

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 1

Intel® Trusted Execution
Technology

Software Development Guide
Measured Launched Environment Developer’s Guide

June 2008

Document Number: 315168-005

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED
FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (TXT) is a
security technology under development by Intel and requires for operation a computer system with Intel® Virtualization
Technology, a Intel® Trusted Execution Technology -enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and
an Intel or other Intel® Trusted Execution Technology compatible measured virtual machine monitor. In addition, Intel® Trusted
Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group and specific
software for some uses. See http://www.intel.com/ for more information.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will
vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be
compatible with all operating systems. Please check with your application vendor

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 2006-2008 Intel Corporation

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 3

Contents
1 Overview ...7

1.1 Measurement and Intel® Trusted Execution Technology8
1.2 Dynamic Root of Trust ..8

1.2.1 Launch Sequence ..9
1.3 Storing the Measurement ..9
1.4 Controlled Take-down ...10
1.5 SMX and VMX Interaction ..10
1.6 Authenticated Code Module..10
1.7 Chipset Support ...10
1.8 TPM Usage ..11
1.9 PCR Usage ..11

1.9.1 PCR 17 ..12
1.9.2 PCR 18 ..12

1.10 DMA Protection ..13
1.10.1 DMA Protected Range (DPR) ...13
1.10.2 Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel®

VT-d) Protected Memory Regions (PMRs)13
1.11 Intel® TXT Shutdown ..14

1.11.1 Reset Conditions ...14
2 Measured Launched Environment ..15

2.1 MLE Architecture Overview ..15
2.2 MLE Launch ...17

2.2.1 Intel® TXT Detection and Processor Preparation17
2.2.2 Detection of Previous Errors..18
2.2.3 Loading the SINIT AC Module..20
2.2.4 Loading the MLE and Processor Rendezvous23
2.2.5 Performing a Measured Launch..27

2.3 MLE Initialization..29
2.4 MLE Operation ...33

2.4.1 Address Space Correctness ...33
2.4.2 Address Space Integrity ...34
2.4.3 Physical RAM Regions ..34
2.4.4 Intel® Trusted Execution Technology Chipset Regions34
2.4.5 Protecting Secrets ...35
2.4.6 Machine Specific Register Handling ..35
2.4.7 Interrupts and Exceptions...36
2.4.8 ACPI Power Management Support..36

2.5 MLE Teardown ...37
2.6 Other Considerations ..40

2.6.1 Saving MSR State across a Measured Launch40
3 Verifying Measured Launched Environments..42

3.1 Overview ..42
3.1.1 LCP Components ...44

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

4

3.1.2 Policy List Types..46
3.1.3 Supported Cryptographic Algorithms ..47

3.2 Policy Engine Logic ...47
3.2.1 Combining Policies...48

3.3 Measuring the Enforced Policy ..48
3.3.1 No Policy Data ..48
3.3.2 LCP Policy Allow Any..48
3.3.3 LCP Policy Hash Only ...49
3.3.4 Unsigned LCP_POLICY_DATA ..49
3.3.5 Force Platform Owner Policy..49

3.4 Revocation ..49
3.4.1 SINIT Revocation ..49

4 Development and Deployment Considerations ...50
4.1 Launch Control Policy Creation ...50
4.2 Launch Errors and Remediation ..50
4.3 Deployment...51

4.3.1 LCP Provisioning..51
4.3.2 SINIT Selection...51

Appendix A Intel® TXT Execution Technology Authenticated Code Modules...............................54
A.1 Authenticated Code Module Format ...54

A.1.1 Memory type cacheability restrictions...60
A.1.2 Authentication and execution of AC module.................................60

Appendix B SMX Interaction with Platform...62
B.1 Intel® Trusted Execution Technology Configuration Registers62
B.2 TPM Platform Configuration Registers ..70
B.3 Intel® Trusted Execution Technology Device Space....................................70

Appendix C Intel® TXT Heap Memory..72
C.1 BIOS Data Format ..73
C.2 OS to MLE Data Format...74
C.3 OS to SINIT Data Format...74
C.4 SINIT to MLE Data Format ...75

Appendix D LCP Data Structures ..78
D.1 LCP_POLICY ..78
D.2 LCP_POLICY_DATA ...79
D.3 LCP_UNSIGNED_POLICY_DATA ..79

D.3.1 LCP_POLICY_LIST ...80
D.3.2 LCP_UNSIGNED_LIST ..80

D.4 Structure Endianness ..81
D.5 Errorcode Values ..81

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 5

Figures

Figure 1. Launch Control Policy Components ...43
Figure 2. SINIT LCP Internal Flow..44
Figure 3. LCP_POLICY Structure ..45
Figure 4. *_POLICY_DATA Structures...46

Tables

Table 1. MLE Header structure ..15
Table 2. MLE/SINIT Capabilities Field Bit Definitions...16
Table 3. Authenticated Code Module Format ...54
Table 4. AC module Flags Description ..56
Table 5. AC module CodeControl Description...56
Table 6. Chipset AC Module Information Table...58
Table 7. Chipset ID List..59
Table 8. TXT_ACM_CHIPSET_ID Format ...59
Table 9. Configuration Registers Relevant to MLE...62
Table 10. TXT.STS Bit Definitions ..66
Table 11. TXT.ESTS Bit Definitions ..67
Table 12. TXT.VER.FSBIF Bit Definitions ...67
Table 13. TXT.DIDVID Bit Definitions ...68
Table 14. TXT.ERRORCODE Register Bit Format...68
Table 15. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns68
Table 16. TXT.E2STS Register Bit Format ...69
Table 17. TPM Locality Address Mapping...70
Table 18. Intel® Trusted Execution Technology Heap..72
Table 19. BIOS Data Table ...73
Table 20. OS to SINIT Data Table..74
Table 21. SINIT to MLE Data Table ..75
Table 22. SINIT Memory Descriptor Record...77
Table 23. LCP Error Values ...81

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

6

Revision History

Revision
Number

Description Revision Date

-001 • Initial release. May 2006

-002 • Established public document number

• Edited throughout for clarity.

August 2006

-003 • Added launched environment consideration

• Renamed LT to Intel® TXT

October 2006

-004 • Updated for production platforms

• Use MLE terminology

August 2007

-005 • Updated for latest structure versions and new RLP wakeup mechanism

• Added Launch Control Policy information

• Removed TEP Appendix

• Many miscellaneous changes and additions

June 2008

 §

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 7

1 Overview

Intel’s technology for safer computing, Intel® Trusted Execution Technology (Intel®
TXT), defines platform-level enhancements that provide the building blocks for
creating trusted platforms.

Whenever the word trust is used, there must be a definition of who is doing the
trusting and what is being trusted. This enhanced platform helps to provide the
authenticity of the controlling environment such that those wishing to rely on the
platform can make an appropriate trust decision. The enhanced platform determines
the identity of the controlling environment by accurately measuring the controlling
software (see Section 1.1).

Another aspect of the trust decision is the ability of the platform to resist attempts to
change the controlling environment. The enhanced platform will resist attempts by
software processes to change the controlling environment or bypass the bounds set by
the controlling environment.

What is the controlling environment for this enhanced platform? The platform is a set
of extensions designed to provide a measured and controlled launch of system
software that will then establish a protected environment for itself and any additional
software that it may execute.

These extensions enhance two areas:

• The launching of the Measured Launched Environment (MLE)

• The protection of the MLE from potential corruption

The enhanced platform provides these launch and control interfaces using Safer Mode
Extensions (SMX).

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

8

The SMX interface includes the following functions:

• Measured launch of the MLE

• Mechanisms to ensure the above measurement is protected and stored in a secure
location

• Protection mechanisms that allow the MLE to control attempts to modify itself

1.1 Measurement and Intel® Trusted Execution
Technology

Intel TXT uses the term measurement frequently. Measuring software involves
processing the executable such that the result (a) is unique and (b) indicates changes
in the executable. A cryptographic hash algorithm meets these needs.

A cryptographic hash algorithm is sensitive to even one-bit changes to the measured
entity. A cryptographic hash algorithm also produces outputs that are sufficiently large
so the potential for collisions (where two hash values are the same) is extremely
small. When the term measurement is used in this specification, the meaning is that
the measuring process takes a cryptographic hash of the measured entity.

The controlling environment is provided by system software such as an OS kernel or
VMM. The software launched using the SMX instructions is known as the Measured
Launched Environment (MLE). MLEs provide different launch mechanisms and
increased protection (offering protection from possible software corruption).

1.2 Dynamic Root of Trust

A central objective of the Intel TXT platform is to provide a measurement of the
launched execution environment.

One measurement is made when the platform boots, using techniques defined by the
Trusted Computing Group (TCG). The TCG defines a Root of Trust for Measurement
(RTM) that executes on each platform reset; it creates a chain of trust from reset to
the measured environment. As the measurement always executes at platform reset,
the TCG defines this type of RTM as a Static RTM (SRTM).

Maintaining a chain of trust for a length of time may be challenging for an MLE meant
for use in Intel TXT; this is because an MLE may operate in an environment that is
constantly exposed to unknown software entities. To address this issue, the enhanced
platform provides another RTM with Intel TXT instructions. The TCG terminology for
this option is Dynamic Root of Trust for Measurement (DRTM). The advantage of a
DRTM (also called the ‘late launch’ option) is that the launch of the measured
environment can occur at any time without resorting to a platform reset. It is possible
to launch a MLE, execute for a time, terminate the MLE, execute without virtualization,
and then launch the MLE again. One possible sequence is:

https://www.trustedcomputinggroup.org/home/
https://www.trustedcomputinggroup.org/home/

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 9

1. During the BIOS load: (a) launch an MLE for use by the BIOS, (b) terminate the
MLE when its work is done, (c) continue with BIOS processing and hand off to an
OS.

2. Then, the OS loads and launches a different MLE.

In both instances, the platform measures each MLE and ensures the proper storage of
the MLE measurement value.

1.2.1 Launch Sequence

When launching a MLE, the environment must load two code modules into memory.
One module is the MLE. The other is known as an authenticated code (AC) module.
The AC module is only in use during the measurement and verification process and is
chipset-specific. It is digitally signed by the chipset vendor; the launch process must
successfully validate the digital signature before continuing.

With the AC module and MLE in memory, the launching environment can invoke the
GETSEC[SENTER] instruction provided by SMX.

GETSEC[SENTER] broadcasts messages to the chipset and other physical or logical
processors in the platform. In response, other logical processors perform basic
cleanup, signal readiness to proceed, and wait for messages to join the environment
created by the MLE. As this sequence requires synchronization, there is an initiating
logical processor (ILP) and responding logical processor(s) (RLP(s)).

After all logical processors signal their readiness to join and are in the wait state, the
initiating logical processor loads, authenticates, and executes the AC module. The AC
module tests for various chipset and processor configurations and ensures the
platform has an acceptable configuration. It then measures and launches the MLE.

The MLE initialization routine completes system configuration changes (including
redirecting INITs, SMIs, interrupts, etc.); it then issues a new SMX instruction that
wakes up the responding logical processors (RLPs) and brings them into the measured
environment. At this point, all logical processors and the chipset are correctly
configured.

At some later point, it is possible for the MLE to exit and then be launched again,
without issuing a system reset.

1.3 Storing the Measurement

SMX operation during the launch provides an accurate measurement of the MLE. After
creating the measurement, the initiating logical processor stores that measurement in
the Trusted Platform Module (TPM), defined by the TCG. An enhanced platform
includes mechanisms that ensure that the measurement of the MLE (completed during
the launch process) is properly reported to the TPM.

With the MLE measurement in the TPM, the MLE can use the measurement value to
protect sensitive information and detect potential unauthorized changes to the MLE
itself.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

10

1.4 Controlled Take-down

Because the MLE controls the platform, exiting the MLE is a controlled process. The
process includes: (a) shutting down any guest VMs if they were created; (b) and
ensuring that memory previously used does not leak sensitive information.

The MLE cleans up after itself and terminates the MLE control of the environment. If a
VMM was running, the MLE may choose to turn control of the platform over to the
software that was running in one of the VMs.

1.5 SMX and VMX Interaction

A VM abort may occur while in SMX operation. This behavior is described in the Intel
64 and IA-32 Software Developer Manual, Volume 3B. Note that entering
authenticated code execution mode or launching of a measured environment affects
the behavior and response of the logical processors to certain external pin events.

1.6 Authenticated Code Module

To support the establishment of a measured environment, SMX enables the capability
of an authenticated code execution mode. This provides the ability for a special code
module, referred to as an authenticated code module (AC module), to be loaded into
internal RAM (referred to as authenticated code execution area) within the processor.
The AC module is first authenticated and then executed using a tamper resistant
mechanism.

Authentication is achieved through the use of a digital signature in the header of the
AC module. The processor calculates a hash of the AC module and uses the result to
validate the signature. Using SMX, a processor will only initialize processor state or
execute the AC module if it passes authentication. Since the authenticated code
module is held within the internal RAM of the processor, execution of the module can
occur in isolation with respect to the contents of external memory or activities on the
external processor bus.

1.7 Chipset Support

One important feature the chipset provides is DMA protection via Intel® Virtualization
Technology (Intel® VT) for Directed I/O (Intel® VT-d). Intel® VT-d, under control of
the MLE, allows the MLE to protect itself and any other software such as guest VMs
from unauthorized device access to memory. Intel VT-d blocks access to specific
physical memory pages and the enforcement of the block occurs for all DMA access to
the protected pages. See Chapter 1.10 for more information on DMA protection
mechanisms.

The Intel TXT architecture also provides extensions that access certain chipset
registers and TPM address space.

Chipset registers that interact with SMX are accessed from two regions of memory by
system software using memory read/write protocols. These two memory regions,

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 11

Intel TXT Public space and Intel TXT Private space, are mappings to the same set of
chipset registers but with different read/write permissions depending on which space
the memory access came through. The Intel TXT Private space is not accessible to
system software until it is unlocked by SMX instructions.

The storage spaces accessible within a TPM device are grouped by a locality attribute
and are a separate set of address ranges from the Intel TXT Public and Private spaces.
The following localities are defined:

• Locality 0 : Non-trusted and legacy TPM operation

• Locality 1 : An environment for use by the Trusted Operating System

• Locality 2 : Trusted OS

• Locality 3 : Authenticated Code Module

• Locality 4 : Intel TXT hardware use only

1.8 TPM Usage

Intel TXT makes extensive use of the Trusted Platform Module (TPM) defined by the
Trusted Computing Group (TCG) in the TCG TPM Specification, Version 1.2. The TPM
provides a repository for measurements and the mechanisms to make use of the
measurements. The system makes use of the measurements to both report the
current platform configuration and to provide long-term protection of sensitive
information.

The TPM stores measurements in Platform Configuration Registers (PCRs). PCRs
provide a storage area that allows an unlimited number of measurements in a fixed
amount of space. They provide this feature by an inherent property of cryptographic
hashes. Outside entities never write directly to a PCR register, they “extend” PCR
contents. The extend operation takes the current value of the PCR, appends the new
value, performs a cryptographic hash on the combined value, and the hash result is
the new PCR value. One of the properties of cryptographic hashes is that they are
order dependent. This means hashing A then B produces a different result from
hashing B then A. This ordering property allows the PCR contents to indicate the order
of measurements.

Sending measurement values from the measuring agent to the TPM is a critical
platform task. The Dynamic Root of Trust for Measurement (DRTM) requires specific
messages to flow from the DRTM to the TPM. The Intel TXT DRTM is the
GETSEC[SENTER] instruction and the system ensures GETSEC[SENTER] has special
messages to communicate to the TPM. These special messages take advantage of TPM
localities 3 and 4 to protect the messages and inform the TPM that GETSEC[SENTER]
is sending the messages.

1.9 PCR Usage

As part of the measured launch, Intel TXT will extend measurements of the elements
and configuration values of the dynamic root of trust into certain TPM PCRs. The
constituent values of these measurements (indicated below) are provided in the
SinitMleData structure described in Appendix C.4.

https://www.trustedcomputinggroup.org/specs/TPM
https://www.trustedcomputinggroup.org/specs/

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

12

While the MLE may choose to extend additional values into these PCRs, the values
described below are those present immediately after the MLE receives control
following the GETSEC[SENTER] instruction.

1.9.1 PCR 17

PCR 17 is initialized using the TPM_HASH_START/TPM_HASH_END sequence. The
HASH_DATA provided in this sequence is the concatenation of the SHA-1 hash of the
SINIT ACM that was used in the launch process and the 4 byte value of the SENTER
parameters (in EDX and also in SinitMleData.EdxSenterFlags). As part of this
sequence, PCRs 17-23 are reset to 0. The hash of SINIT is also stored in the
SinitMleData.SinitHash field.

PCR 17 is then extended with the SHA-1 hash of the following items concatenated in
this order:

SHA-1 hash of BIOS ACM – SinitMleData.BiosAcmID (20 bytes)

STM opt-in indicator – SinitMleData.MsegValid (8 bytes)

SHA-1 hash of the STM (or all 0s if opt-out) – SinitMleData.StmHash (20 bytes)

LCP Control Field of used policy (PD or PO) – SinitMleData.PolicyControl (4 bytes)

SHA-1 hash of used policy (or all 0s if chosen not to be extended) –
SinitMleData.LcpPolicyHash (20 bytes)

MLE-chosen Capabilities (or all 0s if chosen not to be extended) –
OsSinitData.Capabilities (4 bytes)

Thus, PCR 17’s final value will be:

 Extend (SHA-1(SinitMleData.SinitHash | SinitMleData.EdxSenterFlags))

 Extend (SHA-1 (SinitMleData.BiosAcm.ID | SinitMleData.MsegValid |
SinitMleData.StmHash | SinitMleData.PolicyControl | SinitMleData.LcpPolicyHash |
(OsSinitData.Capabilities, 0)))

Where the Extend() operation is a SHA-1 hash of the previous value in the PCR
concatenated with the value being extended (the previous value is 20 bytes of 0s in
the case of the first extend to a PCR).

1.9.2 PCR 18

PCR 18 will be extended with the SHA-1 hash of the MLE, as reported in the
SinitMleData.MleHash field.

Thus, PCR 18’s final value will be:

 Extend (SinitMleData.MleHash)

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 13

1.10 DMA Protection

This chapter briefly describes the two chipset mechanisms that can be used to protect
regions of memory from DMA access by busmaster devices. More details on these
mechanisms can be found in the External Design Specification (EDS) of the targeted
chipset family and Intel® Virtualization Technology for Directed I/O Architecture
Specification.

1.10.1 DMA Protected Range (DPR)

The DMA Protected Range (DPR) is a region of contiguous physical memory whose last
byte is the byte before the start of TSEG, and which is protected from all DMA access.
The DPR size is set and locked by BIOS. This protection is applied to the final physical
address after any other translations (e.g. Intel VT-d, GART, etc.).

The DPR covers the Intel TXT heap and SINIT AC Module reserved memory (as
specified in the TXT.SINIT.BASE/TXT.SINIT.SIZE registers). On current systems it is
3MB in size, and though this may change in the future it will always be large enough
to cover the heap and SINIT regions.

The MLE itself may reside in the DPR as long as it does not conflict with either the
SINIT or heap areas. If it does reside in the DPR then it need not be covered by the
Intel VT-d Protected Memory Regions.

1.10.2 Intel® Virtualization Technology (Intel® VT) for Directed
I/O (Intel® VT-d) Protected Memory Regions (PMRs)

The Intel® VT-d Protected Memory Regions (PMRs) are two ranges of physical
addresses that are protected from DMA access. One region must be in the lower 4GB
of memory and the other must be in the upper 4GB. Either or both may be unused.

The use of the PMRs is not mutually exclusive of DMA remapping. If the MLE enables
DMA remapping, it should place the Intel VT-d page tables within the PMR region(s) in
order to protect them from DMA activity prior to turning on remapping. While it is not
required that PMRs be disabled once DMA remapping is enabled, if the MLE wants to
manage all DMA protection through remapping tables then it must explicitly disable
the PMR(s).

The MLE may reside within one of the PMR regions. If the MLE is not within the DPR
region then it must be within one of the PMR regions, else SINIT will not permit the
environment to be launched.

For more details of the PMRs, see the Intel® Virtualization Technology for
Directed I/O Architecture Specification.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

14

1.11 Intel® TXT Shutdown

1.11.1 Reset Conditions

When an Intel TXT shutdown condition occurs, the processor or software writes an
error code indicating the reason for the failure to the TXT.ERRORCODE register. It
then writes to the TXT.CMD.RESET command register, initiating a platform reset. After
the write to TXT.CMD.RESET, the processor enters a shutdown sleep state with all
external pin events, bus or error events, machine check signaling, and
MONITOR/MWAIT event signaling masked. Only the assertion of reset back to the
processor takes it out of this sleep state. The Intel TXT error code register is not
cleared by the platform reset; this makes the error code accessible for post-reset
diagnostics.

An Intel TXT shutdown can be generated by the processor during execution of certain
GETSEC leaf functions (for example: ENTERACCS, EXITAC, SENTER, SEXIT), where
recovery from an error condition is not considered reliable. This situation should be
interpreted as an abort of authenticated execution or measured environment launch.

A legacy IA-32 triple-fault shutdown condition is also converted to an Intel TXT
shutdown sequence if the triple-fault shutdown occurs during authenticated code
execution mode or while the measured environment is active. The same is true for
other legacy non-SMX specific fault shutdown error conditions. Legacy shutdown to
Intel TXT shutdown conversions are defined as the mode of operation between:

• Execution of the GETSEC functions ENTERACCS and EXITAC

• Recognition of the message signaling the beginning of the processor rendezvous
after GETSEC[SENTER] and the message signaling the completion of the processor
rendezvous

Additionally, there is a special case. If the processor is in VMX operation while the
measured environment is active, a triple-fault shutdown condition that causes a guest
exiting event back to the Virtual Machine Monitor (VMM) supersedes conversion to the
Intel TXT shutdown sequence. In this situation, the VMM remains in control after the
error condition that occurred at the guest level and there is no need to abort
processor execution.

Given the above situation, if the triple-fault shutdown occurs at the root level of the
MLE or a VMX abort is detected, then an Intel TXT shutdown sequence is signaled. For
more details on a VMX abort, see Chapter 23, “VM Exits,” in the Intel 64 and IA-32
Software Developer Manuals, Volume 3B.

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 15

2 Measured Launched
Environment

Intel TXT can be used to launch any type of code. However, this section describes the
launch, operation and teardown of a Virtual Machine Monitor (VMM) using Intel TXT;
any other code would have a similar sequence.

2.1 MLE Architecture Overview

Any Measured Launched Environment (MLE) will generally consist of three main
sections of code: the initialization, the dispatch routine, and the shutdown. The
initialization code is run each time the Intel TXT environment is launched. This code
includes code to setup the MLE on the ILP and join code to initialize the RLPs.

After initialization, the MLE behaves like the unmeasured version would have; in the
case of a VMM, this is trapping various guest operations and virtualizing certain
processor states.

Finally the MLE prepares for shutdown by again synchronizing the processors, clearing
any state and executing the GETSEC[SEXIT] instruction.

Table 1 shows the format of the MLE Header structure which is stored within the MLE
image. The MLE Header structure is used by the SINIT AC module to set up the
correct initial MLE state and to find the MLE entry point. The header is part of the MLE
hash.

Table 1. MLE Header structure

Field Offset Size
(bytes)

Description

UUID 0 16 Identifies this structure

HeaderLen 16 4 Length of header in bytes

Version 20 4 Version number of this structure

EntryPoint 24 4 Linear entry point of MLE

FirstValidPage 28 4 Starting linear address of (first
valid page of) MLE

MleStart 32 4 Offset within MLE binary file of first
byte of MLE as specified in page
table

MleEnd 36 4 Offset within MLE binary file of last
byte of MLE as specified in page
table

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

16

Capabilities 40 4 Bit vector of MLE-supported
capabilities

UUID: This field contains a UUID which uniquely identifies this MLE Header Structure.
The UUID is defined as follows:

ULONG UUID0; // 9082AC5A
ULONG UUID1; // 74A7476F
ULONG UUID2; // A2555C0F
ULONG UUID3; // 42B651CB

HeaderLen: this field contains the length in bytes of the MLE Header Structure.

Version: this field contains the version of the MLE header, where the upper two bytes
are the major version and the lower two bytes are the minor version. Changes in the
major version indicate that an incompatible change in behavior is required of the MLE
or that the format of this structure is not backwards compatible. Version 2.0
(20000H) is the currently supported version.

EntryPoint: this field is the linear address, within the MLE’s linear address space, at
which the ILP will begin execution upon completion of the GETSEC[SENTER]
instruction.

FirstValidPage: this field is the starting linear address of the MLE. This will be
verified by SINIT to match the first valid entry in the MLE page tables.

MleStart / MleEnd: these fields are intended for use by system software that needs
to know which portion of an MLE binary file is the MLE, as defined by its page table.
This might be useful for calculating the MLE hash when the entire binary file is not
being used as the MLE.

Capabilities: this bit vector represents TXT-related capabilities that the MLE supports.
It will be used by the SINIT AC module to determine whether the MLE is compatible
with it and as needed for any optional capabilities. The currently defined bits for this
are:

Table 2. MLE/SINIT Capabilities Field Bit Definitions

Bit position Description

0 Support for GETSEC[WAKEUP] for RLP wakeup (1)

All MLEs should support this.

1 Support for RLP wakeup using MONITOR address
(SinitMleData.RlpWakeupAddr) (1)

All MLEs should support this.

31:2 Reserved (must be 0)

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 17

2.2 MLE Launch

At some point system software will start an Intel TXT environment. This may be done
at operating system loader time or could be done after the operating system boots.
From this point on we will assume that the operating system is starting the Intel TXT
environment and refer to this code as the system software.

After the measured environment startup, the application processors (RLPs) will not
respond to SIPIs as they did before SENTER. Once the measured environment is
launched, the RLPs cannot run the real-mode MP startup code. An alternative MP
startup algorithm will need to be developed. The new MP startup algorithm would not
require the RLPs to leave protected mode with paging on. The OS may also be
required to detect whether a measured environment has been established and use this
information to decide which MP startup algorithm is appropriate (the standard MP
startup algorithm or the modified algorithm).

This section shows the pseudocode for preparing the system for the SMX measured
launch. The following describes the process in a number of sub-sections:

• Intel TXT detection and processor preparation

• Detection of previous errors

• Loading the SINIT AC module

• Loading the MLE and processor rendezvous

• Performing a measured launch

2.2.1 Intel® TXT Detection and Processor Preparation

This action is only performed by the ILP.

Lines 1 - 4: Before attempting to launch the measured environment, the system
software should check that the processor supports VMX and SMX (the check for VMX
support is not necessary if the environment to be launched will not use VMX). For
details on detecting and enabling VMX see chapter 19, “Introduction to Virtual-
Machine Extensions”, in the Intel 64 and IA-32 Software Developer Manuals, Volume
3B. For details on detecting and enabling SMX support see chapter 6, “Safer Mode
Extensions Reference”, in the Intel 64 and IA-32 Software Developer Manuals, Volume
2B .

Lines 5 - 9: System software should check that the chipset supports Intel TXT prior to
launching the measured environment. The presence of the Intel TXT chipset can be
detected by executing GETSEC[CAPABILITIES] with EAX=0 & EBX=0. This instruction
will return the ‘Intel TXT Chipset’ bit set in EAX if an Intel TXT chipset is present. The
processor must enable SMX before executing the GETSEC instruction.

Lines 10 – 12: System software should also verify that the processor supports all of
the GETSEC instruction leaf indices that will be needed. The minimal set of
instructions required will depend on the system software and MLE, but is most likely
SENTER, SEXIT, WAKEUP, SMCTRL, and PARAMETERS. The supported leaves are
indicated in the EAX register after executing the GETSEC[CAPABILITIES] instruction as
indicated above.

Listing 1. Intel® TXT Detection Pseudocode

//

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

18

// Intel TXT detection
//
1. CPUID(EAX=1);
2. IF (SMX not supported) OR (VMX not supported) {
3. Fail measured environment startup;
4. }

//
// Enable SMX on ILP & check for Intel TXT chipset
//
5. CR4.SMXE = 1;
6. GETSEC[CAPABILITIES];
7. IF (Intel TXT chipset NOT present) {
8. Fail measured environment startup;
9. }
10.IF (All needed SMX GETSEC leaves are NOT supported) {
11. Fail measured environment startup;
12.}

2.2.2 Detection of Previous Errors

In order to prevent a cycle of failures or system resets, it is necessary for the system
software to check for errors from a previous launch. Errors that are detected by
system software prior to executing the GETSEC[SENTER] instruction will be specific to
that software and, if persisted, will be in a manner specific to the software. Errors
generated during execution of the GETSEC[SENTER] instruction result in a system
reset and the error code being stored in the TXT.ERRORCODE register. Possible
remediation steps are described in section 4.2.

Lines 1 - 3: The error code from an error generated during the GETSEC[SENTER]
instruction is stored in the TXT.ERRORCODE register, which is persistent across soft
resets. A non-zero value indicates an error. Error codes are specific to an SINIT AC
module and can be found in a text file that is distributed with the module.

Lines 4 - 6: If there was a TXT reset event, either as the result of an error during the
GETSEC[SENTER] instruction or specifically generated by an MLE, the TXT_RESET.STS
bit of the TXT.ESTS register will be set. In order to maintain TXT integrity, the
GETSEC[SENTER] instruction will fail if this bit is set. System software should detect
this condition as early as possible and, after taking the appropriate remediative action,
power cycle the system to clear this bit and permit a launch.

Listing 2. Error Detection Pseudocode

//
// Detect previous GETSEC[SENTER] failures
//
1. IF (TXT.ERRORCODE != 0) {
2. Take remediative action;
3. }

//
// Detect previous TXT Reset

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 19

//
4. IF (TXT.ESTS[TXT_RESET.STS] != 0) {
5. Power-cycle system;
6. }

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

20

2.2.3 Loading the SINIT AC Module

This action is only performed by the ILP.

BIOS may already have the correct SINIT AC module loaded into memory or system
software may need to load the SINIT code from disk into memory. The system
software may determine if a SINIT AC module is already loaded by examining the
preferred SINIT load location (see below) for a valid SINIT AC module header.

System software should always use the most recent version of the SINIT AC module
available to it. It can determine this by comparing the Date fields in the AC module
headers.

System software should also match a prospective SINIT AC module to the chipset
before loading and attempting to launch the module. This is described in the next two
sections of this document.

System software owns the policy for deciding which SINIT module to load. It must
load the previously loaded SINIT AC module in order to unseal data sealed to a
previously launched environment. If an SINIT AC module is to be changed (e.g.
upgraded to the latest version), the system software must allow the user to migrate
secrets prior to loading the new SINIT AC module.

The BIOS reserves a region of physically contiguous memory for the SINIT AC module,
which it specifies through the TXT.SINIT.BASE and TXT.SINIT.SIZE Intel TXT
configuration registers. By convention, 128 KBytes of physically contiguous memory is
allocated for the purpose of loading the SINIT AC module. System software must use
this region for any SINIT AC module that it loads.

The SINIT AC module must be located on a 4 KByte aligned memory location. The
SINIT AC module must be mapped WB using the MTRRs and all other memory must
be mapped to one of the supportable memory types returned by
GETSEC[PARAMETERS]. The MTRRs which map the SINIT AC module must not overlap
more than 4 KBytes of memory beyond the end of the SINIT AC image. See the
GETSEC[ENTERACCS] instruction and the Authenticated Code Module Format,
Appendix A.1, for more details on these restrictions.

The pages containing the SINIT AC module image must be present in memory before
attempting to launch the measured environment. The SINIT AC module image must
be loaded below 4 GBytes. System software should check that the SINIT AC module
will fit within the AC execution region as specified by the GETSEC[PARAMETERS] leaf.
System software should not utilize the memory immediately after the SINIT AC
module up to the next 4 KByte boundary. On certain Intel TXT implementations,
execution of the SINIT AC module will corrupt this region of memory.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 21

2.2.3.1 Matching an AC Module to the Chipset

As part of system software loading an SINIT AC module, the system software should
first verify that the file to be loaded is really an SINIT AC module. This may be done at
installation time or runtime. Lines 1 - 10 in Listing 3 below show how to do this.

Each AC module is designed for a specific chipset or set of chipsets. Software can
examine the Chipset ID List embedded in the AC module binary to determine which
chipsets an AC module supports. Software should read the chipset’s TXT.DIDVID
register and parse the Chipset ID List to find a matching entry. Attempting to execute
an AC module that does not match the chipset’s TXT.DIDVID register will result in a
failure of the AC module to complete normal execution and an Intel TXT Shutdown.

Lines 11 - 26 in the following pseudocode show how to check for a valid match
between a chipset and an AC module image.

Listing 3. AC Module Matching Pseudocode

TXT_ACM_HEADER *AcmHdr; // see Table 3
TXT_CHIPSET_ACM_INFO_TABLE *InfoTable; // see Table 6

//
// Find the Chipset AC Module Information Table
//
1. AcmHdr = (TXT_ACM_HEADER *)AcmImageBase;
2. UserAreaOffset = (AcmHdr->HeaderLen + AcmHdr->ScratchSize)*4;
3. InfoTable = (TXT_CHIPSET_ACM_INFO_TABLE *)(AcmBase +
 UserAreaOffset);

//
// Verify image is really an AC module
//
1. IF (InfoTable->UUID0 != 0x7FC03AAA) OR
2. (InfoTable->UUID1 != 0x18DB46A7) OR
3. (InfoTable->UUID2 != 0x8F69AC2E) OR
4. (InfoTable->UUID3 != 0x5A7F418D) {
5. Fail: not an AC module;
6. }

//
// Verify it is an SINIT AC module
//
7. IF (AcmHdr->ModuleType != 2) OR
8. (InfoTable->ChipsetACMType != 1) {
9. Fail: not an SINIT AC module;
10.}

//
// Match AC module to system chipset
//
TXT_ACM_CHIPSET_ID_LIST *ChipsetIdList; // see Table 7
TXT_ACM_CHIPSET_ID *ChipsetId; // see Table 8

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

22

11.ChipsetIdList = (TXT_ACM_CHIPSET_ID_LIST *)
 (AcmImageBase + InfoTable->ChipsetIdList);

//
// Search through all ChipsetId entries and check for a match.
//
12.FOR (i = 0; i < ChipsetIdList->Count; i++) {
13. //
14. // Check for a match with this ChipsetId entry.
15. //
16. ChipsetId = ChipsetIdList->ChipsetId[i];
17. IF ((TXT.DIDVID[VID] == ChipsetId->VendorId) &&
18. (TXT.DIDVID[DID] == ChipsetId->DeviceId) &&
19. ((((ChipsetId->Flags & 0x1) == 0) &&
20. (TXT.DIDVID[RID] == ChipsetId->RevisionId)) ||
21. (((ChipsetId->Flags & 0x1) == 0x1) &&
22. (TXT.DIDVID[RID] & ChipsetId->RevisionId != 0)))) {
23. AC module matches system chipset;
24. }
25.}
26.AC module does not match system chipset;

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 23

2.2.3.2 Verifying Compatibility of SINIT with the MLE

Over time, new features and capabilities may be added to the SINIT AC module that
can be utilized by an MLE that is aware of those features. Likewise, features or
capabilities may be added that require an MLE to be aware of them in order to
interoperate properly. In order to expose these features and capabilities and permit
the MLE and SINIT to determine whether they support a compatible set, the MLE
header contains a Capabilities field (see Table 1) that corresponds to the Capabilities
field in the SINIT AC module Information Table (see Table 6).

In addition, the MinMleHeaderVer field in the AC module Information Table allows
SINIT to indicate that it requires a certain minimal version of an MLE. This allows for
new behaviors or features that require support from the MLE, but which older MLEs
would not be aware of.

Listing 4 shows the pseudocode for the MLE to determine if it is compatible with the
provided SINIT AC module.

Whiles lines 4 – 6 may be redundant with current SINIT AC modules if the MLE
supports both RLP wakeup mechanisms, this permits graceful handling of future
changes.

Listing 4. SINIT/MLE Compatibility Pseudocode

//
// Check that SINIT supports this version of the MLE
//
1. IF (InfoTable->MinMleHeaderVer > MleHeader.Version) {
2. Fail: SINIT requires a newer MLE
3. }

//
// Check that the known RLP wakeup mechanisms are supported
//
4. IF (MLE does NOT support at least one RLP wakeup mechanism

specified in InfoTable->Capabilities) {
5. Fail: RLP wakeup mechanisms are incompatible
6. }

2.2.4 Loading the MLE and Processor Rendezvous

2.2.4.1 Loading the MLE

System software allocates memory for the MLE and MLE page table. The MLE is not
required to be loaded into physically contiguous memory. The pages containing the
MLE image must be pinned in memory and all these pages must be located in physical
memory below 4 GBytes.

System software creates an MLE page table structure to map the entire MLE image.
The pages containing the MLE page tables must be pinned in memory prior to

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

24

launching the measured environment. The MLE page table structure must be in the
format of the IA-32 Physical Address Extension (PAE) page table structure.

The MLE page table has several special requirements:

• The MLE page tables may contain only 4 KByte pages.

• A breadth-first search of page tables must produce increasing physical addresses.

• Neither the MLE nor the page tables may overlap certain regions of memory:

• device memory (PCI, PCIe*, etc.)

• addresses between [640k, 1M) or above Top of Memory (TOM)

• ISA hole (if enabled)

• the Intel TXT heap or SINIT memory regions

• Intel VT-d DMAR tables

• There may not be any invalid (not-present) page table entries after the first valid
entry (i.e. there may not be any gaps in the MLE’s linear address space).

• The Page Directories must be in a lower physical address than the Page Tables.

• The Page-Directory-Pointer-Table must be in a lower physical address than the
Page-Directories.

• The page table pages must be in lower physical addresses than the MLE.

Later, the SINIT AC module will check that the MLE page table matches these
requirements before calculating the MLE digest. The second rule above implies that
the MLE must be loaded into physical memory in an ordered fashion: a scan of MLE
virtual addresses must find increasing physical addresses. The system software can
order its list of physical pages before loading the MLE image into memory.

The MLE is not required to begin at linear address 0. There may be any number of
invalid/not-present entries in the page table prior to the beginning of the MLE pages
(i.e. first valid page). The starting linear address should be placed in the
FirstValidPage field of the MLE header structure (see Section 2.1).

If the MLE will use this page table after launch then it needs to ensure that the entry
point page is identity-mapped so that when it enables paging post-launch, the
physical address of the instruction after paging is enabled will correspond to its linear
address in the paged environment.

System software writes the physical base address of the MLE page table’s page
directory to the Intel TXT Heap. The size in bytes of the MLE image is also written to
the Intel TXT Heap; see Appendix C.

2.2.4.2 Intel® Trusted Execution Technology Heap Initialization

Information can be passed from system software to the SINIT AC module and from
system software to the MLE using the Intel TXT Heap. The SINIT AC module will also
use this region to pass data to the MLE.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 25

The system software launching the measured environment is responsible for
initializing the following in the Intel TXT Heap memory (this initialization must be
completed before executing GETSEC[SENTER]):

• Initialize contents of the Intel TXT Heap Memory (see Appendix C)

• Initialize contents of the OsMleData (see Appendix C) and OsMleDataSize (with
the size of the OsMleData field + 8H) fields.

• Initialize contents of the OsSinitData (see Appendix C.3) and OsSinitDataSize
(with the size of the OsSinitData field + 8H) fields.

The OsMleData structure has fields for specifying regions of memory to protect from
DMA (PMR Low/High Base/Size) using Intel VT-d. As described in Chapter 1.10, the
MLE must be protected from DMA by being contained within either the DMA Protected
Range (DPR) or one of the Intel VT-d Protected Memory Regions (PMRs). If the MLE
resides within the DPR then the PMR fields of the OsMleData structure may be set to
0. Otherwise, these fields must specify a region that contains the MLE and the page
tables. However, the PMR fields can specify a larger region (and separate region,
since there are two ranges) than just the MLE if there is additional data that should be
protected.

If the system software is using Intel VT-d DMA remapping to protect areas of memory
from DMA then it must disable this before it executes GETSEC[SENTER]. In order to
do this securely, system software should determine what PMR range(s) are necessary
to cover all of the address range being DMA protected using the remapping tables. It
should then initialize the PMR(s) appropriately and enable them before disabling
remapping. The PMR values it provides in the OsSinitData PMR fields must correspond
to the values that it has programmed. Once the MLE has control, it can re-enable
remapping using the previous tables (after validating them).

If the MLE or subsequent code will be enabling Intel VT-d DMA remapping then the
DMAR information that will be needed should be protected from malicious DMA activity
until the remapping tables can be established to protect it. The SINIT AC module
makes a copy of the DMAR tables in the SinitMleData region (located at an offset
specified by the SinitVtdDmarTable field). Because this region is within the TXT heap,
it is protected from DMA by the DPR. If the MLE or subsequent code does not use this
copy of the DMAR tables, then it should protect the original tables (within the ACPI
area) with the PMR range specified to SINIT. Likewise, the memory range used for
the remapping tables should also be protected with the PMRs until remapping is
enabled.

2.2.4.3 Rendezvousing Processors and Saving State

Line 1: If launching the measured environment after operating system boot, then all
processors should be brought to a rendezvous point before executing
GETSEC[SENTER]. At the rendezvous point each processor will set up for
GETSEC[SENTER] and save any state needed to resume after the measured launch. If
processors are not rendezvoused before executing SENTER, then the processors that
did not rendezvous will lose their current operating state including possibly the fact
that an in-service interrupt has not been acknowledged.

Lines 2 – 6: All processors check that they support SMX and enable SMX in CR4.SMXE.

Line 7: Log and clear any pending Machine Checks.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

26

Line 8: Check that certain CR0 bits are in the required state for a successful measured
environment launch.

Line 9: System software allocates memory to save its state for restoration post
measured launch. The OsMleData portion of the Intel TXT Heap has been reserved for
this purpose (see Appendix C.1), though the size must be set appropriately for the
memory to be available.

Line 10: The BSP (the ILP) saves enough state in memory to allow a return to OS
execution after the measured launch and then continues launch execution. The BSP is
the processor with IA32_APIC_BASE MSR.BSP = 1. The remaining Intel TXT
processors (RLPs) save enough state in memory to allow return to OS execution after
measured launch then execute HLT or spin waiting for transition to the measured
environment.

Certain MSRs are modified by executing the GETSEC[SENTER] instruction. For
example, bits within the IA32_MISC_ENABLE and IA32_DEBUGCTL MSRs are set to
predetermined values. It may be desirable to restore certain bits within these MSRs to
their pre-launch state after the MLE launch. If this is desired, then before executing
GETSEC[SENTER], software should save the contents of these MSRs in the OsMleData
area. The launched software can restore the original values into these MSRs after the
GETSEC[SENTER] returns or, alternatively, the MLE can restore these MSRs with their
original values during MLE initialization.

It is expected that most MLEs will want to restore the MTRR and IA32_MISC_ENABLE
MSR states after the MLE launch, to provide optimal performance of the system.

Listing 5. Pseudocode for Rendezvousing Processors and Saving State

1. Rendezvous all processors;

//
// The following code is run on all processors
//
// Enable SMX
//

2. CPUID(EAX=1);
3. IF (SMX not supported) OR (VMX not supported) {
4. Fail measured environment startup;
5. } ELSE {
6. CR4.SMXE = 1;
7. }

8. Clear Machine Check Status Registers;
9. Ensure CR0.CD=0, CR0.NW=0, and CR0.NE=1;

//
// Save current system software state in Intel TXT Heap
//

10.Allocate memory for OsMleData;
11.Fill in OsMleData with system software state (including MTRR

and IA32_MISC_ENABLE MSR states);

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 27

2.2.5 Performing a Measured Launch

2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution

System software must set up the variable range MTRRs to map all of memory (except
the region containing the SINIT AC module) to one of the supported memory types as
returned by GETSEC[PARAMETERS], before executing GETSEC[SENTER]. System
software first saves the current MTRR settings in the OsMleData area and verifies that
the default memory type is one of the types returned by GETSEC[PARAMETERS]
(default memory type is specified in the IA32_MTRR_DEF_TYPE MSR). Next the
variable range MTRRs are set to map the SINIT AC module as WB. The SINIT AC
module must be covered by the MTRRs such that no more than (4K-1) bytes after the
module are mapped WB. For example, if an SINIT AC module is 11K bytes in size, an
8K and a 4K or three 4K MTRRs should be used to map it, not a single 32K MTRR. Any
unused variable range MTRRs should have their valid bit cleared.

Listing 6 shows the pseudocode for correctly setting the ILP and RLP MTRRs. This code
follows the recommendation in the IA-32 Software Developer’s Manual.

After MTRR setup is complete, the RLPs mask interrupts (by executing CLI), signal the
ILP that they have interrupts masked, and execute halt. Before executing
GETSEC[SENTER], the ILP waits for all RLPs to indicate that they have disabled their
interrupts. If the ILP executed a GETSEC[SENTER] while an RLP was servicing an
interrupt, the interrupt servicing would not complete, possibly leaving the interrupting
device unable to generate further interrupts.

Listing 6. MTRR Setup Pseudocode

//
// Pre-MTRR change
//

1. Disable interrupts (via CLI);
2. Wait for all processors to reach this point;
3. Disable and flush caches (i.e. CRO.CD=1, CR0.NW=0, WBINVD);
4. Save CR4
5. IF (CR4.PGE == 1) {
6. Clear CR4.PGE
7. }
8. Flush TLBs
9. Disable all MTRRs (i.e. IA32_MTRR_DEF_TYPE.e=0)

//
// Use MTRRs to map SINIT memory region as WB, all other regions
// are mapped to a value reported supportable by
// GETSEC[PARAMETERS]
//

10.Set default memory type (IA32_MTRR_DEF_TYPE.type) to one

reported by GETSEC[PARAMETERS];
11.Disable all fixed MTRRs (IA32_MTRR_DEF_TYPE.fe=0);
12.Disable all variable MTRRs (clear valid bit);
13.Read SINIT size from the SINIT AC header;

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

28

14.Program variable MTRRs to cover the AC execution region,
memtype=WB (re-enable each one used);

//
// Post-MTRR changes
//
15.Flush caches (WBINVD);
16.Flush TLBs;
17.Enable MTRRs (i.e. MTRRdefType.e=1);
18.Enable caches (i.e. CRO.CD=0, CR0.NW=0);
19.Restore CR4;
20.Wait for all processors to reach this point;
21.Enable interrupts;

//
// RLPs stop here
//

22.IF (IA32_APIC_BASE.BSP != 1) {
23. CLI;
24. set bit indicating we have interrupts disabled;
25. HLT;
26.}

27.Wait for all RLPs to signal that they have their interrupts

disabled

2.2.5.2 Selection of Launch Capabilities

System software must select the capabilities that it wishes to use for the launch. It must
choose a subset of the capabilities supported by the SINIT AC module. For mandatory
capabilities, such as the RLP wakeup mechanism, one of the supported options must be
chosen.

28.OsSinitData.Capabilities = selected capabilities;

2.2.5.3 TPM Preparation

System software must ensure that the TPM is ready to accept commands and that there
is no currently active locality (TPM.ACCESS_x.activeLocality bit is clear for all localities)
before executing the GETSEC[SENTER] instruction.

29.Read TPM Status Register until it is ready to accept a command
32.For all localities x, ensure that ACCESS_x.activeLocality is 0

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 29

2.2.5.4 Intel® Trusted Execution Technology Launch

The ILP is now ready to launch the measuring process. System software executes the
GETSEC[SENTER] instruction. See chapter 6, “Safer Mode Extensions Reference”, in
the Intel 64 and IA-32 Software Developer Manuals, Volume 2B for the details of
GETSEC[SENTER] operation.

30.EBX = Physical Base Address of SINIT AC Module
31.ECX = size of the SINIT AC Module in bytes
32.EDX = 0
33.GETSEC[SENTER]

2.3 MLE Initialization

This section describes the initialization of the MLE. Listing 7 shows the pseudocode for
MLE initialization.

The MLE initialization code is executed on the ILP when the SINIT AC module executes
the GETSEC[EXITAC] instruction—the MLE initialization code is the first MLE code to
run after GETSEC[SENTER] and within the measured environment. The SINIT AC
module obtains the MLE initialization code entry point for the MLE EntryPoint field in
the MLE Header data structure whose address is specified in the OsSinitData entry in
the Intel TXT Heap. The MLE initialization code is responsible for setting up the
protections necessary to safely launch any additional environments or software. The
initialization includes Intel TXT hardware initialization, waking and initializing the
RLPs, MLE software initialization and initialization of the STM (if one is being used).
Section 2.3 describes the details of MLE initialization.

During MLE initialization, the ILP executes the GETSEC[WAKEUP] instruction, bringing
all the RLPs into the MLE initialization code. Each RLP gets its initial state from the
MLE JOIN data structure. The ILP sets up the MLE JOIN data structure and loads its
physical address in the TXT.MLE.JOIN register prior to executing GETSEC[WAKEUP].
Generally the RLP initialization code will be very similar to the ILP initialization code.

If the MLE restores any state from the environment of the launching system software
then it must first validate this state before committing it. This is because state from
the environment prior to the GETSEC[SENTER] instruction is not considered
trustworthy and could lead to loss of MLE integrity.

Lines 1 – 8: The MLE loads CR3 with the MLE page directory physical address and
enables paging. The SINIT AC module has just transferred control to the MLE with
paging off, now the MLE must setup its own environment. The MLE’s GDT is loaded at
line 3 and the MLE does a far jump to load the correct MLE CS and cause a fetch of
the MLE descriptor from the GDT. At line 5 a stack is setup for the MLE initialization
routine and, at line 6, the MLE segment registers are loaded. Next the MLE loads its
IDT and initializes the exception handlers.

All of the instructions and data that are used before paging is enabled must reside on
the same physical page as the MLE entry point and must access data with relative
addressing. This is because the page tables may have been subverted by untrusted

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

30

code prior to launch and so the MLE entry point’s page may have been copied to a
different physical address than the original. The MLE must also verify that this page is
identity mapped prior to enabling paging (to ensure that the linear address of the
instruction following enabling of paging is the same as its physical address).

If the MLE does not enable paging then it must also validate that the physical
addresses specified in the page table used for the launch are the expected ones. And
as above, it must do this in code that resides on the same physical page as the MLE
entry point and uses only relative addressing. The reason for this validation is that
the page table could have been altered to place the MLE pages at different physical
addresses than expected, without having altered the MLE measurement.

Because the MLE page table that was used for measurement does not contain pages
other than those belonging to the MLE, if it wishes to continue to run in a paged
environment it will need to either extend the page tables to map the additional
address space needed (e.g. TXT configuration space, etc.) or to create new page
tables. This should be done after it has finished establishing a safe environment. The
cacheability requirements for the address space of any MLE-established page tables
must follow the guidelines below.

Line 9: The MLE checks the MTRRs which were saved in the OsMleData area of the
Intel TXT Heap (see Appendix C). It looks for overlapping regions with invalid memory
type combinations and variable MTRRs describing non-contiguous memory regions. If
either of these checks fails the MLE should fail the measured launch or correct the
failure.

Before the original MTRRs are restored, the MLE must ensure that all its own pages
will be mapped with defined memory types once the variable MTRRs are enabled. The
MLE must ensure that the combined memory type as specified by the page table entry
and variable MTRRs results in a defined memory type.

If using the STM opt-in option, the MLE must check that the MSEG region of memory
is covered by a variable MTRR with memory type UC. The MLE must ensure that this
MTRR contains memory type UC during the entire operation of the Intel TXT
environment.

The MLE must also ensure that the TXT Device Space (0xFED20000 – 0xFED4FFFF) is
mapped as UC so that accesses to these addresses will be properly handled by the
chipset.

Line 10: The MLE should check that the system memory map that it will use is
consistent with the memory regions and types as specified in the Memory Descriptor
Records (MDRs) returned in the SinitMleData structure. Alternately, the MLE may use
this table as its map of system memory. This check is necessary as the system
memory map is most likely generated by untrusted software and so could contain
regions that, if used for trusted code or secrets, might lead to compromise of that
data. If the MLE will be using PCI Express* devices, it should verify that it is accessing
their configuration space through the address range specified by the PCIE MDR type
(3).

Line 11: The MLE should also verify that the Intel VT-d PMR settings that were used
by SINIT to program the Intel VT-d engines, as specified in the OsSinitData structure,
contain the expected values. While the MLE can only be launched if the settings cover
itself and its page tables (or the pages fall within the DPR), settings beyond these
regions could have been subverted by untrusted code prior to the launch.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 31

Line 12: The MLE should restore the IA32_MISC_ENABLE MSR to the value saved in
the OsMleData structure. This MSR was set to predefined values as part of SENTER in
order to provide a more consistent environment to the authenticated code module.
Most MLEs should be able to safely restore the previous value without any need to
verify it.

Lines 13 – 17: If this is the ILP then the MLE does the one-time initialization, builds
the MLE JOIN data structure and wakes the RLPs. This structure contains the physical
addresses of the MLE entry point and the MLE GDT, along with the MLE GDT size. The
ILP writes the physical address of this structure to the TXT.MLE.JOIN register. An RLP
will read the startup information from the MLE JOIN data structure when it is
awakened. The MLE writer should ensure that the MLE JOIN data structure does not
cross a page boundary between two non-contiguous pages. The MLE image must be
built or loaded such that its GDT is located on a single page. Enough of the RLP entry
point code must be on a single page to allow the RLPs to enable paging.

Lines 18 – 27: The MLE must look at the OsSinitData.Capabilities field to see which
RLP wakeup mechanism was chosen by the pre-SENTER code and thus used by SINIT.
If the MLE wants to enforce that certain capabilities or wakeup mechanism was used
then it can choose to error if it finds that not to be the case. For future compatibility,
MLEs should support both RLP wakeup mechanisms.

Line 30: The MLE checks several items to ensure they are consistent across all
processors:

• All processors must have consistent SMM Monitor Control MSR settings. The
processors must all be opt-in and have the same MSEG region or the processors
must be all opt-out. The MLE must also check that the MSEG region in the SMM
Monitor Control MSR matches what is contained in the TXT.MSEG.BASE register.

• Ensure all processors have compatible VMX features. The compatible VMX features
will depend on the specific MLE implementation. For example, some
implementation may require all processors support Virtual Interrupt Pending.

• Ensure all processors have compatible feature sets. Some MLE implementations
may depend on certain feature being available on all processors. For example,
some MLE implementation may depend on all processors supporting SSE2.

• Ensure all processors have a valid microcode patch loaded or all processors have
the same microcode patch loaded. This check will depend on the specific MLE
implementation. Some MLE implementations may require the same patch be
loaded on all processors, other MLE implementations may contain a microcode
patch revocation list and require all processors have a microcode patch loaded
which is not on the revocation list.

Line 31: The MLE must wakeup the RLPs while the memory type for the SINIT AC
module region is writeback. This is a requirement of the MONITOR mechanism for RLP
wakeup. Since this is not guaranteed to be true of the original MTRRs, it is safest to
wait until after the RLPs have been awakened before restoring the MTRRs to their pre-
SENTER values. Alternatively, the MLE could ensure that this is the case and adjust
the MTRRs if it is not. It could then restore the MTRRs before waking the RLPs. In
either case, when restoring the MTRRs they should be made the same for each
processor.

Line 32: The MLE enables VMX in the CR4 register. This is required before any VMX
instruction can be executed.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

32

Line 33: The MLE allocates and sets up the root controlling VMCS then executes
VMXON, enabling VMX root operation.

Lines 34 – 38: The MLE sets up the guest VM. At line 34 the MLE allocates memory for
the guest VMCS. This memory must be 4K byte aligned. The MLE executes VMCLEAR
with a pointer to this VMCS in order to mark this VMCS clear and allow a VMLAUNCH
of the guest VM. At line 36 the MLE executes VMPTRLD so that it can initialize the
VMCS at line 37. Now at line 38 the guest VM is launched for the first time.

Note: On the last extend of the TPM by the SINIT AC module, it may not wait to see if
the command is complete – so the MLE needs to make sure that the TPM is ready
before using it.

Listing 7: MLE Initialization Pseudocode

//
// MLE entry point – ILP and RLP(s) enter here
//

1. Load CR3 with MLE page table pointer (OsSinitData.MLE

PageTableBaseLow/High);
2. Enable paging;
3. Load the GDTR with the linear address of MLE GDT;
4. Long jump to force reload the new CS;
5. Load MLE SS, ESP;
6. Load MLE DS, ES, FS, GS;

7. Load the IDTR with the linear address of MLE IDT;
8. Initialize exception handlers;

//
// Validate state
//
9. Check MTRR settings from OsMleData area;
10.Validate system memory map against MDRs
11.Validate VT-d PMR settings against expected values
12.Restore IA32_MISC_ENABLE MSR from OsMleData

//
// Wake RLPs
//
13.IF (ILP) {
14. Initialize memory protection and other data structures;
15. Build JOIN structure;
16. TXT.MLE.JOIN = physical address of JOIN structure;
17. IF (RLP exist) {
18. IF (OsSinitData.Capabilities is set to MONITOR

wakeup mechanism) {
19. SinitMleData.RlpWakeupAddr = 1;
20. }
21. ELSE IF (OsSinitData.Capabilities is set to GETSEC

wakeup mechanism) {
22. GETSEC[WAKEUP];
23. }

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 33

24. ELSE {
25. Fail: Unknown RLP wakeup mechanism;
26. }
27. }
28.}

29.Wait for all processors to reach this point;
30.Do consistency checks across processors;
31.Restore MTRR settings on all processors;

//
// Enable VMX
//
32.CR4.VMXE = 1;

//
// Start VMX operation
//
33.Allocate and setup the root controlling VMCS, execute

VMXON(root controlling VMCS);

//
// Set up the guest container
//
34.Allocate memory for and setup guest VMCS;
35.VMCLEAR guest VMCS;
36.VMPTRLD guest VMCS;
37.Initialize guest VMCS from OsMleData area;

//
// All processors launch back into guest
//
38.VMLAUNCH guest;

2.4 MLE Operation

The dispatch routine is responsible for handling all VMExits from the guest. The guest
VMExits are caused by various situations, operations or events occurring in the guest.
The dispatch routine must handle each VMExit appropriately to maintain the measured
environment. In addition, the dispatch routine may need to save and restore some of
processor state not automatically saved or restored during VM transitions. The MLE
must also ensure that it has an accurate view of the address space and that it restricts
access to certain of the memory regions that the GETSEC[SENTER] process will have
enabled. The following subsections describe various key components of the MLE
dispatch routine.

2.4.1 Address Space Correctness

It is likely that most MLEs will rely on the e820 memory map to determine which
regions of the address space are physical RAM and which of those are usable (e.g. not
reserved by BIOS). However, as this table is created by BIOS it is not protected from

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

34

tampering prior to a measured launch. An MLE, therefore, cannot rely on it to contain
an accurate view of physical memory.

After a measured launch, SINIT will provide the MLE with an accurate list of the actual
RAM regions as part of the SinitMleData structure of the Intel TXT Heap (see Appendix
C.4). The SinitMDR field of this data structure specifies the regions of physical
memory that are valid for use by the MLE. This data structure can also be used to
accurately determine SMRAM and PCIe extended configuration space, if the MLE
handles these specifically.

2.4.2 Address Space Integrity

There are several regions of the address space (both physical RAM and Intel TXT
chipset regions) that have special uses for Intel TXT. Some of these should be
reserved for the MLE and some can be exposed to one or more guests/VMs.

2.4.3 Physical RAM Regions

There are two regions of physical RAM that are used by Intel TXT and are reserved by
BIOS prior to the MLE launch. These are the SINIT AC module region and the Intel
TXT Heap. Each region’s base address and size are specified by Intel TXT configuration
registers (e.g. TXT.SINIT.BASE and TXT.SINIT.SIZE).

The SINIT and Intel TXT Heap regions are only required for measured launch and may
be used for other purposes afterwards. However, if the measured environment must
be re-launched (e.g. after resuming from the S3 state), the MLE may wish to reserve
and protect these regions.

2.4.4 Intel® Trusted Execution Technology Chipset Regions

There are two Intel TXT chipset regions: Intel TXT configuration register space and
Intel TXT Device Space. These regions are described in Appendix B.

2.4.4.1 Intel® Trusted Execution Technology Configuration Space

The configuration register space is divided into public and private regions. The public
region generally provides read only access to configuration registers and the MLE may
choose to allow access to this region by guests. The private region allows write
access, including to the various command registers. This region should be reserved to
the MLE to ensure proper operation of the measured environment.

2.4.4.2 Intel® Trusted Execution Technology Device Space

The Intel TXT Device Space supports access to TPM localities. Localities three and four
are not usable by the MLE even after the measured environment has been established,
and so do not need any special treatment. Locality two is unlocked when the Intel TXT
private configuration space is opened during the launch process. Locality one is not
usable unless it has been explicitly unlocked (via the TXT.CMD.OPEN.LOCALITY1
command). If the MLE wants to reserve access to locality two for itself then it needs to
ensure that guest/VM access to these regions behaves as an LPC abort, as defined by

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 35

TCG for non-accessible localities. This behavior is that memory reads return FFh and
writes are discarded. The MLE can provide this behavior by trapping guest/VM
accesses to the regions and emulating the defined behavior. Instead, it could map
these regions onto one of the hardware-reserved localities (three or four) and let the
hardware provide the defined behavior. If the MLE does not need access to locality 2
then it can simply close this locality (TXT.CMD.CLOSE.LOCALITY2) so that neither
itself nor guests will have access to it.

2.4.5 Protecting Secrets

If there will be data in memory whose confidentiality must be maintained, then the
MLE should set the Intel TXT secrets flag so that the Intel TXT hardware will maintain
protections even if the measured environment is lost before performing a shutdown
(e.g. hardware reset). This can be done by writing to the TXT.CMD.SECRETS
configuration register. The teardown process will clear this flag once it has scrubbed
memory and removed any confidential data.

2.4.6 Machine Specific Register Handling

Model Specific Registers (MSRs) pose challenges for a measured environment. Certain
MSRs may directly leak information from one guest to another. For example, the
Extended Machine Check State registers may contain secrets at the time a machine
check is taken. Other MSRs might be used to indirectly probe trusted code. The
Performance Counter MSRs, for example, could be used by the non-trusted guest to
determine secrets (e.g. keys) used by the trusted code. Other MSRs can modify the
MLE’s operation and destroy the integrity of the measured environment.

The VMX architecture allows the MLE to trap all guest MSR accesses. Certain VMX
implementations will also allow the MLE to use a bitmap to selectively trap MSR
accesses. The MLE must use these VMX features to check certain guest MSR accesses,
ensuring that no secrets are leaked and that MLE operation is not compromised.

An MLE might virtualize some of the MSRs. The VMX architecture provides a
mechanism to automatically save selected guest MSRs and load selected MLE MSRs on
VMEXIT. Selected guest MSRs may be automatically loaded on VMENTER. These
features allow the MLE to virtualize MSRs, keeping a separate MSR copy for the guest
and MLE. Note that using this feature will slow VMEXIT and VMENTER times. The VMX
architecture provides a separate set of VMCS registers for the automatic saving and
restoring of the fast system call MSRs.

There is a limit to the number of MSRs which can be swapped during a VMX transition.
Bits 27:25 of the VMX_BASE_MSR+5 indicate the recommended maximum number of
MSRs that can be saved or loaded in VMX transition MSR-load or MSR-store lists.
Specifically, if the value of these bits is N, then 512 * (N + 1) is the recommended
maximum number of MSRs referenced in each list. If the limit is exceeded, undefined
processor behavior may result (including a machine check during the VMX transition).

There are certain MSRs which cannot be included in the MSR-load or MSR-store lists.
In the initial VMX implementations, IA32_BIOS_UPDT_TRIG and IA32_BIOS-SIGN_ID
may not be loaded as part of a VM-Entry or VM-Exit. The list of MSRs that cannot be
loaded in VMX transitions is implementation specific.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

36

The MLE must contain a built-in policy for handling guest MSR accesses. This MSR
handling policy must deal with all architectural MSRs that might be accessed by guest
code. The built-in MSR policy must deny access to all non-architectural MSRs.

2.4.7 Interrupts and Exceptions

To preserve the integrity of the measured environment, the MLE must be careful in
how it handles exceptions and interrupts. It needs to ensure that its IDT has a handler
for all exceptions and interrupts. The MLE should also ensure that if it uses interrupts
for internal signaling that it does so securely. Likewise, it is best if exception handlers
do not try and recover from the exception but instead properly terminate the
environment.

2.4.8 ACPI Power Management Support

Certain ACPI power state transitions may remove or cause failure to the Intel TXT
protections. The MLE must control such ACPI power state transitions. The following
sections describe the various ACPI power state transitions and how the MLE must deal
with these state transitions.

2.4.8.1 T-state Transitions

T-states allow reduced processor core temperature through software-controlled clock
modulation. T-state transitions do not affect the Intel TXT protections, so the MLE
does not need to control T-state transitions. The MLE may wish to control T-state
transitions for other purposes, e.g. to enforce its own power management or
performance policies.

2.4.8.2 P-State Transitions

P-state transitions allow software to change processor operating voltage and
frequency to improve processor utilization and reduce processor power consumption.
These P-state transitions require special MLE treatment to ensure software does not
write an invalid combination into the GV3 MSRs.

2.4.8.3 C-State Transitions

C-states allow the processor to enter lower power state. The C0 state is the only C-
state where the processor is actually executing code – in the remaining C-states the
processor enters a lower power state and does not execute code. In these lower power
C-states the Intel TXT protections remain intact; therefore the MLE does not need to
monitor or control the C-state transitions. The MLE may wish to control C-state
transitions for other purposes, e.g. to enforce its own power management or
scheduling policy.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 37

2.4.8.4 S-State Transitions

The S0 state is the system working state – the remaining S-states are low-power,
system-wide sleep states. Software transitions from the S0 working state to the other
S-states by writing to the PM1 control register (PM1_CNT) in the chipset. Since the
Intel TXT protections are removed when the system enters the S3, S4 or S5 states,
and the BIOS will gain control of the system on resume from these states, the MLE
must remove secrets from memory before allowing the system to enter one of these
sleeps states. Note that entering S1 does not remove Intel TXT protections and Intel
chipsets do not support the S2 sleep state.

The Intel TXT chipset provides hardware to detect when the software attempts to
enter a sleep state while the secrets flag is set (the TXT.SECRETS.STS bit of the
TXT.E2STS register). The Intel TXT chipset will reset the system if it detects a write to
the PM1_CNT register that will force the system into S3, S4 or S5 while the secrets
flag is set. If the Intel TXT chipset does detect this situation and resets the system,
then the BIOS AC module will scrub the memory before passing control to the BIOS.
To avoid this reset and scrubbing process the MLE should remove secrets from
memory and teardown the Intel TXT environment before allowing a transition to S3,
S4 or S5.

Before tearing down the Intel TXT environment, the MLE may remove secrets from
memory (clearing pages with secrets) or encrypt secrets for later use (e.g. for a later
measured environment launch). Once this operation is complete the MLE must issue
the TXT.CMD.NO-SECRETS command to clear the secrets flag. After this command is
issued, the MLE may allow a transition to a S3, S4 or S5 sleep state. The MLE
teardown procedure is described in more detail in section 2.5

Because the boot process on resuming from an S3 state does not re-measure the
elements of the SRTM, software prior to entering the S3 state must execute the
TPM_SaveState command to inform the TPM to preserve the state of its PCRs. Upon
resume from S3, the BIOS must provide a flag to TPM_Startup to indicate that the
TPM is to restore the saved state. If the TPM’s state is not saved prior to entering S3,
then the TPM will be non-functional after resuming. Normally an OS TPM driver would
perform the TPM_SaveState command when the OS indicated that it was entering S3.
However, if the MLE cannot be sure that the environment it establishes will perform
this command, it may wish to so do itself prior to entering S3. There is no harm if
this command is executed multiple times prior to S3.

2.5 MLE Teardown

This section describes an orderly measured environment teardown. This occurs when
the guest OS or the MLE decides to teardown the measured environment (for example
prior to entering an ACPI sleep state such as S3). The listing below shows the
pseudocode for teardown of the measured environment.

Line 1: Rendezvous all processors at “exiting Intel TXT environment” point in guest.
No need for the guests to save their state as their state will be stored in a VMCS on
VMEXIT to the monitor.

Lines 2 and 3: After all processors in the guest rendezvous, all processors execute a
VMCALL to the teardown routine in the MLE. Once in the MLE, each processor
increments a counter in trusted memory. All processors except the BSP/ILP (the
processor with IA32_APIC_BASE MSR.BSP=1) wait on a memory barrier. The ILP

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

38

waits for all other processors to enter MLE teardown routine then signals the other
processors to resume with teardown.

If not all processors reach the rendezvous in the guest, the ILP may timeout and
VMCALL to the MLE teardown routine. If not all processors arrive in the MLE teardown
routine, the ILP forces all other processors into the MLE with an NMI IPI. Both these
conditions are treated as errors – the ILP should proceed with the measured
environment teardown but log an error.

At line 4, each processor reads all guest state from its VMCS and stores this data in
memory, since after VMXOFF the processors will no longer be able to access data in
their VMCS. This state will be needed to restore the guest execution after teardown.

The MLE automatically saves certain guest state (general purpose registers which are
not part of the VMCS guest area) on VM Exit. The MLE may need to restore this state
when it reenters the guest after the GETSEC[SEXIT].

Line 5: Once all processors are in the MLE and have saved guest state from the VMCS,
all processors clear their appropriate registers to remove secrets from these registers.

Lines 6: All processors flush VMCS contents to memory using VMCLEAR. The MLE
must flush any VMCS which might contain secrets – this would include all guest
VMCSes in a multi-VM environment.

Line 7: The processors wait until all processors have reached this point before
resuming execution. This allows all the VMCS flushes to complete before the ILP
encrypts or scrubs secrets. Processors should execute an SFENCE to ensure all writes
are completed before continuing.

Line 9: The ILP encrypts and stores exposed secrets from all trusted VMs. Note that
encrypted secrets will have to be stored in memory until the OS can put them to disk.
This will require extra memory above and beyond the memory holding secrets. This
step assumes that the RLPs do not have secrets that are not visible to the ILP.
Therefore when the ILP scrubs/encrypts all secrets, this will deal with secrets in the
RLP caches also.

Line 10: The ILP again clears appropriate registers to remove any secrets from those
registers.

Line 11: The ILP scrubs all trusted memory (except the teardown routine itself and
encrypted memory). Note that the scrub itself clears secrets still held in the cache.

Line 12: The ILP executes WBINVD to invalidate its caches (to ensure last few pages
of zeros actually get to memory).

Line 13: The ILP caps, or extends, the dynamic PCRs with some value. This prevents
an attacker from unsealing the secrets after the teardown using the same PCRs, since
the dynamic PCRs are not reset after GETSEC[SEXIT].

Line 14: The ILP writes the NoSecrets in memory command. (TXT.CMD.NO-SECRETS)

Line 15: The ILP should unlock the system memory configuration (TXT.CMD.UNLOCK-
MEM-CONFIG) (that was locked by SINIT) once secrets have been removed from
memory. This will facilitate re-launching the MLE and is necessary for a graceful
shutdown of the system.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 39

Line 16: The ILP closes Intel TXT private configuration space.

Line 19: The RLPs wait while the ILP encrypts and scrubs secrets from memory.

Line 21: Each processor then disables processor virtualization.

Lines 22 - 27: The RLPs wait on a memory barrier while the ILP executes the
GETSEC[SEXIT] instruction to initiate the teardown of SMX operation.

At end of GETSEC[SEXIT], the ILP simply continues to the next instruction (still
running in monitor’s context – paging on). The ILP signals the RLPs to continue.

Lines 28 and 29: The former monitor code now restores guest state left behind when
the guest executed the VMCALL to enter the MLE teardown routine. All processors
perform the transition to guest OS, now operating as normal environment rather than
guest.

The guest MSRs must be restored when restarting the guest OS. The MLE can restore
the MSRs with information in the VMCS (VM-exit MSR store count) and the VM-exit
MSR store area, or the guest OS could save important MSR settings before calling the
teardown routine and restore its own MSR settings after resuming after teardown.

If the MLE is going to return control to a designated guest after tearing down then the
MLE must ensure that no interrupts are left pending or unserviced before returning
control to the designated guest. Any interrupts left pending or unserviced may prevent
further interrupt servicing once the designated guest is restarted.

Listing 8. Measured Environment Teardown Pseudocode

1. Rendezvous processors in guest OS;
2. All processors VMCALL teardown in MLE;
3. Rendezvous all processors in MLE teardown routine;
4. All processors read guest state from VMCS, store values in

memory;

//
// Remove and encrypt all secrets from registers and memory
//
5. All processors clear their appropriate registers;
6. All processors flush VMCS contents to memory using VMCLEAR;
7. Wait for all processors to reach this point;
8. IF (ILP) {
9. Encrypt and store secrets in memory;
10. Again clear appropriate registers to remove secrets;
11. Scrub all trusted memory;
12. WBINVD caches;
13. “cap” dynamic TPM PCRs;
14. Write to TXT.CMD.NO-SECRETS;
15. Unlock memory configuration
16. Close private Intel TXT configuration space;
17. Signal RLPs that scrub is complete;
18.} ELSE { // RLP
19. Wait for ILP to signal completion of memory scrub;
20.}

//

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

40

// Stop VMX operation
//
21.VMXOFF;

//
// RLPs wait while ILP executes SEXIT
//
22.IF (ILP) {
23. GETSEC[SEXIT];
24. signal completion of SEXIT;
25.} ELSE {
26. wait for ILP to signal completion of SEXIT;
27.}

//
// Transition back to the guest OS
//

28.Restore guest OS state from device memory;
29.Transition back to guest OS context;

2.6 Other Considerations

2.6.1 Saving MSR State across a Measured Launch

Execution of the GETSEC[SENTER] instruction loads certain MSRs with pre-defined
values. For example, GETSEC[SENTER] will load IA32_DEBUGCTL MSR with 0H and
will load the GV3 MSR with a predetermined value. The software can deal with this in
several different ways. The launching software may save the state of these MSRs
before measured launch and restore the state after the launch returns. In this case
the MLE will need to check the values that are restored. Another approach is to have
the launch software save the desired state and have the MLE restore the values before
resuming the guest. The software could also leave these MSRs in the state established
by GETSEC[SENTER].

The IA32_MISC_ENABLE MSR should be saved and restored around measured launch
and teardown.

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 41

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

42

3 Verifying Measured Launched
Environments

Launch Control Policy (LCP) is the verification mechanism for the Intel TXT verified
launch process. LCP is used determine whether the current platform configuration or
the environment to be launched meets a specified criteria. Policies may be defined by
the Platform Owner, and/or, as a default set by the Platform Supplier.

3.1 Overview

The Launch Control Policy architecture consists of the following components:

• LCP Policy Engine – part of the SINIT ACM and enforces the policies stored on
the platform

• LCP Policies – stored in the TPM, they specify the policies SINIT ACM will
enforce.

• LCP PolicyData objects – referenced by the Policy structures in the TPM; each
contains a list of valid Measured Launched Environments or a list of possible
platform configurations.

Figure 1 shows how these components relate to each other. The figure also shows that
there are two possible policies available on the platform: the Platform Default policy,
as established by the Platform Supplier, and the Platform Owner’s policy.

When the platform boots, its state is measured and recorded by the Static Root of
Trust for Measurement (SRTM) and the other components which make up the static
chain of trust; these events occur from when the platform is powered on until the
Intel TXT measured launch (or until some component breaks the static chain). At this
point GETSEC[SENTER] is invoked, and control is passed through the authenticated
code execution area to the SINIT authenticated code module. The LCP engine in SINIT
reads the LCP Policy Indices in the TPM NV, decides which policy to use, and checks
the Platform Configuration and the Measured Launched Environment as require by the
chosen policy. The measured environment is then launched.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 43

Figure 1. Launch Control Policy Components

Platform Default
LCP_Policy

Platform Owner
LCP_Policy

…

…

TPM PCRs

TPM NV Ram

PD
LCP_POLICY_DATA

PO
LCP_POLICY_DATA

Static Chain
of Trust MLESINIT(LCP)

Execution Control
Write/Read Operation
Data Reference

Figure 2 shows the policy decision flow within the LCP engine within the SINIT
authenticated code module. If no policy on the platform is configured then SINIT
behaves as the policy allows ANY Measured Launched Environment and ANY platform
configuration. When both the Platform Default and the Platform Owner Policies have
been established on the platform the policies are combined (see section 3.2.1), the
Platform Owner policy taking precedence when there is a conflict between the two
policies.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

44

Figure 2. SINIT LCP Internal Flow

3.1.1 LCP Components

The description of the policy that the SINIT AC module implements, consists of two
policies: one policy is set by the Platform Supplier, known as the Platform Default, and
the other belongs to the Platform Owner. Both policies are stored in the Non-Volatile
Store of the Trusted Platform Module (TPM NV). By storing the policy in the TPM NV,
access controls can be applied to it; it also enables the policy to persist across
platform power cycles.

3.1.1.1 LCP Policy

The LCP_POLICY structure (for a full listing see Appendix D.1) is used for both the
Platform Default and the Platform Owner policies. The size of the structure currently
needs to be kept to a minimum in order to preserve the scarce resources of the TPM
NV storage, which is why additional structures for both Default and Owner policies
(LCP_POLICY_DATA) that can be persisted elsewhere are provided to handle additional
information.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 45

Figure 3. LCP_POLICY Structure

Figure 3 diagrammatically illustrates the LCP_POLICY structure (fields not to scale):
HashAlg identifies the hashing algorithm used through this policy. PolicyType indicates
whether an additional LCP_POLICY_DATA structure is required and if this data is to be
treated as unsigned.

• If the PolicyType field is POLTYPE_ANY then the value in the PolicyHash field
is ignored and the environment to be launched is simply measured before
execution control is passed to it. No corresponding LCP_POLICY_DATA is
expected.

• If the PolicyType field is POLTYPE_HASHONLY then the value in the
PolicyHash field is the only value against which the Measured Launched
Environment is to be compared. No additional LCP_POLICY_DATA is
required. No corresponding LCP_POLICY_DATA is expected. This policy type
is not currently supported for the default policy.

• If the PolicyType field is POLTYPE_UNSIGNED then the value of PolicyHash is
the result of computing a hash over the LCP_POLICY_DATA. The
corresponding LCP_POLICY_DATA structure will contain data of type
LCP_UNSIGNED_POLICY_DATA. This policy type is not currently supported
for the default policy.

• If the PolicyType field is POLTYPE_FORCEOWNERPOLICY the value of
PolicyHash is ignored and the LCP engine will process the Platform Owner’s
LCP Policy and fail if it is not present. No corresponding LCP_POLICY_DATA
is expected. This value can only be used in the Platform Default LCP policy.

SINITRevocationCounter specifies the minimum version of SINIT that can be used.
This value corresponds to the AcmVersion field in the AC module Information Table
(see Table 6).

The PolicyControlField provides a number of control bits which are defined as:

• Bits31:2 Reserved and should set to zero

• Bit 1 Identifies whether the platform will allow AC Modules which have been
marked as pre-production to be used to launch the MLE.
Note: Setting the bit to 1 will require a pre-production SINIT AC module and
will result in PCRs 17 and 18 being capped with a random value.

• Bit 0 Identifies whether a hash of an unsigned policy is extended into PCR 17

3.1.1.2 LCP Policy Data

The purpose of the LCP_POLICY_DATA structure is to provide the additional data
needed to enforce the policy but in a separate entity that doesn’t have to consume

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

46

TPM NV space. The LCP_POLICY_DATA structure contains an unsigned policy data
(indicated by LCP_POLICY::PolicyType); the structures for which are shown in Figure 4
and a full description of LCP_POLICY_DATA can be found in Appendix D.2.

Figure 4. *_POLICY_DATA Structures

The LCP_UNSIGNED_POLICY_DATA::PolicyTable structure allows the object to contain
a number of lists which identify either:

• the types of measured environment that can be launched, or

• the states the platform may be in – as recorded in the TPM by the Static chain
of Trust.

3.1.2 Policy List Types

3.1.2.1 MLE List

When processing a measured environment list the LCP engine computes the hash
(using the HashAlg identified in LCP_POLICY) over the environment to be launched
and compares it to the hash values in the MLE list. If a match can be found, then the
LCP engine proceeds.

The following rules apply to the Measured Launched Environment List:

• There can only be one MLE list within the LCP_POLICY_DATA structure

• Each measured environment must be enumerated using the same
cryptographic hashing algorithm specified by HashAlg in LCP_POLICY. This
algorithm must be supported by SINIT.

• All measurements are of the environment to be launched, as measured by
SINIT, not the value of the PCR after it’s been extended.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 47

3.1.2.2 Platform Configuration List

When processing the platform configuration list the LCP engine reads the appropriate
PCR’s as defined by the first TPM_PCR_INFO_SHORT value in the list and concatenates
them and cryptographically hashes them together. The result is compared to the hash
value in the TPM_PCR_INFO_SHORT. If there is no match this process is repeated for
each and every member of the list. As soon as a match is found, the LCP engine
proceeds.

The follow rules apply to the Platform configuration List:

• There can only be one platform configuration list within the LCP_POLICY_DATA
structure

• Each platform configuration in the list must be enumerated as a
TPM_PCR_INFO_SHORT structure.

Additionally, it is recommended, although not necessary, that all
TPM_PCR_INFO_SHORT structures in the platform configuration list test the same set
of PCR values.

3.1.3 Supported Cryptographic Algorithms

The following algorithms are defined for the current version of the Launch Control
Policy:

Hashing – SHA-1

It is the responsibility of the policy author to ensure that their policy uses an
algorithm supported by the version of the SINIT AC module being used. If the policy
specifies an unsupported algorithm, the policy will fail and the environment will not be
permitted to launch.

3.2 Policy Engine Logic

The logic above means that all the records (i.e., an LCP_POLICY_LIST structure) in the
PolicyTable must evaluate to true. However, a record may represent a list which
contains multiple possible hash values only one of which must match in order for the
record to evaluate true..

In a very simple case where the LCP_POLICY_LIST is a simple MLE list, the logic would
be as follows:

MLEList: MLE1 or MLE2 or MLE3

The measured environment can be launched if, and only if, the hash of the measured
environment matched any one of the listed MLE1, MLE2 or MLE3.

While a more complex set of policies could contain both an MLE list and a platform
configuration list. In this case the logic would be as follows:

MLEList: MLE1 or MLE2 or MLE3
 AND
PltConfList: PCONF1 or PCONF2 or PCONF3

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

48

Here, the measured environment can be launched if, and only if, the hash of the
measured environment matches one the values MLE1, MLE2 or MLE3 and the values of
the TPM PCRs at the time SINIT is executed matches one of the values PCONF1,
PCONF2, or PCONF3.

If either the MLE or the PCONF fails to match any of its respective hash values, an
error code is written to the TXT.ERRORCODE register and a TXT Shutdown is
triggered.

3.2.1 Combining Policies

When both the Platform Supplier and the Platform Owner have established policies on
the platform, the two policies are combined to give a resultant policy which the LCP
Policy Engine will enforce.

3.3 Measuring the Enforced Policy

The LCP engine will extend to PCR 17 a hash value which represents the policy against
which the environment was launched. This hash value is determined by the rules in
the following sections and in some cases the settings in the relevant
LCP_POLICY::PolicyControlField, these relate to the possible combinations:

• No Policy – The platform has no configured policy.

• Allow Any Policy – The selected policy allows any MLE to launch.

• LCP Policy Hash Only – The selected policy only uses a single hash stored in
the LCP_POLICY

• Unsigned LCP_POLICY_DATA – The selected policy uses an unsigned
LCP_POLICY_DATA structure

• Force Owner Policy – The Platform Default policy requires that a Platform
Owner’s Policy is present on the platform.

As a matter of integrity the LCP_POLICY::PolicyControlField field will always be
extended into PCR 17.

3.3.1 No Policy Data

When no LCP Policy is executed, 20 bytes of 0s will be extended to PCR 17 to prevent
any Measured Launched Environment from later extending a value of any other policy
into the PCR 17. As PCR 17 will be open to Locality 2 extends, the Measured Launched
Environment would gain access to sealed secrets which were sealed against some
known policy by another Measured Launched Environment.

3.3.2 LCP Policy Allow Any

When the LCP_POLICY indicates that the Policy Type is ALLOW ANY, 20 bytes of 0s will
extended to PCR 17 to prevent any Measured Launched Environment from later
extending a value of any other policy into the PCR 17.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 49

3.3.3 LCP Policy Hash Only

When the LCP_POLICY indicates that the HashValue is to be used as the only
measurement to be compared against, and that comparison is successful then this
value is extended to PCR 17.

3.3.4 Unsigned LCP_POLICY_DATA

When the LCP_POLICY indicates that the LCP_POLICYDATA object associated with the
policy is unsigned, the LCP_POLICY_DATA may contain unsigned MLE & Platform
Configuration lists. The value extended into PCR 17 will not simply be the hash of the
list. The LCP engine will generate a hash value for each list present within
LCP_POLICY_DATA and hash them together and extend this value. The hash for a list
is calculated by hashing the entire list. When Bit 0 of the
LCP_POLICY::PolicyControlField is set, then the hash value for unsigned
LCP_POLICY_DATA is extended into PCR 17; when it is clear then it is not.

3.3.5 Force Platform Owner Policy

When the Platform Default policy indicates that the Platform Owner policy must be
present then the value of the Platform Owner policy will be extended in PCR 17.

3.4 Revocation

3.4.1 SINIT Revocation

LCP Structures also enable a limited self-revocation mechanism for SINIT. This is
supported in the LCP_POLICY structure in the SINITRevocationCounter field. This field
is a UINT8 and corresponds to a similar field within the SINIT image. When the value
of the LCP_POLICY::SINITRevocationCounter field is less than or equal to the value of
AcmVersion in the SINIT image then SINIT may proceed, otherwise SINIT shall cause
a TXT Shutdown condition with the value LCP_SINIT_REVOKED in the
TXT.ERRORCODE register.

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

50

4 Development and Deployment
Considerations

4.1 Launch Control Policy Creation

Depending on the usage model, it may be desirable to create a Launch Control Policy
at the time the MLE is built. This would apply in the cases where only one MLE is
expected to run on the system. In such cases, the policy can be pre-created and
provisioned during the installation of the MLE.

If multiple MLEs are expected to run on the system, or if there is to be a platform
configuration policy, then it is likely that the policy will need to be created at the time
of deployment.

In either case, it is advisable that the policy should contain an
SINITRevocationCounter value that corresponds to the lowest versioned SINIT that is
required. In the case of a system that supports multiple MLEs, that would be the
lowest AcmVersion of all of the SINITs installed. For a single MLE system, it is simply
the AcmVersion of the single SINIT installed. Setting the SINITRevocationCounter
value in the policy prevents an attacker from substituting an older version of SINIT (if
there is one for a given platform) that may have security issues.

4.2 Launch Errors and Remediation

If there is an error during a measured launch, the platform will be reset and an error
code left in the TXT.ERRORCODE register. It is important for MLE vendors to consider
how their software will handle such errors and allow users or administrators to
remediate them.

If an MLE is launched automatically either as part of the boot process or as part of an
operating system’s launch process, it needs to be able to detect a previous failure in
order to prevent a continuous cycle of boot failures. Such failures may occur as part
of the loading and preparation for the GETSEC[SENTER] instruction or they may occur
during the processing of that instruction before the MLE is given control.

In the former case, it is the MLE launching software that is detecting the error
condition (e.g. a mismatched SINIT ACM, TXT not being enabled, etc.) and that
software can use whatever mechanism it chooses to persist the error or to handle it at
that time. In the latter case, the system will be reset before the MLE launching
software can handle the error and so that software should be able to detect the error
in the TXT.ERRORCODE register and take appropriate action.

The particular remediation action needed will depend on the error itself. If the MLE
launch happens early in the boot process, the launching software may need a way of
booting into a remediation operating system. If the launch happens within an

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 51

operating system environment, the software may be able to remediate in that
environment.

4.3 Deployment

4.3.1 LCP Provisioning

4.3.1.1 TPM Ownership

Because creation and writing to the Platform Owner policy TPM NV index requires the
TPM owner authorization credential, the installation program should accommodate
differing IT policies for how and when TPM ownership is established. In some
enterprises, IT may take ownership before a system is deployed to an end user. In
others, the TPM may be un-owned until the first application that requires ownership
establishes it.

Since the TPM owner authorization credential will be required to modify the Platform
Owner policy, if the installation program creates the credential it should provide a
mechanism for securely saving that credential either locally or remotely.

4.3.1.2 Policy Provisioning

The Platform Owner policy TPM NV index will need to be created by the MLE
installation program (or other TPM management software) if does not already exist.
This can be done with the TPM_NV_DefineSpace command or corresponding higher-
level TPM interface (e.g. via a TCG Software Stack or TSS).

Once the index has been created, the installation program can write the policy into the
index using the TPM_NV_WriteValue command or corresponding higher-level TPM
interface (e.g. via a TCG Software Stack or TSS).

Because creating and writing to the Platform Owner policy index requires the TPM
owner authorization credential, care should be taken to protect the credential when it
is being used and to erase or delete it from memory as soon as it is no longer needed.

Ideally, policy provisioning would occur in a secure environment or be performed by
an agent that can be verified as trustworthy. An example of the former would be on
an isolated network immediately after receiving the system. Another would be
booting from a CD containing provisioning software. An example of the latter would
be to use Intel TXT to launch a provisioning MLE or agent that was then attested to by
a remote entity which could provide the owner authorization credential upon
successful attestation.

4.3.2 SINIT Selection

Because the SINIT AC module is specific to a chipset, different platforms may have
different SINIT ACMs. If an MLE is intended to run on multiple platforms with different
chipsets, the MLE installation program will need to determine which SINIT ACM to
install.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

52

This can be done by comparing the chipset compatibility information in the SINIT
ACM’s Chipset ID List with the corresponding information for the platform. This would
be identical to the process for verifying SINIT ACM compatibility at launch time, as
described in section 2.2.3.1.

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 53

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

54

Appendix A Intel® TXT Execution
Technology
Authenticated Code
Modules

A.1 Authenticated Code Module Format

An authenticated code module (AC module) is required to conform to a specific
format. At the top level the module is composed of three sections: module header,
internal working scratch space, and user code and data. The module header contains
critical information necessary for the processor to properly authenticate the entire
module, including the encrypted signature and RSA based public key. The processor
also uses other fields of the AC module for initializing the remaining processor state
after authentication.

The format of the authenticated-code module is in Table 3. This definition represents

Revision 0.0 of the AC module header version (defined in the HeaderVersion field).

Table 3. Authenticated Code Module Format

Field Offset Size (bytes) Description

ModuleType 0 4 Module type

HeaderLen 4 4 Header length (in multiples of four bytes)
(161 for version 0.0)

HeaderVersion 8 4 Module format version

ChipsetID 12 2 Module release identifier

Flags 14 2 Module-specific flags

ModuleVendor 16 4 Module vendor identifier

Date 20 4 Creation date (BCD format:
year.month.day)

Size 24 4 Module size (in multiples of four bytes)

Reserved1 28 4 Reserved for future extensions

CodeControl 32 4 Authenticated code control flags

ErrorEntryPoint 36 4 Error response entry point offset (bytes)

GDTLimit 40 4 GDT limit (defines last byte of GDT)

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 55

Field Offset Size (bytes) Description

GDTBasePtr 44 4 GDT base pointer offset (bytes)

SegSel 48 4 Segment selector initializer

EntryPoint 52 4 Authenticated code entry point offset
(bytes)

Reserved2 56 64 Reserved for future extensions

KeySize 120 4 Module public key size less the exponent
(in multiples of four bytes)
(64 for version 0.0)

ScratchSize 124 4 Scratch field size (in multiples of four
bytes)
(2 * KeySize + 15 for version 0.0)

RSAPubKey 128 KeySize * 4 Module public key

RSAPubExp 384 4 Module public key exponent

RSASig 388 256 PKCS #1.5 RSA Signature

End of AC module header

Scratch 644 ScratchSize * 4 Internal scratch area used during
initialization (needs to be all 0s)

User Area 644 +
Scratch
Size*4

N * 64 User code/data (modulo-64 byte
increments)

ModuleType

Indicates the module type. The following module types are defined:

2 = Chipset authenticated code module.

Only ModuleType 2 is supported by GETSEC functions SENTER and ENTERACCS.

HeaderLen

Length of the authenticated module header specified in 32-bit quantities. The
header spans the beginning of the module to the end of the signature field. This is
fixed to 161 for AC module version 0.0.

HeaderVersion

Specifies the AC module header version. Major and minor vendor field are
specified, with bits 15:0 holding the minor value and bits 31:16 holding the major
value. This should be initialized to zero for header version 0.0. Unsupported
header versions will be rejected by the processor and result in an abort during
authentication.

ChipsetID

Module-specific chipset identifier.

Flags

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

56

Module-specific flags. The following bits are currently defined:

Table 4. AC module Flags Description

Bit position Description

13:0 Reserved (must be 0)

14 Production (0) or pre-production flag (1)

15 Production (0) or debug (1) signed

ModuleVendor

Module creator vendor ID. Use the PCI SIG* assignment for vendor IDs to define
this field. The following vendor ID is currently recognized:

00008086H = Intel

Date

Creation date of the module. Encode this entry in the BCD format as follows:
year.month.day with two bytes for the year, one byte for the day, and one byte
for the month. For example, a value of 20040328H indicates module creation on
March 28, 2004.

Size

Total size of module specified in 32-bit quantities. This includes the header,
scratch area, user code and data.

Reserved1

Reserved. This should be initialized to zeros.

CodeControl

Authenticated code control word. Defines specific actions or properties for the
authenticated code module. The following bits are currently defined:

Table 5. AC module CodeControl Description

Bit position Description

0 Valid error entry point defined

1 Enable error reporting on detection of a snoop hit to a modified line during
the load of an authenticated code module

2 Load memory type error in Authenticated Code Execution Area

3 Enable error reporting on detection of a snoop hit to a modified line during
authenticated code execution. If this bit is set, the occurrence of a HITM
event results in an Intel® Trusted Execution Technology shutdown condition

31:4 Reserved

ErrorEntryPoint

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 57

If bit 0 of the CodeControl word is 1, the processor will vector to this location if a
snoop hit to a modified line was detected during the load of an authenticated code
module. If bit 0 is 0, then enabled error reporting via bit 1 of a HITM during ACEA
load will result in an abort of the authentication process and signaling of an Intel®
Trusted Execution Technology shutdown condition.

GDTLimit

Limit of the GDT in bytes, pointed to by GDTBasePtr. This is loaded into the limit
field of the GDTR upon successful authentication of the code module.

GDTBasePtr

Pointer to the GDT base. This is an offset from the authenticated code module
base address.

SegSel

Segment selector for initializing CS, DS, SS, and ES of the processor after
successful authentication. CS is initialized to SegSel while DS, SS, and ES are
initialized to SegSel + 8.

EntryPoint

Entry point into the authenticated code module. This is an offset from the module
base address. The processor begins execution from this point after successful
authentication.

Reserved2

Reserved. Should contain zeros.

KeySize

Defines the width the RSA public key in dwords applied for authentication, less the
size of the exponent. For version 0.0 of the AC module header, KeySize is fixed to
64 (a 2048 bit key). The information in this field is intended to support external
software parsing of an AC module independent of the module version. It is the
responsibility of the developer to reflect an accurate KeySize. This field is not
checked for consistency by the processor.

ScratchSize

Defines the width of the scratch field size specified in 32-bit quantities. For version
0.0 of the AC module header, ScratchSize is defined by KeySize * 2 + 15. The
information in this field is intended to support external software parsing of an AC
module independent of the module version. It is the responsibility of software to
reflect an accurate ScratchSize. This field is not checked by the processor.

RSAPubKey

Contains a public key plus a fixed 32-bit exponent to be used for decrypting the
signature of the module. The size of this field is defined by the previously defined
AC module field, KeySize + 1.

RSASig

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

58

The PKCS #1.5 RSA Signature of the module. The RSA Signature signs an area
that includes the some of the module header and the USER AREA data field (which
represents the body of the module). Parts of the module header not included are:
the RSA Signature, public key, and scratch field.

Scratch

Used for temporary scratch storage by the processor during authentication. This
area can be used by the user code during execution for data storage needs.

After successful authentication of an AC module, the first 20 bytes of the scratch
area (offset bytes 644 - 663) contains the computed hash of the module as
represented by the encrypted version held in RSASig field. The contents for other
locations of the scratch field after authentication are undefined and should not be
relied upon by AC module.

User Area

User code and data represented in modulo-64 byte increments. In addition, the
boundary between data and code should be on at least modulo-1024 byte
intervals. The user code and data region is allocated from the first byte after the
end of the Scratch field to the end of the AC module.

The chipset AC module information table is located at the start of the User Area
and contains supplementary information that is specific to chipset AC modules.
The chipset ID list is described in more detail in section 2.2.3.1.

Table 6. Chipset AC Module Information Table

Field Offset
(Bytes)

Width
(Bytes)

Description

UUID 0x00 0x10 UUID of the Chipset AC module information table
defined as:

ULONG UUID0; // 0x7FC03AAA

ULONG UUID1; // 0x18DB46A7

ULONG UUID2; // 0x8F69AC2E

ULONG UUID3; // 0x5A7F418D

This UUID is used to identify a file/memory
image as being a chipset AC module.

ChipsetACMType 0x10 0x01 Module type (00h = BIOS; 01h = SINIT)

Version 0x11 0x01 Version of this table. Table versions are always
backwards compatible. The highest version
defined is currently 3.

Length 0x12 0x02 Length of this table in bytes.

ChipsetIDList 0x14 0x04 Location of the Intel TXT Chipset ID list used to
identify Intel TXT chipsets supported by this AC
Module. This field is an offset in bytes from the
start of the AC Module. See Table 7 for details.

OsSinitTableVer 0x18 0x04 Indicates the maximum version number of the OS
to SINIT data structure that this module supports.
It is assumed that the module is backward

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 59

compatible with previous versions.

MinMleHeaderVer 0x1c 0x04 Indicates the minimum version number of the MLE
Header data structure that this module
supports/requires. MLEs with more recent header
versions are responsible for determining whether
they can support this version of the ACM.

Capabilities 0x20 0x04 Bit vector of supported capabilities. The values
match those of the Capabilities field in the MLE
header. This can be used by an MLE to determine
whether the ACM is compatible with it and to
determine any optional capabilities it might
support.

AcmVersion 0x24 0x01 Version of this AC Module. It is compared against
the SINITRevocationCounter field in LCP to
determine if the module is revoked.

Reserved 0x25 0x03 Reserved

Table 7. Chipset ID List

Field Offset Width (Bytes) Description

Count 0 4 Number of entries in the array ChipsetID

ChipsetID 4 Count *
sizeof(TXT_ACM
_CHIPSET_ID)

An array of count entries of the structure
TXT_ACM_CHIPSET_ID (see next table).

Table 8. TXT_ACM_CHIPSET_ID Format

Field Offset Width
(Bytes)

Description

Flags 0 4 Set of flags to further describe functions of the
chipset ID structure.

Bit Description:

[0]: RevisionIdMask – if 0, the RevisionId field
must exactly match the TXT.DIDVID.RID field. If 1,
the RevisionId field is a bitwise mask that can be
used to test for any bits set in the TXT.DIDVID.RID
field. If any bits are set, the RevisionId is a match.

[31:1]: Reserved for future use. Must be 0.

VendorID 4 2 Indicates the chipset vendor this AC Module is
designed to support. This field is compared against
the TXT.DIDVID.VID field.

DeviceID 6 2 Indicates the chipset vendor’s device that this AC
Module is designed to support. This field is
compared against the TXT.DIDVID.DID field.

RevisionID 8 2 Indicates the revision of the chipset vendor’s

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

60

Field Offset Width
(Bytes)

Description

device that this AC module is designed to support.
This field is used according to the RevisionIdMask
bit in the Flags field.

Reserved 10 6 Reserved for future use.

A.1.1 Memory type cacheability restrictions

Prior to launching the authenticated execution environment using the GETSEC leaf
functions ENTERACCS or SENTER, processor MTRRs (Memory Type Range Registers)
must first be initialized to map out the authenticated RAM addresses as WB (write-
back). Failure to do so may affect the ability for the processor to maintain isolation of
the loaded authenticated code module. The processor will signal an Intel TXT
shutdown condition with error code #BadACMMType during the loading of the
authenticated code module if non-WB memory is detected.

While physical addresses within the load module must be mapped as WB, the memory
type for locations outside of the module boundaries must be mapped to one of the
supported memory types as returned by GETSEC[PARAMETERS] (or UC as default).
This is required to support inter-operability across SMX capable processor
implementations.

A.1.2 Authentication and execution of AC
module

Authentication is performed after loading of the code module into the authenticated
code execution area. Information from the authenticated code module header is used
to support the authentication process. The RSAPubKey header field contains a public
key plus a 32 bit exponent used for decrypting the signature of the authenticated code
module. The signature is held in encrypted form in the RSASig header field and it
represents the PKCS #1.5 RSA Signature of the module. The RSA Signature signs an
area that includes the sum of the module header and the entire USER AREA data field,
which represents the body of the module. Those parts of the module header not
included are: the RSA Signature, the public key, and the scratch field. An inconsistent
authenticated code module format, inconsistent comparison of the public key hash, or
mismatch of the decrypted signature against the computed hash of the authenticated
module or a corrupted signature padding value results in an abort of the
authentication process and signaling of a Intel TXT shutdown condition. As part of the
authentication step, the processor stores the decrypted signature of the AC module in
the first 20 bytes of the ‘Scratch’ field of the AC module header.

After authentication has completed successfully, the private configuration space of the
Intel TXT-capable chipset is unlocked. At this point, only the authenticated code
module or system software executing in authenticated code execution mode is allowed
to gain access to the restricted chipset state for the purpose of securing the platform.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 61

The architectural state of the processor is partially initialized from contents held in the
header of the authenticated code module. The processor GDTR, CS, and DS selectors
are initialized from fields within the authenticated code module. Since the
authenticated code module must be relocatable, all address references must be
relative to the authenticated code module base address in EBX. The processor GDTR
base value is initialized to the AC module header field GDT BasePtr + module base
address held in EBX and the GDTR limit is set to the value in the GDT Limit field. The
CS selector is initialized to the AC module header SegSel field, while the DS selector is
initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0,
LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read
access for CS. The processor begins the authenticated code module execution with the
EIP set to the AC module header EntryPoint field + module base address (EBX). The
AC module based fields used for initializing the processor state are checked for
consistency and any failure results in a shutdown condition.

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

62

Appendix B SMX Interaction with
Platform

B.1 Intel® Trusted Execution Technology
Configuration Registers

Intel TXT configuration registers are a subset of chipset registers. These registers are
mapped into two regions of memory, representing the public and private configuration
spaces. Registers in the private space can only be accessed after a measured
environment has been established and before the TXT.CMD.CLOSE-PRIVATE command
has been issued. The private space registers are mapped to the address range starting
at FED20000H. The public space registers are mapped to the address range starting at
FED30000H and are available before, during and after a measured environment
launch. All registers are defined as 64 bits and return 0’s for the unimplemented bits.
The offsets in the table are from the start of either the public or private spaces (all
registers are available within both spaces, though with different permissions). See
Table 9.

Table 9. Configuration Registers Relevant to MLE

Offset Name Description

000H TXT.STS This is the general status register. This
read-only register is used by AC modules
and the MLE to get the status of various
Intel TXT features.

Public: RO

Private: RO

008H TXT.ESTS This is the error status register which
contains status information associated
with various error conditions. The contents
of this register are preserved across soft
resets.

Public: RO

Private: RW

030H TXT.ERRORCODE Holds the Intel TXT shutdown error code.
The encoding for this is documented in
Table 14. A system reset does not clear
the contents of this register. This was
formerly labeled the TXT.CRASH register.

Public: RO

Private: RW

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 63

Offset Name Description

038H TXT.CMD.RESET A write to this register causes a system
reset. This is performed by the processor
as part of an Intel TXT shutdown, after
writing to the TXT.ERRORCODE register.

Public: -

Private: WO

048H TXT.CMD.CLOSE-PRIVATE A write to this register causes the Intel
TXT-capable chipset private configuration
space to be locked. Once locked,
conventional memory read/write
operations can no longer be used to
access these registers.

Public: -

Private: WO1

100H TXT.VER.FSBIF This register identifies whether the chipset
is debug or release fused. See Table 12
below for the format.

Public: RO

Private: RO

110H TXT.DIDVID This register contains the vendor, device,
and revision IDs for the chipset. See
Table 13 below for the format.

Public: RO2

Private: WO

218H TXT.CMD.UNLOCK-MEM-CONFIG When this command is invoked, the
chipset unlocks all memory configuration
registers.

Public: -

Private: WO1

270H TXT.SINIT.BASE This register contains the physical base
address of the memory region set aside by
the BIOS for loading an SINIT AC module.
The system software reads this register to
locate the SINIT module (which may have
been loaded by the BIOS) or to find a
location to load the SINIT module.

Public: RW

Private: RW

1 A serializing operation, such as a read of the register, is required after the write to ensure that any future chipset
operations see the write.
2 This register is writable from the indicated configuration space until the configuration is locked,

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

64

Offset Name Description

278H TXT.SINIT.SIZE This register contains the size in bytes of
the memory region set aside by the BIOS
for loading an SINIT AC module. This
register is initialized by the BIOS. The
system software may read this register
when loading an SINIT module.

Public: RW

Private: RW

290H TXT.MLE.JOIN Holds a physical address pointer to the
base of the join data structure referenced
by RLPs in response to a
GETSEC[WAKEUP] while operating
between SENTER and SEXIT.

Public: RW

Private: RW

300H TXT.HEAP.BASE This register contains the physical base
address of the Intel TXT Heap memory
region. The BIOS initializes this register.
The system software and MLE read this
register to locate the Intel TXT Heap.

Public: RW

Private: RW

308H TXT.HEAP.SIZE This register contains the size in bytes of
the Intel TXT Heap memory region. The
BIOS initializes this register. The system
software and the MLE read this register to
determine the Intel TXT Heap size.

Public: RW

Private: RW

380H TXT.CMD.OPEN.LOCALITY1 Writing to this register “opens” the TPM
locality 1 address range, enabling
decoding by the chipset and thus access
to the TPM. Note: opening private space
does not open this locality and it must be
opened explicitly.

Public: -

Private: WO2

388H TXT.CMD.CLOSE.LOCALITY1 Writing to this register “closes” the TPM
locality 1 address range, disabling
decoding by the chipset and thus access
to the TPM. Note: closing the private
space will not close this locality.

Public: -

Private: WO2

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 65

Offset Name Description

390H TXT.CMD.OPEN.LOCALITY2 Writing to this register “opens” the TPM
locality 2 address range, enabling
decoding by the chipset and thus access
to the TPM. Note: locality 2 is opened
automatically when private space is
opened.

Public: -

Private: WO2

398H TXT.CMD.CLOSE.LOCALITY2 Writing to this register “closes” the TPM
locality 2 address range, disabling
decoding by the chipset and thus access
to the TPM. Note: when private space is
closed it will automatically close this
locality.

Public: -

Private: WO2

8E0H TXT.CMD.SECRETS Writing to this register indicates to the
chipset that there are secrets in memory.
The chipset tracks this fact with a sticky
bit. If the platform reboots with this sticky
bit set the SCLEAN AC module will scrub
memory. The chipset also uses this bit to
detect invalid sleep state transitions. If
software tries to transition to S3, S4, or
S5 while secrets are in memory then the
chipset will reset the system. The MLE
issues the TXT.CMD.SECRETS command
prior to placing secrets in memory for the
first time. After issuing this command,
software should read the TXT.E2STS
register and wait for the SECRETS.STS bit
to be cleared before proceeding.

Public: -

Private: WO

8E8H TXT.CMD.NO-SECRETS Writing to this register indicates there are
no secrets in memory. The MLE will write
to this register after removing all secrets
from memory as part of the Intel TXT
teardown process. After issuing this
command, software should read the
TXT.E2STS register and wait for the
SECRETS.STS bit to be cleared before
proceeding.

Public: -

Private: WO

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

66

Offset Name Description

8F0H TXT.E2STS This register is used to read the status
associated with various errors that might
be detected. The contents of this register
are preserved across soft resets.

Public: RO

Private: RW

Table 10. TXT.STS Bit Definitions

Bit
position Name Comment

0 SENTER.DONE.
STS

The chipset sets this bit when it sees all of the
threads have done an TXT.CYC.SENTER-ACK.

When any of the threads does the TXT.CYC.SEXIT-
ACK the TXT.THREADS.JOIN and
TXT.THREADS.EXISTS registers will not be equal, so
the chipset will clear this bit.

1 SEXIT.DONE.
STS

This bit is set when all of the bits in the
TXT.THREADS.JOIN register are clear. Thus, this bit
will be set immediately after reset (since the bits are
all 0).

Once all threads have done an TXT.CYC.SEXIT-ACK,
the TXT.THREAD.JOIN register will be 0, so the
chipset will set this bit.

3:2 Reserved Reserved

4 MEM.
UNLOCK.STS

This bit will be set to 1 when the memory has been
unlocked using the TXT.CMD.UNLOCK-MEMORY
command or after a normal reset when no measured
environment was in place prior to the reset. When
this bit is ‘1’, memory may be accessed by CPU
cycles.

This bit will be cleared after a reset when there
might have been secrets in memory before the
reset.

This bit must be set if a read to 0xFED4_0000
returns a ‘1’ in bit 0.

5 BASE.LOCKED.S
TS

This bit will be set to 1 when the
TXT.CMD.LOCK.BASE command is issued.

This bit is cleared by TXT.CMD.UNLOCK.BASE or by a
system reset.

6 MEM-CONFIG-
LOCK.STS

This bit will be set to 1 when the memory
configuration has been locked.

Cleared by TXT.CMD.UNLOCK.MEMCONFIG or by a
system reset.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 67

Bit
position Name Comment

7 PRIVATE-
OPEN.STS

This bit will be set to 1 when TXT.CMD.OPEN-
PRIVATE is performed.

Cleared by TXT.CMD.CLOSE-PRIVATE or by a system
reset.

10:8 Reserved Reserved

11 MEM-CONFIG-
OK.STS

This bit indicates whether the chipset has
received and accepted the TXT.CMD.MEM-
CONFIG-CHECKED command. This bit is
cleared by reset or by the

TXT.CMD.UNLOCK-MEM-CONFIG command.

0: Indicates that memory configuration checking has
not been performed.

1: Indicates that memory configuration checking has
been performed. This bit is set to one when the
chipset accepts the TXT.CMD.MEM-CONFIG-
CHECKED command.

Table 11. TXT.ESTS Bit Definitions

Bit
position

Name Comment

0 TXT_RESET.
STS

The chipset sets this bit to ‘1’ to indicate that the
platform experienced a TXT reset. To maintain TXT
integrity, while this bit is set, a TXT measured
environment cannot be established; consequently
Safer Mode Extension (SMX) instructions
GETSEC[ENTERACCS] and GETSEC [SENTER] will
fail.

This bit is sticky and will only be cleared on a power
cycle.

5:1 Reserved Reserved

6 WAKE-
ERROR.STS

 The chipset sets this bit when it detects that there
might have been secrets in memory and a reset or
power failure occurred.

7 Reserved Reserved

Table 12. TXT.VER.FSBIF Bit Definitions

Bit
position Name Comment

30:0 Reserved Reserved

PC
I

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

68

Bit
position Name Comment

31 DEBUG.FUSE 0 = Chipset is debug fused

1 = Chipset is production fused

Table 13. TXT.DIDVID Bit Definitions

Bit
position Name Comment

15:0 VID Vendor ID: 8086 for Intel® components

31:16 DID Device ID: specific to the chipset/platform

47:32 RID Revision ID: specific to the chipset/platform

63:48 ID-EXT Extended ID: specific to the chipset/platform

Table 14. TXT.ERRORCODE Register Bit Format

Bit
position Name Description

29:0 Type This is implementation and source specific. Provides details
on the failure condition.

30 Processor/External 0 = Error condition reported by processor.

1 = Error condition reported by external software.

31 Valid/Invalid 0 = Register content invalid.

1 = Valid error.

Table 15. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns

Type Error condition Mnemonic

0 Legacy shutdown #LegacyShutdown

1-4 Reserved Reserved

5 Load memory type error in
Authenticated Code Execution Area

#BadACMMType

6 Unrecognized AC module format #UnsupportedACM

7 Failure to authenticate #AuthenticateFail

8 Invalid AC module format #BadACMFormat

9 Unexpected snoop hit detected #UnexpectedHITM

10 Invalid event #InvalidEvent

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 69

Type Error condition Mnemonic

11 Invalid MLE JOIN format #BadJOINFormat

12 Unrecoverable machine check
condition

#UnrecovMCError

13 VMX abort #VMXAbort

14 Authenticated code execution area
corruption

#ACMCorrupt

15 Invalid voltage/bus ratio #InvalidVIDBRatio

16 – 65535 Reserved Reserved

Table 16. TXT.E2STS Register Bit Format

Bit
Position Name Description

0 Reserved Reserved

1 SECRETS.STS 0 = Chipset acknowledges that no secrets are in memory

1 = Chipset believes that secrets are in memory and will
provide reset protection

63:2 Reserved Reserved

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

70

B.2 TPM Platform Configuration Registers

The TPM contains Platform Configuration Registers (PCRs). The purpose of a PCR is to
contain measurements. From a TPM standpoint, the TPM does not care what entity
uses a PCR to store a measurement.

The TPM provides two types of PCRs: static and dynamic. Static PCRs only reset on
system reset; dynamic PCRs reset upon request. Static PCRs are written by the static
root of trust for measurement (SRTM). In the PC, the SRTM begins with the BIOS boot
block. The dynamic PCRs are written by the dynamic root of trust for measurement
(DRTM). In the PC, the DRTM is the process initiated by GETSEC[SENTER].

A PC TPM requires a minimum of 24 PCRs. The first 16 are designated the static Root
of Trust and the next eight are designated the dynamic Root of Trust. Intel TXT uses
PCRs 17 and 18 within the dynamic Root of Trust to measure the MLE.

All PCRs, static or dynamic, have the same size and same updating mechanism. The
size is 160 bits. This size allows the PCRs to contain a SHA-1 hash digest value.
Storing a measurement value in the PCRs involves a TPM_Extend operation, which is
itself a hash operation.

B.3 Intel® Trusted Execution Technology
Device Space

There are several memory ranges within Intel TXT address space provided to access
Intel TXT related devices. The first range is 0xFED4_xxxx which is divided up into 16
pages. Each page in the FED4 range has specific access attributes. A page in this
region may be accessed by Intel TXT cycles only, by Intel TXT cycles and via private
space, or by Intel TXT cycles, private and public space.

Table 17. TPM Locality Address Mapping

Address Range TPM Locality

FED4 0xxxH Locality 0 (fully public)

FED4 1xxxH Locality 1 (trusted OS)

FED4 2xxxH Locality 2 (MLE access only)

FED4 3xxxH Locality 3 (AC modules access only)

FED4 4xxxH Locality 4 (Hardware or microcode access only)

All others Reserved

The first five pages of the 0xFED4_xxxx region are used for TPM access. Each page
represents a different locality to the TPM. Locality is an attribute used by the TPM to
define how it treats certain transactions. Locality is defined by the address range used
for commands sent to the TPM. All Intel TXT chipsets must support all localities.
Localities 0 and 6 are considered public and accesses to these localities are accepted

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 71

by the chipset under all circumstances. Accesses to locality 0 and 6 are sent to the
ICH even if Intel TXT is disabled, there has been no SENTER, or private space is
closed. Localities 4 and 5 are never open, but may only be accessed with Intel TXT
cycles. Localities 7 through 15 are always open from a locality perspective, but are in
private space so that TXT.CMD.OPEN-PRIVATE must have been done for the cycles to
be sent to ICH as Intel TXT cycles. There are Intel TXT commands that will open
localities 1 through 3. Localities 2-3 and 7-F require that both LocalityX.OPEN
(localities 7-F are always open) and TXT.CMD.OPEN-PRIVATE be done before allowing
accesses in that range to be accepted. At reset, localities 1 through 3 are closed.

No status read check of the TPM is performed by the processor GETSEC[SENTER]
instruction ahead of the TPM.HASH write sequence. If the TPM is not in acquiesced
state at this time, then the PCRs 17-20 reset and hash registration to PCR 17 may not
succeed. To insure reliable system software functionality for TPM support, it is
recommended that the GETSEC[SENTER] instruction only be executed once the TPM
has acquiesced and ownership has been established in the context of the SENTER
initiating process.

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

72

Appendix C Intel® TXT Heap
Memory

Intel TXT Heap memory is a region of physically contiguous memory which is set aside
by BIOS for the use of Intel TXT hardware and software. The system software that
launches the measured environment passes data to both the SINIT AC module and the
MLE using Intel TXT Heap memory. The system software is responsible for filling in the
table contents prior to executing the SENTER instruction. An incorrect format or
incorrect content of this table or tables described by this table will result in failure to
launch the protected environment.

Table 18. Intel® Trusted Execution Technology Heap

Offset Length
(bytes)

Name Description

0 8 BiosDataSize Size in bytes of the Intel TXT
specific data passed from the
BIOS to system software for
the purposes of launching the
MLE. This size includes the
number of bytes for this field,
so this field cannot be less
than a value of 8. Note 1.

8 BiosDataSize
- 8

BiosData BIOS specific data. The format
of this data is described below
in Table 19.

BiosDataSize 8 OsMleDataSize Size in bytes of the data
passed from the launching
system software to the MLE.
This size includes the number
of bytes for this field, so this
field cannot be less than a
value of 8. Note 1.

BiosDataSize + 8 OsMleDataSiz
e – 8

OsMleData System software -specific
data. Format of data in this
field is considered specific to
the system software vendor.

BiosDataSize +
OsMleDataSize

8 OsSinitDataSize Size in bytes of the data
passed from the launching
system software to the SINIT
AC module. This size includes
the number of bytes for this
field, so this field cannot be
less than a value of 8. Note 1.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 73

Offset Length
(bytes)

Name Description

BiosDataSize +
OsMLEDataSize +
8

OsSinitDataSi
ze - 8

OsSinitData System software data passed
to the SINIT AC module. The
format of this data is
described below in Table 20.

BiosDataSize +
OsMleDataSize +
OsSinitDataSize

8 SinitMleDataSize Size in bytes of the data
passed from the launched
SINIT AC module to the MLE.
This size includes the number
of bytes for this field, so this
field cannot be less than a
value of 8. Note 1.

BiosDataSize +
OsMleDataSize +
OsSinitDataSize +
8

SinitMleDataS
ize - 8

SinitMleData SINIT data passed to the MLE.
The format of this data is
described below in Table 21.

NOTES:
1. For proper data alignment on 64bit processor architectures this field must be a multiple

of 8 bytes. OsMleDataSize + OsSinitDataSize + SinitMleDataSize must be less than or
equal to TXT.HEAP.SIZE.

C.1 BIOS Data Format

The format of the data passed from the BIOS to the system software for the purposes
of launching the measured environment is shown in Table 19.

Table 19. BIOS Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the BiosData. The BiosData is
always backwards compatible with previous
versions. The current value is 3.

4 4 BiosSinitSize This field indicates the size of the SINIT AC
module provided by system BIOS. A value of 0
indicates the BIOS is not providing a SINIT AC
module for system software use. A non-0 value
indicates that the AC module will be at the
location specified by the TXT.SINIT.BASE register
and be of the specified size.

8 8 LcpPdBase Physical base address of the Platform Default
Launch Control Policy, LCP_POLICY_DATA
structure. Ignored if Platform Default Policy does
not require additional data or does not exist.

16 8 LcpPdSize Size of the Launch Control Policy Platform
Default Policy Data. Ignored if Platform Default
Policy does not require additional data or does
not exist.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

74

24 4 NumLogProcs This is the total number of logical processors in
the system. The minimum value in this register
must be at least 1.

28 8 Flags BIOS-provided information for SINIT AC module
consumption. Bit definition will be dependent on
the chipset.

Version 3 only.

C.2 OS to MLE Data Format

Each system software vendor may have a different format for this data, and any MLE
being launched by system software must understand the format of that software’s
handoff data.

C.3 OS to SINIT Data Format

Table 20 defines the format of the data passed from the launching system software to
the SINIT AC module in the OsSinitData field.

Table 20. OS to SINIT Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the OS to SINIT data.
Current value is 0x03. This field is
incremented for any change to the definition
of the OsSinitData. The OsSinitData is
always backwards compatible with previous
versions.

4 4 Reserved Reserved for future use

8 8 MLE PageTableBase Physical address of MLE page table (the MLE
page directory pointer table address)

16 8 MLE Size Size in bytes of the MLE image

24 8 MLE HeaderBase Linear address of MLE header (linear
address within the MLE page tables)

32 8 PMR Low Base Physical base address of the PMR Low region
(must be 2MB aligned). Can be set to zero
if not desired to be enabled by SINIT. The
MVMM must be loaded in one of the DPR,
PRM low, or the PMR high regions.

40 8 PMR Low Size Size of the PMR Low Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 75

48 8 PMR High Base Physical base address of the PMR High
region (must be 2MB aligned). Can be set
to zero if not desired to be enabled by
SINIT.

56 8 PMR High Size Size of the PMR HIGH Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

64 8 LCP PO Base Physical base address of the Platform
Owner’s Launch Control Policy,
LCP_POLICY_DATA structure.

72 8 LCP PO Size Size of the Launch Control Policy Platform
Owner’s Policy Data.

80 4 Capabilities Bit vector of capabilities that SINIT is
requested to use. This must be a subset of
the ones SINIT supports.

C.4 SINIT to MLE Data Format

Table 21 defines the format of the SINIT data presented to the MLE.

Table 21. SINIT to MLE Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the SINIT to MLE
data. Current value is 5. The
SinitMleData is always backwards
compatible with previous versions

4 20 BiosAcmID ID of the BIOS AC module in the system

24 4 EdxSenterFlags Value of EDX SENTER control flags

28 8 MsegValid MSEG MSR (Valid bit only)

36 20 SinitHash SHA-1 hash of the SINIT AC module

56 20 MleHash SHA-1 hash of the MLE

76 20 StmHash SHA-1 hash of STM. This is only valid if
MsegValid = 1, else will contain zero

96 20 LcpPolicyHash SHA-1 Hash of the LCP policy that was
enforced; if no hash is needed based on
the LCP policy control field this will
contain zero

116 4 PolicyControl Taken from the LCP policy used

120 4 RlpWakeupAddr MONITOR address used for waking up
RLPs (write 32bit non-0 value)

124 4 Reserved Reserved for future use

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

76

Offset Length
(bytes)

Name Description

128 4 NumberOfSinitMdrs Number of SINIT Memory Descriptor
Records

132 4 SinitMdrTableOffset Pointer to the start of an array of SINIT
Memory Descriptor Records as defined
below. Each record describes a memory
region as defined by the SINIT AC
module (see Table 22). This field is an
offset in bytes from the start of the
SinitMleDataSize field.

136 4 SinitVtdDmarTableSize Length of the Intel® Virtualization
Technology (Intel® VT) for Directed I/O
(Intel® VT-d) DMAR table pointed to by
the SinitVtdDmarTable field

140 4 SinitVtdDmarTableOffset Pointer to the start of the SINIT provided
DMAR table dump for the MLE. This field
is an offset in bytes from the start of the
SinitMleDataSize field.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 77

Table 22. SINIT Memory Descriptor Record

Offset Length
(bytes)

Name Description

0 8 Address Physical address of the memory range described in
this record.

8 8 Length Length of the memory range.
16 1 Type Memory range type. Valid values:

0 Usable, good memory
1 SMRAM– Overlayed
2 SMRAM– Non-Overlayed
3 PCIe*- PCIe Extended Config Region
4–255 Reserved

17 7 Reserved Reserved for future use

The array of Memory Descriptor Records (MDRs) is not necessarily ordered and some
MDRs may be of 0 length, in which case they should be ignored.

Memory of type 0 is usable for the MLE and any code or data that it may load. SINIT
will verify that the MLE and its page table are located in memory of this type.

Memory types 1 and 2 indicate regions that contain System Management Mode (SMM)
code.

Memory of type 3 is the PCI Express extended configuration region. The MLE may use
this to verify that the PCIE configuration specified in the ACPI tables is using the
appropriate address space.

§

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

78

Appendix D LCP Data Structures

D.1 LCP_POLICY

Both the Platform Owner and Platform Default SINIT policy structures are of the same
type, i.e. LCP_POLICY. These objects are stored in the TPM. The required fields for
LCP_POLICY are as follows:

#define POLHALG_SHA1 0

#define POLTYPE_HASHONLY 0
#define POLTYPE_UNSIGNED 1
#define POLTYPE_ANY 3
#define POLTYPE_FORCEOWNERPOLICY 4

typedef struct {
 UINT8 Sha1[20];
} LCP_HASH;

typedef struct {
 UINT8 Version;
 UINT8 HashAlg; // one of POLHALG_*
 UINT8 PolicyType; // one of POLTYPE_*
 UINT8 SINITRevocationCounter;
 UINT32 PolicyControlField;
 UINT16 Reserved[3];
 LCP_HASH PolicyHash;
 } LCP_POLICY;

LCP_POLICY PlatformOwnerLCPPolicy;
LCP_POLICY PlatformDefaultLCPPolicy;

HashAlg not only determines the algorithm and size of the hash used for PolicyHash
but all other values used with the LCP structures. If the algorithm type is not
supported by SINIT ACM then LCP shall cause an Intel TXT shutdown condition with
the value LCP_WRONG_HASH_ALG in the TXT.ERRORCODE register.

If the type specified in the PolicyType field is not supported by SINIT then LCP shall
cause an Intel TXT shutdown condition with the value LCP_UNKNOWN_POLICY_TYPE
in the TXT.ERRORCODE register.

The SINITRevocationCounter field provides a mechanism for determining whether the
loaded version of SINIT ACM should be used. This value must be less than or equal to
a corresponding value, AcmVersion, in the SINIT Image to determine whether SINIT
can be used.

The PolicyControlField provides a way for the policy authority to control some of the
logic in the LCP Policy Engine. The field is defined as:

• Bits31:3 Reserved and should set to zero

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 79

• Bit 2 Identifies whether the OsSinitData.Capabilities field will be
extended into PCR 17 (1).

• Bit 1 Identifies whether the platform will allow Authenticated Code
Modules which have been marked as pre-production can be used
to launch the MLE.
Note: Setting the bit to 1 will require a pre-production SINIT ACM
and will result in PCRs 17 and 18 being capped with a random
value.

• Bit 0 Identifies whether a hash of an unsigned policy is extended
into PCR 17

The PolicyControlField must always be reported into PCR 17.

The version of the LCP_POLICY structure defined here is 0H.

D.2 LCP_POLICY_DATA

For each policy on the platform there must exist a block of data which the SINIT policy
engine will process. Where this data resides on the platform is platform dependent,
but it must provisioned into the Intel TXT heap data structures (see Appendices C.1
and C.3) by the pre-GETSEC[SENTER] environment.

typedef struct {
 UUID Uuid;
 LCP_UNSIGNED_POLICY_DATA UnsignedData;
} LCP_POLICY_DATA

Where:
typedef struct {
 UINT32 data1;
 UINT16 data2;
 UINT16 data3;
 UINT16 data4;
 UINT8 data5[6];
} UUID;

The UUID value for LCP will be:
AB0D1925-EEE7-48eb-A9FC-0BAC5A262D0E or
{ 0xab0d1925, 0xeee7, 0x48eb, 0xa9fc { 0xb, 0xac, 0x5a,
0x26, 0x2d, 0xe }

D.3 LCP_UNSIGNED_POLICY_DATA

Unsigned policy data is a table of elements which are lists of policy values (all of the
same type), LCP_POLICY_LIST. The version of the LCP_UNSIGNED_POLICY_DATA
defined here is 0H.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

80

typedef struct {
 UINT8 Version;
 UINT8 PolicyTableSize;
 LCP_POLICY_LIST PolicyTable[PolicyTableSize];
} LCP_UNSIGNED_POLICY_DATA

D.3.1 LCP_POLICY_LIST

The least significant 15 bits identifies the type of list.

#define POLDESC_MLE_UNSIGNED 0x0001

#define POLDESC_PConf_UNSIGNED 0x0002

typedef struct {
 UINT16 ListType; // One of POLDESC_*
 LCP_UNSIGNED_LIST UnsignedList;
} LCP_POLICY_RECORD

D.3.2 LCP_UNSIGNED_LIST

Unsigned lists are either a list of the environments which may be launched or a list of
the allowable platform configurations.

typedef struct {
 UINT8 Version;
 UINT8 ListSize;
 choice {
 LCP_HASH HashList[ListSize];
 TPM_PCR_INFO_SHORT PCRInfoList[ListSize]];
 };
} LCP_UNSIGNED_LIST;

HashAlg identifies the hashing algorithm and hence the size of each hash; ListSize
identifies either the number of hashes, or the number of TPM_PCR_INFO_SHORT
structures (see the TPM Main Specification Version 1.2 for its full definition), in the
list. Version is 0H for the structure defined here.

The various TPM_* structures have been copied below to facilitate understanding of
the list structure.

typedef struct tdTPM_PCR_INFO_SHORT{
 TPM_PCR_SELECTION pcrSelection;
 TPM_LOCALITY_SELECTION localityAtRelease;
 TPM_COMPOSITE_HASH digestAtRelease;
} TPM_PCR_INFO_SHORT;

typedef struct tdTPM_PCR_SELECTION {
 UINT16 sizeOfSelect;
 [size_is(sizeOfSelect)] BYTE pcrSelect[];

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide 81

} TPM_PCR_SELECTION;

#define TPM_LOCALITY_SELECTION BYTE // each bit is the
 // corresponding locality

typedef struct tdTPM_PCR_COMPOSITE {
 TPM_PCR_SELECTION select;
 UINT32 valueSize;
 [size_is(valueSize)] TPM_PCRVALUE pcrValue[];
} TPM_PCR_COMPOSITE;

typedef struct tdTPM_DIGEST{
 BYTE digest[digestSize];
} TPM_DIGEST;
typedef TPM_DIGEST TPM_COMPOSITE_HASH; // hash of
 // TPM_PCR_COMPOSITE
 // object
typedef TPM_DIGEST TPM_PCRVALUE;

D.4 Structure Endianness

Endianness deals with the sequencing order of stored bytes. There are two common
sequencing orders; Little Endian (format used by Intel) and Big Endian (in this case,
TPM NVRAM). In order to successfully compare the values of these two formats, we
need to convert TPM NVRAM data to Little Endian when comparing within Intel code as
well as converting data into Big Endian format when writing to TPM NVRAM space.

Example 36 bit value: 0x12345678

Little Endian (from least significant byte to most significant byte):

0x78, 0x56, 0x34, 0x12

Big Endian (from least significant byte to most significant byte):

0x12, 0x34, 0x56, 0x78

D.5 Errorcode Values

Table 23 outlines the possible error values, and their meanings that may be used by
the SINIT Launch Control Policy Engine.

Table 23. LCP Error Values

Mnemonic Description
TXT

Error
Value

LCP_SINIT_REVOKED The version of SINIT being used
has been revoked by the policy
owner.

0x01

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology – MLE Developer’s Guide

82

Mnemonic Description
TXT

Error
Value

LCP_INCOMPATIBLE_SINIT The authenticated code module
SINIT cannot be used on this
platform, or the version number of
the LCP_POLICY,
LCP_POLICY_DATA cannot be
processed.

0x02

LCP_PD_INTEGRITY_FAIL The integrity link between the
Platform Default policy and its
corresponding LCP_POLICY_DATA
structure failed.

0x03

LCP_PO_INTEGRITY_FAIL The integrity link between the
Platform Owner’s policy and its
corresponding LCP_POLICY_DATA
structure failed.

0x04

LCP_NO_PD_POLICY_DATA There exists a Platform Default
LCP Policy but no corresponding
LCP_POLICY_DATA was placed in
memory.

0x05

LCP_NO_PO_POLICY_DATA There exists a Platform Owner’s
LCP Policy but no corresponding
LCP_POLICY_DATA was placed in
memory.

0x06

LCP_UNKNOWN_POLICY_TYPE LCP does not support the
PolicyType specified in the Launch
Control Policy.

0x07

LCP_WRONG_HASH_ALG LCP does not support the hash
algorithm identified in the Launch
Control Policy

0x08

LCP_ MLE_MISMATCH LCP could not find the measured
environment in the list given

0x09

LCP_PLATFORM_CONFIG_MISMATCH The current platform configuration
did not match any of those listed.

0x0A

LCP_POLICY_REVOKED The policy data being used is older
than allowed by the platform

0x0B

	1 Overview
	1.1 Measurement and Intel® Trusted Execution Technology
	1.2 Dynamic Root of Trust
	1.3 Storing the Measurement
	1.4 Controlled Take-down
	1.5 SMX and VMX Interaction
	1.6 Authenticated Code Module
	1.7 Chipset Support
	1.8 TPM Usage
	1.9 PCR Usage
	1.10 DMA Protection
	1.11 Intel® TXT Shutdown

	2 Measured Launched Environment
	2.1 MLE Architecture Overview
	2.2 MLE Launch
	2.2.3.1 Matching an AC Module to the Chipset
	2.2.3.2 Verifying Compatibility of SINIT with the MLE
	2.2.4.1 Loading the MLE
	2.2.4.2 Intel® Trusted Execution Technology Heap Initialization
	2.2.4.3 Rendezvousing Processors and Saving State
	2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution
	2.2.5.2 Selection of Launch Capabilities
	2.2.5.3 TPM Preparation
	2.2.5.4 Intel® Trusted Execution Technology Launch

	2.3 MLE Initialization
	2.4 MLE Operation
	2.4.4.1 Intel® Trusted Execution Technology Configuration Space
	2.4.4.2 Intel® Trusted Execution Technology Device Space
	2.4.8.1 T-state Transitions
	2.4.8.2 P-State Transitions
	2.4.8.3 C-State Transitions
	2.4.8.4 S-State Transitions

	2.5 MLE Teardown
	2.6 Other Considerations

	3 Verifying Measured Launched Environments
	3.1 Overview
	3.1.1.1 LCP Policy
	3.1.1.2 LCP Policy Data
	3.1.2.1 MLE List
	3.1.2.2 Platform Configuration List

	3.2 Policy Engine Logic
	3.3 Measuring the Enforced Policy
	3.4 Revocation

	4 Development and Deployment Considerations
	4.1 Launch Control Policy Creation
	4.2 Launch Errors and Remediation
	4.3 Deployment
	4.3.1.1 TPM Ownership
	4.3.1.2 Policy Provisioning

