
 

 

 
 
 
 
 

Intel® Trusted Execution 
Technology (Intel® TXT) 
 
Software Development Guide 
Measured Launched Environment Developer’s Guide 
 
December 2009 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Document Number: 315168-006 



 
 
 
 

2   Intel® TXT Software Development Guide  

 

 

 

 

 

 

 

 

 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, 
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY 
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, 
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, 
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO 
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT. 

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED 
FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE 
PERSONAL INJURY OR DEATH MAY OCCUR. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the 
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future 
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 
information here is subject to change without notice. Do not finalize a design with this information.  

The products described in this document may contain design defects or errors known as errata which may cause the product 
to deviate from published specifications. Current characterized errata are available on request.  

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading 
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the 
specific hardware and software you use. 

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (TXT) is a 
security technology under development by Intel and requires for operation a computer system with Intel® Virtualization 
Technology, a Intel® Trusted Execution Technology -enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and 
an Intel or other Intel® Trusted Execution Technology compatible measured virtual machine monitor. In addition, Intel® Trusted 
Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group and specific 
software for some uses. See http://www.intel.com/ for more information. 

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor 
(VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will 
vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be 
compatible with all operating systems. Please check with your application vendor 

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are 
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. 
 

*Other names and brands may be claimed as the property of others. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 
 

Copyright © 2006-2009 Intel Corporation 
 

 



 
 
 
 

Intel® TXT Software Development Guide    3 

Contents 
1 Overview .........................................................................................................9 

1.1 Measurement and Intel® Trusted Execution Technology .............................10 
1.2 Dynamic Root of Trust ..........................................................................10 

1.2.1 Launch Sequence ....................................................................11 
1.3 Storing the Measurement ......................................................................11 
1.4 Controlled Take-down ...........................................................................12 
1.5 SMX and VMX Interaction ......................................................................12 
1.6 Authenticated Code Module....................................................................12 
1.7 Chipset Support ...................................................................................12 
1.8 TPM Usage ..........................................................................................13 
1.9 PCR Usage ..........................................................................................14 

1.9.1 PCR 17 ..................................................................................14 
1.9.2 PCR 18 ..................................................................................15 

1.10 DMA Protection ....................................................................................15 
1.10.1 DMA Protected Range (DPR) .....................................................16 
1.10.2 Intel® Virtualization Technology (Intel® VT) for Directed I/O  

(Intel® VT-d) Protected Memory Regions (PMRs) .........................16 
1.11 Intel® TXT Shutdown ............................................................................16 

1.11.1 Reset Conditions .....................................................................16 

2 Measured Launched Environment ......................................................................18 
2.1 MLE Architecture Overview ....................................................................18 
2.2 MLE Launch .........................................................................................20 

2.2.1 Intel® TXT Detection and Processor Preparation ...........................20 
2.2.2 Detection of Previous Errors......................................................21 
2.2.3 Loading the SINIT AC Module....................................................22 
2.2.4 Loading the MLE and Processor Rendezvous ................................26 
2.2.5 Performing a Measured Launch..................................................29 

2.3 MLE Initialization..................................................................................31 
2.4 MLE Operation .....................................................................................36 

2.4.1 Address Space Correctness .......................................................36 
2.4.2 Address Space Integrity ...........................................................37 
2.4.3 Physical RAM Regions ..............................................................37 
2.4.4 Intel® Trusted Execution Technology Chipset Regions ...................37 
2.4.5 Protecting Secrets ...................................................................38 
2.4.6 Machine Specific Register Handling ............................................38 
2.4.7 Interrupts and Exceptions.........................................................39 
2.4.8 ACPI Power Management Support..............................................39 

2.5 MLE Teardown .....................................................................................41 
2.6 Other Considerations ............................................................................44 

2.6.1 Saving MSR State across a Measured Launch ..............................44 

3 Verifying Measured Launched Environments........................................................45 
3.1 Overview ............................................................................................45 

3.1.1 LCP Components .....................................................................46 



 
 
 
 

4   Intel® TXT Software Development Guide  

3.1.2 Signed Policies........................................................................51 
3.1.3 Supported Cryptographic Algorithms ..........................................52 

3.2 Policy Engine Logic ...............................................................................52 
3.2.1 Policies ..................................................................................52 
3.2.2 Combining Policies...................................................................53 

3.3 Measuring the Enforced Policy ................................................................54 
3.3.1 No Policy Data ........................................................................54 
3.3.2 Allow Any Policy......................................................................54 
3.3.3 Policy with LCP_POLICY_DATA...................................................54 
3.3.4 Force Platform Owner Policy......................................................55 

3.4 Revocation ..........................................................................................55 
3.4.1 SINIT Revocation ....................................................................55 

3.5 Platform Owner Index ...........................................................................55 

4 Development and Deployment Considerations .....................................................57 
4.1 Launch Control Policy Creation ...............................................................57 
4.2 Launch Errors and Remediation ..............................................................57 
4.3 Deployment.........................................................................................58 

4.3.1 LCP Provisioning......................................................................58 
4.3.2 SINIT Selection.......................................................................59 

Appendix A Intel® TXT Execution Technology Authenticated Code Modules...............................60 
A.1 Authenticated Code Module Format .........................................................60 

A.1.1 Memory type cacheability restrictions.........................................66 
A.1.2 Authentication and execution of AC module.................................66 

Appendix B SMX Interaction with Platform...........................................................................68 
B.1 Intel® Trusted Execution Technology Configuration Registers ......................68 
B.2 TPM Platform Configuration Registers ......................................................77 
B.3 Intel® Trusted Execution Technology Device Space....................................77 

Appendix C Intel® TXT Heap Memory..................................................................................80 
C.1 BIOS Data Format ................................................................................81 
C.2 OS to MLE Data Format.........................................................................82 
C.3 OS to SINIT Data Format.......................................................................82 
C.4 SINIT to MLE Data Format .....................................................................83 

Appendix D LCP v1 ..........................................................................................................86 
D.1 Overview ............................................................................................86 

D.1.1 LCP Components .....................................................................88 
D.1.2 Policy List Types......................................................................90 
D.1.3 Supported Cryptographic Algorithms ..........................................91 

D.2 Policy Engine Logic ...............................................................................91 
D.2.1 Combining Policies...................................................................92 

D.3 Measuring the Enforced Policy ................................................................92 
D.3.1 No Policy Data ........................................................................92 
D.3.2 LCP Policy Allow Any................................................................92 
D.3.3 LCP Policy Hash Only ...............................................................93 
D.3.4 Unsigned LCP_POLICY_DATA ....................................................93 
D.3.5 Force Platform Owner Policy......................................................93 

D.4 Revocation ..........................................................................................93 
D.4.1 SINIT Revocation ....................................................................93 



 
 
 
 

Intel® TXT Software Development Guide    5 

D.5 Platform Owner Index ...........................................................................93 
D.6 Data Structures....................................................................................94 

D.6.1 LCP_POLICY ...........................................................................94 
D.6.2 LCP_POLICY_DATA ..................................................................95 
D.6.3 LCP_UNSIGNED_POLICY_DATA .................................................96 
D.6.4 Structure Endianness ...............................................................97 

Appendix E LCP v2 Data Structures....................................................................................98 
E.1 LCP_POLICY ........................................................................................98 
E.2 LCP_POLICY_DATA ...............................................................................98 
E.3 LCP_POLICY_LIST ................................................................................99 
E.4 LCP_POLICY_ELEMENT ........................................................................ 100 

E.4.1 LCP_MLE_ELEMENT ............................................................... 100 
E.4.2 LCP_PCONF_ELEMENT............................................................ 100 
E.4.3 LCP_CUSTOM_ELEMENT ......................................................... 101 

E.5 Structure Endianness .......................................................................... 102 
E.6 Errorcode Values ................................................................................ 102 

Appendix F Detection of New SMX Capabilities................................................................... 104 

 



 
 
 
 

6   Intel® TXT Software Development Guide  

Figures 

Figure 1. Launch Control Policy Components .......................................................46 
Figure 2. LCP_POLICY Structure ........................................................................47 
Figure 3. LCP_POLICY_DATA Structure...............................................................50 
Figure 4. Launch Control Policy Components .......................................................87 
Figure 5. SINIT LCP Internal Flow......................................................................88 
Figure 6. LCP_POLICY Structure ........................................................................89 
Figure 7. *_POLICY_DATA Structures.................................................................90 

 

Tables 

Table 1. MLE Header structure ..........................................................................18 
Table 2. MLE/SINIT Capabilities Field Bit Definitions.............................................19 
Table 3. Authenticated Code Module Format .......................................................60 
Table 4. AC module Flags Description ................................................................62 
Table 5. AC module CodeControl Description.......................................................62 
Table 6. Chipset AC Module Information Table.....................................................64 
Table 7. Chipset ID List....................................................................................65 
Table 8. TXT_ACM_CHIPSET_ID Format .............................................................65 
Table 9. Configuration Registers Relevant to MLE.................................................68 
Table 10. TXT.STS Bit Definitions ......................................................................72 
Table 11. TXT.ESTS Bit Definitions ....................................................................74 
Table 12. TXT.VER.FSBIF and TXT.VER.EMIF Bit Definitions...................................74 
Table 13. TXT.DIDVID Bit Definitions .................................................................74 
Table 14. TXT.ERRORCODE Register Bit Format...................................................75 
Table 15. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns ..........75 
Table 16. TXT.E2STS Register Bit Format ...........................................................76 
Table 17. TPM Locality Address Mapping.............................................................77 
Table 18. Intel® Trusted Execution Technology Heap............................................80 
Table 19. BIOS Data Table ...............................................................................81 
Table 20. OS to SINIT Data Table......................................................................82 
Table 21. SINIT to MLE Data Table ....................................................................83 
Table 22. SINIT Memory Descriptor Record.........................................................85 
Table 23. LCP Error Values ............................................................................. 102 
Table 24: Updated GETSEC[PARAMETER] Parameter Types ................................. 104 
Table 25: TXT Feature Extensions Flags ........................................................... 104 

 



 
 
 
 

Intel® TXT Software Development Guide    7 

Revision History 

 

Revision 
Number 

Description Revision Date 

-001  Initial release. May 2006 

-002  Established public document number 

 Edited throughout for clarity. 

August 2006 

-003  Added launched environment consideration  

 Renamed LT to Intel® TXT 

October 2006 

-004  Updated for production platforms 

 Use MLE terminology 

August 2007 

-005  Updated for latest structure versions and new RLP wakeup mechanism 

 Added Launch Control Policy information 

 Removed TEP Appendix 

 Many miscellaneous changes and additions 

June 2008 

-006  Miscellaneous errata 

 Added definition of LCP v2 

 Multiple processor support 

December 2009 

 



 
 
 
 

8   Intel® TXT Software Development Guide  



 
Overview 
 
 

Intel® TXT Software Development Guide    9 

1 Overview 

Intel’s technology for safer computing, Intel® Trusted Execution Technology (Intel® 
TXT), defines platform-level enhancements that provide the building blocks for 
creating trusted platforms.  

Whenever the word trust is used, there must be a definition of who is doing the 
trusting and what is being trusted. This enhanced platform helps to provide the 
authenticity of the controlling environment such that those wishing to rely on the 
platform can make an appropriate trust decision. The enhanced platform determines 
the identity of the controlling environment by accurately measuring the controlling 
software (see Section  1.1). 

Another aspect of the trust decision is the ability of the platform to resist attempts to 
change the controlling environment. The enhanced platform will resist attempts by 
software processes to change the controlling environment or bypass the bounds set by 
the controlling environment. 

What is the controlling environment for this enhanced platform? The platform is a set 
of extensions designed to provide a measured and controlled launch of system 
software that will then establish a protected environment for itself and any additional 
software that it may execute. 

These extensions enhance two areas: 

 The launching of the Measured Launched Environment (MLE) 

 The protection of the MLE from potential corruption 

The enhanced platform provides these launch and control interfaces using Safer Mode 
Extensions (SMX). 



Overview 
 
 
 

10   Intel® TXT Software Development Guide  

The SMX interface includes the following functions: 

 Measured launch of the MLE 

 Mechanisms to ensure the above measurement is protected and stored in a secure 
location 

 Protection mechanisms that allow the MLE to control attempts to modify itself 

1.1 Measurement and Intel® Trusted Execution 
Technology 

Intel TXT uses the term measurement frequently. Measuring software involves 
processing the executable such that the result (a) is unique and (b) indicates changes 
in the executable. A cryptographic hash algorithm meets these needs.  

A cryptographic hash algorithm is sensitive to even one-bit changes to the measured 
entity. A cryptographic hash algorithm also produces outputs that are sufficiently large 
so the potential for collisions (where two hash values are the same) is extremely 
small. When the term measurement is used in this specification, the meaning is that 
the measuring process takes a cryptographic hash of the measured entity. 

The controlling environment is provided by system software such as an OS kernel or 
VMM. The software launched using the SMX instructions is known as the Measured 
Launched Environment (MLE). MLEs provide different launch mechanisms and 
increased protection (offering protection from possible software corruption). 

1.2 Dynamic Root of Trust 

A central objective of the Intel TXT platform is to provide a measurement of the 
launched execution environment. 

One measurement is made when the platform boots, using techniques defined by the 
Trusted Computing Group (TCG). The TCG defines a Root of Trust for Measurement 
(RTM) that executes on each platform reset; it creates a chain of trust from reset to 
the measured environment. As the measurement always executes at platform reset, 
the TCG defines this type of RTM as a Static RTM (SRTM). 

Maintaining a chain of trust for a length of time may be challenging for an MLE meant 
for use in Intel TXT; this is because an MLE may operate in an environment that is 
constantly exposed to unknown software entities. To address this issue, the enhanced 
platform provides another RTM with Intel TXT instructions. The TCG terminology for 
this option is Dynamic Root of Trust for Measurement (DRTM). The advantage of a 
DRTM (also called the ‘late launch’ option) is that the launch of the measured 
environment can occur at any time without resorting to a platform reset. It is possible 
to launch an MLE, execute for a time, terminate the MLE, execute without 
virtualization, and then launch the MLE again. One possible sequence is:  

1. During the BIOS load: (a) launch an MLE for use by the BIOS, (b) terminate the 
MLE when its work is done, (c) continue with BIOS processing and hand off to an 
OS.  

2. Then, the OS loads and launches a different MLE.  

https://www.trustedcomputinggroup.org/home/�
https://www.trustedcomputinggroup.org/home/�


 
Overview 
 
 

Intel® TXT Software Development Guide    11 

In both instances, the platform measures each MLE and ensures the proper storage of 
the MLE measurement value. 

1.2.1 Launch Sequence 

When launching an MLE, the environment must load two code modules into memory. 
One module is the MLE. The other is known as an authenticated code (AC) module. 
The AC module is only in use during the measurement and verification process and is 
chipset-specific. It is digitally signed by the chipset vendor; the launch process must 
successfully validate the digital signature before continuing. 

With the AC module and MLE in memory, the launching environment can invoke the 
GETSEC[SENTER] instruction provided by SMX.  

GETSEC[SENTER] broadcasts messages to the chipset and other physical or logical 
processors in the platform. In response, other logical processors perform basic 
cleanup, signal readiness to proceed, and wait for messages to join the environment 
created by the MLE. As this sequence requires synchronization, there is an initiating 
logical processor (ILP) and responding logical processor(s) (RLP(s)).  

After all logical processors signal their readiness to join and are in the wait state, the 
initiating logical processor loads, authenticates, and executes the AC module. The AC 
module tests for various chipset and processor configurations and ensures the 
platform has an acceptable configuration. It then measures and launches the MLE.  

The MLE initialization routine completes system configuration changes (including 
redirecting INITs, SMIs, interrupts, etc.); it then issues a new SMX instruction that 
wakes up the responding logical processors (RLPs) and brings them into the measured 
environment. At this point, all logical processors and the chipset are correctly 
configured. 

At some later point, it is possible for the MLE to exit and then be launched again, 
without issuing a system reset. 

1.3 Storing the Measurement 

SMX operation during the launch provides an accurate measurement of the MLE. After 
creating the measurement, the initiating logical processor stores that measurement in 
the Trusted Platform Module (TPM), defined by the TCG. An enhanced platform 
includes mechanisms that ensure that the measurement of the MLE (completed during 
the launch process) is properly reported to the TPM. 

With the MLE measurement in the TPM, the MLE can use the measurement value to 
protect sensitive information and detect potential unauthorized changes to the MLE 
itself. 



Overview 
 
 
 

12   Intel® TXT Software Development Guide  

1.4 Controlled Take-down 

Because the MLE controls the platform, exiting the MLE is a controlled process. The 
process includes: (a) shutting down any guest VMs if they were created; (b) and 
ensuring that memory previously used does not leak sensitive information.  

The MLE cleans up after itself and terminates the MLE control of the environment. If a 
VMM was running, the MLE may choose to turn control of the platform over to the 
software that was running in one of the VMs. 

1.5 SMX and VMX Interaction 

A VM abort may occur while in SMX operation. This behavior is described in the Intel 
64 and IA-32 Software Developer Manual, Volume 3B. Note that entering 
authenticated code execution mode or launching of a measured environment affects 
the behavior and response of the logical processors to certain external pin events.  

1.6 Authenticated Code Module 

To support the establishment of a measured environment, SMX enables the capability 
of an authenticated code execution mode. This provides the ability for a special code 
module, referred to as an authenticated code module (AC module), to be loaded into 
internal RAM (referred to as authenticated code execution area) within the processor. 
The AC module is first authenticated and then executed using a tamper resistant 
mechanism.  

Authentication is achieved through the use of a digital signature in the header of the 
AC module. The processor calculates a hash of the AC module and uses the result to 
validate the signature. Using SMX, a processor will only initialize processor state or 
execute the AC module if it passes authentication. Since the authenticated code 
module is held within the internal RAM of the processor, execution of the module can 
occur in isolation with respect to the contents of external memory or activities on the 
external processor bus. 

1.7 Chipset Support 

One important feature the chipset provides is DMA protection via Intel® Virtualization 
Technology (Intel® VT) for Directed I/O (Intel® VT-d). Intel® VT-d, under control of 
the MLE, allows the MLE to protect itself and any other software such as guest VMs 
from unauthorized device access to memory. Intel VT-d blocks access to specific 
physical memory pages and the enforcement of the block occurs for all DMA access to 
the protected pages. See Chapter  1.10 for more information on DMA protection 
mechanisms.  

The Intel TXT architecture also provides extensions that access certain chipset 
registers and TPM address space. 



 
Overview 
 
 

Intel® TXT Software Development Guide    13 

Chipset registers that interact with SMX are accessed from two regions of memory by 
system software using memory read/write protocols.  These two memory regions, 
Intel TXT Public space and Intel TXT Private space, are mappings to the same set of 
chipset registers but with different read/write permissions depending on which space 
the memory access came through.  The Intel TXT Private space is not accessible to 
system software until it is unlocked by SMX instructions. 

The storage spaces accessible within a TPM device are grouped by a locality attribute 
and are a separate set of address ranges from the Intel TXT Public and Private spaces. 
The following localities are defined: 

 Locality 0 : Non-trusted and legacy TPM operation 

 Locality 1 : An environment for use by the Trusted Operating System  

 Locality 2 : Trusted OS 

 Locality 3 : Authenticated Code Module 

 Locality 4 : Intel TXT hardware use only 

1.8 TPM Usage 

Intel TXT makes extensive use of the Trusted Platform Module (TPM) defined by the 
Trusted Computing Group (TCG) in the TCG TPM Specification, Version 1.2. The TPM 
provides a repository for measurements and the mechanisms to make use of the 
measurements. The system makes use of the measurements to both report the 
current platform configuration and to provide long-term protection of sensitive 
information. 

The TPM stores measurements in Platform Configuration Registers (PCRs). PCRs 
provide a storage area that allows an unlimited number of measurements in a fixed 
amount of space. They provide this feature by an inherent property of cryptographic 
hashes. Outside entities never write directly to a PCR register, they “extend” PCR 
contents. The extend operation takes the current value of the PCR, appends the new 
value, performs a cryptographic hash on the combined value, and the hash result is 
the new PCR value. One of the properties of cryptographic hashes is that they are 
order dependent. This means hashing A then B produces a different result from 
hashing B then A. This ordering property allows the PCR contents to indicate the order 
of measurements. 

Sending measurement values from the measuring agent to the TPM is a critical 
platform task. The Dynamic Root of Trust for Measurement (DRTM) requires specific 
messages to flow from the DRTM to the TPM. The Intel TXT DRTM is the 
GETSEC[SENTER] instruction and the system ensures GETSEC[SENTER] has special 
messages to communicate to the TPM. These special messages take advantage of TPM 
localities 3 and 4 to protect the messages and inform the TPM that GETSEC[SENTER] 
is sending the messages. 

https://www.trustedcomputinggroup.org/specs/TPM�
https://www.trustedcomputinggroup.org/specs/�


Overview 
 
 
 

14   Intel® TXT Software Development Guide  

1.9 PCR Usage 

As part of the measured launch, Intel TXT will extend measurements of the elements 
and configuration values of the dynamic root of trust into certain TPM PCRs.  The 
constituent values of these measurements (indicated below) are provided in the 
SinitMleData structure described in section  C.4. 

While the MLE may choose to extend additional values into these PCRs, the values 
described below are those present immediately after the MLE receives control 
following the GETSEC[SENTER] instruction. 

1.9.1 PCR 17 

PCR 17 is initialized using the TPM_HASH_START/TPM_HASH_END sequence.  The 
HASH_DATA provided in this sequence is the concatenation of the hash of the SINIT 
ACM that was used in the launch process and the 4 byte value of the SENTER 
parameters (in EDX and also in SinitMleData.EdxSenterFlags).  As part of this 
sequence, PCRs 17-23 are reset to 0.  The hash of SINIT is also stored in the 
SinitMleData.SinitHash field. If the SINIT To MLE Data Table (section  C.4) version is 7 
or greater, the hash of the SINIT ACM is performed using SHA-256, otherwise it uses 
SHA-1. If a SHA-256 hash was used, the SinitMleData.SinitHash field will contain the 
value of PCR 17 after the initial extend operation (see below for more details). 

PCR 17 is then extended with the SHA-1 hash of the following items concatenated in 
this order: 

SHA-1 hash of BIOS ACM – SinitMleData.BiosAcmID (20 bytes) or 
Value of PCR 17 after initial extend (20 bytes) 

STM opt-in indicator – SinitMleData.MsegValid (8 bytes) 

SHA-1 hash of the STM (or all 0s if opt-out) – SinitMleData.StmHash (20 bytes) 

LCP Control Field of used policy (PS or PO) – SinitMleData.PolicyControl (4 bytes)  

SHA-1 hash of used policy (or all 0s if chosen not to be extended) – 
SinitMleData.LcpPolicyHash (20 bytes) 

MLE-chosen Capabilities (or all 0s if chosen not to be extended) – 
OsSinitData.Capabilities (4 bytes) 

If the SINIT To MLE Data Table (section  C.4) version is 8 or greater, an additional 
4 byte field representing processor-based S-CRTM status is concatenated. This 
field represents whether the S-CRTM (Static Core Root of Trust for Measurement) 
was implemented in the processor hardware (1) or in BIOS (0). 

If SinitMleData.Version = 6, PCR 17’s final value will be: 

 Extend ( SHA-1( SinitMleData.SinitHash | SinitMleData.EdxSenterFlags ) ) 



 
Overview 
 
 

Intel® TXT Software Development Guide    15 

 Extend ( SHA-1 ( SinitMleData.BiosAcm.ID | SinitMleData.MsegValid | 
SinitMleData.StmHash | SinitMleData.PolicyControl | SinitMleData.LcpPolicyHash | 
(OsSinitData.Capabilities, 0) ) ) 

If SinitMleData.Version = 7, PCR 17’s final value will be: 

 SHA-1 ( SinitMleData.SinitHash  | SHA-1 ( SinitMleData.BiosAcm.ID | 
SinitMleData.MsegValid | SinitMleData.StmHash | SinitMleData.PolicyControl | 
SinitMleData.LcpPolicyHash | (OsSinitData.Capabilities, 0) ) ) 

If SinitMleData.Version >= 8, PCR 17’s final value will be: 

 SHA-1 ( SinitMleData.SinitHash  | SHA-1 ( SinitMleData.BiosAcm.ID | 
SinitMleData.MsegValid | SinitMleData.StmHash | SinitMleData.PolicyControl | 
SinitMleData.LcpPolicyHash | (OsSinitData.Capabilities, 0) | 
SinitMleData.ProcessorSCRTMStatus) ) 

Where the Extend() operation is a SHA-1 hash of the previous value in the PCR 
concatenated with the value being extended (the previous value is 20 bytes of 0s in 
the case of the first extend to a PCR). 

1.9.2 PCR 18 

PCR 18 will be extended with the SHA-1 hash of the MLE, as reported in the 
SinitMleData.MleHash field. 

Thus, PCR 18’s final value will be: 

 Extend ( SinitMleData.MleHash ) 

1.10 DMA Protection 

This chapter briefly describes the two chipset mechanisms that can be used to protect 
regions of memory from DMA access by busmaster devices.  More details on these 
mechanisms can be found in the External Design Specification (EDS) of the targeted 
chipset family and Intel® Virtualization Technology for Directed I/O Architecture 
Specification. 



Overview 
 
 
 

16   Intel® TXT Software Development Guide  

1.10.1 DMA Protected Range (DPR) 

The DMA Protected Range (DPR) is a region of contiguous physical memory whose last 
byte is the byte before the start of TSEG, and which is protected from all DMA access.  
The DPR size is set and locked by BIOS.  This protection is applied to the final physical 
address after any other translations (e.g. Intel VT-d, GART, etc.). 

The DPR covers the Intel TXT heap and SINIT AC Module reserved memory (as 
specified in the TXT.SINIT.BASE/TXT.SINIT.SIZE registers).  On current systems it is 
3MB in size, and though this may change in the future it will always be large enough 
to cover the heap and SINIT regions. 

The MLE itself may reside in the DPR as long as it does not conflict with either the 
SINIT or heap areas.  If it does reside in the DPR then it need not be covered by the 
Intel VT-d Protected Memory Regions. 

1.10.2 Intel® Virtualization Technology (Intel® VT) for Directed 
I/O (Intel® VT-d) Protected Memory Regions (PMRs) 

The Intel® VT-d Protected Memory Regions (PMRs) are two ranges of physical 
addresses that are protected from DMA access.  One region must be in the lower 4GB 
of memory and the other must be in the upper 4GB.  Either or both may be unused. 

The use of the PMRs is not mutually exclusive of DMA remapping.  If the MLE enables 
DMA remapping, it should place the Intel VT-d page tables within the PMR region(s) in 
order to protect them from DMA activity prior to turning on remapping.  While it is not 
required that PMRs be disabled once DMA remapping is enabled, if the MLE wants to 
manage all DMA protection through remapping tables then it must explicitly disable 
the PMR(s). 

The MLE may reside within one of the PMR regions.  If the MLE is not within the DPR 
region then it must be within one of the PMR regions, else SINIT will not permit the 
environment to be launched. 

For more details of the PMRs, see the Intel® Virtualization Technology for 
Directed I/O Architecture Specification. 

1.11 Intel® TXT Shutdown 

1.11.1 Reset Conditions 

When an Intel TXT shutdown condition occurs, the processor or software writes an 
error code indicating the reason for the failure to the TXT.ERRORCODE register. It 
then writes to the TXT.CMD.RESET command register, initiating a platform reset. After 
the write to TXT.CMD.RESET, the processor enters a shutdown sleep state with all 
external pin events, bus or error events, machine check signaling, and 
MONITOR/MWAIT event signaling masked. Only the assertion of reset back to the 
processor takes it out of this sleep state. The Intel TXT error code register is not 



 
Overview 
 
 

Intel® TXT Software Development Guide    17 

cleared by the platform reset; this makes the error code accessible for post-reset 
diagnostics. 

An Intel TXT shutdown can be generated by the processor during execution of certain 
GETSEC leaf functions (for example: ENTERACCS, EXITAC, SENTER, SEXIT), where 
recovery from an error condition is not considered reliable. This situation should be 
interpreted as an abort of authenticated execution or measured environment launch.  

A legacy IA-32 triple-fault shutdown condition is also converted to an Intel TXT 
shutdown sequence if the triple-fault shutdown occurs during authenticated code 
execution mode or while the measured environment is active. The same is true for 
other legacy non-SMX specific fault shutdown error conditions. Legacy shutdown to 
Intel TXT shutdown conversions are defined as the mode of operation between: 

 Execution of the GETSEC functions ENTERACCS and EXITAC 

 Recognition of the message signaling the beginning of the processor rendezvous 
after GETSEC[SENTER] and the message signaling the completion of the processor 
rendezvous 

Additionally, there is a special case. If the processor is in VMX operation while the 
measured environment is active, a triple-fault shutdown condition that causes a guest 
exiting event back to the Virtual Machine Monitor (VMM) supersedes conversion to the 
Intel TXT shutdown sequence. In this situation, the VMM remains in control after the 
error condition that occurred at the guest level and there is no need to abort 
processor execution.  

Given the above situation, if the triple-fault shutdown occurs at the root level of the 
MLE or a VMX abort is detected, then an Intel TXT shutdown sequence is signaled. For 
more details on a VMX abort, see Chapter 23, “VM Exits,” in the Intel 64 and IA-32 
Software Developer Manuals, Volume 3B. 



Measured Launched Environment 
 
 
 

18   Intel® TXT Software Development Guide  

2 Measured Launched 
Environment  

Intel TXT can be used to launch any type of code. However, this section describes the 
launch, operation and teardown of a Virtual Machine Monitor (VMM) using Intel TXT; 
any other code would have a similar sequence. 

2.1 MLE Architecture Overview 

Any Measured Launched Environment (MLE) will generally consist of three main 
sections of code: the initialization, the dispatch routine, and the shutdown. The 
initialization code is run each time the Intel TXT environment is launched. This code 
includes code to setup the MLE on the ILP and join code to initialize the RLPs.  

After initialization, the MLE behaves like the unmeasured version would have; in the 
case of a VMM, this is trapping various guest operations and virtualizing certain 
processor states.  

Finally the MLE prepares for shutdown by again synchronizing the processors, clearing 
any state and executing the GETSEC[SEXIT] instruction. 

Table 1 shows the format of the MLE Header structure which is stored within the MLE 
image. The MLE Header structure is used by the SINIT AC module to set up the 
correct initial MLE state and to find the MLE entry point. The header is part of the MLE 
hash.  

Table 1. MLE Header structure 

Field Offset Size 
(bytes) 

Description 

UUID 0 16 Identifies this structure 

HeaderLen 16 4 Length of header in bytes 

Version 20 4 Version number of this structure 

EntryPoint 24 4 Linear entry point of MLE 

FirstValidPage 28 4 Starting linear address of (first valid 
page of) MLE 

MleStart 32 4 Offset within MLE binary file of first byte 
of MLE as specified in page table 

MleEnd 36 4 Offset within MLE binary file of last byte 
of MLE as specified in page table 

Capabilities 40 4 Bit vector of MLE-supported capabilities 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    19 

UUID: This field contains a UUID which uniquely identifies this MLE Header Structure. 
The UUID is defined as follows:  

ULONG   UUID0;  // 9082AC5A 
ULONG   UUID1;  // 74A7476F 
ULONG   UUID2;  // A2555C0F 
ULONG   UUID3;  // 42B651CB 

This UUID value should only exist in the MLE (binary) in this field of the MLE header. 
This implies that this UUID should not be stored as a variable nor placed in the code 
to be assigned to this field. This can also be ensured by analyzing the binary. 

HeaderLen: this field contains the length in bytes of the MLE Header Structure. 

Version: this field contains the version of the MLE header, where the upper two bytes 
are the major version and the lower two bytes are the minor version.  Changes in the 
major version indicate that an incompatible change in behavior is required of the MLE 
or that the format of this structure is not backwards compatible.  Version 2.0 
(20000H) is the currently supported version. 

EntryPoint: this field is the linear address, within the MLE’s linear address space, at 
which the ILP will begin execution upon completion of the GETSEC[SENTER] 
instruction. 

FirstValidPage: this field is the starting linear address of the MLE.  This will be 
verified by SINIT to match the first valid entry in the MLE page tables. 

MleStart / MleEnd: these fields are intended for use by system software that needs 
to know which portion of an MLE binary file is the MLE, as defined by its page table.  
This might be useful for calculating the MLE hash when the entire binary file is not 
being used as the MLE. 

Capabilities: this bit vector represents TXT-related capabilities that the MLE supports.  
It will be used by the SINIT AC module to determine whether the MLE is compatible 
with it and as needed for any optional capabilities.  The currently defined bits for this 
are:  

Table 2. MLE/SINIT Capabilities Field Bit Definitions 

Bit position Description 

0 Support for GETSEC[WAKEUP] for RLP wakeup (1) 

All MLEs should support this. 

1 Support for RLP wakeup using MONITOR address 
(SinitMleData.RlpWakeupAddr) (1) 

All MLEs should support this. 

2 The ECX register will contain the pointer to the MLE page table on return 
from SINIT to the MLE EntryPoint (1). 

3 STM support (1). 

31:4 Reserved (must be 0) 

 



Measured Launched Environment 
 
 
 

20   Intel® TXT Software Development Guide  

2.2 MLE Launch 

At some point system software will start an Intel TXT environment. This may be done 
at operating system loader time or could be done after the operating system boots. 
From this point on we will assume that the operating system is starting the Intel TXT 
environment and refer to this code as the system software. 

After the measured environment startup, the application processors (RLPs) will not 
respond to SIPIs as they did before SENTER. Once the measured environment is 
launched, the RLPs cannot run the real-mode MP startup code. An alternative MP 
startup algorithm will need to be developed. The new MP startup algorithm would not 
require the RLPs to leave protected mode with paging on. The OS may also be 
required to detect whether a measured environment has been established and use this 
information to decide which MP startup algorithm is appropriate (the standard MP 
startup algorithm or the modified algorithm). 

This section shows the pseudocode for preparing the system for the SMX measured 
launch. The following describes the process in a number of sub-sections: 

 Intel TXT detection and processor preparation 

 Detection of previous errors 

 Loading the SINIT AC module  

 Loading the MLE and processor rendezvous 

 Performing a measured launch  

2.2.1 Intel® TXT Detection and Processor Preparation 

Lines 1 - 4: Before attempting to launch the measured environment, the system 
software should check that all logical processors support VMX and SMX (the check for 
VMX support is not necessary if the environment to be launched will not use VMX). 

For single processor socket systems, it is sufficient if this action is only performed by 
the ILP. This includes physical processors containing multiple logical processors. In 
order to correctly handle multiple processor socket systems, this check must be 
performed on all logical processors. It is possible that two physical processor within 
the same system may differ in terms of SMX and VMX capabilities. 

For details on detecting and enabling VMX see chapter 19, “Introduction to Virtual-
Machine Extensions”, in the Intel 64 and IA-32 Software Developer Manuals, Volume 
3B. For details on detecting and enabling SMX support see chapter 6, “Safer Mode 
Extensions Reference”, in the Intel 64 and IA-32 Software Developer Manuals, Volume 
2B . 

Lines 5 - 9: System software should check that the chipset supports Intel TXT prior to 
launching the measured environment. The presence of the Intel TXT chipset can be 
detected by executing GETSEC[CAPABILITIES] with EAX=0 & EBX=0. This instruction 
will return the ‘Intel TXT Chipset’ bit set in EAX if an Intel TXT chipset is present. The 
processor must enable SMX before executing the GETSEC instruction. 

Lines 10 – 12: System software should also verify that the processor supports all of 
the GETSEC instruction leaf indices that will be needed.  The minimal set of 
instructions required will depend on the system software and MLE, but is most likely 
SENTER, SEXIT, WAKEUP, SMCTRL, and PARAMETERS.  The supported leaves are 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    21 

indicated in the EAX register after executing the GETSEC[CAPABILITIES] instruction as 
indicated above. 

Listing 1. Intel® TXT Detection Pseudocode 

// 
// Intel TXT detection 
// Execute on all logical processors for compatibility with 
// multiple processor systems 
// 
1. CPUID(EAX=1); 
2. IF (SMX not supported) OR (VMX not supported) { 
3.     Fail measured environment startup; 
4. }  
 
// 
// Enable SMX on ILP & check for Intel TXT chipset 
// 
5. CR4.SMXE = 1; 
6. GETSEC[CAPABILITIES]; 
7. IF (Intel TXT chipset NOT present) { 
8.     Fail measured environment startup; 
9. } 
10.IF (All needed SMX GETSEC leaves are NOT supported) { 
11.    Fail measured environment startup; 
12.} 

2.2.2 Detection of Previous Errors 

In order to prevent a cycle of failures or system resets, it is necessary for the system 
software to check for errors from a previous launch.  Errors that are detected by 
system software prior to executing the GETSEC[SENTER] instruction will be specific to 
that software and, if persisted, will be in a manner specific to the software.  Errors 
generated during execution of the GETSEC[SENTER] instruction result in a system 
reset and the error code being stored in the TXT.ERRORCODE register.  Possible 
remediation steps are described in section  4.2. 

Lines 1 - 3: The error code from an error generated during the GETSEC[SENTER] 
instruction is stored in the TXT.ERRORCODE register, which is persistent across soft 
resets.  A non-zero value indicates an error.  Error codes are specific to an SINIT AC 
module and can be found in a text file that is distributed with the module. 

Lines 4 - 6: If the TXT_RESET.STS bit of the TXT.ESTS register is set, then in order to 
maintain TXT integrity the GETSEC[SENTER] instruction will fail.  System software 
should detect this condition as early as possible and, after taking the appropriate 
remediative action, power cycle the system to clear this bit and permit a launch. 

Listing 2. Error Detection Pseudocode 

// 
// Detect previous GETSEC[SENTER] failures 
// 
1. IF (TXT.ERRORCODE != 0) { 



Measured Launched Environment 
 
 
 

22   Intel® TXT Software Development Guide  

2.     Take remediative action; 
3. }  
 
// 
// Detect previous TXT Reset 
// 
4. IF (TXT.ESTS[TXT_RESET.STS] != 0) { 
5.     Power-cycle system; 
6. }  

2.2.3 Loading the SINIT AC Module 

This action is only performed by the ILP.  

BIOS may already have the correct SINIT AC module loaded into memory or system 
software may need to load the SINIT code from disk into memory. The system 
software may determine if an SINIT AC module is already loaded by examining the 
preferred SINIT load location (see below) for a valid SINIT AC module header. 

System software should always use the most recent version of the SINIT AC module 
available to it.  It can determine this by comparing the Date fields in the AC module 
headers. 

System software should also match a prospective SINIT AC module to the chipset 
before loading and attempting to launch the module. This is described in the next two 
sections of this document.  

System software owns the policy for deciding which SINIT module to load. It must 
load the previously loaded SINIT AC module in order to unseal data sealed to a 
previously launched environment. If an SINIT AC module is to be changed (e.g. 
upgraded to the latest version), the system software must allow the user to migrate 
secrets prior to loading the new SINIT AC module.  

The BIOS reserves a region of physically contiguous memory for the SINIT AC module, 
which it specifies through the TXT.SINIT.BASE and TXT.SINIT.SIZE Intel TXT 
configuration registers. By convention, 128 KBytes of physically contiguous memory is 
allocated for the purpose of loading the SINIT AC module. System software must use 
this region for any SINIT AC module that it loads. 

The SINIT AC module must be located on a 4 KByte aligned memory location. The 
SINIT AC module must be mapped WB using the MTRRs and all other memory must 
be mapped to one of the supportable memory types returned by 
GETSEC[PARAMETERS]. The MTRRs which map the SINIT AC module must not overlap 
more than 4 KBytes of memory beyond the end of the SINIT AC image. See the 
GETSEC[ENTERACCS] instruction and the Authenticated Code Module Format, section 
 A.1, for more details on these restrictions. 

The pages containing the SINIT AC module image must be present in memory before 
attempting to launch the measured environment. The SINIT AC module image must 
be loaded below 4 GBytes. System software should check that the SINIT AC module 
will fit within the AC execution region as specified by the GETSEC[PARAMETERS] leaf. 
System software should not utilize the memory immediately after the SINIT AC 
module up to the next 4 KByte boundary. On certain Intel TXT implementations, 
execution of the SINIT AC module will corrupt this region of memory. 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    23 

2.2.3.1 Matching an AC Module to the Chipset 

As part of system software loading an SINIT AC module, the system software should 
first verify that the file to be loaded is really an SINIT AC module. This may be done at 
installation time or runtime. Lines 1 - 10 in Listing 3 below show how to do this. 

Each AC module is designed for a specific chipset or set of chipsets. Software can 
examine the Chipset ID List embedded in the AC module binary to determine which 
chipsets an AC module supports. Software should read the chipset’s TXT.DIDVID 
register and parse the Chipset ID List to find a matching entry. Attempting to execute 
an AC module that does not match the chipset’s TXT.DIDVID register will result in a 
failure of the AC module to complete normal execution and an Intel TXT Shutdown. 

Lines 11 - 26 in the following pseudocode show how to check for a valid match 
between a chipset and an AC module image. 

Listing 3. AC Module Matching Pseudocode 

TXT_ACM_HEADER              *AcmHdr;   // see Table 3 
TXT_CHIPSET_ACM_INFO_TABLE   *InfoTable;  // see Table 6 
 
//  
// Find the Chipset AC Module Information Table 
// 
1. AcmHdr = (TXT_ACM_HEADER *)AcmImageBase; 
2. UserAreaOffset = (AcmHdr->HeaderLen + AcmHdr->ScratchSize)*4; 
3. InfoTable = (TXT_CHIPSET_ACM_INFO_TABLE *)(AcmBase + 
                   UserAreaOffset); 
 
// 
// Verify image is really an AC module 
// 
1. IF (InfoTable->UUID0 != 0x7FC03AAA) OR 
2.    (InfoTable->UUID1 != 0x18DB46A7) OR 
3.    (InfoTable->UUID2 != 0x8F69AC2E) OR 
4.    (InfoTable->UUID3 != 0x5A7F418D) { 
5.      Fail: not an AC module; 
6. } 
 
// 
// Verify it is an SINIT AC module 
// 
7. IF (AcmHdr->ModuleType != 2) OR 
8.    (InfoTable->ChipsetACMType != 1) { 
9.    Fail: not an SINIT AC module; 
10.} 
 
 
// 
// Match AC module to system chipset 
// 
TXT_ACM_CHIPSET_ID_LIST   *ChipsetIdList;  // see Table 7 
TXT_ACM_CHIPSET_ID        *ChipsetId;   // see Table 8 
   



Measured Launched Environment 
 
 
 

24   Intel® TXT Software Development Guide  

11.ChipsetIdList = (TXT_ACM_CHIPSET_ID_LIST *)  
                   (AcmImageBase + InfoTable->ChipsetIdList); 
 
// 
// Search through all ChipsetId entries and check for a match. 
// 
12.FOR (i = 0; i < ChipsetIdList->Count; i++) { 
13.    // 
14.    // Check for a match with this ChipsetId entry. 
15.    // 
16.    ChipsetId = ChipsetIdList->ChipsetId[i]; 
17.    IF ((TXT.DIDVID[VID] == ChipsetId->VendorId) && 
18.        (TXT.DIDVID[DID] == ChipsetId->DeviceId) && 
19.        ((((ChipsetId->Flags & 0x1) == 0) && 
20.          (TXT.DIDVID[RID] == ChipsetId->RevisionId)) || 
21.        (((ChipsetId->Flags & 0x1) == 0x1) && 
22.          (TXT.DIDVID[RID] & ChipsetId->RevisionId != 0)))) { 
23.        AC module matches system chipset; 
24.    } 
25.} 
26.AC module does not match system chipset; 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    25 

2.2.3.2 Verifying Compatibility of SINIT with the MLE 

Over time, new features and capabilities may be added to the SINIT AC module that 
can be utilized by an MLE that is aware of those features.  Likewise, features or 
capabilities may be added that require an MLE to be aware of them in order to 
interoperate properly.  In order to expose these features and capabilities and permit 
the MLE and SINIT to determine whether they support a compatible set, the MLE 
header contains a Capabilities field (see Table 1) that corresponds to the Capabilities 
field in the SINIT AC module Information Table (see Table 6). 

In addition, the MinMleHeaderVer field in the AC module Information Table allows 
SINIT to indicate that it requires a certain minimal version of an MLE.  This allows for 
new behaviors or features that require support from the MLE, but which older MLEs 
would not be aware of. 

Listing 4 shows the pseudocode for the MLE to determine if it is compatible with the 
provided SINIT AC module. 

Whiles lines 4 – 6 may be redundant with current SINIT AC modules if the MLE 
supports both RLP wakeup mechanisms, this permits graceful handling of future 
changes. 

Listing 4. SINIT/MLE Compatibility Pseudocode 

//  
// Check that SINIT supports this version of the MLE 
// 
1. IF (InfoTable->MinMleHeaderVer > MleHeader.Version) { 
2.     Fail:  SINIT requires a newer MLE 
3. } 
 
// 
// Check that the known RLP wakeup mechanisms are supported 
// 
4. IF (MLE does NOT support at least one RLP wakeup mechanism  

specified in InfoTable->Capabilities) { 
5.     Fail:  RLP wakeup mechanisms are incompatible 
6. } 



Measured Launched Environment 
 
 
 

26   Intel® TXT Software Development Guide  

2.2.4 Loading the MLE and Processor Rendezvous 

2.2.4.1 Loading the MLE 

System software allocates memory for the MLE and MLE page table. The MLE is not 
required to be loaded into physically contiguous memory. The pages containing the 
MLE image must be pinned in memory and all these pages must be located in physical 
memory below 4 GBytes. 

System software creates an MLE page table structure to map the entire MLE image. 
The pages containing the MLE page tables must be pinned in memory prior to 
launching the measured environment. The MLE page table structure must be in the 
format of the IA-32 Physical Address Extension (PAE) page table structure. 

The MLE page table has several special requirements: 

 The MLE page tables may contain only 4 KByte pages. 

 A breadth-first search of page tables must produce increasing physical addresses. 

 Neither the MLE nor the page tables may overlap certain regions of memory: 

 device memory (PCI, PCIe*, etc.) 

 addresses between [640k, 1M) or above Top of Memory (TOM) 

 ISA hole (if enabled) 

 the Intel TXT heap or SINIT memory regions 

 Intel VT-d DMAR tables 

 There may not be any invalid (not-present) page table entries after the first valid 
entry (i.e. there may not be any gaps in the MLE’s linear address space). 

 The Page Directories must be in a lower physical address than the Page Tables. 

 The Page-Directory-Pointer-Table must be in a lower physical address than the 
Page-Directories. 

 The page table pages must be in lower physical addresses than the MLE. 

Later, the SINIT AC module will check that the MLE page table matches these 
requirements before calculating the MLE digest. The second rule above implies that 
the MLE must be loaded into physical memory in an ordered fashion: a scan of MLE 
virtual addresses must find increasing physical addresses. The system software can 
order its list of physical pages before loading the MLE image into memory. 

The MLE is not required to begin at linear address 0.  There may be any number of 
invalid/not-present entries in the page table prior to the beginning of the MLE pages 
(i.e. first valid page).  The starting linear address should be placed in the 
FirstValidPage field of the MLE header structure (see Section  2.1).  

If the MLE will use this page table after launch then it needs to ensure that the entry 
point page is identity-mapped so that when it enables paging post-launch, the 
physical address of the instruction after paging is enabled will correspond to its linear 
address in the paged environment. 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    27 

System software writes the physical base address of the MLE page table’s page 
directory to the Intel TXT Heap. The size in bytes of the MLE image is also written to 
the Intel TXT Heap; see Appendix C.  

2.2.4.2 Intel® Trusted Execution Technology Heap Initialization 

Information can be passed from system software to the SINIT AC module and from 
system software to the MLE using the Intel TXT Heap. The SINIT AC module will also 
use this region to pass data to the MLE.  

The system software launching the measured environment is responsible for 
initializing the following in the Intel TXT Heap memory (this initialization must be 
completed before executing GETSEC[SENTER]): 

 Initialize contents of the Intel TXT Heap Memory (see  Appendix C) 

 Initialize contents of the OsMleData (see  Appendix C) and OsMleDataSize (with 
the size of the OsMleData field + 8H) fields. 

 Initialize contents of the OsSinitData (see section  C.3) and OsSinitDataSize (with 
the size of the OsSinitData field + 8H) fields. 

The OsMleData structure has fields for specifying regions of memory to protect from 
DMA (PMR Low/High Base/Size) using Intel VT-d.  As described in Chapter  1.10, the 
MLE must be protected from DMA by being contained within either the DMA Protected 
Range (DPR) or one of the Intel VT-d Protected Memory Regions (PMRs).  If the MLE 
resides within the DPR then the PMR fields of the OsMleData structure may be set to 
0.  Otherwise, these fields must specify a region that contains the MLE and the page 
tables.  However, the PMR fields can specify a larger region (and separate region, 
since there are two ranges) than just the MLE if there is additional data that should be 
protected. 

If the system software is using Intel VT-d DMA remapping to protect areas of memory 
from DMA then it must disable this before it executes GETSEC[SENTER].  In order to 
do this securely, system software should determine what PMR range(s) are necessary 
to cover all of the address range being DMA protected using the remapping tables.  It 
should then initialize the PMR(s) appropriately and enable them before disabling 
remapping.  The PMR values it provides in the OsSinitData PMR fields must correspond 
to the values that it has programmed.  Once the MLE has control, it can re-enable 
remapping using the previous tables (after validating them). 

If the MLE or subsequent code will be enabling Intel VT-d DMA remapping then the 
DMAR information that will be needed should be protected from malicious DMA activity 
until the remapping tables can be established to protect it.  The SINIT AC module 
makes a copy of the DMAR tables in the SinitMleData region (located at an offset 
specified by the SinitVtdDmarTable field).  Because this region is within the TXT heap, 
it is protected from DMA by the DPR.  If the MLE or subsequent code does not use this 
copy of the DMAR tables, then it should protect the original tables (within the ACPI 
area) with the PMR range specified to SINIT.  Likewise, the memory range used for 
the remapping tables should also be protected with the PMRs until remapping is 
enabled. 

If the Platform Owner TXT Launch Control Policy (see Chapter  3.1.1.1 for more details 
about TXT Launch Control Policy) is of type POLTYPE_LIST (or POLTYPE_UNSIGNED 
for v1 policies) then there must be an associated data file which contains the 
remainder of the policy. This policy data file must be placed in memory by system 
software and its starting address and size specified in the LCP PO Base and LCP PO 



Measured Launched Environment 
 
 
 

28   Intel® TXT Software Development Guide  

Size fields of the OsSinitData structure. The data must be wholly contained within a 
DMA protected region of memory, either within the DPR (e.g. in the TXT heap) or 
within the bounds specified for the PMRs. 

2.2.4.3 Rendezvousing Processors and Saving State 

Line 1: If launching the measured environment after operating system boot, then all 
processors should be brought to a rendezvous point before executing 
GETSEC[SENTER]. At the rendezvous point each processor will set up for 
GETSEC[SENTER] and save any state needed to resume after the measured launch. If 
processors are not rendezvoused before executing SENTER, then the processors that 
did not rendezvous will lose their current operating state including possibly the fact 
that an in-service interrupt has not been acknowledged. 

Lines 2 – 7: All processors check that they support SMX and enable SMX in CR4.SMXE. 

Lines 8 - 10: The MLE should preserve machine check status registers if bit 6 in the 
TXT Extension Flags returned by GETSEC[PARAMETERS] (See  2.2.5.1for details) is 
set. If this bit returns 0 or parameter type ‘5’ is not supported, the MLE must log and 
clear machine check status registers. 

Line 11: Check that certain CR0 bits are in the required state for a successful 
measured environment launch. 

Line 12: System software allocates memory to save its state for restoration post 
measured launch. The OsMleData portion of the Intel TXT Heap has been reserved for 
this purpose (see section C.1), though the size must be set appropriately for the 
memory to be available. 

Line 13: The BSP (the ILP) saves enough state in memory to allow a return to OS 
execution after the measured launch and then continues launch execution. The BSP is 
the processor with IA32_APIC_BASE MSR.BSP = 1. The remaining Intel TXT 
processors (RLPs) save enough state in memory to allow return to OS execution after 
measured launch then execute HLT or spin waiting for transition to the measured 
environment. 

Certain MSRs are modified by executing the GETSEC[SENTER] instruction. For 
example, bits within the IA32_MISC_ENABLE and IA32_DEBUGCTL MSRs are set to 
predetermined values. It may be desirable to restore certain bits within these MSRs to 
their pre-launch state after the MLE launch. If this is desired, then before executing 
GETSEC[SENTER], software should save the contents of these MSRs in the OsMleData 
area. The launched software can restore the original values into these MSRs after the 
GETSEC[SENTER] returns or, alternatively, the MLE can restore these MSRs with their 
original values during MLE initialization. 

It is expected that most MLEs will want to restore the MTRR and IA32_MISC_ENABLE 
MSR states after the MLE launch, to provide optimal performance of the system. 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    29 

Listing 5. Pseudocode for Rendezvousing Processors and Saving State 

1. Rendezvous all processors; 
 
// 
// The following code is run on all processors 
// 
// Enable SMX 
// 
 
2. CPUID(EAX=1); 
3. IF (SMX not supported) OR (VMX not supported) { 
4.    Fail measured environment startup; 
5. } ELSE { 
6.    CR4.SMXE = 1; 
7. } 
 
8. IF (GETSEC[PARAMETERS](type=5)[6] == 1) { 
9.     Clear Machine Check Status Registers; 
10.} 
11.Ensure CR0.CD=0, CR0.NW=0, and CR0.NE=1; 
 
// 
// Save current system software state in Intel TXT Heap 
// 
 
12.Allocate memory for OsMleData; 
13.Fill in OsMleData with system software state (including MTRR 

and IA32_MISC_ENABLE MSR states); 

2.2.5 Performing a Measured Launch 

2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution 

System software must set up the variable range MTRRs to map all of memory (except 
the region containing the SINIT AC module) to one of the supported memory types as 
returned by GETSEC[PARAMETERS], before executing GETSEC[SENTER]. System 
software first saves the current MTRR settings in the OsMleData area and verifies that 
the default memory type is one of the types returned by GETSEC[PARAMETERS] 
(default memory type is specified in the IA32_MTRR_DEF_TYPE MSR). Next the 
variable range MTRRs are set to map the SINIT AC module as WB. The SINIT AC 
module must be covered by the MTRRs such that no more than (4K-1) bytes after the 
module are mapped WB. For example, if an SINIT AC module is 11K bytes in size, an 
8K and a 4K or three 4K MTRRs should be used to map it, not a single 32K MTRR. Any 
unused variable range MTRRs should have their valid bit cleared. 

Listing 6 shows the pseudocode for correctly setting the ILP and RLP MTRRs. This code 
follows the recommendation in the IA-32 Software Developer’s Manual. 

After MTRR setup is complete, the RLPs mask interrupts (by executing CLI), signal the 
ILP that they have interrupts masked, and execute halt. Before executing 
GETSEC[SENTER], the ILP waits for all RLPs to indicate that they have disabled their 



Measured Launched Environment 
 
 
 

30   Intel® TXT Software Development Guide  

interrupts. If the ILP executed a GETSEC[SENTER] while an RLP was servicing an 
interrupt, the interrupt servicing would not complete, possibly leaving the interrupting 
device unable to generate further interrupts. 

Listing 6. MTRR Setup Pseudocode 

// 
// Pre-MTRR change 
// 
 
1. Disable interrupts (via CLI); 
2. Wait for all processors to reach this point; 
3. Disable and flush caches (i.e. CRO.CD=1, CR0.NW=0, WBINVD); 
4. Save CR4 
5. IF (CR4.PGE == 1) { 
6.     Clear CR4.PGE 
7. } 
8. Flush TLBs 
9. Disable all MTRRs (i.e. IA32_MTRR_DEF_TYPE.e=0) 
 
// 
// Use MTRRs to map SINIT memory region as WB, all other regions 
// are mapped to a value reported supportable by 
// GETSEC[PARAMETERS] 
// 
 
10.Set default memory type (IA32_MTRR_DEF_TYPE.type) to one 

reported by GETSEC[PARAMETERS]; 
11.Disable all fixed MTRRs (IA32_MTRR_DEF_TYPE.fe=0); 
12.Disable all variable MTRRs (clear valid bit); 
13.Read SINIT size from the SINIT AC header; 
14.Program variable MTRRs to cover the AC execution region, 

memtype=WB (re-enable each one used); 
 
// 
// Post-MTRR changes 
// 
15.Flush caches (WBINVD); 
16.Flush TLBs; 
17.Enable MTRRs (i.e. MTRRdefType.e=1); 
18.Enable caches (i.e. CRO.CD=0, CR0.NW=0); 
19.Restore CR4; 
20.Wait for all processors to reach this point; 
21.Enable interrupts; 

 

// 
// RLPs stop here 
// 
 
22.IF (IA32_APIC_BASE.BSP != 1) { 
23.    CLI; 
24.    set bit indicating we have interrupts disabled; 
25.    HLT; 
26.} 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    31 

 
27.Wait for all RLPs to signal that they have their interrupts 

disabled 
 

2.2.5.2 Selection of Launch Capabilities 

System software must select the capabilities that it wishes to use for the launch.  It must 
choose a subset of the capabilities supported by the SINIT AC module.  For mandatory 
capabilities, such as the RLP wakeup mechanism, one of the supported options must be 
chosen. 

 
28.OsSinitData.Capabilities = selected capabilities; 

2.2.5.3 TPM Preparation 

System software must ensure that the TPM is ready to accept commands and that there 
is no currently active locality (TPM.ACCESS_x.activeLocality bit is clear for all localities) 
before executing the GETSEC[SENTER] instruction. 

 
29.Read TPM Status Register until it is ready to accept a command 
32.For all localities x, ensure that ACCESS_x.activeLocality is 0 

2.2.5.4 Intel® Trusted Execution Technology Launch 

The ILP is now ready to launch the measuring process. System software executes the 
GETSEC[SENTER] instruction. See chapter 6, “Safer Mode Extensions Reference”, in 
the Intel 64 and IA-32 Software Developer Manuals, Volume 2B for the details of 
GETSEC[SENTER] operation. 

 

30.EBX = Physical Base Address of SINIT AC Module 
31.ECX = size of the SINIT AC Module in bytes 
32.EDX = 0  
33.GETSEC[SENTER] 
 

2.3 MLE Initialization 

This section describes the initialization of the MLE. Listing 7 shows the pseudocode for 
MLE initialization. 

The MLE initialization code is executed on the ILP when the SINIT AC module executes 
the GETSEC[EXITAC] instruction—the MLE initialization code is the first MLE code to 
run after GETSEC[SENTER] and within the measured environment. The SINIT AC 
module obtains the MLE initialization code entry point from the EntryPoint field in the 
MLE Header data structure whose address is specified in the OsSinitData entry in the 
Intel TXT Heap. The MLE initialization code is responsible for setting up the protections 



Measured Launched Environment 
 
 
 

32   Intel® TXT Software Development Guide  

necessary to safely launch any additional environments or software. The initialization 
includes Intel TXT hardware initialization, waking and initializing the RLPs, MLE 
software initialization and initialization of the STM (if one is being used). Section  2.3 
describes the details of MLE initialization. 

During MLE initialization, the ILP executes the GETSEC[WAKEUP] instruction, bringing 
all the RLPs into the MLE initialization code. Each RLP gets its initial state from the 
MLE JOIN data structure. The ILP sets up the MLE JOIN data structure and loads its 
physical address in the TXT.MLE.JOIN register prior to executing GETSEC[WAKEUP]. 
Generally the RLP initialization code will be very similar to the ILP initialization code. 

If the MLE restores any state from the environment of the launching system software 
then it must first validate this state before committing it.  This is because state from 
the environment prior to the GETSEC[SENTER] instruction is not considered 
trustworthy and could lead to loss of MLE integrity. 

Lines 1 – 8: The MLE loads CR3 with the MLE page directory physical address and 
enables paging. The SINIT AC module has just transferred control to the MLE with 
paging off, now the MLE must setup its own environment. The MLE’s GDT is loaded at 
line 3 and the MLE does a far jump to load the correct MLE CS and cause a fetch of 
the MLE descriptor from the GDT. At line 5 a stack is setup for the MLE initialization 
routine and, at line 6, the MLE segment registers are loaded. Next the MLE loads its 
IDT and initializes the exception handlers. 

All of the instructions and data that are used before paging is enabled must reside on 
the same physical page as the MLE entry point and must access data with relative 
addressing.  This is because the page tables may have been subverted by untrusted 
code prior to launch and so the MLE entry point’s page may have been copied to a 
different physical address than the original.  The MLE must also verify that this page is 
identity mapped prior to enabling paging (to ensure that the linear address of the 
instruction following enabling of paging is the same as its physical address). 

If the MLE cannot guarantee that it was loaded at a fixed address, then it must create 
the identity mapping dynamically.  Because the physical address of the identity page 
could overlap with the virtual address range that the MLE wants to use in its page 
tables, the MLE may need to create a trampoline page table.  In such a case, the 
trampoline page table would consist of an identity-mapped page for the physical 
address of the MLE entry point and a virtual address mapping of that page which is 
guaranteed not to be within the desired address range (i.e. a trampoline page). That 
virtual address mapping would also need to be added to the page table that the MLE 
ultimately wants to run on. In this way the MLE can enable paging to the trampoline 
page table (at the identity mapped address) and then jump to the trampoline page’s 
address and then switch page tables (CR3’s) to the final table where it will begin 
executing at the virtual address of the trampoline page but in the final page table. 

If the MLE does not enable paging then it must also validate that the physical 
addresses specified in the page table used for the launch are the expected ones.  And 
as above, it must do this in code that resides on the same physical page as the MLE 
entry point and uses only relative addressing.  The reason for this validation is that 
the page table could have been altered to place the MLE pages at different physical 
addresses than expected, without having altered the MLE measurement. 

Because the MLE page table that was used for measurement does not contain pages 
other than those belonging to the MLE, if it wishes to continue to run in a paged 
environment it will need to either extend the page tables to map the additional 
address space needed (e.g. TXT configuration space, etc.) or to create new page 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    33 

tables.  This should be done after it has finished establishing a safe environment.  The 
cacheability requirements for the address space of any MLE-established page tables 
must follow the guidelines below. 

Line 9: The MLE checks the MTRRs which were saved in the OsMleData area of the 
Intel TXT Heap (see  Appendix C). It looks for overlapping regions with invalid memory 
type combinations and variable MTRRs describing non-contiguous memory regions. If 
either of these checks fails the MLE should fail the measured launch or correct the 
failure. 

Before the original MTRRs are restored, the MLE must ensure that all its own pages 
will be mapped with defined memory types once the variable MTRRs are enabled. The 
MLE must ensure that the combined memory type as specified by the page table entry 
and variable MTRRs results in a defined memory type. 

The MLE must also ensure that the TXT Device Space (0xFED20000 – 0xFED4FFFF) is 
mapped as UC so that accesses to these addresses will be properly handled by the 
chipset. 

Line 10: The MLE should check that the system memory map that it will use is 
consistent with the memory regions and types as specified in the Memory Descriptor 
Records (MDRs) returned in the SinitMleData structure.  Alternately, the MLE may use 
this table as its map of system memory.  This check is necessary as the system 
memory map is most likely generated by untrusted software and so could contain 
regions that, if used for trusted code or secrets, might lead to compromise of that 
data. If the MLE will be using PCI Express* devices, it should verify that it is accessing 
their configuration space through the address range specified by the PCIE MDR type 
(3). 

Line 11:  The MLE should also verify that the Intel VT-d PMR settings that were used 
by SINIT to program the Intel VT-d engines, as specified in the OsSinitData structure, 
contain the expected values.  While the MLE can only be launched if the settings cover 
itself and its page tables (or the pages fall within the DPR), settings beyond these 
regions could have been subverted by untrusted code prior to the launch. 

Lines 12 – 16: If this is the ILP then the MLE does the one-time initialization, builds 
the MLE JOIN data structure and wakes the RLPs. This structure contains the physical 
addresses of the MLE entry point and the MLE GDT, along with the MLE GDT size. The 
ILP writes the physical address of this structure to the TXT.MLE.JOIN register. An RLP 
will read the startup information from the MLE JOIN data structure when it is 
awakened. The MLE writer should ensure that the MLE JOIN data structure does not 
cross a page boundary between two non-contiguous pages. The MLE image must be 
built or loaded such that its GDT is located on a single page. Enough of the RLP entry 
point code must be on a single page to allow the RLPs to enable paging. 

Lines 17 – 26: The MLE must look at the OsSinitData.Capabilities field to see which 
RLP wakeup mechanism was chosen by the pre-SENTER code and thus used by SINIT.  
If the MLE wants to enforce that certain capabilities or wakeup mechanism was used 
then it can choose to error if it finds that not to be the case.  For future compatibility, 
MLEs should support both RLP wakeup mechanisms. 

Line 29: The MLE checks several items to ensure they are consistent across all 
processors: 

 All processors must have consistent SMM Monitor Control MSR settings. The 
processors must all be opt-in and have the same MSEG region or the processors 



Measured Launched Environment 
 
 
 

34   Intel® TXT Software Development Guide  

must be all opt-out. The MLE must also check that the MSEG region in the SMM 
Monitor Control MSR matches what is contained in the TXT.MSEG.BASE register. 

 Ensure all processors have compatible VMX features. The compatible VMX features 
will depend on the specific MLE implementation. For example, some 
implementation may require all processors support Virtual Interrupt Pending. 

 Ensure all processors have compatible feature sets. Some MLE implementations 
may depend on certain feature being available on all processors. For example, 
some MLE implementation may depend on all processors supporting SSE2.  Or if 
the MLE will use VMX then it should verify the settings in the 
IA32_FEATURE_CONTROL MSR. 

 Ensure all processors have a valid microcode patch loaded or all processors have 
the same microcode patch loaded. This check will depend on the specific MLE 
implementation. Some MLE implementations may require the same patch be 
loaded on all processors, other MLE implementations may contain a microcode 
patch revocation list and require all processors have a microcode patch loaded 
which is not on the revocation list. 

Line 30: The MLE must wakeup the RLPs while the memory type for the SINIT AC 
module region is writeback.  This is a requirement of the MONITOR mechanism for RLP 
wakeup. Since this is not guaranteed to be true of the original MTRRs, it is safest to 
wait until after the RLPs have been awakened before restoring the MTRRs to their pre-
SENTER values.  Alternatively, the MLE could ensure that this is the case and adjust 
the MTRRs if it is not.  It could then restore the MTRRs before waking the RLPs.  In 
either case, when restoring the MTRRs they should be made the same for each 
processor. 

Line 31: The MLE should restore the IA32_MISC_ENABLE MSR to the value saved in 
the OsMleData structure.  This MSR was set to predefined values as part of SENTER in 
order to provide a more consistent environment to the authenticated code module.  
Most MLEs should be able to safely restore the previous value without any need to 
verify it.  The MLE should wait until the RLPs are awakened before restoring the MSR 
in case the original MSR did not have the Enable MONITOR FSM bit (18) set. 

Line 32: The MLE enables VMX in the CR4 register. This is required before any VMX 
instruction can be executed. 

Line 33: The MLE allocates and sets up the root controlling VMCS then executes 
VMXON, enabling VMX root operation. 

Lines 34 – 38: The MLE sets up the guest VM. At line 34 the MLE allocates memory for 
the guest VMCS. This memory must be 4K byte aligned. The MLE executes VMCLEAR 
with a pointer to this VMCS in order to mark this VMCS clear and allow a VMLAUNCH 
of the guest VM. At line 36 the MLE executes VMPTRLD so that it can initialize the 
VMCS at line 37. Now at line 38 the guest VM is launched for the first time.  

Note: On the last extend of the TPM by the SINIT AC module, it may not wait to see if 
the command is complete – so the MLE needs to make sure that the TPM is ready 
before using it. 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    35 

Listing 7: MLE Initialization Pseudocode 

// 
// MLE entry point – ILP and RLP(s) enter here 
// 

 
1. Load CR3 with MLE page table pointer (OsSinitData.MLE 

PageTableBase); 
2. Enable paging; 
3. Load the GDTR with the linear address of MLE GDT; 
4. Long jump to force reload the new CS; 
5. Load MLE SS, ESP; 
6. Load MLE DS, ES, FS, GS; 

 
7. Load the IDTR with the linear address of MLE IDT; 
8. Initialize exception handlers;  

 
// 
// Validate state 
// 
9. Check MTRR settings from OsMleData area; 
10.Validate system memory map against MDRs 
11.Validate VT-d PMR settings against expected values 

 
// 
// Wake RLPs 
// 
12.IF (ILP) { 
13.    Initialize memory protection and other data structures; 
14.    Build JOIN structure; 
15.    TXT.MLE.JOIN = physical address of JOIN structure; 
16.    IF (RLP exist) { 
17.        IF (OsSinitData.Capabilities is set to MONITOR 

wakeup mechanism) { 
18.            SinitMleData.RlpWakeupAddr = 1; 
19.        } 
20.        ELSE IF (OsSinitData.Capabilities is set to GETSEC 

wakeup mechanism) { 
21.            GETSEC[WAKEUP]; 
22.        } 
23.        ELSE { 
24.            Fail: Unknown RLP wakeup mechanism; 
25.        } 
26.    } 
27.} 

 
28.Wait for all processors to reach this point; 
29.Do consistency checks across processors; 
30.Restore MTRR settings on all processors; 
31.Restore IA32_MISC_ENABLE MSR from OsMleData 

 
 

// 
// Enable VMX 



Measured Launched Environment 
 
 
 

36   Intel® TXT Software Development Guide  

// 
32.CR4.VMXE = 1;  

 
// 
// Start VMX operation 
// 
33.Allocate and setup the root controlling VMCS, execute 

VMXON(root controlling VMCS);  
 

// 
// Set up the guest container 
// 
34.Allocate memory for and setup guest VMCS; 
35.VMCLEAR guest VMCS; 
36.VMPTRLD guest VMCS; 
37.Initialize guest VMCS from OsMleData area; 
 
// 
// All processors launch back into guest 
//  
38.VMLAUNCH guest; 

2.4 MLE Operation 

The dispatch routine is responsible for handling all VMExits from the guest. The guest 
VMExits are caused by various situations, operations or events occurring in the guest. 
The dispatch routine must handle each VMExit appropriately to maintain the measured 
environment. In addition, the dispatch routine may need to save and restore some of 
processor state not automatically saved or restored during VM transitions. The MLE 
must also ensure that it has an accurate view of the address space and that it restricts 
access to certain of the memory regions that the GETSEC[SENTER] process will have 
enabled. The following subsections describe various key components of the MLE 
dispatch routine.  

2.4.1 Address Space Correctness 

It is likely that most MLEs will rely on the e820 memory map to determine which 
regions of the address space are physical RAM and which of those are usable (e.g. not 
reserved by BIOS). However, as this table is created by BIOS it is not protected from 
tampering prior to a measured launch. An MLE, therefore, cannot rely on it to contain 
an accurate view of physical memory. 

After a measured launch, SINIT will provide the MLE with an accurate list of the actual 
RAM regions as part of the SinitMleData structure of the Intel TXT Heap (see section 
C.4). The SinitMDR field of this data structure specifies the regions of physical 
memory that are valid for use by the MLE. This data structure can also be used to 
accurately determine SMRAM and PCIe extended configuration space, if the MLE 
handles these specifically. 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    37 

2.4.2 Address Space Integrity 

There are several regions of the address space (both physical RAM and Intel TXT 
chipset regions) that have special uses for Intel TXT. Some of these should be 
reserved for the MLE and some can be exposed to one or more guests/VMs. 

2.4.3 Physical RAM Regions 

There are two regions of physical RAM that are used by Intel TXT and are reserved by 
BIOS prior to the MLE launch. These are the SINIT AC module region and the Intel 
TXT Heap. Each region’s base address and size are specified by Intel TXT configuration 
registers (e.g. TXT.SINIT.BASE and TXT.SINIT.SIZE). 

The SINIT and Intel TXT Heap regions are only required for measured launch and may 
be used for other purposes afterwards. However, if the measured environment must 
be re-launched (e.g. after resuming from the S3 state), the MLE may wish to reserve 
and protect these regions. 

2.4.4 Intel® Trusted Execution Technology Chipset Regions 

There are two Intel TXT chipset regions:  Intel TXT configuration register space and 
Intel TXT Device Space. These regions are described in Appendix B.  

2.4.4.1 Intel® Trusted Execution Technology Configuration Space 

The configuration register space is divided into public and private regions. The public 
region generally provides read only access to configuration registers and the MLE may 
choose to allow access to this region by guests. The private region allows write 
access, including to the various command registers. This region should be reserved to 
the MLE to ensure proper operation of the measured environment. 

2.4.4.2 Intel® Trusted Execution Technology Device Space 

The Intel TXT Device Space supports access to TPM localities. Localities three and four 
are not usable by the MLE even after the measured environment has been established, 
and so do not need any special treatment. Locality two is unlocked when the Intel TXT 
private configuration space is opened during the launch process. Locality one is not 
usable unless it has been explicitly unlocked (via the TXT.CMD.OPEN.LOCALITY1 
command). If the MLE wants to reserve access to locality two for itself then it needs to 
ensure that guest/VM access to these regions behaves as an LPC abort, as defined by 
TCG for non-accessible localities.  This behavior is that memory reads return FFh and 
writes are discarded.  The MLE can provide this behavior by trapping guest/VM 
accesses to the regions and emulating the defined behavior.  Instead, it could map 
these regions onto one of the hardware-reserved localities (three or four) and let the 
hardware provide the defined behavior.  If the MLE does not need access to locality 2 
then it can simply close this locality (TXT.CMD.CLOSE.LOCALITY2) so that neither 
itself nor guests will have access to it. 

 



Measured Launched Environment 
 
 
 

38   Intel® TXT Software Development Guide  

2.4.5 Protecting Secrets 

If there will be data in memory whose confidentiality must be maintained, then the 
MLE should set the Intel TXT secrets flag so that the Intel TXT hardware will maintain 
protections even if the measured environment is lost before performing a shutdown 
(e.g. hardware reset). This can be done by writing to the TXT.CMD.SECRETS 
configuration register. The teardown process will clear this flag once it has scrubbed 
memory and removed any confidential data. 

2.4.6 Machine Specific Register Handling 

Model Specific Registers (MSRs) pose challenges for a measured environment. Certain 
MSRs may directly leak information from one guest to another. For example, the 
Extended Machine Check State registers may contain secrets at the time a machine 
check is taken. Other MSRs might be used to indirectly probe trusted code. The 
Performance Counter MSRs, for example, could be used by the non-trusted guest to 
determine secrets (e.g. keys) used by the trusted code. Other MSRs can modify the 
MLE’s operation and destroy the integrity of the measured environment. 

The VMX architecture allows the MLE to trap all guest MSR accesses. Certain VMX 
implementations will also allow the MLE to use a bitmap to selectively trap MSR 
accesses. The MLE must use these VMX features to check certain guest MSR accesses, 
ensuring that no secrets are leaked and that MLE operation is not compromised.  

An MLE might virtualize some of the MSRs. The VMX architecture provides a 
mechanism to automatically save selected guest MSRs and load selected MLE MSRs on 
VMEXIT. Selected guest MSRs may be automatically loaded on VMENTER. These 
features allow the MLE to virtualize MSRs, keeping a separate MSR copy for the guest 
and MLE. Note that using this feature will slow VMEXIT and VMENTER times. The VMX 
architecture provides a separate set of VMCS registers for the automatic saving and 
restoring of the fast system call MSRs. 

There is a limit to the number of MSRs which can be swapped during a VMX transition. 
Bits 27:25 of the VMX_BASE_MSR+5 indicate the recommended maximum number of 
MSRs that can be saved or loaded in VMX transition MSR-load or MSR-store lists. 
Specifically, if the value of these bits is N, then 512 * (N + 1) is the recommended 
maximum number of MSRs referenced in each list. If the limit is exceeded, undefined 
processor behavior may result (including a machine check during the VMX transition). 

There are certain MSRs which cannot be included in the MSR-load or MSR-store lists. 
In the initial VMX implementations, IA32_BIOS_UPDT_TRIG and IA32_BIOS-SIGN_ID 
may not be loaded as part of a VM-Entry or VM-Exit. The list of MSRs that cannot be 
loaded in VMX transitions is implementation specific. 

The MLE must contain a built-in policy for handling guest MSR accesses. This MSR 
handling policy must deal with all architectural MSRs that might be accessed by guest 
code. The built-in MSR policy must deny access to all non-architectural MSRs.  



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    39 

2.4.7 Interrupts and Exceptions 

To preserve the integrity of the measured environment, the MLE must be careful in 
how it handles exceptions and interrupts. It needs to ensure that its IDT has a handler 
for all exceptions and interrupts.  The MLE should also ensure that if it uses interrupts 
for internal signaling that it does so securely.  Likewise, it is best if exception handlers 
do not try and recover from the exception but instead properly terminate the 
environment. 

2.4.8 ACPI Power Management Support 

Certain ACPI power state transitions may remove or cause failure to the Intel TXT 
protections. The MLE must control such ACPI power state transitions. The following 
sections describe the various ACPI power state transitions and how the MLE must deal 
with these state transitions. 

2.4.8.1 T-state Transitions 

T-states allow reduced processor core temperature through software-controlled clock 
modulation. T-state transitions do not affect the Intel TXT protections, so the MLE 
does not need to control T-state transitions. The MLE may wish to control T-state 
transitions for other purposes, e.g. to enforce its own power management or 
performance policies. 

2.4.8.2 P-State Transitions 

P-state transitions allow software to change processor operating voltage and 
frequency to improve processor utilization and reduce processor power consumption. 
These P-state transitions require special MLE treatment to ensure software does not 
write an invalid combination into the GV3 MSRs. 

2.4.8.3 C-State Transitions 

C-states allow the processor to enter lower power state. The C0 state is the only C-
state where the processor is actually executing code – in the remaining C-states the 
processor enters a lower power state and does not execute code. In these lower power 
C-states the Intel TXT protections remain intact; therefore the MLE does not need to 
monitor or control the C-state transitions. The MLE may wish to control C-state 
transitions for other purposes, e.g. to enforce its own power management or 
scheduling policy. 

2.4.8.4 S-State Transitions 

The S0 state is the system working state – the remaining S-states are low-power, 
system-wide sleep states. Software transitions from the S0 working state to the other 
S-states by writing to the PM1 control register (PM1_CNT) in the chipset. Since the 
Intel TXT protections are removed when the system enters the S3, S4 or S5 states, 
and the BIOS will gain control of the system on resume from these states, the MLE 
must remove secrets from memory before allowing the system to enter one of these 



Measured Launched Environment 
 
 
 

40   Intel® TXT Software Development Guide  

sleeps states. Note that entering S1 does not remove Intel TXT protections and Intel 
chipsets do not support the S2 sleep state. 

The Intel TXT chipset provides hardware to detect when the software attempts to 
enter a sleep state while the secrets flag is set (the TXT.SECRETS.STS bit of the 
TXT.E2STS register). The Intel TXT chipset will reset the system if it detects a write to 
the PM1_CNT register that will force the system into S3, S4 or S5 while the secrets 
flag is set. If the Intel TXT chipset does detect this situation and resets the system, 
then the BIOS AC module will scrub the memory before passing control to the BIOS. 
To avoid this reset and scrubbing process the MLE should remove secrets from 
memory and teardown the Intel TXT environment before allowing a transition to S3, 
S4 or S5.  

Before tearing down the Intel TXT environment, the MLE may remove secrets from 
memory (clearing pages with secrets) or encrypt secrets for later use (e.g. for a later 
measured environment launch). Once this operation is complete the MLE must issue 
the TXT.CMD.NO-SECRETS command to clear the secrets flag. After this command is 
issued, the MLE may allow a transition to a S3, S4 or S5 sleep state. The MLE 
teardown procedure is described in more detail in Section  2.5 

2.4.8.4.1 S3 

The S3 state provides special challenges for the MLE because the resume process uses 
the in-memory state from when S3 was entered.  This means that unlike a normal 
boot process where trust is established as each component launches, the trust that 
existed at entry to S3 must be maintained/verified on resume. 

Since the TXT environment must be torn down before entering S3, it will have to be 
re-established on resume. This part of the S3 resume process is nearly identical to the 
original launch.  Because S3 resume should leave the platform in the same state as 
before S3 was entered, the PCRs should also have the same values. This means that 
the MLE launched on resume should be the same as the initial one launched, which 
means that the code/data being measured cannot include any state from before 
entering S3.  If some state from before entering S3 is needed on resume, then it must 
be validated post-launch (since it is not being measured). 

The MLE needs to ensure that the integrity of the TCB will be maintained across the 
transition. There are two possible sources for loss of integrity across S3:  malicious 
DMA and compromise of the in-memory BIOS image. The initial, pre-S3 TXT launch 
process protects against DMA and so the S3 resume process should maintain such 
protection. Most BIOSes will execute portions of their S3 resume code from their in-
memory image without first re-copying it from flash. Since this in-memory image 
could have been modified by any privileged software or firmware that executed as 
part of the original, pre-S3 boot process (e.g. option ROMs, bootloader, etc.), this too 
needs to be defended against. 

The TXT launch process done as part of S3 resume ensures integrity and DMA 
protection for the measured part of the MLE itself. For the remainder of the TCB this 
can be accomplished by creating a memory integrity code for the TCB and sealing it to 
the MLE’s launch-time measurements just before the TXT protections are removed 
prior to entering S3 (the sealed data creation attributes should include a locality that 
is only available to the TCB). On resume and after a successful launch, the MLE can 
re-calculate the value for the memory image and compare it with the sealed value to 
determine if the memory image has been compromised). 



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    41 

If there were additional measurements extended to the DRTM PCRs as part of the 
original boot process, these will need to be re-established since these PCRs are 
cleared when the MLE is re-launched. The entity that makes the measurements should 
seal the measurement values (not the resulting PCR values) to the PCRs values in 
effect just before it extends the measurements into the PCRs (the sealed data creation 
attributes should include a locality that is only available to software trusted by the 
entity). On resume from S3, when that entity is resumed it will unseal the values and 
re-extend them into the appropriate PCRs. 

It may be necessary for the MLE to seal additional information that is required to 
securely re-establish the trusted environment.  For instance, the portion of the TCB 
needed to re-establish final DMA protections (e.g. with VT-d DMA remapping) will 
need to be DMA protected by the MLE as part of the post-resume launch. The MLE 
may need to save the bounds of this region prior to entering S3 (both in plain text and 
sealed).  It would then use the plain text saved bounds to determine the PMR values 
to specify as part of the re-launch.  Post-launch the MLE would unseal the bounds 
information and verify it against the bounds specified in the launch. 

Because the boot process on resuming from an S3 state does not re-measure the 
elements of the SRTM, software prior to entering the S3 state must execute the 
TPM_SaveState command to inform the TPM to preserve the state of its PCRs.  Upon 
resume from S3, the BIOS must provide a flag to TPM_Startup to indicate that the 
TPM is to restore the saved state.  If the TPM’s state is not saved prior to entering S3, 
then the TPM will be non-functional after resuming.  Normally an OS TPM driver would 
perform the TPM_SaveState command when the OS indicated that it was entering S3.  
However, if the MLE cannot be sure that the environment it establishes will perform 
this command, it may wish to do so itself prior to entering S3.  If the MLE alters the 
TPM state (e.g. extending to PCRs, etc.) after TPM_SaveState has been performed 
then the TPM may invalidate the previously saved state. In such cases, the MLE must 
also perform this command and it should be the last TPM command that is executed, 
in order to ensure that the state is not changed afterwards. There is no harm if this 
command is executed multiple times prior to S3. 

2.5 MLE Teardown 

This section describes an orderly measured environment teardown. This occurs when 
the guest OS or the MLE decides to teardown the measured environment (for example 
prior to entering an ACPI sleep state such as S3). The listing below shows the 
pseudocode for teardown of the measured environment. 

Line 1: Rendezvous all processors at “exiting Intel TXT environment” point in guest. 
No need for the guests to save their state as their state will be stored in a VMCS on 
VMEXIT to the monitor. 

Lines 2 and 3: After all processors in the guest rendezvous, all processors execute a 
VMCALL to the teardown routine in the MLE. Once in the MLE, each processor 
increments a counter in trusted memory. All processors except the BSP/ILP (the 
processor with IA32_APIC_BASE MSR.BSP=1) wait on a memory barrier. The ILP 
waits for all other processors to enter MLE teardown routine then signals the other 
processors to resume with teardown. 

If not all processors reach the rendezvous in the guest, the ILP may timeout and 
VMCALL to the MLE teardown routine. If not all processors arrive in the MLE teardown 
routine, the ILP forces all other processors into the MLE with an NMI IPI. Both these 



Measured Launched Environment 
 
 
 

42   Intel® TXT Software Development Guide  

conditions are treated as errors – the ILP should proceed with the measured 
environment teardown but log an error.  

At line 4, each processor reads all guest state from its VMCS and stores this data in 
memory, since after VMXOFF the processors will no longer be able to access data in 
their VMCS. This state will be needed to restore the guest execution after teardown. 

The MLE automatically saves certain guest state (general purpose registers which are 
not part of the VMCS guest area) on VM Exit. The MLE may need to restore this state 
when it reenters the guest after the GETSEC[SEXIT].  

Line 5: Once all processors are in the MLE and have saved guest state from the VMCS, 
all processors clear their appropriate registers to remove secrets from these registers. 

Lines 6: All processors flush VMCS contents to memory using VMCLEAR. The MLE 
must flush any VMCS which might contain secrets – this would include all guest 
VMCSes in a multi-VM environment.  

Line 7: The processors wait until all processors have reached this point before 
resuming execution. This allows all the VMCS flushes to complete before the ILP 
encrypts or scrubs secrets. Processors should execute an SFENCE to ensure all writes 
are completed before continuing. 

Line 9: The ILP encrypts and stores exposed secrets from all trusted VMs. Note that 
encrypted secrets will have to be stored in memory until the OS can put them to disk. 
This will require extra memory above and beyond the memory holding secrets. This 
step assumes that the RLPs do not have secrets that are not visible to the ILP. 
Therefore when the ILP scrubs/encrypts all secrets, this will deal with secrets in the 
RLP caches also. 

Line 10: The ILP again clears appropriate registers to remove any secrets from those 
registers.  

Line 11: The ILP scrubs all trusted memory (except the teardown routine itself and 
encrypted memory). Note that the scrub itself clears secrets still held in the cache.  

Line 12: The ILP executes WBINVD to invalidate its caches (to ensure last few pages 
of zeros actually get to memory).  

Lines 13 - 16: If the MLE is going to enter the S3 state, the ILP calculates a memory 
integrity code and seals it. 

Line 17: The ILP caps, or extends, the dynamic PCRs with some value. This prevents 
an attacker from unsealing the secrets after the teardown using the same PCRs, since 
the dynamic PCRs are not reset after GETSEC[SEXIT]. 

Line 18: The ILP writes the NoSecrets in memory command. (TXT.CMD.NO-SECRETS)  

Line 19: The ILP should unlock the system memory configuration (TXT.CMD.UNLOCK-
MEM-CONFIG) (that was locked by SINIT) once secrets have been removed from 
memory.  This will facilitate re-launching the MLE and may be necessary for a graceful 
shutdown of the system. 

Line 20: The ILP closes Intel TXT private configuration space. 

Line 23: The RLPs wait while the ILP encrypts and scrubs secrets from memory.  



 
Measured Launched Environment 
 
 

Intel® TXT Software Development Guide    43 

Line 25: Each processor then disables processor virtualization. If an STM was launched 
then it must be torn down before VMX is disabled. See section 25.15.7 of the Intel 64 
and IA-32 Software Developer Manual, Volume 3B for more information. 

Lines 26 - 31: The RLPs wait on a memory barrier while the ILP executes the 
GETSEC[SEXIT] instruction to initiate the teardown of SMX operation.  

At end of GETSEC[SEXIT], the ILP simply continues to the next instruction (still 
running in monitor’s context – paging on). The ILP signals the RLPs to continue.  

Lines 32 and 33: The former monitor code now restores guest state left behind when 
the guest executed the VMCALL to enter the MLE teardown routine. All processors 
perform the transition to guest OS, now operating as normal environment rather than 
guest.  

The guest MSRs must be restored when restarting the guest OS. The MLE can restore 
the MSRs with information in the VMCS (VM-exit MSR store count) and the VM-exit 
MSR store area, or the guest OS could save important MSR settings before calling the 
teardown routine and restore its own MSR settings after resuming after teardown. 

If the MLE is going to return control to a designated guest after tearing down then the 
MLE must ensure that no interrupts are left pending or unserviced before returning 
control to the designated guest. Any interrupts left pending or unserviced may prevent 
further interrupt servicing once the designated guest is restarted. 

Listing 8. Measured Environment Teardown Pseudocode 

1. Rendezvous processors in guest OS; 
2. All processors VMCALL teardown in MLE; 
3. Rendezvous all processors in MLE teardown routine; 
4. All processors read guest state from VMCS, store values in 

memory; 
 

// 
// Remove and encrypt all secrets from registers and memory 
// 
5. All processors clear their appropriate registers; 
6. All processors flush VMCS contents to memory using VMCLEAR; 
7. Wait for all processors to reach this point; 
8. IF (ILP) { 
9.    Encrypt and store secrets in memory; 
10.   Again clear appropriate registers to remove secrets; 
11.   Scrub all trusted memory; 
12.   WBINVD caches; 
13.   IF (S3) { 
14.      Create memory integrity code 
15.      Seal memory integrity code 
16.   } 
17.   “cap” dynamic TPM PCRs; 
18.   Write to TXT.CMD.NO-SECRETS; 
19.   Unlock memory configuration 
20.   Close private Intel TXT configuration space; 
21.   Signal RLPs that scrub is complete; 
22.} ELSE { // RLP 
23.   Wait for ILP to signal completion of memory scrub; 
24.} 



Measured Launched Environment 
 
 
 

44   Intel® TXT Software Development Guide  

 
// 
// Stop VMX operation 
// 
25.VMXOFF; 
 
 
// 
// RLPs wait while ILP executes SEXIT 
// 
26.IF (ILP) { 
27.   GETSEC[SEXIT]; 
28.   signal completion of SEXIT; 
29.} ELSE { 
30.   wait for ILP to signal completion of SEXIT; 
31.} 

 
// 
// Transition back to the guest OS 
// 
 
32.Restore guest OS state from device memory; 
33.Transition back to guest OS context; 

 

2.6 Other Considerations 

2.6.1 Saving MSR State across a Measured Launch 

Execution of the GETSEC[SENTER] instruction loads certain MSRs with pre-defined 
values. For example, GETSEC[SENTER] will load IA32_DEBUGCTL MSR with 0H and 
will load the GV3 MSR with a predetermined value. The software can deal with this in 
several different ways. The launching software may save the state of these MSRs 
before measured launch and restore the state after the launch returns. In this case 
the MLE will need to check the values that are restored. Another approach is to have 
the launch software save the desired state and have the MLE restore the values before 
resuming the guest. The software could also leave these MSRs in the state established 
by GETSEC[SENTER]. 

The IA32_MISC_ENABLE MSR should be saved and restored around measured launch 
and teardown. 



 
Verifying Measured Launched Environments 
 
 

Intel® TXT Software Development Guide    45 

3 Verifying Measured Launched 
Environments 

Launch Control Policy (LCP) is the verification mechanism for the Intel TXT verified 
launch process. LCP is used determine whether the current platform configuration or 
the environment to be launched meets a specified criteria. Policies may be defined by 
the Platform Owner, and/or, as a default set by the Platform Supplier. 

The policy described in this section applies to TXT-capable platforms produced in 2009 
and later.  A description of the data structures, in a pseudo-code format, can be found 
in  0. 

The policy definition for previous platforms can be found in  Appendix D. 

3.1 Overview 

The Launch Control Policy architecture consists of the following components: 

 LCP Policy Engine – part of the SINIT ACM and enforces the policies stored on 
the platform 

 LCP Policies – stored in the TPM, they specify the policies SINIT ACM will 
enforce.  

 LCP PolicyData objects – referenced by the Policy structures in the TPM; each 
contains a list of valid policy elements, such as measurements of MLEs or 
platform configurations. 

Figure 1. Launch Control Policy Components shows how these components relate to 
each other. The figure also shows that there are two possible policies available on the 
platform: the Platform Supplier policy, as established by the manufacturer, OEM, 
ODM, etc., and the Platform Owner’s policy. 

When the platform boots, its state is measured and recorded by the Static Root of 
Trust for Measurement (SRTM) and the other components which make up the static 
chain of trust; these events occur from when the platform is powered on until the 
Intel TXT measured launch (or until some component breaks the static chain). At this 
point GETSEC[SENTER] is invoked, and control is passed through the authenticated 
code execution area to the SINIT authenticated code module. The LCP engine in SINIT 
reads the LCP Policy Indices in the TPM NV, decides which policy to use, and checks 
the Platform Configuration and the Measured Launched Environment as require by the 
chosen policy. The measured environment is then launched. 

 



Verifying Measured Launched Environments 
 
 
 

46   Intel® TXT Software Development Guide  

Figure 1. Launch Control Policy Components 

Platform Default
LCP_Policy

Platform Owner
LCP_Policy

…

…

TPM PCRs

TPM NV Ram

PD 
LCP_POLICY_DATA

PO
LCP_POLICY_DATA

Static Chain
of Trust MLESINIT(LCP)

Execution Control
Write/Read Operation
Data Reference

 

 

3.1.1 LCP Components 

The description of the policy that the SINIT AC module implements, consists of two 
policies: one policy is set by the Platform Supplier, known as the Platform Supplier 
(PS), and the other belongs to the Platform Owner (PO). Both policies are stored in 
the non-volatile store of the Trusted Platform Module (TPM NV). By storing the policy 
in the TPM NV, access controls can be applied to it; it also enables the policy to persist 
across platform power cycles. 

3.1.1.1 LCP Policy 

The LCP_POLICY structure (for a full listing see section  E.1) is used for both the 
Platform Supplier and the Platform Owner policies. The size of the structure currently 
needs to be kept to a minimum in order to preserve the scarce resources of the TPM 
NV storage, which is why additional structures for both Supplier and Owner policies 
(LCP_POLICY_DATA) that can be persisted elsewhere are provided to handle additional 
information.  



 
Verifying Measured Launched Environments 
 
 

Intel® TXT Software Development Guide    47 

Figure 2. LCP_POLICY Structure 

Version HashAlg PolicyType SINITMinVersion

Reserved

DataRevocationCounters[]

PolicyControl

PolicyHash

 

Figure 2 diagrammatically illustrates the LCP_POLICY structure (fields not to scale):  

Version specifies the version of the LCP_POLICY structure and, implicitly, of the policy 
engine semantics.  It is of the format <major>.<minor> where the major version is 
the MSB of the field and the minor version is the LSB.  All minor versions of a given 
major version will be backwards compatible. If new fields are added they will be at the 
end and the semantics of all previous minor versions are maintained (though they can 
be extended).  Major version are not guaranteed to be backwards compatible with 
each other and so SINIT will fail to launch if it finds a major version that it is not 
compatible with. The version of the LCP_POLICY structure defined here is 2.2 (202H). 

HashAlg identifies the hashing algorithm used for the PolicyHash field. If the algorithm 
type is not supported by ACM processing the policy, then it shall stop processing the 
policy and fail. 

PolicyType indicates whether an additional LCP_POLICY_DATA structure is required.  

 If the PolicyType field is LCP_POLTYPE_ANY then the value in the PolicyHash field 
is ignored and the environment to be launched is simply measured before 
execution control is passed to it. No corresponding LCP_POLICY_DATA is expected. 

 If the PolicyType field is LCP_POLTYPE_LIST then the value of PolicyHash is the 
result of computing a hash over the LCP_POLICY_DATA structure per the rules 
below. 

If the type specified is not supported by the ACM processing the policy then it shall 
stop processing the policy and fail. 

SINITMinVersion specifies the minimum version of SINIT that can be used.  This value 
corresponds to the AcmVersion field in the AC module Information Table (see Table 
6). This value must be less than or equal to the value of AcmVersion in the executing 
SINIT image for that SINIT to continue; otherwise SINIT will fail the launch.  There is 
no revocation mechanism for other (than SINIT) ACMs.  If there is a 
LCP_MLE_ELEMENT element in a policy then the SINITMinVersion in that element will 
be combined with the value in the LCP_POLICY, per the description in section  E.4.1.  If 
there is no LCP_MLE_ELEMENT element in the policy then the value in the LCP_POLICY 
will be used. 



Verifying Measured Launched Environments 
 
 
 

48   Intel® TXT Software Development Guide  

The DataRevocationCounters field specifies, for each LCP_POLICY_LIST, the minimum 
counter value, from the RevocationCounter field of that list, which will be accepted.  If 
the value in the RevocationCounter field is less then this value then SINIT will fail the 
launch.  For LCP_POLICY_LISTs that are not signed, the corresponding 
DataRevocationCounters index will be ignored.  For each LCP_POLICY_LIST that is 
signed, it must set the DataRevocationCounters element at the index corresponding to 
its own index in PolicyLists[]. E.g. if PolicyLists[0] is signed, PolicyLists[1] unsigned, 
and PolicyLists[2] signed, then the revocation counter for PolicyLists[0] will be 
DataRevocationCounters[0], the counter for PolicyLists[2] will be 
DataRevocationCounters[2], and DataRevocationCounters[1] will be ignored. Values in 
indices greater than the number of lists will be ignored. 

The PolicyControl field provides a number of control bits which are defined as: 

 Bits31:4 Reserved and should be set to zero 

 Bit 3 Signifies whether an Owner policy is required by SINIT. Setting it to 1 will 
cause SINIT to fail the launch if there is no Platform Owner policy. If there are 
both Supplier and Owner policies, they will be evaluated according to the rules 
below (this bit has no affect on that). This bit will be ignored in the Platform 
Owner policy. 

 Bit 2 Identifies whether the OsSinitData.Capabilities field will be extended into 
PCR 17 (if set to 1 then it will be extended). 

 Bit 1 Identifies whether the platform will allow AC Modules which have been 
marked as pre-production to be used to launch the MLE. If this bit is 0 and a pre-
production AC Module has been invoked, it will cause a TXT reset during 
GETSEC[SENTER]. 
Note: The use of any pre-production AC Module will result in PCRs 17 and 18 
being capped with random values. 

 Bit 0 Is reserved and must be set to 0 

3.1.1.2 PolicyHash Field for LCP_POLTYPE_LIST 

For policies of type LCP_POLTYPE_LIST, the LCP_POLICY_DATA may contain multiple 
lists, some of which are signed and some which are not. In order to realize the value 
of signed policies, PolicyHash can’t be a simple hash over the entire 
LCP_POLICY_DATA or even changes to signed policy lists would cause a change in the 
measurement of the policy. 

The measurement of a policy list depends on whether the list is signed. For a signed 
list (LCP_POLSALG_RSA_PKCS_15), the measurement is the hash (as specified by the 
HashAlg field of the corresponding LCP_POLICY) of the public (verification) key in the 
PubkeyValue member of the Signature field.  For unsigned lists 
(LCP_POLSALG_NONE), the measurement is the hash (also as specified by the 
HashAlg field of the corresponding LCP_POLICY) of the entire list (LCP_POLICY_LIST). 

The value of the PolicyHash field will be the hash of all of the policy list measurements 
concatenated (there is no end padding if the number of lists present is less than 
LCP_MAX_LISTS). For example, if there is only a single list then the value of 
PolicyHash will SHA-1(SHA-1(list)). 



 
Verifying Measured Launched Environments 
 
 

Intel® TXT Software Development Guide    49 

3.1.1.3 LCP Policy Data 

The purpose of the LCP_POLICY_DATA structure is to provide the additional data 
needed to enforce the policy but in a separate entity that doesn’t have to consume 
TPM NV space. A full description of LCP_POLICY_DATA can be found in section  D.6.2. 



Verifying Measured Launched Environments 
 
 
 

50   Intel® TXT Software Development Guide  

Figure 3. LCP_POLICY_DATA Structure 

 



 
Verifying Measured Launched Environments 
 
 

Intel® TXT Software Development Guide    51 

The PolicyLists[] field allows the object to contain a number of lists. A list may be 
either signed or unsigned and can contain any type of LCP_POLICY_ELEMENT 
structures (e.g. for MLE policy, platform configuration policy, etc.). 

3.1.1.4 LCP Policy Element 

Policy elements are the self-describing entities that contain the actual policy 
conditions. Since they are self-describing, policy engines can ignore the elements that 
they don’t understand or support. This allows for adding new element types without 
breaking backwards compatibility. 

Size is the size (in bytes) of the entire LCP_POLICY_ELEMENT structure, including the 
type-specific Data and the Size field itself.  A policy engine can use this to skip over 
an element that it does not understand or support. 

The PolEltControl provides a number of control bits which are divided into two groups 
of 16 bits each, one that is specific to the element type and one that applies to all 
element types and is defined as: 

 Bits31:16 Reserved for element type –specific uses and should set to zero 

 Bits15:1 Reserved and should set to zero 

 Bit 0 If set to 1 specifies that this policy element type in the Owner policy 
unconditionally overrides (i.e. ignores) any policy elements of the same type in 
the Supplier policy (when both policies are present). This Supplier policy element 
type is overridden if this bit is set in any elements of this type in the Owner policy. 
In order to keep the same behavior as that of the previous version of LCP, and to 
ensure that if the Supplier policy is of type LCP_POLTYPE_ANY that the Owner 
policy will have control, the default setting of the bit in Owner policies should be 
1. This bit will be ignored in the Platform Supplier policy. 

The contents of the Data[] field are dependent of the type of the element and are 
described for each type in the subsections of section  E.4. 

3.1.2 Signed Policies 

The purpose of signed policies is to provide a mechanism that allows policy authors to 
update the list of permissible environments without having to update the TPM NV 
(note that if revocation is used that the TPM NV must be updated to increment the 
revocation counter).  This allows updates to be simple file pushes rather than physical 
or remote platform touches.  It also facilitates sealing against the policy, as sealed 
data does not have to be migrated when the policy is updated.  

The use of this mechanism places certain responsibilities on policy authors: 

 The private signature key needs to be kept secure and under the control of the 
key owner at all times. 

 The private signature key needs to be strong enough for the full lifetime of the 
policy [for the Platform Supplier we have estimated up to seven years]. 



Verifying Measured Launched Environments 
 
 
 

52   Intel® TXT Software Development Guide  

3.1.3 Supported Cryptographic Algorithms 

The following algorithms are defined for the current version of the Launch Control 
Policy: 

Hashing – SHA-1 

Signature – RSA PKCS V1.5 

It is the responsibility of the policy author to ensure that their policy uses an 
algorithm supported by the version of the AC module being used.  If the policy 
specifies an unsupported algorithm, the policy will fail and, depending on the ACM 
evaluating the policy, the environment will not be permitted to launch or the processor 
will not boot. 

3.2 Policy Engine Logic 

3.2.1 Policies 

Before evaluating a policy, the policy engine must first verify the policy’s integrity. For 
policy of type LCP_POLTYPE_LIST, the engine must verify each LCP_POLICY_LIST in 
the LCP_POLICY_DATA.  In the case that a list is signed, that means that the 
signature must be verified.  For an unsigned list, the hash of the list must be 
calculated.  The hash of the LCP_POLICY_DATA structure, as calculated per section 
 3.1.1.2 above, is then compared with the hash in the LCP_POLICY that was read from 
the TPM NVRAM. 

The policy engine must scan the policy for each policy element that it supports. When 
a policy contains multiple lists in its LCP_POLICY_DATA, the policy engine will evaluate 
each list sequentially. As soon as it finds a match that satisfies the policy element 
being evaluated (e.g. MLE, platform configuration, etc.) it will stop evaluating further 
elements and lists. 

For a policy of type LCP_POLTYPE_ANY, the policy engine will treat that policy as 
successfully evaluating every policy element type. 

For a policy of type LCP_POLTYPE_LIST, for every policy element type supported by 
the ACM evaluating the policy that is present in any of the lists, at least one instance 
of that element type must evaluate successfully in order for the policy to succeed.  If 
a particular policy element type is not in any of the lists then that condition is not 
evaluated and any state is accepted.  For instance: 

If SINIT is processing a policy that contains two lists, the first containing only an 
LCP_MLE_ELEMENT and the second containing only a LCP_PCONF_ELEMENT, then 
the MLE being launched must appear in the first list’s LCP_MLE_ELEMENT and the 
current platform configuration must satisfy the second list’s 
LCP_PCONF_ELEMENT; otherwise the launch will fail. 

If SINIT is processing a policy that contains two lists, each containing only an 
LCP_MLE_ELEMENT element, then the MLE being launched must appear in at least 
one list’s LCP_MLE_ELEMENT.  Since no other element types are present, any 
other platform condition or state is acceptable (e.g. any PCR values). 



 
Verifying Measured Launched Environments 
 
 

Intel® TXT Software Development Guide    53 

3.2.2 Combining Policies 

When both the Platform Supplier and the Platform Owner have established policies on 
the platform, the two policies are combined to give a resultant policy which the LCP 
policy engine will enforce. 

For every policy element that the policy engine evaluates, the policy engine will 
consider the evaluation successful if either the Supplier or Owner policy evaluates that 
element successfully (evaluated per the rules above), unless any of the Owner policy 
element instances has set bit 0 of the PolEltControl field of its element instance.  If bit 
0 is set then only the Owner policy for that policy element will be evaluated.  This 
permits the Platform Owner to prevent rollback of signed Platform Supplier policies 
and also allows the Platform Owner final control of the platform’s policy.  As such, 
policy engines should evaluate the Owner policy first, if it exists. 

For policy elements that only appear in one policy, that policy will be used. 

If there is no Owner policy then only the Supplier policy is evaluated and it is 
evaluated per the rules of section  3.2.1.  However, the policy engine must permit any 
MLE to launch, regardless of whether it is in the Supplier policy. This is to permit the 
Platform Supplier to include an LCP_MLE_ELEMENT (in order to allow launching of an 
MLE provided by the Platform Supplier even if an Owner policy did not include that 
MLE on its own list) but still permit the Platform Owner to launch any MLE without 
having to provision an Owner policy. This preserves the same Owner-visible behavior 
as the case where the Platform Supplier did not provide an LCP_MLE_ELEMENT. Note 
that all other element types are evaluated as expected. 

The following table shows which policy will be evaluated for all combinations of 
policies and types. This is not the same as which policy is actually executed, since a 
policy may not contain any elements which are understood by the policy engine and 
thus that policy would not actually be executed (same as None). 

 

 No PS PS type 
ANY 

PS type 
LIST 

No PO None1 PS PS2 

PO type 
ANY 

PO PO PO 

PO type 
LIST 

PO PO Both3 

1 If no policy is evaluated then all platform and software configurations are permitted. 
2 Per above, any MLE will be allowed to launch regardless of the Supplier policy. 
3 This is effectively a union of the two policies (caveat bit 0 of PolEltControl). 



Verifying Measured Launched Environments 
 
 
 

54   Intel® TXT Software Development Guide  

3.3 Measuring the Enforced Policy 

The LCP engine in SINIT will extend to PCR 17 a hash value which represents the 
policy(ies) against which the environment was launched. This hash value is 
determined by the rules in the following sections. 

It is important that for all policy cases that a measurement will always be extended to 
PCR 17 in order to prevent the MLE from later extending a value of a policy that was 
not evaluated. This is an issue because PCR 17 is open to locality 2 extends and the 
MLE executes with locality 2 access. If this were not done, such an MLE could get 
access to data which were sealed against some known policy by another MLE. 

As a matter of integrity, the LCP_POLICY::PolicyControl field will always be extended 
into PCR 17. If an Owner policy exists, its PolicyControl field will be extended; 
otherwise the Supplier policy’s will be.  If there are no policies, 32 bits of 0s will be 
extended. 

Other ACMs’ policy engines do not extend to the DRTM PCRs. 

3.3.1 No Policy Data 

When no policy is executed (includes all ACMs per above; there may be Supplier 
and/or Owner policies but none of their policy elements are understood by the ACMs’ 
policy engines or they contain no policy elements), 20 bytes of 0s will be extended to 
PCR 17. 

3.3.2 Allow Any Policy 

If an Owner policy exists and is of type LCP_POLTYPE_ANY, or no Owner policy exists 
and the Supplier policy is of type LCP_POLTYPE_ANY, then 20 bytes of 0s will 
extended to PCR 17. 

3.3.3 Policy with LCP_POLICY_DATA 

Because the measurement may contain the measurements of more than one policy 
list, it is important that the SINIT ACMs for all platforms order the list measurements 
in the same way so that identical policy evaluations will extend PCR 17 with the same 
value. 

The policy engine will order the policy list measurements according to the order in 
which it evaluates policy elements.  For this version of the specification, the following 
policy element types are evaluated in this order:  LCP_POLELT_TYPE_MLE, 
LCP_POLELT_TYPE_PCONF. If additional policy element types are supported in the 
future, their evaluation order will be specified. 

The policy engine will not measure duplicate policy lists, so if the same list is 
evaluated for more than one policy element then it will only be measured the first 
time.  This is the case even if the same signature key is used for multiple lists. 



 
Verifying Measured Launched Environments 
 
 

Intel® TXT Software Development Guide    55 

The value that will be extended to PCR 17 will be the hash of the concatenation of all 
policy list measurements used. 

If an Owner policy exists and is of type LCP_POLTYPE_LIST, no Owner policy exists 
and the Supplier policy is of type LCP_POLTYPE_LIST, or both the Owner and Supplier 
policies exist and are of type LCP_POLTYPE_LIST, then the value extended to PCR 17 
is calculated as described above. 

3.3.4 Force Platform Owner Policy 

Whether the Platform Supplier policy indicates that the Platform Owner policy must be 
present (via bit 3 of its PolicyControl field) or not does not affect the measurement of 
the enforcing policy. The measurement will be calculated as indicated above.  

3.4 Revocation 

3.4.1 SINIT Revocation 

LCP also enables a limited self-revocation mechanism for SINIT. SINIT itself enforces 
this on launch and a failure (i.e. the executing SINIT was revoked) results in a TXT 
reset with an error code stored in the TXT.ERRORCODE register.  The algorithm or 
process that SINIT uses to determine whether it has been revoked is described in text 
on the SINITMinVersion field in section  3.1.1.1. 

3.5 Platform Owner Index 

The Platform Owner policy index is intended to represent the policy defined by the 
owner of the platform, and as such should be provisioned with access control 
permissions that enforce that control over the policy remains with the platform owner. 

The following attribute settings are required: 

Index Value:  0x40000001 

Size:  54 bytes 

Read Locality:  3 (can be others as well) 

Read Auth:  None 

PCR Read:  None 

The simplest access control setting that maintains platform owner control is to set the 
Write Auth to Owner.  However, this also means that updating the policy requires the 
owner authorization.  As the owner authorization can be used for almost all TPM 
management operations, it may be desirable to limit its use. 

Another possibility would be to use a separate authorization just for this index.  That 
would eliminate having to provide the owner authorization just to update the policy. 

If trusted software, running in the context of the MLE or with access to TPM locality 2, 
needs to be able to update the policy, then it would be possible to have no Write Auth 



Verifying Measured Launched Environments 
 
 
 

56   Intel® TXT Software Development Guide  

but set the Write Locality to 2.  This would permit whatever software was able to 
successfully launch to update the policy. 

Note that it is not advisable to use PCR Write controls, since it would mean that the 
specified PCR could not change over time (e.g. if the software measured into it was 
upgraded).  This is because the index attributes cannot be changes once the index is 
created. 



 
Development and Deployment Considerations 
 
 

Intel® TXT Software Development Guide    57 

4 Development and Deployment 
Considerations 

4.1 Launch Control Policy Creation 

Depending on the usage model, it may be desirable to create a Launch Control Policy 
at the time the MLE is built.  This would apply in the cases where only one MLE is 
expected to run on the system.  In such cases, the policy can be pre-created and 
provisioned during the installation of the MLE. 

If multiple MLEs are expected to run on the system, or if there is to be a platform 
configuration policy, then it is likely that the policy will need to be created at the time 
of deployment. 

In either case, it is advisable that the policy should contain an SINITMinVersion value 
that corresponds to the lowest versioned SINIT that is required.  In the case of a 
system that supports multiple MLEs, that would be the lowest AcmVersion of all of the 
SINITs installed.  For a single MLE system, it is simply the AcmVersion of the single 
SINIT installed. Setting the SINITMinVersion value in the policy prevents an attacker 
from substituting an older version of SINIT (if there is one for a given platform) that 
may have security issues. 

4.2 Launch Errors and Remediation 

If there is an error during a measured launch, the platform will be reset and an error 
code left in the TXT.ERRORCODE register.  It is important for MLE vendors to consider 
how their software will handle such errors and allow users or administrators to 
remediate them. 

If an MLE is launched automatically either as part of the boot process or as part of an 
operating system’s launch process, it needs to be able to detect a previous failure in 
order to prevent a continuous cycle of boot failures.  Such failures may occur as part 
of the loading and preparation for the GETSEC[SENTER] instruction or they may occur 
during the processing of that instruction before the MLE is given control. 

In the former case, it is the MLE launching software that is detecting the error 
condition (e.g. a mismatched SINIT ACM, TXT not being enabled, etc.) and that 
software can use whatever mechanism it chooses to persist the error or to handle it at 
that time.  In the latter case, the system will be reset before the MLE launching 
software can handle the error and so that software should be able to detect the error 
in the TXT.ERRORCODE register and take appropriate action. 

The particular remediation action needed will depend on the error itself.  If the MLE 
launch happens early in the boot process, the launching software may need a way of 
booting into a remediation operating system.  If the launch happens within an 



Development and Deployment Considerations 
 
 
 

58   Intel® TXT Software Development Guide  

operating system environment, the software may be able to remediate in that 
environment. 

4.3 Deployment 

4.3.1 LCP Provisioning 

4.3.1.1 TPM Ownership 

Because creation and writing to the Platform Owner policy TPM NV index requires the 
TPM owner authorization credential, the installation program should accommodate 
differing IT policies for how and when TPM ownership is established.  In some 
enterprises, IT may take ownership before a system is deployed to an end user.  In 
others, the TPM may be un-owned until the first application that requires ownership 
establishes it. 

Since the TPM owner authorization credential will be required to modify the Platform 
Owner policy, if the installation program creates the credential it should provide a 
mechanism for securely saving that credential either locally or remotely. 

4.3.1.2 Policy Provisioning 

The Platform Owner policy TPM NV index will need to be created by the MLE 
installation program (or other TPM management software) if does not already exist.  
This can be done with the TPM_NV_DefineSpace command or corresponding higher-
level TPM interface (e.g. via a TCG Software Stack or TSS). 

Once the index has been created, the installation program can write the policy into the 
index using the TPM_NV_WriteValue command or corresponding higher-level TPM 
interface (e.g. via a TCG Software Stack or TSS). 

Because creating and writing to the Platform Owner policy index requires the TPM 
owner authorization credential, care should be taken to protect the credential when it 
is being used and to erase or delete it from memory as soon as it is no longer needed. 

Ideally, policy provisioning would occur in a secure environment or be performed by 
an agent that can be verified as trustworthy.  An example of the former would be on 
an isolated network immediately after receiving the system.  Another would be 
booting from a CD containing provisioning software.  An example of the latter would 
be to use Intel TXT to launch a provisioning MLE or agent that was then attested to by 
a remote entity which could provide the owner authorization credential upon 
successful attestation. 



 
Development and Deployment Considerations 
 
 

Intel® TXT Software Development Guide    59 

4.3.2 SINIT Selection 

Because the SINIT AC module is specific to a chipset, different platforms may have 
different SINIT ACMs.  If an MLE is intended to run on multiple platforms with different 
chipsets, the MLE installation program will need to determine which SINIT ACM to 
install. 

This can be done by comparing the chipset compatibility information in the SINIT 
ACM’s Chipset ID List with the corresponding information for the platform.  This would 
be identical to the process for verifying SINIT ACM compatibility at launch time, as 
described in section  2.2.3.1. 

 



Intel® TXT Execution Technology Authenticated Code Modules 
 
 
 

60   Intel® TXT Software Development Guide  

Appendix A Intel® TXT Execution 
Technology 
Authenticated Code 
Modules 

A.1 Authenticated Code Module Format 

An authenticated code module (AC module) is required to conform to a specific 
format. At the top level the module is composed of three sections: module header, 
internal working scratch space, and user code and data. The module header contains 
critical information necessary for the processor to properly authenticate the entire 
module, including the encrypted signature and RSA based public key. The processor 
also uses other fields of the AC module for initializing the remaining processor state 
after authentication. 

The format of the authenticated-code module is in Table 3. This definition represents 

Revision 0.0 of the AC module header version (defined in the HeaderVersion field). 

Table 3. Authenticated Code Module Format 

Field Offset Size (bytes) Description 

ModuleType 0 4 Module type 

HeaderLen 4 4 Header length (in multiples of four bytes) 
(161 for version 0.0) 

HeaderVersio
n 

8 4 Module format version 

ChipsetID 12 2 Module release identifier 

Flags 14 2 Module-specific flags 

ModuleVendor 16 4 Module vendor identifier 

Date 20 4 Creation date (BCD format: 
year.month.day) 

Size 24 4 Module size (in multiples of four bytes) 

Reserved1 28 4 Reserved for future extensions 

CodeControl 32 4 Authenticated code control flags 

ErrorEntryPoi
nt 

36 4 Error response entry point offset (bytes) 



 
Intel® TXT Execution Technology Authenticated Code Modules 
 
 

Intel® TXT Software Development Guide    61 

Field Offset Size (bytes) Description 

GDTLimit 40 4 GDT limit (defines last byte of GDT) 

GDTBasePtr 44 4 GDT base pointer offset (bytes) 

SegSel 48 4 Segment selector initializer 

EntryPoint 52 4 Authenticated code entry point offset 
(bytes) 

Reserved2 56 64 Reserved for future extensions 

KeySize 120 4 Module public key size less the exponent 
(in multiples of four bytes) 
(64 for version 0.0) 

ScratchSize 124 4 Scratch field size (in multiples of four 
bytes) 
(2 * KeySize + 15 for version 0.0) 

RSAPubKey 128 KeySize * 4 Module public key  

RSAPubExp 384 4 Module public key exponent 

RSASig 388 256 PKCS #1.5 RSA Signature 

End of AC module header 

Scratch 644 ScratchSize * 4 Internal scratch area used during 
initialization (needs to be all 0s) 

User Area 644 + 
ScratchSi
ze*4 

N * 64 User code/data (modulo-64 byte 
increments) 

 

ModuleType 

Indicates the module type. The following module types are defined: 

2 = Chipset authenticated code module. 

Only ModuleType 2 is supported by GETSEC functions SENTER and ENTERACCS. 

HeaderLen 

Length of the authenticated module header specified in 32-bit quantities. The 
header spans the beginning of the module to the end of the signature field. This is 
fixed to 161 for AC module version 0.0. 

HeaderVersion 

Specifies the AC module header version. Major and minor vendor field are 
specified, with bits 15:0 holding the minor value and bits 31:16 holding the major 
value. This should be initialized to zero for header version 0.0. Unsupported 
header versions will be rejected by the processor and result in an abort during 
authentication. 

ChipsetID 

Module-specific chipset identifier. 



Intel® TXT Execution Technology Authenticated Code Modules 
 
 
 

62   Intel® TXT Software Development Guide  

Flags 

Module-specific flags.  The following bits are currently defined: 

Table 4. AC module Flags Description 

Bit position Description 

13:0 Reserved (must be 0) 

14 Production (0) or pre-production flag (1) 

15 Production (0) or debug (1) signed 

ModuleVendor 

Module creator vendor ID. Use the PCI SIG* assignment for vendor IDs to define 
this field. The following vendor ID is currently recognized: 

00008086H = Intel 

Date 

Creation date of the module. Encode this entry in the BCD format as follows: 
year.month.day with two bytes for the year, one byte for the day, and one byte 
for the month. For example, a value of 20040328H indicates module creation on 
March 28, 2004. 

Size 

Total size of module specified in 32-bit quantities. This includes the header, 
scratch area, user code and data. 

Reserved1 

Reserved. This should be initialized to zeros. 

CodeControl 

Authenticated code control word. Defines specific actions or properties for the 
authenticated code module. The following bits are currently defined: 

Table 5. AC module CodeControl Description 

Bit position Description 

0 Valid error entry point defined 

1 Enable error reporting on detection of a snoop hit to a modified line during 
the load of an authenticated code module 

2 Load memory type error in  Authenticated Code Execution Area 

3 Enable error reporting on detection of a snoop hit to a modified line during 
authenticated code execution. If this bit is set, the occurrence of a HITM 
event results in an Intel® Trusted Execution Technology shutdown condition 

31:4 Reserved 

 



 
Intel® TXT Execution Technology Authenticated Code Modules 
 
 

Intel® TXT Software Development Guide    63 

ErrorEntryPoint 

If bit 0 of the CodeControl word is 1, the processor will vector to this location if a 
snoop hit to a modified line was detected during the load of an authenticated code 
module. If bit 0 is 0, then enabled error reporting via bit 1 of a HITM during ACEA 
load will result in an abort of the authentication process and signaling of an Intel® 
Trusted Execution Technology shutdown condition. 

GDTLimit 

Limit of the GDT in bytes, pointed to by GDTBasePtr. This is loaded into the limit 
field of the GDTR upon successful authentication of the code module. 

GDTBasePtr 

Pointer to the GDT base. This is an offset from the authenticated code module 
base address. 

SegSel 

Segment selector for initializing CS, DS, SS, and ES of the processor after 
successful authentication. CS is initialized to SegSel while DS, SS, and ES are 
initialized to SegSel + 8. 

EntryPoint 

Entry point into the authenticated code module. This is an offset from the module 
base address. The processor begins execution from this point after successful 
authentication. 

Reserved2 

Reserved. Should contain zeros. 

 

KeySize 

Defines the width the RSA public key in dwords applied for authentication, less the 
size of the exponent. For version 0.0 of the AC module header, KeySize is fixed to 
64 (a 2048 bit key). The information in this field is intended to support external 
software parsing of an AC module independent of the module version. It is the 
responsibility of the developer to reflect an accurate KeySize. This field is not 
checked for consistency by the processor. 

ScratchSize 

Defines the width of the scratch field size specified in 32-bit quantities. For version 
0.0 of the AC module header, ScratchSize is defined by KeySize * 2 + 15. The 
information in this field is intended to support external software parsing of an AC 
module independent of the module version. It is the responsibility of software to 
reflect an accurate ScratchSize. This field is not checked by the processor. 

RSAPubKey 

Contains a public key plus a fixed 32-bit exponent to be used for decrypting the 
signature of the module. The size of this field is defined by the previously defined 
AC module field, KeySize + 1. 



Intel® TXT Execution Technology Authenticated Code Modules 
 
 
 

64   Intel® TXT Software Development Guide  

RSASig 

The PKCS #1.5 RSA Signature of the module. The RSA Signature signs an area 
that includes the some of the module header and the USER AREA data field (which 
represents the body of the module). Parts of the module header not included are: 
the RSA Signature, public key, and scratch field. 

Scratch 

Used for temporary scratch storage by the processor during authentication. This 
area can be used by the user code during execution for data storage needs.  
 
After successful authentication of an AC module, the first 20 bytes of the scratch 
area (offset bytes 644 - 663) contains the computed hash of the module as 
represented by the encrypted version held in RSASig field. The contents for other 
locations of the scratch field after authentication are undefined and should not be 
relied upon by AC module. 

User Area 

User code and data represented in modulo-64 byte increments. In addition, the 
boundary between data and code should be on at least modulo-1024 byte 
intervals. The user code and data region is allocated from the first byte after the 
end of the Scratch field to the end of the AC module. 

The chipset AC module information table is located at the start of the User Area 
and contains supplementary information that is specific to chipset AC modules.  
The chipset ID list is described in more detail in section  2.2.3.1. 

Table 6. Chipset AC Module Information Table 

Field Offset 
(Bytes) 

Width 
(Bytes) 

Description 

UUID 0x00 0x10 UUID of the Chipset AC module information table 
defined as: 

ULONG UUID0;     // 0x7FC03AAA 

ULONG UUID1;     // 0x18DB46A7 

ULONG UUID2;     // 0x8F69AC2E 

ULONG UUID3;     // 0x5A7F418D 

This UUID is used to identify a file/memory 
image as being a chipset AC module.  

ChipsetACMType 0x10 0x01 Module type (00h = BIOS; 01h = SINIT) 

Version 0x11 0x01 Version of this table. Table versions are always 
backwards compatible.  The highest version 
defined is currently 3. 

Length 0x12 0x02 Length of this table in bytes. 

ChipsetIDList 0x14 0x04 Location of the Intel TXT Chipset ID list used to 
identify Intel TXT chipsets supported by this AC 
Module. This field is an offset in bytes from the 
start of the AC Module.  See Table 7 for details. 



 
Intel® TXT Execution Technology Authenticated Code Modules 
 
 

Intel® TXT Software Development Guide    65 

Field Offset 
(Bytes) 

Width 
(Bytes) 

Description 

OsSinitDataVer 0x18 0x04 Indicates the maximum version number of the OS 
to SINIT data structure that this module supports.  
It is assumed that the module is backward 
compatible with previous versions. 

MinMleHeaderVer 0x1c 0x04 Indicates the minimum version number of the MLE 
Header data structure that this module 
supports/requires.  MLEs with more recent header 
versions are responsible for determining whether 
they can support this version of the ACM. 

Capabilities 0x20 0x04 Bit vector of supported capabilities.  The values 
match those of the Capabilities field in the MLE 
header.  This can be used by an MLE to determine 
whether the ACM is compatible with it and to 
determine any optional capabilities it might 
support. 

AcmVersion 0x24 0x01 Version of this AC Module.  It is compared against 
the SINITMinVersion field in LCP to determine if 
the module is revoked. 

Reserved 0x25 0x03 Reserved 

 

Table 7. Chipset ID List 

Field Offset Width (Bytes) Description 

Count 0 4 Number of entries in the array ChipsetID 

ChipsetID 4 Count * 
sizeof(TXT_ACM
_CHIPSET_ID) 

An array of count entries of the structure 
TXT_ACM_CHIPSET_ID (see next table). 

 

Table 8. TXT_ACM_CHIPSET_ID Format 

Field Offset Width 
(Bytes) 

Description 

Flags 0 4 Set of flags to further describe functions of the 
chipset ID structure. 

Bit Description: 

[0]: RevisionIdMask – if 0, the RevisionId field 
must exactly match the TXT.DIDVID.RID field. If 1, 
the RevisionId field is a bitwise mask that can be 
used to test for any bits set in the TXT.DIDVID.RID 
field. If any bits are set, the RevisionId is a match.  

[31:1]: Reserved for future use. Must be 0. 



Intel® TXT Execution Technology Authenticated Code Modules 
 
 
 

66   Intel® TXT Software Development Guide  

Field Offset Width 
(Bytes) 

Description 

VendorID 4 2 Indicates the chipset vendor this AC Module is 
designed to support. This field is compared against 
the TXT.DIDVID.VID field. 

DeviceID 6 2 Indicates the chipset vendor’s device that this AC 
Module is designed to support. This field is 
compared against the TXT.DIDVID.DID field. 

RevisionID 8 2 Indicates the revision of the chipset vendor’s 
device that this AC module is designed to support. 
This field is used according to the RevisionIdMask 
bit in the Flags field. 

Reserved 10 6 Reserved for future use. 

A.1.1 Memory type cacheability restrictions 

Prior to launching the authenticated execution environment using the GETSEC leaf 
functions ENTERACCS or SENTER, processor MTRRs (Memory Type Range Registers) 
must first be initialized to map out the authenticated RAM addresses as WB (write-
back). Failure to do so may affect the ability for the processor to maintain isolation of 
the loaded authenticated code module. The processor will signal an Intel TXT 
shutdown condition with error code #BadACMMType during the loading of the 
authenticated code module if non-WB memory is detected. 

While physical addresses within the load module must be mapped as WB, the memory 
type for locations outside of the module boundaries must be mapped to one of the 
supported memory types as returned by GETSEC[PARAMETERS] (or UC as default). 
This is required to support inter-operability across SMX capable processor 
implementations. 

A.1.2 Authentication and execution of AC module 

Authentication is performed after loading of the code module into the authenticated 
code execution area. Information from the authenticated code module header is used 
to support the authentication process. The RSAPubKey header field contains a public 
key plus a 32 bit exponent used for decrypting the signature of the authenticated code 
module. The signature is held in encrypted form in the RSASig header field and it 
represents the PKCS #1.5 RSA Signature of the module. The RSA Signature signs an 
area that includes the sum of the module header and the entire USER AREA data field, 
which represents the body of the module. Those parts of the module header not 
included are: the RSA Signature, the public key, and the scratch field. An inconsistent 
authenticated code module format, inconsistent comparison of the public key hash, or 
mismatch of the decrypted signature against the computed hash of the authenticated 
module or a corrupted signature padding value results in an abort of the 
authentication process and signaling of a Intel TXT shutdown condition. As part of the 
authentication step, the processor stores the decrypted signature of the AC module in 
the first 20 bytes of the ‘Scratch’ field of the AC module header. 

After authentication has completed successfully, the private configuration space of the 
Intel TXT-capable chipset is unlocked. At this point, only the authenticated code 



 
Intel® TXT Execution Technology Authenticated Code Modules 
 
 

Intel® TXT Software Development Guide    67 

module or system software executing in authenticated code execution mode is allowed 
to gain access to the restricted chipset state for the purpose of securing the platform.  

The architectural state of the processor is partially initialized from contents held in the 
header of the authenticated code module. The processor GDTR, CS, and DS selectors 
are initialized from fields within the authenticated code module. Since the 
authenticated code module must be relocatable, all address references must be 
relative to the authenticated code module base address in EBX. The processor GDTR 
base value is initialized to the AC module header field GDT BasePtr + module base 
address held in EBX and the GDTR limit is set to the value in the GDT Limit field. The 
CS selector is initialized to the AC module header SegSel field, while the DS selector is 
initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0, 
LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read 
access for CS. The processor begins the authenticated code module execution with the 
EIP set to the AC module header EntryPoint field + module base address (EBX). The 
AC module based fields used for initializing the processor state are checked for 
consistency and any failure results in a shutdown condition. 

 



SMX Interaction with Platform 
 
 
 

68   Intel® TXT Software Development Guide  

Appendix B  SMX Interaction with 
Platform 

B.1 Intel® Trusted Execution Technology 
Configuration Registers 

Intel TXT configuration registers are a subset of chipset registers. These registers are 
mapped into two regions of memory, representing the public and private configuration 
spaces. Registers in the private space can only be accessed after a measured 
environment has been established and before the TXT.CMD.CLOSE-PRIVATE command 
has been issued. The private space registers are mapped to the address range starting 
at FED20000H. The public space registers are mapped to the address range starting at 
FED30000H and are available before, during and after a measured environment 
launch. All registers are defined as 64 bits and return 0’s for the unimplemented bits. 
The offsets in the table are from the start of either the public or private spaces (all 
registers are available within both spaces, though with different permissions). See 
Table 9. 

Table 9. Configuration Registers Relevant to MLE 

Offset Name Description 

000H TXT.STS This is the general status register. This 
read-only register is used by AC modules 
and the MLE to get the status of various 
Intel TXT features.  

Public: RO 

Private: RO 

008H TXT.ESTS This is the error status register which 
contains status information associated 
with various error conditions. The contents 
of this register are preserved across soft 
resets. 

Public: RO 

Private: RW 

030H  TXT.ERRORCODE Holds the Intel TXT shutdown error code. 
The encoding for this is documented in 
Table 14. A system reset does not clear 
the contents of this register.  This was 
formerly labeled the TXT.CRASH register. 

Public: RO 

Private: RW 



 
SMX Interaction with Platform 
 
 

Intel® TXT Software Development Guide    69 

Offset Name Description 

038H TXT.CMD.RESET A write to this register causes a system 
reset. This is performed by the processor 
as part of an Intel TXT shutdown, after 
writing to the TXT.ERRORCODE register. 

Public: - 

Private: WO 

048H TXT.CMD.CLOSE-PRIVATE A write to this register causes the Intel 
TXT-capable chipset private configuration 
space to be locked. Once locked, 
conventional memory read/write 
operations can no longer be used to 
access these registers. 

Public: - 

Private: WO1 

100H TXT.VER.FSBIF This register identifies whether the chipset 
is debug or release fused.  See Table 12 
below for the format. On certain chipsets, 
a 4 byte read to this address will return 
0xFFFF_FFFF. In that case, the MLE should 
read an alternate offset (200H) to capture 
this information. 

Public: RO 

Private: RO 

110H TXT.DIDVID This register contains the vendor, device, 
and revision IDs for the chipset.  See 
Table 13 below for the format. 

Public: RO2 

Private: WO 

200H TXT.VER.EMIF On certain chipsets, a 4 byte read to 
TXT.VER.FSBIF will return 0xFFFF_FFFF. In 
that case, the MLE should read this 
register to determine if the chipset is 
debug or release fused.  See Table 12 
below for the format. 

Public: RO 

Private: RO 

218H TXT.CMD.UNLOCK-MEM-CONFIG When this command is invoked, the 
chipset unlocks all memory configuration 
registers. 

Public: - 

Private: WO1 

                                                     
1 A serializing operation, such as a read of the register, is required after the write to ensure that any future chipset 
operations see the write. 
2 This register is writable from the indicated configuration space until the configuration is locked, 



SMX Interaction with Platform 
 
 
 

70   Intel® TXT Software Development Guide  

Offset Name Description 

270H TXT.SINIT.BASE This register contains the physical base 
address of the memory region set aside by 
the BIOS for loading an SINIT AC module. 
The system software reads this register to 
locate the SINIT module (which may have 
been loaded by the BIOS) or to find a 
location to load the SINIT module. 

Public: RW 

Private: RW 

278H TXT.SINIT.SIZE This register contains the size in bytes of 
the memory region set aside by the BIOS 
for loading an SINIT AC module. This 
register is initialized by the BIOS. The 
system software may read this register 
when loading an SINIT module. 

Public: RW 

Private: RW 

290H TXT.MLE.JOIN Holds a physical address pointer to the 
base of the join data structure referenced 
by RLPs in response to a 
GETSEC[WAKEUP] while operating 
between SENTER and SEXIT. 

Public: RW 

Private: RW 

300H TXT.HEAP.BASE This register contains the physical base 
address of the Intel TXT Heap memory 
region. The BIOS initializes this register. 
The system software and MLE read this 
register to locate the Intel TXT Heap. 

Public: RW 

Private: RW 

308H TXT.HEAP.SIZE This register contains the size in bytes of 
the Intel TXT Heap memory region. The 
BIOS initializes this register. The system 
software and the MLE read this register to 
determine the Intel TXT Heap size. 

Public: RW 

Private: RW 

380H TXT.CMD.OPEN.LOCALITY1 Writing to this register “opens” the TPM 
locality 1 address range, enabling 
decoding by the chipset and thus access 
to the TPM.  Note:  opening private space 
does not open this locality and it must be 
opened explicitly. 

Public: - 

Private: WO2 



 
SMX Interaction with Platform 
 
 

Intel® TXT Software Development Guide    71 

Offset Name Description 

388H TXT.CMD.CLOSE.LOCALITY1 Writing to this register “closes” the TPM 
locality 1 address range, disabling 
decoding by the chipset and thus access 
to the TPM.  Note:  closing the private 
space will not close this locality. 

Public: - 

Private: WO2 

390H TXT.CMD.OPEN.LOCALITY2 Writing to this register “opens” the TPM 
locality 2 address range, enabling 
decoding by the chipset and thus access 
to the TPM.  Note:  locality 2 is opened 
automatically when private space is 
opened. 

Public: - 

Private: WO2 

398H TXT.CMD.CLOSE.LOCALITY2 Writing to this register “closes” the TPM 
locality 2 address range, disabling 
decoding by the chipset and thus access 
to the TPM.  Note:  when private space is 
closed it will automatically close this 
locality. 

Public: - 

Private: WO2 

8E0H TXT.CMD.SECRETS Writing to this register indicates to the 
chipset that there are secrets in memory. 
The chipset tracks this fact with a sticky 
bit. If the platform reboots with this sticky 
bit set the SCLEAN AC module will scrub 
memory. The chipset also uses this bit to 
detect invalid sleep state transitions. If 
software tries to transition to S3, S4, or 
S5 while secrets are in memory then the 
chipset will reset the system. The MLE 
issues the TXT.CMD.SECRETS command 
prior to placing secrets in memory for the 
first time. After issuing this command, 
software should read the TXT.E2STS 
register and wait for the SECRETS.STS bit 
to be cleared before proceeding. 

Public: - 

Private: WO 



SMX Interaction with Platform 
 
 
 

72   Intel® TXT Software Development Guide  

Offset Name Description 

8E8H TXT.CMD.NO-SECRETS Writing to this register indicates there are 
no secrets in memory. The MLE will write 
to this register after removing all secrets 
from memory as part of the Intel TXT 
teardown process. After issuing this 
command, software should read the 
TXT.E2STS register and wait for the 
SECRETS.STS bit to be cleared before 
proceeding. 

Public: - 

Private: WO 

8F0H TXT.E2STS This register is used to read the status 
associated with various errors that might 
be detected. The contents of this register 
are preserved across soft resets. 

Public: RO 

Private: RW 

 

Table 10. TXT.STS Bit Definitions 

Bit 
position Name Comment 

0 SENTER.DONE. 
STS 

The chipset sets this bit when it sees all of the 
threads have done an TXT.CYC.SENTER-ACK. 

When any of the threads does the TXT.CYC.SEXIT-
ACK the TXT.THREADS.JOIN and 
TXT.THREADS.EXISTS registers will not be equal, so 
the chipset will clear this bit. 

1 SEXIT.DONE. 
STS 

This bit is set when all of the bits in the 
TXT.THREADS.JOIN register are clear. Thus, this bit 
will be set immediately after reset (since the bits are 
all 0). 

Once all threads have done an TXT.CYC.SEXIT-ACK, 
the TXT.THREAD.JOIN register will be 0, so the 
chipset will set this bit. 

3:2 Reserved Reserved 



 
SMX Interaction with Platform 
 
 

Intel® TXT Software Development Guide    73 

Bit 
position Name Comment 

4 MEM. 
UNLOCK.STS 

This bit will be set to 1 when the memory has been 
unlocked using the TXT.CMD.UNLOCK-MEMORY 
command or after a normal reset when no measured 
environment was in place prior to the reset. When 
this bit is ‘1’, memory may be accessed by CPU 
cycles.  

This bit will be cleared after a reset when there 
might have been secrets in memory before the 
reset. 

This bit must be set if a read to 0xFED4_0000 
returns a ‘1’ in bit 0. 

5 BASE.LOCKED.S
TS 

This bit will be set to 1 when the 
TXT.CMD.LOCK.BASE command is issued. 

This bit is cleared by TXT.CMD.UNLOCK.BASE or by a 
system reset. 

6 MEM-CONFIG-
LOCK.STS 

This bit will be set to 1 when the memory 
configuration has been locked. 

Cleared by TXT.CMD.UNLOCK.MEMCONFIG or by a 
system reset. 

7 PRIVATE-
OPEN.STS 

This bit will be set to 1 when TXT.CMD.OPEN-
PRIVATE is performed. 

Cleared by TXT.CMD.CLOSE-PRIVATE or by a system 
reset. 

10:8 Reserved  Reserved 

11 MEM-CONFIG-
OK.STS 

This bit indicates whether the chipset has received 
and accepted the TXT.CMD.MEM-CONFIG-CHECKED 
command. This bit is cleared by  reset or by the 
TXT.CMD.UNLOCK-MEM-CONFIG command. 

0: Indicates that memory configuration checking has 
not been performed. 

1: Indicates that memory configuration checking has 
been performed. This bit is set to one when the 
chipset accepts the TXT.CMD.MEM-CONFIG-
CHECKED command. 



SMX Interaction with Platform 
 
 
 

74   Intel® TXT Software Development Guide  

 

Table 11. TXT.ESTS Bit Definitions 

Bit 
position 

Name Comment 

0 TXT_RESET. 
STS 

This bit is set to ‘1’ to indicate that an event 
occurred which may prevent the proper use of TXT 
(possibly including a TXT reset). To maintain TXT 
integrity, while this bit is set a TXT measured 
environment cannot be established; consequently 
Safer Mode Extension (SMX) instructions 
GETSEC[ENTERACCS] and GETSEC [SENTER] will 
fail. 

This bit is sticky and will only be cleared on a power 
cycle. 

5:1 Reserved Reserved 

6 WAKE-
ERROR.STS 

 The chipset sets this bit when it detects that there 
might have been secrets in memory and a reset or 
power failure occurred. 

7 Reserved Reserved 

 

Table 12. TXT.VER.FSBIF and TXT.VER.EMIF Bit Definitions 

Bit 
position Name Comment 

30:0 Reserved Reserved 

31 DEBUG.FUSE 0 = Chipset is debug fused 

1 = Chipset is production fused 

 

Table 13. TXT.DIDVID Bit Definitions 

Bit 
position Name Comment 

15:0 VID Vendor ID: 8086 for Intel® components 

31:16 DID Device ID:  specific to the chipset/platform 

47:32 RID Revision ID:  specific to the chipset/platform 

63:48 ID-EXT Extended ID:  specific to the chipset/platform 

 



 
SMX Interaction with Platform 
 
 

Intel® TXT Software Development Guide    75 

Table 14. TXT.ERRORCODE Register Bit Format 

Bit 
position Name Description 

14 – 0 Type2 This is implementation and source specific. Provides details 
on the failure condition. 

15 SoftwareSource 0 = Authenticated Code Module 

1 = MLE 

29 - 16 Type1 This is implementation and source specific. Provides details 
on the failure condition. 

30 Processor/External 0 = Error condition reported by processor. 

1 = Error condition reported by external software. 

31 Valid/Invalid 0 = Register content invalid.  

1 = Valid error.  

Note 1:  Upon successful execution, SINIT will put 0xC0000001 in the register. 

Note 2:  The format of the Type field for errors reported by SINIT is defined in an 
errors text file included with each SINIT AC module.  This file also includes 
the definition of the error codes produced by that version of SINIT. 

 

Table 15. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns  

Type Error condition Mnemonic 

0 Legacy shutdown #LegacyShutdown 

1-4 Reserved Reserved 

5 Load memory type error in  
Authenticated Code Execution Area 

#BadACMMType 

6 Unrecognized AC module format #UnsupportedACM 

7 Failure to authenticate #AuthenticateFail 

8 Invalid AC module format #BadACMFormat 

9 Unexpected snoop hit detected #UnexpectedHITM 

10 Invalid event #InvalidEvent 

11 Invalid MLE JOIN format #BadJOINFormat 

12 Unrecoverable machine check 
condition 

#UnrecovMCError 

13 VMX abort error occurred #VMXAbort 

14 Authenticated code execution area 
corruption 

#ACMCorrupt 

15 Invalid voltage/bus ratio #InvalidVIDBRatio 

16 – 65535 Reserved Reserved 



SMX Interaction with Platform 
 
 
 

76   Intel® TXT Software Development Guide  

 

Table 16. TXT.E2STS Register Bit Format 

Bit 
Position Name Description 

0 Reserved Reserved 

1 SECRETS.STS 0 = Chipset acknowledges that no secrets are in memory 

1 = Chipset believes that secrets are in memory and will 
provide reset protection 

63:2 Reserved Reserved 

 

 



 
SMX Interaction with Platform 
 
 

Intel® TXT Software Development Guide    77 

B.2 TPM Platform Configuration Registers 

The TPM contains Platform Configuration Registers (PCRs). The purpose of a PCR is to 
contain measurements. From a TPM standpoint, the TPM does not care what entity 
uses a PCR to store a measurement. 

The TPM provides two types of PCRs: static and dynamic. Static PCRs only reset on 
system reset; dynamic PCRs reset upon request. Static PCRs are written by the static 
root of trust for measurement (SRTM). In the PC, the SRTM begins with the BIOS boot 
block. The dynamic PCRs are written by the dynamic root of trust for measurement 
(DRTM). In the PC, the DRTM is the process initiated by GETSEC[SENTER]. 

A PC TPM requires a minimum of 24 PCRs. The first 16 are designated the static Root 
of Trust and the next eight are designated the dynamic Root of Trust. Intel TXT uses 
PCRs 17 and 18 within the dynamic Root of Trust to measure the MLE.  

All PCRs, static or dynamic, have the same size and same updating mechanism. The 
size is 160 bits. This size allows the PCRs to contain a SHA-1 hash digest value. 
Storing a measurement value in the PCRs involves a TPM_Extend operation, which is 
itself a hash operation. 

B.3 Intel® Trusted Execution Technology 
Device Space 

There are several memory ranges within Intel TXT address space provided to access 
Intel TXT related devices. The first range is 0xFED4_xxxx which is divided up into 16 
pages. Each page in the FED4 range has specific access attributes. A page in this 
region may be accessed by Intel TXT cycles only, by Intel TXT cycles and via private 
space, or by Intel TXT cycles, private and public space. 

Table 17. TPM Locality Address Mapping 

Address Range TPM Locality 

FED4 0xxxH Locality 0 (fully public)  

FED4 1xxxH Locality 1 (trusted OS) 

FED4 2xxxH Locality 2 (MLE access only)  

FED4 3xxxH Locality 3 (AC modules access only)  

FED4 4xxxH Locality 4 (Hardware or microcode access only) 

All others Reserved 

 

The first five pages of the 0xFED4_xxxx region are used for TPM access. Each page 
represents a different locality to the TPM. Locality is an attribute used by the TPM to 
define how it treats certain transactions. Locality is defined by the address range used 
for commands sent to the TPM. All Intel TXT chipsets must support all localities. 
Localities 0 and 6 are considered public and accesses to these localities are accepted 
by the chipset under all circumstances. Accesses to locality 0 and 6 are sent to the 



SMX Interaction with Platform 
 
 
 

78   Intel® TXT Software Development Guide  

ICH even if Intel TXT is disabled, there has been no SENTER, or private space is 
closed. Localities 4 and 5 are never open, but may only be accessed with Intel TXT 
cycles. Localities 7 through 15 are always open from a locality perspective, but are in 
private space so that TXT.CMD.OPEN-PRIVATE must have been done for the cycles to 
be sent to ICH as Intel TXT cycles. There are Intel TXT commands that will open 
localities 1 through 3. Localities 2-3 and 7-F require that both LocalityX.OPEN 
(localities 7-F are always open) and TXT.CMD.OPEN-PRIVATE be done before allowing 
accesses in that range to be accepted. At reset, localities 1 through 3 are closed.  

No status read check of the TPM is performed by the processor GETSEC[SENTER] 
instruction ahead of the TPM.HASH write sequence. If the TPM is not in acquiesced 
state at this time, then the PCRs 17-20 reset and hash registration to PCR 17 may not 
succeed. To insure reliable system software functionality for TPM support, it is 
recommended that the GETSEC[SENTER] instruction only be executed once the TPM 
has acquiesced and ownership has been established in the context of the SENTER 
initiating process. 



 
SMX Interaction with Platform 
 
 

Intel® TXT Software Development Guide    79 



Intel® TXT Heap Memory 
 
 
 

80   Intel® TXT Software Development Guide  

Appendix C  Intel® TXT Heap Memory 

Intel TXT Heap memory is a region of physically contiguous memory which is set aside 
by BIOS for the use of Intel TXT hardware and software. The system software that 
launches the measured environment passes data to both the SINIT AC module and the 
MLE using Intel TXT Heap memory. The system software is responsible for filling in the 
table contents prior to executing the SENTER instruction. An incorrect format or 
incorrect content of this table or tables described by this table will result in failure to 
launch the protected environment. 

Table 18. Intel® Trusted Execution Technology Heap 

Offset Length 
(bytes) 

Name Description 

0 8 BiosDataSize Size in bytes of the Intel TXT 
specific data passed from the 
BIOS to system software for 
the purposes of launching the 
MLE. This size includes the 
number of bytes for this field, 
so this field cannot be less 
than a value of 8. Note 1. 

8 BiosDataSize 
- 8 

BiosData BIOS specific data. The format 
of this data is described below 
in Table 19. 

BiosDataSize 8 OsMleDataSize Size in bytes of the data 
passed from the launching 
system software to the MLE. 
This size includes the number 
of bytes for this field, so this 
field cannot be less than a 
value of 8. Note 1. 

BiosDataSize + 8 OsMleDataSiz
e – 8 

OsMleData System software -specific 
data. Format of data in this 
field is considered specific to 
the system software vendor.  

BiosDataSize + 
OsMleDataSize 

8 OsSinitDataSize Size in bytes of the data 
passed from the launching 
system software to the SINIT 
AC module. This size includes 
the number of bytes for this 
field, so this field cannot be 
less than a value of 8. Note 1. 

BiosDataSize + 
OsMLEDataSize + 
8 

OsSinitDataSi
ze - 8 

OsSinitData System software data passed 
to the SINIT AC module. The 
format of this data is 
described below in Table 20. 



 
Intel® TXT Heap Memory 
 
 

Intel® TXT Software Development Guide    81 

Offset Length 
(bytes) 

Name Description 

BiosDataSize + 
OsMleDataSize + 
OsSinitDataSize 

8 SinitMleDataSize Size in bytes of the data 
passed from the launched 
SINIT AC module to the MLE. 
This size includes the number 
of bytes for this field, so this 
field cannot be less than a 
value of 8. Note 1. 

BiosDataSize + 
OsMleDataSize + 
OsSinitDataSize + 
8 

SinitMleDataS
ize - 8 

SinitMleData SINIT data passed to the MLE. 
The format of this data is 
described below in Table 21. 

NOTES:   
1. For proper data alignment on 64bit processor architectures this field must be a multiple 

of 8 bytes. OsMleDataSize + OsSinitDataSize + SinitMleDataSize must be less than or 
equal to TXT.HEAP.SIZE.    

C.1 BIOS Data Format 

The format of the data passed from the BIOS to the system software for the purposes 
of launching the measured environment is shown in Table 19. 

Table 19. BIOS Data Table 

Offset Length 
(bytes)  

Name Description 

0 4 Version Version number of the BiosData table. The 
current value is 3 (versions < 2 are not 
supported). This value is incremented for any 
change to the definition of this table. Future 
versions will always be backwards compatible 
with previous versions (new fields will be added 
at the end). 

4 4 BiosSinitSize This field indicates the size of the SINIT AC 
module provided by system BIOS. A value of 0 
indicates the BIOS is not providing an SINIT AC 
module for system software use.  A non-0 value 
indicates that the AC module will be at the 
location specified by the TXT.SINIT.BASE register 
and be of the specified size. 

8 8 LcpPdBase Physical base address of the Platform Default 
Launch Control Policy, LCP_POLICY_DATA 
structure. Ignored if Platform Default Policy does 
not require additional data or does not exist. 

16 8 LcpPdSize Size of the Launch Control Policy Platform 
Default Policy Data. Ignored if Platform Default 
Policy does not require additional data or does 
not exist. 



Intel® TXT Heap Memory 
 
 
 

82   Intel® TXT Software Development Guide  

Offset Length 
(bytes)  

Name Description 

24 4 NumLogProcs This is the total number of logical processors in 
the system. The minimum value in this register 
must be at least 1. 

Versions >= 3 

28 8 Flags BIOS-provided information for SINIT AC module 
consumption.  Bit definition will be dependent on 
the chipset. 

Version 3 only. 

 

C.2 OS to MLE Data Format 

Each system software vendor may have a different format for this data, and any MLE 
being launched by system software must understand the format of that software’s 
handoff data. 

C.3 OS to SINIT Data Format 

Table 20 defines the format of the data passed from the launching system software to 
the SINIT AC module in the OsSinitData field. 

Table 20. OS to SINIT Data Table 

Offset Length 
(bytes) 

Name Description 

0 4 Version Version number of the OsSinitData table. 
Current values are 4 or 5 (versions < 4 are 
not supported). This value is incremented 
for any change to the definition of this table. 
Future versions will always be backwards 
compatible with previous versions (new 
fields will be added at the end). 

4 4 Reserved Reserved for future use 

8 8 MLE PageTableBase Physical address of MLE page table (the MLE 
page directory pointer table address) 

16 8 MLE Size Size in bytes of the MLE image 

24 8 MLE HeaderBase Linear address of MLE header (linear 
address within the MLE page tables) 

32 8 PMR Low Base Physical base address of the PMR Low region 
(must be 2MB aligned).  Can be set to zero 
if not desired to be enabled by SINIT. The 
MVMM must be loaded in one of the DPR, 
PRM low, or the PMR high regions. 



 
Intel® TXT Heap Memory 
 
 

Intel® TXT Software Development Guide    83 

Offset Length 
(bytes) 

Name Description 

40 8 PMR Low Size Size of the PMR Low Region (must be 2MB 
granular). Set to zero if not desired to be 
enabled by SINIT. 

48 8 PMR High Base Physical base address of the PMR High 
region (must be 2MB aligned).  Can be set 
to zero if not desired to be enabled by 
SINIT. 

56 8 PMR High Size Size of the PMR HIGH Region (must be 2MB 
granular). Set to zero if not desired to be 
enabled by SINIT. 

64 8 LCP PO Base Physical base address of the Platform 
Owner’s Launch Control Policy, 
LCP_POLICY_DATA structure. 

72 8 LCP PO Size Size of the Launch Control Policy Platform 
Owner’s Policy Data. 

80 4 Capabilities Bit vector of capabilities that SINIT is 
requested to use.  This must be a subset of 
the ones SINIT supports. 

Versions >= 5 

84 8 EFI RSDT Pointer Physical address of RSDT table when an EFI 
boot was performed. This will be ignored if 
SINIT finds the standard ACPI RSDT table. 

 

C.4 SINIT to MLE Data Format 

Table 21 defines the format of the SINIT data presented to the MLE. 

Table 21. SINIT to MLE Data Table 

Offset Length 
(bytes) 

Name Description 

0 4 Version Version number of the SinitMleData 
table. Current values are 6 through 8 
(versions < 5 are not supported). This 
value is incremented for any change to 
the definition of this table. Future 
versions will always be backwards 
compatible with previous versions (new 
fields will be added at the end). 

4 20 BiosAcmID ID of the BIOS AC module in the system 

24 4 EdxSenterFlags Value of EDX SENTER control flags 

28 8 MsegValid MSEG MSR (Valid bit only) 

36 20 SinitHash SHA-1 hash of the SINIT AC module 



Intel® TXT Heap Memory 
 
 
 

84   Intel® TXT Software Development Guide  

Offset Length 
(bytes) 

Name Description 

56 20 MleHash SHA-1 hash of  the MLE 

76 20 StmHash SHA-1 hash of STM. This is only valid if 
MsegValid = 1, else will contain zero 

96 20 LcpPolicyHash SHA-1 Hash of the LCP policy that was 
enforced; if no hash is needed based on 
the LCP policy control field this will 
contain zero 

116 4 PolicyControl Taken from the LCP policy used 

120 4 RlpWakeupAddr MONITOR physical address used for 
waking up RLPs (write 32bit non-0 
value) 

124 4 Reserved Reserved for future use 

128 4 NumberOfSinitMdrs Number of SINIT Memory Descriptor 
Records 

132 4 SinitMdrTableOffset Pointer to the start of an array of SINIT 
Memory Descriptor Records as defined 
below.  Each record describes a memory 
region as defined by the SINIT AC 
module (see Table 22).  This field is an 
offset in bytes from the start of the 
SinitMleDataSize field. 

136 4 SinitVtdDmarTableSize Length of the Intel® Virtualization 
Technology (Intel® VT) for Directed I/O 
(Intel® VT-d) DMAR table pointed to by 
the SinitVtdDmarTable field 

140 4 SinitVtdDmarTableOffset Pointer to the start of the SINIT provided 
DMAR table dump for the MLE. This field 
is an offset in bytes from the start of the 
SinitMleDataSize field. 

Versions >= 8 

144 4 ProcessorSCRTMStatus Bit 0 - 1 if PCR 0 measurement for this 
boot was rooted in processor hardware. 
This is possible only if all logical 
processors implement S-CRTM (Section 
 Appendix F) and the platform is designed 
to take advantage of that capability. 

Bit 0 - 0 if PCR0 measurement for this 
boot was rooted in BIOS. 

Bits 31:1 – Reserved for future use 

The ProcessorSCRTMStatus field is 
reflected in PCR 17 measurement. See 
section PCR 17. 



 
Intel® TXT Heap Memory 
 
 

Intel® TXT Software Development Guide    85 

Table 22. SINIT Memory Descriptor Record 

Offset Length 
(bytes) 

Name Description 

0 8 Address Physical address of the memory range described in 
this record. 

8 8 Length Length of the memory range. 
16 1 Type Memory range type. Valid values: 

0  Usable, good memory 
1  SMRAM– Overlayed 
2  SMRAM– Non-Overlayed 
3  PCIe*- PCIe Extended Config Region 
4–255  Reserved   
 

17 7 Reserved Reserved for future use 

The array of Memory Descriptor Records (MDRs) is not necessarily ordered and some 
MDRs may be of 0 length, in which case they should be ignored. 

Memory of type 0 is usable for the MLE and any code or data that it may load.  SINIT 
will verify that the MLE and its page table are located in memory of this type. 

Memory types 1 and 2 indicate regions that contain System Management Mode (SMM) 
code. 

Memory of type 3 is the PCI Express extended configuration region.  The MLE may use 
this to verify that the PCIE configuration specified in the ACPI tables is using the 
appropriate address space. 



LCP v1 
 
 
 

86   Intel® TXT Software Development Guide  

Appendix D LCP v1 

The version of Launch Control Policy described in this appendix applies to TXT-capable 
platforms produced before 2009. 

D.1 Overview 

The Launch Control Policy architecture consists of the following components: 

 LCP Policy Engine – part of the SINIT ACM and enforces the policies stored on 
the platform 

 LCP Policies – stored in the TPM, they specify the policies SINIT ACM will 
enforce.  

 LCP PolicyData objects – referenced by the Policy structures in the TPM; each 
contains a list of valid Measured Launched Environments or a list of possible 
platform configurations. 

Figure 4. Launch Control Policy Components shows how these components relate to 
each other. The figure also shows that there are two possible policies available on the 
platform: the Platform Default policy, as established by the Platform Supplier, and the 
Platform Owner’s policy. 

When the platform boots, its state is measured and recorded by the Static Root of 
Trust for Measurement (SRTM) and the other components which make up the static 
chain of trust; these events occur from when the platform is powered on until the 
Intel TXT measured launch (or until some component breaks the static chain). At this 
point GETSEC[SENTER] is invoked, and control is passed through the authenticated 
code execution area to the SINIT authenticated code module. The LCP engine in SINIT 
reads the LCP Policy Indices in the TPM NV, decides which policy to use, and checks 
the Platform Configuration and the Measured Launched Environment as require by the 
chosen policy. The measured environment is then launched. 

 



 
LCP v1 
 
 

Intel® TXT Software Development Guide    87 

Figure 4. Launch Control Policy Components 

Platform Default
LCP_Policy

Platform Owner
LCP_Policy

…

…

TPM PCRs

TPM NV Ram

PD 
LCP_POLICY_DATA

PO
LCP_POLICY_DATA

Static Chain
of Trust MLESINIT(LCP)

Execution Control
Write/Read Operation
Data Reference

 

 

Figure 5. SINIT LCP Internal Flow shows the policy decision flow within the LCP engine 
within the SINIT authenticated code module. If no policy on the platform is configured 
then SINIT behaves as the policy allows ANY Measured Launched Environment and 
ANY platform configuration. When both the Platform Default and the Platform Owner 
Policies have been established on the platform the policies are combined (see section 
 D.2.1), the Platform Owner policy taking precedence when there is a conflict between 
the two policies. 

 



LCP v1 
 
 
 

88   Intel® TXT Software Development Guide  

Figure 5. SINIT LCP Internal Flow 

 

D.1.1 LCP Components 

The description of the policy that the SINIT AC module implements, consists of two 
policies: one policy is set by the Platform Supplier, known as the Platform Default 
(PS), and the other belongs to the Platform Owner (PO). Both policies are stored in 
the non-volatile store of the Trusted Platform Module (TPM NV). By storing the policy 
in the TPM NV, access controls can be applied to it; it also enables the policy to persist 
across platform power cycles. 

D.1.1.1 LCP Policy 

The LCP_POLICY structure (for a full listing see section  0) is used for both the Platform 
Default and the Platform Owner policies. The size of the structure currently needs to 
be kept to a minimum in order to preserve the scarce resources of the TPM NV 
storage, which is why additional structures for both Default and Owner policies 
(LCP_POLICY_DATA) that can be persisted elsewhere are provided to handle additional 
information.  



 
LCP v1 
 
 

Intel® TXT Software Development Guide    89 

Figure 6. LCP_POLICY Structure 

Figure 6. LCP_POLICY Structure diagrammatically illustrates the LCP_POLICY structure 
(fields not to scale): HashAlg identifies the hashing algorithm used through this policy. 
PolicyType indicates whether an additional LCP_POLICY_DATA structure is required 
and if this data is to be treated as unsigned.  

 If the PolicyType field is POLTYPE_ANY then the value in the PolicyHash field is 
ignored and the environment to be launched is simply measured before execution 
control is passed to it. No corresponding LCP_POLICY_DATA is expected. 

 If the PolicyType field is POLTYPE_HASHONLY then the value in the PolicyHash 
field is the only value against which the Measured Launched Environment is to be 
compared. No additional LCP_POLICY_DATA is required. No corresponding 
LCP_POLICY_DATA is expected. This policy type is not currently supported for the 
default policy. 

 If the PolicyType field is POLTYPE_UNSIGNED then the value of PolicyHash is the 
result of computing a hash over the LCP_POLICY_DATA. The corresponding 
LCP_POLICY_DATA structure will contain data of type 
LCP_UNSIGNED_POLICY_DATA. This policy type is not currently supported for the 
default policy. 

 If the PolicyType field is POLTYPE_FORCEOWNERPOLICY the value of PolicyHash is 
ignored and the LCP engine will process the Platform Owner’s LCP Policy and fail if 
it is not present. No corresponding LCP_POLICY_DATA is expected. This value can 
only be used in the Platform Default LCP policy. 

SINITRevocationCounter specifies the minimum version of SINIT that can be used.  
This value corresponds to the AcmVersion field in the AC module Information Table 
(see Table 6). 

The PolicyControlField provides a number of control bits which are defined as: 

 Bits31:2 Reserved and should set to zero 

 Bit 1 Identifies whether the platform will allow AC Modules which have been 
marked as pre-production to be used to launch the MLE. 
Note: Setting the bit to 1 will require a pre-production SINIT AC module and will 
result in PCRs 17 and 18 being capped with a random value. 

 Bit 0 Identifies whether a hash of an unsigned policy is extended into PCR 17 

D.1.1.2 LCP Policy Data 

The purpose of the LCP_POLICY_DATA structure is to provide the additional data 
needed to enforce the policy but in a separate entity that doesn’t have to consume 
TPM NV space. The LCP_POLICY_DATA structure contains an unsigned policy data 
(indicated by LCP_POLICY::PolicyType); the structures for which are shown in Figure 
7. *_POLICY_DATA Structures and a full description of LCP_POLICY_DATA can be 
found in section  D.6.2. 



LCP v1 
 
 
 

90   Intel® TXT Software Development Guide  

Figure 7. *_POLICY_DATA Structures 

 

The LCP_UNSIGNED_POLICY_DATA::PolicyTable structure allows the object to contain 
a number of lists which identify either: 

 the types of measured environment that can be launched, or 

 the states the platform may be in – as recorded in the TPM by the Static chain of 
Trust. 

D.1.2 Policy List Types 

D.1.2.1 MLE List 

When processing a measured environment list the LCP engine computes the hash 
(using the HashAlg identified in LCP_POLICY) over the environment to be launched 
and compares it to the hash values in the MLE list. If a match can be found, then the 
LCP engine proceeds.  

The following rules apply to the Measured Launched Environment List: 

 There can only be one MLE list within the LCP_POLICY_DATA structure 

 Each measured environment must be enumerated using the same cryptographic 
hashing algorithm specified by HashAlg in LCP_POLICY. This algorithm must be 
supported by SINIT. 

 All measurements are of the environment to be launched, as measured by SINIT, 
not the value of the PCR after it’s been extended. 

D.1.2.2 Platform Configuration List 

When processing the platform configuration list the LCP engine reads the appropriate 
PCR’s as defined by the first TPM_PCR_INFO_SHORT value in the list and concatenates 



 
LCP v1 
 
 

Intel® TXT Software Development Guide    91 

them and cryptographically hashes them together. The result is compared to the hash 
value in the TPM_PCR_INFO_SHORT. If there is no match this process is repeated for 
each and every member of the list. As soon as a match is found, the LCP engine 
proceeds. 

The follow rules apply to the Platform configuration List: 

 There can only be one platform configuration list within the LCP_POLICY_DATA 
structure 

 Each platform configuration in the list must be enumerated as a 
TPM_PCR_INFO_SHORT structure. 

Additionally, it is recommended, although not necessary, that all 
TPM_PCR_INFO_SHORT structures in the platform configuration list test the same set 
of PCR values. 

D.1.3 Supported Cryptographic Algorithms 

The following algorithms are defined for the current version of the Launch Control 
Policy: 

Hashing – SHA-1 

It is the responsibility of the policy author to ensure that their policy uses an 
algorithm supported by the version of the SINIT AC module being used.  If the policy 
specifies an unsupported algorithm, the policy will fail and the environment will not be 
permitted to launch. 

D.2 Policy Engine Logic 

The logic above means that all the records (i.e., an LCP_POLICY_LIST structure) in the 
PolicyTable must evaluate to true. However, a record may represent a list which 
contains multiple possible hash values only one of which must match in order for the 
record to evaluate true.. 

In a very simple case where the LCP_POLICY_LIST is a simple MLE list, the logic would 
be as follows: 

  
MLEList:  MLE1 or MLE2 or MLE3 

The measured environment can be launched if, and only if, the hash of the measured 
environment matched any one of the listed MLE1, MLE2 or MLE3. 

While a more complex set of policies could contain both an MLE list and a platform 
configuration list. In this case the logic would be as follows:  

MLEList:  MLE1 or MLE2 or MLE3 
      AND 
PltConfList: PCONF1 or PCONF2 or PCONF3 

Here, the measured environment can be launched if, and only if, the hash of the 
measured environment matches one the values MLE1, MLE2 or MLE3 and the values of 
the TPM PCRs at the time SINIT is executed matches one of the values PCONF1, 
PCONF2, or PCONF3. 



LCP v1 
 
 
 

92   Intel® TXT Software Development Guide  

If either the MLE or the PCONF fails to match any of its respective hash values, an 
error code is written to the TXT.ERRORCODE register and a TXT Shutdown is 
triggered. 

D.2.1 Combining Policies 

When both the Platform Supplier and the Platform Owner have established policies on 
the platform, the two policies are combined to give a resultant policy which the LCP 
Policy Engine will enforce. 

D.3 Measuring the Enforced Policy 

The LCP engine will extend to PCR 17 a hash value which represents the policy against 
which the environment was launched. This hash value is determined by the rules in 
the following sections and in some cases the settings in the relevant 
LCP_POLICY::PolicyControlField, these relate to the possible combinations: 

 No Policy – The platform has no configured policy. 

 Allow Any Policy – The selected policy allows any MLE to launch. 

 LCP Policy Hash Only – The selected policy only uses a single hash stored in the 
LCP_POLICY 

 Unsigned LCP_POLICY_DATA – The selected policy uses an unsigned 
LCP_POLICY_DATA structure 

 Force Owner Policy – The Platform Default policy requires that a Platform Owner’s 
Policy is present on the platform. 

As a matter of integrity the LCP_POLICY::PolicyControlField field will always be 
extended into PCR 17. 

D.3.1 No Policy Data 

When no LCP Policy is executed, 20 bytes of 0s will be extended to PCR 17 to prevent 
any Measured Launched Environment from later extending a value of any other policy 
into the PCR 17. As PCR 17 will be open to Locality 2 extends, the Measured Launched 
Environment would gain access to sealed secrets which were sealed against some 
known policy by another Measured Launched Environment. 

D.3.2 LCP Policy Allow Any 

When the LCP_POLICY indicates that the Policy Type is ALLOW ANY, 20 bytes of 0s will 
extended to PCR 17 to prevent any Measured Launched Environment from later 
extending a value of any other policy into the PCR 17. 



 
LCP v1 
 
 

Intel® TXT Software Development Guide    93 

D.3.3 LCP Policy Hash Only 

When the LCP_POLICY indicates that the HashValue is to be used as the only 
measurement to be compared against, and that comparison is successful then this 
value is extended to PCR 17. 

D.3.4 Unsigned LCP_POLICY_DATA 

When the LCP_POLICY indicates that the LCP_POLICYDATA object associated with the 
policy is unsigned, the LCP_POLICY_DATA may contain unsigned MLE & Platform 
Configuration lists. The value extended into PCR 17 will not simply be the hash of the 
list. The LCP engine will generate a hash value for each list present within 
LCP_POLICY_DATA and hash them together and extend this value. The hash for a list 
is calculated by hashing the entire list. When Bit 0 of the 
LCP_POLICY::PolicyControlField is set, then the hash value for unsigned 
LCP_POLICY_DATA is extended into PCR 17; when it is clear then it is not. 

D.3.5 Force Platform Owner Policy 

When the Platform Default policy indicates that the Platform Owner policy must be 
present then the value of the Platform Owner policy will be extended in PCR 17.  

D.4 Revocation 

D.4.1 SINIT Revocation 

LCP Structures also enable a limited self-revocation mechanism for SINIT. This is 
supported in the LCP_POLICY structure in the SINITRevocationCounter field. This field 
is a UINT8 and corresponds to a similar field within the SINIT image. When the value 
of the LCP_POLICY::SINITRevocationCounter field is less than or equal to the value of 
AcmVersion in the SINIT image then SINIT may proceed, otherwise SINIT shall cause 
a TXT Shutdown condition with the value LCP_SINIT_REVOKED in the 
TXT.ERRORCODE register. 

D.5 Platform Owner Index 

The Platform Owner policy index is intended to represent the policy defined by the 
owner of the platform, and as such should be provisioned with access control 
permissions that enforce that control over the policy remains with the platform owner. 

The following attribute settings are required: 

Index Value:  0x40000001 

Size:  34 bytes 

Read Locality:  3 (can be others as well) 

Read Auth:  None 

PCR Read:  None 



LCP v1 
 
 
 

94   Intel® TXT Software Development Guide  

The simplest access control setting that maintains platform owner control is to set the 
Write Auth to Owner.  However, this also means that updating the policy requires the 
owner authorization.  As the owner authorization can be used for almost all TPM 
management operations, it may be desirable to limit its use. 

Another possibility would be to use a separate authorization just for this index.  That 
would eliminate having to provide the owner authorization just to update the policy. 

If trusted software, running in the context of the MLE or with access to TPM locality 2, 
needs to be able to update the policy, then it would be possible to have no Write Auth 
but set the Write Locality to 2.  This would permit whatever software was able to 
successfully launch to update the policy. 

Note that it is not advisable to use PCR Write controls, since it would mean that the 
specified PCR could not change over time (e.g. if the software measured into it was 
upgraded).  This is because the index attributes cannot be changes once the index is 
created. 

D.6 Data Structures 

D.6.1 LCP_POLICY 

Both the Platform Owner and Platform Default SINIT policy structures are of the same 
type, i.e. LCP_POLICY. These objects are stored in the TPM. The required fields for 
LCP_POLICY are as follows: 

 
#define POLHALG_SHA1  0 
 
#define POLTYPE_HASHONLY  0 
#define POLTYPE_UNSIGNED  1 
#define POLTYPE_ANY  3 
#define POLTYPE_FORCEOWNERPOLICY 4 
 
typedef struct { 
    UINT8  Sha1[20]; 
} LCP_HASH; 
 
typedef struct { 
    UINT8  Version; 
    UINT8  HashAlg;  // one of POLHALG_* 
    UINT8  PolicyType;         // one of POLTYPE_* 
    UINT8  SINITRevocationCounter; 
    UINT32  PolicyControlField;  
    UINT16  Reserved[3]; 
    LCP_HASH  PolicyHash; 
 } LCP_POLICY; 
 
LCP_POLICY PlatformOwnerLCPPolicy; 
LCP_POLICY PlatformDefaultLCPPolicy; 

 

HashAlg not only determines the algorithm and size of the hash used for PolicyHash 
but all other values used with the LCP structures. If the algorithm type is not 
supported by SINIT ACM then LCP shall cause an Intel TXT shutdown condition with 
the value LCP_UNKNOWN_POLICY_TYPE in the TXT.ERRORCODE register.  



 
LCP v1 
 
 

Intel® TXT Software Development Guide    95 

If the type specified in the PolicyType field is not supported by SINIT then LCP shall 
cause an Intel TXT shutdown condition with the value LCP_UNKNOWN_POLICY_TYPE 
in the TXT.ERRORCODE register.  

The SINITRevocationCounter field provides a mechanism for determining whether the 
loaded version of SINIT ACM should be used. This value must be less than or equal to 
a corresponding value, AcmVersion, in the SINIT Image to determine whether SINIT 
can be used. 

The PolicyControlField provides a way for the policy authority to control some of the 
logic in the LCP Policy Engine. The field is defined as: 

 Bits31:3 Reserved and should set to zero 

 Bit 2 Identifies whether the OsSinitData.Capabilities field will be 
extended into PCR 17 (1). 

 Bit 1 Identifies whether the platform will allow Authenticated Code 
Modules which have been marked as pre-production can be used 
to launch the MLE. 
Note: Setting the bit to 1 will require a pre-production SINIT ACM 
and will result in PCRs 17 and 18 being capped with a random 
value. 

 Bit 0 Identifies whether a hash of an unsigned policy is extended 
into PCR 17 

The PolicyControlField must always be reported into PCR 17. 

The version of the LCP_POLICY structure defined here is 1. 

D.6.2 LCP_POLICY_DATA 

For each policy on the platform there must exist a block of data which the SINIT policy 
engine will process. Where this data resides on the platform is platform dependent, 
but it must provisioned into the Intel TXT heap data structures (see Appendices  C.1 
and  C.3) by the pre-GETSEC[SENTER] environment. 

 
typedef struct { 
    UUID        Uuid; 
    LCP_UNSIGNED_POLICY_DATA UnsignedData; 
} LCP_POLICY_DATA 
 

Where: 
typedef struct { 
    UINT32    data1; 
    UINT16    data2; 
    UINT16    data3; 
    UINT16    data4; 
    UINT8     data5[6]; 
} UUID; 

 



LCP v1 
 
 
 

96   Intel® TXT Software Development Guide  

The UUID value for LCP will be: 
AB0D1925-EEE7-48eb-A9FC-0BAC5A262D0E or  
{ 0xab0d1925, 0xeee7, 0x48eb, 0xa9fc { 0xb, 0xac, 0x5a, 
0x26, 0x2d, 0xe } 

D.6.3 LCP_UNSIGNED_POLICY_DATA 

Unsigned policy data is a table of elements which are lists of policy values (all of the 
same type), LCP_POLICY_LIST. The version of the LCP_UNSIGNED_POLICY_DATA 
defined here is 0H. 
typedef struct { 
    UINT8    Version; 
    UINT8    PolicyTableSize;   
  LCP_POLICY_LIST PolicyTable[PolicyTableSize];    
} LCP_UNSIGNED_POLICY_DATA 

D.6.3.1 LCP_POLICY_LIST 

The least significant 15 bits identifies the type of list. 
 

#define POLDESC_MLE_UNSIGNED  0x0001 

#define POLDESC_PConf_UNSIGNED 0x0002 
 
typedef struct { 
    UINT16  ListType;  // One of POLDESC_* 
    LCP_UNSIGNED_LIST UnsignedList; 
} LCP_POLICY_RECORD 
 

D.6.3.2 LCP_UNSIGNED_LIST 

Unsigned lists are either a list of the environments which may be launched or a list of 
the allowable platform configurations. 
 
typedef struct { 
 UINT8 Version; 
 UINT8 ListSize; 
 choice { 
     LCP_HASH  HashList[ListSize];  
     TPM_PCR_INFO_SHORT PCRInfoList[ListSize]]; 
 }; 
} LCP_UNSIGNED_LIST; 
 

HashAlg identifies the hashing algorithm and hence the size of each hash; ListSize 
identifies either the number of hashes, or the number of TPM_PCR_INFO_SHORT 
structures (see the TPM Main Specification Version 1.2 for its full definition), in the 
list.  Version is 0H for the structure defined here. 

The various TPM_* structures have been copied below to facilitate understanding of 
the list structure. 
 
typedef struct tdTPM_PCR_INFO_SHORT{ 



 
LCP v1 
 
 

Intel® TXT Software Development Guide    97 

    TPM_PCR_SELECTION  pcrSelection; 
    TPM_LOCALITY_SELECTION localityAtRelease; 
    TPM_COMPOSITE_HASH  digestAtRelease; 
} TPM_PCR_INFO_SHORT; 
 
typedef struct tdTPM_PCR_SELECTION { 
    UINT16          sizeOfSelect; 
    [size_is(sizeOfSelect)] BYTE      pcrSelect[]; 
} TPM_PCR_SELECTION; 
 
#define TPM_LOCALITY_SELECTION BYTE   // each bit is the 
           // corresponding locality 
 
typedef struct tdTPM_PCR_COMPOSITE { 
    TPM_PCR_SELECTION   select; 
    UINT32    valueSize; 
    [size_is(valueSize)] TPM_PCRVALUE pcrValue[]; 
} TPM_PCR_COMPOSITE; 
 
typedef struct tdTPM_DIGEST{ 
    BYTE digest[digestSize]; 
} TPM_DIGEST; 
typedef TPM_DIGEST  TPM_COMPOSITE_HASH; // hash of 
     // TPM_PCR_COMPOSITE 
      // object 
typedef TPM_DIGEST  TPM_PCRVALUE; 

D.6.4 Structure Endianness 

Endianness deals with the sequencing order of stored bytes.  There are two common 
sequencing orders; Little Endian (format used by Intel) and Big Endian (in this case, 
TPM NVRAM).  In order to successfully compare the values of these two formats, we 
need to convert TPM NVRAM data to Little Endian when comparing within Intel code as 
well as converting data into Big Endian format when writing to TPM NVRAM space.   

Example 36 bit value: 0x12345678 

Little Endian (from least significant byte to most significant byte): 

0x78, 0x56, 0x34, 0x12 

Big Endian (from least significant byte to most significant byte): 

0x12, 0x34, 0x56, 0x78 



LCP v2 Data Structures 
 
 
 

98   Intel® TXT Software Development Guide  

Appendix E LCP v2 Data Structures 

E.1 LCP_POLICY 

Both the Platform Owner and Platform Supplier policy structures are of the type 
LCP_POLICY. These objects are stored in the TPM NV. The required fields for 
LCP_POLICY are as follows: 

 
#define LCP_POLHALG_SHA1  0 
 
#define LCP_POLTYPE_LIST   0 
#define LCP_POLTYPE_ANY  1 
 
typedef struct { 
    UINT8  Sha1[20]; 
} LCP_HASH; 
 
#define LCP_MAX_LISTS  8 
 
typedef struct { 
    UINT16  Version; 
    UINT8  HashAlg; // one of LCP_POLHALG_* 
    UINT8  PolicyType; // one of LCP_POLTYPE_* 
    UINT8  SINITMinVersion; 
    UINT8  Reserved1; 
    UINT16  DataRevocationCounters[LCP_MAX_LISTS]; 
    UINT32  PolicyControl;  
    UINT32  Reserved2[2]; 
    LCP_HASH  PolicyHash; 
 } LCP_POLICY; 

E.2 LCP_POLICY_DATA 

For each policy of type LCP_POLTYPE_LIST, there must exist a block of data which the 
SINIT policy engine will process. Where this data resides on the platform is platform 
dependent, but it must provisioned into the Intel TXT heap data structures (see 
Appendices  C.1 and  C.3) before executing the GETSEC[SENTER] instruction. While not 
required, it is recommended that software place the LCP_POLICY_DATA on a 4-byte 
aligned boundary to reduce access alignment penalties. 
 
typedef struct { 
    char     FileSignature[32]; 
    UINT8    Reserved[3]; 
    UINT8    NumLists; 
    LCP_POLICY_LIST PolicyLists[NumLists]; 
} LCP_POLICY_DATA 
 



 
LCP v2 Data Structures 
 
 

Intel® TXT Software Development Guide    99 

FileSignature is the string “Intel(R) TXT LCP_POLICY_DATA\0\0\0\0”, where ‘\0’ is a 
single byte whose value is 0x00. This field is intended for use by software that needs 
to determine if a given file is an LCP_POLICY_DATA file. 

The Reserved field must be set to all 0s. 

The NumLists field must be less than or equal to LCP_MAX_LISTS. 

Each list in PolicyLists may be either signed or unsigned. 

E.3 LCP_POLICY_LIST 
 
#define LCP_POLSALG_NONE 0 
#define LCP_POLSALG_RSA_PKCS_15 1 
 
typedef struct { 
    UINT16 RevocationCounter; 
    UINT16 PubkeySize; 
    UINT8 PubkeyValue[PubkeySize]; 
    UINT8 SigBlock[PubkeySize]; 
} LCP_SIGNATURE; 

The RevocationCounter field is a monotonically increasing value that can be used, in 
conjunction with the corresponding index of the DataRevocationCounters field in 
LCP_POLICY, to provide a method of revoking (or preventing rollback of) signed 
policies. 

Supported public key sizes are 1024, 2048 and 3072 bits. It is recommended that a 
public key size of at least 2048 bits be used.  Larger sizes may take longer to verify. 

The exponent is fixed and must be 65537. 

As specified for all policy data, both the PubkeyValue and SigBlock must be in little-
endian byte order.  This may require tools that generate policies to reverse the byte 
order of keys and signatures produced by tools that use the ASN.1/big-endian format. 
 
typedef struct { 
    UINT16      Version; 
    UINT8 Reserved; 
    UINT8  SigAlgorithm;  // one of SIGALG_* 
    UINT32   PolicyElementsSize; 
    LCP_POLICY_ELEMENT  PolicyElements[]; 
    optionally LCP_SIGNATURE Signature; 
} LCP_POLICY_LIST; 

The Reserved field must be set to 0. 

PolicyElementsSize specifies the size (in bytes) of all of the LCP_POLICY_ELEMENTS 
structures in the object. It may be 0. A LCP_POLICY_LIST with no elements can be 
used as a “placeholder” signed list that can be updated at runtime with the actual 
signed data but without having to re-provision the LCP_POLICY in TPM NV. 

If SigAlgorithm is SIGALG_RSA_PKCS_15 then the Signature field must be present 
(else it must not). For a signed list, the RSA signature will be calculated over the 
entire LCP_POLICY_LIST structure, including the Signature member, except for the 
SigBlock field. 



LCP v2 Data Structures 
 
 
 

100   Intel® TXT Software Development Guide  

The version of the LCP_POLICY_LIST structure defined here is 1.0 (100H). 
 

E.4 LCP_POLICY_ELEMENT 

 
typedef struct { 
    UINT32  Size; 
    UINT32  Type; 
    UINT32  PolEltControl; 
    UINT8  Data[Size – 12]; 
} LCP_POLICY_ELEMENT; 

The structures in the following sub-sections correspond to the contents of the Data 
field for the specific type of element. 

While not required, it is recommended that Size be a 4-byte multiple. 

E.4.1 LCP_MLE_ELEMENT 

 
#define LCP_POLELT_TYPE_MLE 0 
 
typedef struct { 
    UINT8  SINITMinVersion; 
    UINT8  HashAlg;  // one of LCP_POLHALG_* 
    UINT16  NumHashes; 
    LCP_HASH     Hashes[NumHashes]; 
} LCP_MLE_ELEMENT; 

The LCP_MLE_ELEMENT represents a list of the acceptable MLEs, as measured by their 
hashes.  An MLE will match the policy if its hash (as calculated when traversing its 
pages in the MLE page table; not the value of PCR 18 after it has been extended) 
matches any hash within the list. 

SINIT will use the largest of the SINITMinVersion fields (the one in LCP_POLICY and 
the one in the LCP_MLE_ELEMENT which contains the matching MLE hash) to 
determine the minimum allowable version of SINIT. 

HashAlg specifies the hash algorithm to use when measuring the MLE and also of the 
values in Hashes[]. 

If NumHashes is 0 then this element will evaluate to false for all MLEs. 

E.4.2 LCP_PCONF_ELEMENT 

 
#define LCP_POLELT_TYPE_PCONF 1 
 
typedef struct { 
    UINT16   NumPCRInfos; 
    TPM_PCR_INFO_SHORT    PCRInfos[NumPCRInfos]; 
} LCP_PCONF_ELEMENT; 



 
LCP v2 Data Structures 
 
 

Intel® TXT Software Development Guide    101 

The LCP_PCONF_ELEMENT represents a list of acceptable PCR values on the platform 
at the time of launch.  The platform will satisfy the policy if the PCR values at the time 
of launch match any of the PCRInfos within the list. When processing the platform 
configuration list the LCP engine reads the appropriate PCR’s as defined by the first 
TPM_PCR_INFO_SHORT value in the list and concatenates them and cryptographically 
hashes them together. The result is compared to the hash value in the 
TPM_PCR_INFO_SHORT. If there is no match this process is repeated for each and 
every member of the list. As soon as a match is found, the LCP engine proceeds. 

Additionally, it is recommended, although not necessary, that all 
TPM_PCR_INFO_SHORT structures in the platform configuration list test the same set 
of PCR values. 

If NumPCRInfos is 0 then this element will evaluate to false for all platform 
configurations. 

The various TPM_* structures have been copied below to facilitate understanding of 
the list structure. 
 
typedef struct tdTPM_PCR_INFO_SHORT{ 
    TPM_PCR_SELECTION  pcrSelection; 
    TPM_LOCALITY_SELECTION localityAtRelease; 
    TPM_COMPOSITE_HASH  digestAtRelease; 
} TPM_PCR_INFO_SHORT; 
 
typedef struct tdTPM_PCR_SELECTION { 
    UINT16       sizeOfSelect; 
    [size_is(sizeOfSelect)] BYTE      pcrSelect[]; 
} TPM_PCR_SELECTION; 
 
#define TPM_LOCALITY_SELECTION BYTE   // each bit is the 
        // corresponding locality 
 
typedef struct tdTPM_DIGEST{ 
    BYTE digest[digestSize]; 
} TPM_DIGEST; 
typedef TPM_DIGEST  TPM_COMPOSITE_HASH; // hash of 
    // TPM_PCR_COMPOSITE 
     // object 

E.4.3 LCP_CUSTOM_ELEMENT 

 
#define LCP_POLELT_TYPE_CUSTOM 3 
 
typedef struct { 
    UINT32    data1; 
    UINT16    data2; 
    UINT16    data3; 
    UINT16    data4; 
    UINT8     data5[6]; 
} UUID; 
 
typedef struct { 
    UUID      Uuid; 
    UINT8     Data[]; 
} LCP_CUSTOM_ELEMENT; 



LCP v2 Data Structures 
 
 
 

102   Intel® TXT Software Development Guide  

The LCP_CUSTOM_ELEMENT allows for users, ISVs, IT, etc. to define policy-related 
data which can then be carried as part of a policy and interpreted by user/ISV/IT 
software.  Because the data is contained within a policy, its integrity will be verified by 
SINIT as part of policy processing. 

Uuid is a UUID value that uniquely identifies the format of the Data field.  This field 
will be used by all custom software that may have its own policy data.  It is thus 
important to generate the UUID value using a process that will provide a statistically 
unique value. 

The Data field’s contents are defined by the entity which “owns” the UUID of the 
element.  The size of this data must be included within the size of the 
LCP_POLICY_ELEMENT::Size field. 

E.5 Structure Endianness 

Endianness deals with the sequencing order of stored bytes.  There are two common 
sequencing orders: Little Endian (format used by Intel) and Big Endian. All structures 
and data are in Little Endian format, even LCP_POLICY.  

E.6 Errorcode Values 

Table 23. LCP Error Values outlines the possible error values, and their meanings that 
may be used by the SINIT Launch Control Policy Engine. 

Table 23. LCP Error Values 

Mnemonic Description 
TXT 

Error 
Value 

LCP_SINIT_REVOKED The version of SINIT being used 
has been revoked by the policy 
owner. 

0x01 

LCP_INCOMPATIBLE_SINIT The authenticated code module 
SINIT cannot be used on this 
platform, or the version number of 
the LCP_POLICY, 
LCP_POLICY_DATA cannot be 
processed. 

0x02 

LCP_PS_INTEGRITY_FAIL The integrity link between the 
Platform Supplier policy and its 
corresponding LCP_POLICY_DATA 
structure failed. 

0x03 

LCP_PO_INTEGRITY_FAIL The integrity link between the 
Platform Owner’s policy and its 
corresponding LCP_POLICY_DATA 
structure failed. 

0x04 



 
LCP v2 Data Structures 
 
 

Intel® TXT Software Development Guide    103 

Mnemonic Description 
TXT 

Error 
Value 

LCP_NO_PS_POLICY_DATA There exists a Platform Supplier 
LCP Policy but no corresponding 
LCP_POLICY_DATA was placed in 
memory. 

0x05 

LCP_NO_PO_POLICY_DATA There exists a Platform Owner’s 
LCP Policy but no corresponding 
LCP_POLICY_DATA was placed in 
memory. 

0x06 

LCP_UNKNOWN_POLICY_TYPE LCP does not support the 
PolicyType specified in the Launch 
Control Policy. 

0x07 

LCP_WRONG_HASH_ALG LCP does not support the hash 
algorithm identified in the Launch 
Control Policy 

0x08 

LCP_ MLE_MISMATCH LCP could not find the measured 
environment in the list given 

0x09 

LCP_PLATFORM_CONFIG_MISMATCH The current platform configuration 
did not match any of those listed. 

0x0A 

LCP_POLICY_REVOKED The policy data being used is older 
than allowed by the platform 

0x0B 

 



Detection of New SMX Capabilities 
 
 
 

104   Intel® TXT Software Development Guide  

Appendix F Detection of New SMX 
Capabilities 

The GETSEC[PARAMETERS] instruction, described in the Intel 64 and IA-32 Software 
Developer Manual, Volume 2B, has been extended to support multiple processor 
systems. Parameter type 5 has been added so that software can enumerate these 
capabilities. 

Table 24: Updated GETSEC[PARAMETER] Parameter Types 

Parameter Type 
EAX[4:0] 

Parameter 
Description 

EAX[31:5] EBX[31:0] ECX[31:0] 

0 - 4 See Table 6-7 in Intel 64 and IA-32 Software Developer Manual, Volume 2B 

5 TXT extensions 
support 

TXT Feature 
Extensions Flags 
(see Table 25) 

Reserved Reserved 

6 – 31 Undefined Reserved Reserved Reserved 

Table 25: TXT Feature Extensions Flags 

Bit Definition Description 

5 Processor based 
S-CRTM support 

Returns 1 if this processor implements a processor-rooted S-CRTM 
capability and 0 if not (S-CRTM is rooted in BIOS). 

This flag cannot be used to infer whether the chipset supports TXT or 
whether the processor support SMX. 

 

6 Machine Check 
Handling 

Returns 1 if it machine check status registers can be preserved through 
ENTERACCS and SENTER. If this bit is 1, the caller of ENTERACCS and 
SENTER is not required to clear machine check error status bits before 
invoking these GETSEC leaves. 

If this bit returns 0, the caller of ENTERACCS and SENTER must clear all 
machine check error status bits before invoking these GETSEC leaves. 

31:7 Reserved Reserved for future use. Will return 0. 

 


	1 Overview
	1.1 Measurement and Intel® Trusted Execution Technology
	1.2 Dynamic Root of Trust
	1.3 Storing the Measurement
	1.4 Controlled Take-down
	1.5 SMX and VMX Interaction
	1.6 Authenticated Code Module
	1.7 Chipset Support
	1.8 TPM Usage
	1.9 PCR Usage
	1.10 DMA Protection
	1.11 Intel® TXT Shutdown

	2 Measured Launched Environment 
	2.1 MLE Architecture Overview
	2.2 MLE Launch
	2.2.3.1 Matching an AC Module to the Chipset
	2.2.3.2 Verifying Compatibility of SINIT with the MLE
	2.2.4.1 Loading the MLE
	2.2.4.2 Intel® Trusted Execution Technology Heap Initialization
	2.2.4.3 Rendezvousing Processors and Saving State
	2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution
	2.2.5.2 Selection of Launch Capabilities
	2.2.5.3 TPM Preparation
	2.2.5.4 Intel® Trusted Execution Technology Launch

	2.3 MLE Initialization
	2.4 MLE Operation
	2.4.4.1 Intel® Trusted Execution Technology Configuration Space
	2.4.4.2 Intel® Trusted Execution Technology Device Space
	2.4.8.1 T-state Transitions
	2.4.8.2 P-State Transitions
	2.4.8.3 C-State Transitions
	2.4.8.4 S-State Transitions

	2.5 MLE Teardown
	2.6 Other Considerations

	3 Verifying Measured Launched Environments
	3.1 Overview
	3.1.1.1 LCP Policy
	3.1.1.2 PolicyHash Field for LCP_POLTYPE_LIST
	3.1.1.3 LCP Policy Data
	3.1.1.4 LCP Policy Element

	3.2 Policy Engine Logic
	3.3 Measuring the Enforced Policy
	3.4 Revocation
	3.5 Platform Owner Index

	4 Development and Deployment Considerations
	4.1 Launch Control Policy Creation
	4.2 Launch Errors and Remediation
	4.3 Deployment
	4.3.1.1 TPM Ownership
	4.3.1.2 Policy Provisioning



