zeroing the upper 32 bits, and RDX
holds the GDTR base field of the processor state prior to ENTERACCS. All other
architectural register state not referenced in Table 5 will be unmodified by execution
of GETSEC[ENTERACCS].

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful
authentication of the AC module, the LaGrande Technology private space registers are

LaGrande Technology Preliminary Architecture Specification 29

Safer Mode Extensions

unlocked to be accessible by authenticated code module. This private configuration
space can be optionally locked later by software writing to the LaGrande Technology-
capable chipset public space location LT.CMD.CLOSE-PRIVATE. The authenticated code
module is allowed to access to locality-3 of TPM resources. Locality-3 TPM resources
are closed upon successful execution of GETSEC[EXITAC].

The miscellaneous feature control MSR IA32_MISC_ENABLES is initialized as part of
the protected environment launch. Certain bits of this MSR are preserved, because
preserving these bits may be important to maintain previously established platform
settings. See the footnote for Table 6. The remaining bits are cleared for the purpose
of establishing a more consistent environment for the execution of authenticated code
modules. Among the impact of initializing this MSR, any previous condition established
by the MONITOR instruction will be cleared.

Table 6. IA32_MISC_ENABLES Functions Initialized by ENTERACCS/SENTER

Function Bit # Initialization action

Fast strings enable 0 Clear to 0

MT thread priority 1 Clear to 0

FOPCODE compatibility mode
enable

2 Clear to 0

Thermal monitor enable 3 Set to 1 if other thermal monitor capability is
not enabled. 1

Split-lock disable 4 Clear to 0

Bus lock on cache line splits
disable

8 Clear to 0

Hardware prefetch disable 9 Clear to 0

Intel SpeedStep Technology
enable

15 Clear to 0

MONITOR/MWAIT s/m enable 18 Clear to 0

Adjacent sector prefetch
disable

19 Clear to 0

Context ID bit enable 24 Clear to 0

NOTES:
1. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that

at least a minimum level is enabled. If thermal throttling is already enabled at the time
of execution for one of these GETSEC leafs, then no change in the thermal throttling
control settings will occur. If thermal throttling is disabled at this time, then execution
of ENTERACCS (or SENTER) will enable it via setting of the thermal throttle control bit
3.

To support the possible return to the processor architectural state prior to execution of
GETSEC[ENTERACCS], certain critical processor state is captured and stored in the
general- purpose registers at instruction completion. EBX holds effective address (EIP)
of the instruction following GETSEC[ENTERACCS], ECX[15:0] holds the CS selector
value, ECX[31:16] holds the GDTR limit field, and EDX holds the GDTR base field. The
subsequent authenticated code can preserve the contents of these registers so that
this state can be manually restored if needed, prior to exiting authenticated code
execution mode with GETSEC[EXITAC].

30 LaGrande Technology Architecture Specification

Safer Mode Extensions

Flags Affected

All flags are cleared.

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

REX Ignored

All others Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or
CPL > 0 or EFLAGS.VM = 1.

 If a LaGrande Technology-capable chipset is not present.

 If VMX mode is currently active as started with VMXON.

 If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.

 If the processor is already in authenticated code execution mode.

 If the processor is in SMM.

 If a valid uncorrectable machine check error is logged in
IA32_MC[I]_STATUS.

 If the authenticated code base is not on a 4096 byte boundary.

 If the authenticated code size > processor internal authenticated
code area capacity.

 If the authenticated code size is not modulo 64.

 If other enabled logical processor(s) of the same package
CR0.CD = 1.

 If other enabled logical processor(s) of the same package are not in
the wait-for-SIPI or SENTER sleep state.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP GETSEC[ENTERACCS] is not recognized in real-address mode.

LaGrande Technology Preliminary Architecture Specification 31

Safer Mode Extensions

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 232 -1.

64-bit Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 232 -1

32 LaGrande Technology Architecture Specification

Safer Mode Extensions

GETSEC[EXITAC] – Exit Authenticated Code
Execution Mode

Opcode Instruction Description

0F 37
(EAX=3)

GETSEC[EXITAC] Exit authenticated code execution mode.

EBX holds the Near Absolute Indirect jump target
and EDX hold the exit parameter flags.

Description

The GETSEC[EXITAC] instruction initiates an exit of authenticated code execution
mode established by GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of
GETSEC is selected with EAX set to 3 at entry. EBX (or RBX, if in 64-bit mode) holds
the near jump target offset for where the processor execution resumes upon exiting
authenticated code execution mode. EDX contains additional parameter control
information. Currently only an input value in EDX of 0 is supported. All other EDX
settings are considered reserved and result in a general protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with
CPL = 0 and EFLAGS.VM = 0. The processor must also be in authenticated code
execution mode. To avoid potential operability conflicts between modes, the processor
is not allowed to execute this instruction if it is in SMM or VMX mode. A violation of
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks responses
to external event signals INIT#, NMI#, and SMI#. This unmasking is performed
conditionally, based on whether a protected environment had been launched via a
previous execution of GETSEC[SENTER]. If a protected environment is active then
these external event signals will remain masked if previously established in that state.
In this case A20M is kept disabled until the protected environment is exited with
GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. Note that any events
that are pending, but have been blocked while in authenticated code execution mode
will be recognized at the completion of the GETSEC[EXITAC] instruction if the pin
event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI, and NMI
masked is to support the completion of a protected environment bring-up that makes
use of VMX. In this envisioned security usage scenario, these events will remain
masked until an appropriate virtual machine has been established in order to field
servicing of these events in a safer manner. Details on when and how events are
masked and unmasked in VMX mode are available in the VMXEAS documentation. It
should be cautioned that if no VMX environment is to be activated following
GETSEC[EXITAC], that these events will remain masked until the protected partition is
exited with GETSEC[SEXIT]. If this is not desired then the GETSEC function
SMCTRL(0) can be used for unmasking SMI in this context. NMI can be
correspondingly unmasked by execution of IRET.

LaGrande Technology Preliminary Architecture Specification 33

Safer Mode Extensions

A successful exit of the authenticated code execution mode requires the processor to
perform additional steps as outlined below:

•

•

•

•

•

•

Invalidate the contents of the internal authenticated code execution area..

Invalidate processor TLBs.

Clear the internal processor AC Mode indicator flag.

Re-lock the TPM locality 3 space.

Unlock the LaGrande Technology-capable chipset memory and I/O protections to
allow memory and I/O activity by other processor agents.

Perform a near absolute indirect jump to the designated instruction location.

The content of authenticated code execution area is invalidated in order to protect it
from further use or visibility. This internal processor storage area can no longer be
used or relied upon after GETSEC[EXITAC]. Data structures need to be re-established
outside of the authenticated code execution area if they are to be referenced after
EXITAC. Since addressed memory content formerly mapped to the authenticated code
execution area may no longer be coherent with external system memory after
EXITAC, processor TLBs in support of linear to physical address translation are also
invalidated.

Upon completion of GETSEC[EXITAC], a near absolute indirect transfer is performed
with EIP loaded with the contents of EBX (based on the current operating mode size).
In 64-bit mode, all 64 bits of RBX are loaded into RIP if REX.W precedes
GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode.
Conventional CS limit checking is performed as part of this control transfer. Any
exception conditions generated as part of this control transfer will be directed to the
existing IDT; thus it an IDTR should also be established prior to execution of the
EXITAC function if there is a need for fault handling. In addition, any segmentation
related (and paging) data structures to be used after EXITAC should be re-established
or validated by the authenticated code prior to EXITAC.

In addition, any segmentation related (and paging) data structures to be used after
EXITAC need to be re-established and mapped outside of the authenticated RAM
designated area by the authenticated code prior to EXITAC. Any data structure held
within the authenticated RAM allocated area will no longer be accessible after
completion by EXITAC.

Flags Affected

None.

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

REX Causes interpretation of RBX width as 64 bits in 64-bit mode.

All others Ignored

34 LaGrande Technology Architecture Specification

Safer Mode Extensions

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.

 If VMX mode is currently active as started with VMXON.

 If the processor is not currently in authenticated code execution
mode.

 If the processor is in SMM.

 If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-bit Mode Exceptions

All protected mode exceptions apply.

LaGrande Technology Preliminary Architecture Specification 35

Safer Mode Extensions

GETSEC[SENTER] – Enter protected environment

Opcode Instruction Description

0F 37
(EAX=4)

GETSEC[SENTER] Launch protected environment

EBX holds the authentication code module physical
base address.

ECX holds the authenticated code module size
(bytes).

EDX controls the level of functionality supported by
the protected environment launch.

Description

The GETSEC[SENTER] instruction initiates the launch of a protected environment and
places the initiating logical processor into the authenticated code execution mode. The
SENTER leaf of GETSEC is selected with EAX set to 4 at execution. The physical base
address of the code module to be loaded and authenticated is specified in EBX. The
size of the module in bytes is specified in ECX. EDX controls the level of functionality
supported by the protected environment launch. To enable the full functionality of the
protected environment launch, EDX must be initialized to zero.

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is clear
before executing the GETSEC[SENTER] instructions.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER]
instruction:

•

•

•

•

•

•

•

•

Execution is not allowed unless the processor is in protected mode or IA-32e mode
with CPL = 0 and EFLAGS.VM = 0.

The processor cache must be available and not disabled using the CR0.CD and NW
bits.

For enforcing consistency of operation with numeric exception reporting using
interrupt 16, CR0.NE must be set.

A LaGrande Technology-capable chipset must be present as communicated to the
processor by sampling of the power-on configuration capability field after reset.

The processor can not be in authenticated code execution mode or a protected
environment (launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER]
instruction).

To avoid potential inter-operability conflicts between modes, the processor is not
allowed to execute this instruction if currently in SMM or VMX mode.

To insure consistent handling of SIPI messages, the processor executing the
GETSEC[SENTER] instruction must also be designated as the BSP (bootstrap
processor) as defined by the register bit in the IA32_APIC_BASE MSR.

EDX must be initialized to setting supportable by the processor. Unless otherwise
enumerated using the GETSEC[PARAMETERS] leaf, only a value of zero is
supported.

Failure to abide by the above conditions results in the processor signaling a general
protection violation.

36 LaGrande Technology Architecture Specification

Safer Mode Extensions

This instruction leaf starts the launch of a protected environment by initiating a
rendezvous sequence for all logical processors in the platform. The rendezvous
sequence involves the Initiating Logical Processor (ILP) sending a message (by
executing GETSEC[SENTER]) and other Responding Logical Processors (RLP)
acknowledging the message, thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the
bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and enter an SENTER sleep
state. In this sleep state, RLPs enter an idle processor condition while waiting to be
activated after a protected environment has been established by operating system
software. RLPs in the SENTER sleep state are activated by the GETSEC leaf function
WAKEUP.

RLP can exit the SENTER sleep state and start execution in response to a WAKUP
signal initiated by ILP execution of GETSEC[WAKEUP]. The RLP retrieves a pointer to a
data structure that contains information to enable execution from a defined entry
point. This data structure is located using a physical address held in the LaGrande
Technology-capable chipset configuration register LT.MVMM.JOIN. The register is
publicly writable in the chipset by all processors and is not restricted by the LaGrande
Technology-capable chipset configuration register lock status. The processor WAKEUP
entry point control using the LT.MVMM.JOIN stays in effect while the processor is in
protected environment, until successful completion of GETSEC[SEXIT] by the ILP. The
format of this data structure is defined in Table 7.

Table 7. RLP Secure Startup Environment Data Structure

Offset from
address held in
LT.MVMM.JOIN Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer

12 Linear IP entry point (physical address)

The JOIN based data structure contains the information necessary to initialize RLP
processor state and permit the processor to join the protected environment. The
GDTR, LIP, and CS, DS, SS, and ES selector values are initialized using this data
structure. The CS selector index is derived directly from the segment selector
initializer field; DS, SS, and ES selectors are initialized to CS+8. The segment
descriptor fields are initialized implicitly with BASE = 0, LIMIT = FFFFFH, G = 1,
D = 1, P = 1, S = 1; read/write/accessed for DS, SS, and ES; and
execute/read/accessed for CS. It is the responsibility of external software to establish
a GDT pointed to by the JOIN data structure that contains descriptor entries consistent
with the implicit settings initialized by the processor. Certain states held in Table 7 are
checked for consistency by the processor prior to execution. A failure of any
consistency check results in the RLP aborting entry into the protected environment
and signaling a LaGrande Technology shutdown condition. The specific checks
performed are documented in the SENTER operation description found later in this
section. After successful completion of processor consistency checks and subsequent
initialization, execution in the protected partition for the RLP begins from the defined
Linear IP entry point at offset 12 (as indicated in Table 7).

LaGrande Technology Preliminary Architecture Specification 37

Safer Mode Extensions

A successful launch of the protected partition results in the initiating logical processor
entering the authenticated code execution mode. Prior to reaching this point, the ILP
must perform these steps:

•

•

•

•

•

•

•

•

•

•

•

•

Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.

Establish and check the location and size of the authenticated code module to be
executed by the ILP.

Check for the existence of a LaGrande Technology-capable chipset and TPM
interface; abort if not present.

Verify the current power management configuration is acceptable.

Broadcast a message to the chipset to enable protection of memory and I/O from
activities from other processor agents.

Load the AC module into authenticated code execution area.

Isolate the content of authenticated code execution area from further state
modification by external agents.

Authenticate the source and contents of the module.

Updated the LaGrande Technology-capable chipset managed Trusted Platform
Module (TPM) with the authenticated code module’s hash.

Initialize processor state based on the authenticated code module header
information.

Unlock the LaGrande Technology-capable chipset private configuration register
space and TPM locality 3 space.

Begin execution in the authenticated code module at the defined entry point.

The ILP and RLP mask the response to the assertion of the external signals INIT#,
A20M, NMI#, and SMI#. This masking is held in place until undone via the
GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX related
operations such as a VM entry or the VMXOFF instruction (see the VMX documentation
for more details). The purpose of this masking control is to prevent exposure to
existing external event handlers until a protected partition has been put in place to
directly handle these events. The state of the A20M pin is masked and forced
internally to a de-asserted state so that external assertion is not recognized during an
active protected partition. A20M masking as set by GETSEC[SENTER] is undone only
after taking down the protected partition with the GETSEC[SEXIT] instruction or
processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the
responsibility of system software to control the processor response to INTR through
appropriate management of EFLAGS.

The authenticated code base address and size parameters (in bytes) are passed to the
GETSEC[SENTER] instruction using EBX and ECX respectively. The ILP evaluates the
contents of these registers according to the rules for the AC module address in
GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by
GETSEC[ENTERACCS].

Once successful authentication has been completed by the ILP, the computed hash is
broadcast for storage in the TPM at PCR17 after this register is implicitly reset (see
Appendix B). PCR17 is a dedicated register for holding the computed hash of the
authenticated code module, loaded and subsequently executed by the
GETSEC[SENTER]. As part of this registration, PCR18-20 are reset so they can be

38 LaGrande Technology Architecture Specification

Safer Mode Extensions

utilized by subsequently loaded external software for registration of code and data
modules.

Before loading and authentication of the target code module is performed the
processor also checks that the current voltage ID and bus ratio status correspond to
known good values supportable by the processor. The MSR IA32_PERF_STATUS values
are compared against either the processor supported maximum voltage/bus ration
setting, system reset setting of voltage/bus ration, or the thermal throttle operating
point. If the current settings do not meet any of these criteria, then the SENTER
instruction functionality will attempt to change the voltage ID and bus ratio select
processor controls. For a mobile processor, an adjustment will be made to set the
voltage and bus ratio to the thermal throttle operating point. For all other processor
configurations, the voltage ID will be set to the processor supported maximum voltage
operating point. This implies that existing values programmed in
MSR_GV3_BRVID_SEL may be overridden by SENTER. The system software
environment may need to take responsibility to restoring such settings that are
deemed to be safe, but not necessarily recognized by SENTER after this software has
been established in the secure context. If an adjustment is not possible when an out
of range setting is discovered, then the processor will abort the protected partition
launch. This may be the case for chipset controlled settings of these values or if the
controllability is not enabled on the processor. In this case it is the responsibility of
the external software to program the chipset voltage ID and/or bus ratio select
settings to known good values recognized by the processor prior to SENTER.

The computed hash is broadcast to the TPM using the LaGrande Technology-capable
chipset in a four part sequence, (including registration of the protected partition
launch control parameter held in EDX). This is described below:

1. A single byte write of 0 to the port TPM.HASH.START. This establishes the locality
for TPM ownership to the processor (locality 4), triggers a reset of PCR17-20, and
clears the PCR input buffer. However, the TPM ignores the data of this write
operation.

2. Write all bytes of the computed hash to the TPM PCR input buffer using the direct
processor port TPM.HASH.DATA, looping through each of the 20 bytes, starting
with the least significant byte of the first 32-bit word of the hash and ending with
the most significant byte of the last 32-bit word of the hash.

3. Four single byte writes of the protected partition flags, as indicated by EDX at the
time GETSEC[SENTER] is executed, to the TPM PCR input buffer using port
TPM.HASH.DATA, starting with the least significant byte first. This is performed to
provide traceability to subsequent protected partition code for determining the
level of functionality enabled by the protected partition launch.

4. Single byte write of 0 to the port TPM.HASH.END. This causes the data written in
steps 2-3 to the PCR input buffer to be hashed and updated in PCR17 of the TPM.
However, the TPM ignores the data of this write operation.

After successful execution of the TPM.HASH.END command, the only way to provide
additional measurements to PCR17 is to use the TPM_Extend command. PCR17
contains the measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the
LaGrande Technology-capable chipset is unlocked so that authenticated code module
or system software executing in authenticated code execution mode can gain access
to this normally restricted chipset state This is done for the purpose of launching a
protected partition in the platform. The LaGrande Technology-capable chipset private
configuration space can be locked back later by software writing to the chipset

LaGrande Technology Preliminary Architecture Specification 39

Safer Mode Extensions

memory-mapped public space location LT.CMD.CLOSE-PRIVATE or unconditionally
using the GETSEC[SEXIT] instruction.

Table 8 provides a summary of processor state initialization for the ILP and RLP (after
successful completion of the GETSEC[SENTER]). For both ILP and RLP, paging is
disabled upon entry to the protected partition. The authenticated code module is
loaded and initially executed using physical addresses. It is up to the ILP to establish a
trusted paging environment, with appropriate mapping, to meet protection
requirements established during the launch of the protected partition.

EBP is initialized to the authenticated code module base address in the ILP upon initial
execution in the authenticated code module. As a result, authenticated code can
reference EBP for relative address based references, given the authenticated code
module may be position independent. RLP state initialization is not completed until a
subsequent wakeup has been signaled by execution of the GETSEC[WAKEUP] by the
ILP. This is because some of the RLP state initialization is dependent upon the data
structure pointed to by the chipset register LT.MVMM.JOIN, which may not be
initialized at the time GETSEC[SENTER] is executed.

Table 8. ILP and RLP Processor State Initialization After GETSEC[SENTER]

Processor
state

ILP RLP

CR0 Clear PG, AM, WP Clear PG, CD, NW, AM, WP. Set
PE, NE.

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

EIP AC.base (EBX) + [EntryPoint] [LT.MVMM.JOIN+12]

EBP AC.base (EBX) NC

CS Sel = [SegSel], base = 0,
limit = FFFFFH,

G = 1, D = 1, AR = 9BH

Sel = [LT.MVMM.JOIN + 8],
base = 0, limit = FFFFFH,

G = 1, D = 1, AR = 9BH

DS Sel = [SegSel] + 8, base = 0,
limit = FFFFFH,

G = 1, D = 1, AR = 93H

Sel = [LT.MVMM.JOIN + 8] + 8,
base = 0, limit = FFFFFH,

G = 1, D = 1, AR = 93H

ES Sel = [SegSel] + 8, base = 0,
limit = FFFFFH,

G = 1, D = 1, AR = 93H

Sel = [LT.MVMM.JOIN + 8] + 8,
base = 0, limit = FFFFFH,

G = 1, D = 1, AR = 93H

SS Sel = [SegSel] + 8, base = 0,
limit = FFFFFH,

G = 1, D = 1, AR = 93H

Sel = [LT.MVMM.JOIN + 8] + 8,
base = 0, limit = FFFFFh,

G = 1, D = 1, AR = 93H

GDTR Base = AC.base (EBX) +
[GDTBasePtr],
Limit = [GDTLimit]

Base = [LT.MVMM.JOIN + 4],
Limit = [LT.MVMM.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGCTL 0 0

IA32_EFER 0 0

40 LaGrande Technology Architecture Specification

Safer Mode Extensions

Processor
state

ILP RLP

IA32_MISC_ENA
BLE MSR

See Table 6. See Table 6.

Performance
counters and
counter control

0 0

Segmentation related processor state that has not been initialized by
GETSEC[SENTER] requires appropriate initialization before use. Since a new GDT
context has been established, the previous state of the segment selector values held
in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading
with a new IDT context after launching the protected partition before exceptions or
the external interrupts INTR and NMI can be handled. In the meantime, the
programmer must take care in not executing an INT n instruction or any other
condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of
GETSEC[SENTER]. This is achieved by clearing DR7, TF in EFLAGs, and the
MSRIA32_DEBUGCTL as defined in Table 8. These can be re-enabled once supporting
exception handler(s), descriptor tables, and debug registers have been properly re-
initialized following SENTER. Also, any pending single-step trap condition will be
cleared at the completion of SENTER for both the ILP and RLP.

MVMM Header

Table 9 shows the format of the MVMM Header structure which is stored within the
MVMM image. The MVMM Header structure is used by the SINIT module to set up the
correct initial MVMM state and to find the MVMM entry point. The header is part of the
MVMM hash.

Table 9. MVMM Header structure

Field Offset Size Description

GUID 0 16 Identifies this structure

HeaderLen 16 4 Length of header in bytes

Version 20 4 Version number of this structure

Entry Point 24 4 Linear entry point of MVMM

Reserved 28 8 Reserved

GUID: This field contains a GUID which uniquely identifies this MVMM Header
Structure. The GUID is defined as follows:

ULONG GUID0; // 9082AC5A
ULONG GUID1; // 74A7476F
ULONG GUID2; // A2555C0F
ULONG GUID3; // 42B651CB

HeaderLen: this field contains the length in bytes of the MVMM Header Structure.

LaGrande Technology Preliminary Architecture Specification 41

Safer Mode Extensions

Version: this field contains the version of the MVMM header. The initial Version will be
10000H where the upper two bytes are the major version and the lower two bytes are
the minor version.

All addresses within the MVMM Header Structure are linear address in the MVMM’s
linear address space.

Prior to launching the protected environment, system software places the linear
address of the structure into LT Device memory (see Appendix C). This linear address
is the linear address of the structure within the MVMM page table context.

MVMM Page Table

The MVMM is not required to be loaded into physically contiguous memory since the
MVMM code will run in protected mode with paging enabled. The pages containing the
MVMM image must be pinned in memory, and all these pages must be located in
physical memory below 4G bytes and above 1M bytes.

System software creates an MVMM page table structure to map the entire MVMM
image. The pages containing the MVMM page tables must be pinned in memory prior
to launching the protected environment. The MVMM page table structure must be in
the format of the IA-32 Physical Address Extension (PAE) page table structure.

The MVMM page table has several special requirements:

•

•

•

•

•

•

The MVMM page tables may contain only 4 kbyte pages.

A breadth-first search of page tables must produce increasing physical addresses.

No address may overlap with device memory (GART, etc)

No address between (640k, 1M] or above Top of Memory (TOM)

The Page Directories must be in a lower physical address than the Page Tables.

The Page-Directory-Pointer-Table must be in a lower physical address than the
Page Directories.

The SINIT code will check that the MVMM page table matches these requirements
before calculating the MVMM digest. The second rule above implies that the MVMM
must be loaded into physical memory in an ordered fashion: a scan of MVMM virtual
addresses must find increasing physical addresses. The system software can order its
list of physical pages before loading the MVMM image into memory.

System software writes the physical base address of the MVMM Page Table’s page
directory to the LT heap. The size in bytes of the MVMM image is also written to the LT
heap, see Appendix C.

Interaction with Specific MSRs

The IA32_MISC_ENABLE MSR is initialized as part of the protected partition launch.
Certain bits of this MSR are preserved, because preserving these bits may be
important for maintaining previously established platform settings. Bits impacted may
be platform specific. The remaining bits are re-initialized to specific settings for the
purpose of establishing a consistent environment for the execution of authenticated
code modules as defined in Table 8.

42 LaGrande Technology Architecture Specification

Safer Mode Extensions

One of the impacts of initializing IA32_MISC_ENABLE is that any previous condition
established by the MONITOR instruction is cleared. This implies that a subsequent
system software environment may have to re-establish specific settings for this MSR
in order to meet particular system requirements. Control for any function not listed in
Table 8 is defined as unchanged. Note that not all the control functions listed in
Table 8 may be present in all SMX capable processors. Treatment of bits designated as
reserved for a specific processor is to leave them unchanged.

Performance related counters and counter configuration MSRs are cleared as part of
execution of SENTER on both the ILP and RLP(s). This implies any active performance
counters at the time of SENTER execution are disabled. To activate processor
performance counters, this state must be re-initialized and re-enabled.

Since MCE (along with all other state bits, with the exception of SMXE) are cleared in
CR4 upon execution of SENTER processing, any enabled machine check error condition
that occurs results in the processor performing the LaGrande Technology shutdown.
This also applies to an RLP while in the SENTER sleep state. For each logical
processor, CR4.MCE must be reestablished with a valid machine check exception
handler in order to avoid a LaGrande Technology shutdown.

Effect of MSR IA32_FEATURE_CONTROL

Bits 15:8 of the IA32_FEATURE_CONTROL affect the execution of GETSEC[SENTER].
These bits consist of two fields:

•

•

Bit 15: a global enable control for execution of SENTER

Bits 14:8: a parameter control field providing the ability to qualify SENTER
execution based on the level of functionality specified with corresponding EDX
parameter bits 6:0.

The layout of these fields in IA32_FEATURE_CONTROL is shown in Table 10.

The IA32_CR_FEATURE_CONTROL MSR must be initialized prior to execution of
SENTER with the lock bit set to affirm the settings to be used. Once the lock bit is set,
only a power-up reset condition will clear this MSR. IA32_CR_FEATURE_CONTROL
MSR must be configured in accordance to the intended usage at platform initiation.
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise,
IA32_CR_FEATURE_CONTROL is treated as reserved.

The parameter control field for SENTER enables extensibility of the SENTER
functionality, and allows specific functionality to be selectively defeatured when
executing SENTER. Each bit of the SENTER parameter control field of
IA32_CR_FEATURE_CONTROL MSR corresponds to specific functionality of SENTER.
When a bit in the parameter control field is set to 1, the corresponding functionality is
enabled in SMX. To enable all functionality when executing SENTER, bits 15:8 must be
set to FFH for the MSR while the corresponding EDX bits must be 0 (EDX parameter
bits associated with SENTER act as disable controls).

The definition for each bit of the SENTER parameter control field and corresponding
bits are currently reserved. In future implementations, enumeration of selective
functionality will use parameter type 4 in GETSEC[PARAMETERS]. If no selective
functionality for SENTER exists the corresponding bits in the
IA32_CR_FEATURE_CONTROL MSR bits 14:8 must be programmed to 1 if the SENTER
global enable bit 15 is set. These setting allow for the future extensibility of SENTER

LaGrande Technology Preliminary Architecture Specification 43

Safer Mode Extensions

selective functionality capability. Attempts to program invalid settings to this MSR will
result in the signaling of a general protection violation.

Table 10. IA32_FEATURE_CONTROL definition for SENTER control

Bit Position Description

0 Lock. When set to ‘1’ further writes to this MSR are blocked.

2:1 Enable VMX (see Table 3)

7:3 Reserved

14:8 SENTER parameter function control. Each bit in the field represents an
enable control for a corresponding SENTER function.

15 SENTER global enable. Must be set to ‘1’ to enable operation of
GETSEC[SENTER]

63:16 Reserved

Flags Affected

All flags are cleared.

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

REX Ignored

All others Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or
CPL > 0 or EFLAGS.VM = 1.

 If VMX mode is currently active as started with VMXON.

 If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.

 If a LaGrande Technology-capable chipset is not present.

 If a LaGrande Technology-capable chipset interface to TPM is not
detected as present.

44 LaGrande Technology Architecture Specification

Safer Mode Extensions

 If a protected partition is already active or the processor is already
in authenticated code mode.

 If the processor is in SMM.

 If a valid uncorrectable machine check error is logged in
IA32_MC[I]_STATUS.

 If the authenticated code base is not on a 4096 byte boundary.

 If the authenticated code size > processor’s authenticated code
execution area storage capacity.

 If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 232 -1.

64-bit Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 232 -1.

LaGrande Technology Preliminary Architecture Specification 45

Safer Mode Extensions

GETSEC[SEXIT] – Exit protected partition session

Opcode Instruction Description

0F 37
(EAX=5)

GETSEC[SEXIT] Exit protected partition session.

Description

The GETSEC[SEXIT] instruction initiates an exit of a protected partition established by
GETSEC[SENTER]. The SEXIT leaf of GETSEC is selected with EAX set to 5 at
execution. This instruction leaf sends a message to all logical processors in the
platform to signal the protected partition exit.

There are restrictions enforced by the processor for the execution of the
GETSEC[SEXIT] instruction:

•

•

•

•

•

•

•

•

Execution is not allowed unless the processor is in protected mode (CR0.PE = 1)
with CPL = 0 and EFLAGS.VM = 0.

A LaGrande Technology-capable chipset must be present and communicated to
the processor by sampling of the power-on configuration capability field after reset.

The processor must be in a protected partition as launched by a previous
GETSEC[SENTER] instruction, but not still in authenticated code execution mode.

To avoid potential inter-operability conflicts between modes, the processor is not
allowed to execute this instruction if it currently is in SMM or VMX mode.

To insure consistent handling of SIPI messages, the processor executing the
GETSEC[SEXIT] instruction must also be designated the BSP (bootstrap processor)
as defined by the register bit in the IA32_APIC_BASE MSR.

Failure to abide by the above conditions results in the processor signaling a general
protection violation.

This instruction initiates a sequence to rendezous the RLPs with the ILP. It then clears
the internal processor flag indicating the processor is operating in a protected
partition.

In response to a message signaling the completion of rendezvous, all RLPs restart
execution with the instruction that was to be executed at the time the message
(SEXIT) initiated by GETSEC[SEXIT] was recognized. This applies to all processor
conditions, with the following exceptions:

If an RLP executed HLT and was in this halt state at the time of the message
initiated by GETSEC[SEXIT], then execution resumes in the halt state.

If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT]
causes an exit of the MWAIT state, falling through to the next instruction.

If an RLP was executing an intermediate iteration of a string instruction, then the
processor resumes execution of the string instruction at the point which the
message initiated by GETSEC[SEXIT] was recognized.

46 LaGrande Technology Architecture Specification

Safer Mode Extensions

• If an RLP is still in the SENTER sleep state (never awakened with
GETSEC[WAKEUP]), it will be sent to the wait-for-SIPI state after first clearing the
bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any pending SIPI
state. In this case, such RLPs are initialized to an architectural state consistent with
having taken a soft reset using the INIT# pin.

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active RLP
unmask the response of the external event signals INIT#, A20M, NMI#, and SMI#.
This unmasking is performed unconditionally to unblock recognition if pin event state
as potentially left blocked after a GETSEC[SENTER] or GETSEC[ENTERACCS]. The
state of A20M is unmasked to re-enable of a following behavior to the external A20M
pin state, as the A20M pin is not recognized while the protected partition is active.

On a successful exit of the protected partition, the ILP re-locks the LaGrande
Technology-capable chipset private configuration space.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next
instruction. Since EFLAGS and the debug register state are not modified by this
instruction, a pending trap condition is free to be signaled if previously enabled.

Flags Affected

None for ILP. All for RLP.

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

REX Ignored

All others Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

 If VMX mode is currently active as started with VMXON.

 If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.

 If a LaGrande Technology-capable chipset is not present.

 If a protected partition is not currently active or the processor is
currently in authenticated code mode.

 If the processor is in SMM.

LaGrande Technology Preliminary Architecture Specification 47

Safer Mode Extensions

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

 If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-bit Mode Exceptions

All protected mode exceptions apply.

48 LaGrande Technology Architecture Specification

Safer Mode Extensions

GETSEC[PARAMETERS] – Report the SMX
Parameters

Opcode Instruction Description

0F 37
(EAX=6)

GETSEC[PARAMETERS] Report the SMX Parameters

The parameters index is input in EBX with the
result returned in EAX, EBX, and ECX.

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for
features supported by the processor. Parameter information is returned in EAX, EBX,
and ECX, with the input parameter select using EBX.

Software retrieves parameter information by searching with an input index for EBX
starting at 0, and then reading the returned results in EAX, EBX, and ECX. EAX[4:0] is
designated to return a parameter type field indicating if a parameter is available and
what type it is. If EAX[4:0] is returned with 0, this designates a null parameter and
indicates no more parameters are available. Only two valid parameter types are
supported at this time (more types can readily be reported as future architectures
require).

Table 11 defines the parameter types supported in current and future
implementations.

Table 11. Supported Reporting Parameters

Parameter
Type

EAX[4:0]
Parameter
Description EAX[31:5] EBX[31:0] ECX[31:0]

0 Null Reserved (0
returned)

Reserved
(unmodified)

Reserved
(unmodified)

1 Supported AC
module versions

Reserved (0
returned)

Version
comparison
mask

Version
numbers
supported

2 Max size of
authenticated code
execution area

Multiply by 32
bytes

Reserved
(unmodified)

Reserved
(unmodified)

3 External memory
types supported
during AC mode

Memory type
bit mask

Reserved
(unmodified)

Reserved
(unmodified)

4 Selective SENTER
functionality
control

EAX[14:8]
correspond to
available
SENTER
function disable
controls

Reserved
(unmodified)

Reserved
(unmodified)

5-31 Undefined Reserved
(unmodified)

Reserved
(unmodified)

Reserved
(unmodified)

LaGrande Technology Preliminary Architecture Specification 49

Safer Mode Extensions

Supported AC module versions (as defined by the HeaderVersion field) can be
determined for a particular SMX capable processor by the type 1 parameter. Using
EBX to index through the available parameters reported by GETSEC[PARAMETERS] for
each unique parameter set returned for type 1, software can determine the complete
list of AC module version(s) supported.

For each parameter set, EBX returns the comparison mask and ECX returns the
available HeaderVersion field values supported, after AND’ing the target
HeaderVersion with the comparison mask. Software can then determine if a particular
AC module version is supported by following the pseudo-code search routine given
below:

parameter_search_index = 0;
DO
 EBX= parameter_search_index++;
 EAX= 6;
 GETSEC;
 IF (EAX[4:0] == 1)
 IF ((version_query & EBX) == ECX)
 version_is_supported = 1;
 BREAK;
 ENDIF
 ENDIF
WHILE (EAX[4:0] != 0);

If only AC modules with a HeaderVersion of 0 are supported by the processor, then
only one parameter set of type 1 will be returned, as follows: EAX = 00000001H,
EBX = FFFFFFFFH, and ECX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the
processor is reported with the parameter type of 2. The maximum supported size in
bytes is determined by multiplying the returned size in EAX[31:5] by 32. Thus, for a
maximum supported authenticated RAM size of 32KBytes, EAX returns with
00008002H.

Supportable memory types for memory mapped outside of the authenticated code
execution area are reported with the parameter type of 3. While authenticated code
execution mode is active as initiated by the GETSEC functions SENTER or ENTERACCS
and terminated by EXITAC, there are restrictions on what memory types are allowed
for the rest of system memory. It is the responsibility of the authenticated code to
initialize the memory type range register (MTRR) MSRs and/or the page attribute table
(PAT) to only map memory types consistent with the reporting of this parameter. The
reporting of supportable memory types of external memory is indicated using a bit
map returned in EAX[31:8]. These bit positions correspond to the memory type
encodings defined for the MTRR MSR and PAT programming. See Table 12.

The parameter type of 4 is used for enumerating the availability of selective
GETSEC[SENTER] function disable controls. If a 1 is reported in bits 14:8 of the
returned parameter EAX, then this indicates a disable control capability exists with
SENTER for a particular function. The enumerated field in bits 14:8 corresponds to use
of the EDX input parameter bits 6:0 for SENTER. If an enumerated field bit is set to 1,
then the corresponding EDX input parameter bit of EDX may be set to 1 to disable
that designated function. If the enumerated field bit is 0 or this parameter is not
reported, then no disable capability exists with the corresponding EDX input
parameter for SENTER and EDX bit(s) must be cleared to 0 to enable execution of
SENTER. If no selective disable capability for SENTER exists as enumerated, then the
corresponding bits in the IA32_CR_FEATURE_CONTROL MSR bits 14:8 must also be
programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is required

50 LaGrande Technology Architecture Specification

Safer Mode Extensions

to enable future extensibility of SENTER selective disable capability with respect to
potentially separate software initialization of the MSR.

Table 12. External Memory Types Supported Using Parameter 3

EAX bit position
Memory type for external non-AC
module memory

8 Uncacheable (UC)

9 Write combining (WC)

11:10 Reserved

12 Write-through (WT)

13 Write-protected (WP)

14 Write-back (WB)

31:15 Reserved

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given SMX
capable processor, then default parameter values should be assumed. These are
defined in Table 13.

Table 13. Default Parameter Values

Parameter type
EAX(4:0) Parameter description Default setting

1 Supported AC module versions 0.0 only

2 Authenticated code execution area size 32 KBytes

3 External memory types supported during
AC mode

UC only

4 Available SENTER function selective
disable controls

None

Flags Affected

None.

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

REX Ignored

All others Ignored

LaGrande Technology Preliminary Architecture Specification 51

Safer Mode Extensions

Protected Mode Exceptions

#UD IF CR4.SMXE = 0.

 If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Real-Address Mode Exceptions

#UD IF CR4.SMXE = 0.

 If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Virtual-8086 Mode Exceptions

#UD IF CR4.SMXE = 0.

 If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-bit Mode Exceptions

All protected mode exceptions apply.

52 LaGrande Technology Architecture Specification

Safer Mode Extensions

GETSEC[SMCTRL] – SMX mode control

Opcode Instruction Description

0F 37
(EAX=7)

GETSEC[SMCTRL] Perform specified SMX mode control as selected
with the input EBX.

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific
mode control operations. The operation to be performed is selected through the input
register EBX. Currently only an input value in EBX of 0 is supported. All other EBX
settings will result in the signaling of a general protection violation instead.

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events after they
have been previously masked by the GETSEC[SENTER] instruction for the initiating
logical processor (ILP) or the LT bus event initiated by GETSEC[SENTER] for
responding logical processors (RLPs). The determination of when this instruction is
allowed and the events that are unmasked is dependent on the processor context (See
Table 14). For brevity, the usage of SMCTRL where EBX=0 will be referred to as
GETSEC[SMCTRL(0)].

As part of support for the protected partition, the events SMI, NMI, and INIT are
masked after an SENTER operation, remain masked after EXITAC, until unmasked as
managed in VMX mode after a subsequent VMX environment has been established. In
this case it is not desired to allow events to be unmasked until a secure means for
handling events under a virtual machine environment can be established. In this case
the VMX monitor may wish to also enable the handling of SMI events with a separate
dedicated SMM transfer monitor (STM). This envisioned usage model does not require
the use of GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment
launch is handled implicitly and through separate VMX based controls. If a dedicated
SMM transfer monitor will not be established after VMX mode is enabled, then
GETSEC[SMCTRL(0)] can be used to re-enable SMI that has been masked as a result
of SENTER.

To define the processor context in which GETSEC[SMCTRL(0)] can be used and which
events that will be unmasked, the following table is defined. Note that the events that
are unmasked is dependent upon the currently operating processor context.

Table 14. Supported Reporting Parameters

Processor mode SMCTRL execution action

not post-SENTER #GP(0), invalid context

in authenticated code
execution mode

#GP(0), invalid context

post-SENTER, not in VMX
mode, not in SMM

Unmask SMI

VMX mode, SMM root #GP(0), invalid context

VMX mode, guest If (GETSEC-exiting=1) then VM exit else #GP(0)

VMX mode, non-SMM root If SMM transfer monitor is not configured then unmask SMI else
#GP(0)

LaGrande Technology Preliminary Architecture Specification 53

Safer Mode Extensions

Flags Affected

None

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

REX Ignored

All others Ignored

Protected Mode Exceptions

#UD IF CR4.SMXE=0.

 If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE=0 or CPL>0 or EFLAGS.VM=1.

 If a protected partition is not currently active or the processor is
currently in authenticated code mode.

 If not in VMX mode.

 If the processor is in SMM.

 If the STM is configured.

Real-Address Mode Exceptions

#UD IF CR4.SMXE=0.

 If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD IF CR4.SMXE=0.

 If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-bit Mode Exceptions

All protected mode exceptions apply.

54 LaGrande Technology Architecture Specification

Safer Mode Extensions

GETSEC[WAKEUP] – Wake up sleeping processors
in protected partition session

Opcode Instruction Description

0F 37
(EAX=8)

GETSEC[WAKEUP] Signals a wake-up bus message to all
processors in the SENTER sleep state.

Description

The GETSEC[WAKEUP] instruction broadcasts a wake-up message to all logical
processors currently in the SENTER sleep state. Responding logical processors (RLPs)
enter the SENTER sleep state after completion of a rendezvous sequence. They do this
in response to the execution of GETSEC[SENTER] from the initiating logical processor
(ILP).

The GETSEC[WAKEUP] instruction may only be executed:

1. in a protected partition session as initiated by execution of GETSEC[SENTER],

2. outside of authenticated code execution mode.

3. in protected mode at privilege level 0, while not in SMM or VMX operation.

4. In addition, the logical processor must be designated as the boot-strap processor
as configured by setting IA32_APIC_BASE.BSP = 1.

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a
general protection violation.

In response to wake up signaling, processors in the SENTER sleep state vector to the
entry point defined by the JOIN data structure pointed to by LT.MVMM.JOIN. This
register is publicly writable in the chipset by all processors and is not restricted by
LaGrande Technology configuration register lock status. The format of the JOIN data
structure is defined in Table 7.

The JOIN based data structure contains the information necessary initialize RLP
processor state so that the processor may join a protected partition. The GDTR, EIP,
and CS, DS, SS, and ES selector values are initialized from the contents in the data
structure. The CS selector index is derived directly from the segment selector
initializer field; while DS, SS, and ES selectors are initialized to CS+8. The segment
descriptor fields are initialized implicitly with BASE = 0, LIMIT = FFFFFH, G = 1,
D = 1, P = 1, S =1; read/write/accessed for DS, SS, and ES, while
execute/read/accessed for CS.

It is the responsibility of external software to establish a GDT pointed to by the JOIN
data structure. The GDT must contain descriptor entries consistent with the implicit
settings initialized by the processor. Certain states held in Table 7 are consistency
checked by the processor prior to execution. A failure of a consistency check results in
the RLP aborting entry to the protected partition and the signaling of a LaGrande
Technology shutdown. The checks performed are documented in the SENTER
operation description. After successful completion of processor consistency checks and
subsequent initialization, execution in the protected partition for the RLP begins from
the defined linear IP entry point at offset 12, as indicated in Table 7.

LaGrande Technology Preliminary Architecture Specification 55

Safer Mode Extensions

Flags Affected

None.

Use of Prefixes

REP, REPNE Causes #UD

Operand size Causes #UD

Lock Causes #UD

REX Ignored

All others Ignored

Protected Mode Exceptions

#UD IF CR4.SMXE = 0.

 If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

 If VMX mode is currently active as started with VMXON.

 If a protected partition is not currently active or the processor is
currently in authenticated code mode.

 If the processor is in SMM.

 If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.

 If a LaGrande Technology-capable chipset is not present.

Real-Address Mode Exceptions

#UD IF CR4.SMXE = 0.

 If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD IF CR4.SMXE = 0.

 If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-bit Mode Exceptions

All protected mode exceptions apply.

§

56 LaGrande Technology Architecture Specification

Safer Mode Extensions

LaGrande Technology Preliminary Architecture Specification 57

LaGrande Technology Shut-Down

3 LaGrande Technology Shut-
Down

3.1 Reset Conditions

When a LaGrande Technology shutdown condition occurs, the processor writes an
error code indicating the reason for the failure to the LT.ERRORCODE register. It then
writes to the LT.CMD.SYS-RESET command register, initiating the message that
causes a platform reset. After the write to LT.CMD.SYS-RESET; the processor enters a
shutdown sleep state with all external pin events, bus or error events, machine check
signaling, and MONITOR/MWAIT event signaling masked. Only the assertion of reset
back to the processor takes it out of this sleep state. The LaGrande Technology error
code register is not cleared by the platform reset; the error code should be accessible
after shutdown has occurred for subsequent diagnostics.

LT-shutdown can be generated by the processor as part of execution of certain
GETSEC leaf functions (for example: ENTERACCS, EXITAC, SENTER, SEXIT), where
recovery from an error condition is not considered reliable. This situation should be
interpreted as an abort of the authenticated execution or protected environment
launch.

A legacy IA-32 triple-fault shutdown condition is also converted to a LaGrande
Technology shutdown sequence if the triple-fault shutdown occurs during
authenticated code execution mode or while the protected environment is active. The
same is true for other legacy non-SMX specific fault shutdown error conditions. Legacy
shutdown to LaGrande Technology shutdown conversions are defined as the mode of
operation between:

•

•

Execution of the GETSEC functions ENTERACCS and EXITAC

Recognition of the message signaling the beginning of the processor rendezvous
after GETSEC[SENTER] and the message signaling the completion of the processor
rendezvous

There is a special case. If the processor is in VMX operation while the protected
environment is active, a triple-fault shutdown condition that causes a guest exiting
event back to the Virtual Machine Monitor (VMM) supersedes conversion to the
LaGrande Technology shutdown sequence. In this situation, the VMM remains in
control after the error condition that occurred at the guest level and there is no need
to abort processor execution.

Given the above situation; if the triple-fault shutdown occurs at the root level of the
VMM or a VMX abort is detected, then a LaGrande Technology shutdown sequence is
signaled. For more details on a VMX abort, see Chapter 23, “VM Exits,” in the IA-32
Intel Architecture Software Developer’s Manual, Volume 3B® .

58 LaGrande Technology Architecture Specification

LaGrande Technology Shut-Down

3.2 ERRORCODE Register

Table 15 lists the format of the LT.ERRORCODE register. The processor uses this
format when reporting of the error code in a LaGrande Technology shutdown
sequence. The processor always reports the error code in bits 0:15, with bit 31 set to
1 to indicate a valid error code. Bit 30 is cleared to 0, indicating that the error is
reported by the processor.

Table 15. LT.ERRORCODE Register Bit Format

Bit Name Description

0:15 Type This is implementation and source specific. Provides details on what
the step was being performed when a failure condition was detected.

16:29 Reserved Reserved. Must be written with zeros.

30 Processor/
External

0 = Error condition reported by processor.

1 = Error condition reported by external software.

31 Valid/Invalid 0 = Register content invalid.

1 = Valid error.

Table 16 defines LaGrande Technology shutdown error types reported by hardware.
Some error types are only relevant to certain leafs, based on the operations
performed.

For LaGrande Technology shutdown conditions induced by external software, the
external software (the AC module or MVMM) must write directly to the LT.ERRORCODE
and LT.CMD.SYS-RESET registers. Bit 30 of the LT.ERRORCODE register must be
written with a 1. Bits 0:15 should be interpreted as software defined and do not need
to comply with the definitions in Table 16.

Table 16.Type Field Encodings for Processor-Initiated LaGrande Technology Shutdowns

Type Error condition Mnemonic

0 Legacy shutdown #LegacyShutdown

1-4 Reserved Reserved

5 Load memory type error in
Authenticated Code Execution
Area

#BadACMMType

6 Unrecognized AC module format #UnsupportedACM

7 Failure to authenticate #AuthenticateFail

8 Invalid AC module format #BadACMFormat

9 Unexpected snoop hit detected #UnexpectedHITM

10 Invalid event #InvalidEvent

11 Invalid JOIN format #BadJOINFormat

12 Unrecoverable machine check
condition

#UnrecovMCError

LaGrande Technology Preliminary Architecture Specification 59

LaGrande Technology Shut-Down

Type Error condition Mnemonic

13 VMX abort #VMXAbort

14 Authenticated Code Execution
Area corruption

#ACMCorrupt

15 Invalid voltage/bus ratio #InvalidVIDBRatio

16 – 65535 Reserved

§

60 LaGrande Technology Architecture Specification

LaGrande Technology Shut-Down

LaGrande Technology Preliminary Architecture Specification 61

DMA Page Protection

4 DMA Page Protection

This chapter describes the core logic chipset feature that protects data in the memory
sub-system of a platform, as memory can be accessed by both the processor(s) and
chipset.

4.1 Overview of DMA Page Protection

The processor, using its own protection tables, is responsible for protecting pages in
memory from unauthorized access by software. The chipset is responsible for
protecting some pages of memory from access by bus master devices. Pages
designated as protected must not be read or written by bus masters.

The pages in memory to be protected are indicated in the Memory Protection Table
(MPT). This table will include an indication for each page in physical memory
supported by the platform.

Theoretically, the memory controller must check the MPT table for each read or write
by a bus master. Such an extra check would add significant load latency on the
memory I/F and degrade performance. To prevent degradation, the chipset may
employ caching mechanisms to reduce the number of memory read cycles required to
check MPT table entries. The chipset may include a small cache that tracks pages that
have been recently accessed. If I/O transactions by bus masters are linear, then the
cache will have a high hit rate.

The exact number of entries required for the cache is specific to the chipset and
beyond this specification’s scope. Software is required to assist with the hardware
caching by issuing commands to the chipset changing entries in the MPT table. See
Requirements for Software support of MPT for details on the software requirements for
managing the cache.

The chipset must also protect the MPT. This is necessary because a DMA device could
write invalid entries to the MPT when the MPT is initialized. To prevent this type of
attack, the chipset must not all bus master writes to the MPT once the LaGrande
Technology launch process locks the table.

4.2 Requirements for Software support of MPT

The authenticated code module must load the MPT table initially protecting no physical
addresses. As the authenticated code module loads the MPT and loads and measures
the VMM, the MPT must ensure that each physical page is appropriately indicated in
the MPT.

§

62 LaGrande Technology Architecture Specification

DMA Page Protection

LaGrande Technology Preliminary Architecture Specification 63

Authenticated-Code Module

Appendix A Authenticated-Code
Module

A.1 Authenticated-Code Module Format

The format of the authenticated-code module is in Table 17. This definition represents

Revision 0.0 of the AC module header version (defined in the HeaderVersion field).

Table 17. Authenticated Code Module Format

Field Offset

Size

Description

ModuleType 0 4 Module type

HeaderLen 4 4 Header length (dwords)

(fixed to 161 for version 0.0)

HeaderVersion 8 4 Module format version

ModuleID 12 4 Module release identifier

ModuleVendor 16 4 Module vendor identifier

Date 20 4 Creation date (BCD format:
year.month.day)

Size 24 4 Module size (dwords)

Reserved1 28 4 Reserved for future extensions

CodeControl 32 4 Authenticated code control flags

ErrorEntryPoint 36 4 Error response entry point offset (bytes)

GDTLimit 40 4 GDT limit (defines last byte of GDT)

GDTBasePtr 44 4 GDT base pointer offset (bytes)

SegSel 48 4 Segment selector initializer

EntryPoint 52 4 Authenticated code entry point offset
(bytes)

Reserved2 56 64 Reserved for future extensions

KeySize 120 4 Module public key size less the exponent
(dwords)

(KeySize = 64 for HeaderVersion = 0.0

64 LaGrande Technology Architecture Specification

Authenticated-Code Module

Field Offset

Size

Description

ScratchSize 124 4 Scratch field size (dwords)

(ScratchSize = 2 * KeySize + 15 for
HeaderVersion = 0.0)

RSAPubKey 128 KeySize * 4 +
4

Module public key

RSASig 388 256 PKCS #1.5 RSA Signature.

Scratch 644 ScratchSize * 4 Internal scratch area used during
initialization (needs to be all 0s)

User Area 1216 N * 64 User code/data (modulo-64 byte
increments)

•

•

•

•

•

•

ModuleType

Indicates the module type. The following module types are defined:

2 = Chipset authenticated code module.

Only ModuleType 2 is supported by GETSEC functions SENTER and ENTERACCS.

HeaderLen

Length of the authenticated module header specified in 32-bit quantities. The
header spans the beginning of the module to the end of the signature field. This is
fixed to 161 for loader version 0.0.

HeaderVersion

Specifies the AC module header version. A major and minor vendor field are
specified, with bits 15:0 holding the minor value and bits 31:16 holding the major
value. This should be initialized to zero for header version 0.0. Unsupported
header versions will be rejected by the processor and result in an abort during
authentication.

ModuleID

Module specific identifier.

ModuleVendor

Module creator vendor ID. Use the PCI SIG assignment for vendor IDs to define
this field. The following vendor ID is currently recognized:

00008086H = Intel

Date

Creation date of the module. Encode this entry in the BCD format as follows:
yr.mo.day with two bytes for the year, one byte for the day, and one byte for the
month. For example, a value of 20040328H indicates module creation on March
28, 2004.

LaGrande Technology Preliminary Architecture Specification 65

Authenticated-Code Module

•

•

•

•

•

•

•

•

Size

Total size of module in dwords. This includes the header, scratch area, user code
and data.

Reserved1

Reserved. This should be initialized to zeros.

CodeControl

Authenticated code control word. Defines specific actions or properties for the
authenticated code module. The following bits are currently defined:
⎯ 0 = Valid error entry point defined.
⎯ 1 = Enable error reporting on detection of a snoop hit to a modified line during

the load of an authenticated code module.
⎯ 2 = Reserved. Setting of reserved bits may result in a LaGrande Technology

shutdown condition.
⎯ 3 = Enable error reporting on detection of a snoop hit to a modified line during

authenticated code execution. If this bit is set, the occurrence of a HITM event
results in an LaGrande Technology shutdown condition.

⎯ 4:31 = Reserved. Initialize to 0s. Failure to do so may result in an abort of the
authentication process and signaling of a LaGrande Technology shutdown
condition.

ErrorEntryPoint

Error entry point. If bit 0 of the CodeControl word is 1, the processor will vector to
this location if a snoop hit to a modified line was detected during the load of an
authenticated code module. If bit 0 is 0, then enabled error reporting via bit 1 of a
HITM during ACRAM load will result in an abort of the authentication process and
signaling of a LaGrande Technology shutdown condition.

GDTLimit

Limit of the GDT in bytes, pointed to by GDTBasePtr. This is loaded into the limit
field of the GDTR upon successful authentication of the code module.

• GDTBasePtr

Pointer to the GDT base. This is an offset from the authenticated code module
base address.

SegSel

Segment selector for initializing CS, DS, SS, and ES of the processor after
successful authentication. CS is initialized to SegSel while DS, SS, and ES are
initialized to SegSel + 8.

EntryPoint

Entry point into the authenticated code module. This is an offset from the module
base address. The processor begins execution from this point after successful
authentication.

Reserved2

Reserved. Should contain zeros.

66 LaGrande Technology Architecture Specification

Authenticated-Code Module

•

•

•

•

•

•

KeySize

Defines the width the RSA public key in dwords applied for authentication, less the
size of the exponent. For version 0.0 of the AC module header, KeySize is defined
to 64 (a 2048 bit key). The information in this field is intended to support external
software parsing of an AC module independent of the module version. It is the
responsibility of the developer to reflect an accurate KeySize. This field is not
checked for consistency by the processor.

ScratchSize

Defines the width of the scratch field size in dwords. For version 0.0 of the AC
module header, ScratchSize is defined by KeySize * 2 + 15. The information in
this field is intended to support external software parsing of an AC module
independent of the module version. It is the responsibility of software to reflect an
accurate ScratchSize. This field is not checked by the processor.

RSAPubKey

Contains a public key plus a fixed 32-bit exponent to be used for decrypting the
signature of the module. The size of this field is defined by the previously defined
AC module field, KeySize + 1 dwords.

RSASig

The PKCS #1.5 RSA Signature of the module. The RSA Signature signs an area
that includes the some of the module header and the USER AREA data field (which
represents the body of the module). Parts of the module header not included are:
the RSA Signature, public key, and scratch field.

Scratch

Used for temporary scratch storage by the processor during authentication. This
area can be used by the user code during execution for data storage needs. The
area must be initialized to zero before being loaded by ENTERACCS or SENTER.

After successful authentication of an AC module, the first 20 bytes of the scratch
area (offset bytes 644 - 663) contains the computed hash of the module as
represented by the encrypted version held in RSASig field. The contents for other
locations of the scratch field after authentication are undefined and should not be
relied upon by AC module.

User Area

User code and data, represented in modulo-64 byte increments. In addition, the
boundary between data and code should be on at least modulo-1024 byte
intervals. The user code and data region is allocated from the first byte after the
end of the Scratch field to the end of the AC module.

LaGrande Technology Preliminary Architecture Specification 67

Authenticated-Code Module

A.1.1 Authenticated code module restrictions

Operation in authenticated code execution mode has restrictions. This mode is defined
as being active from the first instruction executed after launch of the authenticated
code module with the GETSEC leafs SENTER or ENTERACCS, until exiting of
authenticated mode upon completion of GETSEC[EXITAC]. Not all restrictions are
enforced by the processor.

It is up to the authenticated code module developer to avoid instructions or operations
specified here to prevent conflicts that may interfere with processor operation or the
integrity of the isolated execution environment.

A.1.2 Bus snoop restrictions

During the load of an authenticated code module or while authenticated execution is
active, processor response to bus snoop hits to modified lines is changed from the
legacy processor architecture operation. The behavior in this regard is controlled by
the CodeControl field of the AC module header defined in Section A.1 This
modification only applies to HITM assertions (bus snoop hit of a modified cache line)
by another physical processor for a bus transaction initiated for one’s own processor.

Three distinct actions are supported by the processor in response to an HITM event
during the loading of the AC module:

1. The processor behaves normally with no change from legacy functionality. This
condition is established if bit 1of the CodeControl word is 0.

2. The processor begins execution entry in the AC module after loading and
successful authentication using the AC module header defined ErrorEntryPoint
field. This condition is enabled if the CodeControl word bit 0 is 1, and bit 1 is 1.

3. The processor performs a LaGrande Technology shutdown action. This condition is
enabled if the CodeControl word bit 0 is 0 and bit 1 is 1, implying no valid
ErrorEntryPoint exists, yet HITM error reporting is enabled during an AC module
load.

Once an AC module has been loaded and successfully authenticated, the code module
is capable of performing bus transactions to addresses outside of the AC module
address range. For external memory transactions that result in a HITM response from
another physical processor, two response options are supported:

1. The processor behaves normally with no change from legacy functionality. This
condition is established if bit 3 of the CodeControl word is cleared to 0.

2. The processor performs a LaGrande Technology shutdown action. This condition is
enabled if the CodeControl word bit 3 is set to 1.

In the case of a signaled LaGrande Technology shutdown in response to a HITM event,
this will take place on the next instruction boundary from when the event is detected
on the external bus. Given the speculative nature of the processor execution and
pipeline depth, an indeterminate delay may exist from the instruction that has directly
or indirectly invoked the bus transaction being snooped to the instruction boundary
where the event is recognized.

68 LaGrande Technology Architecture Specification

Authenticated-Code Module

A.1.3 Memory type cacheability restrictions

Prior to launching the authenticated execution environment using the GETSEC leaf
functions ENTERACCS or SENTER, processor MTRRs (Memory Type Range Registers)
must first be initialized to map out the authenticated RAM addresses as WB (write-
back). Failure to do so may affect the ability for the processor to maintain isolation of
the loaded authenticated code module. The processor may signal a LaGrande
Technology shutdown condition with error code #BadACMMType during the loading of
the authenticated code module if non-WB memory is detected.

Once the authenticated code module has been successfully loaded and executed, it is
also the responsibility of the authenticated code module developer to properly map
the memory type for all physical address references, including those outside of the
module boundaries. While physical addresses within the load module must be mapped
as WB, the memory type for locations outside of the module boundaries must be
mapped to the more restrictive UC (uncacheable) setting by default. The default
setting of UC for non-AC module related addresses is required to support inter-
operability across SMX capable processor implementations.

Processor support for other memory types is enumerated through the GETSEC leaf
function PARAMETERS (index 6) with the parameter type 3. The supportable memory
types are reported through this parameter if available. If this parameter is unavailable
for a given SMX capable processor, than only the UC memory type for non-AC module
addresses may be assumed.

Given the restrictions on the use of cache disable control operations and flushing
instructions in authenticated code execution mode, care must be taken in respect to
how memory type settings are changed from within this mode. This is necessary to
avoid potential cache coherency issues that could come about due to aliasing of
different memory types.

After entering authenticated code execution mode, the AC module should first
determine the current memory type settings and determine their conformance to the
requirements just given. This may also involve the use of the GETSEC[PARAMETERS]
function to verify the memory types mapped for non-AC module addresses is also in
compliance. Out-of-compliance memory type settings are best corrected by proper
initialization of the MTRRs ahead of the AC module launch, so that such settings do
not have to be reprogrammed from within the more restrictive AC module
environment. It is recommended that if an out-of-compliance memory type
configuration is detected by the AC module, that it should treat such a condition as an
error and abort further execution.

§

LaGrande Technology Preliminary Architecture Specification 69

Appendix B: SMX Interaction with Platform

Appendix B Appendix B: SMX
Interaction with
Platform

B.1 LaGrande Technology Configuration
Registers

LaGrande Technology configuration registers are a subset of chipset registers. These
registers are mapped into two regions of memory, representing the public and private
configuration spaces. Registers in the private space can only be accessed after a
protected environment has been established and before the LT.CMD.CLOSE-PRIVATE
command has been given. The private space registers are mapped to the address
range starting at FED20000H. The public space registers are mapped to the address
range starting at FED30000H. All registers are defined as 64 bits and return 0’s for the
unimplemented bits. The offsets in the table are from the start of either the public or
private spaces. See Table 18.

Table 18. Configuration Registers Relevant to MVMM

Offset Name Description

000H LT.STS This is the general status register. This read-only
register is used by AC modules and the MVMM to
get the status of various LT features. The bits in
LT.STS are defined in Table 19.

Public: RO

Private: RO

030H LT.ERRORCODE Holds the LaGrande Technology shutdown error
code. The encoding for this is documented in Table
16. A system reset does not clear the contents of
this register.

Public: RO

Private: RW

038H LT.CMD.SYS-RESET A write to this register causes a system reset. This
is performed by the processor as part of a
LaGrande Technology shutdown, after writing to
the LT.ERRORCODE register.

Public: -

Private: WO

70 LaGrande Technology Architecture Specification

Appendix B: SMX Interaction with Platform

Offset Name Description

040H LT.CMD.OPEN-PRIVATE A write to this register causes the LaGrande
Technology-capable chipset private configuration
space to be unlocked. Once unlocked, conventional
memory read/write operations can be used to
access these registers.

Public: -

Private: WO

048H LT.CMD.CLOSE-
PRIVATE

A write to this register causes the LaGrande
Technology-capable chipset private configuration
space to be locked. Once locked, conventional
memory read/write operations can no longer be
used to access these registers.

Public: -

Private: WO

258H LT.CMD.FLUSH-WB Writing to this register flushes the chipset write
buffers. The MVMM writes to this register as part
of the NoDma table update sequence.

Public: -

Private: WO

260H LT.NODMA.BASE This register contains the physical base address of
the NoDma table. The value in this register is set
by BIOS.

Public: RW

Private: RW

268H LT.NODMA.SIZE This register contains a value which indicates the
size of the NoDma Table. The values are 0=128K,
1=256K, 2=512K, etc.

Public: RO

Private: RO

270H LT.SINIT.BASE This register contains the physical base address of
the memory region set aside by the BIOS for
loading an SINIT AC module. The guest OS reads
this register to locate the SINIT module (which
may have been loaded by the BIOS) or to find a
location to load the SINIT module.
Public: RW
Private: RW

278H LT.SINIT.SIZE This register contains the size in bytes of the
memory region set aside by the BIOS for loading
an SINIT AC module. This register is initialized by
the BIOS. The MVMM may read this register when
loading an SINIT module.
Public: RW
Private: RW

LaGrande Technology Preliminary Architecture Specification 71

Appendix B: SMX Interaction with Platform

Offset Name Description

290H LT.MVMM.JOIN Holds a physical address pointer to the base of the
join data structure referenced by RLPs in response
to a SIPI while operating between SENTER and
SEXIT.

Public: RW

Private: RW

300H LT.HEAP.BASE This register contains the size in bytes of the LT
Heap memory region. The BIOS initializes this
registers. The guest OS and the MVMM read this
register to determine the LT heap size.

Public: RW

Private: RW

308H LT.HEAP.SIZE This register contains the size in bytes of the LT
Heap memory region. The BIOS initializes this
register. The system software and the MVMM read
this register to determine the LT Heap size.

Public: RW

Private: RW

8E0H LT.CMD.SECRETS Writing to this register indicates to the chipset that
there are secrets in memory. The chipset tracks
this fact with a sticky bit. If the platform reboots
with this sticky bit set the SCLEAN AC module will
scrub memory. The chipset also uses this bit to
detect invalid sleep state transitions. If software
tries to transition to S3 or S4 while secrets are in
memory then the chipset will reset the system.
The MVMM issues the LT.CMD.SECRETS prior to
placing secrets in memory for the first time.
Software should read the LT.STS register after
issuing this command. The read of the LT.STS
register ensures that any successive chipset
accesses will occur with the secrets bit set.

Public: -

Private: WO

8E8H LT.CMD.NO-SECRETS Writing to this register indicates there are no
secrets in memory. The MVMM will write to this
register after removing all secrets from memory as
part of the LT teardown process. Software should
read the LT.STS register after issuing this
command. The read of the LT.STS register ensures
any subsequent chipset accesses dependent on the
state of the SECRETS bit actually observe the
secrets bit clear.

Public: -

Private: WO

72 LaGrande Technology Architecture Specification

Appendix B: SMX Interaction with Platform

Offset Name Description

8F0H LT.E2STS This register is used to read the status associated
with various errors that might be detected. The
bits in this register are only valid if the LT.WAKE-
ERROR.STS bit is set in the LT.ESTS register.

Public: RO

Private: RW

Table 19. LT.STS Bit Definitions

Bit Access Name Comment

11 RO LT.MEM-CONFIG-
OK.STS

This bit indicates whether the chipset has received and
accepted the LT.CMD.MEM-CONFIG-CHECKED LT
command. This bit is cleared by PCI reset or by the
LT.CMD.UNLOCK-MEM-CONFIG command.

0: Indicates that memory configuration checking has
not been performed.

1: Indicates that memory configuration checking has
been performed. This bit is set to one when the
chipset accepts the LT.CMD.MEM-CONFIG-CHECKED
LT command.

10 RO LT.NODMA-TABLE-
PROTECT.STS

Will be set to 1 when the LT.CMD.NODMA-TABLE-
PROTECT.EN is performed.

Cleared by LT.CMD.NODMA-TABLE-PROTECT.DIS or by
a system reset.

9 RO LT.NODMA-
CACHE.STS

Will be set to 1 when the LT.CMD.NODMA-CACHE.EN is
performed.

This bit is cleared by LT.CMD.NODMA-CACHE.DIS or by
a system reset.

8 RO Reserved Reserved

7 RO LT.PRIVATE-
OPEN.STS

This bit will be set to 1 when the LT.CMD.OPEN-
PRIVATE is performed.

This bit cleared by the LT.CMD.CLOSE-PRIVATE or by a
system reset.

6 RO LT.MEM-CONFIG-
LOCK.STS

This bit will be set to 1 when the memory configuration
has been locked.

This bit is cleared by LT.CMD.UNLOCK.MEMCONFIG or
by a system reset.

5 RO LT.NODMA-EN.STS This bit will be set to 1 when the NoDMA table is
protecting main memory from bus master access.

This bit is cleared by the LT.CMD.NODMA.DIS or by a
system reset.

LaGrande Technology Preliminary Architecture Specification 73

Appendix B: SMX Interaction with Platform

Bit Access Name Comment

4 RO LT.MEM.
UNLOCK.STS

This bit will be set to 1 when the memory has been
unlocked using the LT.CMD.UNLOCK-MEMORY command
or after a normal reset when no LT environment was in
place prior to the reset. When this bit is ‘1’, memory
may be accessed by CPU cycles.

This bit will be cleared after a reset when there might
have been secrets in memory before the reset.

This bit must be set if a read to 0xFED4_0000 returns a
‘1’ in bit 0.

3:2 RO reserved (0)

1 RO SEXIT.DONE.
STS

This bit is set when all of the bits in the
LT.THREADS.JOIN register are clear 0. Thus, this bit
will be set immediately after reset (since the bits are all
0).

Once all threads have done the LT.CYC.SEXIT-ACK, the
LT.THREAD.JOIN register will be 0, so the chipset will
set this bit.

0 RO SENTER.DONE.
STS

The chipset sets this bit when it sees all of the threads
have done the LT.CYC.SENTER-ACK.

When any of the threads does the LT.CYC.SEXIT-ACK
the LT.THREADS.JOIN and LT.THREADS.EXISTS
registers will not be equal, so the chipset will clear this
bit.

A processor issued hash operation to TPM locality 4 using a write to the
TPM.HASH.START port causes an implicit opening of locality 4 for processor hardware
based accesses. This stays in effect until the issuing of a subsequent TPM.HASH.END
to terminate the hash data write sequence and update the contents of PCR17. No
status read check of the TPM is performed by the processor GETSEC[SENTER]
instruction ahead of the TPM.HASH write sequence. If the TPM is not in acquiesced
state at this time, then the PCR17-20 reset and hash registration to PCR17 may not
succeed. To insure reliable system software functionality for TPM support, it is
recommended that the GETSEC[SENTER] instruction only be executed once the TPM
has acquiesced and ownership has been established in the context of the SENTER
initiating process.

B.2 Platform Configuration Registers

The TPM contains Platform Configuration Registers (PCR). The purpose of a PCR is to
contain measurements. From a TPM standpoint, the TPM does not care what entity
uses a PCR to store a measurement.

The TPM provides two types of PCRs, static and dynamic. Static PCRs only reset on
system reset; dynamic PCRs reset upon request. Static PCRs are in use by the static
root of trust for measurement (SRTM). In the PC, the RTM is the BIOS boot block. The
dynamic PCRs are in use by the dynamic root of trust for measurement (DRTM). In
the PC, the DRTM is the process initiated by GETSEC[SENTER].

74 LaGrande Technology Architecture Specification

Appendix B: SMX Interaction with Platform

A PC TPM requires 24 PCRs. The first 16 are static PCRs and the last eight are dynamic
PCRs. LaGrande Technology uses four of the dynamic PCRs to keep track of the MVMM
environment. The current mapping identifies PCR17, 18, 19, and 20 as the LaGrande
Technology PCRs.

All PCRs, static or dynamic, have the same size and same updating mechanism. The
size is 160 bits. This size allows the PCRs to contain a hash digest value. Storing a
measurement value in the PCRs involves a TPM_Extend operation.

B.3 LT Device Space
There are several memory ranges within LT address space provided to access LT
related devices. The first range is 0xFED4_xxxx which is divided up into 16 pages.
Each page in the FED4 range has specific access attributes. A page in this region may
be accessed by LT cycles only, by LT cycles and via private space, or by LT cycles,
private and public space.

Address Range Device Port

FED4 0xxxh TPM, Locality 0 (fully public)

FED4 1xxxh TPM, Locality 1 (reserved for future use)

FED4 2xxxh TPM, Locality 2 (MVMM access only)

FED4 3xxxh TPM, Locality 3 (AC modules access only)

FED4 4xxxh TPM, Locality 4 (Hardware or microcode access only)

All others Reserved

The first five pages of the 0xFED4_xxxx region are used for TPM access. Each page
represents a different ‘locality’ to the TPM. Locality is an attribute used by the TPM to
define how it treats certain transactions. Locality is defined by the address range used
for commands sent to the TPM. All Intel chipsets must support all localities. Localities
0 and 6 are considered public and accesses to these localities are accepted by the
chipset under all circumstances. Accesses to locality 0 and 6 are sent to the ICH even
if LT is disabled, there has been no SENTER, or Private space is closed. Localities 4
and 5 are never open, but may only be accessed with LT cycles on the FSB. Localities
2 and 7 through 15 are always open from a locality perspective, but are in Private
space so that LT.CMD.OPEN-PRIVATE must have been done for the cycles to be sent
to ICH as LT cycles. There are LT commands that will OPEN localities 1 and 3.
Localities 1-3 and 7-F require that both LocalityX.OPEN (locality 2, 7-F are always
OPEN) and LT.CMD.OPEN-PRIVATE be done before allowing accesses in that range to
be accepted. At reset, localities 1 and 3 are closed.

The MVMM must prevent guest access to certain localities by preventing the guests
from creating virtual to physical mappings to these localities. Specifically the MVMM
must prevent guest access to locality 2. The hardware will prevent guest accesses to
localities 4 and 5 so the MVMM does not need to prevent guest mappings to these
regions. The MVMM must also prevent guest accesses to the trusted device ranges,
0xFED4Bxxx and 0xFED4Cxxx.

LaGrande Technology Preliminary Architecture Specification 75

Appendix B: SMX Interaction with Platform

Table 20. Locality 4 TPM Device Space

Address Name Description

FED44020H TPM.HASH.END Signals the end of a hash data write sequence to the TPM
input buffer written using the TPM.HASH.DATA port. A
hash is computed of the contents in the TPM input buffer
and updated in PCR17.

FED44024H TPM.HASH.DATA Data is written to this port that the TPM is to hash.

FED44028H TPM.HASH.START Signals the start of a new hash data write sequence to
the TPM written via the TPM.HASH.DATA port. This also
causes an implicit reset of PCR17-20 and clearing of the
TPM input buffer.

§

76 LaGrande Technology Architecture Specification

Appendix B: SMX Interaction with Platform

LaGrande Technology Preliminary Architecture Specification 77

Appendix C: LT Heap Memory

Appendix C Appendix C: LT Heap
Memory

LT Heap memory is a region of physically contiguous memory which is set aside by
firmware for the use of LT hardware and software. The system software that launches
the protected environment passes data to both the SINIT module and the launched
monitor using LT Heap memory. The system software is responsible for filling in the
table contents prior to executing the SENTER instruction. An incorrect format or
incorrect content of this table or tables described by this table will result in failure to
launch the protected environment.

Table 21. LT Heap

Offset Length Name Description

0x0 0x8 BiosOsDataSize Size in bytes of the LT specific
data passed from the BIOS to
the OS for the purposes of
launching OS the MVMM. This
size includes the number of
bytes for this field, so this field
cannot be less than a value of
8. Note 1.

0x8 BiosOsDataSi
ze-0x8

BiosOsData BIOS specific data. This data
is not defined in this
document. The format of this
data must follow that
prescribed in the SINIT-AC
module specification.

BiosOsDataSize 0x8 OsMvmmDataSize Size in bytes of the data
passed from the launching OS
to the MVMM. This size
includes the number of bytes
for this field, so this field
cannot be less than a value of
8. Note 1.

BiosOsDataSize +
0x8

OsMvmmData
Size – 0x8

OsMvmmData OS specific data. Format of
data in this field is considered
OS vendor specific. Note 2.

BiosOsDataSize +
OsMvmmDataSize

0x8 OsSinitDataSize Size in bytes of the data
passed from the launching OS
to the SINIT AC module. Note
1.

BiosOsDataSize +
OsMvmmDataSize
+ 0x8

OsSinitDataSi
ze - 0x8

OsSinitData Os data passed to the SINIT
AC module. The format of this
data must follow that
prescribed in the SINIT-AC
module specification.

78 LaGrande Technology Architecture Specification

Appendix C: LT Heap Memory

Offset Length Name Description

BiosOsDataSize +
OsMvmmDataSize
+ OsSinitDataSize

0x8 SinitMvmmDataSize Size in bytes of the data
passed from the launched
SINIT AC module to the
Mvmm. Note 1.

BiosOsDataSize +
OsMvmmDataSize
+ OsSinitDataSize
+ 0x8

SinitMvmmDa
taSize - 0x8

SinitMvmmData SINIT data passed to the
Mvmm. The format of this
data must follow that
prescribed in the SINIT-AC
module specification.

NOTES:
1. For proper data alignment on 64bit processor architectures this field must be a multiple

of 8 bytes. OsMvmmDataSize + OsSinitDataSize + SinitMvmmDataSize must be less
than or equal to LT.HEAP.SIZE.

C.1 BIOS to OS Data Format

The format of the data passed from the BIOS to the OS for the purposes of launching
the protected environment is shown in Table 22. There are currently two fields defined
in this area. The first field is a version field. This second field, BiosSinitSize, is used to
communicate the size of a SINIT module passed from the BIOS to the OS in the SINIT
memory range described by LT.SINIT.BASE/LT.SINIT.SIZE. A value of 0 in
BiosSinitSize indicates the BIOS has not placed an SINIT module in the SINIT memory
range.

Table 22. BIOS to OS Data Table

Offset Length Name Description

0x0 0x4 Version Version number of the BIOS to OS data. Current
value is 0x1. This field is incremented for any
change to the definition of the BiosOsData. The
BiosOsData is always backwards compatible with
previous versions of BiosOsData.

0x4 0x4 BiosSinitSize This field indicates the size of the SINIT AC
module stored in system firmware. A value of 0
indicates the system firmware is not providing a
SINIT module for OS use.

C.2 OS to MVMM Data Format

Each OS vendor may have a different format for this data, and any MVMM being
launched by an OS must understand the format of this OS’s handoff data.

LaGrande Technology Preliminary Architecture Specification 79

Appendix C: LT Heap Memory

C.3 OS to SINIT Data Format

Table 23 defines the format of the data passed from the launching system software
(possibly an OS) to SINIT in the OsSinitData field.

Table 23. OS to SINIT Data Table

Offset Length Name Description

0x0 0x4 Version Version number of the Os to SINIT data.
Current value is 0x1. This field is incremented
for any change to the definition of the
OsSinitData. The OsSinitData is always
backwards compatible with previous versions
of OsSinitData.

0x4 0x4 Reserved Reserved for future use

0x8 0x4 MVMM
PageTableBaseLow

Physical address of MVMM page table (the
MVMM page directory address) – low 32 bits

0xC 0x4 MVMM
PageTableBaseHigh

Physical address of MVMM page table (the
MVMM page directory address) – high 32 bits

0x10 0x4 MVMM SizeLow Size in bytes of the MVMM image – low 32 bits

0x14 0x4 MVMM SizeHigh Size in bytes of the MVMM image – high 32
bits

0x18 0x4 MVMM
HeaderBaseLow

Linear address of MVMM header (linear address
within the MVMM page tables) – low 32 bits

0x1C 0x4 MVMM
HeaderBaseHigh

Linear address of MVMM header (linear address
within the MVMM page tables) – high 32 bits

80 LaGrande Technology Architecture Specification

Appendix C: LT Heap Memory

C.4 SINIT to MVMM Data Format

Table 24 defines the format of the SINIT data presented to the MVMM.

Table 24. SINIT to MVMM Data Table

Offset Length Name Description

0x0 0x4 Version Version number of the SINIT to MVMM
data. Current value is 0x1. This field
is incremented for any change to the
definition of the SinitMvmmData. The
SinitMvmmData is always backwards
compatible with previous versions of
the SinitMvmmData.

0x4 0x4 NumberOfSinit
MDRs

Number of SINIT Memory Descriptor
Records that follow this field.

0x8 0x18 *
NumberOf
SinitMDRs

SinitMDR Array of SINIT Memory Descriptor
Records as defined below. Each record
describes a memory region as defined
by the SINIT AC module.

0x8+0x18*Num
berOfSinitMDRs

0x14 Reserved Reserved

Opt-in
MSR_Hash +
0x14

0x14 EDX_Hash Zero extended SENTER control flags

EDX_Hash +
0x14

0x14 MSEG_Valid Zero extended MSEG.Valid bit value

MSEG_Valid_Has
h + 0x08

0x14 SINIT_Hash SHA-1 hash of SINIT-AC

SINIT_Hash +
0x14

0x14 SVMM_Hash SHA-1 hash of SVMM

SVMM_Hash +
0x14

0x14 STM_Hash SHA-1 hash of STM. This is only valid if
MSEG_Valid.bit = 1.

Table 255. SINIT Memory Descriptor Record

Offset Length Name Description

0x0 0x4 AddressLow Low 32 bits of a 64 bit physical address
of the memory range described in this
record.

0x4 0x4 AddressHigh High 32 bits of a 64 bit physical
address of the memory range
described in this record.

0x8 0x4 LengthLow Low 32 bits of a 64-bit length of the
memory range.

LaGrande Technology Preliminary Architecture Specification 81

Appendix C: LT Heap Memory

0x0C 0x4 LengthHigh High 32 bits of a 64-bit length of the
memory range.

0x10 0x1 Type Memory range type. Valid values
0x00 Usable Good Memory
0x01 SMRAM– Overlayed
0x02 SMRAM– Non-Overlayed
0x03 PCIE- PCIE Extended Config
Region
0x04 Protected Memory
0x05– 0xFF – Reserved

0x11 0x7 Reserved Reserved for future use

§

82 LaGrande Technology Architecture Specification

	Contents
	 Revision History
	1 LaGrande Technology Overview
	1.1 Measurement and LaGrande Technology
	1.2 LaGrande Technology Partitioned Environment
	1.3 Late Launch
	1.3.1 Launch Sequence

	1.4 Storing the Measurement
	1.5 Controlled Take-down
	1.6 SMX and VMX Usage
	1.7 Authenticated Code Module
	1.8 Chipset Support
	1.9 TPM Usage
	2 Safer Mode Extensions
	2.1 Detecting and Enabling SMX
	2.1.1 SMX Functionality
	2.1.2 Enabling SMX Capabilities

	2.2 SMX Instruction Summary
	2.2.1 GETSEC[PARAMETERS]
	2.2.2 GETSEC[SMCTRL]
	2.2.3 GETSEC[ENTERACCS]
	2.2.4 GETSEC[EXITAC]
	2.2.5 GETSEC[SENTER]
	2.2.6 GETSEC[SEXIT]
	2.2.7 GETSEC[WAKEUP]
	2.2.8 Launching and Shutting Down a Protected Environment

	2.3 GETSEC Leaf Functions
	2.3.1 IA32_FEATURE_CONTROL and GETSEC LEAVES

	3 LaGrande Technology Shut-Down
	3.1 Reset Conditions
	3.2 ERRORCODE Register

	4 DMA Page Protection
	4.1 Overview of DMA Page Protection
	4.2 Requirements for Software support of MPT

