

Document Number: 315168-010

Intel® Trusted Execution
Technology (Intel® TXT)

Software Development Guide
Measured Launched Environment Developer’s Guide

March 2014

2 Intel® TXT Software Development Guide

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION,
YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific
hardware and software you use.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (TXT) is a security
technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, a
Intel® Trusted Execution Technology -enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other
Intel® Trusted Execution Technology compatible measured virtual machine monitor. In addition, Intel® Trusted Execution
Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group and specific software for some
uses. See http://www.intel.com/ for more information.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary
depending on hardware and software configurations and may require a BIOS update. Software applications may not be
compatible with all operating systems. Please check with your application vendor

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 2006-2014 Intel Corporation

http://www.intel.com/design/literature.htm

Intel® TXT Software Development Guide 3

Contents
1 Overview ... 10

1.1 Measurement and Intel® Trusted Execution Technology 10
1.2 Dynamic Root of Trust .. 11

1.2.1 Launch Sequence .. 11
1.3 Storing the Measurement .. 12
1.4 Controlled Take-down ... 12
1.5 SMX and VMX Interaction .. 12
1.6 Authenticated Code Module .. 13
1.7 Chipset Support ... 13
1.8 TPM Usage .. 14
1.9 Hash Algorithm Support .. 14
1.10 PCR Usage .. 15

1.10.1 Legacy Usage ... 15
1.11 Details and Authorities Usage ... 17

1.11.1 PCR 17 (Details) ... 17
1.11.2 PCR 18 (Authorities) .. 18

1.12 DMA Protection .. 18
1.12.1 DMA Protected Range (DPR) ... 18
1.12.2 Protected Memory Regions (PMRs) ... 18

1.13 Intel® TXT Shutdown .. 19
1.13.1 Reset Conditions ... 19

2 Measured Launched Environment .. 21
2.1 MLE Architecture Overview .. 21
2.2 MLE Launch ... 23

2.2.1 Intel® TXT Detection and Processor Preparation 24
2.2.2 Detection of Previous Errors .. 25
2.2.3 Loading the SINIT AC Module .. 26
2.2.4 Loading the MLE and Processor Rendezvous 30
2.2.5 Performing a Measured Launch .. 33

2.3 MLE Initialization .. 36
2.4 MLE Operation ... 41

2.4.1 Address Space Correctness ... 41
2.4.2 Address Space Integrity ... 41
2.4.3 Physical RAM Regions .. 41
2.4.4 Intel® Trusted Execution Technology Chipset Regions 42
2.4.5 Device Assignment .. 42
2.4.6 Protecting Secrets ... 42
2.4.7 Machine Specific Register Handling .. 43
2.4.8 Interrupts and Exceptions ... 43
2.4.9 ACPI Power Management Support .. 44
2.4.10 Processor Capacity Addition (aka CPU Hotplug) 46

2.5 MLE Teardown ... 47
2.6 Other Considerations .. 50

2.6.1 Saving MSR State across a Measured Launch 50

4 Intel® TXT Software Development Guide

3 Verifying Measured Launched Environments .. 51
3.1 Overview .. 51
3.2 LCP Components, v2.2 (TPM 1.2) .. 52

3.2.1 LCP Policy .. 52
3.2.2 PolicyHash Field for LCP_POLTYPE_LIST 54
3.2.3 LCP Policy Data ... 55
3.2.4 LCP Policy Element .. 57
3.2.5 Signed Policies .. 57
3.2.6 Supported Cryptographic Algorithms .. 57
3.2.7 Policy Engine Logic .. 58
3.2.8 Allow Any Policy .. 60
3.2.9 Policy with LCP_POLICY_DATA ... 60
3.2.10 Force Platform Owner Policy .. 61
3.2.11 Platform Owner Index .. 61

3.3 LCP Components, v3.0 (TPM2.0) .. 61
3.3.1 LCP POLICY2 .. 61
3.3.2 LCP Policy Data ... 62
3.3.3 LCP Policy Elements ... 62
3.3.4 TPM NV RAM ... 62
3.3.5 LCP Evaluation .. 67
3.3.6 LCP Element Structures .. 68
3.3.7 Effective LCP Hash ... 68
3.3.8 Effective TPM NV info Hash ... 71
3.3.9 LCP Policy Engine Logic .. 72

3.4 Revocation .. 74
3.4.1 SINIT Revocation .. 74

4 Development and Deployment Considerations ... 76
4.1 Launch Control Policy Creation ... 76
4.2 Launch Errors and Remediation .. 76
4.3 Determining Trust .. 77

4.3.1 Migration of SEALed data .. 77
4.4 Deployment ... 78

4.4.1 LCP Provisioning .. 78
4.4.2 SINIT Selection ... 79

Appendix A : Intel® TXT Execution Technology Authenticated Code Modules............................. 80

A.1 Authenticated Code Module Format ... 80

A.1.1 Memory Type Cacheability Restrictions ... 88

A.1.2 Authentication and Execution of AC Module ... 88

Appendix B : SMX Interaction with Platform .. 90

B.1 Intel® Trusted Execution Technology Configuration Registers................................. 90

B.1.1 TXT.STS – Status .. 90

B.1.2 TXT.ESTS – Error Status .. 91

B.1.3 TXT.ERRORCODE – Error Code .. 92

B.1.4 TXT.CMD.RESET – System Reset Command .. 93

B.1.5 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command 94

Intel® TXT Software Development Guide 5

B.1.6 TXT.VER.FSBIF – Frontside Bus Interface ... 94

B.1.7 TXT.DIDVID – TXT Device ID .. 95

B.1.8 TXT.VER.QPIIF – Intel® QuickPath Interconnect Interface 95

B.1.9 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config Command 96

B.1.10 TXT.SINIT.BASE – SINIT Base Address .. 96

B.1.11 TXT.SINIT.SIZE – SINIT Size .. 96

B.1.12 TXT.MLE.JOIN – MLE Join Base Address .. 97

B.1.13 TXT.HEAP.BASE – TXT Heap Base Address .. 97

B.1.14 TXT.HEAP.SIZE – TXT Heap Size ... 97

B.1.15 TXT.DPR – DMA Protected Range... 98

B.1.16 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command 98

B.1.17 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command 99

B.1.18 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command 99

B.1.19 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command 99

B.1.20 TXT.PUBLIC.KEY – AC Module Public Key Hash .. 100

B.1.21 TXT.CMD.SECRETS – Set Secrets Command ... 100

B.1.22 TXT.CMD.NO-SECRETS – Clear Secrets Command ... 100

B.1.23 TXT.E2STS – Extended Error Status ... 101

B.2 TPM Platform Configuration Registers ... 101

B.3 Intel® Trusted Execution Technology Device Space .. 101

Appendix C Intel® TXT Heap Memory .. 103

C.1 Extended Data Elements .. 104

C.1.1 HEAP_END_ELEMENT .. 104

C.1.2 HEAP_CUSTOM_ELEMENT .. 105

C.2 BIOS Data Format ... 105

C.2.1 HEAP_BIOS_SPEC_VER_ELEMENT ... 107

C.2.2 HEAP_ACM_ELEMENT .. 107

C.2.3 HEAP_STM_ELEMENT .. 107

C.3 OS to MLE Data Format ... 107

C.4 OS to SINIT Data Format ... 108

C.4.1 HEAP_TPM_EVENT_LOG_ELEMENT .. 109

C.4.2 HEAP_EVENT_LOG_POINTER_ELEMENT2 .. 109

C.5 SINIT to MLE Data Format .. 110

C.5.1 HEAP_MADT_ELEMENT .. 113

6 Intel® TXT Software Development Guide

Appendix D : LCP v2 Data Structures .. 114

D.1 LCP_POLICY ... 114

D.2 LCP_POLICY_DATA .. 114

D.3 LCP_POLICY_LIST ... 115

D.3.1 List Signatures ... 115

D.3.2 LCP_POLICY_LIST Structure ... 115

D.4 LCP_POLICY_ELEMENT .. 116

D.4.1 LCP_MLE_ELEMENT ... 116

D.4.2 LCP_PCONF_ELEMENT ... 117

D.4.3 LCP_SBIOS_ELEMENT .. 118

D.4.4 LCP_CUSTOM_ELEMENT ... 118

D.5 Structure Endianness ... 119

Appendix E LCP Data Structures, v3 ... 120

E.1 NV Index LCP Policy .. 120

E.2 LCP Policy Data... 122

E.2.1 LCP_LIST ... 122

E.2.2 LCP_POLICY_DATA2 .. 122

E.3 LCP Policy List v2 .. 122

E.3.1 List Signatures ... 123

E.3.1.1 RSASSA ... 123

E.3.1.2 ECDSA .. 123

E.3.1.3 SM2 .. 124

E.3.2 Signature Format .. 124

E.4 New Policy Elements .. 124

E.4.1 LCP_Hash .. 124

E.4.2 MLE Element .. 125

E.4.3 SBIOS Element ... 125

E.4.4 STM Element .. 125

E.4.5 PCONF Element .. 125

E.5 NV AUX Index Data Structure ... 127

Appendix F : Platform State upon SINIT Exit and Return to MLE ... 129

Appendix G : TPM Event Log ... 131

G.1 TPM 1.2 Event Log .. 131

G.1.1 PCR Events .. 132

Intel® TXT Software Development Guide 7

G.2 TPM 2.0 Event Log .. 134

G.2.1 TrEE Event Logging Structures .. 134

G.2.2 TPM 2.0 Event Log Pointer Element ... 135

G.2.3 Event types added for TPM2.0 ... 136

Appendix H : ACM Hash Algorithm Support .. 138

H.1 Supported Hash Algorithms .. 138

Appendix I : ACM Error Codes .. 140

Figures

Figure 1. Launch Control Policy Components ... 52
Figure 2. LCP_POLICY Structure .. 53
Figure 3. LCP_POLICY_DATA Structure ... 56
Figure 4. Hash Algorithm List Selection .. 139

Tables

Table 1. MLE Header structure .. 21
Table 2. MLE/SINIT Capabilities Field Bit Definitions ... 22
Table 3: AUX Index Attributes ... 63
Table 4: PS Index Attributes PS1 ... 64
Table 5: PS Index Attributes PS2 ... 64
Table 6: PO Index Attributes... 65
Table 7: AUX Index Size .. 65
Table 8: PS and PO Index Size .. 66
Table 9. Authenticated Code Module Format ... 80
Table 10. AC module Flags Description ... 82
Table 11. Chipset AC Module Information Table ... 84
Table 12. Chipset ID List .. 85
Table 13. TXT_ACM_CHIPSET_ID Format .. 85
Table 14. Processor ID List ... 86
Table 15: TPM Info List .. 86
Table 16. TPM Capabilities Field .. 87
Table 17. Type Field Encodings for Processor-Initiated Intel TXT Shutdowns 92
Table 18. TPM Locality Address Mapping ... 102
Table 19. Intel® Trusted Execution Technology Heap .. 103
Table 20. BIOS Data Table ... 105
Table 21. MLE Flags Field Bit Definitions ... 106
Table 22. OS to SINIT Data Table .. 108
Table 23. SINIT to MLE Data Table for TPM 1.2 family .. 110
Table 24. SINIT to MLE Data Table for TPM2.0 Family .. 111
Table 25. SINIT Memory Descriptor Record ... 113
Table 26. Platform State upon SINIT exit and return to MLE 129
Table 27. Event Log Container Format ... 131
Table 28. Table PCR Event Log Structure .. 132
Table 29. Event Types ... 133

8 Intel® TXT Software Development Guide

Table 30. Event Types Specific to TPM2.0 ... 136
Table 31. General TXT.ERRORCODE Register Format .. 140
Table 32. TXT.ERRORCODE Register Format for CPU-initiated TXT-shutdown 140
Table 33. TXT.ERRORCODE Register Format for ACM-initiated TXT-shutdown 141
Table 34. TXT.ERRORCODE definitions stable among ACM modules 142

Intel® TXT Software Development Guide 9

Revision History

Revision
Number

Description Revision Date

-001 • Initial release. May 2006

-002 • Established public document number
• Edited throughout for clarity.

August 2006

-003 • Added launched environment consideration
• Renamed LT to Intel® TXT

October 2006

-004 • Updated for production platforms
• Use MLE terminology

August 2007

-005 • Updated for latest structure versions and new RLP wakeup mechanism
• Added Launch Control Policy information
• Removed TEP Appendix
• Many miscellaneous changes and additions

June 2008

-006 • Miscellaneous errata
• Added definition of LCP v2
• Multiple processor support

December 2009

-007 • Miscellaneous errata
• Documented ProcessorIDList support
• Described CPU Hotplug handling
• Updated TXT configuration registers
• Documented new TXT Heap structures
• Added LCP_SBIOS_ELEMENT
• Documented processor and system state after SENTER/RLP wakeup

March 2011

-008 • Format updates June 2011

-009 • Numerous updates from prior author
• Added text for LCP details/authorities
• Corrected osinitdata offset 84 for versions 6+

April 2013

-010 • Corrections to data structures, algorithm detail versus prior versions
• Inclusion of TPM 2.0 changes and additions

March 2014

§ §

Overview

10 Intel® TXT Software Development Guide

1 Overview
Intel’s technology for safer computing, Intel® Trusted Execution Technology (Intel®
TXT), defines platform-level enhancements that provide the building blocks for
creating trusted platforms.

Whenever the word trust is used, there must be a definition of who is doing the
trusting and what is being trusted. This enhanced platform helps to provide the
authenticity of the controlling environment such that those wishing to rely on the
platform can make an appropriate trust decision. The enhanced platform determines
the identity of the controlling environment by accurately measuring the controlling
software (see Section 1.1).

Another aspect of the trust decision is the ability of the platform to resist attempts to
change the controlling environment. The enhanced platform will resist attempts by
software processes to change the controlling environment or bypass the bounds set by
the controlling environment.

What is the controlling environment for this enhanced platform? The platform is a set
of extensions designed to provide a measured and controlled launch of system
software that will then establish a protected environment for itself and any additional
software that it may execute.

These extensions enhance two areas:

• The launching of the Measured Launched Environment (MLE)

• The protection of the MLE from potential corruption

The enhanced platform provides these launch-and-control interfaces using Safer Mode
Extensions (SMX).

The SMX interface includes the following functions:

• Measured launch of the MLE

• Mechanisms to ensure the above measurement is protected and stored in a secure
location

• Protection mechanisms that allow the MLE to control attempts to modify itself

1.1 Measurement and Intel® Trusted Execution
Technology
Intel TXT uses the term measurement frequently. Measuring software involves
processing the executable such that the result (a) is unique and (b) indicates changes
in the executable. A cryptographic hash algorithm meets these needs.

A cryptographic hash algorithm is sensitive to even one-bit changes to the measured
entity. A cryptographic hash algorithm also produces outputs that are sufficiently large
so the potential for collisions (where two hash values are the same) is extremely

Overview

Intel® TXT Software Development Guide 11

small. When the term measurement is used in this specification, the meaning is that
the measuring process takes a cryptographic hash of the measured entity.

The controlling environment is provided by system software such as an OS kernel or
VMM. The software launched using the SMX instructions is known as the Measured
Launched Environment (MLE). MLEs provide different launch mechanisms and
increased protection (offering protection from possible software corruption).

1.2 Dynamic Root of Trust
A central objective of the Intel TXT platform is to provide a measurement of the
launched execution environment.

One measurement is made when the platform boots, using techniques defined by the
Trusted Computing Group (TCG). The TCG defines a Root of Trust for Measurement
(RTM) that executes on each platform reset; it creates a chain of trust from reset to
the measured environment. As the measurement always executes at platform reset,
the TCG defines this type of RTM as a Static RTM (SRTM).

Maintaining a chain of trust for a length of time may be challenging for an MLE meant
for use in Intel TXT; this is because an MLE may operate in an environment that is
constantly exposed to unknown software entities. To address this issue, the enhanced
platform provides another RTM with Intel TXT instructions. The TCG terminology for
this option is Dynamic Root of Trust for Measurement (DRTM). The advantage of a
DRTM (also called the ‘late launch’ option) is that the launch of the measured
environment can occur at any time without resorting to a platform reset. It is possible
to launch an MLE, execute for a time, terminate the MLE, execute without
virtualization, and then launch the MLE again. One possible sequence is:
1. During the BIOS load: (a) launch an MLE for use by the BIOS, (b) terminate the

MLE when its work is done, (c) continue with BIOS processing and hand off to an
OS.

2. Then, the OS loads and launches a different MLE.

In both instances, the platform measures each MLE and ensures the proper storage of
the MLE measurement value.

1.2.1 Launch Sequence

When launching an MLE, the environment must load two code modules into memory.
One module is the MLE. The other is known as an authenticated code (AC) module.
The AC module (also referred to as ACM) is only in use during the measurement and
verification process and is chipset-specific. The chipset vendor digitally signs it; the
launch process must successfully validate the digital signature before continuing.

With the AC module and MLE in memory, the launching environment can invoke the
GETSEC[SENTER] instruction provided by SMX.

GETSEC[SENTER] broadcasts messages to the chipset and other physical or logical
processors in the platform. In response, other logical processors perform basic
cleanup, signal readiness to proceed, and wait for messages to join the environment
created by the MLE. As this sequence requires synchronization, there is an initiating
logical processor (ILP) and responding logical processor(s) (RLP(s)). The ILP must be

https://www.trustedcomputinggroup.org/home/
https://www.trustedcomputinggroup.org/home/

Overview

12 Intel® TXT Software Development Guide

the system bootstrap processor (BSP), which is the processor with IA32_APIC_BASE
MSR.BSP = 1. RLPs are also often referred to as application processors (APs).

After all logical processors signal their readiness to join and are in the wait state, the
initiating logical processor loads, authenticates, and executes the AC module. The AC
module tests for various chipset and processor configurations and ensures the
platform has an acceptable configuration. It then measures and launches the MLE.

The MLE initialization routine completes system configuration changes (including
redirecting INITs, SMIs, interrupts, etc.); it then issues a new SMX instruction that
wakes up the responding logical processors (RLPs) and brings them into the measured
environment. At this point, all logical processors and the chipset are correctly
configured.

At some later point, it is possible for the MLE to exit and then be launched again,
without issuing a system reset.

1.3 Storing the Measurement
SMX operation during the launch provides an accurate measurement of the MLE. After
creating the measurement, the initiating logical processor stores that measurement in
the Trusted Platform Module (TPM), defined by the TCG. An enhanced platform
includes mechanisms that ensure that the measurement of the MLE (completed during
the launch process) is properly reported to the TPM.

With the MLE measurement in the TPM, the MLE can use the measurement value to
protect sensitive information and detect potential unauthorized changes to the MLE
itself.

1.4 Controlled Take-down
Because the MLE controls the platform, exiting the MLE is a controlled process. The
process includes: (a) shutting down any guest virtual machines (VMs) if they were
created; (b) ensuring that memory previously used does not leak sensitive
information.

The MLE cleans up after itself and terminates the MLE control of the environment. If a
virtual machine manager (VMM) was running, the MLE may choose to turn control of
the platform over to the software that was running in one of the VMs.

1.5 SMX and VMX Interaction
A VM abort may occur while in SMX operation. This behavior is described in the Intel
64 and IA-32 Software Developer Manual, Volume 3B. Note that entering
authenticated code execution mode or launching of a measured environment affects
the behavior and response of the logical processors to certain external pin events.

Overview

Intel® TXT Software Development Guide 13

1.6 Authenticated Code Module
To support the establishment of a measured environment, SMX enables the capability
of an authenticated code execution mode. This provides the ability for a special code
module, referred to as an authenticated code module (ACM, also frequently referred to
as “SINIT”), to be loaded into internal RAM (referred to as authenticated code
execution area) within the processor. The AC module is first authenticated and then
executed using a tamper resistant mechanism.

Authentication is achieved through the use of a digital signature in the header of the
AC module. The processor calculates a hash of the AC module and uses the result to
validate the signature. Using SMX, a processor will only initialize processor state or
execute the AC module if it passes authentication. Since the authenticated code
module is held within the internal RAM of the processor, execution of the module can
occur in isolation with respect to the contents of external memory or activities on the
external processor bus.

1.7 Chipset Support
One important feature the chipset provides is direct memory access (DMA) protection
via Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d). Intel®
VT-d, under control of the MLE, allows the MLE to protect itself and any other software
such as guest VMs from unauthorized device access to memory. Intel VT-d blocks
access to specific physical memory pages and the enforcement of the block occurs for
all DMA access to the protected pages. See Chapter 1.12 for more information on DMA
protection mechanisms.

The Intel TXT architecture also provides extensions that access certain chipset
registers and TPM address space.

Chipset registers that interact with SMX are accessed from two regions of memory by
system software using memory read/write protocols. These two memory regions,
Intel TXT Public space and Intel TXT private space, are mappings to the same set of
chipset registers but with different read/write permissions depending on which space
the memory access came through. The Intel TXT Private space is not accessible to
system software until it is unlocked by SMX instructions.

The sets of interface registers accessible within a TPM device are grouped by a locality
attribute and are a separate set of address ranges from the Intel TXT Public and
Private spaces. The following localities are defined:

• Locality 0 : Non-trusted and legacy TPM operation

• Locality 1 : An environment for use by the Trusted Operating System

• Locality 2 : Trusted OS

• Locality 3 : Authenticated Code Module

• Locality 4 : Intel TXT hardware use only

Similar to Intel TXT Public and Private space, some of these localities are only
accessible via SMX instructions and others are not accessible by software until
unlocked by SMX instructions.

Overview

14 Intel® TXT Software Development Guide

1.8 TPM Usage
Intel TXT makes extensive use of the Trusted Platform Module (TPM) defined by the
Trusted Computing Group (TCG) in the TCG TPM Specification, Version 1.2 and the
successor TCG TPM Specification 2.0. The TPM provides a repository for
measurements and the mechanisms to make use of the measurements. The system
makes use of the measurements to both report the current platform configuration and
to provide long-term protection of sensitive information.

The TPM stores measurements in Platform Configuration Registers (PCRs). Each PCR
provides a storage area that allows an unlimited number of measurements in a fixed
amount of space. They provide this feature by an inherent property of cryptographic
hashes. Outside entities never write directly to a PCR register, they “extend” PCR
contents. The extend operation takes the current value of the PCR, appends the new
value, performs a cryptographic hash on the combined value, and the hash result is
the new PCR value. One of the properties of cryptographic hashes is that they are
order dependent. This means hashing A then B produces a different result from
hashing B then A. This ordering property allows the PCR contents to indicate the order
of measurements.

Sending measurement values from the measuring agent to the TPM is a critical
platform task. The Dynamic Root of Trust for Measurement (DRTM) requires specific
messages to flow from the DRTM to the TPM. The Intel TXT DRTM is the
GETSEC[SENTER] instruction and the system ensures GETSEC[SENTER] has special
messages to communicate to the TPM. These special messages take advantage of TPM
localities 3 and 4 to protect the messages and inform the TPM that GETSEC[SENTER]
is sending the messages.

With the release of the TPM 2.0 specification and supporting devices, many changes
may be required for TXT launch. TPM 2.0 devices can support a variety of
cryptographic algorithms, and a single device will often support multiple digest and
asymmetric signature algorithms. For the purposes of this document, TPM 1.2 and
2.0 devices will be referred to as two distinct families. The MLE and ACM determine
that the platform TPM is either 1.2 or 2.0 family. In subsequent discussion, we will
refer to actions and structures in the presence of a 1.2 or 2.0 TPM as TPM1.2 mode
and TPM2.0 mode, respectively.

1.9 Hash Algorithm Support
TPM 2.0 family devices provide PCRs in banks—that is, one bank of PCRs for each
supported digest algorithm. For example, a TPM that supports three hashing
algorithms will have three banks of PCRs and thus “measuring an object into PCRn”
implies hashing that object using each of the three hashing algorithms and extending
that hash digest into PCRn of the appropriate bank. The TPM 2.0 specification
enumerates all the hash algorithms it allows; of those, the current TXT components
support at most SHA1, SHA256, SHA384, SHA512, and SM3_256.

TPM 2.0 devices support algorithm agile commands. These “event” commands extend
measurements into all existing PCR banks. Measuring objects of significant size using
event commands may incur performance penalties.

Alternatively, embedded software can be used to compute hashes, and the results
then extended into PCRs using non-agile commands. While this may be more

https://www.trustedcomputinggroup.org/specs/TPM
https://www.trustedcomputinggroup.org/specs/TPM

Overview

Intel® TXT Software Development Guide 15

efficient, software support for all the hashing algorithms supported by the TPM may
not be present. In this situation, PCRs in banks utilizing algorithms unsupported by
the software present will be capped with the value “1”.

Whether extend calculations will be done using TPM hardware event commands or
software implementations is an MLE decision, and will be communicated to the
launched ACM via the “flags” field in Table 22.

TPM 1.2 devices only support SHA1 as digest method. To simplify discussion, for both
device families, digest methods will be denoted as DIGEST. For TPM1.2 this means
SHA1. For TPM2.0, this means all of the methods supported by the device.

In TPM1.2 mode certain values are extended into PCRs without hashing. Some of
them are extended this way historically; other are using extends of zero digests or
contestant values as an indication of various platform states or events.

These extends will continue to be supported in TPM1.2 mode without changes to
ensure backwards compatibility.

In TPM2.0 this practice is discouraged and simply cannot be supported when
Algorithm Agile Extend Policy is enforced. Therefore in all above cases we will not
extend constant values as is but will measure them instead – that is we will hash
these constant values and extend resultant hashes into PCRs.

All such cases are flagged in the explanation of details/authorities measurements
below.

1.10 PCR Usage
As part of the measured launch, Intel TXT will extend measurements of the elements
and configuration values of the dynamic root of trust into certain TPM PCRs. The
values comprising these measurements (indicated below) are provided in the
SinitMleData structure described in section C.5.

While the MLE may choose to extend additional values into these PCRs, the values
described below are those present immediately after the MLE receives control
following the GETSEC[SENTER] instruction.

Since these values are arrived at by a series of measurement and extend operation
combinations, determining their derivation requires a trace or log of the extending
steps executed. These steps are recorded in the TPM Event Log, described in
Appendix G.

1.10.1 Legacy Usage

Legacy—or original—PCR usage separates the values in the PCRs according to
platform elements and MLE. The platform elements of the trusted computing base
(TCB), such as SINIT and launch control policy (LCP), are put into PCR 17 and the MLE
is extended into PCR 18. The exact contents of PCRs 17 and 18 are specified below.

Legacy usage corresponds to a value of 0 in bit 4 of the Capabilities field (see Table
2). Because this needs to be compatible with earlier versions of the Capabilities field,
for which bit 4 was reserved, inverse logic is used to represent this.

Overview

16 Intel® TXT Software Development Guide

Legacy usage is not supported when the TPM present is a 2.0 family device. Hence
the discussion in this section refers to SHA-1 explicitly.

1.10.1.1 PCR 17

PCR 17 is initialized using the TPM_HASH_START/TPM_HASH_END sequence. The
HASH_DATA provided in this sequence is the concatenation of the hash of the SINIT
ACM that was used in the launch process and the 4 byte value of the SENTER
parameters (in the EDX register and also in SinitMleData.EdxSenterFlags). As part of
this sequence, PCRs 17-23 are reset to 0. The hash of SINIT is also stored in the
SinitMleData.SinitHash field. If the SINIT to MLE Data Table (section C.5) version is 7
or greater, the hash of the SINIT ACM is performed using SHA-256, otherwise using
SHA-1. If a SHA-256 hash was used, the SinitMleData.SinitHash field will contain the
value of PCR 17 after the initial extend operation (see below for more details).

PCR 17 is then extended with the SHA-1 hash of the following items concatenated in
this order:

BIOS ACM ID – SinitMleData.BiosAcmID (20 bytes)

System Management Interrupt (SMI) Transfer Monitor (STM) opt-in indicator –
SinitMleData.MsegValid (8 bytes)

SHA-1 (secure hash algorithm v1) hash of the STM (or all 0s if opt-out) –
SinitMleData.StmHash (20 bytes)

LCP Control Field of used policy (PS or PO) – SinitMleData.PolicyControl (4 bytes)

SHA-1 hash of used policy (or all 0s if chosen not to be extended) –
SinitMleData.LcpPolicyHash (20 bytes)

MLE-chosen Capabilities (or all 0s if chosen not to be extended) –
OsSinitData.Capabilities (4 bytes)

If the SINIT to MLE Data Table (section C.5) version is 8 or greater, an additional
4 byte field representing processor-based S-CRTM status is concatenated. This
field represents whether the S-CRTM (Static Core Root of Trust for Measurement)
was implemented in the processor hardware (1) or in BIOS (0).

If SinitMleData.Version = 6, PCR 17’s final value will be:

 Extend (SHA-1(SinitMleData.SinitHash | SinitMleData.EdxSenterFlags))

 Extend (SHA-1 (SinitMleData.BiosAcm.ID | SinitMleData.MsegValid |
SinitMleData.StmHash | SinitMleData.PolicyControl | SinitMleData.LcpPolicyHash |
(OsSinitData.Capabilities, 0)))

If SinitMleData.Version = 7, PCR 17’s final value will be:

 SHA-1 (SinitMleData.SinitHash | SHA-1 (SinitMleData.BiosAcm.ID |
SinitMleData.MsegValid | SinitMleData.StmHash | SinitMleData.PolicyControl |
SinitMleData.LcpPolicyHash | (OsSinitData.Capabilities, 0)))

If SinitMleData.Version >= 8, PCR 17’s final value will be:

Overview

Intel® TXT Software Development Guide 17

 SHA-1 (SinitMleData.SinitHash | SHA-1 (SinitMleData.BiosAcm.ID |
SinitMleData.MsegValid | SinitMleData.StmHash | SinitMleData.PolicyControl |
SinitMleData.LcpPolicyHash | (OsSinitData.Capabilities, 0) |
SinitMleData.ProcessorSCRTMStatus))

Where the Extend() operation is a SHA-1 hash of the previous value in the PCR
concatenated with the value being extended (the previous value is 20 bytes of 0s in
the case of the first extend to a PCR).

1.10.1.2 PCR 18

PCR 18 will be extended with the SHA-1 hash of the MLE, as reported in the
SinitMleData.MleHash field.

Thus, PCR 18’s final value will be:

 Extend (SinitMleData.MleHash)

1.11 Details and Authorities Usage
This usage of the PCRs separates the values in the PCRs according to whether the
value extended is the actual measurement of a given entity (a detail) or represents
the authority for the given entity (an authority). Details are extended to PCR 17 and
authorities to PCR 18. Evaluators who do not care about rollback can use the
authorities PCR (18) and it should remain the same even when elements of the TCB
are changed.

This usage corresponds to a value of 1 in bit 5 of the Capabilities field (see Table 2).

1.11.1 PCR 17 (Details)

“Details” measurements include hashes of all components participating in establishing
of trusted execution environment and due to very nature of hash algorithm change of
any component entail change of final PCR17 value.

The following hashes are extended to PCR17 in the order given:

 BIOS AC registration info retrieved from AUX Index. In TPM 1.2 mode, 20
bytes of that data, in TPM 2.0 mode, DIGEST of 32 bytes of that data.

 DIGEST of Processor S-CRTM status coded as DWORD.

 DIGEST of PolicyControl field of used policy (PS or PO) coded as DWORD

 DIGEST of all matching elements used by the policy. If there is no policy
used, for 1.2 family, this digest is zero; for 2,0 family, this is DIGEST(0x0)

 DIGEST of STM. If STM is not enabled, for 1.2 family, this digest is zero; for
2.0 family, this is DIGEST(0x0)

 DIGEST of Capability field of OsSinitData table, coded as DWORD

 DIGEST of MLE.

Overview

18 Intel® TXT Software Development Guide

1.11.2 PCR 18 (Authorities)

“Authority” measurements include hashes of some unique identifying properties of
signing authorities such as public signature verification keys. This enables the same
authority to issue an update of component without affecting the final PCR18 value,
because the signing authority is unchanged.

The following hashes are extended to PCR18 in the order given:

 DIGEST of public key modulus used to verify SINIT signature.

 DIGEST of Processor S-CRTM status coded as DWORD – same value as
extended to PCR17.

 DIGEST of Capability field of OsSinitData table, coded as DWORD – same
value as extended to PCR17.

 DIGEST of PolicyControl field of used policy (platform supplier (PS) or platform
owner (PO)) coded as DWORD – same value as extended to PCR17.

 DIGEST of LCP – DIGEST of concatenation of hashes of lists containing
matching elements. If no policy, for 1.2 family, this digest is zero; for 2.0
family, it is DIGEST(0x0)

1.12 DMA Protection
This chapter briefly describes the two chipset mechanisms that can be used to protect
regions of memory from DMA access by bus master devices. More details on these
mechanisms can be found in the External Design Specification (EDS) of the targeted
chipset family and Intel® Virtualization Technology for Directed I/O Architecture
Specification.

1.12.1 DMA Protected Range (DPR)

The DMA Protected Range (DPR) is a region of contiguous physical memory whose last
byte is the byte before the start of TXT segment (TSEG), and which is protected from
all DMA access. The DPR size is set and locked by BIOS. This protection is applied to
the final physical address after any other translations (e.g. Intel VT-d, graphics
address remapping table (GART), etc.).

The DPR covers the Intel TXT heap and SINIT AC Module reserved memory (as
specified in the TXT.SINIT.BASE/TXT.SINIT.SIZE registers). On current systems it is
3MB in size, and though this may change in the future it will always be large enough
to cover the heap and SINIT regions.

The MLE itself may reside in the DPR as long as it does not conflict with either the
SINIT or heap areas. If it does reside in the DPR then the Intel VT-d Protected
Memory Regions need not cover it.

1.12.2 Protected Memory Regions (PMRs)

The Intel® VT-d Protected Memory Regions (PMRs) are two ranges of physical
addresses that are protected from DMA access. One region must be in the lower 4GB
of memory and the other must be in the upper 4GB. Either or both may be unused.

Overview

Intel® TXT Software Development Guide 19

The use of the PMRs is not mutually exclusive of DMA remapping. If the MLE enables
DMA remapping, it should place the Intel VT-d page tables within the PMR region(s) in
order to protect them from DMA activity prior to turning on remapping. While it is not
required that PMRs be disabled once DMA remapping is enabled, if the MLE wants to
manage all DMA protection through remapping tables then it must explicitly disable
the PMR(s).

The MLE may reside within one of the PMR regions. If the MLE is not within the DPR
region then it must be within one of the PMR regions, else SINIT will not permit the
environment to be launched.

For more details of the PMRs, see the Intel® Virtualization Technology for
Directed I/O Architecture Specification.

1.13 Intel® TXT Shutdown

1.13.1 Reset Conditions

When an Intel TXT shutdown condition occurs, the processor or software writes an
error code indicating the reason for the failure to the TXT.ERRORCODE register. It
then writes to the TXT.CMD.RESET command register, initiating a platform reset. After
the write to TXT.CMD.RESET, the processor enters a shutdown sleep state with all
external pin events, bus or error events, machine check signaling, and
MONITOR/MWAIT event signaling masked. Only the assertion of reset back to the
processor takes it out of this sleep state. The Intel TXT error code register is not
cleared by the platform reset; this makes the error code accessible for post-reset
diagnostics.

The processor can generate an Intel TXT shutdown during execution of certain
GETSEC leaf functions (for example: ENTERACCS, EXITAC, SENTER, SEXIT), where
recovery from an error condition is not considered reliable. This situation should be
interpreted as an abort of authenticated execution or measured environment launch.

A legacy IA-32 triple-fault shutdown condition is also converted to an Intel TXT
shutdown sequence if the triple-fault shutdown occurs during authenticated code
execution mode or while the measured environment is active. The same is true for
other legacy non-SMX specific fault shutdown error conditions. Legacy shutdown to
Intel TXT shutdown conversions are defined as the mode of operation between:

• Execution of the GETSEC functions ENTERACCS issued by software and EXITAC
issued by the ACM at completion

• Recognition of the message signaling the beginning of the processor rendezvous
after GETSEC[SENTER] and the message signaling the completion of the processor
rendezvous

Additionally, there is a special case. If the processor is in VMX operation while the
measured environment is active, a triple-fault shutdown condition that causes a guest
exiting event back to the Virtual Machine Monitor (VMM) supersedes conversion to the
Intel TXT shutdown sequence. In this situation, the VMM remains in control after the
error condition that occurred at the guest level and there is no need to abort
processor execution.

Overview

20 Intel® TXT Software Development Guide

Given the above situation, if the triple-fault shutdown occurs at the root level of the
MLE or a virtual machine extensions (VMX) abort is detected, then an Intel TXT
shutdown sequence is signaled. For more details on a VMX abort, see Chapter 23, “VM
Exits,” in the Intel 64 and IA-32 Software Developer Manuals, Volume 3B.

§

Measured Launched Environment

Intel® TXT Software Development Guide 21

2 Measured Launched
Environment
Intel TXT can be used to launch any type of code. However, this section describes the
launch, operation and teardown of a Virtual Machine Monitor (VMM) using Intel® TXT;
any other code would have a similar sequence.

2.1 MLE Architecture Overview
Any Measured Launched Environment (MLE) will generally consist of three main
sections of code: the initialization, the dispatch routine, and the shutdown. The
initialization code is run each time the Intel TXT environment is launched. This code
includes code to setup the MLE on the ILP and join code to initialize the RLPs.

After initialization, the MLE behaves like the unmeasured version would have; in the
case of a VMM, this is trapping various guest operations and virtualizing certain
processor states.

Finally the MLE prepares for shutdown by again synchronizing the processors, clearing
any state and executing the GETSEC[SEXIT] instruction.

Table 1 shows the format of the MLE Header structure stored within the MLE image.
The SINIT AC module uses the MLE Header structure to set up the correct initial MLE
state and to find the MLE entry point. The header is part of the MLE hash.

Table 1. MLE Header structure

Field Offset Size
(bytes)

Description

UUID (universally unique
identifier)

0 16 Identifies this structure

HeaderLen 16 4 Length of header in bytes

Version 20 4 Version number of this structure

EntryPoint 24 4 Linear entry point of MLE

FirstValidPage 28 4 Starting linear address of (first valid
page of) MLE

MleStart 32 4 Offset within MLE binary file of first byte
of MLE, as specified in page table

MleEnd 36 4 Offset within MLE binary file of last byte
+ 1 of MLE, as specified in page table

Capabilities 40 4 Bit vector of MLE-supported capabilities

CmdlineStart 44 4 Starting linear address of command line

CmdlineEnd 48 4 Ending linear address of command line

Measured Launched Environment

22 Intel® TXT Software Development Guide

UUID: This field contains a UUID which uniquely identifies this MLE Header Structure.
The UUID is defined as follows:

ULONG UUID0; // 9082AC5A
ULONG UUID1; // 74A7476F
ULONG UUID2; // A2555C0F
ULONG UUID3; // 42B651CB

This UUID value should only exist in the MLE (binary) in this field of the MLE header.
This implies that this UUID should not be stored as a variable nor placed in the code to
be assigned to this field. This can also be ensured by analyzing the binary.

HeaderLen: this field contains the length in bytes of the MLE Header Structure.

Version: this field contains the version of the MLE header, where the upper two bytes
are the major version and the lower two bytes are the minor version. Changes in the
major version indicate that an incompatible change in behavior is required of the MLE
or that the format of this structure is not backwards compatible. Version 2.1
(20001H) is the currently supported version.

EntryPoint: this field is the linear address, within the MLE’s linear address space, at
which the ILP will begin execution upon successful completion of the GETSEC[SENTER]
instruction.

FirstValidPage: this field is the starting linear address of the MLE. This will be
verified by SINIT to match the first valid entry in the MLE page tables.

MleStart / MleEnd: these fields are intended for use by software that needs to know
which portion of an MLE binary file is the MLE, as defined by its page table. This
might be useful for calculating the MLE hash when the entire binary file is not being
used as the MLE.

Capabilities: this bit vector represents TXT-related capabilities that the MLE supports.
It will be used by the SINIT AC module to determine whether the MLE is compatible
with it and as needed for any optional capabilities. The currently defined bits for this
are:

Table 2. MLE/SINIT Capabilities Field Bit Definitions

Bit
position

Description

0 Support for GETSEC[WAKEUP] for RLP wakeup
All MLEs should support this.

1 = supported/requested
0 = not supported

1 Support for RLP wakeup using MONITOR address (SinitMleData.RlpWakeupAddr)
All MLEs should support this.

1 = supported/requested
0 = not supported

Measured Launched Environment

Intel® TXT Software Development Guide 23

Bit
position

Description

2 The ECX register will contain the pointer to the MLE page table on return from
SINIT to the MLE EntryPoint

1 = supported/requested
0 = not supported

3 STM support
1 = supported/requested
0 = not supported

4 TPM 1.2 family: Legacy PCR usage support (negative logic is used for backward
compatibility)

0 = supported/requested
1 = not supported

TPM 2.0 family: reserved/ignored

5 TPM 1.2 family: Details/authorities PCR usage support
This usage takes precedence over legacy usage if both are requested

1 = supported/requested
0 = not supported

TPM 2.0 family: reserved/ignored

7-6 Platform Type
00: legacy / platform undefined
01: client platform ACM
10: server platform ACM
11: reserved / illegal

8 MAXPHYADDR supported
0: 36 bits MTRR masks computed, regardless of actual width
1: actual width MTRR masks computed as reported by CPUID function
0x80000008

31:9 Reserved (must be 0)

CmdlineStart / CmdlineEnd: these fields are intended for use by software that
needs to calculate the MLE hash, for MLEs that include their command lines in their
identity. These are linear addresses within the MLE of the beginning and end of a
buffer that will contain the command line. The buffer is padded with bytes of 0x0 at
the end. MLEs that do not include the command line in their identity should set these
fields to 0.

2.2 MLE Launch
At some point system software will start an Intel TXT measured environment. This
may be done at operating system loader time or could be done after the operating
system boots. From this point on we will assume that the operating system is starting
the Intel TXT measured environment and refer to this code as the system software.

After the measured environment startup, the application processors (RLPs) will not
respond to system inter-processor interrupts (SIPIs) as they did before SENTER. Once
the measured environment is launched, the RLPs cannot run the real-mode MP startup

Measured Launched Environment

24 Intel® TXT Software Development Guide

code and their startup must be initiated by an alternate method. The new MP startup
algorithm does not allow the RLPs to leave protected mode with paging on. The OS
may also be required to detect whether a measured environment has been established
and use this information to decide which MP startup algorithm is appropriate (the
standard MP startup algorithm or the modified algorithm).

This section shows the pseudocode for preparing the system for the SMX measured
launch. The following describes the process in a number of sub-sections:
• Intel TXT detection and processor preparation
• Detection of previous errors
• Loading the SINIT AC module
• Loading the MLE and processor rendezvous
• Performing a measured launch

2.2.1 Intel® TXT Detection and Processor Preparation

Lines 1 - 4: Before attempting to launch the measured environment, the system
software should check that all logical processors support VMX and SMX (the check for
VMX support is not necessary if the environment to be launched will not use VMX).

For single processor socket systems, it is sufficient if this action is only performed by
the ILP. This includes physical processors containing multiple logical processors. In
order to correctly handle multiple processor socket systems, this check must be
performed on all logical processors. It is possible that two physical processor within
the same system may differ in terms of SMX and VMX capabilities.

For details on detecting and enabling VMX see chapter 19, “Introduction to Virtual-
Machine Extensions”, in the Intel 64 and IA-32 Software Developer Manuals, Volume
3B. For details on detecting and enabling SMX support see chapter 6, “Safer Mode
Extensions Reference”, in the Intel 64 and IA-32 Software Developer Manuals, Volume
2B.

Lines 5 - 9: System software should check that the chipset supports Intel TXT prior to
launching the measured environment. The presence of the Intel TXT chipset can be
detected by executing GETSEC[CAPABILITIES] with EAX=0 & EBX=0. This instruction
will return the ‘Intel TXT Chipset’ bit set in EAX if an Intel TXT chipset is present. The
processor must enable SMX before executing the GETSEC instruction.

Lines 10 – 12: System software should also verify that the processor supports all of
the GETSEC instruction leaf indices that will be needed. The minimal set of
instructions required will depend on the system software and MLE, but is most likely
SENTER, SEXIT, WAKEUP, SMCTRL, and PARAMETERS. The supported leaves are
indicated in the EAX register after executing the GETSEC[CAPABILITIES] instruction as
indicated above.

Listing 1. Intel® TXT Detection Pseudocode

//
// Intel TXT detection
// Execute on all logical processors for compatibility with
// multiple processor systems
//
1. CPUID(EAX=1);

Measured Launched Environment

Intel® TXT Software Development Guide 25

2. IF (SMX not supported) OR (VMX not supported) {
3. Fail measured environment startup;
4. }

//
// Enable SMX on ILP & check for Intel TXT chipset
//
5. CR4.SMXE = 1;
6. GETSEC[CAPABILITIES];
7. IF (Intel TXT chipset NOT present) {
8. Fail measured environment startup;
9. }
10. IF (All needed SMX GETSEC leaves are NOT supported) {
11. Fail measured environment startup;
12. }

2.2.2 Detection of Previous Errors

In order to prevent a cycle of failures or system resets, it is necessary for the system
software to check for errors from a previous launch. Errors that are detected by
system software prior to executing the GETSEC[SENTER] instruction will be specific to
that software and, if persistent, will be in a manner specific to the software. Errors
generated during execution of the GETSEC[SENTER] instruction result in a system
reset and the error code being stored in the TXT.ERRORCODE register. Possible
remediation steps are described in section 4.2.

Lines 1 - 3: The error code from an error generated during the GETSEC[SENTER]
instruction is stored in the TXT.ERRORCODE register, which is persistent across soft
resets. Non-zero values other than 0xC000001 indicate an error. Error codes are
specific to an SINIT AC module and can be found in a text file that is distributed with
the module. Errors that are not AC-module specific are listed in Appendix I.

Lines 4 - 6: If the TXT_RESET.STS bit of the TXT.ESTS register is set, then in order to
maintain TXT integrity the GETSEC[SENTER] instruction will fail. System software
should detect this condition as early as possible and terminate the attempted
measured launch and report the error. The cause of the error must be corrected if
possible, and the system should be power-cycled to clear this bit and permit a launch.

Listing 2. Error Detection Pseudocode

//
// Detect previous GETSEC[SENTER] failures
//
1. IF (TXT.ERRORCODE != 0 && TXT.ERRORCODE != SUCCESS) {
2. Terminate measured launch ;
3. Report error ;
4. If remedial action known {
5. Take remedial action ;
6. Power-cycle system ;
7. }
8. }

//

Measured Launched Environment

26 Intel® TXT Software Development Guide

// Detect previous TXT Reset
//
9. IF (TXT.ESTS[TXT_RESET.STS] != 0) {
10. Report error ;
11. Terminate measured launch ;
12. }

2.2.3 Loading the SINIT AC Module

This action is only performed by the ILP.

BIOS may already have the correct SINIT AC module loaded into memory or system
software may need to load the SINIT code from disk into memory. The system
software may determine if an SINIT AC module is already loaded by examining the
preferred SINIT load location (see below) for a valid SINIT AC module header.

System software should always use the most recent version of the SINIT AC module
available to it. It can determine this by comparing the Date fields in the AC module
headers.

System software should also match a prospective SINIT AC module to the chipset
before loading and attempting to launch the module. This is described in the next two
sections of this document.

System software owns the policy for deciding which SINIT module to load. In many
case, it must load the previously loaded SINIT AC module in order to unseal data
sealed to a previously launched environment. If an SINIT AC module is to be changed
(e.g. upgraded to the latest version), any secrets sealed to the current measured
launch may require migration prior to launching via an updated SINIT AC module. It
should be noted that server platforms typically carry an appropriate SINIT AC module
within their BIOS, and that a BIOS update may result in an SINIT AC module update
outside of system software control. For further discussion on this issue, see 4.3.1.

The BIOS reserves a region of physically contiguous memory for the SINIT AC module,
which it specifies through the TXT.SINIT.BASE and TXT.SINIT.SIZE Intel TXT
configuration registers. By convention, at least 128 KBytes of physically contiguous
memory is allocated for the purpose of loading the SINIT AC module; this has
increased to 192 Kbytes for latest generation processors. System software must use
this region for any SINIT AC module that it loads.

The SINIT AC module must be located on a 4 KByte aligned memory location. The
SINIT AC module must be mapped WB using the MTRRs and all other memory must
be mapped to one of the supportable memory types returned by
GETSEC[PARAMETERS]. The MTRRs that map the SINIT AC module must not overlap
more than 4 KBytes of memory beyond the end of the SINIT AC image. See the
GETSEC[ENTERACCS] instruction and the Authenticated Code Module Format, section
A.1, for more details on these restrictions.

The pages containing the SINIT AC module image must be present in memory before
attempting to launch the measured environment. The SINIT AC module image must
be loaded below 4 GBytes. System software should check that the SINIT AC module
will fit within the AC execution region as specified by the GETSEC[PARAMETERS] leaf.
System software should not utilize the memory immediately after the SINIT AC

Measured Launched Environment

Intel® TXT Software Development Guide 27

module up to the next 4 KByte boundary. On certain Intel TXT implementations,
execution of the SINIT AC module will corrupt this region of memory.

2.2.3.1 Matching an AC Module to the Platform

As part of system software loading an SINIT AC module, the system software should
first verify that the file to be loaded is really an SINIT AC module. This may be done at
installation time or runtime. Lines 1 - 13 in Listing 3 below show how to do this.

Each AC module is designed for a specific chipset or set of chipsets, platform type,
and, optionally, processor(s). Software can examine the Chipset ID and Processor ID
Lists embedded in the AC module binary to determine which chipsets and processors
an AC module supports. Software should read the chipset’s TXT.DIDVID register and
parse the Chipset ID List to find a matching entry. If the AC module also contains a
Processor ID List, then software should also match the AC module against the
processor CPUID and IA32_PLATFORM_ID MSR. If the ACM Info Table version is 5 or
greater, software should verify that the Platform Type bits within the Capabilities field
match that of the current platform (server versus client). Attempting to execute an
AC module that does not match the chipset and processor, and platform type when
specified, will result in a failure of the AC module to complete normal execution and an
Intel TXT Shutdown.

Listing 3. AC Module Matching Pseudocode

TXT_ACM_HEADER *AcmHdr; // see Table 9
TXT_CHIPSET_ACM_INFO_TABLE *InfoTable; // see Table 11

//
// Find the Chipset AC Module Information Table
//
1. AcmHdr = (TXT_ACM_HEADER *)AcmImageBase;
2. UserAreaOffset = (AcmHdr->HeaderLen + AcmHdr->ScratchSize)*4;
3. InfoTable = (TXT_CHIPSET_ACM_INFO_TABLE *)(AcmBase +
 UserAreaOffset);

//
// Verify image is really an AC module
//
4. IF (InfoTable->UUID0 != 0x7FC03AAA) OR
5. (InfoTable->UUID1 != 0x18DB46A7) OR
6. (InfoTable->UUID2 != 0x8F69AC2E) OR
7. (InfoTable->UUID3 != 0x5A7F418D) {
8. Fail: not an AC module;
9. }

//
// Verify it is an SINIT AC module
//
10. IF (AcmHdr->ModuleType != 2) OR
11. (InfoTable->ChipsetACMType != 1) {
12. Fail: not an SINIT AC module;
13. }

//

Measured Launched Environment

28 Intel® TXT Software Development Guide

// Verify that platform type and platform match, if specified
//
14. IF (InfoTable->Version > 5) {
15. IF (InfoTable->Capabilities[7:6] != 01 AND
16. PlatformType == CLIENT) {
17. Fail: Non-client ACM on client platform
18. }
19. IF (InfoTable->Capabilities[7:6] != 10 AND
20. PlatformType == SERVER) {
21. Fail: Non-server ACM on server platform
22. }
23. }

//
// Verify AC module and chipset production flags match
//
24. IF (TXT.VER.FSBIF != 0xFFFFFFFF) {
25. IF (AcmHdr->Flags[15] == TXT.VER.FSBIF[31]) {
26. Fail: production flags mismatch;
27. }
28. }
29. ELSE IF (AcmHdr->Flags[15] == TXT.VER.EMIF[31]) {
30. Fail: production flags mismatch;
31. }

//
// Match AC module to system chipset
//
TXT_ACM_CHIPSET_ID_LIST *ChipsetIdList; // see Table 12
TXT_ACM_CHIPSET_ID *ChipsetId; // see Table 13

32. ChipsetIdList = (TXT_ACM_CHIPSET_ID_LIST *)
33. (AcmImageBase + InfoTable->ChipsetIdList);

//
// Search through all ChipsetId entries and check for a match.
//
34. FOR (i = 0; i < ChipsetIdList->Count; i++) {
35. //
36. // Check for a match with this ChipsetId entry.
37. //
38. ChipsetId = ChipsetIdList->ChipsetIDs[i];
39. IF ((TXT.DIDVID[VID] == ChipsetId->VendorId) &&
40. (TXT.DIDVID[DID] == ChipsetId->DeviceId) &&
41. ((((ChipsetId->Flags & 0x1) == 0) &&
42. (TXT.DIDVID[RID] == ChipsetId->RevisionId)) ||
43. (((ChipsetId->Flags & 0x1) == 0x1) &&
44. (TXT.DIDVID[RID] & ChipsetId->RevisionId != 0)))) {
45. AC module matches system chipset;
46. GOTO CheckProcessor;
47. }

Measured Launched Environment

Intel® TXT Software Development Guide 29

48. }
49. Fail: AC module does not match system chipset;

CheckProcessor:
//
// Match AC module to processor
//
TXT_ACM_PROCESSOR_ID_LIST *ProcessorIdList; // see Table 14
TXT_ACM_PROCESSOR_ID *ProcessorId; // see Table 14

50. ProcessorIdList = (TXT_ACM_PROCESSOR_ID_LIST *)
51. (AcmImageBase + InfoTable->ProcessorIdList);

//
// Search through all ProcessorId entries and check for a match.
//
52. FOR (i = 0; i < ProcessorIdList->Count; i++) {
53. //
54. // Check for a match with this ProcessorId entry.
55. //
56. ProcessorId = ProcessorIdList->ProcessorIDs[i];
57. IF (ProcessorId->FMS ==
58. (cpuid[1].EAX & ProcessorId->FMSMask)) &&
59. (ProcessorId->PlatformID ==
60. (IA32_PLATFORM_ID MSR & ProcessorId->PlatformMask))
61. AC module matches processor;
62. }
63. }
64. Fail: AC module does not match processor;

2.2.3.2 Verifying Compatibility of SINIT with the MLE

Over time, new features and capabilities may be added to the SINIT AC module that
can be utilized by an MLE that is aware of those features. Likewise, features or
capabilities may be added that require an MLE to be aware of them in order to
interoperate properly. In order to expose these features and capabilities and permit
the MLE and SINIT to determine whether they support a compatible set, the MLE
header contains a Capabilities field (see Table 1) that corresponds to the Capabilities
field in the SINIT AC module Information Table (see Table 11).

In addition, the MinMleHeaderVer field in the AC module Information Table allows
SINIT to indicate that it requires a certain minimal version of an MLE. This allows for
new behaviors or features requiring MLE support that may not be present in older
versions.

Listing 4 shows the pseudocode for the MLE to determine if it is compatible with the
provided SINIT AC module.

While lines 4 – 6 may be redundant with current SINIT AC modules if the MLE
supports both RLP wakeup mechanisms, they permit graceful handling of future
changes.

Measured Launched Environment

30 Intel® TXT Software Development Guide

Listing 4. SINIT/MLE Compatibility Pseudocode

//
// Check that SINIT supports this version of the MLE
//
1. IF (InfoTable->MinMleHeaderVer > MleHeader.Version) {
2. Fail: SINIT requires a newer MLE
3. }

//
// Check that the known RLP wakeup mechanisms are supported
//
4. IF (MLE does NOT support at least one RLP wakeup mechanism

specified in InfoTable->Capabilities) {
5. Fail: RLP wakeup mechanisms are incompatible
6. }

2.2.4 Loading the MLE and Processor Rendezvous

2.2.4.1 Loading the MLE

System software allocates memory for the MLE and MLE page table. The MLE is not
required to be loaded into physically contiguous memory. The pages containing the
MLE image must be pinned in memory and all these pages must be located in physical
memory below 4 GBytes.

System software creates an MLE page table structure to map the entire MLE image.
The pages containing the MLE page tables must be pinned in memory prior to
launching the measured environment. The MLE page table structure must be in the
format of the IA-32 Physical Address Extension (PAE) page table structure.

The MLE page table has several special requirements:

• The MLE page tables may contain only 4 KByte pages.

• A breadth-first search of page tables must produce increasing physical addresses.

• Neither the MLE nor the page tables may overlap certain regions of memory:

• device memory (PCI, PCIe*, etc.)

• addresses between [640k, 1M) or above Top of Memory (TOM)

• ISA hole (if enabled)

• the Intel TXT heap or SINIT memory regions

• Intel VT-d DMAR tables

• There may not be any invalid (not-present) page table entries after the first valid
entry (i.e. there may not be any gaps in the MLE’s linear address space).

• The Page Directories must be in a lower physical address than the Page Tables.

• The Page-Directory-Pointer-Table must be in a lower physical address than the
Page-Directories.

• The page table pages must be in lower physical addresses than the MLE.

Measured Launched Environment

Intel® TXT Software Development Guide 31

Later, the SINIT AC module will check that the MLE page table matches these
requirements before calculating the MLE digest. The second rule above implies that
the MLE must be loaded into physical memory in an ordered fashion: a scan of MLE
virtual addresses must find increasing physical addresses. The system software can
order its list of physical pages before loading the MLE image into memory.

The MLE is not required to begin at linear address 0. There may be any number of
invalid/not-present entries in the page table prior to the beginning of the MLE pages
(i.e. first valid page). The starting linear address should be placed in the
FirstValidPage field of the MLE header structure (see Section 2.1).

If the MLE will use this page table after launch then it needs to ensure that the entry
point page is identity-mapped so that when it enables paging post-launch, the
physical address of the instruction after paging is enabled will correspond to its linear
address in the paged environment.

System software writes the physical base address of the MLE page table’s page
directory to the Intel TXT Heap. The size in bytes of the MLE image is also written to
the Intel TXT Heap; see Appendix C.

2.2.4.2 Intel® Trusted Execution Technology Heap Initialization

Information can be passed from system software to the SINIT AC module and from
system software to the MLE using the Intel TXT Heap. The SINIT AC module will also
use this region to pass data to the MLE.

The system software launching the measured environment is responsible for
initializing the following in the Intel TXT Heap memory (this initialization must be
completed before executing GETSEC[SENTER]):

• Initialize contents of the Intel TXT Heap Memory (see Appendix C)

• Initialize contents of the OsMleData (see Appendix C) and OsMleDataSize (with the
size of the OsMleData field + 8H) fields.

• Initialize contents of the OsSinitData (see section C.4) and OsSinitDataSize (with
the size of the OsSinitData field + 8H) fields.

The OsMleData structure has fields for specifying regions of memory to protect from
DMA (PMR Low/High Base/Size) using Intel VT-d. As described in Chapter 1.11, the
MLE must be protected from DMA by being contained within either the DMA Protected
Range (DPR) or one of the Intel VT-d Protected Memory Regions (PMRs). If the MLE
resides within the DPR then the PMR fields of the OsMleData structure may be set to
0. Otherwise, these fields must specify a region that contains the MLE and the page
tables. However, the PMR fields can specify a larger region (and separate region,
since there are two ranges) than just the MLE if there is additional data that should be
protected.

If the system software is using Intel VT-d DMA remapping to protect areas of memory
from DMA then it must disable this before it executes GETSEC[SENTER]. In order to
do this securely, system software should determine what PMR range(s) are necessary
to cover all of the address range being DMA protected using the remapping tables. It
should then initialize the PMR(s) appropriately and enable them before disabling
remapping. The PMR values it provides in the OsSinitData PMR fields must correspond
to the values that it has programmed. Once the MLE has control, it can re-enable
remapping using the previous tables (after validating them).

Measured Launched Environment

32 Intel® TXT Software Development Guide

If the MLE or subsequent code will be enabling Intel VT-d DMA remapping then the
DMAR information that will be needed should be protected from malicious DMA activity
until the remapping tables can be established to protect it. The SINIT AC module
makes a copy of the DMAR tables in the SinitMleData region (located at an offset
specified by the SinitVtdDmarTable field). Because this region is within the TXT heap,
it is protected from DMA by the DPR. If the MLE or subsequent code does not use this
copy of the DMAR tables, then it should protect the original tables (within the ACPI
area) with the PMR range specified to SINIT. Likewise, the memory range used for
the remapping tables should also be protected with the PMRs until remapping is
enabled.

If the Platform Owner TXT Launch Control Policy (see section 3.2.1 for more details
about TXT Launch Control Policy) is of type POLTYPE_LIST (or POLTYPE_UNSIGNED
for v1 policies) then there must be an associated data file that contains the remainder
of the policy. This policy data file must be placed in memory by system software and
its starting address and size specified in the LCP PO Base and LCP PO Size fields of the
OsSinitData structure. The data must be wholly contained within a DMA protected
region of memory, either within the DPR (e.g. in the TXT heap) or within the bounds
specified for the PMRs.

2.2.4.3 Rendezvousing Processors and Saving State

Line 1: If launching the measured environment after operating system boot, then all
processors should be brought to a rendezvous point before executing
GETSEC[SENTER]. At the rendezvous point each processor will set up for
GETSEC[SENTER] and save any state needed to resume after the measured launch. If
processors are not rendezvoused before executing SENTER, then the processors that
did not rendezvous will lose their current operating state including possibly the fact
that an in-service interrupt has not been acknowledged.

Lines 2 – 7: All processors check that they support SMX and enable SMX in CR4.SMXE.

Lines 8 - 10: The MLE should preserve machine check status registers if bit 6 in the
TXT Extension Flags returned by GETSEC[PARAMETERS] (See section 2.2.5.1 for
details) is set. If this bit returns 0 or parameter type ‘5’ is not supported, the MLE
must log and clear machine check status registers.

Line 11: Check that certain CR0 bits are in the required state for a successful
measured environment launch.

Line 12: System software allocates memory to save its state for restoration post
measured launch. The OsMleData portion of the Intel TXT Heap has been reserved for
this purpose (see section C.2), though the size must be set appropriately for the
memory to be available.

Line 13: The ILP saves enough state in memory to allow a return to OS execution
after the measured launch and then continues launch execution. The RLPs save
enough state in memory to allow return to OS execution after measured launch then
execute HLT or spin waiting for transition to the measured environment.

Certain MSRs are modified by executing the GETSEC[SENTER] instruction. For
example, bits within the IA32_MISC_ENABLE and IA32_DEBUGCTL MSRs are set to
predetermined values. It may be desirable to restore certain bits within these MSRs to
their pre-launch state after the MLE launch. If this is desired, then before executing
GETSEC[SENTER], software should save the contents of these MSRs in the OsMleData

Measured Launched Environment

Intel® TXT Software Development Guide 33

area. The launched software can restore the original values into these MSRs after the
GETSEC[SENTER] returns or, alternatively, the MLE can restore these MSRs with their
original values during MLE initialization.

It is expected that most MLEs will want to restore the MTRR and IA32_MISC_ENABLE
MSR states after the MLE launch, to provide optimal performance of the system.

Listing 5. Pseudocode for Rendezvousing Processors and Saving State

1. Rendezvous all processors;

//
// The following code is run on all processors
//
// Enable SMX
//

2. CPUID(EAX=1);
3. IF (SMX not supported) OR (VMX not supported) {
4. Fail measured environment startup;
5. } ELSE {
6. CR4.SMXE = 1;
7. }

8. IF (GETSEC[PARAMETERS](type=5)[6] == 1) {
9. Clear Machine Check Status Registers;
10. }
11. Ensure CR0.CD=0, CR0.NW=0, and CR0.NE=1;

//
// Save current system software state in Intel TXT Heap
//

12. Allocate memory for OsMleData;
13. Fill in OsMleData with system software state (including MTRR

and IA32_MISC_ENABLE MSR states);

2.2.5 Performing a Measured Launch

2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution

System software must set up the variable range MTRRs to map all of memory (except
the region containing the SINIT AC module) to one of the supported memory types as
returned by GETSEC[PARAMETERS], before executing GETSEC[SENTER]. System
software first saves the current MTRR settings in the OsMleData area and verifies that
the default memory type is one of the types returned by GETSEC[PARAMETERS]
(default memory type is specified in the IA32_MTRR_DEF_TYPE MSR). Next the
variable range MTRRs are set to map the SINIT AC module as WB. The SINIT AC
module must be covered by the MTRRs such that no more than (4K-1) bytes after the
module are mapped WB. For example, if an SINIT AC module is 11K bytes in size, an
8K and a 4K or three 4K MTRRs should be used to map it, not a single 32K MTRR. Any
unused variable range MTRRs should have their valid bit cleared. If the 8th bit of the
ACM’s Info Table Capabilities field is clear, the mask MTRRs covering the SINIT AC

Measured Launched Environment

34 Intel® TXT Software Development Guide

module should not set any bits beyond bit 35 (which corresponds to a 36 bit physical
address space), or SINIT will treat this as an error condition. If that bit is set, the
mask should cover the full range indicated by the MAXPHYADDR MSR

Listing 6 shows the pseudocode for correctly setting the ILP and RLP MTRRs. This code
follows the recommendation in the IA-32 Software Developer’s Manual.

After MTRR setup is complete, the RLPs mask interrupts (by executing CLI), signal the
ILP that they have interrupts masked, and execute halt. Before executing
GETSEC[SENTER], the ILP waits for all RLPs to indicate that they have disabled their
interrupts. If the ILP executed a GETSEC[SENTER] while an RLP was servicing an
interrupt, the interrupt servicing would not complete, possibly leaving the interrupting
device unable to generate further interrupts.

Listing 6. MTRR Setup Pseudocode

//
// Pre-MTRR change
//

1. Disable interrupts (via CLI);
2. Wait for all processors to reach this point;
3. Disable and flush caches (i.e. CRO.CD=1, CR0.NW=0, WBINVD);
4. Save CR4
5. IF (CR4.PGE == 1) {
6. Clear CR4.PGE
7. }
8. Flush TLBs
9. Disable all MTRRs (i.e. IA32_MTRR_DEF_TYPE.e=0)

//
// Use MTRRs to map SINIT memory region as WB, all other regions
// are mapped to a value reported supportable by
// GETSEC[PARAMETERS]
//

10. Set default memory type (IA32_MTRR_DEF_TYPE.type) to one

reported by GETSEC[PARAMETERS];
11. Disable all fixed MTRRs (IA32_MTRR_DEF_TYPE.fe=0);
12. Disable all variable MTRRs (clear valid bit);
13. Read SINIT size from the SINIT AC header;
14. Program variable MTRRs to cover the AC execution region,

memtype=WB (re-enable each one used);

//
// Post-MTRR changes
//
15. Flush caches (WBINVD);
16. Flush TLBs;
17. Enable MTRRs (i.e. MTRRdefType.e=1);
18. Enable caches (i.e. CRO.CD=0, CR0.NW=0);
19. Restore CR4;
20. Wait for all processors to reach this point;
21. Enable interrupts;

Measured Launched Environment

Intel® TXT Software Development Guide 35

//
// RLPs stop here
//

22. IF (IA32_APIC_BASE.BSP != 1) {
23. CLI;
24. set bit indicating we have interrupts disabled;
25. HLT;
26. }

27. Wait for all RLPs to signal that they have their interrupts

disabled

2.2.5.2 Selection of Launch Capabilities

System software must select the capabilities that it wishes to use for the launch. It must
choose a subset of the capabilities supported by the SINIT AC module. For mandatory
capabilities, such as the RLP wakeup mechanism, one of the supported options must be
chosen.

28. OsSinitData.Capabilities = selected capabilities;

2.2.5.3 TPM Preparation

System software must ensure that the TPM is ready to accept commands and that there
is no currently active locality (TPM.ACCESS_x.activeLocality bit is clear for all localities)
before executing the GETSEC[SENTER] instruction.

29. Read TPM Status Register until it is ready to accept a

command
30. 32.For all localities x, ensure that ACCESS_x.activeLocality
is 0

2.2.5.4 Intel® Trusted Execution Technology Launch

The ILP is now ready to launch the measuring process. System software executes the
GETSEC[SENTER] instruction. See chapter 6, “Safer Mode Extensions Reference”, in
the Intel 64 and IA-32 Software Developer Manuals, Volume 2B for the details of
GETSEC[SENTER] operation.

31. EBX = Physical Base Address of SINIT AC Module
32. ECX = size of the SINIT AC Module in bytes
33. EDX = 0
34. GETSEC[SENTER]

Measured Launched Environment

36 Intel® TXT Software Development Guide

2.3 MLE Initialization
This section describes the initialization of the MLE. Listing 7 shows the pseudocode for
MLE initialization.

The MLE initialization code is executed on the ILP when the SINIT AC module executes
the GETSEC[EXITAC] instruction—the MLE initialization code is the first MLE code to
run after GETSEC[SENTER] and within the measured environment. The SINIT AC
module obtains the MLE initialization code entry point from the EntryPoint field in the
MLE Header data structure whose address is specified in the OsSinitData entry in the
Intel TXT Heap. The MLE initialization code is responsible for setting up the protections
necessary to safely launch any additional environments or software. The initialization
includes Intel TXT hardware initialization, waking and initializing the RLPs, MLE
software initialization and initialization of the STM (if one is being used). Section 2.3
describes the details of MLE initialization.

During MLE initialization, the ILP executes the GETSEC[WAKEUP] instruction, bringing
all the RLPs into the MLE initialization code. Each RLP gets its initial state from the MLE
JOIN data structure (see the Intel 64 and IA-32 Software Developer Manual, Volume
2B, Table 6-11). The ILP sets up the MLE JOIN data structure and loads its physical
address in the TXT.MLE.JOIN register prior to executing GETSEC[WAKEUP]. Generally
the RLP initialization code will be very similar to the ILP initialization code.

If the MLE restores any state from the environment of the launching system software
then it must first validate this state before committing it. This is because state from
the environment prior to the GETSEC[SENTER] instruction is not considered
trustworthy and could lead to loss of MLE integrity.

Lines 1 – 8: The MLE loads CR3 with the MLE page directory physical address and
enables paging. The SINIT AC module has just transferred control to the MLE with
paging off, now the MLE must setup its own environment. The MLE’s GDT is loaded at
line 3 and the MLE does a far jump to load the correct MLE CS and cause a fetch of
the MLE descriptor from the GDT. At line 5 a stack is setup for the MLE initialization
routine and, at line 6, the MLE segment registers are loaded. Next the MLE loads its
IDT and initializes the exception handlers.

All of the instructions and data that are used before paging is enabled must reside on
the same physical page as the MLE entry point and must access data with relative
addressing. This is because the page tables may have been subverted by untrusted
code prior to launch and so the MLE entry point’s page may have been copied to a
different physical address than the original. The MLE must also verify that this page is
identity mapped prior to enabling paging (to ensure that the linear address of the
instruction following enabling of paging is the same as its physical address).

If the MLE cannot guarantee that it was loaded at a fixed address, then it must create
the identity mapping dynamically. Because the physical address of the identity page
could overlap with the virtual address range that the MLE wants to use in its page
tables, the MLE may need to create a trampoline page table. In such a case, the
trampoline page table would consist of an identity-mapped page for the physical
address of the MLE entry point and a virtual address mapping of that page which is
guaranteed not to be within the desired address range (i.e. a trampoline page). That
virtual address mapping would also need to be added to the page table that the MLE
ultimately wants to run on. In this way the MLE can enable paging to the trampoline
page table (at the identity mapped address) and then jump to the trampoline page’s

Measured Launched Environment

Intel® TXT Software Development Guide 37

address and then switch page tables (CR3’s) to the final table where it will begin
executing at the virtual address of the trampoline page but in the final page table.

If the MLE does not enable paging then it must also validate that the physical
addresses specified in the page table used for the launch are the expected ones. And
as above, it must do this in code that resides on the same physical page as the MLE
entry point and uses only relative addressing. The reason for this validation is that
the page table could have been altered to place the MLE pages at different physical
addresses than expected, without having altered the MLE measurement.

Because the MLE page table that was used for measurement does not contain pages
other than those belonging to the MLE, if it wishes to continue to run in a paged
environment it will need to either extend the page tables to map the additional
address space needed (e.g. TXT configuration space, etc.) or to create new page
tables. This should be done after it has finished establishing a safe environment. The
cacheability requirements for the address space of any MLE-established page tables
must follow the guidelines below.

Line 9: The MLE checks the MTRRs which were saved in the OsMleData area of the
Intel TXT Heap (see Appendix C). It looks for overlapping regions with invalid memory
type combinations and variable MTRRs describing non-contiguous memory regions. If
either of these checks fails the MLE should fail the measured launch or correct the
failure.

Before the original MTRRs are restored, the MLE must ensure that all its own pages
will be mapped with defined memory types once the variable MTRRs are enabled. The
MLE must ensure that the combined memory type as specified by the page table entry
and variable MTRRs results in a defined memory type.

The MLE must also ensure that the TXT Device Space (0xFED20000 – 0xFED4FFFF) is
mapped as UC so that accesses to these addresses will be properly handled by the
chipset.

Line 10: The MLE should check that the system memory map that it will use is
consistent with the memory regions and types as specified in the Memory Descriptor
Records (MDRs) returned in the SinitMleData structure. Alternately, the MLE may use
this table as its map of system memory. This check is necessary as the system
memory map is most likely generated by untrusted software and so could contain
regions that, if used for trusted code or secrets, might lead to compromise of that
data. If the MLE will be using PCI Express* devices, it should verify that it is accessing
their configuration space through the address range specified by the PCIE MDR type
(3).

Line 11: The MLE should also verify that the Intel VT-d PMR settings that were used
by SINIT to program the Intel VT-d engines, as specified in the OsSinitData structure,
contain the expected values. While the MLE can only be launched if the settings cover
itself and its page tables (or the pages fall within the DPR), settings beyond these
regions could have been subverted by untrusted code prior to the launch.

Line 12: The ILP must re-enable SMIs that were disabled as part of the SENTER
process; most systems will not function properly if SMIs are disabled for any length of
time. It is recommended that the MLE enable SMIs on the ILP before enabling them
on the RLPs, since some BIOS SMI handlers may hang if they receive an SMI on an AP
and cannot generate one on the BSP to rendezvous all threads. Newer CPUs may

Measured Launched Environment

38 Intel® TXT Software Development Guide

automatically enable SMIs on entry to the MLE; for such CPUs there is no harm in
executing GETSEC[SMCTRL].

Lines 13 – 17: If this is the ILP then the MLE does the one-time initialization, builds
the MLE JOIN data structure and wakes the RLPs. This structure contains the physical
addresses of the MLE entry point and the MLE GDT, along with the MLE GDT size and
must be located in the lower 4GB of memory. The ILP writes the physical address of
this structure to the TXT.MLE.JOIN register. An RLP will read the startup information
from the MLE JOIN data structure when it is awakened. The MLE writer should ensure
that the MLE JOIN data structure does not cross a page boundary between two non-
contiguous pages. The MLE image must be built or loaded such that its GDT is located
on a single page. Enough of the RLP entry point code must be on a single page to
allow the RLPs to enable paging.

Lines 18 – 27: The MLE must look at the OsSinitData.Capabilities field to see which
RLP wakeup mechanism was chosen by the pre-SENTER code and thus used by SINIT.
If the MLE wants to enforce that certain capabilities or wakeup mechanism was used
then it can choose to error if it finds that not to be the case. For future compatibility,
MLEs should support both RLP wakeup mechanisms.

Line 30: The MLE checks several items to ensure they are consistent across all
processors:

• All processors must have consistent SMM Monitor Control MSR settings. The
processors must all be opt-in and have the same MSEG region or the processors
must be all opt-out.

• Ensure all processors have compatible VMX features. The compatible VMX features
will depend on the specific MLE implementation. For example, some
implementation may require all processors support Virtual Interrupt Pending.

• Ensure all processors have compatible feature sets. Some MLE implementations
may depend on certain feature being available on all processors. For example,
some MLE implementation may depend on all processors supporting SSE2.

If the MLE will use VMX then it should verify that bit 1 (VMX in SMX operation) in
the IA32_FEATURE_CONTROL MSR is set. Bit 2 (VMX outside SMX operation) may
also be set depending on the BIOS being used and on whether TXT has been
enabled.

• Ensure all processors have a valid microcode patch loaded or all processors have
the same microcode patch loaded. This check will depend on the specific MLE
implementation. Some MLE implementations may require the same patch be
loaded on all processors, other MLE implementations may contain a microcode
patch revocation list and require all processors have a microcode patch loaded
which is not on the revocation list.

Line 31: The MLE must wakeup the RLPs while the memory type for the SINIT AC
module region is writeback. This is a requirement of the MONITOR mechanism for RLP
wakeup. Since this is not guaranteed to be true of the original MTRRs, it is safest to
wait until after the RLPs have been awakened before restoring the MTRRs to their pre-
SENTER values. Alternatively, the MLE could ensure that this is the case and adjust
the MTRRs if it is not. It could then restore the MTRRs before waking the RLPs. In
either case, when restoring the MTRRs they should be made the same for each
processor.

Measured Launched Environment

Intel® TXT Software Development Guide 39

Line 32: The MLE should restore the IA32_MISC_ENABLE MSR to the value saved in
the OsMleData structure. This MSR was set to predefined values as part of SENTER in
order to provide a more consistent environment to the authenticated code module.
Most MLEs should be able to safely restore the previous value without any need to
verify it. The MLE should wait until the RLPs are awakened before restoring the MSR
in case the original MSR did not have the Enable MONITOR FSM bit (18) set. See
Appendix F for the processor state of the ILP after SENTER and the states of the RLPs
after waking.

Line 33: The machine-check exceptions flag (CR4.MCE) is cleared by the
GETSEC[SENTER] instruction. If the MLE supports the machine-check architecture
then it should initialize the exception mechanism and enable exception reporting.

Line 34: The MLE enables SMIs on each RLP.

Line 35: The MLE enables VMX in the CR4 register. This is required before any VMX
instruction can be executed.

Line 36: The MLE allocates and sets up the root controlling VMCS then executes
VMXON, enabling VMX root operation.

Lines 37 – 41: The MLE sets up the guest VM. At line 37 the MLE allocates memory for
the guest VMCS. This memory must be 4K byte aligned. The MLE executes VMCLEAR
with a pointer to this VMCS in order to mark this VMCS clear and allow a VMLAUNCH
of the guest VM. At line 39 the MLE executes VMPTRLD so that it can initialize the
VMCS at line 40. Now at line 41 the guest VM is launched for the first time.

Note: On the last extend of the TPM by the SINIT AC module, it may not wait to see if
the command is complete – so the MLE needs to make sure that the TPM is ready
before using it.

Listing 7: MLE Initialization Pseudocode

//
// MLE entry point – ILP and RLP(s) enter here
//

1. Load CR3 with MLE page table pointer (OsSinitData.MLE

PageTableBase);
2. Enable paging;
3. Load the GDTR with the linear address of MLE GDT;
4. Long jump to force reload the new CS;
5. Load MLE SS, ESP;
6. Load MLE DS, ES, FS, GS;

7. Load the IDTR with the linear address of MLE IDT;
8. Initialize exception handlers;

//
// Validate state
//
9. Check MTRR settings from OsMleData area;
10. Validate system memory map against MDRs
11. Validate VT-d PMR settings against expected values

Measured Launched Environment

40 Intel® TXT Software Development Guide

//
// Enable SMIs
//
12. execute GETSEC[SMCTRL];

//
// Wake RLPs
//
13. IF (ILP) {
14. Initialize memory protection and other data

structures;
15. Build JOIN structure;
16. TXT.MLE.JOIN = physical address of JOIN structure;
17. IF (RLP exist) {
18. IF (OsSinitData.Capabilities is set to MONITOR

wakeup mechanism) {
19. SinitMleData.RlpWakeupAddr = 1;
20. }
21. ELSE IF (OsSinitData.Capabilities is set to GETSEC

wakeup mechanism) {
22. GETSEC[WAKEUP];
23. }
24. ELSE {
25. Fail: Unknown RLP wakeup mechanism;
26. }
27. }
28. }

29. Wait for all processors to reach this point;
30. Do consistency checks across processors;
31. Restore MTRR settings on all processors;
32. Restore IA32_MISC_ENABLE MSR from OsMleData
33. Enable machine-check exception handling
34. RLPs execute GETSEC[SMCTRL]

//
// Enable VMX
//
35. CR4.VMXE = 1;

//
// Start VMX operation
//
36. Allocate and setup the root controlling VMCS, execute

VMXON(root controlling VMCS);

//
// Set up the guest container
//
37. Allocate memory for and setup guest VMCS;
38. VMCLEAR guest VMCS;
39. VMPTRLD guest VMCS;

Measured Launched Environment

Intel® TXT Software Development Guide 41

40. Initialize guest VMCS from OsMleData area;

//
// All processors launch back into guest
//
41. VMLAUNCH guest;

2.4 MLE Operation
The dispatch routine is responsible for handling all VMExits from the guest. The guest
VMExits are caused by various situations, operations or events occurring in the guest.
The dispatch routine must handle each VMExit appropriately to maintain the measured
environment. In addition, the dispatch routine may need to save and restore some of
processor state not automatically saved or restored during VM transitions. The MLE
must also ensure that it has an accurate view of the address space and that it restricts
access to certain of the memory regions that the GETSEC[SENTER] process will have
enabled. The following subsections describe various key components of the MLE
dispatch routine.

2.4.1 Address Space Correctness

It is likely that most MLEs will rely on the e820 memory map to determine which
regions of the address space are physical RAM and which of those are usable (e.g. not
reserved by BIOS). However, as this table is created by BIOS it is not protected from
tampering prior to a measured launch. An MLE, therefore, cannot rely on it to contain
an accurate view of physical memory.

After a measured launch, SINIT will provide the MLE with an accurate list of the actual
RAM regions as part of the SinitMleData structure of the Intel TXT Heap (see section
C.5). The SinitMDR field of this data structure specifies the regions of physical
memory that are valid for use by the MLE. This data structure can also be used to
accurately determine SMRAM and PCIe extended configuration space, if the MLE
handles these specifically.

2.4.2 Address Space Integrity

There are several regions of the address space (both physical RAM and Intel TXT
chipset regions) that have special uses for Intel TXT. Some of these should be
reserved for the MLE and some can be exposed to one or more guests/VMs.

2.4.3 Physical RAM Regions

There are two regions of physical RAM that are used by Intel TXT and are reserved by
BIOS prior to the MLE launch. These are the SINIT AC module region and the Intel
TXT Heap. Each region’s base address and size The Intel TXT configuration registers
(e.g. TXT.SINIT.BASE and TXT.SINIT.SIZE) specify each region’s base address and
size.

The SINIT and Intel TXT Heap regions are only required for measured launch and may
be used for other purposes afterwards. However, if the measured environment must

Measured Launched Environment

42 Intel® TXT Software Development Guide

be re-launched (e.g. after resuming from the S3 state), the MLE may wish to reserve
and protect these regions.

2.4.4 Intel® Trusted Execution Technology Chipset Regions

There are two Intel TXT chipset regions: Intel TXT configuration register space and
Intel TXT Device Space. These regions are described in Appendix B.

2.4.4.1 Intel® Trusted Execution Technology Configuration Space

The configuration register space is divided into public and private regions. The public
region generally provides read only access to configuration registers and the MLE may
choose to allow access to this region by guests. The private region allows write access,
including to the various command registers. This region should be reserved to the MLE
to ensure proper operation of the measured environment.

2.4.4.2 Intel® Trusted Execution Technology Device Space

The Intel TXT Device Space supports access to TPM localities. Localities three and four
are not usable by the MLE even after the measured environment has been
established, and so do not need any special treatment. Locality two is unlocked when
the Intel TXT private configuration space is opened during the launch process. Locality
one is not usable unless it has been explicitly unlocked (via the
TXT.CMD.OPEN.LOCALITY1 command). If the MLE wants to reserve access to locality
two for itself then it needs to ensure that guest/VM access to these regions behaves
as a TPM abort, as defined by TCG for non-accessible localities. This behavior is that
memory reads return FFh and writes are discarded. The MLE can provide this
behavior by any one of the following:

• Trapping guest/VM accesses to the regions and emulating the defined behavior.
• Instead, it could map these regions onto one of the hardware-reserved localities

(three or four) and let the hardware provide the defined behavior.
• If the MLE does not need access to locality 2 then it can close this locality

(TXT.CMD.CLOSE.LOCALITY2) so neither itself nor guests will have access to it.

2.4.5 Device Assignment

If the MLE exposes devices to untrusted VMs, it must take care to completely protect
itself from any affects (either intentional or otherwise) of these devices. For devices
which use DMA to access memory, the MLE can protect itself through the use of Intel®
VT for Directed IO (Intel® VT-d) to prevent unwanted access to memory and through
VMX to manage access to device configuration space. For other types of devices, their
interactions with, and affects on, the system should be fully understood before
allowing an untrusted VM to access them.

2.4.6 Protecting Secrets

If there will be data in memory whose confidentiality must be maintained, then the
MLE should set the Intel TXT secrets flag so that the Intel TXT hardware will maintain
protections even if the measured environment is lost before performing a shutdown
(e.g. hardware reset). Writing to the TXT.CMD.SECRETS configuration register can do

Measured Launched Environment

Intel® TXT Software Development Guide 43

this. The teardown process will clear this flag once it has scrubbed memory and
removed any confidential data.

2.4.7 Machine Specific Register Handling

Model Specific Registers (MSRs) pose challenges for a measured environment. Certain
MSRs may directly leak information from one guest to another. For example, the
Extended Machine Check State registers may contain secrets at the time a machine
check is taken. Other MSRs might be used to indirectly probe trusted code. The non-
trusted guest could use the Performance Counter MSRs, for example, to determine
secrets (e.g. keys) used by the trusted code. Other MSRs can modify the MLE’s
operation and destroy the integrity of the measured environment.

The VMX architecture allows the MLE to trap all guest MSR accesses. Certain VMX
implementations will also allow the MLE to use a bitmap to selectively trap MSR
accesses. The MLE must use these VMX features to check certain guest MSR accesses,
ensuring that no secrets are leaked and that MLE operation is not compromised.

An MLE might virtualize some of the MSRs. The VMX architecture provides a
mechanism to automatically save selected guest MSRs and load selected MLE MSRs on
VMEXIT. Selected guest MSRs may be automatically loaded on VMENTER. These
features allow the MLE to virtualize MSRs, keeping a separate MSR copy for the guest
and MLE. Note that using this feature will slow VMEXIT and VMENTER times. The VMX
architecture provides a separate set of VMCS registers for the automatic saving and
restoring of the fast system call MSRs.

There is a limit to the number of MSRs that can be swapped during a VMX transition.
Bits 27:25 of the VMX_BASE_MSR+5 indicate the recommended maximum number of
MSRs that can be saved or loaded in VMX transition MSR-load or MSR-store lists.
Specifically, if the value of these bits is N, then 512 * (N + 1) is the recommended
maximum number of MSRs referenced in each list. If the limit is exceeded, undefined
processor behavior may result (including a machine check during the VMX transition).

There are certain MSRs that cannot be included in the MSR-load or MSR-store lists. In
the initial VMX implementations, IA32_BIOS_UPDT_TRIG and IA32_BIOS-SIGN_ID
may not be loaded as part of a VM-Entry or VM-Exit. The list of MSRs that cannot be
loaded in VMX transitions is implementation specific.

The MLE must contain a built-in policy for handling guest MSR accesses. This MSR
handling policy must deal with all architectural MSRs that might be accessed by guest
code. The built-in MSR policy must deny access to all non-architectural MSRs.

2.4.8 Interrupts and Exceptions

To preserve the integrity of the measured environment, the MLE must be careful in
how it handles exceptions and interrupts. It needs to ensure that its IDT (Interrupt
Descriptor Table) has a handler for all exceptions and interrupts. The MLE should also
ensure that if it uses interrupts for internal signaling that it does so securely.
Likewise, it is best if exception handlers do not try and recover from the exception but
instead properly terminate the environment.

Measured Launched Environment

44 Intel® TXT Software Development Guide

2.4.9 ACPI Power Management Support

Certain ACPI power state transitions may remove or cause failure to the Intel TXT
protections. The MLE must control such ACPI power state transitions. The following
sections describe the various ACPI power state transitions and how the MLE must deal
with these state transitions.

2.4.9.1 T-state Transitions

T-states allow reduced processor core temperature through software-controlled clock
modulation. T-state transitions do not affect the Intel TXT protections, so the MLE
does not need to control T-state transitions. The MLE may wish to control T-state
transitions for other purposes, e.g. to enforce its own power management or
performance policies.

2.4.9.2 P-State Transitions

P-state transitions allow software to change processor operating voltage and
frequency to improve processor utilization and reduce processor power consumption.
On some systems, where the processor does not enforce allowed combinations, the
MLE must ensure software does not write an invalid combination into the GV3 MSRs.

2.4.9.3 C-State Transitions

C-states allow the processor to enter lower power state. The C0 state is the only C-
state where the processor is actually executing code – in the remaining C-states the
processor enters a lower power state and does not execute code. In these lower
power C-states the Intel TXT protections remain intact; therefore the MLE does not
need to monitor or control the C-state transitions. The MLE may wish to control C-
state transitions for other purposes, e.g. to enforce its own power management or
scheduling policy.

2.4.9.4 S-State Transitions

The S0 state is the system working state – the remaining S-states are low-power,
system-wide sleep states. Software transitions from the S0 working state to the other
S-states by writing to the PM1 control register (PM1_CNT) in the chipset. Since the
Intel TXT protections are removed when the system enters the S3, S4 or S5 states,
and the BIOS will gain control of the system on resume from these states, the MLE
must remove secrets from memory before allowing the system to enter one of these
sleeps states. Note that entering S1 does not remove Intel TXT protections and Intel
chipsets do not support the S2 sleep state.

The Intel TXT chipset provides hardware to detect when the software attempts to
enter a sleep state while the secrets flag is set (the TXT.SECRETS.STS bit of the
TXT.E2STS register). The Intel TXT chipset will reset the system if it detects a write to
the PM1_CNT register that will force the system into S3, S4 or S5 while the secrets
flag is set. If the Intel TXT chipset does detect this situation and resets the system,
then the BIOS AC module (or on servers, code within Trusted BIOS) ensures that
memory is scrubbed before passing control onward. To avoid this reset and scrubbing
process, the MLE should remove secrets from memory and teardown the Intel TXT
environment before allowing a transition to S3, S4 or S5.

Measured Launched Environment

Intel® TXT Software Development Guide 45

Before tearing down the Intel TXT environment, the MLE may remove secrets from
memory (clearing pages with secrets) or encrypt secrets for later use (e.g. for a later
measured environment launch). Once this operation is complete the MLE must issue
the TXT.CMD.NO-SECRETS command to clear the secrets flag. After this command is
issued, the MLE may allow a transition to a S3, S4 or S5 sleep state. The MLE
teardown procedure is described in more detail in Section 2.5.

2.4.9.4.1 S3

The S3 state provides special challenges for the MLE because the resume process uses
the in-memory state from when S3 was entered. This means that unlike a normal
boot process where trust is established as each component launches, the trust that
existed at entry to S3 must be maintained/verified on resume.

Since the TXT environment must be torn down before entering S3, it will have to be
re-established on resume. This part of the S3 resume process is nearly identical to the
original launch. Because S3 resume should leave the platform in the same state as
before S3 was entered, the PCRs should also have the same values. This means that
the MLE launched on resume should be the same as the initial one launched, which
means that the code/data being measured cannot include any state from before
entering S3. If some state from before entering S3 is needed on resume, then it must
be validated post-launch (since it is not being measured).

The MLE needs to ensure that the integrity of the TCB will be maintained across the
transition. There are two possible sources for loss of integrity across S3: malicious
DMA and compromise of the in-memory BIOS image. The initial, pre-S3 TXT launch
process protects against DMA and so the S3 resume process should maintain such
protection. Most BIOSes will execute portions of their S3 resume code from their in-
memory image without first re-copying it from flash. Since this in-memory image
could have been modified by any privileged software or firmware that executed as
part of the original, pre-S3 boot process (e.g. option ROMs, bootloader, etc.), this too
needs to be defended against.

The TXT launch process done as part of S3 resume ensures integrity and DMA
protection for the measured part of the MLE itself. For the remainder of the TCB this
can be accomplished by creating a memory integrity code for the TCB and sealing it to
the MLE’s launch-time measurements just before the TXT protections are removed
prior to entering S3 (the sealed data creation attributes should include a locality that
is only available to the TCB). On resume and after a successful launch, the MLE can
re-calculate the value for the memory image and compare it with the sealed value to
determine if the memory image has been compromised).

If there were additional measurements extended to the DRTM PCRs as part of the
original boot process, these will need to be re-established since these PCRs are
cleared when the MLE is re-launched. The entity that makes the measurements should
seal the measurement values (not the resulting PCR values) to the PCRs values in
effect just before it extends the measurements into the PCRs (the sealed data creation
attributes should include a locality that is only available to software trusted by the
entity). On resume from S3, when that entity is resumed it will unseal the values and
re-extend them into the appropriate PCRs.

It may be necessary for the MLE to seal additional information that is required to
securely re-establish the trusted environment. For instance, the portion of the TCB
needed to re-establish final DMA protections (e.g. with VT-d DMA remapping) will
need to be DMA protected by the MLE as part of the post-resume launch. The MLE

Measured Launched Environment

46 Intel® TXT Software Development Guide

may need to save the bounds of this region prior to entering S3 (both in plain text and
sealed). It would then use the plain text saved bounds to determine the PMR values
to specify as part of the re-launch. Post-launch the MLE would unseal the bounds
information and verify it against the bounds specified in the launch.

Because the boot process on resuming from an S3 state does not re-measure the
elements of the SRTM, software prior to entering the S3 state must execute the
appropriate TPM command for the current TPM mode to inform the TPM to preserve
the state of its PCRs: for 1.2 this is TPM_SaveState; for 2.0 this is TPM2_Shutdown
(requesting state). Upon resume from S3, the BIOS must provide a flag to
TPM_Startup to indicate that the TPM is to restore the saved state. If the TPM’s state
is not saved prior to entering S3, then the TPM will be non-functional after resuming.
Normally an OS TPM driver would perform the TPM state preservation command when
the OS indicated that it was entering S3. However, if the MLE cannot be sure that the
environment it establishes will perform this command, it may wish to do so itself prior
to entering S3. If the MLE alters the TPM state (e.g. extending to PCRs, etc.) after
TPM state preservation command has been issued then the TPM may invalidate the
previously saved state. In such cases, the MLE must also perform this command and it
should be the last TPM command that is executed, in order to ensure that the state is
not changed afterwards. There is no harm if this command is executed multiple times
prior to S3.

2.4.10 Processor Capacity Addition (aka CPU Hotplug)
VMMs and OS kernels not accommodating or executing within an Intel TXT measured
launch assume control of application processors during boot using INIT-SIPI-SIPI
mechanism. Upon receipt of a SIPI, the processor resumes execution at the specified
SIPI vector.

On the other hand, an MLE issues GETSEC[WAKEUP] (or a write to the wakeup
address) to assume control of application processors (RLPs) following SENTER. The
RLPs begin execution at an address pointed to by the MLE JOIN data structure. Intel
TXT for multiprocessor platforms enables processor capacity addition (also known as
CPU hotplug or hotadd) after the Intel TXT environment has been launched. Processor
capacity addition can be a result of physical addition of a processor package to a
running system or bringing a processor package online that was previously inactive.
The Intel TXT processor capacity addition flow makes use of INIT-SIPI-SIPI as the RLP
wakeup mechanism, but the hot added logical processors use the MLE JOIN data
structure to determine their entry point.

The processor capacity addition flow for an MLE is documented below:

1. New processors are released from reset. They execute measured BIOS code.
2. BIOS configures the new processors. At the end of configuration, BIOS clears

the BSP flag in the APICBASE register of new processors and leaves them in a
CLI/HLT loop.

3. The MLE is notified of this event via the standard ACPI mechanism.
4. Some MLEs may choose to allow write access to the Intel TXT public

configuration region by guests. However, during the processor capacity
addition flow, the MLE must prevent guests from writing to the public region in
order to prevent them from modifying the TXT.MLE.JOIN register in the middle
of this flow.

5. The MLE must prepare the MLE JOIN data structure for the new processors. It
may choose to use the same values as it did for the initial RLPs or it may use
different ones. In either case, they are subject to the same restrictions as for

Measured Launched Environment

Intel® TXT Software Development Guide 47

the initial RLP wakeup. The MLE then writes the physical address of the JOIN
data structure into the TXT.MLE.JOIN register.

6. The MLE issues the INIT–SIPI-SIPI sequence to each newly added logical
processor to take control of these processors.

7. In response to the SIPI, each new processor will detect that this is a capacity
addition to an existing measured environment and resume execution at the
entry point specified in the MLE JOIN data structure. The processor will ignore
the SIPI vector that may have been supplied. The new processor gets its initial
state from the MLE JOIN data structure just like an RLP would during the MLE
launch process.

2.5 MLE Teardown
This section describes an orderly measured environment teardown. This occurs when
the guest OS or the MLE decides to tear down the measured environment (for
example prior to entering an ACPI sleep state such as S3). The listing below shows the
pseudocode for teardown of the measured environment.

Line 1: Rendezvous all processors at “exiting Intel TXT environment” point in guest.
No need for the guests to save their state as their state will be stored in a VMCS on
VMEXIT to the monitor.

Lines 2 and 3: After all processors in the guest rendezvous, all processors execute a
VMCALL to the teardown routine in the MLE. Once in the MLE, each processor
increments a counter in trusted memory. All processors except the BSP/ILP (the
processor with IA32_APIC_BASE MSR.BSP=1) wait on a memory barrier. The ILP
waits for all other processors to enter MLE teardown routine then signals the other
processors to resume with teardown.

If not all processors reach the rendezvous in the guest, the ILP may timeout and
VMCALL to the MLE teardown routine. If not all processors arrive in the MLE teardown
routine, the ILP forces all other processors into the MLE with an NMI IPI. Both these
conditions are treated as errors – the ILP should proceed with the measured
environment teardown but log an error.

At line 4, each processor reads all guest state from its VMCS and stores this data in
memory, since after VMXOFF the processors will no longer be able to access data in
their VMCS. This state will be needed to restore the guest execution after teardown.

The MLE automatically saves certain guest state (general purpose registers which are
not part of the VMCS guest area) on VM Exit. The MLE may need to restore this state
when it reenters the guest after the GETSEC[SEXIT].

Line 5: Once all processors are in the MLE and have saved guest state from the VMCS,
all processors clear their appropriate registers to remove secrets from these registers.

Lines 6: All processors flush VMCS contents to memory using VMCLEAR. The MLE must
flush any VMCS that might contain secrets – this would include all guest VMCSes in a
multi-VM environment.

Line 7: The processors wait until all processors have reached this point before
resuming execution. This allows all the VMCS flushes to complete before the ILP
encrypts or scrubs secrets. Processors should execute an SFENCE to ensure all writes
are completed before continuing.

Measured Launched Environment

48 Intel® TXT Software Development Guide

Line 9: The ILP encrypts and stores exposed secrets from all trusted VMs. Note that
encrypted secrets will have to be stored in memory until the OS can put them to disk.
This will require extra memory above and beyond the memory holding secrets. This
step assumes that the RLPs do not have secrets that are not visible to the ILP.
Therefore when the ILP scrubs/encrypts all secrets, this will deal with secrets in the
RLP caches also.

Line 10: The ILP again clears appropriate registers to remove any secrets from those
registers.

Line 11: The ILP scrubs all trusted memory (except the teardown routine itself and
encrypted memory). Note that the scrub itself clears secrets still held in the cache.

Line 12: The ILP executes WBINVD to invalidate its caches (to ensure last few pages
of zeros actually get to memory).

Lines 13 - 16: If the MLE is going to enter the S3 state, the ILP calculates a memory
integrity code and seals it.

Line 17: The ILP caps, or extends, the dynamic PCRs with some value. This prevents
an attacker from unsealing the secrets after the teardown using the same PCRs, since
the dynamic PCRs are not reset after GETSEC[SEXIT].

Line 18: The ILP writes the NoSecrets in memory command. (TXT.CMD.NO-SECRETS)

Line 19: The ILP should unlock the system memory configuration (TXT.CMD.UNLOCK-
MEM-CONFIG) (that was locked by SINIT) once secrets have been removed from
memory. This will facilitate re-launching the MLE and may be necessary for a graceful
shutdown of the system.

Line 20: The ILP closes Intel TXT private configuration space.

Line 23: The RLPs wait while the ILP encrypts and scrubs secrets from memory.

Line 25: Each processor then disables processor virtualization. If an STM was launched
then it must be torn down before VMX is disabled. See section 25.15.7 of the Intel 64
and IA-32 Software Developer Manual, Volume 3B for more information.

Lines 26 - 31: The RLPs wait on a memory barrier while the ILP executes the
GETSEC[SEXIT] instruction to initiate the teardown of SMX operation.

At end of GETSEC[SEXIT], the ILP simply continues to the next instruction (still
running in monitor’s context – paging on). The ILP signals the RLPs to continue.

Lines 32 and 33: The former monitor code now restores guest state left behind when
the guest executed the VMCALL to enter the MLE teardown routine. All processors
perform the transition to guest OS, now operating as normal environment rather than
guest.

The guest MSRs must be restored when restarting the guest OS. The MLE can restore
the MSRs with information in the VMCS (VM-exit MSR store count) and the VM-exit
MSR store area, or the guest OS could save important MSR settings before calling the
teardown routine and restore its own MSR settings after resuming after teardown.

If the MLE is going to return control to a designated guest after tearing down then the
MLE must ensure that no interrupts are left pending or not serviced before returning

Measured Launched Environment

Intel® TXT Software Development Guide 49

control to the designated guest. Any interrupts left pending or not serviced may
prevent further interrupt servicing once the designated guest is restarted.

Listing 8. Measured Environment Teardown Pseudocode

1. Rendezvous processors in guest OS;
2. All processors VMCALL teardown in MLE;
3. Rendezvous all processors in MLE teardown routine;
4. All processors read guest state from VMCS, store values in

memory;

//
// Remove and encrypt all secrets from registers and memory
//
5. All processors clear their appropriate registers;
6. All processors flush VMCS contents to memory using VMCLEAR;
7. Wait for all processors to reach this point;
8. IF (ILP) {
9. Encrypt and store secrets in memory;
10. Again clear appropriate registers to remove secrets;
11. Scrub all trusted memory;
12. WBINVD caches;
13. IF (S3) {
14. Create memory integrity code
15. Seal memory integrity code
16. }
17. “cap” dynamic TPM PCRs;
18. Write to TXT.CMD.NO-SECRETS;
19. Unlock memory configuration
20. Close private Intel TXT configuration space;
21. Signal RLPs that scrub is complete;
22. } ELSE { // RLP
23. Wait for ILP to signal completion of memory scrub;
24. }

//
// Stop VMX operation
//
25. VMXOFF;

//
// RLPs wait while ILP executes SEXIT
//
26. IF (ILP) {
27. GETSEC[SEXIT];
28. signal completion of SEXIT;
29. } ELSE {
30. wait for ILP to signal completion of SEXIT;
31. }

//
// Transition back to the guest OS

Measured Launched Environment

50 Intel® TXT Software Development Guide

//

32. Restore guest OS state from device memory;
33. Transition back to guest OS context;

2.6 Other Considerations

2.6.1 Saving MSR State across a Measured Launch

Execution of the GETSEC[SENTER] instruction loads certain MSRs with pre-defined
values. For example, GETSEC[SENTER] will load IA32_DEBUGCTL MSR with 0H and
will load the GV3 MSR with a predetermined value. The software can deal with this in
several different ways. The launching software may save the state of these MSRs
before measured launch and restore the state after the launch returns. In this case
the MLE will need to check the values that are restored. Another approach is to have
the launch software save the desired state and have the MLE restore the values before
resuming the guest. The software could also leave these MSRs in the state established
by GETSEC[SENTER].

The IA32_MISC_ENABLE MSR should be saved and restored around measured launch
and teardown.

§

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 51

3 Verifying Measured Launched
Environments
Launch Control Policy (LCP) is the verification mechanism for the Intel TXT verified
launch process. LCP is used determine whether the current platform configuration or
the environment to be launched meets a specified criteria. Policies may be defined by
the Platform Owner, and/or, as a default set by the Platform Supplier.

The policy described in this section applies to TXT-capable platforms produced in 2009
and later. Policy definitions for earlier platforms can be found in earlier versions of
this document. The discussion below is separated into coverage of TPM1.2 (LCP v2.2
structure) implementation and deltas for TPM2.0 (LCP v3.0 structure) in the respective
subsections.

3.1 Overview
The Launch Control Policy architecture consists of the following components:

• LCP Policy Engine – part of the SINIT ACM and enforces the policies stored on
the platform

• LCP Policies – stored in the TPM, they specify the policies SINIT ACM will
enforce.

• LCP PolicyData objects – referenced by the Policy structures in the TPM; each
contains a list of valid policy elements, such as measurements of MLEs or
platform configurations.

Error! Reference source not found. shows how these components relate to each
other. The figure also shows that there are two possible policies available on the
platform: the Platform Supplier policy, as established by the manufacturer, OEM,
ODM, etc., and the Platform Owner’s policy.

When the platform boots, its state is measured and recorded by the Static Root of
Trust for Measurement (SRTM) and the other components which make up the static
chain of trust; these events occur from when the platform is powered on until the Intel
TXT measured launch (or until some component breaks the static chain). At this point
GETSEC[SENTER] is invoked, and control is passed through the authenticated code
execution area to the SINIT authenticated code module. The LCP engine in SINIT
reads the LCP Policy Indices in the TPM NV, decides which policy to use, and checks
the Platform Configuration and the Measured Launched Environment as required by
the chosen policy. The measured environment is then launched if the policy is
satisfied.

Verifying Measured Launched Environments

52 Intel® TXT Software Development Guide

Figure 1. Launch Control Policy Components

3.2 LCP Components, v2.2 (TPM 1.2)
The description of the policy that the SINIT AC module implements consists of two
policies, named for the entity that sets them: Platform Supplier (PS) and Platform
Owner (PO). Both policies are stored in the non-volatile store of the Trusted Platform
Module (TPM NV). By storing the policy in the TPM NV, access controls can be applied
to it; it also enables the policy to persist across platform power cycles.

3.2.1 LCP Policy

The LCP_POLICY structure (for a full listing see section D.1) is used for both the
Platform Supplier and the Platform Owner policies. The size of the structure currently
needs to be kept to a minimum in order to preserve the scarce resources of the TPM
NV storage, which is why additional structures for both Supplier and Owner policies
(LCP_POLICY_DATA) that can persist elsewhere are provided to handle additional
information.

Platform Supplier
LCP_Policy

Platform Owner
LCP_Policy

…

…

TPM PCRs

TPM NV Ram

PS
LCP_POLICY_DATA

PO
LCP_POLICY_DATA

Static Chain
of Trust

MLE SINIT(LCP)

Execution Control
Write/Read Operation
Data Reference

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 53

Figure 2. LCP_POLICY Structure

Figure 2 diagrammatically illustrates the LCP_POLICY structure (fields not to scale):

Version specifies the version of the LCP_POLICY structure and, implicitly, of the policy
engine semantics. It is of the format <major>.<minor> where the major version is
the MSB of the field and the minor version is the LSB. All minor versions of a given
major version will be backwards compatible. If new fields are added they will be at the
end and the semantics of all previous minor versions are maintained (though they can
be extended). Major version are not guaranteed to be backwards compatible with
each other and so SINIT will fail to launch if it finds a major version that it is not
compatible with. The version of the LCP_POLICY structure defined here is 2.2 (202H).

HashAlg identifies the hashing algorithm used for the PolicyHash field. If the algorithm
type is not supported by ACM processing the policy, then it shall stop processing the
policy and fail.

PolicyType indicates whether an additional LCP_POLICY_DATA structure is required.

• If the PolicyType field is LCP_POLTYPE_ANY then the value in the PolicyHash field
is ignored and the environment to be launched is simply measured before
execution control is passed to it. No corresponding LCP_POLICY_DATA is expected.

• If the PolicyType field is LCP_POLTYPE_LIST then the value of PolicyHash is the
result of computing a hash over the LCP_POLICY_DATA structure per the rules
below.

If the type specified is not supported by the ACM processing the policy then it shall
stop processing the policy and fail.

SINITMinVersion specifies the minimum version of SINIT that can be used. This value
corresponds to the AcmVersion field in the AC module Information Table (see Table
11). This value must be less than or equal to the value of AcmVersion in the executing
SINIT image for that SINIT to continue; otherwise SINIT will fail the launch. There is
no revocation policy mechanism for non-SINIT ACMs that is currently employed; some
provision has been made for future revocation of BIOS ACMs via the
MaxBiosacMinVersion field. If there is a LCP_MLE_ELEMENT element in a policy then
the SINITMinVersion in that element will be combined with the value in the
LCP_POLICY, per the description in section D.4.1. If there is no LCP_MLE_ELEMENT
element in the policy then the value in the LCP_POLICY will be used.

Version HashAlg PolicyType SINITMinVersion

Reserved3

DataRevocationCounters[] PolicyControl

PolicyHash

Reserved1

MaxSinitMinVersion MaxBiosacMinVersion

Reserved2

Verifying Measured Launched Environments

54 Intel® TXT Software Development Guide

The DataRevocationCounters field specifies, for each LCP_POLICY_LIST, the minimum
counter value, from the RevocationCounter field of that list, which will be accepted. If
the value in the RevocationCounter field is less than this value then SINIT will fail the
launch. For LCP_POLICY_LISTs that are not signed, the corresponding
DataRevocationCounters index will be ignored. For each LCP_POLICY_LIST that is
signed, it must set the DataRevocationCounters element at the index corresponding to
its own index in PolicyLists[]. E.g. if PolicyLists[0] is signed, PolicyLists[1] unsigned,
and PolicyLists[2] signed, then the revocation counter for PolicyLists[0] will be
DataRevocationCounters[0], the counter for PolicyLists[2] will be
DataRevocationCounters[2], and DataRevocationCounters[1] will be ignored. Values in
indices greater than the number of lists will be ignored.

The PolicyControl field consists of control bits defined as:

• Bits31:4 Reserved and should be set to zero

• Bit 3 Signifies whether an Owner policy is required by SINIT. Setting it to 1 will
cause SINIT to fail the launch if there is no Platform Owner policy. If there are
both Supplier and Owner policies, they will be evaluated according to the rules
below (this bit has no affect on that). This bit will be ignored in the Platform
Owner policy.

• Bit 2 Identifies whether the OsSinitData.Capabilities field will be extended into PCR
17 (if set to 1 then it will be extended).

• Bit 1 Identifies whether the platform will allow AC Modules marked as pre-
production to be used to launch the MLE. If this bit is 0 and a pre-production AC
Module has been invoked, it will cause a TXT reset during GETSEC[SENTER].
Note: The use of any pre-production AC Module will result in PCRs 17 and 18
being capped with random values.

• Bit 0 Is reserved and must be set to 0

The MaxSinitMinVersion field specifies the maximum value this policy will allow a
revocation utility to set the AUX.AUXRevocation.SinitMinVer to. “0” means the SINIT
minimum version may not be changed. “0xff” allows unconditional changes to the
SINIT minimum version. This field is ignored by ACMs.

The MaxBiosacMinVersion is currently unused, but its meaning and purpose are
analogous to those of MaxSinitMinVersion.

3.2.2 PolicyHash Field for LCP_POLTYPE_LIST

For policies of type LCP_POLTYPE_LIST, the LCP_POLICY_DATA may contain multiple
lists, some of which are signed and some which are not. In order to realize the value
of signed policies, PolicyHash can’t be a simple hash over the entire
LCP_POLICY_DATA or even changes to signed policy lists would cause a change in the
measurement of the policy.

The measurement of a policy list depends on whether the list is signed. For a list
signed using any algorithm supported by the ACM, the measurement is the hash (as
specified by the HashAlg field of the corresponding LCP_POLICY) of the public
(verification) key in the PubkeyValue member of the Signature field for RSA, or the x
and y public coordinates for elliptic curve signatures. For unsigned lists
(LCP_POLSALG_NONE), the measurement is the hash (also as specified by the
HashAlg field of the corresponding LCP_POLICY) of the entire list (LCP_POLICY_LIST).

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 55

The value of the PolicyHash field will be the hash of all of the policy list measurements
concatenated (there is no end padding if the number of lists present is less than
LCP_MAX_LISTS). For example, if there is only a single list then the value of
PolicyHash will be SHA-1(SHA-1(list)).

3.2.3 LCP Policy Data

The purpose of the LCP_POLICY_DATA structure is to provide the additional data
needed to enforce the policy but in a separate entity that doesn’t have to consume
TPM NV space. A full description of LCP_POLICY_DATA can be found in Appendix D.

Verifying Measured Launched Environments

56 Intel® TXT Software Development Guide

Figure 3. LCP_POLICY_DATA Structure

The PolicyLists[] field allows the object to contain a number of lists. A list may be
either signed or unsigned and can contain any type of LCP_POLICY_ELEMENT
structures (e.g. for MLE policy, platform configuration policy, etc.).

LCP_POLICY_DATA
UUID
Reserved[3]
NumLists

PolicyLists[]

LCP_POLICY_LIST

LCP_POLICY_LIST

Version
Reserved
SigAlgorithm
PolicyElementsSize

PolicyElements[]

[Signature]

LCP_MLE_ELEMENT

LCP_PCONF_ELEMENT

Size
Type
PolEltControl

Size
Type
PolEltControl

SINITMinVersion
HashAlg
NumHashes

Hashes[]

Hash

Hash

. . . .

NumPCRInfos

PCRInfos[]
PCRInfo

PCRInfo

. . . .

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 57

3.2.4 LCP Policy Element

Policy elements are the self-describing entities that contain the actual policy
conditions. Since they are self-describing, policy engines can ignore the elements that
they don’t understand or support. This allows for adding new element types without
breaking backwards compatibility.

Size is the size (in bytes) of the entire LCP_POLICY_ELEMENT structure, including the
type-specific Data and the Size field itself. A policy engine can use this to skip over an
element that it does not understand or support.

The PolEltControl provides a number of control bits divided into two groups of 16 bits
each. One is specific to the element type and the other applies to all element types
and is defined as:

• Bits31:16 Reserved for element type –specific uses and should set to zero

• Bits15:1 Reserved and should set to zero

• Bit 0 If set to 1 specifies that this policy element type in the Owner policy
unconditionally overrides (i.e. ignores) any policy elements of the same type in
the Supplier policy (when both policies are present). This Supplier policy element
type is overridden if this bit is set in any elements of this type in the Owner policy.
In order to keep the same behavior as that of the previous version of LCP, and to
ensure that if the Supplier policy is of type LCP_POLTYPE_ANY that the Owner
policy will have control, the default setting of the bit in Owner policies should be 1.
This bit will be ignored in the Platform Supplier policy.

The contents of the Data[] field are dependent of the type of the element and are
described for each type in the subsections of section D.4.

3.2.5 Signed Policies

The purpose of signed policies is to provide a mechanism that allows policy authors to
update the list of permissible environments without having to update the TPM NV
(note that if revocation is used that the TPM NV must be updated to increment the
revocation counter). This allows updates to be simple file pushes rather than physical
or remote platform touches. It also facilitates sealing against the policy, as sealed
data does not have to be migrated when the policy is updated.

The use of this mechanism places certain responsibilities on policy authors:

• The private signature key needs to be kept secure and under the control of the
key owner at all times.

• The private signature key needs to be strong enough for the full lifetime of the
policy [for the Platform Supplier we have estimated up to seven years].

3.2.6 Supported Cryptographic Algorithms

The following algorithms are defined for version 2.2 of the Launch Control Policy:

Hashing – SHA-1

Signature – RSA PKCS V1.5

Verifying Measured Launched Environments

58 Intel® TXT Software Development Guide

As version 2.2 and 3.0 elements may both be present in a 3.0 list being processed in
TPM 1.2 mode, all element signature algorithms supported by the ACM will be
validated.

It is the responsibility of the policy author to ensure that their policy uses an algorithm
supported by the version of the AC module being used. If the policy specifies an
unsupported algorithm, the policy will fail and, depending on the ACM evaluating the
policy, the environment will not be permitted to launch or the processor will not boot.

3.2.7 Policy Engine Logic

3.2.7.1 Policies

Before evaluating a policy, the policy engine must first verify the policy’s integrity. For
policy of type LCP_POLTYPE_LIST, the engine must verify each LCP_POLICY_LIST in
the LCP_POLICY_DATA. In the signed list case, the signature must be verified. For an
unsigned list, the hash of the list must be calculated. The hash of the
LCP_POLICY_DATA structure is calculated per section 3.2.2 above and then compared
with the hash in the LCP_POLICY that was read from the TPM NVRAM.

The policy engine must scan the policy for each policy element that it supports. When
a policy contains multiple lists in its LCP_POLICY_DATA, the policy engine will evaluate
each list sequentially. As soon as it finds a match that satisfies the policy element
being evaluated (e.g. MLE, platform configuration, etc.) it will stop evaluating further
elements and lists.

For a policy of type LCP_POLTYPE_ANY, the policy engine will treat that policy as
successfully evaluating every policy element type.

For a policy of type LCP_POLTYPE_LIST, for every policy element type supported by
the ACM evaluating the policy that is present in any of the lists, at least one instance
of that element type must evaluate successfully in order for the policy to succeed. If a
particular policy element type is not in any of the lists then that condition is not
evaluated and any state is accepted. For instance:

If SINIT is processing a policy that contains two lists, the first containing only an
LCP_MLE_ELEMENT and the second containing only a LCP_PCONF_ELEMENT, then
the MLE being launched must appear in the first list’s LCP_MLE_ELEMENT and the
current platform configuration must satisfy the second list’s
LCP_PCONF_ELEMENT; otherwise the launch will fail.

If SINIT is processing a policy that contains two lists, each containing only an
LCP_MLE_ELEMENT element, then the MLE being launched must appear in at least
one list’s LCP_MLE_ELEMENT. Since no other element types are present, any
other platform condition or state is acceptable (e.g. any PCR values).

3.2.7.2 Combining Policies

When both the Platform Supplier and the Platform Owner have established policies on
the platform, the two policies are combined to give a resultant policy that the LCP
policy engine will enforce.

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 59

For every policy element that the policy engine evaluates, the policy engine will
consider the evaluation successful if either the Supplier or Owner policy evaluates that
element successfully (evaluated per the rules above), unless any of the Owner policy
element instances has set bit 0 of the PolEltControl field of its element instance. If bit
0 is set then only the Owner policy for that policy element will be evaluated. This
permits the Platform Owner to prevent rollback of signed Platform Supplier policies
and also allows the Platform Owner final control of the platform’s policy. As such,
policy engines should evaluate the Owner policy first, if it exists.

For policy elements that only appear in one policy, that policy will be used.

If there is no Owner policy then only the Supplier policy is evaluated and it is
evaluated per the rules of section 3.2.7.1. However, the policy engine must permit
any MLE to launch, regardless of whether it is in the Supplier policy. This is to permit
the Platform Supplier to include an LCP_MLE_ELEMENT (in order to allow launching of
an MLE provided by the Platform Supplier even if an Owner policy did not include that
MLE on its own list) but still permit the Platform Owner to launch any MLE without
having to provision an Owner policy. This preserves the same Owner-visible behavior
as the case where the Platform Supplier did not provide an LCP_MLE_ELEMENT. Note
that all other element types are evaluated as expected.

The following table shows which policy will be evaluated for all combinations of policies
and types. This is not the same as which policy is actually executed, since a policy
may not contain any elements that are understood by the policy engine and thus that
policy would not actually be executed (same as None).

 No PS PS type
ANY

PS type
LIST

No PO
None1 PS PS2

PO type
ANY PO PO PO

PO type
LIST PO PO Both3

1 If no policy is evaluated then all platform and software configurations are permitted.
2 Per above, any MLE will be allowed to launch regardless of the Supplier policy.
3 This is effectively a union of the two policies (caveat bit 0 of PolEltControl).

As can be seen from this table, if the Owner has installed a policy of type ANY then it
will override all policy elements in the Supplier policy, including any PCONF or SBIOS
elements intended to restrict the BIOS. If the owner is only interested in making sure
that any MLE can launch, then there is no need for a PO policy, as that is already the
behavior (see above).

3.2.7.3 Measuring the Enforced Policy

The LCP engine in SINIT will extend to PCR 17 a hash value which represents the
policy or policies against which the environment was launched. This hash value is
determined by the rules in the following sections.

Verifying Measured Launched Environments

60 Intel® TXT Software Development Guide

It is important that for all policy cases that a measurement will always be extended to
PCR 17 in order to prevent the MLE from later extending a value of a policy that was
not evaluated. This is an issue because PCR 17 is open to locality 2 extends and the
MLE executes with locality 2 access. If this were not done, such an MLE could get
access to data that were sealed against some known policy by another MLE.

As a matter of integrity, the LCP_POLICY::PolicyControl field will always be extended
into PCR 17. If an Owner policy exists, its PolicyControl field will be extended;
otherwise the Supplier policy’s will be. If there are no policies, 32 bits of 0s will be
extended.

Other ACMs’ policy engines do not extend to the DRTM PCRs.

3.2.7.4 No Policy Data

When no policy is executed (includes all ACMs per above; there may be Supplier
and/or Owner policies but none of their policy elements are understood by the ACMs’
policy engines or they contain no policy elements), 20 bytes of 0s will be extended to
PCR 17.

3.2.8 Allow Any Policy

If an Owner policy exists and is of type LCP_POLTYPE_ANY, or no Owner policy exists
and the Supplier policy is of type LCP_POLTYPE_ANY, then 20 bytes of 0s will
extended to PCR 17.

3.2.9 Policy with LCP_POLICY_DATA

Because the measurement may contain the measurements of more than one policy
list, it is important that the SINIT ACMs for all platforms order the list measurements
in the same way so that identical policy evaluations will extend PCR 17 with the same
value.

The policy engine will order the policy list measurements according to the order in
which it evaluates policy elements. For this version of the specification, the following
policy element types are evaluated in this order: LCP_POLELT_TYPE_MLE,
LCP_POLELT_TYPE_PCONF, LCP_POLELT_TYPE_SBIOS, LCP_POLTYPE_STM. If
additional policy element types are supported in the future, their evaluation order will
be specified.

The policy engine will not measure duplicate policy lists, so if the same list is
evaluated for more than one policy element then it will only be measured the first
time. This is the case even if the same signature key is used for multiple lists.

The value that will be extended to PCR 17 will be the hash of the concatenation of all
policy list measurements used.

If an Owner policy exists and is of type LCP_POLTYPE_LIST, no Owner policy exists
and the Supplier policy is of type LCP_POLTYPE_LIST, or both the Owner and Supplier
policies exist and are of type LCP_POLTYPE_LIST, then the value extended to PCR 17
is calculated as described above.

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 61

3.2.10 Force Platform Owner Policy

Whether the Platform Supplier policy indicates that the Platform Owner policy must be
present (via bit 3 of its PolicyControl field) or not does not affect the measurement of
the enforcing policy. The measurement will be calculated as indicated above.

3.2.11 Platform Owner Index

The Platform Owner policy index is intended to represent the policy defined by the
owner of the platform, and as such should be provisioned with access control
permissions that enforce that control over the policy remains with the platform owner.

The following attribute settings are required:
Index Value: 0x40000001
Size: 54 bytes
Read Locality: 3 (can be others as well)
Read Auth: None
PCR Read: None

The simplest access control setting that maintains platform owner control is to set the
Write Auth to Owner. However, this also means that updating the policy requires the
owner authorization. As the owner authorization can be used for almost all TPM
management operations, it may be desirable to limit its use.

Another possibility would be to use a separate authorization just for this index. That
would eliminate having to provide the owner authorization just to update the policy.

If trusted software, running in the context of the MLE or with access to TPM locality 2,
needs to be able to update the policy, then it would be possible to have no Write Auth
but set the Write Locality to 2. This would permit whatever software was able to
successfully launch to update the policy.

Note that it is not advisable to use PCR Write controls, since it would mean that the
specified PCR could not change over time (e.g. if the software measured into it was
upgraded). This is because the index attributes cannot be changed once the index is
created.

3.3 LCP Components, v3.0 (TPM2.0)
The changes required from version 2.2 to effect launch control in TPM 2.0 mode are
defined and described in this section.

3.3.1 LCP POLICY2

This structure has been modified from the v2.2 version as described here. For a full
listing, see Appendix E.

Version is now 3.0 (300H).

HashAlg grows to 16 bits and the 8-bit Reserved1 is deleted. This field now uses
TPM2.0 numeric values.

Verifying Measured Launched Environments

62 Intel® TXT Software Development Guide

PolicyControl adds an overloaded definition to bit 3 when the type is PO:
PS_Pconf_Enforced. Bit 31 is now defined to flag AuxDeletionControl.

New fields are added after MaxBiosacMinVer, consuming the space from Reserved3:

LcpHashAlgMask: mask of approved hash algorithms for LCP evaluation.

LcpSignAlgMask: mask of approved signature schemes for LCP evaluation.

AuxHashAlgMask: mask of approved hash algorithms for auto-promotion hash.

PolicyHash is an LCP_HASH2 versus LCP_HASH as in v2.2.

For more information about the use of these masks and policy control bits, see 3.3.9
and 3.3.4.

3.3.2 LCP Policy Data

This structure matches that for v2.2, but the LCP_POLICY_LIST element has been
replaced by LCP_LIST, a union of LCP_POLICY_LIST and LCP_POLICY_LIST2. This
allows v3.0 policy data to contain a mixture of v2.2 and v3.0 policy lists.

3.3.3 LCP Policy Elements

Additional policy element types have been defined for TPM2.0 mode. These new
element types are enhancements to the TPM1.2 elements with augmentations for
algorithm agility. These new elements are defined in Appendix E.

3.3.4 TPM NV RAM

Launch Control Policy in TPM 2.0 mode will continue to use the legacy TPM NV RAM
index names of AUX, PS and PO. Purposes of the indices remain the same but
attributes, sizes and layout change. Properties and owning authorities change as well,
as described below.

3.3.4.1 nameAlg Support

When defining a TPM NV index, the nameAlg parameter specifies the HashAlgID used
by the policy controlling that index and therefore the cryptographic strength used to
protect that index’s data.

ACMs will be built requiring a minimum bit-length for allowed hash algorithms. For
example, if this built-in minimum requirement was 256 bits, then SHA256 and SM3
would satisfy it.

The nameAlg parameter for AUX, PS and PO indices must meet this requirement, or
the ACM will generate a reset. The exception to this is when the nameAlg is the only
supported algorithm on the platform, even if it does not meet the minimum.

Note that when the nameAlg for an index meets the minimum requirement,
algorithms used within the index need not; that index’s contents will be trusted,
irrespective of the strength of internal protections for contained items.

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 63

3.3.4.2 Index Handles

The following index handles have been selected based on TPM2.0 specification:

 PS = 0x180_0001

 AUX = 0x180_0003

 PO = 0x140_0001

These values are subject to change as TCG specifications evolve.

3.3.4.3 AUX Index

AUX index is specified with the following attributes SET; all others must be clear:

Table 3: AUX Index Attributes

Attribute Comment

TPMA_NV_POLICYWRITE AUX Index will be written under control of policy

TPMA_NV_POLICY_DELETE AUX index can only be deleted under control of policy

TPMA_NV_WRITE_STCLEAR Reserved for future use

TPMA_NV_AUTHREAD authValue must be an empty buffer. Enables read from any
locality.

TPMA_NV_NO_DA Prevents Dictionary Attack lockup.

TPMA_NV_PLATFORMCREATE Indicates Platform Hierarchy control of index deletion.

AUX index is mandatory. ACM will abort with error if it is not defined.

Index size depends on the hash algorithm specified in its AuxHashAlgID field, which is
determined by the AuxHashAlgMask field in the PS and PO indexes (see 3.3.4.6, E.1,
and E.5.

ACM will apply the following checks to validate index:
1. Index attributes after TPMA_NV_WRITTEN attribute is masked off must match

exactly the above attribute set.
2. Index authPolicy must match exactly the digest created as:

A = TPM2_PolicyLocality (Locality 3 & Locality 4)

B = TPM2_PolicyCommandCode (TPM_CC_NV_UndefineSpecial)

authPolicy = {A} OR {{A} AND {B}}
3. Index size must be large enough to support the selected Aux Hash algorithm (i.e.,

min size is 40 + 2 * sizeOfHash. For SHA256 or SM3_256, the minimum size is
104.)

Verifying Measured Launched Environments

64 Intel® TXT Software Development Guide

3.3.4.4 PS Index

PS index is specified with either of two of the following attributes:

Table 4: PS Index Attributes PS1

Attribute Comment

TPMA_NV_POLICYWRITE PS Index will be written under control of policy

TPMA_NV_POLICY_DELETE PS Index can only be deleted under control of policy

TPMA_NV_AUTHREAD authValue must be an empty buffer. Enables read from any
locality.

TPMA_NV_NO_DA Prevents Dictionary Attack lockup.

TPMA_NV_PLATFORMCREATE Indicates Platform Hierarchy control of index deletion.

Table 5: PS Index Attributes PS2

Attribute Comment

TPMA_NV_AUTHWRITE authValue will be assumed to be an empty buffer. Enables
write from any locality until write-locked.

TPMA_NV_POLICY_DELETE PS Index can only be deleted under control of policy

TPMA_NV_AUTHREAD authValue must be an empty buffer. Enables read from any
locality.

TPMA_NV_NO_DA Prevents Dictionary Attack lockup.

TPMA_NV_PLATFORMCREATE Indicates Platform Hierarchy control of index deletion.

TPMA_NV_WRITEDEFINE Can be write-locked for content protection.

PS index is mandatory. ACM will abort with error if it is not defined.

Index size depends on the hash algorithm specified in its HashAlg field (see 3.3.4.6,
and E.1).

ACM will apply the following checks to validate index:
4. Index attributes after TPMA_NV_WRITTEN and TPMA_NV_WRITELOCKED

attributes are masked off must match exactly one of the two the above attribute
sets.

5. Index authPolicy must not be zero digest (i.e., not all zeros)
6. Index size must be greater or equal to size derived from the HashAlg specified in

the index. For example, if the hash algorithm HashAlg stored in PS index is

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 65

TPM_ALG_SHA384. Then the minimal required PS index size is:
38 (LCP POLICY size without digest) + 48 (SHA384_DIGEST_SIZE) = 86 bytes

3.3.4.5 PO Index

PO index is specified with the following attributes:

Table 6: PO Index Attributes

Attribute Comment

TPMA_NV_OWNERWRITE PO Index can be written under control of ownerAuth value

TPMA_NV_POLICYWRITE PO Index can be written under control of Index policy

TPMA_NV_AUTHREAD authValue will be assumed to be empty buffer. Enables
read from any locality.

PO index is optional.

Index size depends on the hash algorithm specified in its HashAlg field (see 3.3.4.6,
and E.1).

ACM will apply the following checks to validate index:
7. Index attributes after TPMA_NV_WRITTEN attribute is masked off must match

exactly the above attribute set.
8. Index authPolicy must not be a zero digest
9. Index size must be greater or equal to size derived from the HashAlg specified in

the index.

Note: Size computation is analogous to that of PS index above.

3.3.4.6 Provisioned Index Sizes

The minimum index size calculations below give values that ensure that the index
sizes are sufficient to hold the digest indicated their HashAlgId. Index size will
therefore be verified at run time.

Table 7: AUX Index Size

Largest TPM-Supported Hash Digest
Size

Minimum Index Size (40 + 2 * Digest
Size)

20 (SHA1) 80

32 (SHA256/SM3) 104

48 (SHA384) 136

64 (SHA512) 168

Verifying Measured Launched Environments

66 Intel® TXT Software Development Guide

Table 8: PS and PO Index Size

Selected Hash Digest Size Minimum Index Size (38 + Digest Size)

20 (SHA1) 58

32 (SHA256/SM3) 70

48 (SHA384) 86

64 (SHA512) 102

3.3.4.7 Index Deletion

3.3.4.7.1 PS Index

The PS index can only be deleted under control of OEM policy via the
TPM2_UndefineSpaceSpecial() command. This requires that the authPolicy for the
index contains a branch that specifically allows the TPM2_UndefineSpaceSpecial()
command (e.g., the TPM2_PolicyCommandCode() assertion. There is no requirement
that the index be able to be deleted and it is the platform supplier’s responsibility to
set the index’s authPolicy to prevent unauthorized deletion.

3.3.4.7.2 AUX Index

The AUX index cannot be deleted straightforwardly under control of OEM policy since
authPolicy must be known prior to AUX index validation. This means that OEM policy
must be enforced immediately through the PS index.

To enable AUX index deletion at OEM discretion, the following architectural
enhancements were made.

• An AUXDeletionControl bit was defined in PolicyControl DWORD – see 3.3.1. This
bit is defined for PS indices only.

• The ResetAuxIndex() function of the BIOS ACM was redefined to have the
following logic:

 If AUXDeletionControl is 0 this function preserves the AUX index revocation
structure, and sets the rest of the AUX index back to its initial value (0).

 If AUXDeletionControl is 1 this function deletes AUX index if other required
conditions are met.

The required conditions include:

• AUX index created with the specified attributes

• AUX index has the required authPolicy

The allowed sequences of events needed to delete the AUX index follow.

If PS attributes match PS1 (per Table 4):

• OEM uses its closely held policy to modify the PS index, setting
AUXDeletionControl to 1

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 67

• OEM invokes ResetAuxIndex() function. This action will delete AUX index.

• OEM uses its closely held policy to modify the PS index, and sets
AUXDeletionControl back to 0.

If PS attributes match PS2 (per Table 5):

• OEM uses its closely held policy to delete the PS index.

• OEM creates a new PS index with the PS2 attribute set, and writes its content with
AUXDeletionControl set to 1.

• OEM leaves the PS index unlocked as an additional indication to the
ResetAuxIndex() function that execution is being performed in a manufacturer-
approved environment

• OEM invokes ResetAuxIndex() function, deleting the AUX index.

• OEM modifies the PS index to set AUXDeletionControl to 0.

• OEM write-protects the PS index using the TPM2_WriteLock() command

3.3.5 LCP Evaluation

3.3.5.1 Evaluation of MLE, STM, and SBIOS policy elements

The evaluation of MLE, STM, and SBIOS policy elements is independent of TPM
capabilities, and is determined by the intersection ACM_LCP_HashAlgIDList as
described in H.3. Only elements of the above types hashed with HashAlgIDs
belonging to this intersection will be processed.

For example, assume that the ACM supports SHA1, SHA256, and SHA384 while the
TPM supports SHA1, SHA256 and SM3 but only has two banks of PCRs (for SHA1 and
SHA256), and PO Policy only allows SHA256, SHA384, and SHA512, then when
evaluating MLE elements the ACM will evaluate MLE elements of type
LCP_POLELT_TYPE_MLE2 with HashAlg==TPM_ALG_SHA256. If there are any
LCP_POLELT_TYPE_MLE2 elements (regardless of HashAlg) , then there must be a
match within the allowed algorithms for the policy to pass.

Use of this intersection is not Extend Policy dependent.

3.3.5.2 Evaluation of PCONF LCP Elements

The evaluation of PCONF elements depends on TPM capabilities, and is determined by
the intersection ACM_LCP_PCR_HashAlgIDList as described in H.3, ensuring that the
HashAlgID associated with such elements is supported by ACM, permitted by PS / PO
policies and that the PCRs implementing the PCONF HashAlgID indeed exist.

Use of this intersection is not Extend Policy dependent.

3.3.5.3 nameAlg of TPM NV Indices

There must be constraints on what nameAlg may be used for TPM NV indices. The
Platform Supplier or Platform Owner is free to select one from among those supported
by the TPM (TPM_HashAlgIDList from H.3) that meet cryptographic strength
constraints for intended use.

Verifying Measured Launched Environments

68 Intel® TXT Software Development Guide

PS / PO indices cannot contain any settings controlling the strength of their own
protection, as these would be self-referential and impossible to configure initially. An
insufficiently strong nameAlg may lead to insufficient policy protection of index access,
making the contents of such an index vulnerable (see 3.3.4.1). Refer to 3.3.9 for
specific nameAlg requirements.

3.3.5.4 List Signatures

HashAlgIDs accepted in RSA and ECC signatures will be limited to those included in
the LcpSignAlgMask defined in E.3.1.

3.3.6 LCP Element Structures

The LCP structures used for TPM 1.2 are not articulate enough to support the
algorithmic agility possible with TPM 2.0 devices. New elements based on the existing
elements have been defined to add such support. The changes have been designed to
allow lists comprised of both TPM 1.2 and TPM 2.0 elements. This minimizes space
requirements for NV RAM, and simplifies processing logic. Where possible, the new
element structures use constants as defined in the TCG 2.0 specification. See Error!
Reference source not found..

3.3.7 Effective LCP Hash

The updated LCP structures described in Error! Reference source not found.
require changes in how effective LCP hashes are computed for extension into PCR 17
and 18.

3.3.7.1 Effective LCP Policy Details

The Effective LCP Policy Details Hash represents all of the elements contributing to the
currently established policy. As in v2.2, this is a hash of the concatenation of
descriptors per element type, extended into PCR 17. However, the size of the digests
encountered may vary, and it is no longer possible to allocate a single fixed size for all
of the descriptors.

The following data structures address this issue.

typedef union {
 UINT8 sha1 [SHA1_DIGEST_SIZE]
 UINT8 sha256 [SHA256_DIGEST_SIZE]
 UINT8 Sm3_256[SM3_256_DIGEST_SIZE]
 UINT8 sha384 [SHA384_DIGEST_SIZE]
 UINT8 sha512[SHA512_DIGEST_SIZE]
} TPMU_HA;

typedef struct {
 UINT16 hashAlg; // One of TPM_ALG_*
 TPMU_HA hashAlgDigest;
} TPMT_HA;

#define ELT_IND UINT8
#define POL_CONTROL UINT32

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 69

typedef struct {
 ELT_IND EltIndicator; // Boolean presence indicator
 POL_CONTROL PolControl;
 TPMT_HA EffEltDigest;
} EFF_ELT_PRESENT_DESCRIPTOR;

typedef struct {
 ELT_IND EltIndicator;
} EFF_ELT_ABSENT_DESCRIPTOR;

typedef union {
 EFF_ELT_PRESENT_DESCRIPTOR PresDescr;
 EFF_ELT_ABSENT_DESCRIPTOR AbsDescr;
}EFF_ELT_DESCRIPTOR, E_E_D;

For each of the elements involved, this last structure will be initialized to {1,
EffPolicyControl, EffEltDigest} if matched, or {0} if not. The concatenation to be
hashed will then be:

Concat = E_E_DMLE | E_E_DPO_PCONF | E_E_DPS_CONF | E_E_DSBIOS | E_E_DSTM

And the value extended into PCR 17 will be:

LcpEffPolicyDetails = HASHHashAlgID(Concat)

If LCP policy was “ANY”, a single byte of “0” will be measured into PCR 17 instead.

3.3.7.2 Effective LCP Policy Authorities

The Effective LCP Authorities Hash provides aggregated information about all of the
authorities (policy lists) contributing to the currently established policy. It will be
computed as follows: each authority will be described using the LIST_DSCR structure
defined below; all authority descriptors will be concatenated into a byte stream; that
byte stream will be hashed using the rule described below and extended into PCR 18.
If the LCP Policy evaluates to “ANY”, a single byte of “0” will be measured into PCR 18
instead.

3.3.7.2.1 List Descriptor

Each signed list will be represented using the following structure:

typedef struct {
 UINT16 SignAlg;
 UINT16 HashAlg;
 UINT16 PubKeySize;
 TPMT_HA EffAuthDigest;
} LIST_SIGN_DSCR;

SignAlg is one of the supported signature algorithms, either TPM_ALG_RSADSA,
TPM_ALG_ECDSA or SM3.

HashAlg is the algorithm paired with the signature algorithm used to compute the
digest. PubKeySize is the public key size in bytes.

Verifying Measured Launched Environments

70 Intel® TXT Software Development Guide

EffAuthDigest is a TPMT_HA structure describing the digest of the public key of this
authority. It includes the hash algorithm ID used to hash this Authority,
concatenated with the digest value of the public key field used for the list’s signature
in memory.

• For RSASSA signatures, the PubKeyValue[PubkeySize] field of
LCP_RSA_SIGNATURE is hashed using the HashAlg specified in the related PS or
PO NV Index. The size of the hashed data is PubkeySize.

• For ECDSA or SM2 signatures, the Qx[PubkeySize] and Qy[Pubkeysize]
components of LCP_ECC_SIGNATURE are hashed using the HashAlg specified in
the related PS or PO TPM NV Index. The size of the hashed data in PubkeySize *
2.

Each unsigned list will be represented using the following structure:

typedef struct {
 UINT16 SignAlg;
 TPMT_HA EffAuthDigest;
} LIST_UNSIGN_DSCR;

SignAlg is TPM_ALG_NULL.

EffAuthDigest is a TPMT_HA structure describing the digest of the entire unsigned list.
The entire list will be hashed using the HashAlg in the related PS or PO TPM NV Index.
The size of the hashed data is the size of the unsigned list itself.

Any list will be represented by the following structure:

typedef union {
 LIST_SIGN_DSCR SignedList;
 LIST_UNSIGN_DSCR UnsignedList;
} LIST_DSCR;

3.3.7.2.2 LcpEffPolicyAuthoritiesData byte stream

The method for constructing the data byte stream is straightforward. For each
authority, if it contains a matching element and is unique, its representation will be
derived from LIST_DSCR; if not, an empty buffer will represent it.

For signed elements, EffListData is constructed by concatenating:

• The signature algorithm ID

• The hash algorithm ID associated with the signature
 For RSASSA this is the hash algorithm used to create the encoded message—it is

extracted from the encoded message during signature verification in DER-encoded
form, and then converted to its TPM2.0-compliant 16-bit ID.

 For ECDSA this is the hash algorithm used to create the message digest. For P-
256 signatures, it is SHA256; for P-384 it is SHA384; for SM2 it is SM3.

• The PubkeySize taken from the LCP_SIGNATURE2 structure

• EffAuthDigest as computed according to 3.3.7.2.1

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 71

For unsigned elements, EffListData is constructed by concatenating the signature
algorithm ID TPM_ALG_NULL and the EffAuthDigest data as computed according to
3.3.7.2.1.

These representations (EffListData) are then concatenated:

LcpEffPolicyAuthoritiesData = EffListDataMLE | EffListDataPO_PCONF |
EffListDataPS_PCONF | EffListDataSBIOS | EffListDataSTM

Note that two different lists signed by the same key are treated as the same authority
and must be represented in the above concatenation only once.

3.3.8 Effective TPM NV info Hash

For an attester evaluating the trustworthiness of a platform/environment, the
properties of the TPM NV indices used by Intel TXT are of considerable interest.
Therefore, SINIT will extend these properties into PCRs 17 and 18 and log the
extension process into the event log in a form that facilitates inspection.

The following structure is used as the descriptor of TPM NV index properties:

typedef struct {
 UINT32 nvIndex; // Index handle
 UINT16 nameAlg; // Index name hash algorithm
 UINT32 attributes; // Index attributes
 Struct {
 UINT16 size;
 UINT8 buffer[size];
 } authPolicy; // policy digest
 UINT16 dataSize; // Index data size
} TPMS_NV_PUBLIC;

Based on that, we build the following structures:

#define IDX_IND UINT8

typedef struct {
 IDX_IND IndexIndicator;
 TPMS_NV_PUBLIC IndexPropoeties;
} EFF_IDX_PRESENT_DESCRIPTOR;

typedef struct {
 IDX_IND IndexIndicator;
} EFF_IDX_ABSENT_DESCRIPTOR;

typedef union {
 EFF_IDX_PRESENT_DESCRIPTOR PresDescr;
 EFF_IDX_ABSENT_DESCRIPTOR AbsDescr;
} EFF_IDX_DESCRIPTOR, E_I_D;

For each of the indices:

• If present, its E_I_D = {1, PresDescr}
• If absent, its E_I_D = {0}

Verifying Measured Launched Environments

72 Intel® TXT Software Development Guide

The data to be hashed will be:

LcpEffNvInfoData = E_I_DAUX | E_I_DPS | E_I_DPO

The data extended into PCR 17 and 18 will be:

LcpEffNvInfoHash = HASHHashAlgId (LcpEffNvInfoData)

3.3.9 LCP Policy Engine Logic

The new structures defined for LCP v3 require changes in the processing engine logic
for both TPM1.2 and TPM2.0 mode. They are enumerated here.
10. LCP_POLICY_LIST2 processing can accommodate both v2 and v3 policy elements.

This allows an authority to maintain a single list for both TPM1.2 and TPM2.0
execution environments. The obverse is not allowed: v2 policy lists can only
contain v2 list elements.

11. Policy engine execution is otherwise distinct for the two modes
a. TPM1.2 mode will process only v2 elements, ignoring all unrecognized

elements, including v3 elements. However, the TPM1.2 engine must be
enhanced to recognize the v3 list structure that can contain both types of
elements.

b. TPM2.0 mode will process only v3 elements, ignoring all unrecognized
elements, including v2 elements.

12. During list signature verification:
a. When the signature algorithm / key / hash algorithm combination is not one

of those supported by the ACM (see 3.3.5.4) the policy engine will emit an
error and reset the system.

b. If the algorithm / key / hash algorithm combination is supported, the
signature will be validated.

c. If the signature is valid, the list will be processed. Otherwise, the policy
engine will emit an error and reset the system.

Additionally, the following changes and enhancements are required only in TPM2.0
mode:
13. Policy evaluation will begin with a check of the nameAlg strength

a. As each index is validated, the strength of the index’s nameAlg will be
compared to the engine’s built-in minimum requirement, and the engine will
abort if such is not met

b. Currently, the minimal nameAlg strength requirement is met by SHA256 or
SM3 if the current TPM supports them, as this ensures some level of
compliance with evolving NIST standards. If the TPM only supports SHA1,
the policy engine will treat that as acceptable.

14. Policy validation must ensure that AUXDeletionControl == 0 and abort with an
error if not.

15. To determine effective LcpHashAlgMask and LcpSignAlgMask
a. If only the PS Index exists, then its masks are the effective masks
b. If PO Index exists, then its masks are the effective masks. However, the

overridden PS masks must be valid, or an error will be generated.

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 73

16. If the PO Index exists, for both PO index and PS index both LcpHashAlgMask and
LcpSignAlgMask will be defined. Based on those definitions, effective masks must
be derived.
a. If only the PS index exists, its LcpHashAlgMask and LcpSignAlgMask masks

are treated as effective
b. If PO index exists its LcpHashAlgMask and LcpSignAlgMask masks are treated

as effective; the PS masks are ignored
c. Any PS mask must be valid, even if overridden by a PO mask; i.e. if it is

empty, an error will be generated.
d. AuxHashAlgMask is valid in the PS index only and is reserved/ignored in the

PO index. If it is empty in the PS index, an error will be generated.
17. List signature evaluation will proceed as follows:

a. Decrypt signature to obtain encoded message
b. DER decode the message to obtain HashAlgID used to hash plaintext
c. If the combination of signature algorithm key size and HashAlgID is not

included in the LcpSignAlgMask, list evaluation will proceed, but none of the
contained elements will be treated as matches.

d. Evaluation will include all consistency checks and all element types in the list
will be marked as required. This prevents automatic fallback to ANY policy in
case when all lists in LCP Data File are signed with inappropriate signatures.

e. LCP elements will be evaluated in order of type: MLE; PCONF; SBIOS; STM.
LCP elements of each type will be evaluated in the order of appearance in
LCP_POLICY_DATA file, irrespective of hash algorithms they use.

18. As elements are encountered, their HashAlgID will be checked against the
corresponding bit in the LcpHashAlgMask, and will be processed if matched and
skipped otherwise.

19. A HashAlgID is permitted if the corresponding bit is set in the LcpHashAlgMask.
20. A combination of signature algorithm, key size (and curve for ECC) and hash

algorithm is permitted if the corresponding bit is set in the LcpSignAlgMask.
21. It will be treated as an error for any of the masks (LcpHashAlgMask,

AuxHashAlgMask, LcpSignMask) to be empty.
22. The following logic must be followed:

a. Each newly discovered element type is recorded as “required”, even if that
element instance would be rejected as not matching for any reason.

b. Completion of evaluation without finding a matched element for any
“required” type results in an error.

c. Element types that are never encountered will be treated as successfully
evaluated.

23. AuxHashAlgMask is used by the startup ACM to create the auto-promotion digest
and store it in the AUX Index –see E.5. This mask must have exactly one bit set
or an error will be generated.

24. The HashAlgID bit set in the AuxHashAlgMask must also be set in the effective
LcpHashAlgMask, as well as being a member of ACM_PCR_HashAlgIDList (see
Appendix H), or an error will be generated.

25. The HashAlg bits for the PS and PO indices’ LCP_POLICY2 structures must be set
in the effective LcpHashAlgMask. If the effective LcpHashAlgMask does not permit
the HashAlg describing an LCP Data File, that file will be validated for integrity, all
elements within it will be recorded as required, but none of them will be allowed to
match.

Verifying Measured Launched Environments

74 Intel® TXT Software Development Guide

26. If the auto-promotion execution path is enforced and the requested auto-
promotion hash digest is larger than the ACM can handle, execution will abort with
an error.

27. In the PO index, the new “PS_Pconf_Enforced” bit changes the way PCONF
elements from different authorities are combined. Current processing evaluates
only the first instance of an element type found. When the above flag is set,
processing changes for PCONF elements only:
a. If both LCP data files are found, PO is evaluated first (no change)
b. If a PCONF match is found in the PO, PO evaluation stops and PS evaluation

begins
c. If PCONF elements are not found in the PS file, the PCONF element found in

PO is enforced, and evaluation was successful.
d. If PCONF elements are found in the PS but none match, SINIT will abort with

an error.
e. For handling all other cases, the logic is unchanged.

28. It will be an error for the PS_Pconf_Enforced flag to be set and bit 0 in the
PolEltControl field of a PCONF element in the PO data file, as the implied
processing logics conflict.

29. If “extend policy” is set to “embedded software”, processing logic must abort with
an error if a signature format is encountered that is not supported by the ACM’s
embedded software.

3.4 Revocation

3.4.1 SINIT Revocation

LCP also enables a limited self-revocation mechanism for SINIT. SINIT itself enforces
this on launch and a failure (i.e. the executing SINIT was revoked) results in a TXT
reset with an error code stored in the TXT.ERRORCODE register. The algorithm or
process that SINIT uses to determine whether it has been revoked is described in text
on the SINITMinVersion field in section 3.2.1. The rationale for this decision-making
process follows.

The ACM Info Table of an SINIT module contains that module’s version number, per
Table 11. The SINITMinVersion field of the PS Index defines the minimum version of
an SINIT module that is allowed to execute to completion. SINIT verifies that its
version meets that required, and performs a self-revocation (via LT-RESET) if it does
not. This mechanism allows the OEM (platform supplier) to restrict execution of SINIT
versions prior to one of they specify.

An SINIT version satisfying a platform SINITMinVersion may be found to have a
security flaw resulting in platform vulnerabilities after the OEM has provisioned the PS
Index. An orthogonal self-revocation mechanism is provided for this case. In addition
to its version number, each SINIT has a security version number (SVN). The platform
AUX Index contains a reference value this field can be verified against. If the SVN is
below the required version, SINIT performs a self-revocation as above.

This AUX Index field is only updatable from locality 3, and hence can only be modified
by a special “revocation” ACM. Such a revocation ACM would increase the AUX Index
SVN requirement to a new target value, precluding execution by SINIT modules with

Verifying Measured Launched Environments

Intel® TXT Software Development Guide 75

lower SVN values, effectively revoking them. Misuse or misapplication of such a
revocation ACM could impact platform functionality adversely. For example, the AUX
Index SVN bound could be elevated to a new value for which no ACMs having a
sufficiently high SVN exist for the affected platform.

The MaxSinitMinVersion field in the PO Index allows the platform owner or user to
control such revocation. Unless this field is set to 0xff, the value given is the
maximum value a revocation ACM may set the AUX index required SVN to.

§

Development and Deployment Considerations

76 Intel® TXT Software Development Guide

4 Development and Deployment
Considerations

4.1 Launch Control Policy Creation
Depending on the usage model, it may be desirable to create a Launch Control Policy
at the time the MLE is built. This would apply in the cases where only one MLE is
expected to run on the system. In such cases, the policy can be pre-created and
provisioned during the installation of the MLE.

If multiple MLEs are expected to run on the system, or if there is to be a platform
configuration policy, then it is likely that the policy will need to be created at the time
of deployment. As each element type is allowed in a policy list, each MLE will have its
own list if any of its list elements must differ from those of others.

In either case, it is advisable that the policy should contain an SINITMinVersion value
that corresponds to the lowest versioned SINIT that is required. In the case of a
system that supports multiple MLEs, a different SINITMinVersion may be specified
with each MLE’s policy element. The effective SINITMinVersion value will be the
highest of the values in the PS policy, PO policy, and matching MLE element (for each
one that exists). This effective SINITMinVersion will be compared to the AcmVersion of
the SINIT being used. Setting the SINITMinVersion value in the policy prevents an
attacker from substituting an older version of SINIT (if there is one for a given
platform) that may have security issues.

4.2 Launch Errors and Remediation
If there is an error during a measured launch, the platform will be reset and an error
code left in the TXT.ERRORCODE register. It is important for MLE vendors to consider
how their software will handle such errors and allow users or administrators to
remediate them.

If an MLE is launched automatically either as part of the boot process or as part of an
operating system’s launch process, it needs to be able to detect a previous failure in
order to prevent a continuous cycle of boot failures. Such failures may occur as part
of the loading and preparation for the GETSEC[SENTER] instruction or they may occur
during the processing of that instruction before the MLE is given control.

In the former case, it is the MLE launching software that is detecting the error
condition (e.g. a mismatched SINIT ACM, TXT not being enabled, etc.) and that
software can use whatever mechanism it chooses to persist the error or to handle it at
that time. In the latter case, the system will be reset before the MLE launching
software can handle the error and so that software should be able to detect the error
in the TXT.ERRORCODE register and take appropriate action.

Development and Deployment Considerations

Intel® TXT Software Development Guide 77

The particular remediation action needed will depend on the error itself. If the MLE
launch happens early in the boot process, the launching software may need a way of
booting into a remediation operating system. If the launch happens within an
operating system environment, the software may be able to remediate in that
environment.

4.3 Determining Trust
While a TXT Launch Control Policy can be used to prevent software use of TPM locality
2 and access to TXT private space, it is not a general mechanism to prevent unwanted
software from executing on a system. Consequently, an MLE cannot itself determine
whether it is running in a TXT measured environment (it could be running on an
emulator that spoofs PCR values, chipset registers, etc.).

In order to gain trust in an MLE (or rather, in software that uses TXT with the
intention of being an MLE), the PCR values for the MLE (PCRs 17 and 18) must be
used to make the trust “decision”. The trust “decision” must either be made by a
party external to the MLE’s system (i.e. remote attestation) or by the release of some
data that is not available to untrusted software (i.e. local attestation).

Remote attestation involves a remote party requesting the MLE to provide a TPM
quote of the PCRs needed to determine trust (at least 17 and 18) and that remote
party verifying the quote and making a trust determination of the PCR values. The
remote party can then act on the trust level in various ways (disconnect the MLE
system from the network, not provide it with network credentials, etc.). The details
involved in the remote attestation process can be found at the Trusted Computing
Group’s (TCG) website (http://www.trustedcomputinggroup.org/).

Local attestation, also known as SEALing, uses the TPM to encrypt some data bound to
certain PCR values (and/or locality). The data is typically SEALed by the MLE system
when the system is in a trusted state (there are multiple ways to establish an initial
trusted state) and the PCR/binding made to values that represent the desired trusted
state (the initial and final states don’t have to be the same as long as they are both
trusted). The SEALed data is then persistently stored, so it can be retrieved and
UNSEALed when the trusted MLE is running. The specifics of SEALing can also be
found on the TCG website.

4.3.1 Migration of SEALed data

If SEALing/local attestation is used to protect data, then the MLE must be able to
accommodate the upgrading/changing of components whose measurements are in the
PCRs being SEALed to. Since PCRs 17 and 18 contain the TCB for the MLE, at a
minimum this would include SINIT, LCP, the MLE, etc. (see section 1.9 for the
complete contents of these PCRs). If data is SEALed to additional PCRs then changes
to the entities that are measured into these other PCRs must also be handled. While
data may be sealed to PCRs, locality, or an auth value, or any combination thereof,
migration is only an issue when PCRs are sealed to.

When one of the elements of the SEALed data’s PCRs is changed, the TPM will no
longer UNSEAL that data. So if no migration or backup of the plaintext data is made,
then after the next measured launch that data will not be available to the new MLE.
And unless the original MLE can be re-launched, the data will be lost. Thus, some

http://www.trustedcomputinggroup.org/

Development and Deployment Considerations

78 Intel® TXT Software Development Guide

provision for making the data available to the new MLE must be made while the data
is still available in plaintext form (UNSEALed), i.e. in the original MLE.

The most seamless and secure method for migrating the data to the new environment
is for the original environment to re-SEAL the data to the new environment. This
requires the original environment to calculate what the PCR values will be in the new
environment. For PCRs 17 and 18, this can be done using the information in section
1.9, coupled with knowing or being able to calculate the constituent values for the new
components. Alternately, if the new environment were run on a trusted system (so
that nothing would tamper with the measurements), the PCR values could then be
collected from that system and used directly as the new values without having to
calculate them from the components.

Other methods, such as password-based recovery, key escrow, etc. would be the
same as for any other encrypted data and have similar tradeoffs.

4.4 Deployment

4.4.1 LCP Provisioning

4.4.1.1 TPM Ownership

Because creation and writing to the Platform Owner policy TPM NV index requires the
TPM owner authorization credential, the installation program should accommodate
differing IT policies for how and when TPM ownership is established. In some
enterprises, IT may take ownership before a system is deployed to an end user. In
others, the TPM may be un-owned until the first application that requires ownership
establishes it.

Since the TPM owner authorization credential will be required to modify the Platform
Owner policy, if the installation program creates the credential it should provide a
mechanism for securely saving that credential either locally or remotely.

4.4.1.2 Policy Provisioning

The Platform Owner policy TPM NV index will need to be created by the MLE
installation program (or other TPM management software) if does not already exist.
This can be done with the TPM_NV_DefineSpace or TPM2_NV_DefineSpace command
or corresponding higher-level TPM interface (e.g. via a TCG Software Stack or TSS).

Once the index has been created, the installation program can write the policy into the
index using the TPM_NV_WriteValue or TPM2_NV_Write command or corresponding
higher-level TPM interface (e.g. via a TCG Software Stack or TSS).

Because creating and writing to the Platform Owner policy index requires the TPM
owner authorization credential, care should be taken to protect the credential when it
is being used and to erase or delete it from memory as soon as it is no longer needed.

Ideally, policy provisioning would occur in a secure environment or be performed by
an agent that can be verified as trustworthy. An example of the former would be on
an isolated network immediately after receiving the system. Another would be
booting from a CD containing provisioning software. An example of the latter would

Development and Deployment Considerations

Intel® TXT Software Development Guide 79

be to use Intel TXT to launch a provisioning MLE or agent that was then attested to by
a remote entity which could provide the owner authorization credential upon
successful attestation.

4.4.2 SINIT Selection

Because the SINIT AC module is specific to a chipset, different platforms may have
different SINIT ACMs. If an MLE is intended to run on multiple platforms with different
chipsets, the MLE installation program will need to determine which SINIT ACM to
install if the platform BIOS does not provide the SINIT ACM or if the MLE wants to use
a later version.

Comparing the chipset compatibility information in the SINIT ACM’s Chipset ID List
with the corresponding information for the platform accomplishes this. This would be
identical to the process for verifying SINIT ACM compatibility at launch time, as
described in section 2.2.3.1.

§

Development and Deployment Considerations

80 Intel® TXT Software Development Guide

Appendix A : Intel® TXT Execution
Technology Authenticated Code
Modules

A.1 Authenticated Code Module Format
An authenticated code module (AC module) is required to conform to a specific
format. At the top level the module is composed of three sections: module header,
internal working scratch space, and user code and data. The module header contains
critical information necessary for the processor to properly authenticate the entire
module, including the encrypted signature and RSA based public key. The processor
also uses other fields of the AC module for initializing the remaining processor state
after authentication.

The format of the authenticated-code module is in Table 9. This definition represents
Revision 0.0 of the AC module header version (defined in the HeaderVersion field).

Table 9. Authenticated Code Module Format

Field Offset Size (bytes) Description

ModuleType 0 2 Module type

ModuleSubType 2 2 Module sub-type

HeaderLen 4 4 Header length (in multiples of four bytes)
(161 for version 0.0)

HeaderVersion 8 4 Module format version

ChipsetID 12 2 Module release identifier

Flags 14 2 Module-specific flags

ModuleVendor 16 4 Module vendor identifier

Date 20 4 Creation date (BCD format:
year.month.day)

Size 24 4 Module size (in multiples of four bytes)

TXT SVN 28 2 TXT Security Version Number

SE SVN 30 2 Secure Enclaves Security Version
Number

CodeControl 32 4 Authenticated code control flags

ErrorEntryPoint 36 4 Error response entry point offset (bytes)

GDTLimit 40 4 GDT limit (defines last byte of GDT)

Development and Deployment Considerations

Intel® TXT Software Development Guide 81

Field Offset Size (bytes) Description

GDTBasePtr 44 4 GDT base pointer offset (bytes)

SegSel 48 4 Segment selector initializer

EntryPoint 52 4 Authenticated code entry point offset
(bytes)

Reserved2 56 64 Reserved for future extensions

KeySize 120 4 Module public key size less the exponent
(in multiples of four bytes)
(64 for version 0.0)

ScratchSize 124 4 Scratch field size (in multiples of four
bytes)
(2 * KeySize + 15 for version 0.0)

RSAPubKey 128 KeySize * 4 Module public key

RSAPubExp 384 4 Module public key exponent

RSASig 388 256 PKCS #1.5 RSA Signature

End of AC module header

Scratch 644 ScratchSize * 4 Internal scratch area used during
initialization (needs to be all 0s)

User Area 644 +
ScratchSize*4

N * 64 User code/data (modulo-64 byte
increments)

ModuleType

Indicates the module type. The following module types are defined:

2 = Chipset authenticated code module.

Only ModuleType 2 is supported by GETSEC functions SENTER and ENTERACCS.

ModuleSubType

Indicates whether the module is capable of being executed at processor reset.

0 = ACM cannot be executed at processor reset

1 = ACM is capable of being executed at processor reset

ModuleSubType 1 is not supported for use by the GETSEC[SENTER] instruction.

HeaderLen

Length of the authenticated module header specified in 32-bit quantities. The
header spans the beginning of the module to the end of the signature field. This is
fixed to 161 for AC module version 0.0.

HeaderVersion

Specifies the AC module header version. Major and minor vendor field are
specified, with bits 15:0 holding the minor value and bits 31:16 holding the major

Development and Deployment Considerations

82 Intel® TXT Software Development Guide

value. This should be initialized to zero for header version 0.0. The processor will
reject unsupported header versions, resulting in an abort during authentication.

ChipsetID

Module-specific chipset identifier.

Flags

Module-specific flags. The following bits are currently defined:

Table 10. AC module Flags Description

Bit position Description

13:0 Reserved (must be 0)

14 Production (0) or pre-production (1)

15 Production (0) or debug (1) signed

ModuleVendor

Module creator vendor ID. Use the PCI SIG* assignment for vendor IDs to define
this field. The following vendor ID is currently recognized:

00008086H = Intel

Date

Creation date of the module. Encode this entry in the BCD format as follows:
year.month.day with two bytes for the year, one byte for the day, and one byte
for the month. For example, a value of 20131231H indicates module creation on
December 31, 2013.

Size

Total size of module specified in 32-bit quantities. This includes the header,
scratch area, user code and data.

TXT SVN

TXT Security Version Number

SE SVN

Secure Enclaves Security Version Number

CodeControl

Authenticated code control word. Defines specific actions or properties for the
authenticated code module.

Development and Deployment Considerations

Intel® TXT Software Development Guide 83

ErrorEntryPoint

If bit 0 of the CodeControl word is 1, the processor will vector to this location if a
snoop hit to a modified line was detected during the load of an authenticated code
module. If bit 0 is 0, then enabled error reporting via bit 1 of a HITM during ACEA
load will result in an abort of the authentication process and signaling of an Intel®
Trusted Execution Technology shutdown condition.

GDTLimit

Limit of the GDT in bytes, pointed to by GDTBasePtr. This is loaded into the limit
field of the GDTR upon successful authentication of the code module.

GDTBasePtr

Pointer to the GDT base. This is an offset from the authenticated code module
base address.

SegSel

Segment selector for initializing CS, DS, SS, and ES of the processor after
successful authentication. CS is initialized to SegSel while DS, SS, and ES are
initialized to SegSel + 8.

EntryPoint

Entry point into the authenticated code module. This is an offset from the module
base address. The processor begins execution from this point after successful
authentication.

Reserved2

Reserved. Should contain zeros.

KeySize

Defines the width the RSA public key in dwords applied for authentication, less the
size of the exponent. For version 0.0 of the AC module header, KeySize is fixed to
64 (a 2048 bit key). The information in this field is intended to support external
software parsing of an AC module independent of the module version. It is the
responsibility of the developer to reflect an accurate KeySize. This field is not
checked for consistency by the processor.

ScratchSize

Defines the width of the scratch field size specified in 32-bit quantities. For version
0.0 of the AC module header, ScratchSize is defined by KeySize * 2 + 15. The
information in this field is intended to support external software parsing of an AC
module independent of the module version. It is the responsibility of software to
reflect an accurate ScratchSize. The processor does not check this field.

RSAPubKey

Contains a public key plus a fixed 32-bit exponent to be used for decrypting the
signature of the module. The size of this field is defined by the previously defined
AC module field, KeySize + 1.

Development and Deployment Considerations

84 Intel® TXT Software Development Guide

RSASig

The PKCS #1.5 RSA Signature of the module. The RSA Signature signs an area
that includes the some of the module header and the USER AREA data field (which
represents the body of the module). Parts of the module header not included are:
the RSA Signature, public key, and scratch field.

Scratch

Used for temporary scratch storage by the processor during authentication. This
area can be used by the user code during execution for data storage needs.

User Area

User code and data represented in modulo-64 byte increments. In addition, the
boundary between data and code should be on at least modulo-1024 byte
intervals. The user code and data region is allocated from the first byte after the
end of the Scratch field to the end of the AC module.

The chipset AC module information table is located at the start of the User Area
and contains supplementary information that is specific to chipset AC modules.
The chipset ID list is described in more detail in section 2.2.3.1.

Table 11. Chipset AC Module Information Table

Field Offset
(Bytes)

Width
(Bytes)

Description

UUID 0 16 UUID of the Chipset AC module information table
defined as:

ULONG UUID0; // 0x7FC03AAA
ULONG UUID1; // 0x18DB46A7
ULONG UUID2; // 0x8F69AC2E
ULONG UUID3; // 0x5A7F418D
This UUID is used to identify a file/memory
image as being a chipset AC module.

ChipsetACMType 16 1 Module type (00h = BIOS; 01h = SINIT)
Bit 3, if set, flags the ACM as a revocation module,
hence “8” is a BIOS revocation AC, “9” is an SINIT
revocation AC.

Version 17 1 Version of this table. Table versions are always
backwards compatible. The highest version
defined is currently 5.

Length 18 2 Length of this table in bytes.

ChipsetIDList 20 4 Location of the Chipset ID list used to identify
chipsets supported by this AC Module. This field is
an offset in bytes from the start of the AC Module.
See Table 12 for details.

OsSinitDataVer 24 4 Indicates the maximum version number of the OS
to SINIT data structure that this module supports.
It is assumed that the module is backward
compatible with previous versions.

Development and Deployment Considerations

Intel® TXT Software Development Guide 85

Field Offset
(Bytes)

Width
(Bytes)

Description

MinMleHeaderVer 28 4 Indicates the minimum version number of the MLE
Header data structure that this module
supports/requires. MLEs with more recent header
versions are responsible for determining whether
they can support this version of the ACM.

Capabilities 32 4 Bit vector of supported capabilities. The values
match those of the Capabilities field in the MLE
header. This can be used by an MLE to determine
whether the ACM is compatible with it and to
determine any optional capabilities it might
support. See Table 2.

AcmVersion 36 1 Version of this AC Module. It is compared against
the SINITMinVersion field in LCP to determine if
the module is revoked.

Reserved 37 3 Reserved

ProcessorIDList 40 4 Location of the Intel TXT Processor ID list used to
identify Intel TXT processors supported by this AC
Module. This field is an offset in bytes from the
start of the AC Module. See Table 14 for details.

Version >= 5

TPMInfoList 44 4 Location of table of TPM capabilities supported by
ACM. This field is an offset in bytes from ACM
start.

Table 12. Chipset ID List

Field Offset Width (Bytes) Description

Count 0 4 Number of entries in the array ChipsetID

ChipsetIDs[] 4 Count *
sizeof(TXT_ACM
_CHIPSET_ID)

An array of count entries of the structure
TXT_ACM_CHIPSET_ID (see Table 13).

Table 13. TXT_ACM_CHIPSET_ID Format

Field Offset Width
(Bytes)

Description

Flags 0 4 Set of flags to further describe functions of the
chipset ID structure.
Bit Description:
[0]: RevisionIdMask – if 0, the RevisionId field
must exactly match the TXT.DIDVID.RID field. If 1,
the RevisionId field is a bitwise mask that can be
used to test for any bits set in the TXT.DIDVID.RID
field. If any bits are set, the RevisionId is a match.
[31:1]: Reserved for future use. Must be 0.

Development and Deployment Considerations

86 Intel® TXT Software Development Guide

Field Offset Width
(Bytes)

Description

VendorID 4 2 Indicates the chipset vendor this AC Module is
designed to support. This field is compared against
the TXT.DIDVID.VID field.

DeviceID 6 2 Indicates the chipset vendor’s device that this AC
Module is designed to support. This field is
compared against the TXT.DIDVID.DID field.

RevisionID 8 2 Indicates the revision of the chipset vendor’s
device that this AC module is designed to support.
This field is used according to the RevisionIdMask
bit in the Flags field.

Reserved 10 6 Reserved for future use.

Table 14. Processor ID List

Field Offset Width (Bytes) Description

Count 0 4 Number of entries in the array ProcessorID

ProcessorIDs[] 4 Count *
sizeof(TXT_ACM
_PROCESSOR_I
D)

An array of count entries of the structure
TXT_ACM_PROCESSOR_ID (see next
table).

Table 15: TPM Info List

Field Offset Width
(Bytes)

Description

TPM Capabilities 0 4 TPM supported capabilities (described below)

Count 4 2 Number of entries in AlgortihmID array

AlgorithmID[] 6 Count *
2

“Count” array elements of algorithm IDs supported
by this ACM per the TPM2 specification
enumeration in Part 2, Table 7.

Development and Deployment Considerations

Intel® TXT Software Development Guide 87

Table 16. TPM Capabilities Field

Bit Position Description

1:0 TPM2 Extend Policy Support
00: illegal
01: Algorithmically agile commands supported
10: Embedded set of fixed algorithms
11: Both policies types supported

5:2 TPM family support
0000: illegal
0001: discrete TPM 1.2 supported
0010: discrete TPM 2.0 supported
1000: firmware TPM 2.0 supported

31:6 Reserved, must be zero

Notes on extend policy:

Algorithmically Agile commands supported: TPM2_PCR_Event;
TPM2_HashSequenceStart; TPM2_HashUpdate; TPM2_EventSequenceComplete are
supported by this ACM. When this policy is selected ACM will use aforementioned
commands and will extend all existing PCR banks. Side effect of this policy is possible
performance loss.

Embedded set of fixed algorithms: this ACM can support number of hash algorithms
via embedded SW. When this policy is selected, ACM will use embedded SW to
compute hashes and then will use TPM2_PCR_Extend commands to extend them into
PCRs. If PCRs utilizing hash algorithms not supported by SW are discovered, they will
be capped with “1” value. This policy when selected will ensure maximum possible
performance but has side effect of possible capping of some of the PCRs.

For an ACM that supports both extend policies, it will use the one indicated in the flags
field in the OsSinitData structure (Table 22).

Notes on TPM family:

Discrete TPM 1.2 supported: this includes all FIFO interfaces that are used with this
family – TIS 1.21, and TIS 1.3

Discrete TPM 2.0 supported: this includes all interfaces that are supported with this
family (TIS1.3 and PTP)

Firmware TPM 2.0 supported: this includes CRB interface.

Currently valid values for TPM family support: 0001, 0010, 0011, and 1000.

Development and Deployment Considerations

88 Intel® TXT Software Development Guide

Table 11. TXT_ACM_PROCESSOR_ID Format

Field Offset Width
(Bytes)

Description

FMS 0 4 Indicates the Family/Model/Stepping of the
processor this AC Module is designed to support.
This field is compared against the corresponding
value returned from the CPUID instruction.

FMSMask 4 4 Mask to apply to FMS

PlatformID 8 8 Indicates the Platform ID of the processor this AC
Module is designed to support. This field is
compared against the value in the
IA32_PLATFORM_ID MSR.

PlatformMask 16 8 Mask to apply to Platform ID

A.1.1 Memory Type Cacheability Restrictions
Prior to launching the authenticated execution environment using the GETSEC leaf
functions ENTERACCS or SENTER, processor MTRRs (Memory Type Range Registers)
must first be initialized to map out the authenticated RAM addresses as WB (write-
back). Failure to do so may affect the ability for the processor to maintain isolation of
the loaded authenticated code module. The processor will signal an Intel TXT
shutdown condition with error code #BadACMMType during the loading of the
authenticated code module if non-WB memory is detected.

While physical addresses within the load module must be mapped as WB, the memory
type for locations outside of the module boundaries must be mapped to one of the
supported memory types as returned by GETSEC[PARAMETERS] (or UC as default).
This is required to support inter-operability across SMX capable processor
implementations.

A.1.2 Authentication and Execution of AC Module
Authentication is performed after loading of the code module into the authenticated
code execution area. Information from the authenticated code module header is used
to support the authentication process. The RSAPubKey header field contains a public
key plus a 32-bit exponent used for decrypting the signature of the authenticated
code module. The signature is held in encrypted form in the RSASig header field and it
represents the PKCS #1.5 RSA Signature of the module. The RSA Signature signs an
area that includes the sum of the module header and the entire USER AREA data field,
which represents the body of the module. Those parts of the module header not
included are: the RSA Signature, the public key, and the scratch field. An inconsistent
authenticated code module format, inconsistent comparison of the public key hash, or
mismatch of the decrypted signature against the computed hash of the authenticated
module or a corrupted signature padding value results in an abort of the
authentication process and signaling of a Intel TXT shutdown condition. As part of the
authentication step, the processor stores the decrypted signature of the AC module in
the first 20 or 32 bytes (depending on the SINIT AC Module) of the ‘Scratch’ field of
the AC module header.

Development and Deployment Considerations

Intel® TXT Software Development Guide 89

After authentication has completed successfully, the private configuration space of the
Intel TXT-capable chipset is unlocked. At this point, only the authenticated code
module or system software executing in authenticated code execution mode is allowed
to gain access to the restricted chipset state for the purpose of securing the platform.

The architectural state of the processor is partially initialized from contents held in the
header of the authenticated code module. The processor GDTR, CS, and DS selectors
are initialized from fields within the authenticated code module. Since the
authenticated code module must be relocatable, all address references must be
relative to the authenticated code module base address in EBX. The processor GDTR
base value is initialized to the AC module header field GDT BasePtr + module base
address held in EBX and the GDTR limit is set to the value in the GDT Limit field. The
CS selector is initialized to the AC module header SegSel field, while the DS selector is
initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0,
LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read
access for CS. The processor begins the authenticated code module execution with the
EIP set to the AC module header EntryPoint field + module base address (EBX). The
AC module based fields used for initializing the processor state are checked for
consistency and any failure results in a shutdown condition.

§

Development and Deployment Considerations

90 Intel® TXT Software Development Guide

Appendix B : SMX Interaction with
Platform

B.1 Intel® Trusted Execution Technology
Configuration Registers
Intel TXT configuration registers are a subset of chipset registers. These registers are
mapped into two regions of memory, representing the public and private configuration
spaces. Registers in the private space can only be accessed after a measured
environment has been established and before the TXT.CMD.CLOSE-PRIVATE command
has been issued. The private space registers are mapped to the address range starting
at FED20000H. The public space registers are mapped to the address range starting at
FED30000H and are available before, during and after a measured environment
launch. All registers are defined as 64 bits and return 0’s for the unimplemented bits.
The offsets in the table are from the start of either the public or private spaces (all
registers are available within both spaces, though with different permissions).

After writing to one of the command registers (e.g. TXT.CMD.SECRETS), software
should read the corresponding status flag for that command (e.g.
TXT.E2STS[SECRETS.STS]) to ensure that the command has completed successfully.

B.1.1 TXT.STS – Status
Description This is the general status register. AC modules and the MLE use this read-only

register to get the status of various Intel TXT features.

Offset 000H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description
0 SENTER.DONE.

STS
The chipset sets this bit when it sees all of the threads have done
an TXT.CYC.SENTER-ACK.
When any of the threads does the TXT.CYC.SEXIT-ACK the
TXT.THREADS.JOIN and TXT.THREADS.EXISTS registers will not
be equal, so the chipset will clear this bit.

1 SEXIT.DONE.
STS

This bit is set when all of the bits in the TXT.THREADS.JOIN
register are clear. Thus, this bit will be set immediately after
reset (since the bits are all 0).
Once all threads have done an TXT.CYC.SEXIT-ACK, the
TXT.THREAD.JOIN register will be 0, so the chipset will set this
bit.

5:2 Reserved Reserved

Development and Deployment Considerations

Intel® TXT Software Development Guide 91

Bits Field Name Field Description
6 MEM-CONFIG-

LOCK.STS
This bit will be set to 1 when the memory configuration has been
locked.
Cleared by TXT.CMD.UNLOCK.MEMCONFIG or by a system reset.

7 PRIVATE-
OPEN.STS

This bit will be set to 1 when TXT.CMD.OPEN-PRIVATE is
performed.
Cleared by TXT.CMD.CLOSE-PRIVATE or by a system reset.

14:8 Reserved Reserved

15 TXT.LOCALITY1.OP
EN.STS

This bit is set when the TXT.CMD.OPEN.LOCALITY1 command is
seen by the chipset. It is cleared on reset or when
TXT.CMD.CLOSE.LOCALITY1 is seen.

16 TXT.LOCALITY2.OP
EN.STS

This bit is set when either the TXT.CMD.OPEN.LOCALITY2
command or the TXT.CMD.OPEN.PRIVATE is seen by the chipset.
It is cleared on reset, when either TXT.CMD.CLOSE.LOCALITY2 or
TXT.CMD.CLOSE.PRIVATE is seen, and by the GETSEC[SEXIT]
instruction.

63:17 Reserved Reserved

B.1.2 TXT.ESTS – Error Status
Description This is the error status register that contains status information associated

with various error conditions. The contents of this register are preserved
across soft resets.

Offset 008H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description
0 TXT_RESET.

STS
This bit is set to ‘1’ to indicate that an event occurred which may
prevent the proper use of TXT (possibly including a TXT reset).
To maintain TXT integrity, while this bit is set a TXT measured
environment cannot be established; consequently Safer Mode
Extension (SMX) instructions GETSEC[ENTERACCS] and GETSEC
[SENTER] will fail.
This bit is sticky and will only be cleared on a power cycle.

7:1 Reserved Reserved

Development and Deployment Considerations

92 Intel® TXT Software Development Guide

B.1.3 TXT.ERRORCODE – Error Code
Description This register holds the Intel TXT shutdown error code. A soft reset does not

clear the contents of this register; a hard reset/power cycle will clear the
contents. This was formerly labeled the TXT.CRASH register.

Offset 030H

Pub Attribs

Priv Attribs

RO
RW

Bits Field Name Field Description
14:0 Type2 This is implementation and source specific. Provides details on the

failure condition.

15 SoftwareSource 0 = Authenticated Code Module
1 = MLE

29:16 Type1 This is implementation and source specific. Provides details on the
failure condition.

30 Processor/Software 0 = Error condition reported by processor (see Table 17)
1 = Error condition reported by software

31 Valid/Invalid 0 = Register content invalid.
1 = Valid error

Note 1: Upon successful execution, SINIT will put 0xC0000001 in the register.

Note 2: The format of the Type field for errors reported by SINIT is defined in an
errors text file included with each SINIT AC module. This file also includes
the definition of the error codes produced by that version of SINIT. Error
definitions which are stable across SINIT AC Modules can be found in
Appendix I.

Table 17. Type Field Encodings for Processor-Initiated Intel TXT Shutdowns

Type Error condition Mnemonic

0 Legacy shutdown #LegacyShutdown

1-4 Reserved Reserved

5 Load memory type error in
Authenticated Code Execution Area

#BadACMMType

6 Unrecognized AC module format #UnsupportedACM

7 Failure to authenticate #AuthenticateFail

8 Invalid AC module format #BadACMFormat

9 Unexpected snoop hit detected #UnexpectedHITM

10 Invalid event #InvalidEvent1

11 Invalid MLE JOIN format #BadJOINFormat

12 Unrecoverable machine check
condition

#UnrecovMCError

Development and Deployment Considerations

Intel® TXT Software Development Guide 93

Type Error condition Mnemonic

13 VMX abort error occurred #VMXAbort

14 Authenticated code execution area
corruption

#ACMCorrupt

15 Invalid voltage/bus ratio #InvalidVIDBRatio

16 – 65535 Reserved Reserved

Note: The conditions under which most of these errors are generated can be found
in the pseudo code of the SMX instructions in Chapter 6, “Safer Mode
Extensions Reference”, of the Intel 64 and IA-32 Software Developer Manuals,
Volume 2B.

Note 1: #InvalidEvent can be generated by the following:
• A CPU reset which is not caused by a TXT Reset
• A non-virtualized INIT event
• During RLP wakeup, bit 0 of the RLPs’ IA32_SMM_MONITOR_CTL MSR

does not match that of the ILP
• An SENTER/SEXIT/WAKEUP event is received post-VMXON
• A thread wakes from the wait-for-SIPI state while another thread in the

same CPU is executing an AC Module

B.1.4 TXT.CMD.RESET – System Reset Command
Description A write to this register causes a system reset. The processor performs this as

part of an Intel TXT shutdown, after writing to the TXT.ERRORCODE register.

Offset 038H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

Development and Deployment Considerations

94 Intel® TXT Software Development Guide

B.1.5 TXT.CMD.CLOSE-PRIVATE – Close Private Space
Command
Description A write to this register causes the Intel TXT-capable chipset private

configuration space to be locked. Locality 2 will also be closed. Once locked,
conventional memory read/write operations can no longer be used to access
these registers. The private configuration space can only be opened for the
MLE by successfully executing GETSEC[SENTER].

Offset 048H

Pub Attribs

Priv Attribs

WO (a serializing operation, such as a read of the register, is required
after the write to ensure that any future chipset operations see the
write)

Bits Field Name Field Description

7:0

B.1.6 TXT.VER.FSBIF – Frontside Bus Interface
Description This register identifies whether the chipset is debug or release fused.

On certain chipsets, a 4-byte read to this address will return either
0xFFFF_FFFF or 0x0000_0000. In these cases, the MLE should read an
alternate offset (TXT.VER.EMIF, 200H) to capture this information.

Offset 100H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

30:0 Reserved Reserved

31 DEBUG.FUSE 0 = Chipset is debug fused
1 = Chipset is production fused

Development and Deployment Considerations

Intel® TXT Software Development Guide 95

B.1.7 TXT.DIDVID – TXT Device ID
Description This register contains the vendor, device, and revision IDs for the memory

controller or chipset.

Offset 110H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

15:0 VID Vendor ID: 8086 for Intel® components

31:16 DID Device ID: specific to the chipset/platform

47:32 RID Revision ID: specific to the chipset/platform

63:48 ID-EXT Extended ID: specific to the chipset/platform

B.1.8 TXT.VER.QPIIF – Intel® QuickPath Interconnect
Interface
Description This register identifies whether the memory controller or chipset is debug or

release fused.
On certain chipsets, a 4-byte read to TXT.VER.FSBIF will return 0xFFFF_FFFF
or 0x0000_0000. In these cases, the MLE should read this register to
determine if the chipset is debug or release fused.

Offset 200H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

30:0 Reserved Reserved

31 DEBUG.FUSE 0 = Chipset is debug fused
1 = Chipset is production fused

Development and Deployment Considerations

96 Intel® TXT Software Development Guide

B.1.9 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory
Config Command
Description When this command is invoked, the chipset unlocks all memory configuration

registers.

Offset 218H

Pub Attribs

Priv Attribs

-
WO (a serializing operation, such as a read of the register, is required after the
write to ensure that any future chipset operations see the write)

Bits Field Name Field Description

7:0

B.1.10 TXT.SINIT.BASE – SINIT Base Address
Description This register contains the physical base address of the memory region set

aside by the BIOS for loading an SINIT AC module. If BIOS has provided an
SINIT AC module, it will be located at this address. System software that
provides an SINIT AC module must store it to this location.

Offset 270H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

B.1.11 TXT.SINIT.SIZE – SINIT Size
Description This register contains the size (in bytes) of the memory region set

aside by the BIOS for loading an SINIT AC module. This register is
initialized by the BIOS.

Offset 278H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

Development and Deployment Considerations

Intel® TXT Software Development Guide 97

B.1.12 TXT.MLE.JOIN – MLE Join Base Address
Description Holds a physical address pointer to the base of the join data structure used to

initialize RLPs in response to GETSEC[WAKEUP].

Offset 290H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

B.1.13 TXT.HEAP.BASE – TXT Heap Base Address
Description This register contains the physical base address of the Intel TXT Heap

memory region. The BIOS initializes this register.

Offset 300H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

B.1.14 TXT.HEAP.SIZE – TXT Heap Size
Description This register contains the size (in bytes) of the Intel TXT Heap memory region.

The BIOS initializes this register.

Offset 308H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

Development and Deployment Considerations

98 Intel® TXT Software Development Guide

B.1.15 TXT.DPR – DMA Protected Range
Description This register defines the DMA Protected Range of memory in which the TXT

heap and SINIT region are located.

Offset 330H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

0 Lock Bits 19:0 are locked down in this register when this bit is set.

3:1 Reserved Reserved

11:4 Size This is the size of memory, in MB, that will be protected from
DMA accesses. A value of 0x00 in this field means no additional
memory is protected.
The DPR range works independently of any other DMA
protections, such as VT-d, and is done post any VT-d translation
or TXT checks.

19:12 Reserved Reserved

31:20 Top Top address + 1 of DPR. This is the base of TSEG.

B.1.16 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1
Command
Description Writing to this register “opens” the TPM locality 1 address range, enabling

decoding by the chipset and thus access to the TPM.
This locality is not automatically opened after GETSEC[SENTER] and must be
opened explicitly.
This locality will not be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 380H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

Development and Deployment Considerations

Intel® TXT Software Development Guide 99

B.1.17 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1
Command
Description Writing to this register “closes” the TPM locality 1 address range, disabling

decoding by the chipset and thus access to the TPM.
This locality will not be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 388H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

B.1.18 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2
Command

Description
Writing to this register “opens” the TPM locality 2 address range, enabling
decoding by the chipset and thus access to the TPM.
This locality is automatically opened after GETSEC[SENTER].
This locality will be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 390H

Pub Attribs
Priv Attribs

-
WO

Bits Field Name Field Description
7:0

B.1.19 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2
Command
Description Writing to this register “closes” the TPM locality 2 address range, disabling

decoding by the chipset and thus access to the TPM.
This locality will be closed by the TXT.CMD.CLOSE-PRIVATE command or by
the GETSEC[SEXIT] instruction.

Offset 398H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

Development and Deployment Considerations

100 Intel® TXT Software Development Guide

B.1.20 TXT.PUBLIC.KEY – AC Module Public Key Hash
Description This register contains the hash of the public key used for the verification of AC

Modules. The size, hash algorithm, and value are specific to the memory
controller or chipset.

Offset 400H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

255:0

B.1.21 TXT.CMD.SECRETS – Set Secrets Command
Description Writing to this register indicates to the chipset that there are secrets in

memory. The chipset tracks this fact with a sticky bit. If the platform reboots
with this sticky bit set the BIOS AC module (or BIOS on multiprocessor TXT
systems) will scrub memory. The chipset also uses this bit to detect invalid
sleep state transitions. If software tries to transition to S3, S4, or S5 while
secrets are in memory then the chipset will reset the system.
The MLE issues the TXT.CMD.SECRETS command prior to placing secrets in
memory for the first time.

Offset 8E0H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

B.1.22 TXT.CMD.NO-SECRETS – Clear Secrets Command
Description Writing to this register indicates there are no secrets in memory.

The MLE will write to this register after removing all secrets from memory as
part of the TXT teardown process.

Offset 8E8H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

Development and Deployment Considerations

Intel® TXT Software Development Guide 101

B.1.23 TXT.E2STS – Extended Error Status
Description This register is used to read the status associated with various errors that

might be detected. The contents of this register are preserved across soft
resets.

Offset 8F0H

Pub Attribs

Priv Attribs

RO
RW

Bits Field Name Field Description

0 Reserved Reserved

1 SECRETS.STS 0 = Chipset acknowledges that no secrets are in memory
1 = Chipset believes that secrets are in memory and will provide
reset protection

63:2 Reserved Reserved

B.2 TPM Platform Configuration Registers
The TPM contains Platform Configuration Registers (PCRs). The purpose of a PCR is to
contain measurements. From a TPM standpoint, the TPM does not care what entity
uses a PCR to store a measurement.

The TPM provides two types of PCRs: static and dynamic. Static PCRs only reset on
system reset; dynamic PCRs reset upon request. Static PCRs are written by the static
root of trust for measurement (SRTM). In the PC, the SRTM begins with the BIOS boot
block. The dynamic PCRs are written by the dynamic root of trust for measurement
(DRTM). In the PC, the DRTM is the process initiated by GETSEC[SENTER].

A PC TPM requires a minimum of 24 PCRs. The first 16 are designated the static Root
of Trust and the next eight are designated the dynamic Root of Trust. Intel TXT uses
PCRs 17 and 18 within the dynamic Root of Trust to measure the MLE.

All PCRs for TPM 1.2 devices, static or dynamic, have the same size and same
updating mechanism. The size is 160 bits. This size allows the PCRs to contain a SHA-
1 hash digest value. Storing a measurement value in the PCRs involves a TPM_Extend
operation, which is itself a hash operation.

PCRs for TPM 2.0 devices will be sized appropriately for the largest digest resulting
from algorithms they support, typically 256 bits or greater. This is elaborated in TPM
Usage, Hash Algorithm Support, and PCR Usage above.

B.3 Intel® Trusted Execution Technology
Device Space
There are several memory ranges within Intel TXT address space provided to access
Intel TXT related devices. The first range is 0xFED4_xxxx that is divided up into 16
pages. Each page in the FED4 range has specific access attributes. A page in this

Development and Deployment Considerations

102 Intel® TXT Software Development Guide

region may be accessed by Intel TXT cycles only, by Intel TXT cycles and via private
space, or by Intel TXT cycles, private and public space.

Table 18. TPM Locality Address Mapping

Address Range TPM Locality

FED4 0xxxH Locality 0 (fully public)

FED4 1xxxH Locality 1 (trusted OS)

FED4 2xxxH Locality 2 (MLE access only)

FED4 3xxxH Locality 3 (AC modules access only)

FED4 4xxxH Locality 4 (Hardware or microcode access only)

All others Reserved

The first five pages of the 0xFED4_xxxx region are used for TPM access. Each page
represents a different locality to the TPM. Locality is an attribute used by the TPM to
define how it treats certain transactions. The address range used for commands sent
to the TPM defines locality. All Intel TXT chipsets must support all localities. Locality 0
is considered public and accesses it is accepted by the chipset under all circumstances.
Accesses to locality 0 are sent to the ICH even if Intel TXT is disabled, there has been
no SENTER, or private space is closed. Locality 4 is never open, but may only be
accessed with Intel TXT cycles. There are Intel TXT commands that will open localities
1 through 3. Localities 2-3 require that both LocalityX.OPEN and TXT.CMD.OPEN-
PRIVATE be done before allowing accesses in that range to be accepted. At reset,
localities 1 through 3 are closed.

No status read check of the TPM is performed by the processor GETSEC[SENTER]
instruction ahead of the TPM.HASH write sequence. If the TPM is not in acquiesced
state at this time, then the PCRs 17-20 reset and hash registration to PCR 17 may not
succeed. To insure reliable system software functionality for TPM support, it is
recommended that the GETSEC[SENTER] instruction only be executed once the TPM
has acquiesced and ownership has been established in the context of the SENTER
initiating process.

Upon successful execution of GETSEC[SENTER] and relinquishment of control by
SINIT, the TPM’s private space and locality 2 should be left open. No locality should
be active.

§

Development and Deployment Considerations

Intel® TXT Software Development Guide 103

Appendix C Intel® TXT Heap Memory
Intel® TXT Heap memory is a region of physically contiguous memory that is set aside
by BIOS for the use of Intel® TXT hardware and software. The system software that
launches the measured environment passes data to both the SINIT AC module and the
MLE using Intel® TXT Heap memory. The system software is responsible for filling in
the table contents prior to executing the SENTER instruction. An incorrect format or
incorrect content of this table or tables described by this table will result in failure to
launch the protected environment.

Table 19. Intel® Trusted Execution Technology Heap

Offset Length

(bytes)

Name Description

0 8 BiosDataSize Size in bytes of the Intel® TXT
specific data passed from the
BIOS to system software for
the purposes of launching the
MLE. This size includes the
number of bytes for this field,
so this field cannot be less than
a value of 8. Note 1.

8 BiosDataSize - 8 BiosData BIOS specific data. The format
of this data is described below
in Table 20.

BiosDataSize 8 OsMleDataSize Size in bytes of the data
passed from the launching
system software to the MLE.
This size includes the number
of bytes for this field, so this
field cannot be less than a
value of 8. Note 1.

BiosDataSize + 8 OsMleDataSize –
8

OsMleData System software -specific data.
Format of data in this field is
considered specific to the
system software vendor.

BiosDataSize +
OsMleDataSize

8 OsSinitDataSize Size in bytes of the data
passed from the launching
system software to the SINIT
AC module. This size includes
the number of bytes for this
field, so this field cannot be
less than a value of 8. Note 1.

BiosDataSize +
OsMLEDataSize + 8

OsSinitDataSize –
8

OsSinitData System software data passed
to the SINIT AC module. The
format of this data is described
below in Table 22.

Development and Deployment Considerations

104 Intel® TXT Software Development Guide

Offset Length

(bytes)

Name Description

BiosDataSize +
OsMleDataSize +
OsSinitDataSize

8 SinitMleDataSize Size in bytes of the data
passed from the launched
SINIT AC module to the MLE.
This size includes the number
of bytes for this field, so this
field cannot be less than a
value of 8. Note 1.

BiosDataSize +
OsMleDataSize +
OsSinitDataSize +
8

SinitMleDataSize
– 8

SinitMleData SINIT data passed to the MLE.
The format of this data is
described below in either Table
23 or Table 24.

Note: For proper data alignment on 64bit processor architectures this field must be a
multiple of 8 bytes. OsMleDataSize + OsSinitDataSize + SinitMleDataSize must be less
than or equal to TXT.HEAP.SIZE.

C.1 Extended Data Elements
Extended data elements are self-describing data structures that will be used for all
future extensions to TXT heap tables. The ExtDataElements[] field in each of the heap
tables is an array/list of individual elements, terminated by a HEAP_END_ELEMENT:

ExtDataElements[] ::= <HEAP_EXT_DATA_ELEMENT>* | <HEAP_END_ELEMENT>

Each element consists of the following data structure:

typedef struct {
 UINT32 Type; // one of HEAP_EXTDATA_TYPE_*
 UINT32 Size;
 UINT8 Data[Size – 8];
} HEAP_EXT_DATA_ELEMENT;

The extended data element structures in the following sub-sections (named
HEAP_*_ELEMENT) correspond to the contents of the Data field for the specific type of
element.

While not required, it is recommended that Size be a 4-byte multiple.

Entities that use the ExtDataElements[] fields must ignore element types that they do
not understand or care about. This allows forward and backward compatibility of
these fields.

C.1.1 HEAP_END_ELEMENT

#define HEAP_EXTDATA_TYPE_END 0

typedef struct {
 UINT32 Type; // = 0
 UINT32 Size; // = 8
} HEAP_END_ELEMENT;

Development and Deployment Considerations

Intel® TXT Software Development Guide 105

The HEAP_END_ELEMENT represents the terminating element of a given
ExtDataElements[] list. It contains no Data[] field.

C.1.2 HEAP_CUSTOM_ELEMENT
#define HEAP_EXTDATA_TYPE_CUSTOM 4

typedef struct {
 UINT32 data1;
 UINT16 data2;
 UINT16 data3;
 UINT16 data4;
 UINT8 data5[6];
} UUID;

typedef struct {
 UUID Uuid;
 UINT8Data[];
} HEAP_CUSTOM_ELEMENT;

The HEAP_CUSTOM_ELEMENT allows for platform suppliers to communicate supplier-
specific data through a standard location and mechanism. Software wishing to use
this data must understand its format.

Uuid is a UUID value that uniquely identifies the format of the Data field. It is
important to generate the UUID value using a process that will provide a statistically
unique value.

The platform supplier defines the Data field’s contents. The size of this data must be
included within the size of the HEAP_EXTDATA_ELEMENT::Size field.

C.2 BIOS Data Format
The format of the data passed from the BIOS to the system software for the purposes
of launching the measured environment is shown in Table 20.

Table 20. BIOS Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the BiosData table. The
current value is 5 for TPM 1.2 family. TPM 2.0
requires version 6 (versions < 2 are not
supported). This value is incremented for any
change to the definition of this table. Future
versions will always be backwards compatible
with previous versions (new fields will be added
at the end).

4 4 BiosSinitSize This field indicates the size of the SINIT AC
module provided by system BIOS. A value of 0
indicates the BIOS is not providing an SINIT AC
module for system software use. A non-0 value
indicates that the AC module will be at the
location specified by the TXT.SINIT.BASE
register and be of the specified size.

Development and Deployment Considerations

106 Intel® TXT Software Development Guide

Offset Length
(bytes)

Name Description

8 8 LcpPdBase Physical base address of the Platform Default
Launch Control Policy, LCP_POLICY_DATA
structure. Ignored if Platform Default Policy does
not require additional data or does not exist.

16 8 LcpPdSize Size of the Launch Control Policy Platform
Default Policy Data. Ignored if Platform Default
Policy does not require additional data or does
not exist.

24 4 NumLogProcs This is the total number of logical processors in
the system. The minimum value in this register
must be at least 1.

Versions >= 3 && < 5

28 8 SinitFlags BIOS-provided information for SINIT AC module
consumption. Bit definition will be dependent on
the chipset.

Versions >= 5

28 4 SinitFlags BIOS-provided information for SINIT AC module
consumption. Bit definition will be dependent on
the chipset.

32 4 MleFlags BIOS-provided information for system software
and the MLE, about TXT capabilities of the BIOS.
See Table 21.

Versions >= 4

36 BiosDataSi
ze - 36

ExtDataElement
s[]

Array/list of extended data element structures.
See below for element definitions.

Table 21. MLE Flags Field Bit Definitions

Bit position Description

0 Support for TXT/VT-x/VT-d ACPI PPI specification (1)

2:1 00: legacy state/ platform undefined
01: client platform, client SINIT is required
10: server platform, server SINIT is required
11: Reserved/illegal, must be ignored

31:3 Reserved, must be zero

Development and Deployment Considerations

Intel® TXT Software Development Guide 107

C.2.1 HEAP_BIOS_SPEC_VER_ELEMENT
#define HEAP_EXTDATA_TYPE_BIOS_SPEC_VER 1

typedef struct {
 UINT16 SpecVerMajor;
 UINT16 SpecVerMinor;
 UINT16 SpecVerRevision;
} HEAP_BIOS_SPEC_VER_ELEMENT;

The HEAP_BIOS_SPEC_VER_ELEMENT contains fields that indicate the version of the
TXT BIOS specification to which this platforms BIOS corresponds. This element type is
mainly useful for diagnostic tools.

C.2.2 HEAP_ACM_ELEMENT
#define HEAP_EXTDATA_TYPE_ACM 2

typedef struct {
 UINT32 NumAcms;
 UINT64 AcmAddrs[NumAcms]; // phys addr of ACM
} HEAP_ACM_ELEMENT;

The HEAP_ACM_ELEMENT allows BIOS to indicate the ACMs that it contains and their
locations in memory.

BIOSes that support this element type should report all ACMs that they carry; both
BIOS ACMs and SINIT ACMs. Since the TXT architecture requires that BIOS provide at
least one BIOS ACM, NumAcms must always be greater than 0.

AcmAddrs[] is an array of physical addresses of each of the ACMs.

C.2.3 HEAP_STM_ELEMENT
#define HEAP_EXTDATA_TYPE_STM 3

typedef struct {
 UINT8Data[];
} HEAP_STM_ELEMENT;

The HEAP_STM_ELEMENT --- PLACEHOLDER ---

The platform supplier defines the Data field’s contents. The size of this data must be
included within the size of the HEAP_EXTDATA_ELEMENT::Size field.

C.3 OS to MLE Data Format
Each system software vendor may have a different format for this data, and any MLE
being launched by system software must understand the format of that software’s
handoff data.

Development and Deployment Considerations

108 Intel® TXT Software Development Guide

C.4 OS to SINIT Data Format
Table 22 defines the format of the data passed from the launching system software to
the SINIT AC module in the OsSinitData field.

Table 22. OS to SINIT Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the OsSinitData table.
Current values are 4 through 6 (versions <
4 are not supported) for TPM 1.2 family.
TPM 2.0 family version must be 7. This
value is incremented for any change to the
definition of this table. Future versions will
always be backwards compatible with
previous versions (new fields will be added
at the end).

4 4 Version <= 6,
Reserved

Version = 7
Flags

For future use

Bit 0: PCR Extend Policy Control
0 – Algorithm Agile Command Set
1 – Embedded digest software

8 8 MLE PageTableBase Physical address of MLE page table (the MLE
page directory pointer table address)

16 8 MLE Size Size in bytes of the MLE image

24 8 MLE HeaderBase Linear address of MLE header (linear
address within the MLE page tables)

32 8 PMR Low Base Physical base address of the PMR Low
region (must be 2MB aligned). Can be set
to zero if not desired to be enabled by
SINIT. The MVMM must be loaded in one of
the DPR, PRM low, or the PMR high regions.

40 8 PMR Low Size Size of the PMR Low Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

48 8 PMR High Base Physical base address of the PMR High
region (must be 2MB aligned). Can be set
to zero if not desired to be enabled by
SINIT.

56 8 PMR High Size Size of the PMR HIGH Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

64 8 LCP PO Base Physical base address of the Platform
Owner’s Launch Control Policy,
LCP_POLICY_DATA structure.

72 8 LCP PO Size Size of the Launch Control Policy Platform
Owner’s Policy Data.

Development and Deployment Considerations

Intel® TXT Software Development Guide 109

Offset Length
(bytes)

Name Description

80 4 Capabilities Bit vector of capabilities that SINIT is
requested to use. This must be a subset of
the ones SINIT supports. Note that for TPM
2.0 family, bits 5:4 must be zero, since D/A
mapping is required.

Version = 5

84 8 EFI RSDT Pointer Physical address of RSDT table when an EFI
boot was performed. This will be ignored if
SINIT finds the standard ACPI RSDT table.

Versions >= 6

84 8 EFI RSDP Pointer Physical address of RSDP when an EFI boot
was performed.

92 OsSinitD
ataSize -
92

ExtDataElements[] Array/list of extended data element
structures. See below for element
definitions. Note that for TPM2, there must
be at least one
HEAP_EVENT_LOG_POINTER_ELEMENT2
structure with a HEAP_END_ELEMENT
terminating the list. For TPM1.2, the list
can be empty.

C.4.1 HEAP_TPM_EVENT_LOG_ELEMENT
#define HEAP_EXTDATA_TYPE_TPM_EVENT_LOG_PTR 5

typedef struct {
 UINT64 EventLogPhysAddr;
} HEAP_TPM_EVENT_LOG_ELEMENT;

The HEAP_TPM_EVENT_LOG_ELEMENT is used for system software to inform SINIT of
the location of the TPM PCR event log that the system software has allocated. See
Appendix G for additional information about the log.

EventLogPhysAddr is the physical address of the event log structure. The event log
structure must be completely below 4GB.

C.4.2 HEAP_EVENT_LOG_POINTER_ELEMENT2
#define HEAP_EXTDATA_TYPE_EVENT_LOG_POINTER2 7

typedef struct {
 UINT32 Count; // Number of EventLogPhySddreess entries
 HEAP_EVENT_LOG_DESCR EventLogDescr[count];
 // Eventlog descriptor structure
} HEAP_EVENT_LOG_POINTER_ELEMENT2;

Count: count of elements in EventLogDescr array

EventLogDescr – array of HEAP_EVENT_LOG_DESCR structures each describing one of
the event logs.

Development and Deployment Considerations

110 Intel® TXT Software Development Guide

SINIT in TPM2.0 mode will require HEAP_EVENT_LOG_POINTER_ELEMENT2 to be
present with at least one HEAP_EVENT_LOG_DESCR entry. This is justified by the
need to have event log for attestation since support of many of the SinitMleData table
fields is removed in TPM2.0 mode – see Table 24.

Pre-MLE SW may use HEAP_EVENT_LOG_POINTER_ ELEMENT2 to request what kind
of log it wants SINIT to create. It will be not an error to request event log for just one
of supported HashAlgIDs.

SINIT will verify that requested event log(s) correspond to HashAlgID for which
dynamic PCRs are actually extended. This requirement means that all requested
HashAlgID of event logs must belong to PCR_HashAlgIDList.

SINIT will abort with error if this condition is not met.

See Appendix G for definition of HEAP_EVENT_LOG_DESC and further explanation.

C.5 SINIT to MLE Data Format
Table 23 and Table 24 define the format of the SINIT data presented to the MLE.

Table 23. SINIT to MLE Data Table for TPM 1.2 family

Offset Length
(bytes)

Name Description

0 4 Version Version number of the SinitMleData
table. Supported value for TPM 2.0 is 9 .
This value is incremented for any change
to the definition of this table. Future
versions will always be backwards
compatible with previous versions (new
fields will be added at the end).

4 20 BiosAcmID ID of the BIOS AC module in the system

24 4 EdxSenterFlags Value of EDX SENTER control flags

28 8 MsegValid MSEG MSR (Valid bit only)

36 20 SinitHash SHA-1 hash of the SINIT AC module

56 20 MleHash SHA-1 hash of the MLE

76 20 StmHash SHA-1 hash of STM. This is only valid if
MsegValid = 1, else will contain zero

96 20 LcpPolicyHash SHA-1 Hash of the LCP policy that was
enforced; if no hash is needed based on
the LCP policy control field this will
contain zero

116 4 PolicyControl Taken from the LCP policy used

120 4 RlpWakeupAddr MONITOR physical address used for
waking up RLPs (write 32bit non-0
value)

124 4 Reserved Reserved for future use

Development and Deployment Considerations

Intel® TXT Software Development Guide 111

Offset Length
(bytes)

Name Description

128 4 NumberOfSinitMdrs Number of SINIT Memory Descriptor
Records

132 4 SinitMdrTableOffset Offset (in bytes, from start of this table)
to the start of an array of SINIT Memory
Descriptor Records as defined below.
Each record describes a memory region
as defined by the SINIT AC module (see
Table 25).

136 4 SinitVtdDmarTableSize Length of the Intel® Virtualization
Technology (Intel® VT) for Directed I/O
(Intel® VT-d) DMAR table pointed to by
the SinitVtdDmarTable field

140 4 SinitVtdDmarTableOffset Offset (in bytes, from start of this table)
to the start of the SINIT provided DMAR
table dump for the MLE.

Versions >= 8

144 4 ProcessorSCRTMStatus Bit 0 - 1 if PCR 0 measurement for this
boot was rooted in processor hardware.
This is possible only if all logical
processors implement S-CRTM and the
platform is designed to take advantage
of that capability.
Bit 0 - 0 if PCR0 measurement for this
boot was rooted in BIOS.
Bits 31:1 – Reserved for future use
The ProcessorSCRTMStatus field is
reflected in PCR 17 measurement. See
section 1.10.1

Versions >= 9

148 SinitMle
DataSize
- 148

ExtDataElements[] Array/list of extended data element
structures. See below for element
definitions.

Table 24. SINIT to MLE Data Table for TPM2.0 Family

Offset Length
(bytes)

Name Description

0 4 Version Version number of the SinitMleData
table. Current values are 6 through 9
(versions < 5 are not supported). This
value is incremented for any change to
the definition of this table. Future
versions will always be backwards
compatible with previous versions (new
fields will be added at the end).

4 20 Reserved Must be zero

24 4 Reserved Must be zero

Development and Deployment Considerations

112 Intel® TXT Software Development Guide

Offset Length
(bytes)

Name Description

28 8 Reserved Must be zero

36 20 Reserved Must be zero

56 20 Reserved Reserved

76 20 Reserved Must be zero

96 20 Reserved Must be zero

116 4 Reserved Must be zero

120 4 RlpWakeupAddr MONITOR physical address used for
waking up RLPs (write 32bit non-0
value)

124 4 Reserved Reserved for future use

128 4 NumberOfSinitMdrs Number of SINIT Memory Descriptor
Records

132 4 SinitMdrTableOffset Pointer to the start of an array of SINIT
Memory Descriptor Records as defined
below. Each record describes a memory
region as defined by the SINIT AC
module (see Table 25). This field is an
offset in bytes from the start of the
SinitMleDataSize field below.

136 4 SinitVtdDmarTableSize Length of the Intel® Virtualization
Technology (Intel® VT) for Directed I/O
(Intel® VT-d) DMAR table pointed to by
the SinitVtdDmarTable field

140 4 SinitVtdDmarTableOffset Pointer to the start of the SINIT provided
DMAR table dump for the MLE. This field
is an offset in bytes from the start of the
SinitMleDataSize field.

Versions >= 8

144 4 Reserved Must be zero

Versions >= 9

148 SinitMle
DataSize
- 148

ExtDataElements[] Array/list of extended data element
structures. See below for element
definitions. Must be terminated by
HEAP_END_ELEMENT

Development and Deployment Considerations

Intel® TXT Software Development Guide 113

Table 25. SINIT Memory Descriptor Record

Offset Length
(bytes)

Name Description

0 8 Address Physical address of the memory range described in
this record.

8 8 Length Length of the memory range.

16 1 Type Memory range type. Valid values:
0 Usable, good memory
1 SMRAM– Overlayed – deprecated
2 SMRAM– Non-Overlayed – deprecated
3 PCIe*- PCIe Extended Config Region
4–255 Reserved

17 7 Reserved Reserved for future use

The array of Memory Descriptor Records (MDRs) is not necessarily ordered and some
MDRs may be of 0 length, in which case they should be ignored.

Memory of type 0 is usable for the MLE and any code or data that it may load. SINIT
will verify that the MLE and its page table are located in memory of this type.

Memory types 1 and 2 are deprecated in future versions of SINIT, as SMRAM regions
are not of use to the MLE.

Memory of type 3 is the PCI Express extended configuration region. The MLE may use
this to verify that the PCIE configuration specified in the ACPI tables is using the
appropriate address space.

C.5.1 HEAP_MADT_ELEMENT
#define HEAP_EXTDATA_TYPE_MADT 6

typedef struct {
 UINT8MadtData[];
} HEAP_MADT_ELEMENT;

The HEAP_MADT_ELEMENT contains a copy of the ACPI MADT table

MadtData contains a validated copy of the ACPI MADT table. Its size is specified in the
MADT header as well as the Size field of the element. The format of the MADT table is
described in the version of the Advanced Configuration and Power Interface
Specification implemented by the platform.

§

Development and Deployment Considerations

114 Intel® TXT Software Development Guide

Appendix D : LCP v2 Data Structures

D.1 LCP_POLICY
Both the Platform Owner and Platform Supplier policy structures are of the type
LCP_POLICY. These objects are stored in the TPM NV. The required fields for
LCP_POLICY are as follows:

#define LCP_POLHALG_SHA1 0

#define LCP_POLTYPE_LIST 0
#define LCP_POLTYPE_ANY 1

typedef struct {
 UINT8 Sha1[20];
} LCP_HASH;

#define LCP_MAX_LISTS 8

typedef struct {
 UINT16 Version;
 UINT8 HashAlg; // one of LCP_POLHALG_*
 UINT8 PolicyType; // one of LCP_POLTYPE_*
 UINT8 SINITMinVersion;
 UINT8 Reserved1;
 UINT16 DataRevocationCounters[LCP_MAX_LISTS];
 UINT32 PolicyControl;
 UINT8 MaxSinitMinVer;
 UINT8 MaxBiosacMinVer;
 UINT16 Reserved2;
 UINT32 Reserved3;
 LCP_HASH PolicyHash;
 } LCP_POLICY;

D.2 LCP_POLICY_DATA
For each policy of type LCP_POLTYPE_LIST, there must exist a block of data which the
SINIT policy engine will process. Where this data resides on the platform is platform
dependent, but it must provisioned into the Intel TXT heap data structures (see C.2
and C.4) before executing the GETSEC[SENTER] instruction. While not required, it is
recommended that software place the LCP_POLICY_DATA on a 4-byte aligned
boundary to reduce access alignment penalties.

typedef struct {
 char FileSignature[32];
 UINT8 Reserved[3];
 UINT8 NumLists;
 LCP_POLICY_LIST PolicyLists[NumLists];
} LCP_POLICY_DATA

Development and Deployment Considerations

Intel® TXT Software Development Guide 115

FileSignature is the string “Intel(R) TXT LCP_POLICY_DATA\0\0\0\0”, where ‘\0’ is a
single byte whose value is 0x00. This field is intended for use by software that needs
to determine if a given file is an LCP_POLICY_DATA file.

The Reserved field must be set to all 0s.

The NumLists field must be less than or equal to LCP_MAX_LISTS.

Each list in PolicyLists may be either signed or unsigned.

D.3 LCP_POLICY_LIST

D.3.1 List Signatures

#define LCP_POLSALG_NONE 0
#define LCP_POLSALG_RSA_PKCS_15 1

typedef struct {
 UINT16 RevocationCounter;
 UINT16 PubkeySize;
 UINT8 PubkeyValue[PubkeySize];
 UINT8 SigBlock[PubkeySize];
} LCP_SIGNATURE, LCP_RSA_SIGNATURE;

The RevocationCounter field is a monotonically increasing value that can be used, in
conjunction with the corresponding index of the DataRevocationCounters field in
LCP_POLICY, to provide a method of revoking (or preventing rollback of) signed
policies.

Supported public key sizes are 1024, 2048 and 3072 bits. It is recommended that a
public key size of at least 2048 bits be used. Larger sizes may take longer to verify.

The exponent is fixed and must be 65537.

As specified for all policy data, both the PubkeyValue and SigBlock must be in little-
endian byte order. This may require tools that generate policies to reverse the byte
order of keys and signatures produced by tools that use the ASN.1/big-endian format.

D.3.2 LCP_POLICY_LIST Structure

typedef struct {
 UINT16 Version;
 UINT8 Reserved;
 UINT8 SigAlgorithm; // one of SIGALG_*
 UINT32 PolicyElementsSize;
 LCP_POLICY_ELEMENT PolicyElements[];
 optionally LCP_SIGNATURE Signature;
} LCP_POLICY_LIST;

The Reserved field must be set to 0.

PolicyElementsSize specifies the size (in bytes) of all of the LCP_POLICY_ELEMENTS
structures in the object. It may be 0. A LCP_POLICY_LIST with no elements can be

Development and Deployment Considerations

116 Intel® TXT Software Development Guide

used as a “placeholder” signed list that can be updated at runtime with the actual
signed data but without having to re-provision the LCP_POLICY in TPM NV.

If SigAlgorithm is SIGALG_RSA_PKCS_15 then the Signature field must be present
(else it must not). For a signed list, the RSA signature will be calculated over the
entire LCP_POLICY_LIST structure, including the Signature member, except for the
SigBlock field.

The version of the LCP_POLICY_LIST structure defined here is 1.0 (100H).

D.4 LCP_POLICY_ELEMENT

typedef struct {
 UINT32 Size;
 UINT32 Type;
 UINT32 PolEltControl;
 UINT8 Data[Size – 12];
} LCP_POLICY_ELEMENT;

The structures in the following sub-sections correspond to the contents of the Data
field for the specific type of element.

While not required, it is recommended that Size be a 4-byte multiple.

D.4.1 LCP_MLE_ELEMENT

#define LCP_POLELT_TYPE_MLE 0

typedef struct {
 UINT8 SINITMinVersion;
 UINT8 HashAlg; // one of LCP_POLHALG_*
 UINT16 NumHashes;
 LCP_HASH Hashes[NumHashes];
} LCP_MLE_ELEMENT;

The LCP_MLE_ELEMENT represents a list of the acceptable MLEs, as measured by their
hashes. An MLE will match the policy if its hash (as calculated when traversing its
pages in the MLE page table; not the value of PCR 18 after it has been extended)
matches any hash within the list.

SINIT will use the largest of the SINITMinVersion fields (the one in LCP_POLICY and
the one in the LCP_MLE_ELEMENT which contains the matching MLE hash) to
determine the minimum allowable version of SINIT.

HashAlg specifies the hash algorithm to use when measuring the MLE and also of the
values in Hashes[].

If NumHashes is 0 then this element will evaluate to false for all MLEs.

Development and Deployment Considerations

Intel® TXT Software Development Guide 117

D.4.2 LCP_PCONF_ELEMENT

#define LCP_POLELT_TYPE_PCONF 1

typedef struct {
 UINT16 NumPCRInfos;
 TPM_PCR_INFO_SHORT PCRInfos[NumPCRInfos];
} LCP_PCONF_ELEMENT;

The LCP_PCONF_ELEMENT represents a list of acceptable PCR values on the platform
at the time of launch. The platform will satisfy the policy if the PCR values at the time
of launch match any of the PCRInfos within the list. When processing the platform
configuration list the LCP engine reads the appropriate PCR’s as defined by the first
TPM_PCR_INFO_SHORT value in the list and concatenates them and cryptographically
hashes them together. The result is compared to the hash value in the
TPM_PCR_INFO_SHORT. If there is no match this process is repeated for each and
every member of the list. As soon as a match is found, the LCP engine proceeds.

Additionally, it is recommended, although not necessary, that all
TPM_PCR_INFO_SHORT structures in the platform configuration list test the same set
of PCR values.

If NumPCRInfos is 0 then this element will evaluate to false for all platform
configurations.

The various TPM_* structures have been copied below to facilitate understanding of
the list structure.

typedef struct tdTPM_PCR_INFO_SHORT{
 TPM_PCR_SELECTION pcrSelection;
 TPM_LOCALITY_SELECTION localityAtRelease;
 TPM_COMPOSITE_HASH digestAtRelease;
} TPM_PCR_INFO_SHORT;

typedef struct tdTPM_PCR_SELECTION {
 UINT16 sizeOfSelect;
 [size_is(sizeOfSelect)] BYTE pcrSelect[];
} TPM_PCR_SELECTION;

#define TPM_LOCALITY_SELECTION BYTE // each bit is the
 // corresponding locality

typedef struct tdTPM_DIGEST{
 BYTE digest[digestSize];
} TPM_DIGEST;
typedef TPM_DIGEST TPM_COMPOSITE_HASH; // hash of
 // TPM_PCR_COMPOSITE
 // object

Development and Deployment Considerations

118 Intel® TXT Software Development Guide

D.4.3 LCP_SBIOS_ELEMENT

#define LCP_POLELT_TYPE_SBIOS 2

typedef struct {
 UINT8 HashAlg; // one of LCP_POLHALG_*
 UINT8 Reserved1[3];
 LCP_HASH FallbackHash;
 UINT16 Reserved2;
 UINT16 NumHashes;
 LCP_HASH Hashes[NumHashes];
} LCP_SBIOS_ELEMENT;

The LCP_SBIOS_ELEMENT represents a list of the acceptable startup BIOSes (that
portion of BIOS measured by the BIOS ACM), as measured by their hashes.

HashAlg specifies the hash algorithm to use when measuring the startup BIOS and
also of the values in Hashes[] and FallbackHash.

The FallbackHash field represents a version of the startup BIOS that is always
acceptable, regardless of the contents of the Hashes[] field or lack thereof. The
expected use is for OEMs that do not wish to sign their BIOS (i.e. not sign the
LCP_POLICY_LIST for the Supplier Policy) and thus will use auto-promotion for their
startup BIOS policy. In that case, they would specify NumHashes as 0 and set a valid
FallbackHash to correspond to their fallback or recovery BIOS. This hash would be
valid regardless of the current value of the auto-promotion hash. If not used (i.e. the
OEM is providing the hash in the Hashes[] field) then it can be set to anything.

If NumHashes is not 0 then the current startup BIOS must be specified by one of the
hashes in Hashes[] or by the FallbackHash otherwise the BIOS ACM will fail to boot
that processor. If NumHashes is 0 then the BIOS ACM will use the auto-promotion
method for startup BIOS policy.

The Reserved1 and Reserved2 fields must be set to 0.

D.4.4 LCP_CUSTOM_ELEMENT

#define LCP_POLELT_TYPE_CUSTOM 3

typedef struct {
 UINT32 data1;
 UINT16 data2;
 UINT16 data3;
 UINT16 data4;
 UINT8 data5[6];
} UUID;

typedef struct {
 UUID Uuid;
 UINT8 Data[];
} LCP_CUSTOM_ELEMENT;

The LCP_CUSTOM_ELEMENT allows for users, ISVs, IT, etc. to define policy-related
data which can then be carried as part of a policy and interpreted by user/ISV/IT

Development and Deployment Considerations

Intel® TXT Software Development Guide 119

software. Because the data is contained within a policy, its integrity will be verified by
SINIT as part of policy processing.

Uuid is a UUID value that uniquely identifies the format of the Data field. This field
will be used by all custom software that may have its own policy data. It is thus
important to generate the UUID value using a process that will provide a statistically
unique value.

The Data field’s contents are defined by the entity that “owns” the UUID of the
element. The size of this data must be included within the size of the
LCP_POLICY_ELEMENT::Size field.

D.5 Structure Endianness
Endianness deals with the sequencing order of stored bytes. There are two common
sequencing orders: Little Endian (format used by Intel) and Big Endian. All structures
and data are in Little Endian format, even LCP_POLICY.

§

Development and Deployment Considerations

120 Intel® TXT Software Development Guide

Appendix E LCP Data Structures, v3

E.1 NV Index LCP Policy
HashAlg is now 16 bits, and uses the encoding defined by the TPM2.0 specification as
repeated here for reference:
#define TPM_ALG_SHA1 0x0004
#define TPM_ALG_SHA256 0x000B
#define TPM_ALG_SHA384 0x000C
#define TPM_ALG_SHA512 0x000D
#define TPM_ALG_NULL 0x0010
#define TPM_ALG_SM3_256 0x0012

Additionally, LcpSignAlgMask uses the following encodings (also defined by the TPM2.0
specification) for signing algorithms:

#define TPM_ALG_RSA 0x0001
#define TPM_ALG_SM2 0x001B
#define TPM_ALG_ECC 0x0023

As described in 3.3.1, two new 16-bit fields (LcpHashAlgMask and AuxHashAlgMask)
and one new 32-bit field (LcpSignAlgMask) are added to the LCP_POLICY structure for
Platform Owner and Platform Supplier.

LcpHashAlgMask identifies the Platform Owner’s / Supplier’s selection of HashAlgIDs
permitted during LCP policy evaluation.

AuxHashAlgMask will have a single bit set identifying the Platform Supplier’s selection
of HashAlgID to be used by the Startup ACM to create the auto-promotion digest.

These bit fields will use the following HashAlgID mask definition:

typedef struct {
 UINT16 TPM_ALG_SHA1:1 // BIT0
 Reserved: 2 // BITS 1-2
 UINT16 TPM_ALG_SHA256:1 // BIT3
 Reserved: 1 // BIT4
 UINT16 TPM_ALG_SM3_256:1 // BIT5
 UINT16 TPM_ALG_SHA384:1 // BIT6
 UINT16 TPM_ALG_SHA512:1 // BIT7
} LCP_APPROVED_ALG;

Some of these algorithms are not included in the current TPM2 specification, but are
defined here as placeholders for future use.

LcpSignAlgMask identifies the Platform Owner’s selection of signature algorithms
permitted during LCP policy evaluation. A fully specified signature algorithm definition
is comprised of the signature algorithm and its public key size; the internally used
hash algorithm; and for ECDSA, the curve used.

Development and Deployment Considerations

Intel® TXT Software Development Guide 121

typedef struct {
 UINT32 TPM_ALG_RSASSA/1024/SHA1:1 // BIT0 (deprecated)
 UINT32 TPM_ALG_RSASSA/1024/SHA256:1 // BIT1 (deprecated)
 UINT32 TPM_ALG_RSASSA/2048/SHA1:1 // BIT2: Legacy
 UINT32 TPM_ALG_RSASSA/2048/SHA256:1 // BIT3: Suite C
 Reserved: 8 // BITS 4-11
 UINT32 TPM_ALG_ECDSA/P-256:1 // BIT12:Suite B
 UINT32 TPM_ALG_ECDSA/P-384:1 // BIT13:Suite B
 UINT32 Reserved:2 //
 UINT32 TPM_ALG_SM2/SM2_CURVE:1 // BIT16: Chinese requirement
 UINT32 Reserved2:15
} LCP_APPROVED_SIGNATURE_ALG;

The PolicyControl DWORD of LCP Policy structure has new bit definitions added to
improve usability of LCP and to control AUX index

More information about the purpose and use of these masks and new policy control
bits can be found in 3.3.9 and 3.3.4.7. With the addition of the three above fields,
the new TPM NV LCP Policy structure has the following format:

typedef struct {
 UINT16 Version; //0x0300 == Version 3.0
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT8 PolicyType; // one of LCP_POLTYPE_*
 UINT8 SINITMinVersion;
 UINT16 DataRevocationCounters[LCP_MAX_LISTS];
 UINT32 PolicyControl;
 UINT8 MaxSinitMinVer; // Defined for PO only. Reserved for PS
 UINT8 MaxBiosacMinVer;// Defined for PO only. Reserved for PS
 UINT16 LcpHashAlgMask // Mask of approved algorithms for LCP
 ________ // evaluation (LCP_APPROVED_ALG)
 UINT32 LcpSignAlgMask // Mask of approved signature algorithms for
 _________ // LCP evaluation (LCP_APPROVED_SIGNATURE_ALG)
 UINT16 AuxHashAlgMask // Approved algorithm for auto-promotion hash
 // (LCP_APPROVED_ALG).
 UINT16 Reserved2;
 LCP_HASH2 PolicyHash;
 } LCP_POLICY2;

The salient changes to this structure, and the PolicyControl DWORD defined below
from v2.2 are described in 3.3.1.

typedef struct {
 UINT32 reserved:1;
 UINT32 NPW_OK:1; // NPW OK
 UINT32 OsSinitData_Capabilities:1; // OsSinitData.Capabilities
 // will be extended to PCR17
 union {
 UINT32 PO_is_Required:1; // PS index only
 UINT32 PS_Pconf_Enforced:1; // PO index only
 }
 UINT32 reserved2:27;
 UINT32 AUXDeletionControl:1 // PS index only
} PolicyControl;

Development and Deployment Considerations

122 Intel® TXT Software Development Guide

E.2 LCP Policy Data
An LCP Policy Data file’s structure has only one change for v3 from v2 [D.2]: mixing of
LCP_POLICY_LIST and LCP_POLICY_LIST2 lists is allowed.

E.2.1 LCP_LIST
typedef union {
 LCP_POLICY_LIST TPM12PolicyList; // See Appendix D
 LCP_POLICY_LIST2 TPM20PolicyList;
} LCP_LIST;

E.2.2 LCP_POLICY_DATA2
typedef struct {
 char FileSignature[32];
 UINT8 Reserved[3];
 UINT8 NumLists;
 LCP_LIST PolicyLists [NumLists];
} LCP_POLICY_DATA2;

E.3 LCP Policy List v2
The v1 LCP Policy list structure has been modified to v2 to accommodate algorithm
agility.

The v2 LCP list structure has the following format:
typedef struct {
 UINT16 Version;
 UINT16 SigAlgorithm; // one of TPM_ALG_* above
 UINT32 PolicyElementsSize;
 LCP_POLICY_ELEMENT PolicyElements[];
#If (SigAlgorithm != TPM_ALG_NULL)
 LCP_SIGNATURE2 Signature;
#endif
} LCP_POLICY_LIST2;

The changes from LCP_POLICY_LIST to LCP_POLICY_LIST2 structures are:

• Version is promoted to 2.0

• SigAlgorithm field uses TPM2.0 compatible numeric values

• SigAlgorithm field is expanded to UINT16 and reserved field is removed

• Signature field has different format specified in E.3.2.

• Mixture of legacy and new LCP_POLICY_ELEMENT structures is allowed.

Notes:

• It is presumed and required that legacy LCP_POLICY_LIST structures will contain
only legacy LCP_POLICY_ELEMENT definitions

Development and Deployment Considerations

Intel® TXT Software Development Guide 123

• By allowing a mix of legacy and new LCP_POLICY_ELEMENT structures in the same
list, each Authority is able to create one single list covering both TPM1.2 and
TPM2.0 LCP data

• Since mixed lists of elements are permitted in the version 3.x, use of legacy
LCP_POLICY_LIST structures is not required and is discouraged.

E.3.1 List Signatures
V2 LCP lists may use the following signature algorithms:

• RSASSA (#define TPM_ALG_RSASSA 0x0014)

• ECDSA (#define TPM_ALG_ECDSA 0x0018)

• SM2 (#define TPM_ALG_SM2 0x001B)

For v2 LCP lists, the NULL algorithm is typed as 0x0010.

E.3.1.1 RSASSA

Support will be limited to version RSASSA-PKCS1-v1_5 as defined in [NIST, FIPS
PUB 186-3, Federal Information Processing Standards Publication, Digital
Signature Standard (DSS), June 2009] with reference to [RSA Labs, PKCS #1
v2.1: RSA Cryptography Standard, June 14, 2002] and [RSA Labs, PKCS #1
v2.1 Errata,Revision: 2.0, December, 2005]

Signatures will be supported only with the following approved hash functions:
TPM_ALG_SHA1; TPM_ALG_SHA256 TPM_ALG_SHA384, TPM_ALG_SHA512. Current
support is limited to TPM_ALG_SHA1 and TPM_ALG_SHA256.

Supported key sizes will remain 1024, 2048 and 3072 bits; use of 1024 bit keys is
deprecated.

E.3.1.2 ECDSA

Implementation will follow the definition in [NIST, FIPS PUB 186-3, Federal
Information Processing Standards Publication, Digital Signature Standard
(DSS), June 2009]

Support will imply that:

• Domain parameters are embedded and are not passed to a module as part of
image signature.

• Only prime finite fields and only specific curves will be supported

• For each of the key sizes there will be a single supported curve selected from
curves recommended by [NIST, FIPS PUB 186-3, Federal Information
Processing Standards Publication, Digital Signature Standard (DSS), June
2009], Appendix D. See also [Certicom Research, Standards For Efficient
Cryptography, Sec2: Recommended Elliptic Curve Domain Parameters,
September 2000]

• The following is the set of supported curves: P-256; P-384; P-521.

Development and Deployment Considerations

124 Intel® TXT Software Development Guide

• The following hash algorithms will be associated with the above curves:
SHA256 will be used with P-256;
SHA384 will be used with P-384;
SHA512 will be used with P-521.

E.3.1.3 SM2

Implementation will follow the definition in [State Cryptography Administration,
Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves, December
2010]

Since SM2 is a variation of ECC, it will share format of signature structure used for
ECCDSA with the following differences:

• It will use the SM3 hash algorithm

• It will default to Fp-256 curve as specified in [Recommended Curve
Parameters for Public Key Cryptographic Algorithm SM2 Based on Elliptic
Curves]

E.3.2 Signature Format
The LCP_SIGNATURE structure layout above is unchanged, but was aliased to
LCP_RSA_SIGNATURE for clarity in its use in the new structure:

typedef struct {
 UINT16 RevocationCounter;
 UINT16 PubkeySize;
 UINT32 Reserved; // For future expansion
 UINT8 Qx[PubkeySize] // x coordinate Public key
 UINT8 Qy[PubkeySize] // y coordinate Public key
 UINT8 r[PubkeySize] // r component of Signature
 UINT8 s[PubkeySize] // s component of Signature
} LCP_ECC_SIGNATURE;

typedef union {
___ LCP_RSA_SIGNATURE RsaSignature;
 LCP_ECC_SIGNATURE EccSignature;
} LCP_SIGNATURE2;

E.4 New Policy Elements
The LCP structures used for TPM 1.2 are not articulate enough to support the
algorithmic agility possible with TPM 2.0 devices. New elements based on the existing
elements have been defined to add such support. The changes have been designed to
allow lists comprised of both TPM 1.2 and TPM 2.0 elements. This minimizes space
requirements for NV RAM, and simplifies processing logic. Where possible, the new
element structures use constants as defined in the TCG 2.0 specification.

E.4.1 LCP_Hash
typedef union {
 UINT8 sha1[SHA1_DIGEST_SIZE];

Development and Deployment Considerations

Intel® TXT Software Development Guide 125

 UINT8 sha256[SHA256_DIGEST_SIZE];
 UINT8 sha384[SHA384_DIGEST_SIZE];
 UINT8 sha512[SHA512_DIGEST_SIZE];
 UINT8 sm3[SM3_256_DIGEST_SIZE];
} LCP_HASH2;

This structure was elaborated to support additional algorithms beyond SHA1.

E.4.2 MLE Element
#define LCP_POLELT_TYPE_MLE2 0x10

typedef struct {
 UINT8 SINITMinVersion;
 UINT8 Reserved
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumHashes;
 LCP_HASH2 Hashes[NumHashes];
} LCP_MLE_ELEMENT2;

E.4.3 SBIOS Element
#define LCP_POLELT_TYPE_SBIOS2 0x12

typedef struct {
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT8 Reserved1[2];
 LCP_HASH2 FallbackHash;
 UINT16 Reserved2;
 UINT16 NumHashes;
 LCP_HASH2 Hashes[NumHashes];
} LCP_SBIOS_ELEMENT2;

E.4.4 STM Element
#define LCP_POLELT_TYPE_STM2 0x14

typedef struct {
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumHashes;
 LCP_HASH2 Hashes[NumHashes];
} LCP_STM_ELEMENT2;

E.4.5 PCONF Element
The PCONF Element structure is now designed so it can be created using the
TPM2_Quote command and evaluated using the TPM2_PolicyPCR command.

The TPM2_Quote command returns the following structure:

typedef struct {
 UINT16 size

Development and Deployment Considerations

126 Intel® TXT Software Development Guide

 TPMS_ATTEST attestationData;
} TPM2B_ATTEST;

Where TPMS_ATTEST has the following form:

typedef struct {
 ;
 TPMU_ATTEST attested; // == TPMS_QUOTE_INFO
} TPMS_ATTEST;

TPMU_ATTEST is a union, where the relevant member within is the
TPMS_QUOTE_INFO structure:

typedef struct {
 TPML_PCR_SELECTION pcrSelect;
 TPM2B_DIGEST pcrDigest
} TPMS_QUOTE_INFO;

pcrSelect is a TPML_PCR_SELECTION structure denoting the PCRs being quoted, and
the pcrDigest is a TPM2B_DIGEST structure wherein the digest is a composite digest
of the PCRs being quoted.

typedef struct {
 UINT16 hash; // One of TPM_ALG_* algorithm IDs
 UINT8 sizeofSelect;
 UINT8 pcrSelect[sizeofSelect];
} TPMS_PCR_SELECTION;

typedef struct {
 UINT32 count; // must be 1 for use in PCONF
 TPMS_PCR_SELECTION pcrSelections;
} TPML_PCR_SELECTION;

typedef struct {
 UINT16 size;
 UINT8 buffer[size];
} TPM2B_DIGEST;

The new PCONF_ELEMENT structure is then defined as:

#define LCP_POLELT_TYPE_PCONF2 0x11

typedef struct {
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumPCRInfos;
 TPMS_QUOTE_INFO PCRInfos[NumPCRInfos];
} LCP_PCONF_ELEMENT2;

Development and Deployment Considerations

Intel® TXT Software Development Guide 127

E.5 NV AUX Index Data Structure
The AUX Index data structure requires some modification to accommodate
algorithmically agile digests. The modified structure definition follows:

typedef struct {
 UINT8 MinVer;
 UINT8 Flags;
} ACM_AUX_REVOCATION;

typedef struct {
 ACM_AUX_REVOCATION SinitRevocation;
 ACM_AUX_REVOCATION BiosacRevocation;
 ACM_AUX_REVOCATION Reserved;
 ACM_AUX_REVOCATION Reserved2;
} AUX_REVOCATION2;

typedef struct {
 UINT32 Reserved;
 UINT32 AcmRevision;
 UINT16 ModuleID;
 UINT16 ModuleFlags;
 UINT16 AuxDataRev;
 UINT16 Reserved2;
 UINT32 Reserved3;
 UINT32 Flags;
 UINT32 AuxHashAlgID // One of TPM_ALG_*
 UINT32 Reserved4;
 UINT8 AutoPromotionHash[*];
 UINT8 PCR0SnapShot[*];
 AUX_REVOCATION2 AuxRevocation;
} AUX_DATA2;

The main differences between the AUX_DATA and the AUX_DATA2 structures are:

• Version (AuxDataRev) is 2.0

• The new AuxHashAlgID field is added, which uses TPM 2.0-compatible numeric
values and indicates the HashAlgID used to store AutoPromotionHash and
PCR0SnapShot.

• The AuxRevocation structure is enlarged with two reserved slots for future
expansion.

In addition to these structural changes, there is a significant functional change to the
underlying NV data for TPM2.0. TPM1.2 NV data initially has all bits set. To
accommodate this behavior, all data in the AuxRevocation field has been stored in
“inverted” form, where buts to be set are cleared. In TPM1.2 mode, ACM code must
invert values read from this field before use, and invert new values before write-back.

TPM 2.0 NV data initially has all bits clear, thus these inversions are not required, and
in TPM 2.0 mode, the ACM shall not perform them.

Development and Deployment Considerations

128 Intel® TXT Software Development Guide

The AutoPromotionHash and PCR0SnapShot fields should be at least as large as the
size of the hash algorithm selected by PS:AuxHashAlgMask. For SHA256 and SM3, for
example, this would be 32 bytes.

§

Development and Deployment Considerations

Intel® TXT Software Development Guide 129

Appendix F : Platform State upon
SINIT Exit and Return to MLE

The following table describes the processor state of the ILP after returning to the MLE
from GETSEC[SENTER] and the RLPs after waking from SENTER. This will be the state
seen by the MLE.

Table 26. Platform State upon SINIT exit and return to MLE

Resource ILP on MLE re-entry point RLP on MLE re-entry point

CPU

CR0 PG0, AM0,WP0; others
unchanged

PG0, CD0, NW0, AM0,
WP0; PE1, NE1

CR4 0x00004000 0x00004000

EFLAGS 0x000000XX (XX =
Undefined)

0x000000XX (XX =
Undefined)

EIP [MLEHeader.EntryPoint] [TXT.MLE.JOIN + 12]

ESP Undefined Undefined

EBP Undefined Undefined

ECX Ptr to MLE page table 1 Undefined

EBX [MLEHeader.EntryPoint] Undefined

EAX, EDI, ESI Undefined Undefined

CS Sel=[SINIT.SegSel], base=0,
limit=0xFFFFF, G=1, D=1,
AR=0x9B

Sel=[TXT.MLE.JOIN + 8],
base=0, limit=0xFFFFF, G=1,
D=1, AR=0x9B

DS, ES, SS Undefined Sel=[TXT.MLE.JOIN + 8] + 8,
base=0, limit=FFFFFH, G=1,
D=1, AR=0x93

GDTR Base=SINIT.Base (EBX) +
[SINIT.GDTBasePtr],
Limit=[SINIT.GDTLimit]

Base=[TXT.MLE.JOIN + 4],
Limit=[TXT.MLE.JOIN]

DR7 0x00000400 0x00000400

IA32_DEBUGCTL MSR 0 0

IA32_EFER MSR 0 0

IA32_MISC_ENABLE MSR IA32_MISC_ENABLE &
0xFFF37CEA 2, 3

IA32_MISC_ENABLE &
0xFEE324A8 3

Performance counters and
counter control registers

0 0

IA32_APIC_BASE MSR 35:12 cleared to 0xFEE00 35:12 cleared to 0xFEE00, bit

Development and Deployment Considerations

130 Intel® TXT Software Development Guide

Resource ILP on MLE re-entry point RLP on MLE re-entry point

8 (BSP) cleared to 0

LTCS

TXT.ERRORCODE 0xC0000001

TPM

Locality No locality active. Locality 2 open,

Private Space Open

PCI

PCI Index/Data ports 0xCF8-
0xCFF

Undefined

1. If bit 2 of the Capabilities field in SINIT’s Chipset AC Module Information Table is set
then ECX will contain the pointer to the MLE’s page table. If clear, the contents of ECX
are undefined

2. Bit 3 (thermal monitor enable) will be set to 1 if it was previously clear.
3. Bit 18 (MONITOR/MWAIT enable) will be set to 1 if it was previously clear, when bit 1

of OsSinitData.Capabilities (use of MONITOR for RLP wakeup) is set.

The TPM will not have any locality active following SENTER.

§

Development and Deployment Considerations

Intel® TXT Software Development Guide 131

Appendix G : TPM Event Log
The TPM Event Log is a data structure that describes the data whose hashes are
extended to the TPM PCR indices. This allows remote attestation verifiers to
reconstruct the PCR values in order to make trust decisions about their components.
This event log is equivalent to the one generated by BIOS (see TCG PC Client Specific
Implementation Specification for Conventional BIOS), but is for the use of system
software and SINIT.

G.1 TPM 1.2 Event Log
The log is allocated by system software and the physical address of the container (see
Table 27) provided to SINIT in a HEAP_TPM_EVENT_LOG_ELEMENT in the
OsSinitData.ExtDataElements[] field. An SINIT ACM that supports details/authorities
PCR mappings (Capabilities[5]) will support this element type. ACMs that do not
support this element type will ignore it. If system software does not provide this
element to an SINIT ACM that supports it, SINIT will simply not populate a log.

Table 27. Event Log Container Format

Field Offset Size
(bytes)

Description

Signature 0 20 “TXT Event Container\0”

Reserved 20 12 Must be 0

ContainerVerMajor 32 1 Major version number of this structure. The
current value is 1. Different major versions
indicate incompatible structure format and/or
behaviors.

ContainerVerMinor 33 1 Minor version number of this structure. The
current value is 0. Different minor versions
indicate compatible structure format (i.e. new
fields added at the end) and/or behaviors.

PCREventVerMajor 34 1 Major version number of the PCREvent
structure. The current value is 1. Different
major versions indicate incompatible
structure format and/or behaviors.

PCREventVerMinor 35 1 Minor version number of the PCREvent
structure. The current value is 0. Different
minor versions indicate compatible structure
format (i.e. new fields added at the end)
and/or behaviors.

ContainerSize 36 4 Allocated size of container, including
PCREvents[]

PCREventsOffset 40 4 Offset (in bytes, from start of this table) to
the start of PCREvents[] array.

Development and Deployment Considerations

132 Intel® TXT Software Development Guide

Field Offset Size
(bytes)

Description

NextEventOffset 44 4 Offset (in bytes, from start of this table) of
the next byte after the last event in
PCREvents[]. I.e. the offset of the next
available event slot.

PCREvents[] PCREven
tsOffset

Container
Size -

PCREvent
sOffset

Array of PCREvent structures (see below)

G.1.1 PCR Events
typedef struct {
 UINT32 PCRIndex;
 UINT32 Type;
 UINT8 Digest[20];
 UINT32 Size;
 UINT8 Data[Size];
} TPM12_PCREvent;

PCREvents describe the data whose SHA-1 hash (Digest[]) was extended into the
specified PCR. Depending on the event Type, the Data[] may be the entire hashed
object or just a description (e.g. version). PCREvents are in the order in which the
PCR extends were performed. Because Data[] is not a fixed size for each event, the
events must be traversed in order.

PCRIndex is the index of the TPM PCR into which the hash of the data was extended.

Type indicates the event type, as described in Table 29.

Digest is the SHA1 hash that was extended in this event.

Size is the size of the Data.

Data is either the actual data that digested to Digest, or a description of same,
determined by Type.

Table 28. Table PCR Event Log Structure
Field

Offset Size

(bytes)

Description

PCRIndex 0 4 The Index of PCR to
which this event was
extended.

Type 4 4 Event type
Digest 8 20 SHA1 hash.
Size 28 4 The size of the event data.
Data 32 Size The data of the event.

Development and Deployment Considerations

Intel® TXT Software Development Guide 133

The following event types are defined for SINIT event logging. The calculation of
these fields is described briefly in section 10.1.

Table 29. Event Types

Event Type Value Digest and Data content Mapping

LG/DA 1

PCR

EVTYPE_BASE 0x400 Base of TXT event types

EVTYPE_PCRMAPPING EVTYPE_
BASE +
1

Digest = zero digest – 20
bytes of zeros.
Data = DWORD with bits
31:1 all zeros (reserved for
now). Bit 0 = 0 if using
legacy PCR Mapping and 1 if
using D/A mapping.

LG / DA
Not
extended
–
informati
ve only.
PCRIndex
field is
set to
0xFF.

EVTYPE_HASH_START EVTYPE_
BASE +
2

Digest = SHA1(Data)
Data = ACM ID + EDX – 36
bytes total.

LG / DA 17 / 17

EVTYPE_COMBINED_HASH EVTYPE_
BASE +
3

Digest = SHA1(Data)
Data = Content of
CombinedHashData area

LG 17

EVTYPE_MLE_HASH EVTYPE_
BASE +
4

Digest = MleHash
Data = none

LG / DA

18 / 17

EVTYPE_BIOSAC_REG_DA
TA

EVTYPE_
BASE +
10

Digest = BIOS AC
registration data – 20 bytes
from AUX index
Data = none

DA 17

EVTYPE_CPU_SCRTM_STA
T

EVTYPE_
BASE +
11

Digest = SHA1(Data)
Data = CPU S-CRTM status
DWORD

DA

17 / 18

EVTYPE_LCP_CONTROL_
HASH

EVTYPE_
BASE +
12

Digest = SHA1(Data)
Data = LCP PolControl
DWORD

DA

17 / 18

EVTYPE_ELEMENTS_HASH EVTYPE_
BASE +
13

Digest = SHA1(Data)
Data = array of matching
LCP elements data as filled
by LCP. Total 4 * (20 + 4) =
96 bytes

DA 17

EVTYPE_STM_HASH EVTYPE_
BASE +
14

Digest = StmHash
Data = none
Note: This event is created
only if
IA32_SMM_MONITOR_CTL[0
] == 1

DA 17

Development and Deployment Considerations

134 Intel® TXT Software Development Guide

Event Type Value Digest and Data content Mapping

LG/DA 1

PCR

EVTYPE_OSSINITDATA_CA
P_HASH

EVTYPE_
BASE +
15

Digest = SHA1(Data)
Data =
OsSinitData.Capabilities
DWORD

DA

17 / 18

EVTYPE_SINIT_PUBKEY_
HASH

EVTYPE_
BASE +
16

Digest = SHA1
(ACHeader.RSAPubKey)
Data =none

DA

18

EVTYPE_LCP_HASH EVTYPE_
BASE +
17

Digest = SHA1(Data)
Data = array of list hashes
containing matching LCP
elements data as filled by
LCP.
Total = [1 – 4] * 20 = 20 –
80 bytes

DA 18

NOTE: LG – Legacy PCR mapping; DA – Details / Authorities PCR mapping.

G.2 TPM 2.0 Event Log
Under TPM 2.0, event logging will follow the direction set by Microsoft’s proposal
outlined in INSERT REF HERE. A separate log will be maintained for each supported
hash algorithm. Below are a few excerpts from that specification for baseline data
structures and definitions, since the specification is not final and subject to change.

G.2.1 TrEE Event Logging Structures
TCG_PCR_EVENT structure is being replaced by TCG_PCR_EVENT_EX structure
presented below:

typedef struct {
 UINT32 PCRIndex;
 UINT32 EventType;
 BYTE[DigestSize] Digest;
 UINT32 EventDataSize;
 BYTE[1] EventData;
} TCG_PCR_EVENT_EX;

The only difference is the size of Digest field which now equals to digest size of used
hash algorithm.

New TCG_LOG_DESCRIPTOR structure is introduced with the following format:

typedef struct {
 BYTE[16] Signature;
 UINT32 Revision;
 UINT32 DigestAlgID;
 UINT32 DigestSize;
} TCG_LOG_DESCRIPTOR;

Digest algorithm IDs are defined as follows:

Development and Deployment Considerations

Intel® TXT Software Development Guide 135

#define DIGEST_ALG_ID_SHA_1 0x00000001
#define DIGEST_ALG_ID_SHA_2_256 0x00000002
#define DIGEST_ALG_ID_SHA_2_384 0x00000003
#define DIGEST_ALG_ID_SHA_2_512 0x00000004

Note that numerical values don’t follow TPM 2.0 numbering.

Fields of TCG_LOG_DESCRIPTOR structure have the following hardcoded values:

Signature = “FRMT ID EVENT00”,0
Revision = 1
DigestAlgID = One of DIGEST_ALG_ID_SHA_*

DigestSize = Length of the TCG_PCR_EVENT_EX.Digest field for all
event entries in the log.

It is required for each of the non-SHA1 event log the first entry to be the following
TPM1.2 style TCG_PCR_EVENT record specifying type of the log:

TCG_PCR_EVENT.PCRIndex = 0
TCG_PCR_EVENT.EventType = 0x03 // EV_NO_ACTION per TCG EFI
Platform
 // specification
TCG_PCR_EVENT.Digest = {00…00} // 20 zeros
TCG_PCR_EVENT.EventDataSize = sizeof(TCG_LOG_DESCRIPTOR).
TCG_PCR_EVENT.EventData = TCG_LOG_DESCRIPTOR

The digest of this record MUST NOT be extended into any PCR.

G.2.2 TPM 2.0 Event Log Pointer Element
The new pointer element described after Table 22 will be used to support agile event
logging. Each of the logs in this element will be described using the following
structure:

typedef struct {
UINT16 HashAlgID; // HashAlgID of the event log per
 // TPM2.0 spec.

 UINT16 Reserved;
 UINT64 PhysicalAddress; // Event log physical address
 UINT32 AllocatedEventContainerSize;
 UINT32 FirstRecordOffset;
 UINT32 NextRecordOffset;
} HEAP_EVENT_LOG_DESCR;

HashAlgID – hash algorithm ID of event log – all records in log use the same
algorithm ID.

Note: All HashAlgIDs follow numerical values of TPM 2.0 specification. This is in
contrast to values DIGEST_ALG_ID_SHA_* values used in records of event log itself.

PhysicalAddress – address of log in memory

Development and Deployment Considerations

136 Intel® TXT Software Development Guide

AllocatedEventContainerSize – size in bytes allocated for event log. SINIT will verify
that this size is not less than 1 page = 4KB;

FirstRecordOffset – Offset of first record starting from beginning of log. It is
anticipated to be zero unless in future we will need to add metadata to the beginning
of log.

NextRecordOffset – offset of next free memory spot for record to be added to. Will be
incremented as records are added.

Note: In order to simplify MLE design, first mandatory record containing
TCG_LOG_DESCR structure in non-SHA1 logs will be added by SINIT.

G.2.3 Event types added for TPM2.0
In addition to the event types given in Table 29, the following types may occur in logs
for TPM2 family. Note that for TPM2, legacy mapping is not supported.

Table 30. Event Types Specific to TPM2.0

Event Type Value Digest and Event PCR Comments

EVTYPE_LCP_DETAIL
S_HASH

EVTYPE_BASE
+ 18

Digest= HashHashAlgID
(EventData)
EventData=concatenatio
n of digests and policy
controls of matching
policy elements – see
3.3.7.1
EventDataSize=sizeof(Ev
entData)
If polcy evaluates to ANY
Then
Digest= HashHashAlgID
(0x00)
EventData=0x00
EventDataSize=1

17 EventData is
concatenation of
digests, policy
controls of all
matching elements
contributed to
effective policy –
see 3.3.7.1.
Analogous to event
type 13 but uses
different event
format.

EVTYPE_LCP_AUTHO
RITIES_HASH

EVTYPE_BASE
+ 19

Digest= HashHashAlgID
(Inlined EventData)
EventData=concatenatio
n of list descriptors
containing matching
policy elements - see
3.3.7.2
EventDataSize=sizeof(Ev
entData)
If polcy evaluates to ANY
Then
Digest= HashHashAlgID
(0x00)
EventData=0x00
EventDataSize=1

18 EventData is
concatenation of
list description
structures of all
lists containing
matching elements
contributed to
effective policy –
see 3.3.7.2
Analogous to event
type 17 but uses
different event
format and hashing
rules. Used in TPM
2.0 mode only.

Development and Deployment Considerations

Intel® TXT Software Development Guide 137

Event Type Value Digest and Event PCR Comments

EVTYPE_NV_INFO_H
ASH

EVTYPE_BASE
+ 20

Digest= HashHashAlgID
(EventData)
EventData=array of
TPMS_NV_PUBLIC
structures of defined
indices - see 3.3.8.
EventDataSize=sizeof(Ev
entData)

17/
18

EventData is
concatenation of
TPMS_NV_PUBLIC
structures of all
defined TPM NV
indices. Used in
TPM 2.0 mode
only.

EVTYPE_CAP_VALUE EVTYPE_BASE
+255

Digest= HashHashAlgID
(0x01)
EventData=0x01
EventDataSize=1

17/
18

Caps PCR value if
digest cannot be
computed due to
limited embedded
SW capabilities.

§

Development and Deployment Considerations

138 Intel® TXT Software Development Guide

Appendix H : ACM Hash Algorithm
Support

H.1 Supported Hash Algorithms
ACM support will be not restricted to fixed set of hash algorithms. Instead it will
support a variable list of algorithms which may include any algorithms supported by
TPM 2.0 specification limited only by market requirements, space and supporting
libraries, and defined on by-project bases.

H.2 Hash Algorithm Lists
Based on the list of TPM 2.0 supported algorithms the ACM creates the following lists
of hash algorithms for different usages:

– TPM_HashAlgIDList - list of TPM Supported HashAlgIDs. This is the list of all
HashAlgIDs supported by the TPM device present. Determined dynamically at
run time;

– PCR_HashAlgIDList - list of HashAlgID for which the TPM present implements
dynamic PCRs 17 & 18. Determined dynamically at run time;

– ACM_HashAlgIDList - list of ACM Supported HashAlgIDs. This is the list of
HashAlgIDs supported by ACM in embedded SW. It is established at ACM build
time and reported via ACM Info Table – see Table 11.

– Lcp_HashAlgIDList - List of LCP prescribed HashAlgIDs. This is the list stored
in PS and / or PO TPM NV indices by Platform Supplier / Platform Owner. This
list is described below.

H.3 Hash Algorithm List Subsets
ACM will detect content of all four HashAlgID Lists:

1 TPM_HashAlgIDList will be created by executing the TPM2_GetCapability()
command, probing every HashAlgID in the TPM2.0 supported list

2 PCR_HashAlgIDList will be created as a subset of TPM_HashAlgIDList via the
TPM2_PCR_Read() command. Both PCR17 and 18 will be read

3 ACM_HashAlgIDList is defined by ACM build options.

4 Lcp_HashAlgIDList – will be read from PS / PO indices after effective LCP
policy is determined based on standard LCP combining principles. This list will
represent Platform Policy.

Development and Deployment Considerations

Intel® TXT Software Development Guide 139

Figure 4. Hash Algorithm List Selection

Based on the above lists, ACM will create the following intersections:

– ACM_PCR_HashAlgIDList = ACM_HashAlgIDList ∩ PCR_HashAlgIDList
This intersection contains all PCR banks supported by embedded SW.

– ACM_LCP_HashAlgIDList = ACM_HashAlgIDList ∩ LCP_HashAlgIDList
This intersection represents all HashAlgIDs that are supported by ACM and are
permitted by Platform Supplier / Platform Owner policies.

– ACM_LCP_PCR_HashAlgIDList = ACM_HashAlgIDList ∩ LCP_HashAlgIDList ∩
PCR_HashAlgIDList
This intersection represents HashAlgIDs that are: supported by ACM SW;
permitted by Platform Supplier / Owner; instantiated by PCR.

§

Development and Deployment Considerations

140 Intel® TXT Software Development Guide

Appendix I : ACM Error Codes
After a successful measured launch, the TXT.ERRORCODE register will contain either
0x0 or 0xc0000001. Failed launches leave other values in this register, which survive
warm resets and may be useful for diagnosis and remediation of the failure’s cause.

The tables below describe the format of this register as written during CPU-initiated
and ACM-initiated shutdowns. The final table describes the mapping of register sub-
field values to meanings for values whose mappings are stable and potentially useful
to the end user.

In order to make updates to this table-set available between releases of this
document, the equivalent of the contents of this appendix can be found at
http://software.intel.com/en-us/articles/intel-trusted-execution-technology.

Table 31. General TXT.ERRORCODE Register Format

Bit Name Description

31 Valid Valid error when set to 1. The rest of the register contents should be
ignored if '0'.

30 External 0 – induced by processor, 1 – induced by external software.

29:16 Type1 Implementation and source specific

15 SW
source

0 – ACM; 1 – MLE

14:0 Type2 Implementation and source specific. Provides details about cause of
shutdown.

Table 32. TXT.ERRORCODE Register Format for CPU-initiated TXT-shutdown

Bit Name Value / Error

31 Valid 1

30 External 0

29:16 Reserved 0

15 Reserved 0

14:0 Type2 0 = Legacy shutdown (non TXT-specific).

 1 – 4 = Reserved

 5 = Authenticated RAM load memory type error

 6 = Unrecognized AC module format

 7 = Failure to authenticate

 8 = Invalid AC module format

 9 = Unexpected snoop hit detected

http://software.intel.com/en-us/articles/intel-trusted-execution-technology

Development and Deployment Considerations

Intel® TXT Software Development Guide 141

Bit Name Value / Error

 0xA = Illegal event or IllegalProcessorState – collection of various
illegal causes (by Scott Cape).

1. A CPU reset occurs during AC-mode or post-SENTER and
LT.E2STS[RESET.STS] == 0 (I.E. reset was not caused by an LT-
shutdown).

2. A non-virtualized INIT event occurs while post-SENTER.

3. LTSX only: During RLP WAKEUP, the RPL thread’s value of MSR bit
IA32_SMM_MONITOR_CTL[0] (aka MSEG valid) does not match the
ILP thread’s value.

4. An SENTER, SEXIT, or WAKEUP doorbell is received while post-
VMXON.

5. A thread wakes from wait-for-SIPI while some other thread in the
same package is in AC-mode.

#1 is by far the most common observed in post-Si debug.

 0xB = Invalid JOIN format

 0xC = Unrecoverable machine check condition

 0xD = VMX abort

 0xE = AC memory corruption

 0xF = Illegal voltage/bus ratio

 0x10-0xFFFF = Reserved

Table 33. TXT.ERRORCODE Register Format for ACM-initiated TXT-shutdown

Bit Name Description

31 Valid Valid error when set to 1. The rest of the register contents should be
ignored if '0'.

30 External = 1– induced by external software.

29:28 Type1 /
Reserved

Free for specific implementation

27:16 Type1 /
Minor Error
Code

Field value depends on Class Code and / or Major Error Code. Several
examples are:
If Class Code = “TPM Access” and
Major Error Code = “TPM retuned an error” –
Field value = TPM returned error code
If error code is fatal, it occupies bits [23:16] and bit 24 remains clean.
For non-fatal error codes lower byte is placed into bits [23:16] and bit
24 is asserted. For instance error code 0x803 will be translated into
0x103
If Class Code = “Launch Control Policy and
Major Error Code = “Policy Integrity Fail” –
Field value = (LIST_INDEX << 6) + Specific Minor Error Code
If Class Code = “Range Check Error” –
Field value = Index of first range in conflict with another range
according to Project Range Table.

15 SW source 0 = ACM; 1 = MLE

Development and Deployment Considerations

142 Intel® TXT Software Development Guide

Bit Name Description

14:10 Type2 /
Major Error
Code

0 – 0x1F = Error code within current class code

9:4 Type2 /
Class Code

0 – 0x3F = Class code clusters several congeneric errors into a group.

3:0 Type2 /
Module
Type

0 = BIOS ACM
1 = SINIT

Table 34. TXT.ERRORCODE definitions stable among ACM modules

Major
Error
Code

Minor
Error
Code

Description

Class code = 1: ACM Entry – BIOS AC and SINIT

1 0-x Error in ACM launching:
SINIT is launched not via SENTER;
Reserved bits in EDX register are not 0;
Minor error code contains additional details.

3 0 Client SINIT detected LTSX fused processor or
Server SINIT detected non- LTSX fused processor

9 0 ACM is revoked

Class code = 2: MTRR Check – BIOS AC and SINIT

1 0 MTRR Rule 1 Error

2 0 MTRR Rule 2 Error

3 0 MTRR Rule 3 Error

4 0 MTRR Rule 4 Error

5 0 MTRR Rule 5 Error

6 0 MTRR Rule 6 Error

7 0 Invalid MTRR mask value

Class code = 4: TPM Access – BIOS AC and SINIT

1 TPM
Error
Code
0-0xfff

TPM returned an error. Error is reported as:
TPM 1.2 family error code occupies 9 bits.
Fatal error codes:

 [23:16] – error code;
 [24] = 0

Non-fatal error codes:
 [23:16] – error code & 0xFF;
 [24] = 1

TPM 2.0 error code occupies 12 bits.
All error codes are returned unmodified

5 0 TPM 1.2 disabled

6 0 TPM 1.2 deactivated

Development and Deployment Considerations

Intel® TXT Software Development Guide 143

Major
Error
Code

Minor
Error
Code

Description

0xD 0 TPM 2.0 interface type (FIFO/CRB) not supported

0xE 0 TPM family (1.2/2.0) not supported

0xF 0 Discovered number of TPM 2.0 PCR banks exceeds supported maximum
(3)

0x10 0 Required TPM hash algorithm not supported

Class code = 6: Launch Control Policy – BIOS AC and SINIT

2 0-X SINIT version is below minimum specified in TPM NV policy index.
Minor error code contains additional details.

4 0-4 No match is found for Policy Element.
Element type is reported via minor error code.

5 0 Auto-promotion failed.
BIOS hash differs from hash value saved in AUX index.

6 0 Failsafe boot failed. (FIT table not found or corrupted).

7 0-X PO integrity check failed.
Minor error code contains additional details.

8 0-X PS integrity check failed.
Minor error code contains additional details.

9 0 No policies are defined to allow NPW execution

0xA 0 PS TPM NV policy index is required but not defined.

Class code = 9: Heap Table Data -- SINIT

1 0-X Invalid size of one of the heap data tables.
Minor error code contains additional details.

2 0-X Invalid version of one of the heap data tables
Minor error code contains additional details.

3 0 Invalid PMR Low range alignment

4 0 Invalid PMR High range alignment

5 0 Invalid MLE placement (Above 4GB)

6 0 Invalid MLE requested capabilities

7 0-X Heap region is overfilled.
Minor error code contains additional details.

8 0 Unsupported heap extended element type.

9 0 Invalid heap extended element size.

0xA 0 Heap table is not terminated by the extended “END” element

0xB 0-X Invalid event log pointer.
Minor error code contains additional details.

0xC 0 Invalid RSDT/RSDP pointer in OsSinitData table

Development and Deployment Considerations

144 Intel® TXT Software Development Guide

Major
Error
Code

Minor
Error
Code

Description

Class code = 0xE: PMR Configuration -- SINIT

1 0 DMA remapping is enabled

2 0 Invalid PMR Low configuration

3 0 Invalid PMR High configuration

Class code = 0xF: MLE Header Check -- SINIT

1 0 MLE Header linear address conversion error

2 0 Invalid MLE GUID

3 0 Invalid MLE version

4 0 Invalid first page address

5 0 Invalid MLE size

6 0 Invalid MLE entry point address

7 0 Incompatible RLM wake-up method

Class code = 0x10: MLE Page Tables Check -- SINIT

1 0 Page placement error:
 Incorrect page alignment;
 Page is not in usable DMA protected DRAM;

Pages checked are:
 PDPT page
 PDT page;
 PT page;
 MLE page

2 0 MLE page order rule failure – next page is not above previous one.

3 0 Discovered big page (2MB)

4 0 Page Table order rule failure – PDPT, PDT, PT, MLE pages are not in
ascending order.

5 0 Invalid MLE hashed size

6 0 Invalid RLP entry point address

Class code = 0x14: Event Log -- SINIT

1 0 Invalid Log Header GUID

2 0 Invalid Log Header version

3 0 Inconsistent values of header fields

4 0 Insufficient log size

5 0 Unsupported record version

§

	Contents
	Figures
	Tables
	Revision History
	1 Overview
	1.1 Measurement and Intel® Trusted Execution Technology
	1.2 Dynamic Root of Trust
	1.2.1 Launch Sequence

	1.3 Storing the Measurement
	1.4 Controlled Take-down
	1.5 SMX and VMX Interaction
	1.6 Authenticated Code Module
	1.7 Chipset Support
	1.8 TPM Usage
	1.9 Hash Algorithm Support
	1.10 PCR Usage
	1.10.1 Legacy Usage

	1.11 Details and Authorities Usage
	1.11.1 PCR 17 (Details)
	1.11.2 PCR 18 (Authorities)

	1.12 DMA Protection
	1.12.1 DMA Protected Range (DPR)
	1.12.2 Protected Memory Regions (PMRs)

	1.13 Intel® TXT Shutdown
	1.13.1 Reset Conditions

	2 Measured Launched Environment
	2.1 MLE Architecture Overview
	2.2 MLE Launch
	2.2.1 Intel® TXT Detection and Processor Preparation
	2.2.2 Detection of Previous Errors
	2.2.3 Loading the SINIT AC Module
	2.2.4 Loading the MLE and Processor Rendezvous
	2.2.5 Performing a Measured Launch

	2.3 MLE Initialization
	2.4 MLE Operation
	2.4.1 Address Space Correctness
	2.4.2 Address Space Integrity
	2.4.3 Physical RAM Regions
	2.4.4 Intel® Trusted Execution Technology Chipset Regions
	2.4.5 Device Assignment
	2.4.6 Protecting Secrets
	2.4.7 Machine Specific Register Handling
	2.4.8 Interrupts and Exceptions
	2.4.9 ACPI Power Management Support
	2.4.10 Processor Capacity Addition (aka CPU Hotplug)

	2.5 MLE Teardown
	2.6 Other Considerations
	2.6.1 Saving MSR State across a Measured Launch

	3 Verifying Measured Launched Environments
	3.1 Overview
	3.2 LCP Components, v2.2 (TPM 1.2)
	3.2.1 LCP Policy
	3.2.2 PolicyHash Field for LCP_POLTYPE_LIST
	3.2.3 LCP Policy Data
	3.2.4 LCP Policy Element
	3.2.5 Signed Policies
	3.2.6 Supported Cryptographic Algorithms
	3.2.7 Policy Engine Logic
	3.2.8 Allow Any Policy
	3.2.9 Policy with LCP_POLICY_DATA
	3.2.10 Force Platform Owner Policy
	3.2.11 Platform Owner Index

	3.3 LCP Components, v3.0 (TPM2.0)
	3.3.1 LCP POLICY2
	3.3.2 LCP Policy Data
	3.3.3 LCP Policy Elements
	3.3.4 TPM NV RAM
	3.3.5 LCP Evaluation
	3.3.6 LCP Element Structures
	3.3.7 Effective LCP Hash
	3.3.8 Effective TPM NV info Hash
	3.3.9 LCP Policy Engine Logic

	3.4 Revocation
	3.4.1 SINIT Revocation

	4 Development and Deployment Considerations
	4.1 Launch Control Policy Creation
	4.2 Launch Errors and Remediation
	4.3 Determining Trust
	4.3.1 Migration of SEALed data

	4.4 Deployment
	4.4.1 LCP Provisioning
	4.4.2 SINIT Selection

	Appendix A : Intel® TXT Execution Technology Authenticated Code Modules
	A.1 Authenticated Code Module Format
	A.1.1 Memory Type Cacheability Restrictions
	A.1.2 Authentication and Execution of AC Module

	Appendix B : SMX Interaction with Platform
	B.1 Intel® Trusted Execution Technology Configuration Registers
	B.1.1 TXT.STS – Status
	B.1.2 TXT.ESTS – Error Status
	B.1.3 TXT.ERRORCODE – Error Code
	B.1.4 TXT.CMD.RESET – System Reset Command
	B.1.5 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command
	B.1.6 TXT.VER.FSBIF – Frontside Bus Interface
	B.1.7 TXT.DIDVID – TXT Device ID
	B.1.8 TXT.VER.QPIIF – Intel® QuickPath Interconnect Interface
	B.1.9 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config Command
	B.1.10 TXT.SINIT.BASE – SINIT Base Address
	B.1.11 TXT.SINIT.SIZE – SINIT Size
	B.1.12 TXT.MLE.JOIN – MLE Join Base Address
	B.1.13 TXT.HEAP.BASE – TXT Heap Base Address
	B.1.14 TXT.HEAP.SIZE – TXT Heap Size
	B.1.15 TXT.DPR – DMA Protected Range
	B.1.16 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command
	B.1.17 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command
	B.1.18 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command
	B.1.19 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command
	B.1.20 TXT.PUBLIC.KEY – AC Module Public Key Hash
	B.1.21 TXT.CMD.SECRETS – Set Secrets Command
	B.1.22 TXT.CMD.NO-SECRETS – Clear Secrets Command
	B.1.23 TXT.E2STS – Extended Error Status

	B.2 TPM Platform Configuration Registers
	B.3 Intel® Trusted Execution Technology Device Space

	Appendix C Intel® TXT Heap Memory
	C.1 Extended Data Elements
	C.1.1 HEAP_END_ELEMENT
	C.1.2 HEAP_CUSTOM_ELEMENT

	C.2 BIOS Data Format
	C.2.1 HEAP_BIOS_SPEC_VER_ELEMENT
	C.2.2 HEAP_ACM_ELEMENT
	C.2.3 HEAP_STM_ELEMENT

	C.3 OS to MLE Data Format
	C.4 OS to SINIT Data Format
	C.4.1 HEAP_TPM_EVENT_LOG_ELEMENT
	C.4.2 HEAP_EVENT_LOG_POINTER_ELEMENT2

	C.5 SINIT to MLE Data Format
	C.5.1 HEAP_MADT_ELEMENT

	Appendix D : LCP v2 Data Structures
	D.1 LCP_POLICY
	D.2 LCP_POLICY_DATA
	D.3 LCP_POLICY_LIST
	D.3.1 List Signatures
	D.3.2 LCP_POLICY_LIST Structure

	D.4 LCP_POLICY_ELEMENT
	D.4.1 LCP_MLE_ELEMENT
	D.4.2 LCP_PCONF_ELEMENT
	D.4.3 LCP_SBIOS_ELEMENT
	D.4.4 LCP_CUSTOM_ELEMENT

	D.5 Structure Endianness

	Appendix E LCP Data Structures, v3
	E.1 NV Index LCP Policy
	E.2 LCP Policy Data
	E.2.1 LCP_LIST
	E.2.2 LCP_POLICY_DATA2

	E.3 LCP Policy List v2
	E.3.1 List Signatures
	E.3.2 Signature Format

	E.4 New Policy Elements
	E.4.1 LCP_Hash
	E.4.2 MLE Element
	E.4.3 SBIOS Element
	E.4.4 STM Element
	E.4.5 PCONF Element

	E.5 NV AUX Index Data Structure

	Appendix F : Platform State upon SINIT Exit and Return to MLE
	Appendix G : TPM Event Log
	G.1 TPM 1.2 Event Log
	G.1.1 PCR Events

	G.2 TPM 2.0 Event Log
	G.2.1 TrEE Event Logging Structures
	G.2.2 TPM 2.0 Event Log Pointer Element
	G.2.3 Event types added for TPM2.0

	Appendix H : ACM Hash Algorithm Support
	H.1 Supported Hash Algorithms

	Appendix I : ACM Error Codes

