

Document Number: 315168-017

Intel® Trusted Execution Technology
(Intel® TXT)

Software Development Guide
Measured Launch Environment Developer’s Guide

January 2021

Revision 017.0

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
2 Document Number: 315168-017

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit
www.intel.com/design/literature.htm.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system
manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specific
change without notice. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

No product or component can be absolutely secure.

Intel, the Intel logo, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are trademarks
of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

http://www.intel.com/design/literature.htm
http://intel.com/

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 3

Contents
Foreword 11

1.0 Overview ... 12
1.1 Measurement and Intel® Trusted Execution Technology (Intel® TXT) 13
1.2 Dynamic Root of Trust .. 13

1.2.1 Launch Sequence .. 14
1.3 Storing the Measurement ... 14
1.4 Controlled Take-down ... 15
1.5 SMX and VMX Interaction ... 15
1.6 Authenticated Code Module .. 15
1.7 Chipset Support .. 16
1.8 TPM Usage ... 16
1.9 Hash Algorithm Support ... 17
1.10 PCR Usage .. 18

1.10.1 Legacy Usage ... 19
1.10.2 Details and Authorities Usage .. 19

1.11 DMA Protection ... 22
1.11.1 DMA Protected Range (DPR) ... 23
1.11.2 Protected Memory Regions (PMRs) ... 23
1.11.3 TXT DMA Protection Ranges (TPR) .. 24

1.12 Intel® TXT Shutdown ... 24
1.12.1 Reset Conditions .. 24

2.0 Measured Launched Environment .. 26
2.1 MLE Architecture Overview .. 26
2.2 MLE Launch ... 29

2.2.1 Intel® TXT Detection and Processor Preparation .. 30
2.2.2 Detection of Previous Errors ... 31
2.2.3 Loading the SINIT AC Module .. 32
2.2.4 Loading the MLE and Processor Rendezvous ... 36
2.2.5 Performing a Measured Launch .. 41

2.3 MLE Initialization ... 43
2.4 MLE Operation ... 49

2.4.1 Address Space Correctness .. 49
2.4.2 Address Space Integrity .. 49
2.4.3 Physical RAM Regions .. 49
2.4.4 Intel® Trusted Execution Technology Chipset Regions ... 50
2.4.5 Device Assignment .. 50
2.4.6 Protecting Secrets ... 51
2.4.7 Model Specific Register Handling ... 51
2.4.8 Interrupts and Exceptions .. 52
2.4.9 ACPI Power Management Support .. 52

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
4 Document Number: 315168-017

2.4.10 Processor Capacity Addition (aka CPU Hotplug) ... 55
2.5 MLE Teardown ... 56
2.6 Other Considerations .. 59

2.6.1 Saving MSR State across a Measured Launch ... 59

3.0 Verifying Measured Launched Environments ... 60
3.1 Overview ... 61

3.1.1 Versions of LCP Components .. 62
3.2 LCP Components. General provisions ... 62

3.2.1 LCP Policy .. 63
3.2.2 LCP Policy Data ... 66
3.2.3 LCP Policy Element ... 68
3.2.4 Signed Policies .. 68
3.2.5 Supported Cryptographic Algorithms .. 69

3.3 Policy Engine Logic .. 70
3.3.1 Policies ... 70
3.3.2 Processing of Policy Data Files .. 72

3.4 Measuring the Enforced Policy ... 74
3.4.1 No Policy Data and Allow Any Policy .. 75
3.4.2 Policy with LCP_POLICY_DATA ... 75
3.4.3 Effective Policies .. 75
3.4.4 Effective TPM NV info Hash .. 81

3.5 TPM NV RAM .. 83
3.5.1 Auxiliary Index ... 83
3.5.2 Platform Owner Index .. 84
3.5.3 nameAlg Support ... 84

3.6 PCR Extend Policy .. 85
3.6.1 SINIT Policy Selection .. 86

3.7 Revocation ... 86
3.7.1 SINIT Revocation .. 86

4.0 Development and Deployment Considerations ... 88
4.1 Launch Control Policy Creation .. 88
4.2 Launch Errors and Remediation ... 88
4.3 Determining Trust .. 89

4.3.1 Migration of SEALed Data .. 89
4.4 Deployment .. 90

4.4.1 LCP Provisioning .. 90
4.4.2 SINIT Selection .. 91

4.5 SGX Requirement for TXT Platform ... 91
4.6 Converged BtG/TXT Impact on TXT Platform ... 94

 Intel® TXT Execution Technology Authenticated Code Modules 97
 Authenticated Code Module Format ... 97

 Memory Type Cacheability Restrictions ... 106

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 5

 Authentication and Execution of AC Module.. 107

 SMX Interaction with Platform ... 109
 Intel® Trusted Execution Technology Configuration Registers ... 109

 TXT.STS – Status ... 109
 TXT.ESTS – Error Status .. 110
 TXT.ERRORCODE – Error Code ... 111
 TXT.CMD.RESET – System Reset Command ... 112
 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command 113
 TXT.SPAD – BOOTSTATUS .. 113
 TXT.DIDVID – TXT Device ID .. 114
 TXT.VER.EMIF – EMC Version Numer Register ... 114
 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config Command 115

 TXT.SINIT.BASE – SINIT Base Address .. 115
 TXT.SINIT.SIZE – SINIT Size.. 115
 TXT.MLE.JOIN – MLE Join Base Address .. 116
 TXT.HEAP.BASE – TXT Heap Base Address .. 116
 TXT.HEAP.SIZE – TXT Heap Size .. 116
 TXT.DPR – DMA Protected Range.. 117
 TXT.SCRATCHPAD – ACM_POLICY_STATUS ... 117
 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command 118
 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command 118
 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command 119
 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command 119
 TXT.PUBLIC.KEY – AC Module Public Key Hash .. 119
 TXT.CMD.SECRETS – Set Secrets Command .. 120
 TXT.CMD.NO-SECRETS – Clear Secrets Command ... 120
 TXT.E2STS – Extended Error Status ... 121

 TPM Platform Configuration Registers .. 121
 Intel® Trusted Execution Technology Device Space .. 122

 Intel® TXT Heap Memory ... 123
 Extended Data Elements .. 124

 HEAP_END_ELEMENT ... 125
 HEAP_CUSTOM_ELEMENT ... 125

 BIOS Data Format .. 126
 HEAP_BIOS_SPEC_VER_ELEMENT ... 128
 HEAP_ACM_ELEMENT .. 128
 HEAP_STM_ELEMENT .. 128

 OS to MLE Data Format .. 129
 OS to SINIT Data Format .. 129

 HEAP_TPM_EVENT_LOG_ELEMENT .. 130
 HEAP_EVENT_LOG_POINTER_ELEMENT2_1 ... 131
 HEAP_TPR_REQ_ELEMENT .. 131

 SINIT to MLE Data Format ... 132
 HEAP_MADT_ELEMENT ... 134

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
6 Document Number: 315168-017

 HEAP_MCFG_ELEMENT ... 135
 HEAP_DTPR_ELEMENT .. 135
 Registry of Extended Heap Elements ... 135

 LCP Data Structures .. 137
 LCP Policy ... 137

 Policy Control ... 137
 LCP_POLICY .. 137
 LCP_POLICY2 ... 138

 LCP_POLICY_DATA... 140
 LCP Policy List ... 141

 List Signatures .. 141
 List Structures .. 147

 LCP_POLICY_ELEMENT .. 149
 Policy Elements ... 149
 Structure Endianness .. 149
 Generic Policy Element Structure .. 149
 LCP_MLE_ELEMENT .. 150
 LCP_PCONF_ELEMENT .. 151
 LCP_CUSTOM_ELEMENT .. 152
 LCP_MLE_ELEMENT2 .. 152
 LCP_PCONF_ELEMENT2 ... 153
 LCP_STM_ELEMENT2 ... 154

 NV AUX Index Data Structure ... 155

 Platform State upon SINIT Exit and Return to MLE ... 156

 TPM Event Log ... 158
 TPM 1.2 Event Log .. 158
 TPM 2.0 Event Log .. 160
 Events Types ... 161

 ACM Hash Algorithm Support .. 168
 Supported Hash Algorithms ... 168
 Hash Algorithm Lists .. 168
 Hash Algorithm List Subsets .. 168

 ACM Error Codes ... 171

 TPM NV .. 174

 Detailed LCP Checklist ... 176
 Policy Validation Checklist .. 176

 TPM NV AUX Index ... 176
 TPM NV PO Index ... 176
 NPW Mode ... 177
 Policy Data File ... 177
 PO Policy Data File if exists .. 177

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 7

 PO Policy Data File List Integrity .. 177
 Policy Enforcement Checklist .. 178

 Policy type handling by SINIT ... 178
 MLE Element Enforcement ... 178
 PCONF Element Enforcement ... 179
 STM Element Enforcement .. 180

Figures
Figure 1. Launch Control Policy Components .. 62
Figure 2. LCP_POLICY (2) Structure ... 63
Figure 3. LCP_POLICY_DATA Structure ... 67
Figure 4. LCP_POLICY_ELEMENT structure ... 68
Figure 5. TPM 1.2 LCP Policy Details Data Stream .. 76
Figure 6. TPM 1.2 LCP Policy Authorities Data Stream ... 77
Figure 7. Element Descriptor .. 77
Figure 8. TPM 2.0 LCP Policy Details Data Stream .. 78
Figure 9. List Descriptor .. 79
Figure 10. TPM 1.2 LCP Policy Authorities Data Stream ... 81
Figure 11. Hash Algorithm List Selection .. 169

Tables
Table 1. Digest Values Extending PCR17 ... 20
Table 2. Digest Values Extending PCR18 ... 21
Table 3. MLE Header structure ... 26
Table 4. MLE/SINIT Capabilities Field Bit Definitions ... 28
Table 5. Truth Table of SINIT / MLE functionality .. 29
Table 6. SGX Index Content ... 92
Table 7. IA32_SE_SVN_STATUS MSR (0x500) .. 93
Table 8. Authenticated Code Module Format ... 97
Table 9. AC module Flags Description .. 99
Table 10. Chipset AC Module Information Table ... 102
Table 11. Chipset ID List ... 103
Table 12. TXT_ACM_CHIPSET_ID Format ... 104
Table 13. Processor ID List .. 104
Table 14. TXT_ACM_PROCESSOR_ID Format ... 104
Table 15. TPM Info List .. 105
Table 16. TPM Capabilities Field ... 105
Table 17. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns 111
Table 18. TPM Locality Address Mapping ... 122
Table 19. Intel® Trusted Execution Technology Heap ... 123

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
8 Document Number: 315168-017

Table 20. BIOS Data Table ... 126
Table 21. MLE Flags Field Bit Definitions .. 127
Table 22. OS to SINIT Data Table ... 129
Table 23. SINIT to MLE Data Table ... 132
Table 24. SINIT Memory Descriptor Record ... 134
Table 25. Extended Heap Elements Registry ... 135
Table 26. RSA_KEY_AND_SIGNATURE ... 145
Table 27. ECC_KEY_AND_SIGNATURE ... 146
Table 28. AUX Data Structure ... 155
Table 29. Platform State upon SINIT exit and return to MLE ... 156
Table 30. Event Log Container Format ... 158
Table 29. Event Types .. 162
Table 30. General TXT.ERRORCODE Register Format ... 171
Table 31. TXT.ERRORCODE Register Format for CPU-Initiated TXT-Shutdown 171
Table 32. TXT.ERRORCODE Register Format for ACM-Initiated TXT-Shutdown 172
Table 33. TPM Family 1.2 NV Storage Matrix .. 174
Table 34. TPM Family 2.0 NV Storage Matrix .. 174

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 9

Revision History

Date Revision Description

January 2021 17.0 Introduction of TXT DMA Protection Ranges (TPR):
• Section 1.11.3 added.
• Section 2.2.4.3 added.
• Section C.4.3 added.
• Section C.5.3 added.
• MLE Header Version field incremented to 2.3 (Table 3)
• ACM Info Table Version field incremented to 8
• MLE/SINIT Capabilities Field Bit Definitions now includes bit 14 - DMA

protection that governs TPR support (Table 4)

September 2020 16.3 • Update and clarification of the Pcr18_Extends member of the
PolEltControl bitfield.

June 2020 16.2 • LCP_POLICY_LIST2_1 listing will now correctly list KeySignatureOffset
field type as UINT16 instead of UINT32

May 2020 16.1 • Document update to correct several errors:
• Clarify check for SMX and VMX
• Delete description of deprecated register (at offset 0100h)
• Correctly name register at offset 0200h
• Reflect above changes in listing 3

September 2019 016 • Re-write of LCP to reflect architectural changes.
• Multiple corrections and updates

November 2017 015 • Fixed structure HEAP_EVENT_LOG_POINTER_ELEMENT2(must be
HEAP_EVENT_LOG_POINTER_ELEMENT2_1)

• Added reserved capability bit 11
• Added CR3 reference to SINIT exit state table
• Corrected errors in the last revisions

May 2017 014 • Added changes related to Converged BtG / TXT technologies and
CNSS Advisory 02-15

August 2016 013 • Added each MTRR base must be multiple of that MTTR size Prior to
GETSEC[SENTER] execution.

July 2015 012 • Added SGX requirement for TXT platform
• Updated LCP changes of TPM2.0 transitions
• Added TCG compliant TXT event log formats
• Documented TPM NV definitions
• Inclusion of detailed LCP checklists

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
10 Document Number: 315168-017

Date Revision Description

May 2014 011 • Update TPM_PCR_INFO_SHORT structure and TPMS_QUOTE_INFO
structure Endianness

March 2014 010 • Corrections to data structures, algorithm detail versus prior versions
• Inclusion of TPM 2.0 changes and additions

April 2013 009 • Numerous updates from prior author
• Added text for LCP details/authorities
• Corrected osinitdata offset 84 for versions 6+

June 2011 008 • Format updates

March 2011 007 • Miscellaneous errata
• Documented ProcessorIDList support
• Described CPU Hotplug handling
• Updated TXT configuration registers
• Documented new TXT Heap structures
• Added LCP_SBIOS_ELEMENT
• Documented processor and system state after SENTER/RLP wakeup

December 2009 006 • Miscellaneous errata
• Added definition of LCP v2
• Multiple processor support

June 2008 005 • Updated for latest structure versions and new RLP wakeup mechanism
• Added Launch Control Policy information
• Removed TEP Appendix
• Many miscellaneous changes and additions

August 2007 004 • Updated for production platforms
• Use MLE terminology

October 2006 003 • Added launched environment consideration
• Renamed LT to Intel® TXT

August 2006 002 • Established public document number
• Edited throughout for clarity.

May 2006 001 • Initial release.

§§

Foreword

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 11

Foreword

The current revision of document reflects MLE visible changes resulting from converging Boot Guard
and Trusted Execution Technologies (Converged BtG/TXT a.k.a. CBnT), and “CNSS Advisory
Memorandum 02-15”, applicable to platform 2017 and beyond. A short summary of changes can be
found in Section 4.6

All obsolete features (i.e., those that are no longer supported due to convergence) have been
removed from this document, starting from revision 014. If you need to review the removed
information, it is recommended to consult revision 013, available at:
https://cdrdv2.intel.com/v1/dl/getContent/616057.

§§

https://cdrdv2.intel.com/v1/dl/getContent/616057

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
12 Document Number: 315168-017

1.0 Overview

Intel’s technology for safer computing, Intel® Trusted Execution Technology (Intel®
TXT), defines platform-level enhancements that provide the building blocks for
creating trusted platforms.

Whenever the word trust is used, there must be a definition of who is doing the trusting
and what is being trusted. This enhanced platform helps to provide the authenticity of
the controlling environment such that those wishing to rely on the platform can make
an appropriate trust decision. The enhanced platform determines the identity of the
controlling environment by accurately measuring the controlling software (see Section
1.1).

Another aspect of the trust decision is the ability of the platform to resist attempts to
change the controlling environment. The enhanced platform will resist attempts by
software processes to change the controlling environment or bypass the bounds set by
the controlling environment.

What is the controlling environment for this enhanced platform? The platform is a set
of extensions designed to provide a measured and controlled launch of system
software that will then establish a protected environment for itself and any additional
software that it may execute.

These extensions enhance two areas:

• The launching of the Measured Launched Environment (MLE)

• The protection of the MLE from potential corruption

The enhanced platform provides these launch-and-control interfaces using Safer Mode
Extensions (SMX).

The SMX interface includes the following functions:

• Measured launch of the MLE

• Mechanisms to ensure the above measurement is protected and stored in a secure
location

• Protection mechanisms that allow the MLE to control attempts to modify itself

Overview

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 13

1.1 Measurement and Intel® Trusted Execution Technology
(Intel® TXT)

Intel® TXT uses the term measurement frequently. Measuring software involves
processing the executable in such way that the result is unique and indicative to any
changes in the executable. A cryptographic hash algorithm meets these needs.

A cryptographic hash algorithm is sensitive to even one-bit changes to the measured
entity. It also produces outputs that are sufficiently large so the potential for collisions
(where two hash values are the same) is extremely small. When the term measurement
is used in this specification, the meaning is that the measuring process takes a
cryptographic hash of the measured entity.

The controlling environment is provided by system software such as an OS kernel or
Virtual Machine Manager (VMM). The software launched using the SMX instructions is
known as the Measured Launched Environment (MLE). MLEs provide different launch
mechanisms and increased protection (offering protection from possible software
corruption).

1.2 Dynamic Root of Trust

A central objective of the Intel® TXT platform is to provide a measurement of the
launched execution environment.

One measurement is made when the platform boots, using techniques defined by the
Trusted Computing Group (TCG). The TCG defines a Root of Trust for Measurement
(RTM) that executes on each platform reset; it creates a chain of trust from reset to the
measured environment. As the measurement always executes at platform reset, the
TCG defines this type of RTM as a Static RTM (SRTM).

Maintaining a chain of trust for a length of time may be challenging for an MLE meant
for use in Intel® TXT; this is because an MLE may operate in an environment that is
constantly exposed to unknown software entities. To address this issue, the enhanced
platform provides another RTM with Intel® TXT instructions. The TCG terminology for
this option is Dynamic Root of Trust for Measurement (DRTM). The advantage of a
DRTM (also called the ‘late launch’ option) is that the launch of the measured
environment can occur at any time without resorting to a platform reset. It is possible to
launch an MLE, execute for a time, terminate the MLE, execute without virtualization,
and then launch the MLE again. One possible sequence is:

1. During the BIOS load: (a) launch an MLE for use by the BIOS, (b) terminate the MLE
when its work is done, (c) continue with BIOS processing and hand off to an OS.

2. Then, the OS loads and launches a different MLE.

https://www.trustedcomputinggroup.org/home/
https://www.trustedcomputinggroup.org/home/

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
14 Document Number: 315168-017

3. In both instances, the platform measures each MLE and ensures the proper storage
of the MLE measurement value.

1.2.1 Launch Sequence

When launching an MLE, the environment must load two code modules into memory.
One module is the MLE. The other is known as an authenticated code (AC) module. The
AC module (also referred to as ACM) is only in use during the measurement and
verification process and is chipset-specific. The chipset vendor digitally signs it; the
launch process must successfully validate the digital signature before continuing.

With the AC module and MLE in memory, the launching environment can invoke the
GETSEC[SENTER] instruction provided by SMX.

GETSEC[SENTER] broadcasts messages to the chipset and other physical or logical
processors in the platform. In response, other logical processors perform basic cleanup,
signal readiness to proceed, and wait for messages to join the environment created by
the MLE. As this sequence requires synchronization, there is an initiating logical
processor (ILP) and responding logical processor(s) (RLP(s)). The ILP must be the
system bootstrap processor (BSP), which is the processor with IA32_APIC_BASE
MSR.BSP = 1. RLPs are also often referred to as application processors (APs).

After all logical processors signal their readiness to join and are in the wait state, the
initiating logical processor loads, authenticates, and executes the AC module. The AC
module tests for various chipset and processor configurations and ensures the
platform has an acceptable configuration. It then measures and launches the MLE.

The MLE initialization routine completes system configuration changes (including
redirecting INITs, SMIs, interrupts, etc.); it wakes up the responding logical processors
(RLPs) and brings them into the measured environment. At this point, all logical
processors and the chipset are correctly configured.

At some later point, it is possible for the MLE to exit and then be launched again,
without issuing a system reset.

1.3 Storing the Measurement

SMX operation during the launch provides an accurate measurement of the MLE. After
creating the measurement, the initiating logical processor stores that measurement in
the trusted platform module (TPM), defined by the TCG. An enhanced platform includes
mechanisms that ensure that the measurement of the MLE (completed during the
launch process) is properly reported to the TPM.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 15

With the MLE measurement in the TPM, the MLE can use the measurement value to
protect sensitive information and detect potential unauthorized changes to the MLE
itself.

1.4 Controlled Take-down

Because the MLE controls the platform, exiting the MLE is a controlled process. The
process includes: (a) shutting down any guest virtual machines (VMs) if they were
created; (b) ensuring that memory previously used does not leak sensitive information.

The MLE cleans up after itself and terminates the MLE control of the environment. If a
VMM was running, the MLE may choose to turn control of the platform over to the
software that was running in one of the VMs.

1.5 SMX and VMX Interaction

A VM abort may occur while in SMX operation. This behavior is described in the Intel 64
and IA-32 Software Developer Manual, Volume 3B. Note that entering authenticated
code execution mode or launching of a measured environment affects the behavior and
response of the logical processors to certain external pin events.

1.6 Authenticated Code Module

To support the establishment of a measured environment, SMX enables the capability
of an authenticated code execution mode. This provides the ability for a special code
module, referred to as an authenticated code module (ACM, also frequently referred to
as SINIT), to be loaded into internal RAM (referred to as authenticated code execution
area or ACEA) within the processor. The AC module is first authenticated and then
executed using a tamper resistant mechanism.

Authentication is achieved by a digital signature in the header of the AC module. The
processor calculates a hash of the AC module and uses the result to validate the
signature. Using SMX, a processor will only initialize processor state or execute the AC
module if it passes authentication. Since the authenticated code module is held within
the internal RAM of the processor, execution of the module can occur in isolation with
respect to the contents of external memory or activities on the external processor bus.

Beside of SINIT, BIOS contains another ACM – the BIOS AC module used for performing
subordinate tasks such as TXT Opt-in preparation, clearing the memory, alias checking,
etc.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
16 Document Number: 315168-017

1.7 Chipset Support

One important feature the chipset provides is direct memory access (DMA) protection
via Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d). Intel® VT-d,
under control of the MLE, allows the MLE to protect itself and any other software such
as guest VMs from unauthorized device access to memory. Intel® VT-d blocks access to
specific physical memory pages and the enforcement of the block occurs for all DMA
access to the protected pages. See Section 1.11 for more information on DMA
protection mechanisms.

The Intel® TXT architecture also provides extensions that access certain chipset
registers and TPM address space.

Chipset registers that interact with SMX are accessed from two regions of memory by
system software using memory read/write protocols. These two memory regions, Intel®
TXT public space and Intel® TXT private space, are mappings to the same set of chipset
registers but with different read/write permissions depending on which space the
memory access came through. The Intel® TXT private space is not accessible to system
software until it is unlocked by SMX instructions.

The sets of interface registers accessible within a TPM device are grouped by a locality
attribute and are a separate set of address ranges from the Intel® TXT public and
private spaces. The following localities are defined:

• Locality 0 : Non-trusted and legacy TPM operation

• Locality 1 : An environment for use by the Trusted Operating System

• Locality 2 : MLE access

• Locality 3 : Authenticated Code Module

• Locality 4 : Intel® TXT hardware use only

Similar to Intel® TXT public and private space, some of these localities are only
accessible via SMX instructions and others are not accessible by software until
unlocked by SMX instructions.

1.8 TPM Usage

Intel® TXT makes extensive use of the trusted platform module (TPM) defined by the
Trusted Computing Group (TCG) in the “TPM Main specification for TPM family 1.2” and
“TPM Library specification for TPM family 2.0”. The TPM provides a repository for
measurements and the mechanisms to make use of the measurements. The system
makes use of the measurements to both report the current platform configuration and
to provide long-term protection of sensitive information.

Overview

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 17

The TPM stores measurements in platform configuration registers (PCRs). Each PCR
provides a storage area that allows an unlimited number of measurements in a fixed
amount of space. They provide this feature by an inherent property of cryptographic
hashes. Outside entities never write directly to a PCR register, they “extend” PCR
contents. The extend operation takes the current value of the PCR, appends the new
value, performs a cryptographic hash on the combined value, and the hash result is the
new PCR value. One of the properties of cryptographic hashes is that they are order
dependent. This means hashing A then B produces a different result from hashing B
then A. This ordering property allows the PCR contents to indicate the order of
measurements.

Sending measurement values from the measuring agent to the TPM is a critical
platform task. The dynamic root of trust for measurement (DRTM) requires specific
messages to flow from the DRTM to the TPM. The Intel® TXT DRTM is the
GETSEC[SENTER] instruction and the system ensures GETSEC[SENTER] has special
messages to communicate to the TPM. These special messages take advantage of TPM
localities 3 and 4 to protect the messages and inform the TPM that GETSEC[SENTER] is
sending the messages.

Besides of the measurements, Intel® TXT uses TPM non-volatile (NV) RAM to store
launch control policy (LCP) data and for inter-ACM communication. Three main indices
used by Intel® TXT are denoted as AUX (auxiliary), PO (platform owner) and SGX
(software guard extension). Detailed information about these indices will be presented
in subsequent Sections 3 and 4.5.

With the release of the TPM 2.0 specification and supporting devices, many changes
may be required for TXT launch. TPM 2.0 devices can support a variety of cryptographic
algorithms, and a single device will often support multiple digest and asymmetric
signature algorithms. For the purposes of this document, TPM 1.2 and 2.0 devices will
be referred to as two distinct families. The MLE and ACM determine the family of
platform TPM. In subsequent discussion, we will refer to actions and structures related
to TPM 1.2 or 2.0 as TPM1.2 mode and TPM2.0 mode of operation, respectively.

1.9 Hash Algorithm Support

TPM 2.0 provides PCRs in banks—that is, one bank of PCRs for each supported hash
algorithm. For example, a TPM that supports three hashing algorithms will have three
banks of PCRs and thus “measuring an object into PCR” implies hashing of that object
using each of the three hashing algorithms and extending obtained digests into all
banks. The TPM 2.0 specification enumerates all the hash algorithms it allows; of those,
the current TXT components support SHA1, SHA256, SHA384, and SM3_256.

TPM 2.0 devices support algorithm agile “event” commands. These commands extend
measurements into all existing PCR banks at once. Measuring objects of significant size
using event commands may incur performance penalties.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
18 Document Number: 315168-017

Alternatively, embedded software can be used to compute digests, and the results then
extended into PCRs using non-agile “extend” commands. While this may be more
efficient, software support for all hashing algorithms supported by a given TPM might
be not present. Should this occur, PCRs in banks utilizing algorithms unsupported by
the embedded software will be capped with the value “1”

Whether extend calculations will be done using TPM hardware event commands or
software implementations is an MLE decision and will be communicated to the
launched ACM via the “flags” field, which is described in Table 22.

TPM 1.2 devices support only SHA1 hashing algorithm. To simplify discussion, for both
device families, hashing algorithms will be denoted as HASH. For TPM1.2 this means
SHA1. For TPM2.0, this means all algorithms supported by the device.

In TPM1.2 mode certain values are extended into PCRs without hashing. Some of them
are extended this way due to historical dependencies; others are using extends of zero
digests or constant values as an indication of various platform states or events. In such
cases, the zero digest is an array of 20 zeros: {0,0, … ,0}

These extends will continue to be supported in TPM1.2 mode without changes, hence
ensuring backwards compatibility.

In TPM2.0 this practice is discouraged and simply cannot be supported when maximum
agility (MA) extend policy is enforced – see Table 22. Therefore, in all above cases we
will not extend constant values as they appear, but we will measure them instead – that
is, we will hash these constant values and extend resultant digests into PCRs. All such
cases are flagged in the explanation of details/authorities measurements below.

1.10 PCR Usage

As part of the measured launch, Intel® TXT will extend measurements of the elements
and configuration values of the dynamic root of trust into certain TPM PCRs. The values
comprising these measurements (indicated below) are provided in the heap
SinitMleData data table described in Appendix C.4.3, and in the event log.

While the MLE may choose to extend additional values into these PCRs, the values
described below are those present immediately after the MLE receives control
following the GETSEC[SENTER] instruction.

In addition to values explicitly measured by SINIT and MLE GETSEC[SENTER]
instruction measures the SINIT module itself by the means of
_HASH_START/_HASH_DATA/_HASH_END HW event sequence (will be denoted as
HASH*). This event sequence is supported by both TPM families and is described in
the following TCG specifications: “TCG TPM Main Specification Version 1.2”, “TCG
Trusted Platform Module Library, Family 2.0”, and “TCG PC Client Platform TPM Profile
Specification for TPM 2.0”.

Overview

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 19

Since these PCR values are arrived at by a series of measurements, determining their
derivation requires a trace or log of the extending steps executed. These steps are
recorded in the TPM Event Log, described in Appendix F.

1.10.1 Legacy Usage

Legacy—or original—PCR usage separates the values in the PCRs according to platform
elements and MLE. The platform elements of the trusted computing base (TCB), such as
SINIT and launch control policy (LCP), are measured into PCR 17 and the MLE is
measured into PCR 18.

Legacy (LG) usage support is reported by value of 0 in bit 4 of the Capabilities field of
both SINIT and MLE headers (see Table 4). Because this reporting needs to be
compatible with earlier versions of the Capabilities field, for which bit 4 was reserved,
inverse logic is used to represent LG usage.

Legacy PCR usage is no longer supported by Intel ® TXT

1.10.2 Details and Authorities Usage

Details and Authorities (DA) PCR usage separates the values in the PCRs according to
whether the value extended is the actual measurement of a given entity (a detail) or
represents the authority for the given entity (an authority). Details are extended to PCR
17 and authorities to PCR 18. Evaluators who do not care about rollback can use the
authorities PCR (18) and it should remain the same even when elements of the TCB are
changed.

This usage corresponds to a value of 1 in bit 5 of the Capabilities field (see Table 4).

1.10.2.1 PCR 17 (Details)

“Details” measurements include hashes of all components participating in establishing
the trusted execution environment and due to very nature of hash algorithm change of
any component entail change of the final PCR17 value.

PCR 17 is initialized using the _TPM_HASH_* sequence. As part of this sequence, PCRs
17-23 are reset to 0 before _TPM_HASH_START.

The _HASH_DATA provided in this sequence is the concatenation of digest of the SINIT
ACM that was used in the launch process and the 4-byte value of the SENTER
parameters (in the EDX register and in SinitMleData.EdxSenterFlags). The digest of
SINIT is also optionally stored in the SinitMleData.SinitHash field of the SINIT to MLE
data table (SinitMleData – see Appendix C.4.3).

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
20 Document Number: 315168-017

Result of _HASH_* differs from one CPU family to another and between TPM families.
Originally, Intel ® CPUs were computing SINIT digest using SHA1 producing 20-byte
output. Newer Intel ® CPUs are computing SINIT digest using SHA256 producing 32
bytes.

Obtained data stream (SINIT digest | EDX - 24 or 36 bytes respectively) is sent to TPM
via HASH_DATA. Based on TPM family PCR17 gets updated similarly to how
TPM(2)_Extend () command does it.

Respective PCR17 value is reported based on what kind of TPM family device is present
in the system.

If TPM 1.2 family device is found in the system, PCR17 value is reported via
SinitMleData table in which SinitMleData.SinitHash field contains value of PCR 17 after
the initial extend operation. Alternatively, if TPM 2.0 family device is present, PCR 17
value is reported via the Event Log (see Appendix F.3 for more details).

After the initial SINIT measurement, PCR 17 is extended with the digest values of the
items in the table below:

Table 1. Digest Values Extending PCR17

Item Remarks

Digest of MLE

S-ACM registration data retrieved from the
AUX Index

20 bytes in TPM 1.2 mode and 32 bytes in
TPM 2.0 mode. In TPM 1.2 mode data
extended to TPM as is, in TPM 2.0 mode
extended value is HASHHashAlgId (data) using
HashAlgId of the bank being extended.

Digest of PO.PolicyControl field of the used
policy.

Retrieved from the TPM NV PO index. Coded
as DWORD.

Digest of all matching elements used by the
policy1

TPM 1.2 only event

Digest of STM If STM is not enabled, for TPM 1.2 family
ZeroDigest is extended, while for the TPM 2.0
family, the digest = HASHHashAlgId (0x0) is
extended.

Digest of the Capability field of the
OsSinitData table

TPM 2.0 only event. coded as DWORD.

1 Construction of byte stream containing digests of all elements contributed to established policy
is discussed in Section 3.4. If there is no policy used, a ZeroDigest is extended.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 21

Item Remarks

Digest of the effective LCP details i.e. all
matching elements used by the policy

TPM 2.0 only event. Construction of byte
stream containing digests of all elements
contributed to the established policy is
discussed in Section 3.4.3.3

Digest of the TPM NV index public info
structures

TPM 2.0 only event. Rules how to construct
byte stream for hashing are discussed in
Section 3.4.4.

Digest of Early TXT BIOS

Digest of the Key Manifest signature

Digest of the Boot Policy Manifest signature

Digest of the ACM boot policy status Digest of the ACM_POLICY_STATUS register

Pseudo random value NPW SINIT only event. Renders PCR17
unusable in the production environment.

Unsupported bank capping value OneDigest is extended into PCR bank using
an algorithm that is not supported by SINIT
SW

Note: The table above does not reflect the order of extends. Attester might retrieve the exact
order from the Event Log.

1.10.2.2 PCR 18 (Authorities)

“Authority” measurements include hashes of some unique identifying properties of
signing authorities such as public signature verification keys. This enables the same
authority to issue an update of component without affecting the final PCR18 value,
because the signing authority is unchanged.

The table below shows digests extended to PCR18.

Table 2. Digest Values Extending PCR18

Item Remarks

Digest of Processor S-CRTM status Coded as DWORD; same value as extended
to PCR17 in TPM 2.0 mode.

Digest of the PO.PolicyControl field of the
platform owner (PO) policy

Coded as DWORD; same value as extended
to PCR17

Digest of the Capability field of the
OsSinitData table

Coded as DWORD; same value as extended
to PCR17 in TPM 2.0 mode

Digest of SINIT signer key The value hashed is modulus of the key

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
22 Document Number: 315168-017

Item Remarks

Digest of LCP authorities TPM 1.2 only event. Measurement of LCP
lists containing elements contributed to
established policy. Byte stream, which is
hashed, is built using rules in Section 3.4.2. If
there is no policy, ZeroDigest is extended.

Digest of LCP authorities TPM 2.0 only event. Digest of LCP authorities
i.e. measurement of LCP lists containing
elements contributed to established policy.
Byte stream which is hashed is built using
rules in Section 3.4.3.4.

Digest of the TPM NV index public info
structures

TPM 2.0 only event. same value as extended
to PCR17 in TPM 2.0 mode. Rules how to
construct byte stream for hashing are
discussed in Section 3.4.4.

Digest of the Key Manifest descriptor

Digest of the Boot Policy Manifest descriptor

Pseudo random value NPW SINIT only event. Renders PCR18
unusable in the production environment.

Unsupported bank capping value OneDigest is extended into PCR bank using
an algorithm that is not supported by SINIT
SW.

Note: As with PCR17, the table above does not reflect the order of extends. Attester might
retrieve the exact order from the Event Log.

1.11 DMA Protection

This section briefly describes three chipset mechanisms that can be used to protect
regions of memory from DMA access by primary bus devices. These mechanisms are:

• DMA Protected Range (DPR)

• Protected Memory Regions (PMR)

• TXT DMA Protection Ranges (TPR)

More details on these mechanisms can be found in the sections below, in the latest
External Design Specification (EDS) of the targeted chipset family “Intel® Virtualization
Technology for Directed I/O Architecture Specification” and “Intel® Trusted Execution
Technology (Intel® TXT), DMA Protection Ranges Architecture Specification”.

Overview

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 23

1.11.1 DMA Protected Range (DPR)

The DMA Protected Range (DPR) is a region of contiguous physical memory whose last
byte is the byte before the start of SMRAM segment (TSEG), and which is protected
from all DMA access. The DPR size is set and locked by BIOS. This protection is applied
to the final physical address after any other translation (e.g., Intel® VT-d, graphics
address remapping table (GART), etc.).

The DPR covers the Intel® TXT heap and SINIT AC Module reserved memory (as
specified in the TXT.SINIT.BASE/TXT.SINIT.SIZE registers). On current systems it is no
less than 3MB in size, and though this may change in the future it will always be large
enough to cover the heap and SINIT regions.

The MLE itself may reside in the DPR if it does not conflict with either SINIT or heap
areas. If it does reside in the DPR, then the Intel® VT-d PMR or TPR do not need to be
used to cover it. If MLE is not in any of the available ranges, SINIT will not permit the
environment to be launched.

1.11.2 Protected Memory Regions (PMRs)

The Intel® VT-d protected memory regions (PMRs) are two ranges of physical addresses
that are protected from DMA access. One region must be in the lower 4GB of memory
and the other may be anywhere in address space. Either or both may be unused.

The use of the PMRs is not mutually exclusive of DMA remapping. If the MLE enables
DMA remapping, it should place the Intel® VT-d page tables within the PMR region(s) in
order to protect them from DMA activity prior to turning on remapping. While it is not
required that PMRs be disabled once DMA remapping is enabled, if the MLE wants to
manage all DMA protection through remapping tables then it must explicitly disable the
PMR(s).

The MLE may reside within one of the PMR regions. If the MLE is not within the DPR
region then it must be within one of the PMR or TPR regions, else SINIT will not permit
the environment to be launched.

For more details of the PMRs, see the “Intel® Virtualization Technology for Directed I/O
Architecture Specification”.

There are plans to gradually drop support for PMRs in the future and replace it with an
alternative mechanism - TXT DMA Protection Ranges (TPR) – which is better suited for
work with Intel® TXT and can also be utilized in systems that do not support this
technology.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
24 Document Number: 315168-017

1.11.3 TXT DMA Protection Ranges (TPR)

TXT DMA Protection Ranges is a DMA protection mechanism implemented on the
silicon level. Unlike PMR, it is independent of IOMMU usages. The TPR technology is
designed to work best with Intel® TXT but can also be utilized in platforms that do not
utilize it. TPR does not have dependencies on Intel® VT-d technology.

TPRs protect regions of memory (specifically usable DRAM areas) from DMA access by
primary bus devices. They are implemented as several ranges of physical memory
addresses that can be located anywhere in the address space. One limitation is that
these ranges must not overlap each other, and any other special security HW ranges
that exist in the system. Specifically, TPRs must not overlap DPR, IOMMU PMR, Isolated
Memory Ranges (IMR) and MMIO ranges. Overlap behavior is model-specific but it is
guaranteed that no DMA access will be allowed to any address contained within any
overlapping region.

For more details on the TPR, please consult “Intel® TXT DMA Protection Ranges
Architecture Specification”.

The MLE may reside within one of the TPR regions, within PMR or within DPR. If it does
not, SINIT will not permit the environment to be launched.

1.12 Intel® TXT Shutdown

1.12.1 Reset Conditions

When an Intel® TXT shutdown condition occurs, the processor or software writes an
error code indicating the reason for the failure to the TXT.ERRORCODE register. It then
writes to the TXT.CMD.RESET command register, initiating a platform reset. After the
write to TXT.CMD.RESET, the processor enters a shutdown sleep state with all external
pin events, bus or error events, machine check signaling, and MONITOR/MWAIT event
signaling masked. Only the assertion of reset back to the processor takes it out of this
sleep state. The Intel® TXT error code register is not cleared by the platform reset; this
makes the error code accessible for post-reset diagnostics.

The processor can generate an Intel® TXT shutdown during execution of certain
GETSEC leaf functions (for example: ENTERACCS, EXITAC, SENTER, SEXIT), where
recovery from an error condition is not considered reliable. This situation should be
interpreted as an abort of authenticated execution or measured environment launch.

A legacy IA-32 triple-fault shutdown condition is also converted to an Intel® TXT
shutdown sequence if the triple-fault shutdown occurs during authenticated code
execution mode or while the measured environment is active. The same is true for
other legacy non-SMX specific fault shutdown error conditions. Legacy shutdown to
Intel® TXT shutdown conversions are defined as the mode of operation between:

Overview

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 25

• Execution of the GETSEC functions ENTERACCS issued by software and EXITAC
issued by the ACM at completion

• Recognition of the message signaling the beginning of the processor rendezvous
after GETSEC[SENTER] and the message signaling the completion of the processor
rendezvous

Additionally, there is a special case. If the processor is in VMX operation while the
measured environment is active, a triple-fault shutdown condition that causes a guest
exiting event back to the VMM supersedes conversion to the Intel® TXT shutdown
sequence. In this situation, the VMM remains in control after the error condition that
occurred at the guest level and there is no need to abort processor execution.

Given the above situation, if the triple-fault shutdown occurs at the root level of the
MLE or a virtual machine extensions (VMX) abort is detected, then an Intel® TXT
shutdown sequence is signaled. For more details on a VMX abort, see Chapter 23, “VM
Exits” in the Intel 64 and IA-32 Software Developer Manuals, Volume 3B.

§§

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
26 Document Number: 315168-017

2.0 Measured Launched Environment

Intel® TXT can be used to launch any type of code. However, this section describes the
launch, operation, and teardown of a VMM using Intel® TXT; any other code would have
a similar sequence.

2.1 MLE Architecture Overview

Any Measured Launched Environment (MLE) will generally consist of three main
sections of code: the initialization, the dispatch routine, and the shutdown. The
initialization code is run each time the Intel® TXT environment is launched. This code
includes code to setup the MLE on the ILP and join code to initialize the RLPs.

After initialization, the MLE behaves like the unmeasured version would have; in the
case of a VMM, this is trapping various guest operations and virtualizing certain
processor states.

Finally, the MLE prepares for shutdown by again synchronizing the processors, clearing
any state, and executing the GETSEC[SEXIT] instruction.

Table 3 shows the format of the MLE Header structure stored within the MLE image.
The SINIT AC module uses the MLE Header structure to set up the correct initial MLE
state and to find the MLE entry point. The header is part of the MLE hash.

Table 3. MLE Header structure

Field Offset Size
(bytes)

Description

UUID (universally unique
identifier)

0 16 Identifies this structure

HeaderLen 16 4 Length of header in bytes

Version 20 4 Version number of this structure

EntryPoint 24 4 Linear entry point of MLE

FirstValidPage 28 4 Starting linear address of (first valid page
of) MLE

MleStart 32 4 Offset within MLE binary file of first byte
of MLE, as specified in page table

MleEnd 36 4 Offset within MLE binary file of last byte
+ 1 of MLE, as specified in page table

Capabilities 40 4 Bit vector of MLE-supported capabilities

CmdlineStart 44 4 Starting linear address of command line

CmdlineEnd 48 4 Ending linear address of command line

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 27

UUID: This field contains a UUID which uniquely identifies this MLE Header Structure.
The UUID is defined as follows:

ULONG UUID0; // 9082AC5A

ULONG UUID1; // 74A7476F

ULONG UUID2; // A2555C0F

ULONG UUID3; // 42B651CB

This UUID value should only exist in the MLE (binary) in this field of the MLE header.
This implies that this UUID should not be stored as a variable nor placed in the code to
be assigned to this field. This can also be ensured by analyzing the binary.

HeaderLen: This field contains the length in bytes of the MLE Header Structure.

Version: This field contains the version of the MLE header, where the upper two bytes
are the major version and the lower two bytes are the minor version. Changes in the
major version indicate that an incompatible change in behavior is required of the MLE
or that the format of this structure is not backwards compatible.

Version 2.2 (20002H) indicates legacy MLE not aware of TPR-based DMA protection.

Version 2.3 (20003H) is the currently supported version for MLEs supporting TPR-
based DMA protection.

EntryPoint: This field is the linear address, within the MLE’s linear address space, at
which the ILP will begin execution upon successful completion of the GETSEC[SENTER]
instruction.

FirstValidPage: This field is the starting linear address of the MLE. This will be verified
by SINIT to match the first valid entry in the MLE page tables.

MleStart / MleEnd: These fields are intended for use by software that needs to know
which portion of an MLE binary file is the MLE, as defined by its page table. This might
be useful for calculating the MLE hash when the entire binary file is not being used as
the MLE.

Capabilities: This bit vector represents TXT-related capabilities that the MLE supports.
It will be used by the SINIT AC module to determine whether the MLE is compatible
with it and as needed for any optional capabilities. The currently defined bits for this
are:

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
28 Document Number: 315168-017

Table 4. MLE/SINIT Capabilities Field Bit Definitions

Bit
Position

Description

0 Support for GETSEC[WAKEUP] for RLP wakeup
All MLEs should support this.

1 = supported/requested
0 = not supported

1 Support for RLP wakeup using MONITOR address (SinitMleData.RlpWakeupAddr)
All MLEs should support this.

1 = supported/requested
0 = not supported

2 The ECX register will contain the pointer to the MLE page table on return from
SINIT to the MLE EntryPoint

1 = supported/requested
0 = not supported

3 STM support
1 = supported/requested
0 = not supported

4 TPM 1.2 family: Legacy PCR usage support (negative logic is used for backwards
compatibility)

0 = supported/requested
1 = not supported

No longer supported: reserved/ignored

5 TPM 1.2 family: Details/authorities PCR usage support
This usage takes precedence over legacy usage if both are requested

1 = supported/requested
0 = not supported

No longer supported: reserved/ignored

7-6 Platform Type
00: legacy / platform undefined
01: client platform ACM
10: server platform ACM
11: reserved / illegal

8 MAXPHYADDR supported
0: 36 bits MTRR masks computed, regardless of actual width
1: actual width MTRR masks computed as reported by CPUID function
0x80000008

Always forced to “1” by an SINIT. See note

9 Supported format of TPM 2.0 event log:
= 0 – Original TXT TPM 2.0 Event Log
= 1 – “TCG PC Client Platform. EFI Protocol Specification” compatible Event Log
Always forced to “1”

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 29

Bit
Position

Description

10 Converged BtG / TXT support (CBnT):
= 0 – CBnT is not supported
= 1 – CBnT is supported

13:11 Startup ACM specific use. Reserved for SINIT and MLE

14 DMA Protection:
= 0 Supports Legacy SINIT / MLE DMA protection (PMR)
= 1 supports TPR-based DMA protection

31:15 Reserved (must be 0)

Note: Legacy TBOOT computes MTRR masks assuming 36 bits width of an address bus. This
may lead to creation of potentially disjoint WB cache ranges and violation of CRAM
protections. To remedy case and support legacy MLE/SINIT behavior the following has
been added:

BIT8 of Capabilities field in ACM info table and MLE header was defined to indicate use
of bus width method. Both MLE and SINIT will examine this bit in counterpart module
and amend execution as follows in Truth Table.

Table 5. Truth Table of SINIT / MLE functionality

MLE SINIT Functionality

Legacy BIT8 = 0 Legacy BIT8 = 0 Both use 36 bits

New BIT8 = 1 Legacy BIT8 = 0 MLE sees BIT==0 and prepares 36-bit MTRR masks.
Legacy SINIT ignores BIT8 in MLE header

Legacy BIT8 = 0 New BIT8 = 1 Legacy MLE ignores BIT8 in SINIT ACM Info Table and
prepares 36-bit MTRR masks. SINIT checks MLE header
and validates masks as 36 bits

New BIT8 = 1 New BIT8 = 1 Both use actual bus width.

CmdlineStart / CmdlineEnd: These fields are intended for use by software that needs
to calculate the MLE hash, for MLEs that include their command lines in their identity.
These are linear addresses within the MLE of the beginning and end of a buffer that will
contain the command line. The buffer is padded with bytes of 0x0 at the end. MLEs that
do not include the command line in their identity should set these fields to 0.

2.2 MLE Launch

At some point system software will start an Intel® TXT measured environment. This may
be done at operating system loader time or could be done after the operating system
boots. From this point on we will assume that the operating system is starting the Intel®
TXT measured environment and refer to this code as the system software.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
30 Document Number: 315168-017

After the measured environment startup, the application processors (RLPs) will not
respond to system inter-processor interrupts (SIPIs) as they did before SENTER. Once
the measured environment is launched, the RLPs cannot run the real-mode MP startup
code and their startup must be initiated by an alternate method. The new MP startup
algorithm does not allow the RLPs to leave protected mode with paging on. The OS
may also be required to detect whether a measured environment has been established
and use this information to decide which MP startup algorithm is appropriate (the
standard MP startup algorithm or the modified algorithm).

This section shows the pseudocode for preparing the system for the SMX measured
launch. The following describes the process in several sub-sections:

• Intel® TXT detection and processor preparation

• Detection of previous errors

• Loading the SINIT AC module

• Loading the MLE and processor rendezvous

• Performing a measured launch

2.2.1 Intel® TXT Detection and Processor Preparation

Lines 1 - 4: Before attempting to launch the measured environment, the system
software should check that all logical processors support VMX and SMX (the check for
VMX support is not necessary if the environment to be launched will not use VMX).

For single processor socket systems, it is sufficient if this action is only performed by
the ILP. This includes physical processors containing multiple logical processors. In
order to correctly handle multiple processor socket systems, this check must be
performed on all logical processors. It is possible that two physical processor within the
same system may differ in terms of SMX and VMX capabilities.

For details on detecting and enabling VMX see Chapter 19, “Introduction to Virtual-
Machine Extensions”, in the Intel 64 and IA-32 Software Developer Manuals, Volume 3B.
For details on detecting and enabling SMX support see Chapter 6, “Safer Mode
Extensions Reference”, in the Intel 64 and IA-32 Software Developer Manuals, Volume
2B.

Lines 5 - 9: System software should check that the chipset supports Intel® TXT prior to
launching the measured environment. The presence of the Intel® TXT chipset can be
detected by executing GETSEC[CAPABILITIES] with EAX=0 & EBX=0. This instruction
will return the ‘Intel® TXT Chipset’ bit set in EAX if an Intel® TXT chipset is present. The
processor must enable SMX before executing the GETSEC instruction.

Lines 10 – 12: System software should also verify that the processor supports all
GETSEC instruction leaf indices that will be needed. The minimal set of instructions

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 31

required will depend on the system software and MLE, but is most likely SENTER,
SEXIT, WAKEUP, SMCTRL, CAPABILITIES and PARAMETERS. The supported leaves are
indicated in the EAX register after executing the GETSEC[CAPABILITIES] instruction as
indicated above.

Listing 1. Intel® TXT Detection Pseudocode
// Intel TXT detection
// Execute on all logical processors for compatibility with
// multiple processor systems
//
1. CPUID(EAX=1);
2. IF (SMX not supported) OR (VMX not supported) {
3. Fail measured environment startup;
4. }
//
// Enable SMX on ILP & check for Intel TXT chipset
//
5. CR4.SMXE = 1;
6. GETSEC[CAPABILITIES];
7. IF (Intel TXT chipset NOT present) {
8. Fail measured environment startup;
9. }
10. IF (All needed SMX GETSEC leaves are NOT supported) {
11. Fail measured environment startup;
12. }

2.2.2 Detection of Previous Errors

In order to prevent a cycle of failures or system resets, it is necessary for the system
software to check for errors from a previous launch. Errors that are detected by system
software prior to executing the GETSEC[SENTER] instruction will be specific to that
software and, if persistent, will be in a manner specific to the software. Errors generated
during execution of the GETSEC[SENTER] instruction result in a system reset and the
error code being stored in the TXT.ERRORCODE register. Possible remediation steps
are described in Section 4.2.

Lines 1 - 3: The error code from an error generated during the GETSEC[SENTER]
instruction is stored in the TXT.ERRORCODE register, which is persistent across soft
resets. Non-zero values other than 0xC000001 indicate an error. Error codes are
specific to an SINIT AC module and can be found in a text file that is distributed with
the module. Errors that are not AC-module specific are listed in Appendix H

Lines 9 - 12: If the TXT_RESET.STS bit of the TXT.ESTS register is set, then in order to
maintain TXT integrity the GETSEC[SENTER] instruction will fail. System software
should detect this condition as early as possible and terminate the attempted
measured launch and report the error. The cause of the error must be corrected if
possible, and the system should be power-cycled to clear this bit and permit a launch.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
32 Document Number: 315168-017

Listing 2. Error Detection Pseudocode
//
// Detect previous GETSEC[SENTER] failures
//
1. IF (TXT.ERRORCODE != 0 && TXT.ERRORCODE != SUCCESS) {
2. Terminate measured launch ;
3. Report error ;
4. If remedial action known {
5. Take remedial action ;
6. Power-cycle system ;
7. }
8. }
//
// Detect previous TXT Reset
//
9. IF (TXT.ESTS[TXT_RESET.STS] != 0) {
10. Report error ;
11. Terminate measured launch ;
12. }

2.2.3 Loading the SINIT AC Module

This action is only performed by the ILP.

BIOS may already have the correct SINIT AC module loaded into memory or system
software may need to load the SINIT code into memory from disk. The system software
may determine if an SINIT AC module is already loaded by examining the preferred
SINIT load location (see below) for a valid SINIT AC module header.

System software should always use the most recent version of the SINIT AC module
available to it. It can determine this by comparing the Date fields in the AC module
headers.

System software should also match a prospective SINIT AC module to the chipset
before loading and attempting to launch the module. This is described in the next two
sections of this document.

System software owns the policy for deciding which SINIT module to load. In many
cases, it must load the previously loaded SINIT AC module in order to unseal data
sealed to a previously launched environment. If an SINIT AC module is to be changed
(e.g. upgraded to the latest version), any secrets sealed to the current measured launch
may require migration prior to launching via an updated SINIT AC module. It should be
noted that server platforms typically carry an appropriate SINIT AC module within their
BIOS, and that a BIOS update may result in an SINIT AC module update outside of
system software control. For further discussion on this issue, see Section 4.3.1.

BIOS reserves a region of physically contiguous memory for the SINIT AC module,
which it specifies through the TXT.SINIT.BASE and TXT.SINIT.SIZE Intel® TXT
configuration registers. By convention, at least 192 KB of physically contiguous memory

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 33

is allocated for the purpose of loading the SINIT AC module; this has increased to 320
KB for latest generation processors. System software must use this region for any SINIT
AC module it loads.

The SINIT AC module must be located on a 4 KB aligned memory location. The SINIT
AC module must be mapped WB using the MTRRs and all other memory must be
mapped to one of the supportable memory types returned by GETSEC[PARAMETERS].
The MTRRs that map the SINIT AC module must not overlap more than 4 KB of memory
beyond the end of the SINIT AC image. See the GETSEC[ENTERACCS] instruction and
the Authenticated Code Module Format, Appendix A.1, for more details on these
restrictions.

The pages containing the SINIT AC module image must be present in memory before
attempting to launch the measured environment. The SINIT AC module image must be
loaded in the lower 4 GB of memory. System software should check that the SINIT AC
module will fit within the AC execution region as specified by the
GETSEC[PARAMETERS] leaf. System software should not utilize the memory
immediately after the SINIT AC module up to the next 4 KB boundary. On certain Intel®
TXT implementations, execution of the SINIT AC module will corrupt this region of
memory.

2.2.3.1 Matching an AC Module to the Platform

As part of system software loading an SINIT AC module, the system software should
first verify that the file to be loaded is really an SINIT AC module. This may be done at
installation time or runtime. Lines 1 - 13 in Listing 3 below show how to do this.

Each AC module is designed for a specific chipset or set of chipsets, platform type, and,
optionally, processor(s). Software can examine the Chipset ID and Processor ID Lists
embedded in the AC module binary to determine which chipsets and processors an AC
module supports. Software should read the chipset’s TXT.DIDVID register and parse the
Chipset ID List to find a matching entry. If the AC module also contains a Processor ID
List, then software should also match the AC module against the processor CPUID and
IA32_PLATFORM_ID MSR. If the ACM Info Table version is 5 or greater, software should
verify that the Platform Type bits within the Capabilities field match that of the current
platform (server versus client). Attempting to execute an AC module that does not
match the chipset and processor, and platform type when specified, will result in AC
module failing to complete its normal execution and Intel® TXT Shutdown.

Listing 3. AC Module Matching Pseudocode
TXT_ACM_HEADER *AcmHdr; // see Table 8.
TXT_CHIPSET_ACM_INFO_TABLE *InfoTable; // see Table 10

//
// Find the Chipset AC Module Information Table
//
1. AcmHdr = (TXT_ACM_HEADER *)AcmImageBase;

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
34 Document Number: 315168-017

2. UserAreaOffset = (AcmHdr->HeaderLen + AcmHdr->ScratchSize)*4;
3. InfoTable = (TXT_CHIPSET_ACM_INFO_TABLE *)(AcmBase +

 UserAreaOffset);
//
// Verify image is really an AC module
//
4. IF (InfoTable->UUID0 != 0x7FC03AAA) OR
5. (InfoTable->UUID1 != 0x18DB46A7) OR
6. (InfoTable->UUID2 != 0x8F69AC2E) OR
7. (InfoTable->UUID3 != 0x5A7F418D) {
8. Fail: not an AC module;
9. }
//
// Verify it is an SINIT AC module
//
10. IF (AcmHdr->ModuleType != 2) OR
11. (InfoTable->ChipsetACMType != 1) {
12. Fail: not an SINIT AC module;
13. }
//
// Verify that platform type and platform match, if specified
//
14. IF (InfoTable->Version > 5) {
15. IF (InfoTable->Capabilities[7:6] != 01 AND
16. PlatformType == CLIENT) {
17. Fail: Non-client ACM on client platform
18. }
19. IF (InfoTable->Capabilities[7:6] != 10 AND
20. PlatformType == SERVER) {
21. Fail: Non-server ACM on server platform
22. }
23. }
//
// Verify AC module and chipset production flags match
//
24. IF (AcmHdr->Flags[15] == TXT.VER.EMIF[31]) {
25. Fail: production flags mismatch;
26. }
//
// Match AC module to system chipset
//
TXT_ACM_CHIPSET_ID_LIST *ChipsetIdList; // see Table 11
TXT_ACM_CHIPSET_ID *ChipsetId; // see Table 12
32. ChipsetIdList = (TXT_ACM_CHIPSET_ID_LIST *)
33. (AcmImageBase + InfoTable->ChipsetIdList);
//
// Search through all ChipsetId entries and check for a match.
//
34. FOR (i = 0; i < ChipsetIdList->Count; i++) {
35. //
36. // Check for a match with this ChipsetId entry.
37. //
38. ChipsetId = ChipsetIdList->ChipsetIDs[i];
39. IF ((TXT.DIDVID[VID] == ChipsetId->VendorId) &&
40. (TXT.DIDVID[DID] == ChipsetId->DeviceId) &&
41. ((((ChipsetId->Flags & 0x1) == 0) &&
42. (TXT.DIDVID[RID] == ChipsetId->RevisionId)) ||

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 35

43. (((ChipsetId->Flags & 0x1) == 0x1) &&
44. (TXT.DIDVID[RID] & ChipsetId->RevisionId != 0)))) {
45. AC module matches system chipset;
46. GOTO CheckProcessor;
47. }
48. }
49. Fail: AC module does not match system chipset;
CheckProcessor:
//
// Match AC module to processor
//
TXT_ACM_PROCESSOR_ID_LIST *ProcessorIdList; // see Table 13
TXT_ACM_PROCESSOR_ID *ProcessorId; // see Table 13

50. ProcessorIdList = (TXT_ACM_PROCESSOR_ID_LIST *)
51. (AcmImageBase + InfoTable->ProcessorIdList);
//
// Search through all ProcessorId entries and check for a match.
//
52. FOR (i = 0; i < ProcessorIdList->Count; i++) {
53. //
54. // Check for a match with this ProcessorId entry.
55. //
56. ProcessorId = ProcessorIdList->ProcessorIDs[i];
57. IF (ProcessorId->FMS ==
58. (cpuid[1].EAX & ProcessorId->FMSMask)) &&
59. (ProcessorId->PlatformID ==
60. (IA32_PLATFORM_ID MSR & ProcessorId->PlatformMask))
61. AC module matches processor;
62. }
63. }
64. Fail: AC module does not match processor;

2.2.3.2 Verifying Compatibility of SINIT with the MLE

Over time, new features and capabilities may be added to the SINIT AC module that can
be utilized by an MLE that is aware of those features. Likewise, features or capabilities
may be added that require an MLE to be aware of them in order to interoperate
properly. In order to expose these features and capabilities and permit the MLE and
SINIT to determine whether they support a compatible set, the MLE header contains a
Capabilities field (see Table 3) that corresponds to the Capabilities field in the SINIT AC
module Information Table (see Table 10).

In addition, the MinMleHeaderVer field in the AC module information table allows SINIT
to indicate that it requires a certain minimal version of an MLE. This allows for new
behaviors or features requiring MLE support that may not be present in older versions.

Listing 4 shows the pseudocode for the MLE to determine if it is compatible with the
provided SINIT AC module.

While lines 4 – 6 may be redundant with current SINIT AC modules if the MLE supports
both RLP wakeup mechanisms, they permit graceful handling of future changes.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
36 Document Number: 315168-017

Listing 4. SINIT/MLE Compatibility Pseudocode
//
// Check that SINIT supports this version of the MLE
//
1. IF (InfoTable->MinMleHeaderVer > MleHeader.Version) {
2. Fail: SINIT requires a newer MLE
3. }

//
// Check that the known RLP wakeup mechanisms are supported
//
4. IF (MLE does NOT support at least one RLP wakeup mechanism

specified in InfoTable->Capabilities) {
5. Fail: RLP wakeup mechanisms are incompatible
6. }

2.2.4 Loading the MLE and Processor Rendezvous

2.2.4.1 Loading the MLE

System software allocates memory for the MLE and MLE page table. The MLE is not
required to be loaded into physically contiguous memory. The pages containing the
MLE image must be pinned in memory and all these pages must be located in physical
memory below 4 GB.

System software creates an MLE page table structure to map the entire MLE image. The
pages containing the MLE page tables must be pinned in memory prior to launching the
measured environment. The MLE page table structure must be in the format of the IA-
32 Physical Address Extension (PAE) page table structure.

The MLE page table has several special requirements:

• The MLE page tables may contain only 4 KB pages.

• A breadth-first search of page tables must produce increasing physical addresses.

• Neither the MLE nor the page tables may overlap certain regions of memory:

– device memory (PCI, PCIe*, etc.)

– addresses between [640k, 1M] or above Top of Memory (TOM)

– ISA hole (if enabled)

– the Intel® TXT heap or SINIT memory regions

– Intel® VT-d DMAR tables

• There may not be any invalid (not-present) page table entries after the first valid
entry (i.e. there may not be any gaps in the MLE’s linear address space).

• The Page Directories must be in a lower physical address than the Page Tables.

Measured Launched Environment

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 37

• The Page-Directory-Pointer-Table must be in a lower physical address than the
Page-Directories.

• The page table pages must be in lower physical addresses than the MLE.

Later, the SINIT AC module will check that the MLE page table matches these
requirements before calculating the MLE digest. The second rule above implies that the
MLE must be loaded into physical memory in an ordered fashion: a scan of MLE virtual
addresses must find increasing physical addresses. The system software can order its
list of physical pages before loading the MLE image into memory.

The MLE is not required to begin at linear address 0. There may be any number of
invalid/not-present entries in the page table prior to the beginning of the MLE pages
(i.e. first valid page). The starting linear address should be placed in the FirstValidPage
field of the MLE header structure (see Section 2.1).

If the MLE is to use this page table after launch, it needs to ensure that the entry point
page is identity-mapped so that when it enables paging post-launch, the physical
address of the instruction after paging is enabled will correspond to its linear address in
the paged environment.

System software writes the physical base address of the MLE page table’s page
directory to the Intel® TXT Heap. The size in bytes of the MLE image is also written to
the Intel® TXT Heap.

2.2.4.2 Intel® Trusted Execution Technology Heap Initialization

Information can be passed from system software to the SINIT AC module and from
system software to the MLE using the Intel® TXT Heap. The SINIT AC module will also
use this region to pass data to the MLE.

The system software launching the measured environment is responsible for initializing
the following in the Intel® TXT Heap memory (this initialization must be completed
before executing GETSEC[SENTER]):

• Initialize contents of the Intel® TXT Heap Memory (see Section C)

• Initialize contents of the OsMleData (see Appendix C.3) and OsMleDataSize (with
the size of the OsMleData field + 8H) fields.

• Initialize contents of the OsSinitData (see Appendix C.4) and OsSinitDataSize (with
the size of the OsSinitData field + 8H) fields.

As described in Section 1.11, the MLE must be protected from DMA by being contained
within either the DMA Protected Range (DPR), one of the Intel® VT-d Protected Memory
Regions (PMR) or within one of the TXT DMA Protection Ranges (TPR).

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
38 Document Number: 315168-017

If MLE is protected using Intel® VT-d PMR, the OsSinitData structure has fields for
specifying regions of memory to protect from DMA (PMR Low/High Base/Size).

If MLE is protected using TXT DMA Protection Ranges, the protection regions are
specified in HEAP_TPR_REQ_ELEMENT (see C.4.3), within the ExtDataElements field of
the OsSinitData structure.

If the MLE resides within the DPR, then both PMR and TPR settings may be missing
from the OsSinitData structure. Otherwise, either PMR or TPR fields must specify a
region that contains the MLE and the page tables. Additionally, TPR and PMR can both
request a larger region of memory, and even additional regions (PMR supports up to
two protected regions, number of supported TPR regions is platform-dependent) if
there is more than just MLE data that should be DMA-protected.

SINIT will process the MLE’s DMA protection request via TPR or PMR and ignore
settings related to the other DMA-protection technology. That means, if TPR is
requested, PMR fields will be ignored and vice versa, without generating errors.

If the system software is using Intel® VT-d DMA remapping to protect areas of memory
from DMA, then it must disable this before it executes GETSEC[SENTER]. In order to do
this securely, system software should determine what PMR or TPR range(s) are
necessary to cover the entire address range being DMA protected using the remapping
tables. It should then initialize the ranges appropriately and enable them before
disabling remapping. The PMR or TPR values it provides in the OsSinitData PMR fields
or in HEAP_TPR_REQ_ELEMENT must correspond to the values that it has programmed.
Once the MLE has control, it can re-enable remapping using the previous tables (after
validating them).

Note: Intel IOMMU HW has an ability and functional need to store certain data in memory
protected by PMRs. In order to prevent misuse of this ability, SINIT requires the DMA
Address Translation to be disabled before SENTER. Additionally, it forcefully disables
Queued Invalidation and Interrupt Remapping features.

Note: SINIT supports the following PMR or TPR states on entry:

– PMR and TPR are disabled and no enabling requests exist in OsSinitData structure.
SINIT will verify that all required memory regions (MLE code and page tables, LCP
data file) reside in DPR;

– PMR or TPR are disabled and requests to enable either TPR or PMR exist in
OsSinitData structure. SINIT will enable PMR/TPR per request;

– PMR or TPR are enabled and their settings are identical to those, requested in
OsSinitData structure. SINIT will verify those settings against request;

– PMR or TPR are enabled and no enabling requests exist in OsSinitData structure.
SINIT will assume that this is an attack and abort execution.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 39

If the MLE or subsequent code will be enabling Intel® VT-d DMA remapping, then the
DMAR information that will be needed should be protected from malicious DMA activity
until the remapping tables can be established to protect it. The SINIT AC module makes
a copy of the DMAR tables in the SinitMleData region (located at an offset specified by
the SinitVtdDmarTable field). Because this region is within the TXT heap, it is protected
from DMA by the DPR. If the MLE or subsequent code does not use this copy of the
DMAR tables, then it should protect the original tables (within the ACPI area) with the
PMR or TPR range specified to SINIT. Likewise, the memory range used for the
remapping tables should also be protected with the PMR or TPR until remapping is
enabled.

If the Platform Owner TXT launch control policy (LCP - see Section 3.2.1 for more
details) is of type POLTYPE_LIST, then there must be an associated data file that
contains the remainder of the policy. This Policy Data File must be placed in memory by
system software and its starting address and size specified in the LCP PO Base and LCP
PO Size fields of the OsSinitData structure. The data must be wholly contained within a
DMA protected region of memory, either within the DPR (e.g., in the TXT heap), or
within the bounds specified for the PMR or TPR.

2.2.4.3 DMA protection capability handling

There will be a transition period during which TPR-based and PMR-based DMA
protection will have to be supported by SINIT and operating systems. This section
explains how DMA protection will be handled before and after this period.

MLE

MLEs aware of TPR will query SINIT’s MinMleHeaderVer field and the value of the DMA
protection capability field.

If SINIT is TPR-capable, MLE will set OsSinit.Capabilities[14] to 1. Else, it will keep
OsSinit.Capabilities[14] as 0 and request use of PMRs. Legacy MLEs, not aware of TPR
will treat this bit as reserved and keep its value at 0.

SINIT during transition

SINIT which supports TPR will have its MinMleHeaderVer field set to 2.2, to allow use of
the legacy MLE and will act in accordance to OsSinit.Capabilities[14] bit.

Legacy SINIT, not aware of TPR, will have its MinMleHeaderVer field set to 2.2 as well,
but will treat OsSinit.Capabilities[14] as reserved and always configure PMRs.

SINIT after the transition period

SINIT will support TPR exclusively. The MinMleHeaderVer field will be set to 2.3. SINIT
will examine the version of the MLE and will abort execution if it is not supported.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
40 Document Number: 315168-017

2.2.4.4 Rendezvousing Processors and Saving State

Listing 5 shows the pseudo-code for rendezvousing and saving states of all processors.

Line 1: If launching the measured environment after operating system boot, then all
processors should be brought to a rendezvous point before executing
GETSEC[SENTER]. At the rendezvous point each processor will set up for
GETSEC[SENTER] and save any state needed to resume after the measured launch. If
processors are not rendezvoused before executing SENTER, then the processors that
did not rendezvous will lose their current operating state including possibly the fact
that an in-service interrupt has not been acknowledged.

Lines 2 – 7: All processors check that they support SMX and enable SMX in CR4.SMXE.

Lines 8 - 10: The MLE should preserve machine check status registers if bit 6 in the TXT
Extension Flags returned by GETSEC[PARAMETERS] (see Section 2.2.5.1 for details) is
set. If this bit returns 0 or parameter type ‘5’ is not supported, the MLE must log and
clear machine check status registers.

Line 11: Check that certain CR0 bits are in the required state for a successful measured
environment launch.

Line 12: System software allocates memory to save its state for restoration post
measured launch. The OsMleData portion of the Intel® TXT Heap is reserved for this
purpose (see Appendix C.2), though the size must be set appropriately for the memory
to be available.

Line 13: The ILP saves enough state in memory to allow a return to OS execution after
the measured launch and then continues launch execution. The RLPs save enough
space in memory to allow return to OS execution after measured launch then execute
HLT or spin waiting for transition to the measured environment.

Certain MSRs are modified by executing the GETSEC[SENTER] instruction. For example,
bits within the IA32_MISC_ENABLE and IA32_DEBUGCTL MSRs are set to
predetermined values. It may be desirable to restore certain bits within these MSRs to
their pre-launch state after the MLE launch. If this is desired, then before executing
GETSEC[SENTER], software should save the contents of these MSRs in the OsMleData
area. The launched software can restore the original values into these MSRs after the
GETSEC[SENTER] returns or, alternatively, the MLE can restore these MSRs with their
original values during MLE initialization.

It is expected that most MLEs will want to restore the MTRR and IA32_MISC_ENABLE
MSR states after the MLE launch, to provide optimal performance of the system.

Listing 5. Pseudo-code for Rendezvousing Processors and Saving State
1. Rendezvous all processors;
//

Measured Launched Environment

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 41

// The following code is run on all processors
//
// Enable SMX
//
2. CPUID(EAX=1);
3. IF (SMX not supported) OR (VMX not supported) {
4. Fail measured environment startup;
5. } ELSE {
6. CR4.SMXE = 1;
7. }
8. IF (GETSEC[PARAMETERS](type=5)[6] == 1) {
9. Clear Machine Check Status Registers;
10. }
11. Ensure CR0.CD=0, CR0.NW=0, and CR0.NE=1;
//
// Save current system software state in Intel TXT Heap
//
12. Allocate memory for OsMleData;
13. Fill in OsMleData with system software state (including MTRR and

IA32_MISC_ENABLE MSR states);

2.2.5 Performing a Measured Launch

2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution

System software must set up the variable range MTRRs to map all of memory (except
the region containing the SINIT AC module) to one of the supported memory types as
returned by GETSEC [PARAMETERS] before executing GETSEC [SENTER]. System
software first saves the current MTRR settings in the OsMleData area and verifies that
the default memory type is one of the types returned by GETSEC [PARAMETERS]
(default memory type is specified in the IA32_MTRR_DEF_TYPE MSR). Next, the variable
range MTRRs are set to map the SINIT AC module as WB, making sure that each
variable MTRR base is a multiple of that MTRR's size. The SINIT AC module must be
covered by the MTRRs such that no more than (4K-1) bytes after the module are
mapped WB. For example, if an SINIT AC module is 11KB bytes in size, an 8KB and a
4KB or three 4KB MTRRs should be used to map it, not a single 32KB MTRR. Any
unused variable range MTRRs should have their valid bit cleared. If the 8th bit of the
ACM’s Info Table Capabilities field is clear, the mask MTRRs covering the SINIT AC
module should not set any bits beyond bit 35 (which corresponds to a 36-bit physical
address space), or SINIT will treat this as an error condition. If that bit is set, the mask
should cover the full range indicated by the MAXPHYADDR MSR

Listing 6 shows the pseudo-code for correctly setting the ILP and RLP MTRRs. This
code follows the recommendation in the IA-32 Software Developer’s Manual.

After MTRR setup is complete, the RLPs mask interrupts (by executing CLI), signal the
ILP that they have interrupts masked, and execute halt. Before executing GETSEC
[SENTER], the ILP waits for all RLPs to indicate that they have disabled their interrupts.
If the ILP executed a GETSEC [SENTER] while an RLP was servicing an interrupt, the

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
42 Document Number: 315168-017

interrupt servicing will not complete, possibly leaving the interrupting device unable to
generate further interrupts.

Listing 6. MTRR Setup Pseudo-code
//
// Pre-MTRR change
//
1. Disable interrupts (via CLI);
2. Wait for all processors to reach this point;
3. Disable and flush caches (i.e. CRO.CD=1, CR0.NW=0, WBINVD);
4. Save CR4
5. IF (CR4.PGE == 1) {
6. Clear CR4.PGE
7. }
8. Flush TLBs
9. Disable all MTRRs (i.e. IA32_MTRR_DEF_TYPE.e=0)
//
// Use MTRRs to map SINIT memory region as WB, all other regions
// are mapped to a value reported supportable by
// GETSEC[PARAMETERS]
//
10. Set default memory type (IA32_MTRR_DEF_TYPE.type) to one reported by

GETSEC[PARAMETERS];
11. Disable all fixed MTRRs (IA32_MTRR_DEF_TYPE.fe=0);
12. Disable all variable MTRRs (clear valid bit);
13. Read SINIT size from the SINIT AC header;
14. Program variable MTRRs to cover the AC execution region, memtype=WB

(re-enable each one used),make sure each variable MTRRs base must be
a multiple of that MTRR's size;

//
// Post-MTRR changes
//
15. Flush caches (WBINVD);
16. Flush TLBs;
17. Enable MTRRs (i.e. MTRRdefType.e=1);
18. Enable caches (i.e. CRO.CD=0, CR0.NW=0);
19. Restore CR4;
20. Wait for all processors to reach this point;
21. Enable interrupts;
//
// RLPs stop here
//
22. IF (IA32_APIC_BASE.BSP != 1) {
23. CLI;
24. set bit indicating we have interrupts disabled;
25. HLT;
26. }
27. Wait for all RLPs to signal that they have their interrupts disabled

2.2.5.2 Selection of Launch Capabilities

System software must select the capabilities that it wishes to use for the launch. It must
choose a subset of the capabilities supported by the SINIT AC module. For mandatory

Measured Launched Environment

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 43

capabilities, such as the RLP wakeup mechanism, one of the supported options must be
chosen.
28. OsSinitData.Capabilities = selected capabilities;

2.2.5.3 TPM Preparation

System software must ensure that the TPM is ready to accept commands and that there
is no currently active locality (TPM.ACCESS_x.activeLocality bit is clear for all localities)
before executing the GETSEC[SENTER] instruction.
29. Read TPM Status Register until it is ready to accept a command
30. For all localities x, ensure that ACCESS_x.activeLocality is 0

2.2.5.4 Intel® Trusted Execution Technology Launch

The ILP is now ready to launch the measuring process. System software executes the
GETSEC[SENTER] instruction. See Chapter 6, “Safer Mode Extensions Reference”, in the
Intel 64 and IA-32 Software Developer Manuals, Volume 2B for the details of
GETSEC[SENTER] operation.
31. EBX = Physical Base Address of SINIT AC Module
32. ECX = size of the SINIT AC Module in bytes
33. EDX = 0
34. GETSEC[SENTER]

2.3 MLE Initialization

This section describes the initialization of the MLE. Listing 7 shows the pseudo-code for
MLE initialization.

The MLE initialization code is executed on the ILP when the SINIT AC module executes
the GETSEC[EXITAC] instruction—the MLE initialization code is the first MLE code to
run after GETSEC[SENTER] and within the measured environment. The SINIT AC
module obtains the MLE initialization code entry point from the EntryPoint field in the
MLE Header data structure whose address is specified in the OsSinitData entry in the
Intel® TXT Heap. The MLE initialization code is responsible for setting up the
protections necessary to safely launch any additional environments or software. The
initialization includes Intel® TXT hardware initialization, waking and initializing the RLPs,
MLE software initialization and initialization of the STM (if one is being used). This
section describes the details of MLE initialization.

During MLE initialization, the ILP executes the GETSEC[WAKEUP] instruction, bringing
all RLPs into the MLE initialization code. Each RLP gets its initial state from the MLE
JOIN data structure (see the Intel 64 and IA-32 Software Developer Manual, Volume 2B,
Table 6-11). The ILP sets up the MLE JOIN data structure and loads its physical address
in the TXT.MLE.JOIN register prior to executing GETSEC[WAKEUP]. Generally, the RLP
initialization code will be very similar to the ILP initialization code.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
44 Document Number: 315168-017

If the MLE restores any state from the environment of the launching system software, it
must first validate this state before committing it. This is because state from the
environment prior to the GETSEC[SENTER] instruction is not considered trustworthy
and could lead to loss of MLE integrity.

Lines 1 – 8: The MLE loads CR3 with the MLE page directory physical address and
enables paging. The SINIT AC module has just transferred control to the MLE with
paging off, now the MLE must setup its own environment. The MLE’s GDT is loaded at
line 3 and the MLE does a far jump to load the correct MLE CS and cause a fetch of the
MLE descriptor from the GDT. At line 5 a stack is setup for the MLE initialization routine
and, at line 6, the MLE segment registers are loaded. Next the MLE loads its IDT and
initializes the exception handlers.

All instructions and data that were used before paging was enabled must reside on the
same physical page as the MLE entry point and must access data with relative
addressing. This is because the page tables may have been subverted by untrusted
code prior to launch and so the MLE entry point’s page may have been copied to a
different physical address than the original. The MLE must also verify that this page is
identity mapped prior to enabling paging (to ensure that the linear address of the
instruction following enabling of paging is the same as its physical address).

If the MLE cannot guarantee that it was loaded at a fixed address, then it must create
the identity mapping dynamically. Because the physical address of the identity page
could overlap with the virtual address range that the MLE wants to use in its page
tables, the MLE may need to create a trampoline page table. In such case, the
trampoline page table would consist of an identity-mapped page for the physical
address of the MLE entry point and a virtual address mapping of that page which is
guaranteed not to be within the desired address range (i.e. a trampoline page). That
virtual address mapping would also need to be added to the page table that the MLE
ultimately wants to run on. This way the MLE can enable paging to the trampoline page
table (at the identity mapped address) and then jump to the trampoline page’s address
and then switch page tables (CR3’s) to the final table where it will begin executing at the
virtual address of the trampoline page but in the final page table.

If the MLE does not enable paging, then it must also validate that the physical
addresses specified in the page table used for the launch are the expected ones. And as
above, it must do this in code that resides on the same physical page as the MLE entry
point and must use only relative addressing. The reason for this validation is that the
page table could have been altered to place the MLE pages at different physical
addresses than expected, without having altered the MLE measurement.

Because the MLE page table that was used for measurement does not contain pages
other than those belonging to the MLE, if it wishes to continue to run in a paged
environment it will need to either extend the page tables to map the additional address
space needed (e.g. TXT configuration space, etc.) or create new page tables. This should
be done after it has finished establishing a safe environment. The cacheability

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 45

requirements for the address space of any MLE-established page tables must follow
the guidelines below.

Line 9: The MLE checks the MTRRs which were saved in the OsMleData area of the
Intel® TXT Heap (see Appendix C.3). It looks for overlapping regions with invalid
memory type combinations and variable MTRRs describing non-contiguous memory
regions. If either of these checks fails, the MLE should fail the measured launch or
correct the failure.

Before the original MTRRs are restored, the MLE must ensure that all its own pages will
be mapped with defined memory types once the variable MTRRs are enabled. The MLE
must ensure that the combined memory type as specified by the page table entry and
variable MTRRs results in a defined memory type.

The MLE must also ensure that the TXT Device Space (0xFED20000 – 0xFED4FFFF) is
mapped as UC so that accesses to these addresses will be properly handled by the
chipset.

Line 10: The MLE should check that the system memory map that it will use is
consistent with the memory regions and types as specified in the Memory Descriptor
Records (MDRs) returned in the SinitMleData structure. Alternately, the MLE may use
this table as its map of system memory. This check is necessary as the system memory
map is most likely generated by untrusted software and so could contain regions that, if
used for trusted code or secrets, might lead to compromise of that data. If the MLE will
be using PCI Express* devices, it should verify that it is accessing their configuration
space through the address range specified by the PCIE MDR type (3).

Line 11-14: The MLE should verify type of DMA protection used. MLE verifies whether
settings that were used by SINIT to program PMRs or TPRs, as specified in the
OsSinitData table, contain the expected values. While the MLE can only be launched if
the settings cover itself and its page tables (or the pages fall within the DPR), settings
beyond these regions could have been subverted by untrusted code prior to the
launch.

Line 15: The ILP must re-enable SMIs that were disabled as part of the SENTER process;
most systems will not function properly if SMIs are disabled for any length of time. It is
recommended that the MLE enable SMIs on the ILP before enabling them on the RLPs,
since some BIOS SMI handlers may hang if they receive an SMI on an AP and cannot
generate one on the BSP to rendezvous all threads. Newer CPUs may automatically
enable SMIs on entry to the MLE; for such CPUs there is no harm in executing
GETSEC[SMCTRL].

Lines 16 – 20: If this is the ILP then the MLE does the one-time initialization, builds the
MLE JOIN data structure and wakes the RLPs. This structure contains the physical
addresses of the MLE entry point and the MLE GDT, along with the MLE GDT size and
must be located in the lower 4GB of memory. The ILP writes the physical address of this

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
46 Document Number: 315168-017

structure to the TXT.MLE.JOIN register. An RLP will read the startup information from
the MLE JOIN data structure when it is awakened. The MLE writer should ensure that
the MLE JOIN data structure does not cross a page boundary between two non-
contiguous pages. The MLE image must be built or loaded such that its GDT is located
on a single page. Enough of the RLP entry point code must be on a single page to allow
the RLPs to enable paging.

Lines 21 – 30: The MLE must look at the OsSinitData.Capabilities field to see which RLP
wakeup mechanism was chosen by the pre-SENTER code and thus used by SINIT. If the
MLE wants to enforce that certain capabilities or wakeup mechanism was used, then it
can choose to error if it finds that not to be the case. For future compatibility, MLEs
should support both RLP wakeup mechanisms.

Line 33: The MLE checks several items to ensure they are consistent across all
processors:

• All processors must have consistent SMM Monitor Control MSR settings. The
processors must all be opt-in and have the same MSEG region or the processors
must be all opt-out.

• Ensure all processors have compatible VMX features. The compatible VMX features
will depend on the specific MLE implementation. For example, some
implementation may require all processors support Virtual Interrupt Pending.

• Ensure all processors have compatible feature sets. Some MLE implementations
may depend on certain feature being available on all processors. For example,
some MLE implementation may depend on all processors supporting SSE2.

• If the MLE will use VMX then it should verify that bit 1 (VMX in SMX operation) in
the IA32_FEATURE_CONTROL MSR is set. Bit 2 (VMX outside SMX operation) may
also be set depending on the BIOS being used and on whether TXT has been
enabled.

• Ensure all processors have a valid microcode patch loaded or all processors have
the same microcode patch loaded. This check will depend on the specific MLE
implementation. Some MLE implementations may require the same patch be
loaded on all processors, other MLE implementations may contain a microcode
patch revocation list and require all processors have a microcode patch loaded
which is not on the revocation list.

Line 34: The MLE must wakeup the RLPs while the memory type for the SINIT AC
module region is WB cache-able. This is a requirement of the MONITOR mechanism for
RLP wakeup. Since this is not guaranteed to be true of the original MTRRs, it is safest to
wait until after the RLPs have been awakened before restoring the MTRRs to their pre-
SENTER values. Alternatively, the MLE could ensure that this is the case and adjust the
MTRRs if it is not. It could then restore the MTRRs before waking the RLPs. In either
case, when restoring the MTRRs they should be made the same for each processor.

Measured Launched Environment

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 47

Line 35: The MLE should restore the IA32_MISC_ENABLE MSR to the value saved in the
OsMleData structure. This MSR was set to predefined values as part of SENTER in order
to provide a more consistent environment to the authenticated code module. Most
MLEs should be able to safely restore the previous value without any need to verify it.
The MLE should wait until the RLPs are awakened before restoring the MSR in case the
original MSR did not have the Enable MONITOR FSM bit (18) set. See Appendix E for the
processor state of the ILP after SENTER and the states of the RLPs after waking.

Line 36: The machine-check exceptions flag (CR4.MCE) is cleared by the
GETSEC[SENTER] instruction. If the MLE supports the machine-check architecture, then
it should initialize the exception mechanism and enable exception reporting.

Line 37: The MLE enables SMIs on each RLP.

Line 38: The MLE enables VMX in the CR4 register. This is required before any VMX
instruction can be executed.

Line 39: The MLE allocates and sets up the root controlling VMCS then executes
VMXON, enabling VMX root operation.

Lines 40 – 43: The MLE sets up the guest VM. At line 37 the MLE allocates memory for
the guest VMCS. This memory must be 4KB aligned. The MLE executes VMCLEAR with a
pointer to this VMCS in order to mark this VMCS clear and allow a VMLAUNCH of the
guest VM. At line 42 the MLE executes VMPTRLD so that it can initialize the VMCS at
line 44. Now at line 44 the guest VM is launched for the first time.

Note: On the last extend of the TPM by the SINIT AC module, it may not wait to see if the
command is complete – so the MLE needs to make sure that the TPM is ready before
using it.

Listing 7. MLE Initialization Pseudo-code
//
// MLE entry point – ILP and RLP(s) enter here
//
1. Load CR3 with MLE page table pointer (OsSinitData.MLE

PageTableBase);
2. Enable paging;
3. Load the GDTR with the linear address of MLE GDT;
4. Long jump to force reload the new CS;
5. Load MLE SS, ESP;
6. Load MLE DS, ES, FS, GS;
7. Load the IDTR with the linear address of MLE IDT;
8. Initialize exception handlers;
//
// Validate state
//
9. Check MTRR settings from OsMleData area;
10. Validate system memory map against MDRs
// Handle DMA protection
11. IF (SINIT and MLE support TPR)

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
48 Document Number: 315168-017

12. Validate TPR settings against expected values
13. ELSE
14. Validate VT-d PMR settings against expected values
//
// Enable SMIs
//
15. execute GETSEC[SMCTRL];
//
// Wake RLPs
//
16. IF (ILP) {
17. Initialize memory protection and other data structures;
18. Build JOIN structure;
19. TXT.MLE.JOIN = physical address of JOIN structure;
20. IF (RLP exist) {
21. IF (OsSinitData.Capabilities is set to MONITOR wakeup

mechanism) {
22. SinitMleData.RlpWakeupAddr = 1;
23. }
24. ELSE IF (OsSinitData.Capabilities is set to GETSEC wakeup

mechanism) {
25. GETSEC[WAKEUP];
26. }
27. ELSE {
28. Fail: Unknown RLP wakeup mechanism;
29. }
30. }
31. }
32. Wait for all processors to reach this point;
33. Do consistency checks across processors;
34. Restore MTRR settings on all processors;
35. Restore IA32_MISC_ENABLE MSR from OsMleData
36. Enable machine-check exception handling
37. RLPs execute GETSEC[SMCTRL]
//
// Enable VMX
//
38. CR4.VMXE = 1;
//
// Start VMX operation
//
39. Allocate and setup the root controlling VMCS, execute VMXON(root

controlling VMCS);
//
// Set up the guest container
//
40. Allocate memory for and setup guest VMCS;
41. VMCLEAR guest VMCS;
42. VMPTRLD guest VMCS;
43. Initialize guest VMCS from OsMleData area;
//
// All processors launch back into guest
//
44. VMLAUNCH guest;

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 49

2.4 MLE Operation

The dispatch routine is responsible for handling all VMExits from the guest. The guest
VMExits are caused by various situations, operations or events occurring in the guest.
The dispatch routine must handle each VMExit appropriately to maintain the measured
environment. In addition, the dispatch routine may need to save and restore some of
processor state not automatically saved or restored during VM transitions. The MLE
must also ensure that it has an accurate view of the address space and that it restricts
access to certain of the memory regions that the GETSEC[SENTER] process will have
enabled. The following subsections describe various key components of the MLE
dispatch routine.

2.4.1 Address Space Correctness

It is likely that most MLEs will rely on the e820 memory map to determine which
regions of the address space are physical RAM and which of those are usable (e.g. not
reserved by BIOS). However, as this table is created by BIOS it is not protected from
tampering prior to a measured launch. An MLE, therefore, cannot rely on it to contain
an accurate view of physical memory.

After a measured launch, SINIT will provide the MLE with an accurate list of the actual
RAM regions as part of the SinitMleData structure of the Intel® TXT Heap (see Appendix
C.4.3). The SinitMDR field of this data structure specifies the regions of physical
memory that are valid for use by the MLE. This data structure can also be used to
accurately determine SMRAM and PCIe extended configuration space, if the MLE
handles these specifically.

2.4.2 Address Space Integrity

There are several regions of the address space (both physical RAM and Intel® TXT
chipset regions) that have special uses for Intel® TXT. Some of these should be reserved
for the MLE and some can be exposed to one or more guests/VMs.

2.4.3 Physical RAM Regions

There are two regions of physical RAM that are used by Intel® TXT and are reserved by
BIOS prior to the MLE launch. These are the SINIT AC module region and the Intel® TXT
Heap. Each region’s base address and size The Intel® TXT configuration registers (e.g.,
TXT.SINIT.BASE and TXT.SINIT.SIZE) specify each region’s base address and size.

The SINIT and Intel® TXT Heap regions are only required for measured launch and may
be used for other purposes afterwards. However, if the measured environment must be
re-launched (e.g., after resuming from the S3 state), the MLE may wish to preserve and
protect these regions.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
50 Document Number: 315168-017

2.4.4 Intel® Trusted Execution Technology Chipset Regions

There are two Intel® TXT chipset regions: Intel® TXT configuration register space and
Intel® TXT Device Space. These regions are described in Appendix B.

2.4.4.1 Intel® Trusted Execution Technology Configuration Space

The configuration register space is divided into public and private regions. The public
region generally provides read only access to configuration registers and the MLE may
choose to allow access to this region by guests. The private region allows write access,
including to the various command registers. This region should be reserved to the MLE
to ensure proper operation of the measured environment.

2.4.4.2 Intel® Trusted Execution Technology Device Space

The Intel® TXT Device Space supports access to TPM localities. Localities three and four
are not usable by the MLE even after the measured environment has been established,
and so do not need any special treatment. Locality two is unlocked when the Intel® TXT
private configuration space is opened during the launch process. Locality one is not
usable unless it has been explicitly unlocked (via the TXT.CMD.OPEN.LOCALITY1
command). If the MLE wants to reserve access to locality two for itself then it needs to
ensure that guest/VM access to these regions behaves as a TPM abort, as defined by
TCG for non-accessible localities. This behavior is that memory reads return FFh and
writes are discarded. The MLE can provide this behavior by any one of the following:

• Trapping guest/VM accesses to the regions and emulating the defined behavior.

• Instead, it could map these regions onto one of the hardware-reserved localities
(three or four) and let the hardware provide the defined behavior.

• If the MLE does not need access to locality 2 then it can close this locality
(TXT.CMD.CLOSE.LOCALITY2) so neither itself nor guests will have access to it.

Note: Addresses FED45000H – FED7FFFFH are Intel reserved for expansion.

2.4.5 Device Assignment

If the MLE exposes devices to untrusted VMs, it must take care to completely protect
itself from any affects (either intentional or otherwise) of these devices. For devices
which use DMA to access memory, the MLE can protect itself using Intel® VT for
Directed IO (Intel® VT-d) to prevent unwanted access to memory and through VMX to
manage access to device configuration space. For other types of devices, their
interactions with the system, and how they affect it, should be fully understood before
allowing an untrusted VM to access them.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 51

2.4.6 Protecting Secrets

If there is data in memory whose confidentiality must be maintained, then the MLE
should set the Intel® TXT secrets flag so that the Intel® TXT hardware will maintain
protections even if the measured environment is lost before performing a shutdown
(e.g., hardware reset). Writing to the TXT.CMD.SECRETS configuration register can do
this. The teardown process will clear this flag once it has scrubbed memory and
removed any confidential data.

2.4.7 Model Specific Register Handling

Model Specific Registers (MSRs) pose challenges for a measured environment. Certain
MSRs may directly leak information from one guest to another. For example, the
Extended Machine Check State registers may contain secrets at the time a machine
check is taken. Other MSRs might be used to indirectly probe trusted code. The non-
trusted guest could use the Performance Counter MSRs, for example, to determine
secrets (e.g. keys) used by the trusted code. Other MSRs can modify the MLE’s
operation and destroy the integrity of the measured environment.

The VMX architecture allows the MLE to trap all guest MSR accesses. Certain VMX
implementations will also allow the MLE to use a bitmap to selectively trap MSR
accesses. The MLE must use these VMX features to check certain guest MSR accesses,
ensuring that no secrets are leaked and that MLE operation is not compromised.

An MLE might virtualize some of the MSRs. The VMX architecture provides a
mechanism to automatically save selected guest MSRs and load selected MLE MSRs on
VMEXIT. Selected guest MSRs may be automatically loaded on VMENTER. These
features allow the MLE to virtualize MSRs, keeping a separate MSR copy for the guest
and MLE. Note that using this feature will slow VMEXIT and VMENTER times. The VMX
architecture provides a separate set of VMCS registers for the automatic saving and
restoring of the fast system call MSRs.

There is a limit to the number of MSRs that can be swapped during a VMX transition.
Bits 27:25 of the VMX_BASE_MSR+5 indicate the recommended maximum number of
MSRs that can be saved or loaded in VMX transition MSR-load or MSR-store lists.
Specifically, if the value of these bits is N, then 512 * (N + 1) is the recommended
maximum number of MSRs referenced in each list. If the limit is exceeded, undefined
processor behavior may result (including a machine check during the VMX transition).

There are certain MSRs that cannot be included in the MSR-load or MSR-store lists. In
the initial VMX implementations, IA32_BIOS_UPDT_TRIG and IA32_BIOS-SIGN_ID may
not be loaded as part of a VM-Entry or VM-Exit. The list of MSRs that cannot be loaded
in VMX transitions is implementation specific.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
52 Document Number: 315168-017

The MLE must contain a built-in policy for handling guest MSR accesses. This MSR
handling policy must deal with all architectural MSRs that might be accessed by guest
code. The built-in MSR policy must deny access to all non-architectural MSRs.

2.4.8 Interrupts and Exceptions

To preserve the integrity of the measured environment, the MLE must be careful in how
it handles exceptions and interrupts. It needs to ensure that its IDT (Interrupt Descriptor
Table) has a handler for all exceptions and interrupts. The MLE should also ensure that
if it uses interrupts for internal signaling that it does so securely. Likewise, it is best if
exception handlers do not try and recover from the exception but instead properly
terminate the environment.

2.4.9 ACPI Power Management Support

Certain ACPI power state transitions may remove or cause failure to the Intel® TXT
protections. The MLE must control such ACPI power state transitions. The following
sections describe the various ACPI power state transitions and how the MLE must deal
with these state transitions.

2.4.9.1 T-state Transitions

T-states allow reduced processor core temperature through software-controlled clock
modulation. T-state transitions do not affect the Intel® TXT protections, so the MLE
does not need to control T-state transitions. The MLE may wish to control T-state
transitions for other purposes, e.g. to enforce its own power management or
performance policies.

2.4.9.2 P-State Transitions

P-state transitions allow software to change processor operating voltage and frequency
to improve processor utilization and reduce processor power consumption. On some
systems, where the processor does not enforce allowed combinations, the MLE must
ensure software does not write an invalid combination into the GV3 MSRs.

2.4.9.3 C-State Transitions

C-states allow the processor to enter lower power state. The C0 state is the only C-state
where the processor is actually executing code – in the remaining C-states the
processor enters a lower power state and does not execute code. In these lower power
C-states the Intel® TXT protections remain intact; therefore, the MLE does not need to
monitor or control the C-state transitions. The MLE may wish to control C-state
transitions for other purposes (e.g., to enforce its own power management or
scheduling policy).

Measured Launched Environment

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 53

2.4.9.4 S-State Transitions

The S0 state is the system working state – the remaining S-states are low-power,
system-wide sleep states. Software transitions from the S0 working state to the other
S-states by writing to the PM1 control register (PM1_CNT) in the chipset. Since the
Intel® TXT protections are removed when the system enters the S3, S4 or S5 states, and
the BIOS will gain control of the system on resume from these states, the MLE must
remove secrets from memory before allowing the system to enter one of these sleeps
states. Note that entering S1 does not remove Intel® TXT protections and Intel chipsets
do not support the S2 sleep state.

The Intel® TXT chipset provides hardware to detect when the software attempts to
enter a sleep state while the secrets flag is set (the TXT.SECRETS.STS bit of the
TXT.E2STS register). The Intel® TXT chipset will reset the system if it detects a write to
the PM1_CNT register that will force the system into S3, S4 or S5 while the secrets flag
is set. If the Intel® TXT chipset does detect this situation and resets the system, then the
BIOS AC module or code within Trusted BIOS ensures that memory is scrubbed before
passing control onward. To avoid this reset and scrubbing process, the MLE should
remove secrets from memory and teardown the Intel® TXT environment before
allowing a transition to S3, S4, or S5.

Before tearing down the Intel® TXT environment, the MLE may remove secrets from
memory (clearing pages with secrets) or encrypt secrets for later use (e.g. for a later
measured environment launch). Once this operation is complete the MLE must issue
the TXT.CMD.NO-SECRETS command to clear the secrets flag. After this command is
issued, the MLE may allow a transition to S3, S4 or S5 sleep state. The MLE teardown
procedure is described in more detail in Section 2.5.

2.4.9.4.1 S3

The S3 state provides special challenges for the MLE because the resume process uses
the in-memory state from when S3 was entered. This means that unlike a normal boot
process where trust is established as each component launches, the trust that existed
at entry to S3 must be maintained/verified on resume.

Since the TXT environment must be torn down before entering S3, it will have to be re-
established on resume. This part of the S3 resume process is nearly identical to the
original launch. Because S3 resume should leave the platform in the same state as
before S3 was entered, the PCRs should also have the same values. This means that the
MLE launched on resume should be the same as the initial one launched, which means
that the code/data being measured cannot include any state from before entering S3. If
some state from before entering S3 is needed on resume, then it must be validated
post-launch (since it is not being measured).

The MLE needs to ensure that the integrity of the TCB will be maintained across the
transition. There are two possible sources for loss of integrity across S3: malicious DMA

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
54 Document Number: 315168-017

and compromise of the in-memory BIOS image. The initial, pre-S3 TXT launch process
protects against DMA and so the S3 resume process should maintain such protection.
Most BIOS will execute portions of their S3 resume code from their in-memory image
without first re-copying it from flash. Since this in-memory image could have been
modified by any privileged software or firmware that executed as part of the original,
pre-S3 boot process (e.g., option ROMs, bootloader, etc.), this too needs to be
defended against.

The TXT launch process done as part of S3 resume ensures integrity and DMA
protection for the measured part of the MLE itself. For the remainder of the TCB this
can be accomplished by creating a memory integrity code for the TCB and sealing it to
the MLE’s launch-time measurements just before the TXT protections are removed
prior to entering S3 (the sealed data creation attributes should include a locality that is
only available to the TCB). On resume and after a successful launch, the MLE can re-
calculate the value for the memory image and compare it with the sealed value to
determine if the memory image has been compromised).

If there were additional measurements extended to the DRTM PCRs as part of the
original boot process, these will need to be re-established since these PCRs are cleared
when the MLE is re-launched. The entity that makes the measurements should seal the
measurement values (not the resulting PCR values) to the PCRs values in effect just
before it extends the measurements into the PCRs (the sealed data creation attributes
should include a locality that is only available to software trusted by the entity). On
resume from S3, when that entity is resumed it will unseal the values and re-extend
them into the appropriate PCRs.

It may be necessary for the MLE to seal additional information that is required to
securely re-establish the trusted environment. For instance, the portion of the TCB
needed to re-establish final DMA protections (e.g., with VT-d DMA remapping) will need
to be DMA protected by the MLE as part of the post-resume launch. The MLE may need
to save the bounds of this region prior to entering S3 (both in plain text and sealed). It
would then use the plain text saved bounds to determine the DMA protection values to
specify as part of the re-launch. Post-launch the MLE would unseal the bounds
information and verify it against the bounds specified in the launch.

Because the boot process on resuming from an S3 state does not re-measure the
elements of the SRTM, software prior to entering the S3 state must execute the
appropriate TPM command for the current TPM mode to inform the TPM to preserve
the state of its PCRs: for 1.2 this is TPM_SaveState; for 2.0 this is TPM2_Shutdown
(requesting state). Upon resume from S3, the BIOS must provide a flag to TPM_Startup
to indicate that the TPM is to restore the saved state. If the TPM’s state is not saved
prior to entering S3, then the TPM will be non-functional after resuming. Normally an
OS TPM driver would perform the TPM state preservation command when the OS
indicated that it was entering S3. However, if the MLE cannot be sure that the
environment it establishes will perform this command, it may wish to do so itself prior
to entering S3. If the MLE alters the TPM state (e.g. extending to PCRs, etc.) after TPM

Measured Launched Environment

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 55

state preservation command has been issued then the TPM may invalidate the
previously saved state. In such cases, the MLE must also perform this command and it
should be the last TPM command that is executed, in order to ensure that the state is
not changed afterwards. There is no harm if this command is executed multiple times
prior to S3.

2.4.10 Processor Capacity Addition (aka CPU Hotplug)

VMMs and OS kernels not accommodating or executing within an Intel® TXT measured
launch assume control of application processors during boot using INIT-SIPI-SIPI
mechanism. Upon receipt of a SIPI, the processor resumes execution at the specified
SIPI vector.

On the other hand, an MLE issues GETSEC[WAKEUP] (or a write to the wakeup address)
to assume control of application processors (RLPs) following SENTER. The RLPs begin
execution at an address pointed to by the MLE JOIN data structure. Intel® TXT for
multiprocessor platforms enables processor capacity addition (also known as CPU
hotplug or hotadd) after the Intel® TXT environment has been launched. Processor
capacity addition can be a result of physical addition of a processor package to a
running system or bringing a processor package online that was previously inactive.
The Intel® TXT processor capacity addition flow makes use of INIT-SIPI-SIPI as the RLP
wakeup mechanism, but the hot added logical processors use the MLE JOIN data
structure to determine their entry point.

The processor capacity addition flow for an MLE is documented below:

1. New processors are released from reset. They execute measured BIOS code.

2. BIOS configures the new processors. At the end of configuration, BIOS clears the
BSP flag in the IA32_APIC_BASE register of new processors and leaves them in a
CLI/HLT loop.

3. The MLE is notified of this event via the standard ACPI mechanism.

4. Some MLEs may choose to allow write access to the Intel® TXT public configuration
region by guests. However, during the processor capacity addition flow, the MLE
must prevent guests from writing to the public region in order to prevent them
from modifying the TXT.MLE.JOIN register in the middle of this flow.

5. The MLE must prepare the MLE JOIN data structure for the new processors. It may
choose to use the same values as it did for the initial RLPs, or it may use different
ones. In either case, they are subject to the same restrictions as for the initial RLP
wakeup. The MLE then writes the physical address of the JOIN data structure into
the TXT.MLE.JOIN register.

6. The MLE issues the INIT–SIPI-SIPI sequence to each newly added logical processor
to take control of these processors.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
56 Document Number: 315168-017

7. In response to the SIPI, each new processor will detect that this is a capacity
addition to an existing measured environment and resume execution at the entry
point specified in the MLE JOIN data structure. The processor will ignore the SIPI
vector that may have been supplied. The new processor gets its initial state from
the MLE JOIN data structure just like an RLP would during the MLE launch process.

2.5 MLE Teardown

This section describes an orderly measured environment teardown. This occurs when
the guest OS or the MLE decides to tear down the measured environment (for example
prior to entering an ACPI sleep state such as S3). The listing below shows the pseudo-
code for teardown of the measured environment.

Line 1: Rendezvous all processors at “exiting Intel® TXT environment” point in guest. No
need for the guests to save their state as their state will be stored in a VMCS on VMEXIT
to the monitor.

Lines 2 and 3: After all processors in the guest rendezvous, all processors execute a
VMCALL to the teardown routine in the MLE. Once in the MLE, each processor
increments a counter in trusted memory. All processors except the BSP/ILP (the
processor with IA32_APIC_BASE MSR.BSP=1) wait on a memory barrier. The ILP waits
for all other processors to enter MLE teardown routine then signals the other
processors to resume with teardown.

If one or more processors fail to reach the rendezvous in the guest, the ILP may timeout
and VMCALL to the MLE teardown routine. If one or more processors fail to arrive in the
MLE teardown routine, the ILP forces all other processors into the MLE with an NMI IPI.
Both these conditions are treated as errors – the ILP should proceed with the measured
environment teardown but log an error.

At line 4, each processor reads all guest state from its VMCS and stores this data in
memory, since after VMXOFF the processors will no longer be able to access data in
their VMCS. This state will be needed to restore the guest execution after teardown.

The MLE automatically saves certain guest state (general purpose registers which are
not part of the VMCS guest area) on VM Exit. The MLE may need to restore this state
when it reenters the guest after the GETSEC[SEXIT].

Line 5: Once all processors are in the MLE and have saved guest state from the VMCS,
all processors clear their appropriate registers to remove secrets from these registers.

Lines 6: All processors flush VMCS contents to memory using VMCLEAR. The MLE must
flush any VMCS that might contain secrets – this would include all guest VMCSes in a
multi-VM environment.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 57

Line 7: The processors wait until all processors have reached this point before
resuming execution. This allows all the VMCS flushes to complete before the ILP
encrypts or scrubs secrets. Processors should execute an SFENCE to ensure all writes
are completed before continuing.

Line 9: The ILP encrypts and stores exposed secrets from all trusted VMs. Note that
encrypted secrets will have to be stored in memory until the OS can put them to disk.
This will require extra memory above and beyond the memory holding secrets. This
step assumes that the RLPs do not have secrets that are not visible to the ILP.
Therefore, when the ILP scrubs/encrypts all secrets, this will deal with secrets in the
RLP caches also.

Line 10: The ILP again clears appropriate registers to remove any secrets from those
registers.

Line 11: The ILP scrubs all trusted memory (except the teardown routine itself and
encrypted memory). Note that the scrub itself clears secrets still held in the cache.

Line 12: The ILP executes WBINVD to invalidate its caches (to ensure last few pages of
zeros get to memory).

Lines 13 - 16: If the MLE is going to enter the S3 state, the ILP calculates a memory
integrity code and seals it.

Line 17: The ILP caps, or extends, the dynamic PCRs with some value. This prevents an
attacker from unsealing the secrets after the teardown using the same PCRs, since the
dynamic PCRs are not reset after GETSEC[SEXIT].

Line 18: The ILP writes the NoSecrets in memory command. (TXT.CMD.NO-SECRETS)

Line 19: The ILP should unlock the system memory configuration (TXT.CMD.UNLOCK-
MEM-CONFIG) (that was locked by SINIT) once secrets have been removed from
memory. This will facilitate re-launching the MLE and may be necessary for a graceful
shutdown of the system.

Line 20: The ILP closes Intel® TXT private configuration space.

Line 23: The RLPs wait while the ILP encrypts and scrubs secrets from memory.

Line 25: Each processor then disables processor virtualization. If an STM was launched,
it must be torn down before VMX is disabled. See Intel 64 and IA-32 Software
Developer Manual, Volume 3B, Section 25.15.7 for more information.

Lines 26 - 31: The RLPs wait on a memory barrier while the ILP executes the
GETSEC[SEXIT] instruction to initiate the teardown of SMX operation.

At end of GETSEC[SEXIT], the ILP simply continues to the next instruction (still running
in monitor’s context – paging on). The ILP signals the RLPs to continue.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
58 Document Number: 315168-017

Lines 32 and 33: The former monitor code now restores guest state left behind when
the guest executed the VMCALL to enter the MLE teardown routine. All processors
perform the transition to guest OS, now operating as normal environment rather than
guest.

The guest MSRs must be restored when restarting the guest OS. The MLE can restore
the MSRs with information in the VMCS (VM-exit MSR store count) and the VM-exit MSR
store area, or the guest OS could save important MSR settings before calling the
teardown routine and restore its own MSR settings after resuming after teardown.

If the MLE is going to return control to a designated guest after tearing down, then the
MLE must ensure that no interrupts are left pending or not serviced before returning
control to the designated guest. Any interrupts left pending or not serviced may
prevent further interrupt servicing once the designated guest is restarted.

Listing 8. Measured Environment Teardown Pseudo-code
1. Rendezvous processors in guest OS;
2. All processors VMCALL teardown in MLE;
3. Rendezvous all processors in MLE teardown routine;
4. All processors read guest state from VMCS, store values in memory;
// Remove and encrypt all secrets from registers and memory
//
5. All processors clear their appropriate registers;
6. All processors flush VMCS contents to memory using VMCLEAR;
7. Wait for all processors to reach this point;
8. IF (ILP) {
9. Encrypt and store secrets in memory;
10. Again, clear appropriate registers to remove secrets;
11. Scrub all trusted memory;
12. WBINVD caches;
13. IF (S3) {
14. Create memory integrity code
15. Seal memory integrity code
16. }
17. “cap” dynamic TPM PCRs;
18. Write to TXT.CMD.NO-SECRETS;
19. Unlock memory configuration
20. Close private Intel TXT configuration space;
21. Signal RLPs that scrub is complete;
22. } ELSE { // RLP
23. Wait for ILP to signal completion of memory scrub;
24. }
//
// Stop VMX operation
//
25. VMXOFF;
//
// RLPs wait while ILP executes SEXIT
//
26. IF (ILP) {
27. GETSEC[SEXIT];
28. signal completion of SEXIT;
29. } ELSE {

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 59

30. wait for ILP to signal completion of SEXIT;
31. }
// Transition back to the guest OS
32. Restore guest OS state from device memory;
33. Transition back to guest OS context;

2.6 Other Considerations

2.6.1 Saving MSR State across a Measured Launch

Execution of the GETSEC[SENTER] instruction loads certain MSRs with pre-defined
values. For example, GETSEC[SENTER] will load IA32_DEBUGCTL MSR with 0H and will
load the GV3 MSR with a predetermined value. The software can deal with this in
several different ways. The launching software may save the state of these MSRs before
measured launch and restore the state after the launch returns. In this case the MLE will
need to check the values that are restored. Another approach is to have the launch
software save the desired state and have the MLE restore the values before resuming
the guest. The software could also leave these MSRs in the state established by
GETSEC[SENTER].

The IA32_MISC_ENABLE MSR should be saved and restored around measured launch
and teardown.

§§

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
60 Document Number: 315168-017

3.0 Verifying Measured Launched Environments

Launch Control Policy (LCP) is the verification mechanism for the Intel® TXT verified
launch process. LCP is used to determine whether the current platform configuration or
the environment to be launched meets specified criteria. Policies may be defined by the
Platform Owner, as well as leveraged from Boot Guard (BtG) verifications.

LCP allows the Platform Owner (PO) to specify environments that may be launched by
the GETSEC[SENTER] instruction.

The addition of LCP to the platform indirectly now makes them more manageable.
Measured Launched Environments (MLEs) no longer must worry about sealing secrets
to several platform configurations when they know a policy is in place to check these
before their launch takes place; they just need to seal to a representation of this policy.
This becomes useful when the platform’s configuration changes, e.g. the BIOS is
replaced, because the new BIOS configurations can be added to the policy the value to
which any MLE secret is sealed to need not change – thus reducing the burden of
migrating the MLEs secrets if another component in the platform changes.

LCP requirements can be summarized as:

• Provide the Platform Owner with the ability to control which measured
environments can be immediately launched by the GETSEC[SENTER] instruction.

• Provide the Platform Owner with the ability to control which platform
configurations, as measured by the Static Root of Trust, are permitted to perform
GETSEC[SENTER].

• Provide the Platform Owner with an ability to control which STM is permitted to run
in SMRAM and MLE suppliers with an ability to require STM presence.

• Provide this mechanism in a manner which prevents it from being undermined by
untrusted software.

• If no policy is present on the platform then the platform shall continue the Intel®
TXT launch process allowing any configuration and MLE to be launched.

The policy described in this section applies to TXT-capable platforms produced in
2017 and later. Policy definitions for earlier platforms can be found in earlier versions
of this document.

Note: LCP contains number of alternative structures used in TPM 1.2 and TPM 2.0 modes of
operation with similar names and differing only by an additional suffix. In all cases
when differences between those structures are unimportant for the content being
discussed, they will be referred to as group in which additional suffix is included in
parenthesis.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 61

Examples: LCP_POLICY_LIST2 and LCP_POLICY_LIST2_1 will be referred to as
LCP_POLICY_LIST2(_1); LCP_POLICY and LCP_POLICY2 will be referred to as
LCP_POLICY(2) and so on.

3.1 Overview

The Launch Control Policy architecture consists of the following components:

• LCP Policy Engine. This is part of the SINIT ACM which enforces the policies stored
on the platform.

• LCP Policy. This policy takes a form of structure residing in the TPM PO NV index.
This structure defines some of the policies and creates a linkage to LCP Policy Data
File.

• LCP Policy Data File. Linked to a policy structure in the TPM PO index, is structured
to be a nested collection of lists and valid policy elements, such as measurements
of MLEs, platform configurations, and other objects.

Figure 1 shows how these components relate to each other.

When the platform boots, its state is measured and recorded by the Static Root of Trust
for Measurement (SRTM) and the other components which make up the static chain of
trust; these events occur from when the platform is powered on until the Intel® TXT
measured launch (or until some component breaks the static chain). At this point
GETSEC[SENTER] is invoked, and control is passed through the Authenticated Code
Execution Area (ACEA) to the SINIT authenticated code module. The LCP engine in
SINIT reads the PO LCP Policy Index in the TPM NV, decides which policy to use, and
checks the Platform Configuration and the Measured Launched Environment as
required by the chosen policy. The measured environment is then launched if the
policy is satisfied.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
62 Document Number: 315168-017

Figure 1. Launch Control Policy Components

Static Chain of
Trust SINIT (LCP) MLE

TPM PCRs

...

...

Platform Owner
LCP Policy

PO
LCP_POLICY_DATA

TMP NV RAM
Execution Control

Write/Read Operation

Data Reference

3.1.1 Versions of LCP Components

The following Section 3.2 provides detailed description of LCP components and data
structures they operate.

Appendix D contains all the minutia of structure formats.

Since introduction of CBnT two versions of LCP structures used in TPM 1.2 mode and
TPM 2.0 mode of operation were essentially morphed together though some of the
structures remain TPM family specific. Thus, in the following text, where applicable,
each of the structures supporting just as single TPM family is clearly marked as such.

3.2 LCP Components. General provisions

The policy that the SINIT AC module implements is named as Platform Owner (PO)
policy. PO policy is stored in the non-volatile memory of the Trusted Platform Module
(TPM NV). By storing the policy in the TPM NV, access controls can be applied to it; it
also enables the policy to persist across platform power cycles.

Besides of PO TPM NV index, Intel® TXT also uses other TPM NV indices: the Auxiliary
TXT index (AUX) and the Software Guard Extension index (SGX).

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 63

The AUX index is used as internal inter-ACM communication area. Main data it contains
is:

• BIOS ACM registration data to be extended by SINIT into PCR17 since BIOS ACM is
in TXT Trusted Computing Base (TCB).

• Revocation data described in Section 3.7

• Digests of various components passed from S-ACM to SINIT

The SGX index is used as BIOS / MLE inter-communication area. Its usage is described
in Section 4.5

3.2.1 LCP Policy

The LCP_POLICY structure (for a full listing see Appendix D.1.2) is used for the Platform
Owner policy. The size of the structure currently needs to be kept to a minimum in
order to preserve the scarce resources of the TPM NV storage, which is why additional
structures for Platform Owner policy (LCP_POLICY_DATA) that can persist elsewhere
are provided to handle additional information.

Figure 2. LCP_POLICY (2) Structure

Figure 2 diagrammatically illustrates main fields of the LCP_POLICY and LCP_POLICY2
structures (fields not to scale):

Version specifies the version of the structures and, implicitly, of the policy engine
semantics. It is of the format <major>.<minor> where the major version is the MSB of
the field and the minor version is the LSB. All minor versions of a given major version
will be backwards compatible. If new fields are added they will be at the end and the
semantics of all previous minor versions are maintained (though they can be extended).
Major versions are not guaranteed to be backwards compatible with each other thus
SINIT will fail to launch if it finds a major version that it is not compatible with.

The version of the LCP_POLICY structure is defined as 2.4 (0x0204) and the version of
the LCP_POLICY2 structure is 3.2 (0x0302)

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
64 Document Number: 315168-017

HashAlg identifies the hashing algorithm used for the PolicyHash field. If the algorithm
type is not supported by ACM processing the policy, then it shall stop processing the
policy and fail.

PolicyType indicates whether an additional LCP_POLICY_DATA structure is required.

• If the PolicyType field is LCP_POLTYPE_ANY, then the value in the PolicyHash field
is ignored and the environment to be launched is simply measured before
execution control is passed to it. No corresponding LCP_POLICY_DATA is expected.

• If the PolicyType field is LCP_POLTYPE_LIST, then the value of PolicyHash is the
result of computing a hash over the LCP_POLICY_DATA structure per the rules
below.

If the type specified is not supported by the ACM processing the policy, then it shall
stop processing the policy and fail.

SinitMinVersion specifies the minimum version of SINIT that can be used. This value
corresponds to the AcmVersion field in the AC module Information Table (see Table
10). This value must be less than or equal to the value of AcmVersion in the executing
SINIT image for that SINIT to continue; otherwise SINIT will fail the launch. If there is an
LCP_MLE_ELEMENT or LCP_MLE_ELEMENT2 element in a policy, then the
SinitMinVersion in that element will be combined with the value in the LCP_POLICY, per
the description in Appendix D.4.4 and D.4.7. This is done to allow MLE supplier to
request a minimum version of SINIT that MLE requires. If there is no
LCP_MLE_ELEMENT element in the policy, then the value in the LCP_POLICY will be
used.

DataRevocationCounters is an array of elements corresponding to an array of policy
lists in the LCP policy data file. This array provides a mechanism to revoke signed lists
in that object. Index of elements in this array corresponds to LCP List
(LCP_POLICY_LIST2, LCP_POLICY_LIST2_1) number in the LCP policy data file
(LCP_POLICY_DATA) and contains a minimum RevocationCounter value in the signature
of this Policy List (LCP_SIGNATURE2, LCP_SIGNATURE2_1) which will be accepted by a
policy engine. If the value in the RevocationCounter field is less than this value, then
SINIT will fail the launch.

Example: if an LCP policy list which is LCP_POLICY_DATA[#N] is signed and has its
RevocationCounter field set to M, DataRevocationCounters [#N] element must be less
or equal to M, otherwise SINIT will fail.

For any LCP_POLICY_LISTs that are not signed, the corresponding
DataRevocationCounters index will be ignored. Values in DataRevocationCounters
indices not corresponding to existing lists in the policy data file will be ignored as well.

The PolicyControl field contains policy bits with global LCP impact. Its content is
deciphered in Appendix D.1.1. Field is essentially simplified with only two bits left:

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 65

• Bit 1 tells a Non-Production Worthy SINIT that it can run. This puts Owner in
control of what kind of SINIT can be executed in production environment

• Bit 3 signifies how platform configuration via PCONF element is enforced – just
platform owner’s selected configuration or both platform owner’s and platform
supplier’s configurations. Detailed description can be found in Appendix J.2.3

Note: Bit 1 Identifies whether the platform will allow AC Modules marked as pre-production
to be used to launch the MLE. If this bit is 0 and a pre-production AC Module has been
invoked, it will cause a TXT reset during GETSEC[SENTER]. The use of any pre-
production AC Module will result in PCRs 17 and 18 being capped with random values.

The MaxSinitMinVersion field specifies the maximum value of
AUX.AUXRevocation.SinitMinVer this policy will allow a revocation utility to set. The
value of “0” in this field means the SINIT minimum version may not be changed and
“0xFF” allows unconditional changes to the SINIT minimum version.

Two new fields LcpHashAlgMask and LcpSignAlgMask are defined in LCP_POLICY2
structure. They specify hash and signature algorithm sets Platform Owner tells SINIT to
grant. If LCP engine encounters a list with unauthorized signature algorithm, it will
abort.

If the LCP engine encounters elements with unauthorized hash algorithms, it will skip
them not allowing to match but will record the fact that given element type exists and
will require a match for this element type to be satisfied upon the end of a scan.

PolicyHash field is described in Section 3.2.1.1

3.2.1.1 PolicyHash Field for LCP_POLTYPE_LIST

For policies of type LCP_POLTYPE_LIST, the LCP_POLICY_DATA may contain multiple
lists, some of which are signed and some of which are not. In order to realize the value
of signed policies, PolicyHash can’t be a simple hash over the entire LCP_POLICY_DATA
or even changes to signed policy lists would cause a change in the measurement of the
policy.

The measurement of a policy list depends on whether the list is signed.

For a list signed using any algorithm supported by the ACM, the measurement is the
hash (as specified by the HashAlg field of the corresponding LCP_POLICY) of the public
(verification) key in the PubkeyValue member (it is called Modulus in RSA_PUBLIC_KEY
structure of LCP_SIGNATURE2_1) of the Signature field for RSA, or the Qx and Qy
public coordinates for elliptic curve signatures.

For unsigned lists (with SigAlgorithm = LCP_POLSALG_NONE or KeySignatureOffset = 0
– see Appendix D.3.1.1 and D.3.1.2 respectively), the measurement is the hash specified

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
66 Document Number: 315168-017

by the HashAlg field of the corresponding LCP_POLICY(2)) of the entire list
(LCP_POLICY_LIST).

The value of the PolicyHash field will be the hash of all policy list measurements
concatenated (there is no end padding if the number of lists present is less than
LCP_MAX_LISTS), even if there is only one list measurement. For example, if there is
only a single list then the value of PolicyHash will be HASHHashAlg(HASHHashAlg(list)).

3.2.2 LCP Policy Data

The purpose of the LCP_POLICY_DATA structure is to provide any additional data
needed to enforce the policy but in a separate entity that doesn’t have to consume TPM
NV space. A full description of LCP_POLICY_DATA can be found in Appendix D.

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 67

Figure 3. LCP_POLICY_DATA Structure

The PolicyLists[] field allows the policy data file to contain a maximum of
LCP_MAX_LISTS(currently, 8 lists) LCP policy lists. An LCP policy list may be either
signed or unsigned and can contain any type of LCP_POLICY_ELEMENT structures (e.g..
for MLE policy, platform configuration policy, etc.).

The structure of LCP policy list corresponds to the LCP_LIST structure – see Appendix
D.3.2.3.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
68 Document Number: 315168-017

3.2.3 LCP Policy Element

Policy elements are self-describing entities that contain the actual policy conditions.
Since they are self-describing, policy engine can ignore the elements that it fails to
understand or does not support. This allows for adding new element types without
breaking backwards compatibility. Element structures for all supported element types
are fully described in Appendix D.4.

Figure 4. LCP_POLICY_ELEMENT structure

Size Type PolEltControl Data[Size - 12]

Figure 4 diagrammatically illustrates the LCP_POLICY_ELEMENT structure (fields not to
scale):

Size is the size (in bytes) of the entire LCP_POLICY_ELEMENT structure, including the
type-specific Data and the Size field itself. The policy engine can use this to skip over
an element that it does not understand or support.

Type is the type of the element. Currently CBnT supports the following types of
elements: MLE, PCONF, STM, and Custom.

The PolEltControl provides several control bits divided into two groups of 16 bits each.
One is specific to the element type and the other applies to all element types in a list
(see Appendix D.4)

The contents of the Data[] field depend on the type of element (see Appendix D.4).

Each of the element types features two forms – for TPM 1.2 and TPM 2.0 families of
devices. TPM 2.0 elements are enhancements to the TPM1.2 elements with
augmentations for algorithm agility.

LCP policy lists can be comprised of both TPM 1.2 and TPM 2.0 element types. This
minimizes space requirements for NV RAM, simplifies processing logic and allows to
maintain the same number of authorities (8) since no authority will have to supply
separate lists for TPM 1.2 and TPM 2.0 devices.

3.2.4 Signed Policies

The purpose of signed policies is to provide a mechanism that allows policy authors to
update the list of permissible environments without having to update the TPM NV (note
that if revocation is used, then the TPM NV must be updated to increment the
revocation counter). This allows updates to be a simple file pushes rather than physical
or remote platform touches. It also facilitates sealing against the policy, as sealed data
does not have to be migrated when the policy is updated.

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 69

The use of this mechanism places certain responsibilities on policy authors:

• The private signature key always needs to be kept secure and under the control of
the key owner.

• The private signature key needs to be strong enough for the full lifetime of the
policy (this period has been estimated to be up to seven years).

3.2.5 Supported Cryptographic Algorithms

TPM 1.2

The following algorithms are defined for TPM 1.2 mode of execution of the Launch
Control Policy:

Hashing – SHA1

Signature – RSASSA PKCS V1.5 / 2048- and 3072-bit keys / SHA1

TPM 2.0

• List Signatures

LCP lists may use the following signature algorithms:

– RSASSA PKCS V1.5 / 2048- and 3072-bit keys / SHA256 and SHA384

– RSAPSS / 2048- and 3072-bit keys / SHA256 and SHA384

– ECDSA, curves P256 and P384

– SM2

3.2.5.1 RSASSA, RSAPSS, and ECDSA

Support will be limited to versions RSASSA-PKCS1-v1_5, RSASSA-PSS and ECDSA as
defined in “NIST, FIPS PUB 186-4, Federal Information Processing Standards
Publication, Digital Signature Standard (DSS), July 2013”

Signatures will be supported only with the following approved hash functions:
TPM_ALG_SHA1; TPM_ALG_SHA256; TPM_ALG_SHA384.

Supported key sizes will be 2048 and 3072 bits.

3.2.5.2 SM2

Implementation will follow the definition in “State Cryptography Administration, Public
Key Cryptographic Algorithm SM2 Based on Elliptic Curves, December 2010”

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
70 Document Number: 315168-017

Since SM2 is a variation of ECC, it will share format of signature structure used for
ECCDSA with the following differences:

• It will use the SM3 hash algorithm

• It will default to Fp-256 curve as specified in “Recommended Curve Parameters for
Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves”

It is the responsibility of the policy author to ensure that their policy uses an algorithm
supported by the version of the AC module being used. If the policy specifies an
unsupported algorithm, it will fail and, depending on the ACM evaluating the policy, the
environment will not be permitted to launch, or the platform will not boot.

3.2.5.3 List Signatures

Additional restriction of an applicable signature algorithms is associated with the
LcpHashAlgMask and LcpSignAlgMask fields of the LCP_POLICY2 structure described
in Section 3.2.1

Not only signature algorithm of a signed list must be permitted by an LcpSignAlgMask,
but HashAlgIDs used in signatures when creating an encoded message will be limited to
those included in the LcpHashAlgMask.

Consider the following scenario: if the RSASSA signature is to use SHA256 to prepare
encoded message, SHA256 must be permitted by LcpHashAlgMask. Otherwise the list
will be skipped and not participate in establishing the LCP policy.

3.3 Policy Engine Logic

3.3.1 Policies

ALL TPM Modes

Before evaluating a policy, the policy engine must first verify the policy’s integrity. For a
policy of type LCP_POLTYPE_LIST, the engine must verify each LCP_POLICY_LIST2(_1)
in the LCP_POLICY_DATA. In the signed list case, the signature must be verified as well.
For an unsigned list, the hash of the list must be calculated. The hash of the
LCP_POLICY_DATA structure is calculated per Section 3.2.1.1 above and then
compared with the hash in the LCP_POLICY(2) that was read from the TPM NVRAM.

The policy engine must scan the policy for each policy element it supports. When a
policy contains multiple lists in its LCP_POLICY_DATA, the policy engine will evaluate
each list sequentially. As soon as it finds a match that satisfies the policy element being
evaluated (e.g. MLE, platform configuration, etc.) it will stop evaluating further elements
and lists. Exception of this rule is evaluation of LCP_PCONF_ELEMENT(2) which

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 71

depends on the PO.PolicyControl.Pconf_Enforced enforcement flag per description in
Appendix J.2.3.

For a policy of type LCP_POLTYPE_ANY, the policy engine will treat that policy as
successfully evaluating every policy element type.

For a policy of type LCP_POLTYPE_LIST, for every policy element type supported by
the ACM evaluating the policy that is present in any of the lists, at least one instance of
that element type must evaluate successfully for the policy to succeed. If a particular
policy element type is not in any of the lists, then that condition is not evaluated, and
any state is accepted. For instance:

If SINIT is processing a policy that contains two lists, the first containing only an
LCP_MLE_ELEMENT(2) and the second containing only an LCP_PCONF_ELEMENT(2),
then the MLE being launched must appear in the first list’s LCP_MLE_ELEMENT(2) and
the current platform configuration must satisfy the second list’s
LCP_PCONF_ELEMENT(2); otherwise the launch will fail.

If SINIT is processing a policy that contains two lists, each containing only an
LCP_MLE_ELEMENT(2) element, then the MLE being launched must appear in at least
one list’s LCP_MLE_ELEMENT(2). Since no other element types are present, any other
platform condition or state is acceptable (e.g., any PCR values).

While Policy Engine logic described so far is applicable to any mode of operation, its
logic in TPM 2.0 mode has additional peculiarities.

TPM 2.0 mode

ACMs’ ability to evaluate LCP elements present in policy data file depends on its
hashing capabilities originated from two sources - embedded software and TPM
hashing commands. Based on these two sources ACM builds lists of supported hashing
algorithms following logic described in Appendix G. Using these lists for evaluation of
different element types is described below.

• Evaluation of MLE and STM policy elements

The evaluation of MLE and STM policy elements is determined by the
EFF_HashAlgIDList as described in Appendix G.3. Elements of the above types hashed
with HashAlgIDs not in this list will cause the policy engine abort.

Use of list is not Extend Policy dependent.

• Evaluation of PCONF LCP elements

The evaluation of PCONF elements depends on TPM capabilities and will be limited
only by PCR banks supported by a given TPM (i.e., by PCR_HashAlgIDList), as described
in Appendix G.3.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
72 Document Number: 315168-017

Hash algorithm used to compute composite digest will be also determined by
LCP_TPM_HashAlgIDList as described in Appendix G.3 ensuring that the HashAlgID
associated with such elements is permitted by PO policy and that the PCRs
implementing the PCONF HashAlgID indeed exist.

Use of LCP_TPM_HashAlgIDList list is not Extend Policy dependent.

3.3.2 Processing of Policy Data Files

Policy Engine in TPM1.2 mode processes all policy lists looking for TPM 1.2 style
elements only. All unrecognized elements including all TPM 2.0 style elements are
ignored in this mode.

Policy Engine in TPM2.0 mode processes only TPM 2.0 style policy elements. All
unrecognized elements including all TPM 1.2 style elements are ignored in this mode.

Policy Engine scans the data file in two phases – the first phase is used to perform
integrity verification (validation) of the file, second phase is used to enforce (evaluate)
the policy.

During every scan the policy engine processes all lists in the data file and all of the
elements in list in the order of appearance.

3.3.2.1 Integrity Verification

During the verification phase the policy engine must validate all kinds of signatures of
the policy data lists. The policy engine must exit with an error if signature cannot be
validated for any reason.

Note: This is needed to thwart the following attack: if the policy engine skipped a signed list
with an unrecognized signature algorithm, an adversary might simply change the
signature algorithm identifier to something not supported by SINIT causing the entire
list, which would otherwise be evaluated, to be skipped thus ignoring intended policies.

During the integrity verification phase, the overall hash of the policy data file is
computed and compared to the value of the PolicyHash field, stored in the PO index.

The policy engine will check hash algorithms of all elements in all lists not skipped due
the reasons mentioned earlier and abort with error if it finds one not supported by
ACM. This requirement is aimed to thwart a special form of ACM substitution attack
when an ACM is substituted by an analogous ACM which lacks support of some of the
crypto-algorithms.

Other checks performed are verification of structure versions, sizes of all components
TPM capabilities etc.

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 73

Any discovered integrity error during this phase causes platform reset.

TPM NV Indices

The policy engine checks TPM NV index attributes and sizes. In TPM 2.0 mode, it will
run additional checks outlined below:

• nameAlg strength check.

– When each of the indices is verified, the policy engine will compare nameAlg of
the index to the minimal algorithm required and abort with error if it is not of
the required strength.

The minimal required nameAlg is SHA256 or SM3, provided they are supported
by current TPM. If the only TPM supported algorithm is SHA1, it will be
accepted by the policy engine and no error will be generated.

• The policy engine will also ensure the following, as a matter of integrity:

– PO.LcpHashAlgMask, PO.LcpSignAlgMask are not empty:

each bit set in a PO.LcpHashAlgMask mask means that a relevant hash
algorithm is permitted; each bit set in PO.LcpSignAlgMask mask means that
relevant combination of signature algorithm, key size, hash algorithm and curve
is permitted.

– All hash algorithms permitted by PO.LcpHashAlgMask and PO.LcpSignAlgMask
are supported by ACM;

– PO.HashAlg is permitted by PO.LcpHashAlgMask

3.3.2.2 Policy Enforcement

During the policy enforcement phase, the policy engine seeks elements in the following
order: MLE; PCONF; STM. In short, the second phase is comprised of three sequential
scans.

The policy engine will check revocation counters associated with lists and will skip any
revoked lists and ignore their content.

In the TPM 2.0 mode, when evaluating list signatures, if a combination of signature
algorithm, key size, hash algorithm, and curve is not permitted by LcpSignAlgMask, the
policy engine will skip such list and ignore its content.

During each scan, elements of each type are evaluated in the order of appearance in
the policy data file, irrespective to hash algorithms they are using.

In TPM 2.0 mode for each found element the policy engine will consult
LcpHashAlgMask. It will process the element only if its HashAlgID is permitted by the
mask, otherwise it will be skipped.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
74 Document Number: 315168-017

The policy engine will apply the following enforcement logic:

• It will record each new element type as “required” when it is first discovered.

• In the TPM 2.0 mode only, the “required” assertion is recorded only if the element’s
hash algorithm is permitted by LcpHashAlgMask. Element types filtered out by
LcpHashAlgMask will not trigger the “required” assertion.

• If a match for a “required” element type is not found at the end of evaluation, an
error will be generated.

There are three possible results of policy enforcement:

• Successful policy evaluation i.e. all required matches were found. Control is passed
to further SINIT tasks;

• Assumed successful policy evaluation. Some of the element types were not found
at all and are assumed to be successfully evaluated. Control is passed to further
SINIT tasks;

• No match found error. Platform is reset.

3.4 Measuring the Enforced Policy

The LCP engine in SINIT will extend to PCR 17 a hash value which represents the policy
or policies against which the environment was launched. This hash value is determined
by the rules in the following sections.

It is important that for all policy cases a measurement will always be extended to PCR
17 in order to prevent the MLE from later extending a value of a policy that was not
evaluated. This is an issue because PCR 17 is open to locality 2 extends and the MLE
executes with locality 2 access. If this was not done, such MLE could get access to data
that was sealed against some known policy by another MLE.

The above consideration is correct in general but was especially important for a legacy
implementation of Intel® TXT when the event log creation was an optional SINIT
function.

With CBnT the situation changed because:

• The event log creation is a mandatory SINIT function;

• There are several extends SINIT performs as a matter of integrity regardless of the
LCP policy type;

• Last event in the extend sequence is always extended to both PCR 17 and 18 and is
not optional. This makes it impossible for any MLE to deduce and extend into PCR
any data, which would allow it to arrive at any predefined PCR value another MLE
might have used to seal secrets.

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 75

3.4.1 No Policy Data and Allow Any Policy

When no owner policy is executed i.e. the PO index is not provisioned, is provisioned
with LCP_POLTYPE_LIST policy but none of its policy elements are understood by the
ACMs’ policy engine, it contains no policy elements, or an owner policy exists and is of
type LCP_POLTYPE_ANY, then:

• In TPM 1.2 mode ZeroDigest will is extended to PCR 17 and PCR 18;

• In TPM 2.0 mode number of extends are made to PCR 17 and PCR 18 with the last
one not optional event.

3.4.2 Policy with LCP_POLICY_DATA

Because the measurement may contain the measurements of more than one policy list,
it is important that SINIT ACMs for all platforms order the list measurements in the
same way so that identical policy evaluations will extend PCR 17 with the same value.

The policy engine will order the policy list measurements according to the order in
which it evaluates policy elements. For this version of the specification, the following
policy element types are evaluated in this order: LCP_POLELT_TYPE_MLE,
LCP_POLELT_TYPE_PCONF and LCP_POLTYPE_STM. If additional policy element types
are supported in the future, their evaluation order will be specified.

The policy engine will not allow more than one list to be signed with the same signature
key and will abort if such lists are found. This is because measuring of such lists
produces the same digest, which may allow substitute attacks when lists are swapped.

The above principles are applicable to all generations of policy engines – legacy and
combined, while the combined policy engine logic extends them to accommodate TPM
2.0 algorithm agility, new format of LCP structures, and new data combining
possibilities.

3.4.3 Effective Policies

Effective LCP policies are those enforced by the policy engine. They fall into two
categories: Effective LCP Policy Details, and Effective LCP Policy Authorities.

The effective LCP policy details value is the collection of all matching elements
discovered by the policy engine. The value of effective LCP policy details is measured
into PCR 17 – the “details” PCR. To achieve it, SINIT concatenates digests and other
pertinent data describing such elements, hashes the obtained byte stream and extends
the hash into PCR 17.

The effective value of LCP policy authorities is the collection of all lists, containing
matching elements discovered by the policy engine. The value of effective LCP policy

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
76 Document Number: 315168-017

authorities is measured into PCR 18 – the “authorities” PCR. To achieve it SINIT
concatenates list digests and other relevant data describing such lists, hashes the
obtained byte stream and extends the hash into PCR 18.

Construction of the two-byte streams in TPM 1.2 and TPM 2.0 modes is, in principle,
similar but due to the need to support algorithm agility there are some differences in
low level technical details.

3.4.3.1 TPM 1.2 LCP Policy Details

The effective LCP policy details hash represents all elements contributing to the
currently established policy. Each of the elements will be represented by a descriptor
being a concatenation of corresponding PolEltControl DWORD and a SHA1 digest.

Absent elements authenticated by default will be represented by the zero descriptor -
24 bytes of zeros.

Descriptors of elements will be concatenated in order: MLE, PCONF#1, PCONF#2, and
STM, where PCONF #1 and PCONF #2 correspond to a configuration where the
Pconf_Enforce bit in PO.PolicyControl field is set to 1.

The obtained byte stream is then hashed and extended into PCR 17. The process is
diagrammatically depicted below:

Figure 5. TPM 1.2 LCP Policy Details Data Stream

3.4.3.2 TPM 1.2 LCP Policy Authorities

The effective LCP authorities hash provides aggregated information about all
authorities (policy lists) contributing to the currently established policy. It is computed
as follows: each authority is represented by a digest of the entire list if it is unsigned, or
a digest of a public key otherwise.

Digests of lists containing matching elements will be concatenated in the same order as
with LCP policy details: MLE, PCONF#1, PCONF#2, and STM.

None of the list digests will be inserted more than once i.e. if list #N contains two kinds
of matching elements its digest is inserted only once. Missing list digest is not replaced
by any dummy data – it is skipped.

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 77

The obtained byte stream is then hashed and extended into PCR 18. The process is
diagrammatically depicted below.

Figure 6. TPM 1.2 LCP Policy Authorities Data Stream

3.4.3.3 TPM 2.0 Effective LCP Policy Details

The effective LCP policy details hash represents all elements contributing to the
currently established policy. Each of the elements is represented by a descriptor per
element type. All descriptors are concatenated into a byte stream, which is then hashed
using the rule described below and extended into PCR 17.

Format of the byte stream differs from the one used with TPM 1.2 since the size of the
encountered digests may vary, and it is no longer possible to allocate a single fixed size
for all descriptors.

The following solution addresses this issue:

Descriptors now have two forms: Absent Descriptor, and Present Descriptor. Difference
between them is the value of Existence Indicator. If an element was matched during the
enforcement scan, its Present Descriptor will be present in EffLcpPolicyDetailsData. If
an element was not matched and was satisfied by default, its descriptor is reduced to
just an Absent Descriptor. Form of descriptors is depicted below:

Figure 7. Element Descriptor

The descriptor contains: one byte of Existence Indicator concatenated with DWORD
PolEltControl, WORD of Hash Algorithm ID, and variable size Digest corresponding to
hash algorithm.

Formal definition of the structures is presented below:

#define ELT_IND UINT8
#define POL_CONTROL UINT32

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
78 Document Number: 315168-017

typedef struct {
 ELT_IND EltIndicator; // Boolean presence indicator ==
“1”
 POL_CONTROL PolControl;
 TPMT_HA EffEltDigest; // Standard TPM 2.0 library
structure
} EFF_ELT_PRESENT_DESCRIPTOR;

typedef struct {
 ELT_IND EltIndicator; // Boolean presence indicator ==
“0”
} EFF_ELT_ABSENT_DESCRIPTOR;
typedef union {
 EFF_ELT_PRESENT_DESCRIPTOR PresDescr;
 EFF_ELT_ABSENT_DESCRIPTOR AbsDescr;
}EFF_ELT_DESCRIPTOR, E_E_D;

EltIndicator is a byte size Boolean value initialized to “1” to indicate that given element
type has contributed to the established policy. In this case it is followed by details of
the element satisfying the policy. EltIndicator is initialized to “0” to indicate that the
given element type was not found in policy files and was satisfied by default.

PolControl is PolEltControl field of the element satisfying the policy.

EffEltDigest is a standard TPM 2.0 library structure describing the matching digest value
of the element satisfying the policy. It contains HashAlgId and a digest value.

For each of the elements involved, this last structure will be initialized to {1,
EffPolicyControl, EffEltDigest} if matched, or {0} otherwise.

After all matching element descriptors are constructed, the overall form of Effective
LCP Policy Details Data (EffLcpPolicyDetailsData) is depicted below:

Figure 8. TPM 2.0 LCP Policy Details Data Stream

LCP_PCONF1_ELEMENT and LCP_PCONF2_ELEMENT Descriptors represent first and
second instance of PCONF element provided that PO.PolicyControl.PCONF_Enforced
flag is set per Appendix J.2.3.

If LCP_PCONF2_ELEMENT is not available for any reason, it must be represented by an
Absent Descriptor.

Above description can be formally expressed as:

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 79

EffLcpPolicyDetailsData = E_E_DMLE | E_E_DPCONF1 | E_E_DPCONF2 |
E_E_DSTM

Effective LCP Policy Details Digest is computed as:

LcpEffPolicyDetails = HASHHashAlgId(EffLcpPolicyDetailsData)

Here, the hashing algorithm is determined by a PCR bank being extended (i.e.,
HashAlgId) is the Hash Algorithm ID of extended PCR bank.

Finally, PCR 17 will be extended as:

PCR 17 = TPM2_Extend (LcpEffPolicyDetails, HashAlgId)

If LCP policy was “ANY”, a single byte of “0” will be measured into PCR 17 instead of
using a relevant PCR bank’s HashAlgId.

3.4.3.4 TPM 2.0 Effective LCP Policy Authorities

The Effective LCP Authorities Hash provides aggregated information about all
authorities (policy lists) contributing to the currently established policy. It will be
computed as follows: each authority will be described using the LIST_SIGN_DSCR
structure defined below; all authority descriptors will be concatenated into a byte
stream; that byte stream will be hashed using the rule described below and extended
into PCR 18.

By the same reason as with Effective LCP Policy Details Data - since size occupied by
each of the digests is variable, it is no longer possible to allocate fixed size for each of
the Descriptors.

Solution is analogous to the one used for Effective LCP Policy Details:

Descriptors have two forms: Signed Descriptor, and Unsigned Descriptor. Difference
between them is depicted below. Unsigned descriptor is required to have SignAlg
hardcoded to be TPM_ALG_NULL. It is also missing all signature attributes.

The same rule as for TPM1.2 applies here: if more than one matching element is found
in the same list, List’s Descriptor is inserted only once. Missing List Descriptor is not
replaced by any dummy data – it is skipped.

Figure 9. List Descriptor

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
80 Document Number: 315168-017

Each signed list will be represented using the following structure:

typedef struct {
 UINT16 SignAlg;
 UINT16 HashAlg;
 UINT16 PubKeySize;
 TPMT_HA EffAuthDigest;
} LIST_SIGN_DSCR;

SignAlg is one of the supported signature algorithms, either TPM_ALG_RSASSA,
TPM_ALG_RSAPSS, TPM_ALG_ECDSA or SM2.

HashAlg is the algorithm paired with the signature algorithm used to compute message
digest.

PubKeySize is the public key size in bytes.

EffAuthDigest is a standard TPM2.0 library structure describing the digest of the public
key of this authority. It includes the hash algorithm ID used to hash this Authority,
concatenated with the digest value of the public key field used for the list’s signature in
memory.

• For RSASSA/RSAPSS signatures, the PubKeyValue[PubkeySize] field of
LCP_RSA_SIGNATURE is hashed using the HashAlg specified in the PO NV Index.
The size of the hashed data is PubkeySize.

• For SM2/ECDSA signatures, the Qx[PubkeySize] and Qy[Pubkeysize] components of
LCP_ECC_SIGNATURE are hashed using the HashAlg specified in the PO TPM NV
index. The size of the hashed data in PubkeySize * 2.

Each unsigned list will be represented using the following structure:

typedef struct {
 UINT16 SignAlg;
 TPMT_HA EffAuthDigest;
} LIST_UNSIGN_DSCR;

SignAlg is TPM_ALG_NULL.

EffAuthDigest is a standard TPM 2.0 library structure describing the digest of the entire
unsigned list. The entire list will be hashed using the HashAlg in the PO TPM NV Index.
The size of the hashed data is the size of the unsigned list itself.

Any list will be represented by the following structure:

typedef union {
 LIST_SIGN_DSCR SignedList;
 LIST_UNSIGN_DSCR UnsignedList;
} EFF_LIST_DSCR, E_L_D;

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 81

After all matching list descriptors are constructed, the overall form of Effective LCP
Policy Authorities Data (EffLcpPolicyAuthoritiesData) is depicted below. Concatenation
must be exactly in the shown order.

Figure 10. TPM 1.2 LCP Policy Authorities Data Stream

The same important note as to TPM 1.2 case – if more than one matching element is
found in the same list, list’s digest inserted only once. Missing list digest is not replaced
by zero digest – it is skipped.

Above description can be formally expressed as:

EffLcpPolicyAuthoritiesData = E_L_DMLE | E_L_DPCONF1 | E_L_DPCONF2 |
E_L_DSTM

Note: Authorities providing a match of PCONF elements Policy Data File are included
individually. This is done to cover the case when two PCONF elements are required to
match – see PO.PolicyControl.Pconf_Enforced bit description in Appendix J.2.3

All signed LCP lists in each of the LCP Policy Data Files must use unique signing keys. If
authority needs to supply more than one signed LCP list, it must maintain unique
signing key for each of the lists.

Effective LCP Policy Authorities Digest then is computed as:

LcpEffPolicyAuhorities = HASHHashAlgId(EffLcpPolicyAuthoritiesData)

Here used hashing algorithm is determined by PCR bank being extended i.e. HashAlgId
is the Hash Algorithm ID of extended PCR bank.

Finally, PCR 18 will be extended as:

PCR 18 = TPM2_Extend (LcpEffPolicyAuhorities, HashAlgId)

If LCP policy is evaluated to ANY, single byte with value 0 will be measured to PCR18
instead using relevant PCR bank HashAlgId.

3.4.4 Effective TPM NV info Hash

TPM 2.0 mode relevant only

For an attester, evaluating the trustworthiness of a platform/environment, the
properties of the TPM NV indices used by Intel® TXT are of considerable interest.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
82 Document Number: 315168-017

Therefore, SINIT will extend these properties into PCRs 17 and 18 and log the
extension process into the event log in a form that facilitates inspection.

TPMS_NV_PUBLIC structure is used as the descriptor of TPM NV index properties.
Based on that, the following structures are built:

#define IDX_IND UINT8

typedef struct {
 IDX_IND IndexIndicator;
 TPMS_NV_PUBLIC IndexProperties;
} EFF_IDX_PRESENT_DESCRIPTOR;
typedef struct {
 IDX_IND IndexIndicator;
} EFF_IDX_ABSENT_DESCRIPTOR;

IndexIndicator is a Boolean byte size value initialized to “1” to indicate that index has
been provisioned and to “0” if not.

IndexProperties is a standard TPM 2.0 library structure fully describing index properties.

typedef union {
 EFF_IDX_PRESENT_DESCRIPTOR PresDescr;
 EFF_IDX_ABSENT_DESCRIPTOR AbsDescr;
} EFF_IDX_DESCRIPTOR, E_I_D;

For each of the indices:

• If present, its E_I_D = {1, PresDescr}

• If absent, its E_I_D = {0}

The data to be hashed will be:

LcpEffNvInfoData = E_I_DAUX | E_I_DPO

Where E_I_DAUX and E_I_DPO are descriptors of AUX and PO index, respectively.

Note: SGX index is intended for BIOS use and its descriptor is not included in the above data
stream.

The data extended into PCR 17 and 18 will be:

LcpEffNvInfoHash = HASHHashAlgId (LcpEffNvInfoData)

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 83

3.5 TPM NV RAM

As mentioned in Section 1.8 Intel® TXT and its CBnT version intensively uses TPM
shielded storage to pass required information from Startup ACM to SINIT and to house
Launch Control Policy data. Two indices AUX and PO are allocated for these purposes.

Usage of indices in TPM 1.2 and TPM 2.0 modes is analogous, but attributes, sizes and
layout differ. Properties and owning authorities change as well, as described below.
Complete index provisioning data can be found in Table 33 and Table 34

3.5.1 Auxiliary Index

TPM 1.2

The following are main properties of a TPM 1.2 mode Auxiliary (AUX) index:

It is defined with ‘D’ bit set, which means that index is defined for a lifetime of a
platform and cannot be deleted.

Content of an index is readable by any SW at any locality, but writable only via TPM
locality 3 (i.e., only by an ACM).

Its layout is described in Appendix D.5 and attributes in Table 33.

TPM 2.0

TPM 2.0 mode AUX index features properties analogous to its TPM 1.2 mode
counterpart but also has notable differences:

Like the TPM 1.2 mode index, its content is readable by any SW at any locality and
writable only via locality 3 (i.e. ACM only).

Its layout is similar and thus described by the same Appendix D.5

Its size is larger to accommodate larger digests produced by SHA256 and SHA384
algorithms.

The biggest difference from its TPM 1.2 counterpart is an option to delete this index
under Platform Supplier’s policy – details can be found in Table 34 and notes that
follow this table.

Another important difference is associated with a nameAlg – one of the major index
parameters defining strength of data protection. Full discussion is in Section 3.5.3
below.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
84 Document Number: 315168-017

3.5.2 Platform Owner Index

Platform Owner (PO) index purpose is to house Platform Owner’s LCP Policy. Full
discussion of and index layout can be found in Section 3.2.1

Despite that TPM 1.2 and TPM 2.0 properties are very similar, notable differences still
exist:

TPM 1.2

PO index is controlled by Platform Owner’s credentials. It can be read by any SW but
can be written / deleted by a Platform Owner only. All reads and writes are possible at
any locality.

Complete index provisioning data can be found in Table 33

The size of PO index is fixed, and its full layout can be found in Appendix D.1.2

TPM 2.0

In the TPM 2.0 mode, the PO index is controlled by Platform Owner’s credentials. It also
can be read by any SW and written / deleted by a Platform Owner only.

Index provisioning data are specified in Table 34

Index size can vary (but can also be fixed at maximum value) based on the sizes of the
digests stored in the PolicyHash area (see Appendix D.1.3).

Index contains two new fields LcpSignAlgMask and LcpHashAlgMask also described in
Appendix D.1.3

Like TPM 2.0 mode AUX index, it requires careful selection of nameAlg – see Section
3.5.3 below.

3.5.3 nameAlg Support

When defining a TPM NV index, the nameAlg parameter specifies the Hashing
algorithm used by the policy controlling that index and therefore the cryptographic
strength used to protect that index’s data.

There must be constraints on what nameAlg may be used for TPM NV indices. The
Platform Owner is free to select one algorithm out of those supported by the TPM
(TPM_HashAlgIDList from Appendix G.3) that meets cryptographic strength constraints
for its intended use.

PO or AUX indices cannot contain any settings controlling the strength of their own
protection, as these would be self-referential and impossible to configure initially. An

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 85

insufficiently strong nameAlg may lead to insufficient policy protection of index access,
making the contents of such index vulnerable.

ACMs will be built requiring a minimum bit-length for allowed hash algorithms. For
example, if this built-in minimum requirement is 256 bits, then SHA256 and SM3 satisfy
it.

The nameAlg parameter for AUX and PO indices must meet this requirement, or the
ACM will generate a reset. The exception to this is when the nameAlg is the only
supported algorithm on the platform, even if it does not meet the minimum.

Note that when the nameAlg for an index meets the minimum requirement, algorithms
used within the index need not; that index’s contents will be trusted, irrespective of the
strength of internal protections for contained items.

3.6 PCR Extend Policy

TPM 2.0 mode relevant only

TPM 2.0 family of devices support different sets of commands to extend measurements
into PCR banks:

• The Extend command allows to extend already computed digest(s) into one or
several selected PCR banks;

• The Event and Event Sequence commands allow sending data stream to TPM which
will then compute digests and extend them into all existing banks of PCRs at once.

Since expected performance of these sets of commands is different, ACM will support
Extend Policy prescribing set of commands used to extend PCRs

Two policy settings will be supported:

1. Maximum Agility (MA). When this policy is selected ACM will extend PCRs using
commands TPM2_PCR_Event; TPM2_HashSequenceStart; TPM2_HashUpdate;
TPM2_EventSequenceComplete. These commands will extend all existing PCR
banks at the expense of possible performance loss.

2. Maximum Performance (MP). When this policy is selected ACM will use embedded
SW to compute hashes and then will use TPM2_PCR_Extend commands to extend
them into PCRs. If PCRs utilizing hash algorithms not supported by SW are
discovered, they will be capped with “1” value. This policy will ensure maximum
possible performance at the expense of possible capping of some of the PCRs.

PCR Extend Policy is delivered to SINIT via OS to SINIT Data heap table – see Appendix
C.4

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
86 Document Number: 315168-017

3.6.1 SINIT Policy Selection

ISVs supplying MLE solutions can retrieve information of SINIT supported embedded
SW algorithms from TPM Info List Table (see Table 15) and examine capabilities of
installed TPM to make a comprehensive choice.

Currently MLE and SINIT operations are not perceived to be time critical and therefore
MA Extend Policy setting is envisioned to be suitable in all cases and can be statically
chosen.

Nevertheless, possibility to apply installation time logic based on discovered
capabilities remains a possibility for MLE developers. If all TPM PCR banks are
supported by SINIT embedded SW, MP Extend Policy can be chosen. Otherwise MA
Extend Policy must be a choice. Chosen policy may be delivered to MLE via
configuration setting.

3.7 Revocation

3.7.1 SINIT Revocation

LCP also enables a limited self-revocation mechanism for SINIT. SINIT itself enforces
this on launch and a failure (i.e. the executing SINIT was revoked) results in a TXT reset
with an error code stored in the TXT.ERRORCODE register. The algorithm or process
that SINIT uses to determine whether it has been revoked is described in the
SinitMinVersion field in Section 3.2.1. The rationale for this decision-making process
follows.

The ACM Info Table of a SINIT module contains that module’s version number, per
Table 10. The SinitMinVersion field of the PO Index defines the minimum version of a
SINIT module that is allowed to execute to completion. SINIT verifies that its version
meets that required and performs a self-revocation (via LT-RESET) if it does not. This
mechanism allows the Platform Owners to restrict execution of SINIT versions prior to
one they specify.

The upper boundary of SinitMinVersion field of the PO Index might need to be
controlled too. The case when it might be needed is when Platform Owner wants to
prevent SINIT update as part of the OS update push.

The MaxSinitMinVersion field in the PO Index allows the platform owner to control such
SinitMinVersion update. Unless this field is set to 0xFF, the value given is the maximum
value to which SinitMinVersion may be set to by a revocation ACM.

A SINIT version satisfying a platform SinitMinVersion may be found to have a security
flaw resulting in platform vulnerabilities affecting all released platforms and all of the
Platform Owners. An orthogonal self-revocation mechanism is provided for this case. In

Verifying Measured Launched Environments

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 87

addition to its version number, each SINIT has a security version number (SVN). The
platform AUX Index contains a reference value this field can be verified against. If the
SVN is below the required version, SINIT performs a self-revocation as above.

This AUX Index field is only updatable from locality 3, and hence can only be modified
by a special “revocation” ACM or by adding of respected functionality to select set of
BIOS / Startup ACM functions (called collectively “revocation module”). Such revocation
module would increase the AUX Index SVN requirement to a new target value,
precluding execution of SINIT modules with lower SVN values, effectively revoking
them.

§§

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
88 Document Number: 315168-017

4.0 Development and Deployment Considerations

4.1 Launch Control Policy Creation

Depending on the usage model, it may be desirable to create a Launch Control Policy at
the time the MLE is built. This would apply in the cases where only one MLE is expected
to run on the system. In such cases, the policy can be pre-created and provisioned
during the installation of the MLE.

If multiple MLEs are expected to run on the system, or if there is to be a platform
configuration policy, then it is likely that the policy will need to be created at the time of
deployment. As each element type is allowed in a policy list, each MLE will have its own
list if any of its list elements must differ from those of others.

In either case, it is advisable that the policy should contain a SinitMinVersion value that
corresponds to the lowest versioned SINIT that is required. In the case of a system that
supports multiple MLEs, a different SinitMinVersion may be specified with each MLE’s
policy element. The effective SinitMinVersion value will be the highest of the values in
the PO policy, and matching MLE element (for each one that exists). This effective
SinitMinVersion will be compared to the AcmVersion of the SINIT being used. Setting
the SinitMinVersion value in the policy prevents an attacker from substituting an older
version of SINIT (if there is one for a given platform) that may have security issues.

4.2 Launch Errors and Remediation

If there is an error during a measured launch, the platform will be reset, and an error
code will be coded in the TXT.ERRORCODE register. It is important for MLE vendors to
consider how their software will handle such errors and allow users or administrators to
remediate them.

If an MLE is launched automatically either as part of the boot process or as part of an
operating system’s launch process, it needs to be able to detect a previous failure in
order to prevent a continuous cycle of boot failures. Such failures may occur as part of
the loading and preparation for the GETSEC[SENTER] instruction or they may occur
during the processing of that instruction before the MLE is given control.

In the former case, it is the MLE launching software that is detecting the error condition
(e.g., a mismatched SINIT ACM, TXT not being enabled, etc.) and that software can use
whatever mechanism it chooses to persist the error or to handle it at that time. In the
latter case, the system will be reset before the MLE launching software can handle the
error so that software should be able to detect the error in the TXT.ERRORCODE
register and take appropriate action.

Development and Deployment Considerations

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 89

What remediation action will be required depends on the error itself. If the MLE launch
happens early in the boot process, the launching software may need a way of booting
into a remediation operating system. If the launch happens within an operating system
environment, the software may be able to remediate errors in that environment.

4.3 Determining Trust

While a TXT Launch Control Policy can be used to prevent software use of TPM locality
2 and access to TXT private space, it is not a general mechanism to prevent unwanted
software from executing on a system. Consequently, an MLE cannot itself determine
whether it is running in a TXT measured environment (it could be running on an
emulator that spoofs PCR values, chipset registers, etc.).

In order to gain trust in an MLE (or rather, in software that uses TXT with the intention
of being an MLE), the PCR values for the MLE (PCRs 17 and 18) must be used to make
the trust “decision”. The trust “decision” must either be made by a party external to the
MLE’s system (i.e. remote attestation) or by the release of some data that is not
available to untrusted software (i.e., local attestation).

Remote attestation involves a remote party requesting the MLE to provide a TPM quote
of the PCRs needed to determine trust (at least 17 and 18) and that remote party
verifying the quote and making a trust determination of the PCR values. The remote
party can then act on the trust level in various ways (disconnect the MLE system from
the network, not provide it with network credentials, etc.). The details involved in the
remote attestation process can be found at the Trusted Computing Group’s (TCG)
website (http://www.trustedcomputinggroup.org/).

Local attestation, also known as SEALing, uses the TPM to encrypt some data bound to
certain PCR values (and/or locality). The data is typically SEALed by the MLE system
when the system is in a trusted state (there are multiple ways to establish an initial
trusted state) and the PCR/binding made to values that represent the desired trusted
state (the initial and final states don’t have to be the same as long as they are both
trusted). The SEALed data is then persistently stored, so it can be retrieved and
UNSEALed when the trusted MLE is running. The specifics of SEALing can also be found
on the TCG website.

4.3.1 Migration of SEALed Data

If SEALing/local attestation is used to protect data, then the MLE must be able to
accommodate the upgrading/changing of components whose measurements are in the
PCRs being SEALed to. Since PCRs 17 and 18 contain the TCB for the MLE, at a
minimum this would include SINIT, LCP, the MLE, etc. (see Section 1.10 for the
complete contents of these PCRs). If data is SEALed to additional PCRs then changes to
the entities that are measured into these other PCRs must also be handled. While data

http://www.trustedcomputinggroup.org/

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
90 Document Number: 315168-017

may be sealed to PCRs, locality, or an auth value, or any combination thereof, migration
is only an issue when PCRs are sealed to.

When one of the elements of the SEALed data’s PCRs is changed, the TPM will no
longer UNSEAL that data. So, if no migration or backup of the plaintext data is made,
then after the next measured launch that data will not be available to the new MLE. And
unless the original MLE can be re-launched, the data will be lost. Thus, some provision
for making the data available to the new MLE must be made while the data is still
available in plaintext form (UNSEALed), i.e. in the original MLE.

The most seamless and secure method for migrating the data to the new environment
is for the original environment to re-SEAL the data to the new environment. This
requires the original environment to calculate what the PCR values will be in the new
environment. For PCRs 17 and 18, this can be done using the information included in
Section 1.10, coupled with knowing or being able to calculate the constituent values for
the new components. Alternately, if the new environment were run on a trusted system
(so that nothing would tamper with the measurements), the PCR values could then be
collected from that system and used directly as the new values without having to
calculate them from the components.

Other methods, such as password-based recovery, key escrow, etc. would be the same
as for any other encrypted data and have similar tradeoffs.

4.4 Deployment

4.4.1 LCP Provisioning

4.4.1.1 TPM Ownership

In the following discussion term “ownership” shall be understood broadly as a set of
credentials allowing owners to control TPM. This is real ownership for TPM 1.2 family of
devices and set of owner policies and authentication values for TPM 2.0 devices.

Because creation and writing to the Platform Owner policy TPM NV index requires the
TPM owner authorization credential, the installation program should accommodate
differing IT policies for how and when TPM ownership is established. In some
enterprises, IT may take ownership before a system is deployed to an end user. In
others, the TPM may be un-owned until the first application that requires ownership
establishes it.

Since the TPM owner authorization credential will be required to modify the Platform
Owner policy, if the installation program creates the credential it should provide a
mechanism for securely saving that credential either locally or remotely.

Development and Deployment Considerations

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 91

4.4.1.2 Policy Provisioning

The Platform Owner policy TPM NV index will need to be created by the MLE
installation program (or other TPM management software) if does not already exist.
This can be done with the TPM_NV_DefineSpace or TPM2_NV_DefineSpace command
or corresponding higher-level TPM interface (e.g., via a TCG Software Stack or TSS).

Once the index has been created, the installation program can write the policy into the
index using the TPM_NV_WriteValue or TPM2_NV_Write command or corresponding
higher-level TPM interface (e.g., via a TCG Software Stack or TSS).

Because creating and writing to the Platform Owner policy index requires the TPM
owner authorization credential, care should be taken to protect the credential when it is
being used and to erase or delete it from memory as soon as it is no longer needed.

Ideally, policy provisioning would occur in a secure environment or be performed by an
agent that can be verified as trustworthy. An example of the former would be on an
isolated network immediately after receiving the system. Another would be booting
from a CD containing provisioning software. An example of the latter would be to use
Intel® TXT to launch a provisioning MLE or agent that was then attested to by a remote
entity which could provide the owner authorization credential upon successful
attestation.

4.4.2 SINIT Selection

Because the SINIT AC module is specific to a chipset, different platforms may have
different SINIT ACMs. If an MLE is intended to run on multiple platforms with different
chipsets, the MLE installation program will need to determine which SINIT ACM to
install if the platform BIOS does not provide the SINIT ACM or if the MLE wants to use a
later version.

Comparing the chipset compatibility information in the SINIT ACM’s Chipset ID List with
the corresponding information for the platform accomplishes this. This would be
identical to the process for verifying SINIT ACM compatibility at launch time, as
described in Section 2.2.3.1.

4.5 SGX Requirement for TXT Platform

Software Guard Extensions (SGX) is a set of instructions and mechanisms for memory
accesses added to Intel® Architecture processors. These extensions allow an application
to instantiate a protected container, referred to as an enclave. An enclave is a protected
area in the application’s address space, which provides confidentiality and integrity
even in the presence of privileged malware. Accesses to the enclave memory area from
any software not resident in the enclave are prevented. For more details about SGX,
please refer to Intel SGX Programming Reference Guide.

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
92 Document Number: 315168-017

Since TXT ACMs are in Trusted Computing Base (TCB) of SGX, SGX SW must be made
aware of the SGX Security Version Numbers (SGX SVN) of all ACMs in the system.
Passing of ACM SGX SVNs to SGX SW is performed via dedicated BIOS_SE_SVN MSR
programming of which is the BIOS responsibility. This BIOS task is trivial if all ACMs in
the system are carried in BIOS flash but presents a special challenge to client platforms
carrying SINIT ACM on HDD where it is not available for BIOS examination.

In order to avoid ungraceful resets resulted from mismatch of expected and actual SVN
(security version number) of SINIT ACM during launch of SGX and TXT, requirements of
SGX, TXT and BIOS interface developed for client platforms should be followed.

The interface allows the TXT runtime software to convey to BIOS the value of SINIT
SVN to be used during next POST. In worst case, one additional system reboot after
update of SINIT in TXT software stack is required.

The Interface is based on a mailbox mechanism implemented as SGX TPM NV index
with unrestricted read and write capabilities. TXT runtime software will write into this
index with SGX SVN discovered in SINIT ACM and BIOS will read this index and program
into the SINIT_SVN field of BIOS_SE_SVN MSR.

SGX TPM NV Index is mandatory on the client platforms supporting TXT. If this index
doesn’t exist, SINIT_SVN field of BIOS_SE_SVN MSR may remain at default 0xFF value
or be arbitrarily chosen by BIOS and this might cause TXT shutdown when
GETSEC[SENTER] is executed after first non-faulty SGX instruction. The Index size is 8
bytes.

Details of SGX index definition for TPM 1.2 and TPM 2.0 platforms can be found in
Table 33 and Table 34 respectively.

The following must be noted for TPM 2.0 index definition:

authValue of index by convention must remain at default value “empty buffer”. This will
enable unrestricted access by any agent from any locality.

Deletion of the SGX index is possible only in TPM 2.0 and can only be performed under
control of the OEM policy – analogously to other TPM 2.0 TXT indices.

Table 6 diagrammatically illustrates the SGX index structure.

Table 6. SGX Index Content

Bytes 1 - 7. Reserved, must be zero. Byte 0. SGX SINIT_SVN.
Saved by MLE of specially defined tool. Must
be initialized to default value “1”

Table 7 shows content of IA32_SE_SVN_STATUS MSR used by software components. It
is a read-only MSR.

Development and Deployment Considerations

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 93

Table 7. IA32_SE_SVN_STATUS MSR (0x500)

Bits Name Comment

0 Lock 0 – BIOS_SE_SVN MSR can be floated down.
Launching a properly signed ACM will not
lead to LT shutdown irrespective of its SE
SVN
1 - BIOS_SE_SVN MSR is locked. Launching of
ACM with SGX SVN lower than value of
SINIT_SVN field will LT reset platform.

15:1 Reserved

23:16 SINIT_SVN Reflect values of bits 23:16 of BIOS_SE_SVN
MSR (SINIT_SVN) on CPUs that enumerate
CPUID.feature_flags.SMX as 1.
On CPUs that enumerate
CPUID.feature_flags.SMX as 0, these bits are
reserved (0).

63:24 Reserved

Line 1: SINIT may be present in BIOS flash as is practice for server platforms, and
workstations. In this case BIOS is responsible for finding the SINIT module,
decompressing it and placing it in heap SINIT memory. It also has to program
BiosSinitSize field in the BIOS Data table – see Table 20.

Lines 2, 3: If SINIT is present in BIOS flash as signaled by value of BiosSinitSize field,
MLE may exit this flow since BIOS has all necessary information to program
BIOS_SE_SVN MSR. SGX index may not exist and is ignored if it exists. MLE shall not
generate any SGX index related errors.

Lines 4, 5: MLE shall exit this flow if SGX is not supported by CPU

Line 7: SGX SVN value is in SINIT header in a word at offset 0x1E

Lines 8, 9: Architectural IA32_SE_SVN_STATUS MSR carries the same SINIT SGX
information which is programmed into BIOS_SE_SVN MSR. MLE shall avoid accessing
non-architectural BIOS_SE_SVN MSR. It shall retrieve programmed SINIT SGX SVN
value from IA32_SE_SVN_STATUS MSR instead. If value retrieved from
IA32_SE_SVN_STATUS MSR differs from SINIT SGX SVN, value of SGX index must be
updated and system reset to let BIOS use the updated information.

Lines 10, 11: If BIT 0 of IA32_SE_SVN_STATUS MSR is “0” SGX is not active and MLE
may continue to launch SINIT. If BIT 0 of IA32_SE_SVN_STATUS MSR is “1” SGX is active
and attempt to launch SINIT will lead to ungraceful platform reset. MLE shall avoid it by
one of the possible actions: It may post message to user and reset platform after a
short delay to let BIOS use correct SINIT SGX SVN number at next boot. Alternatively, it
may post message to user and let him reset platform manually at a proper time.

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
94 Document Number: 315168-017

Listing 9. SGX Support on TXT Platform Pseudo code

1. Find appropriate SINIT for platform.

2. If SINIT is already present in SINIT memory

3. Exit this flow

//

// Enumerate SGX support. Analyze CPUID.feature_flags.SE bit
// (leaf 7, sub-leaf 0, EBX.bit2).

//

4. If CPUID.feature_flags.SE bit is not set {

5. Exit this flow

6. }

7. Read SINIT_SVN 16-bit value from SINIT header offset 0x1E

8. If IA32_SE_SVN_STATUS[23:16] != SINIT_SVN {

//

// Write SINIT_SVN value from ACM header into SGX TPM NV index

//

9. SGX TPM NV index SINIT_SVN

//

// Read IA32_SE_SVN_STATUS MSR, lock bit (Bit 0)

//

10. If IA32_SE_SVN_STATUS MSR[0] == 1 { // SGX is active

11. Reset platform

12. }

13. }

4.6 Converged BtG/TXT Impact on TXT Platform

Both Server TXT and Boot Guard (BtG) technologies require a Startup ACM to be
executed at platform reset. Intel® CPUs can support only a single such ACM and
therefore combining a BtG ACM with a Startup ACM is inevitable for platforms

Development and Deployment Considerations

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 95

supporting both technologies. This combining requirement triggered the whole set of
upgrades targeted to better align both technologies, and their mutual benefits.

Short list of the most fundamental changes follows. Complete information can be
found in “Converged Boot Guard and Intel® Trusted Execution Technologies. BIOS
Specification”.

1. BtG, Startup and BIOS ACMs are combined into a single binary referred to as
Startup ACM (S-ACM). The Startup function of the S-ACM performs all steps
required by BtG and TXT.

2. Client and Server TXT flavors are unified. Client reset attack mitigation was changed
to be carried out by BIOS and not by the SCLEAN function.

3. Information about OEM-established policies consumed by the Startup function is
delivered using a BtG Key and Boot Policy manifests (KM and BPM). Delivering
information using FIT table records was eliminated.

4. KM and BPM are included into MLE TCB and are measured into dynamic PCRs

5. Platform Supplier LCP is removed. Instead TXT uses results of BtG BIOS
verifications that has been found to be analogous to “Signed BIOS” LCP policy. As a
result, the PS index, its associated Policy Data File and SBIOS element are
eliminated.

6. Supported cryptography has been reduced per recommendation of “CNSS Advisory
Memorandum 02-15”

Majority of these changes occur in pre-boot space and are of little interest for MLE but
some of the changes impact MLE and other may be of interest for future updates. The
following list contains all MLE-visible changes resulted from conversion, used or not:

1. Platform Supplier’s policy is now handled by BtG. Respectively no PS LCP data file
will be present, and no PS index will be provisioned. Therefore no “merging” of PS
and PO policies is needed, and overall LCP handling is simplified.

2. PO index content is simplified:
MaxBiosacMinVersion field was removed since now S-ACM revocation is handled
using BtG style;
PolicyControl flags were essentially simplified – all of them are reserved except of
NPW_OK and Pconf_Enforced – see Section 3.2.1.
Consequently, version of PO index data structure changed to 2.4 and 3.2
respectively for TPM 1.2 and TPM 2.0

3. Functionality associated with Pconf_Enforced bit changes. Previously it required to
satisfy PCONF element matches in both PS and PO LCP policies. Now it requires

https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=575623
https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=575623

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
96 Document Number: 315168-017

matching of PCONF elements in two consecutive policy lists. Complete explanation
is in Appendix J.2.3

4. SBIOS element is removed and associated element types 2, 0x12 are reserved.

5. New capability flag is defined in “ACM Info Table” to indicate ACM compliance to
“Converged BtG and TXT Technologies” requirements. Similar flag is defined in the
capabilities field of MLE header. Respectively, “ACM Info Table” version is
incremented to 7 and MLE Header version is incremented to 2.2. See Table 4

6. BIOS data table no longer contains LcpPdBase and LcpPdSize fields since these
fields were associated with currently removed PS LCP Data file – see Appendix C.2

7. ProcessorSCRTMStatus field of SinitMleData heap table will be set to “1” when with
BtG/TXT PCR0 measurement is performed by Startup ACM function – see Appendix
C.4.3

8. MLE will see new events logged into TXT event log. Full list of new events can be
found in Table 29.

9. Three new registers have been defined in TXT device space: new
ACM_POLICY_STATUS register at offset 0x378 has been defined to carry
combination of BtG and TXT polies. MLE may benefit from it if needed;
ACM_ERROR_STATUS register at offset 0x328 carries pre-boot error code
information instead or TXT.ERRORCODE register (Layout of this register is not
disclosed since it is of no value for OS). TXT.ERRORCODE register is left to exclusive
use of SINIT and CPU uCode; BOOTSTATUS register at offset 0xA0 caries status
flags of Startup function execution. Detailed information of layout of these registers
can be found in B and in “Converged Boot Guard and Intel® Trusted Execution
Technologies. BIOS Specification for Client CNL and Server ICX platforms”.

10. TXT has been extended to handle ACMs with 3072-bit signatures and new crypto
algorithms.

§§

APPENDIX A

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 97

 Intel® TXT Execution
Technology Authenticated
Code Modules

 Authenticated Code Module Format

An authenticated code module (AC module) is required to conform to a specific format.
At the top level, the module is composed of three sections: module header, internal
working scratch space, and user code and data. The module header contains critical
information necessary for the processor to properly authenticate the entire module,
including the encrypted signature and RSA-based public key. The processor also uses
other fields of the AC module for initializing the remaining processor state after
authentication.

The format of the authenticated-code module is in Table 8. This definition represents
revisions 0.0 and 3.0 of the AC module header version (defined in the HeaderVersion
field). ACMs with version 3.0 support converge of Boot Guard and TXT.

Table 8. Authenticated Code Module Format

Field Offset
version 0.0 /

3.0

Size (bytes)
version 0.0 /

3.0

Description

ModuleType 0 2 2 = Module type

ModuleSubType 2 2 Module sub-type
0 – TXT ACM
1 – S-ACM

HeaderLen 4 4 Header length (in multiples of four
bytes)
161 - for version 0.0
224 – for version 3.0

HeaderVersion 8 4 Module format version
0.0 – for SINIT ACM before 2017
3.0 – for SINIT ACM of converge of
BtG and TXT

ChipsetID 12 2 Module release identifier

Flags 14 2 Module-specific flags

ModuleVendor 16 4 Module vendor identifier

Date 20 4 Creation date (BCD format:
year.month.day)

APPENDIX A

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
98 Document Number: 315168-017

Field Offset
version 0.0 /

3.0

Size (bytes)
version 0.0 /

3.0

Description

Size 24 4 Module size (in multiples of four
bytes)

TXT SVN 28 2 TXT Security Version Number

SE SVN 30 2 Software Guard Extensions (Secure
Enclaves) Security Version Number

CodeControl 32 4 Authenticated code control flags

ErrorEntryPoint 36 4 Error response entry point offset
(bytes)

GDTLimit 40 4 GDT limit (defines last byte of GDT)

GDTBasePtr 44 4 GDT base pointer offset (bytes)

SegSel 48 4 Segment selector initializer

EntryPoint 52 4 Authenticated code entry point offset
(bytes)

Reserved2 56 64 Reserved for future extensions

KeySize 120 4 Module public key size less the
exponent (in multiples of four bytes)
64 - for version 0.0
96 – for version 3.0

ScratchSize 124 4 Scratch field size (in multiples of four
bytes)
143 = (2 * KeySize + 15) – for version
0.0
208 = (2 * KeySize + 16) – for version
3.0

RSAPubKey 128 256 / 384 KeySize * 4 = Module public key

RSAPubExp 384 / absent 4/0 Module public key exponent
Present – for version 0.0
Absent – for version 3.0

RSASig 388 / 512 256 / 384 KeySize * 4 = PKCS #1.5 RSA
Signature

End of AC module header

Scratch 644 / 896 572 / 832

ScratchSize * 4 = Internal scratch area
used during initialization (needs to be
all 0s)

User Area 1216 / 1728 N * 64 User code/data (modulo-64-byte
increments)

APPENDIX A

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 99

ModuleType

Indicates the module type. The following module types are defined:

2 = Chipset authenticated code module.

Only ModuleType 2 is supported by GETSEC functions SENTER and ENTERACCS.

ModuleSubType

Indicates whether the module is capable of being executed at processor reset.

0 = ACM cannot be executed at processor reset

1 = ACM is capable of being executed at processor reset

ModuleSubType 1 is not supported for use by the GETSEC[SENTER] instruction.

HeaderLen

Length of the authenticated module header specified in 32-bit quantities. The header
spans the beginning of the module to the end of the signature field. This is fixed to 161
for AC module version 0.0 and 320 for AC module version 3.0.

HeaderVersion

Specifies the AC module header version. Major and minor vendor field are specified,
with bits 15:0 holding the minor value and bits 31:16 holding the major value. This
should be initialized to zero for header version 0.0 and 0300H for header version 3.0.
The processor will reject unsupported header versions, resulting in an abort during
authentication.

ChipsetID

Module-specific chipset identifier.

Flags

Module-specific flags. The following bits are currently defined:

Table 9. AC module Flags Description

Bit position Description

13:0 Reserved (must be 0)

14 Production (0) or pre-production (1)

15 Production (0) or debug (1) signed

ModuleVendor

APPENDIX A

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
100 Document Number: 315168-017

Module creator vendor ID. Use the PCI SIG* assignment for vendor IDs to define this
field. The following vendor ID is currently recognized:

00008086H = Intel

Date

Creation date of the module. Encode this entry in the BCD format as follows:
year.month.day with two bytes for the year, one byte for the day, and one byte for the
month. For example, a value of 20131231H indicates module creation on December 31,
2013.

Size

Total size of module specified in 32-bit quantities. This includes the header, scratch
area, user code and data.

TXT SVN

TXT Security Version Number

SE SVN

Software Guard Extensions (a.k.a. Secure Enclaves) Security Version Number

CodeControl

Authenticated code control word. Defines specific actions or properties for the
authenticated code module.

ErrorEntryPoint

If bit 0 of the CodeControl word is 1, the processor will vector to this location if a snoop
hit to a modified line was detected during the load of an authenticated code module. If
bit 0 is 0, then enabled error reporting via bit 1 of a HITM during ACEA load will result in
an abort of the authentication process and signaling of an Intel® Trusted Execution
Technology shutdown condition.

GDTLimit

Limit of the GDT in bytes, pointed to by GDTBasePtr. This is loaded into the limit field of
the GDTR upon successful authentication of the code module.

GDTBasePtr

Pointer to the GDT base. This is an offset from the authenticated code module base
address.

SegSel

APPENDIX A

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 101

Segment selector for initializing CS, DS, SS, and ES of the processor after successful
authentication. CS is initialized to SegSel while DS, SS, and ES are initialized to
SegSel + 8.

EntryPoint

Entry point into the authenticated code module. This is an offset from the module base
address. The processor begins execution from this point after successful
authentication.

Reserved2

Reserved. Should contain zeros.

KeySize

Defines the width the RSA public key in dwords applied for authentication, less the size
of the exponent. The information in this field is intended to support external software
parsing of an AC module independent of the module version. It is the responsibility of
the developer to reflect an accurate KeySize. This field is not checked for consistency
by the processor.

ScratchSize

Defines the width of the scratch field size specified in 32-bit quantities.
For version 0.0 of the AC module header, ScratchSize is defined by KeySize * 2 + 15. For
version 3.0 it is KeySize * 2 + 16. The information in this field is intended to support
external software parsing of an AC module independent of the module version. It is the
responsibility of software to reflect an accurate ScratchSize. The processor does not
check this field.

RSAPubKey

Contains a public key modulus to be used for decrypting the signature of the module.
The size of this field is defined by the previously defined AC module field, KeySize*4.

RSAPubExp

Header 0.0: Contains standard public key exponent.
Header 3.0: Not present and is assumed to be standard value 0x10001

RSASig

The RSASSA PKCS #1.5 RSA Signature of the module. The RSA Signature signs an area
that includes the some of the module header and the USER AREA data field (which
represents the body of the module). Parts of the module header not included are: the
RSA Signature, public key, and scratch field.

Scratch

APPENDIX A

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
102 Document Number: 315168-017

Used for temporary scratch storage by the processor during authentication. This area
can be used by the user code during execution for data storage needs.

User Area

User code and data represented in modulo-64-byte increments. In addition, the
boundary between data and code should be on at least modulo-1024-byte intervals.
The user code and data region are allocated from the first byte after the end of the
Scratch field to the end of the AC module.

The chipset AC module information table is located at the start of the User Area and
contains supplementary information that is specific to chipset AC modules. The chipset
ID list is described in more detail in Section 2.2.3.1.

Table 10. Chipset AC Module Information Table

Field Offset
(Bytes)

Width
(Bytes)

Description

UUID 0 16 UUID of the Chipset AC module information table
defined as:

ULONG UUID0; // 0x7FC03AAA
ULONG UUID1; // 0x18DB46A7
ULONG UUID2; // 0x8F69AC2E
ULONG UUID3; // 0x5A7F418D

This UUID is used to identify a file/memory image
as being a chipset AC module.

ChipsetACMType 16 1 Module type (00h = BIOS; 01h = SINIT)
Bit 3, if set, flags the ACM as a revocation module,
hence “8” is a BIOS revocation AC, “9” is a SINIT
revocation AC.

Version 17 1 Version of this table. Table versions are always
backwards compatible. The highest version
defined is currently 7. Version 5 included all
changes added to suport TPM 2.0 family.
Version 6 is added to cover addition of ACM
Revision field.
Version 7 is added to cover addition of a new ACM
capability in capabilities field: Converged BtG and
TXT (CBnT) support
Version 8 is added to indicate support for TPR-
based DMA protection. Capabilities field now use
bit 14 to indicate DMA protection mechanism.

Length 18 2 Length of this table in bytes.

ChipsetIDList 20 4 Location of the Chipset ID list used to identify
chipsets supported by this AC Module. This field is
an offset in bytes from the start of the AC Module.
See Table 11 for details.

APPENDIX A

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 103

Field Offset
(Bytes)

Width
(Bytes)

Description

OsSinitDataVer 24 4 Indicates the maximum version number of the OS
to SINIT data structure that this module supports.
It is assumed that the module is backward
compatible with previous versions.

MinMleHeaderVer 28 4 Indicates the minimum version number of the MLE
Header data structure that this module
supports/requires. MLEs with more recent header
versions are responsible for determining whether
they can support this version of the ACM.

Capabilities 32 4 Bit vector of supported capabilities. The values
match those of the Capabilities field in the MLE
header. This can be used by an MLE to determine
whether the ACM is compatible with it and to
determine any optional capabilities it might
support. See Table 4.

AcmVersion 36 1 Version of this AC Module. It is compared against
the SinitMinVersion field in LCP_POLICY(2) to
determine if the module is revoked.

ACM Revision 37 3 ACM Revision in the format:
<Major>.<Minor>.<Build> = XX.YY.ZZ where X, Y
and Z are hexadecimal digits. Range for each of the
fields is therefore 0 – FF. It is assumed that this
revision will be added by BIOS to the list of records
and will be examined by tools such as TXTInfo and
Brand Verification.

ProcessorIDList 40 4 Location of the Intel® TXT Processor ID list used to
identify Intel® TXT processors supported by this
AC Module. This field is an offset in bytes from the
start of the AC Module. See Table 13 for details.

Version >= 5

TPMInfoList 44 4 Location of table of TPM capabilities supported by
ACM. This field is an offset in bytes from ACM
start.

Table 11. Chipset ID List

Field Offset
(Bytes)

Width (Bytes) Description

Count 0 4 Number of entries in the array ChipsetID

ChipsetIDs[] 4 Count * sizeof
(TXT_ACM_CH
IPSET_ID)

An array of count entries of the structure
TXT_ACM_CHIPSET_ID (see Table 12).

APPENDIX A

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
104 Document Number: 315168-017

Table 12. TXT_ACM_CHIPSET_ID Format

Field Offset
(Bytes)

Width
(Bytes)

Description

Flags 0 4 Set of flags to further describe functions of
the chipset ID structure.
Bit Description:
[0]: RevisionIdMask – if 0, the RevisionId
field must exactly match the
TXT.DIDVID.RID field. If 1, the RevisionId
field is a bitwise mask that can be used to
test for any bits set in the TXT.DIDVID.RID
field. If any bits are set, the RevisionId is a
match.
[31:1]: Reserved for future use. Must be 0.

VendorID 4 2 Indicates the chipset vendor this AC
Module is designed to support. This field is
compared against the TXT.DIDVID.VID field.

DeviceID 6 2 Indicates the chipset vendor’s device that
this AC Module is designed to support. This
field is compared against the
TXT.DIDVID.DID field.

RevisionID 8 2 Indicates the revision of the chipset
vendor’s device that this AC module is
designed to support. This field is used
according to the RevisionIdMask bit in the
Flags field.

Reserved 10 6 Reserved for future use.

Table 13. Processor ID List

Field Offset
(Bytes)

Width
(Bytes)

Description

Count 0 4 Number of entries in the array ProcessorID

ProcessorIDs[] 4 Count *
sizeof
(TXT_ACM_P
ROCESSOR_I
D)

An array of count entries of the structure
TXT_ACM_PROCESSOR_ID (see next table).

Table 14. TXT_ACM_PROCESSOR_ID Format

Field Offset
(Bytes)

Width
(Bytes)

Description

FMS 0 4 Indicates the Family/Model/Stepping of the
processor this AC Module is designed to
support. This field is compared against the
corresponding value returned from the
CPUID instruction.

FMSMask 4 4 Mask to apply to FMS

APPENDIX A

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 105

Field Offset
(Bytes)

Width
(Bytes)

Description

PlatformID 8 8 Indicates the Platform ID of the processor
this AC Module is designed to support.
This field is compared against the value in
the IA32_PLATFORM_ID MSR.

PlatformMask 16 8 Mask to apply to Platform ID

Table 15. TPM Info List

Field Offset
(Bytes)

Width
(Bytes)

Description

TPM Capabilities 0 4 TPM supported capabilities (described
below)

Count 4 2 Number of entries in AlgortihmID[]

AlgorithmID[] 6 Count *
UINT16

An array of “Count” entries of algorithm IDs
supported by SINIT ACM per the TPM2
specification enumeration in Part 2, Table 7:
TPM_ALG_RSA == 0x0001
TPM_ALG_SHA1 == 0x0004
TPM_ALG_SHA256 == 0x000B
TPM_ALG_SM3_256 == 0x0012
Etc.

Table 16. TPM Capabilities Field

Bit Position Description

1:0 TPM2 PCR Extend Policy Support
= 00b: illegal
= 01b: Maximum Agility Policy. Measurements are done using TPM PCR
event and sequence commands when a PCR algorithm is not included in
the embedded set of algorithms.
= 10b: Maximum performance Policy. Measurements are done using
embedded fixed set of algorithms and TPM PCR extend commands
= 11b: Both policies types are supported

5:2 TPM family support
= 0000b: illegal
= 0001b: discrete TPM 1.2 supported
= 0010b: discrete TPM 2.0 supported
= 1000b: firmware TPM 2.0 supported
Above settings can be combined to indicate multiple support options

6 TPM NV index set supported:
= 0: Initial TPM 2.0 TPM NV index set out of 0x180_xxxx and 0x140_xxxx
ranges
= 1: TCG compliant TPM 2.0 TPM NV index set out of Intel Reserved
range of indices 0x1C1_0100 – 0x1C1_00x13F
This bit will always be forced to “1”

APPENDIX A

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
106 Document Number: 315168-017

Bit Position Description

31:7 Reserved, must be zero

Notes on TPM2 PCR Extend Policy:

TPM2 PCR Extended Policy Support is a field describing ACM policy regarding integrity
collection commands used:

• Maximum Agility PCR Extend Policy: ACM can support algorithm agile commands
TPM2_PCR_Event; TPM2_HashSequenceStart; TPM2_HashUpdate;
TPM2_EventSequenceComplete. When this policy is selected, ACM will use the
commands above if not all PCR algorithms are covered by embedded set of
algorithms and will extend all existing PCR banks. Side effect of this policy is
possible performance loss.

• Maximum Performance PCR Extend Policy: ACM can support several hash
algorithms via embedded SW. When this policy is selected, ACM will use embedded
SW to compute hashes and then will use TPM2_PCR_Extend commands to extend
them into PCRs. If PCRs utilizing hash algorithms not supported by SW are
discovered, they will be capped with “1” value. This policy, when selected, will
ensure maximum possible performance but has side effect of possible capping of
some of the PCRs.

For an ACM that supports both extend policies, it will use the one indicated in the flags
field in the OsSinitData structure (Table 22).

Notes on TPM family:

0001b - Discrete TPM 1.2 supported: this includes all FIFO interfaces that are used with
this family – TIS 1.21, and TIS 1.3

0010b - Discrete TPM 2.0 supported: this includes all interfaces that are supported with
this family – TIS1.3, and PTP2.0.

0011b – Both combinations above are supported

1000b – TPM2.0 family is supported over CRB interface.

1010b – TPM2.0 family is supported over FIFO and CRB interfaces, etc.

 Memory Type Cacheability Restrictions

Prior to launching the authenticated execution environment using the GETSEC leaf
functions ENTERACCS or SENTER, processor MTRRs (Memory Type Range Registers)
must first be initialized to map out the authenticated RAM addresses as WB (write-
back). Failure to do so may affect the ability for the processor to maintain isolation of
the loaded authenticated code module. The processor will signal an Intel® TXT

APPENDIX A

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 107

shutdown condition with the #BadACMMType error code during the loading of the
authenticated code module if non-WB memory is detected.

Note: Despite the CPU enforcing only 4KB SINIT alignment, such allocation may require too
many MTRRs to provide the WB cache-ability. Consequently, it is suggested that BIOS
allocate SINIT memory on the 128KB boundary. This combined with specially selected
SINIT sizes will allow using minimal number of MTRRs (up to 3).

While physical addresses within the load module must be mapped as WB, the memory
type for locations outside of the module boundaries must be mapped to one of the
supported memory types as returned by GETSEC[PARAMETERS] (or UC as default).
This is required to support inter-operability across SMX capable processor
implementations.

 Authentication and Execution of AC Module

Authentication is performed after loading the code module into the authenticated code
execution area. Information from the authenticated code module header is used to
support the authentication process. The RSAPubKey header version 0.0 field contains a
public key plus a 32-bit exponent (skipped in the header 3.0 and is assumed to be a
standard one) used for decrypting the signature of the authenticated code module. The
signature is held in encrypted form in the RSASig header field and it represents the
PKCS #1.5 of RSA Signature of the module. The RSA Signature signs an area that
includes the sum of the module header and the entire USER AREA data field, which
represents the body of the module. Those parts of the module header not included are:
the RSA Signature, the public key, and the scratch field. An inconsistent authenticated
code module format, inconsistent comparison of the public key hash, or mismatch of
the decrypted signature against the computed hash of the authenticated module or a
corrupted signature padding value results in an abort of the authentication process and
signaling of an Intel® TXT shutdown condition. As part of the authentication step, the
processor stores the decrypted signature of the AC module in the first 20 or 32 bytes
(depending on the CPU family) of the ‘Scratch’ field of the AC module header.

After authentication has completed successfully, the private configuration space of the
Intel® TXT-capable chipset is unlocked. At this point, only the authenticated code
module or system software executing in authenticated code execution mode is allowed
to gain access to the restricted chipset state for the purpose of securing the platform.

The architectural state of the processor is partially initialized from contents held in the
header of the authenticated code module. The processor GDTR, CS, and DS selectors
are initialized from fields within the authenticated code module. Since the
authenticated code module must be relocatable, all address references must be
relative to the authenticated code module base address in EBX. The processor GDTR
base value is initialized to the AC module header field GDT BasePtr + module base
address held in EBX and the GDTR limit is set to the value in the GDT Limit field. The CS
selector is initialized to the AC module header SegSel field, while the DS selector is
initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0,

APPENDIX A

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
108 Document Number: 315168-017

LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access
for CS. The processor begins the authenticated code module execution with the EIP set
to the AC module header EntryPoint field + module base address (EBX). The AC
module-based fields used for initializing the processor state are checked for
consistency and any failure results in a shutdown condition.

§§

APPENDIX B

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 109

 SMX Interaction with Platform

 Intel® Trusted Execution Technology Configuration
Registers

Intel® TXT configuration registers are a subset of chipset registers. These registers are
mapped into two regions of memory, representing the public and private configuration
spaces. Registers in the private space can only be accessed after a measured
environment has been established and before the TXT.CMD.CLOSE-PRIVATE command
has been issued. The private space registers are mapped to the address range starting
at FED20000H. The public space registers are mapped to the address range starting at
FED30000H and are available before, during and after a measured environment launch.
All registers are defined as 64 bits and return 0’s for the unimplemented bits. The
offsets in the table are from the start of either the public or private spaces (all registers
are available within both spaces, though with different permissions).

After writing to one of the command registers (e.g., TXT.CMD.SECRETS), software
should read the corresponding status flag for that command (e.g. TXT.E2STS
[SECRETS.STS]) to ensure that the command has completed successfully.

 TXT.STS – Status
Description This is the general status register. AC modules and the MLE use this read-only

register to get the status of various Intel® TXT features.

Offset 000H

Pub Attribs
Priv Attribs

RO
RO

Bits Field Name Field Description

0 SENTER.DONE.
STS

The chipset sets this bit when it sees all threads have done an
TXT.CYC.SENTER-ACK.
When any of the threads does the TXT.CYC.SEXIT-ACK the
TXT.THREADS.JOIN and TXT.THREADS.EXISTS registers will not
be equal, so the chipset will clear this bit.

1 SEXIT.DONE.
STS

This bit is set when all bits in the TXT.THREADS.JOIN register are
clear. Thus, this bit will be set immediately after reset (since the
bits are all 0).
Once all threads have done a TXT.CYC.SEXIT-ACK, the
TXT.THREAD.JOIN register will be 0, so the chipset will set this
bit.

5:2 Reserved Reserved

APPENDIX B

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
110 Document Number: 315168-017

Bits Field Name Field Description

6 MEM-CONFIG-
LOCK.STS

This bit will be set to 1 when the memory configuration has been
locked.
Cleared by TXT.CMD.UNLOCK.MEMCONFIG or by a system reset.

7 PRIVATE-
OPEN.STS

This bit will be set to 1 when TXT.CMD.OPEN-PRIVATE is
performed.
Cleared by TXT.CMD.CLOSE-PRIVATE or by a system reset.

14:8 Reserved Reserved

15 TXT.LOCALITY1.O
PEN.STS

This bit is set when the TXT.CMD.OPEN.LOCALITY1 command is
seen by the chipset. It is cleared on reset or when
TXT.CMD.CLOSE.LOCALITY1 is seen.

16 TXT.LOCALITY2.O
PEN.STS

This bit is set when either the TXT.CMD.OPEN.LOCALITY2
command or the TXT.CMD.OPEN.PRIVATE is seen by the chipset.
It is cleared on reset, when either TXT.CMD.CLOSE.LOCALITY2 or
TXT.CMD.CLOSE.PRIVATE is seen, and by the GETSEC[SEXIT]
instruction.

63:17 Reserved Reserved

 TXT.ESTS – Error Status
Description This is the error status register that contains status information associated with

various error conditions. The contents of this register are preserved across soft
resets.

Offset 008H

Pub Attribs
Priv Attribs

RO

RO

Bits Field Name Field Description

0 TXT_RESET.
STS

This bit is set to ‘1’ to indicate that an event occurred which may
prevent the proper use of TXT (possibly including a TXT reset).
To maintain TXT integrity, while this bit is set a TXT measured
environment cannot be established; consequently, Safer Mode
Extension (SMX) instructions GETSEC[ENTERACCS] and GETSEC
[SENTER] will fail.
This bit is sticky and will only be cleared on a power cycle.

7:1 Reserved Reserved

APPENDIX B

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 111

 TXT.ERRORCODE – Error Code
Description This register holds the Intel® TXT shutdown error code. A soft reset does not

clear the contents of this register; a hard reset/power cycle will clear the
contents. This was formerly labeled the TXT.CRASH register.

Offset 030H

Pub Attribs
Priv Attribs

RO
RW

Bits Field Name Field Description

3:0 Type2 /Module Type 0 = BIOS ACM

1= SINIT

9:4 Type2 / Class Code 0-0x3f = Class code clusters several congeneric errors into a group

14:10 Type2 /Major Error
Code

0-0x1f = Error Code within current Class Code.

15 Software Source 0 = Authenticated Code Module
1 = MLE

27:16 Type1 /Minor Error
Code

This Field value depends on Class Code and / or Major Error Code.

29:28 Type1/Reserved This is implementation and source specific. Provides details on the failure
condition.

30 Processor/Software 0 = Error condition reported by processor (see Table 17)
1 = Error condition reported by software

31 Valid/Invalid 0 = Register content invalid, the rest of the register contents
should be ignored.
1 = Valid error

Note: Upon successful execution, SINIT will put 0xC0000001 in the register.

Note: The format of the Type field for errors reported by SINIT is defined in an errors text file
included with each SINIT AC module. This file also includes the definition of the error
codes produced by that version of SINIT. Error definitions which are stable across SINIT
AC Modules can be found in Appendix H.

Table 17. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns

Type Error condition Mnemonic

0 Legacy shutdown #LegacyShutdown

1-4 Reserved Reserved

5 Load memory type error in
Authenticated Code Execution Area

#BadACMMType

6 Unrecognized AC module format #UnsupportedACM

APPENDIX B

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
112 Document Number: 315168-017

Type Error condition Mnemonic

7 Failure to authenticate #AuthenticateFail

8 Invalid AC module format #BadACMFormat

9 Unexpected snoop hit detected #UnexpectedHITM

10 Invalid event #InvalidEvent Note 2

11 Invalid MLE JOIN format #BadJOINFormat

12 Unrecoverable machine check
condition

#UnrecovMCError

13 VMX abort error occurred #VMXAbort

14 Authenticated code execution area
corruption

#ACMCorrupt

15 Invalid voltage/bus ratio #InvalidVIDBRatio

16 – 65535 Reserved Reserved

Note: The conditions under which most of these errors are generated can be found in the
pseudo code of the SMX instructions in Chapter 6, “Safer Mode Extensions Reference”,
of the Intel 64 and IA-32 Software Developer Manuals, Volume 2B.

Note: #InvalidEvent can be generated by the following:

• A CPU reset which is not caused by a TXT Reset

• A non-virtualized INIT event

• During RLP wakeup, bit 0 of the RLPs’ IA32_SMM_MONITOR_CTL MSR does not
match that of the ILP

• An SENTER/SEXIT/WAKEUP event is received post-VMXON

• A thread wakes from the wait-for-SIPI state while another thread in the same CPU is
executing an AC Module

 TXT.CMD.RESET – System Reset Command
Description A write to this register causes a system reset. The processor performs this as

part of an Intel® TXT shutdown, after writing to the TXT.ERRORCODE register.

Offset 038H

Pub Attribs
Priv Attribs

-

WO

Bits Field Name Field Description

7:0

APPENDIX B

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 113

 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command
Description A write to this register causes the Intel® TXT-capable chipset private

configuration space to be locked. Locality 2 will also be closed. Once locked,
conventional memory read/write operations can no longer be used to access
these registers. The private configuration space can only be opened for the
MLE by successfully executing GETSEC[SENTER].

Offset 048H

Pub Attribs
Priv Attribs

WO (a serializing operation, such as a read of the register, is required after the
write to ensure that any future chipset operations see the write)

Bits Field Name Field Description

7:0

 TXT.SPAD – BOOTSTATUS
Description This register is used by Startup ACM to convey to BIOS results of its operation.

In general, it is of no interest to OS SW and is provided as reference. Bit
definitions are not architectural and therefore are not guaranteed to be
absolutely stable across all platform generations.

Offset A0H

Pub Attribs
Priv Attribs

RO

RW

Bits Field Name Field Description

29:0 Reserved

30 TXT Startup success Indicates TXT Startup Success. Signifies successful TXT data
preparation for BIOS, SINIT and MLE

46:31 Boot Status General Startup ACM to BIOS status communication.

47 Memory power
down executed

Indicates that memory content was cleared via power down

52:48 Boot Status details Startup ACM to BIOS communication in MP platforms.

53 TXT Policy enable Startup ACM indication of run-time enabled status of TXT. This
can be result of either absence of FIT type 0xA record or that FIT
type 0xA record exists and its policy setting enables TXT.

58:54 Boot Status details Startup ACM to BIOS communication in MP platforms.

59 BIOS trusted Indicates that BIOS is trusted.

60 TXT Policy disable Indicates that TXT has been disabled by runtime FIT type 0xA
record policy setting

61 Boot Status details Startup ACM to BIOS communication in MP platforms. For details
reader is referred to respective CBnT server BIOS specification.

APPENDIX B

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
114 Document Number: 315168-017

Bits Field Name Field Description

62 CPU Error Indicates ACM authentication error

63 S-ACM success Indicates that S-ACM successfully enforced its logic for all
provisioned technologies. Successful execution of TXT
specifically is indicated by bit 30

 TXT.DIDVID – TXT Device ID
Description This register contains the vendor, device, and revision IDs for the memory

controller or chipset.

Offset 110H

Pub Attribs
Priv Attribs

RO
RO

Bits Field Name Field Description

15:0 VID Vendor ID: 8086 for Intel® components

31:16 DID Device ID: specific to the chipset/platform

47:32 RID Revision ID: specific to the chipset/platform

63:48 ID-EXT Extended ID: specific to the chipset/platform

 TXT.VER.EMIF – EMC Version Numer Register
Description This register identifies whether the memory controller or chipset is debug or

release fused.

Offset 200H

Pub Attribs
Priv Attribs

RO
RO

Bits Field Name Field Description

30:0 Reserved Reserved

31 DEBUG.FUSE 0 = Chipset is debug fused
1 = Chipset is production fused

APPENDIX B

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 115

 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config Command
Description When this command is invoked, the chipset unlocks all memory configuration

registers.

Offset 218H

Pub Attribs
Priv Attribs

-
WO (a serializing operation, such as a read of the register, is required after the
write to ensure that any future chipset operations.)

Bits Field Name Field Description

7:0

 TXT.SINIT.BASE – SINIT Base Address
Description This register contains the physical base address of the memory region set

aside by the BIOS for loading an SINIT AC module. If BIOS has provided an
SINIT AC module, it will be located at this address. System software that
provides an SINIT AC module must store it to this location.

Offset 270H

Pub Attribs
Priv Attribs

RW

RW

Bits Field Name Field Description

31:0

 TXT.SINIT.SIZE – SINIT Size
Description This register contains the size (in bytes) of the memory region set aside by the

BIOS for loading an SINIT AC module. This register is initialized by the BIOS.

Offset 278H

Pub Attribs
Priv Attribs

RW

RW

Bits Field Name Field Description

31:0

APPENDIX B

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
116 Document Number: 315168-017

 TXT.MLE.JOIN – MLE Join Base Address
Description Holds a physical address pointer to the base of the join data structure used to

initialize RLPs in response to GETSEC[WAKEUP].

Offset 290H

Pub Attribs
Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

 TXT.HEAP.BASE – TXT Heap Base Address
Description This register contains the physical base address of the Intel® TXT Heap

memory region. The BIOS initializes this register.

Offset 300H

Pub Attribs
Priv Attribs

RW

RW

Bits Field Name Field Description

31:0

 TXT.HEAP.SIZE – TXT Heap Size
Description This register contains the size (in bytes) of the Intel® TXT Heap memory region.

The BIOS initializes this register.

Offset 308H

Pub Attribs
Priv Attribs

RW

RW

Bits Field Name Field Description

31:0

APPENDIX B

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 117

 TXT.DPR – DMA Protected Range
Description This register defines the DMA Protected Range of memory in which the TXT

heap and SINIT region are located.

Offset 330H

Pub Attribs
Priv Attribs

RW

RW

Bits Field Name Field Description

0 Lock Bits 19:0 are locked down in this register when this bit is set.

3:1 Reserved Reserved

11:4 Size This is the size of memory, in MB, that will be protected from
DMA accesses. A value of 0x00 in this field means no additional
memory is protected.
The DPR range works independently of any other DMA
protections, such as VT-d, and is done post any VT-d translation
or TXT checks.

19:12 Reserved Reserved

31:20 Top Top address + 1 of DPR. This is the base of TSEG.

Note: Modern platforms utilizing SGX technology implement the DPR register as part of
uncore, not as part of PCH and thus TXT.DPR register has been deprecated with no
underlying HW functionality.

Actual DPR register is implemented as the PCIE register with a typical BDFR 0.0.0.0x5C.
Platform manufacturers shall consult respective external data sheets to verify the
above numeric value as it may change.

 TXT.SCRATCHPAD – ACM_POLICY_STATUS
Description This register is used by Startup ACM to convey to BIOS enforced policies. Only

bits that might be of interest for OS SW are provided as a reference. Bit
definitions are not architectural and therefore are not guaranteed to be
absolutely stable across all platform generations.

Offset 378H

Pub Attribs
Priv Attribs

RO

RW

Bits Field Name Field Description

12:0 Reserved

14:13 TPM type TPM type detected by Startup ACM:

APPENDIX B

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
118 Document Number: 315168-017

= 0 – No TPM
= 1 – dTPM 1.2
= 2 – dTPM 2.0
= 3 – PTT

31:15 Reserved

34:32 S-CRTM Status Startup ACM SCRTM establishment:
= 0 – not established by Startup ACM
> 0 – established by Startup ACM

35:33 Reserved

36 TPM Startup
locality

Indication of locality at which TPM2_Startup command was
executed:
= 0 – locality 3
= 1 – locality 0

63:37 Reserved

 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command
Description Writing to this register “opens” the TPM locality 1 address range, enabling

decoding by the chipset and thus access to the TPM.
This locality is not automatically opened after GETSEC[SENTER] and must be
opened explicitly.
This locality will not be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 380H

Pub Attribs
Priv Attribs

-

WO

Bits Field Name Field Description

7:0

 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command
Description Writing to this register “closes” the TPM locality 1 address range, disabling

decoding by the chipset and thus access to the TPM.
This locality will not be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 388H

Pub Attribs
Priv Attribs

-
WO

APPENDIX B

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 119

Bits Field Name Field Description

7:0

 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command
Description Writing to this register “opens” the TPM locality 2 address range, enabling

decoding by the chipset and thus access to the TPM.
This locality is automatically opened after GETSEC[SENTER].
This locality will be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 390H

Pub Attribs
Priv Attribs

-
WO

Bits Field Name Field Description

7:0

 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command
Description Writing to this register “closes” the TPM locality 2 address range, disabling

decoding by the chipset and thus access to the TPM.
This locality will be closed by the TXT.CMD.CLOSE-PRIVATE command or by
the GETSEC[SEXIT] instruction.

Offset 398H

Pub Attribs
Priv Attribs

-

WO

Bits Field Name Field Description

7:0

 TXT.PUBLIC.KEY – AC Module Public Key Hash
Description This register contains the hash of the public key used for the verification of AC

Modules. The size, hash algorithm, and value are specific to the memory
controller or chipset.

Offset 400H

Pub Attribs
Priv Attribs

RO
RO

APPENDIX B

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
120 Document Number: 315168-017

Bits Field Name Field Description

255:0

Note: Modern platforms utilizing SGX technology implement the Public Key Hash register as
part of the CPU core, not as part of PCH and thus TXT.PUBLIC.KEY register has been
deprecated with no underlying HW functionality. Any value it may contain does not
have meaning and must be disregarded.

Actual Public Key Hash is typically available in CPU MSRs 0x20∷0x23. Platform
manufacturers shall consult respective external data sheets to verify the above numeric
values as it may change.

 TXT.CMD.SECRETS – Set Secrets Command
Description Writing to this register indicates to the chipset that there are secrets in

memory. The chipset tracks this fact with a sticky bit. If the platform reboots
with this sticky bit set the BIOS AC module (or BIOS on multiprocessor TXT
systems) will scrub memory. The chipset also uses this bit to detect invalid
sleep state transitions. If software tries to transition to S3, S4, or S5 while
secrets are in memory then the chipset will reset the system.
The MLE issues the TXT.CMD.SECRETS command prior to placing secrets in
memory for the first time.

Offset 8E0H

Pub Attribs
Priv Attribs

-
WO

Bits Field Name Field Description

7:0

 TXT.CMD.NO-SECRETS – Clear Secrets Command
Description Writing to this register indicates there are no secrets in memory.

The MLE will write to this register after removing all secrets from memory as
part of the TXT teardown process.

Offset 8E8H

Pub Attribs
Priv Attribs

-
WO

Bits Field Name Field Description

7:0

APPENDIX B

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 121

 TXT.E2STS – Extended Error Status
Description This register is used to read the status associated with various errors that

might be detected. The contents of this register are preserved across soft
resets.

Offset 8F0H

Pub Attribs
Priv Attribs

RO
RW

Bits Field Name Field Description

0 Reserved Reserved

1 SECRETS.STS 0 = Chipset acknowledges that no secrets are in memory
1 = Chipset believes that secrets are in memory and will provide reset
protection

63:2 Reserved Reserved

 TPM Platform Configuration Registers

The TPM contains Platform Configuration Registers (PCRs). The purpose of a PCR is to
contain measurements. From a TPM standpoint, the TPM does not care what entity
uses a PCR to store a measurement.

The TPM provides two types of PCRs: static and dynamic. Static PCRs only reset on
system reset; dynamic PCRs reset upon request. Static PCRs are written by the static
root of trust for measurement (SRTM). In the PC, the SRTM begins with the BIOS boot
block. The dynamic PCRs are written by the dynamic root of trust for measurement
(DRTM). In the PC, the DRTM is the process initiated by GETSEC[SENTER].

A PC TPM requires a minimum of 24 PCRs. The first 16 are designated the static Root of
Trust and the next eight are designated the dynamic Root of Trust. Intel® TXT uses PCRs
17 and 18 within the dynamic Root of Trust to measure the MLE.

All PCRs for TPM 1.2 devices, static or dynamic, have the same size and same updating
mechanism. The size is 160 bits. This size allows the PCRs to contain a SHA1 hash
digest value. Storing a measurement value in the PCRs involves a TPM_Extend
operation, which is itself a hash operation.

PCRs for TPM 2.0 devices will be sized appropriately for the largest digest resulting
from algorithms they support, typically 256 bits or greater. This is elaborated in
Section 1.8, 1.9, 1.10, and 3.6 above.

APPENDIX B

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
122 Document Number: 315168-017

 Intel® Trusted Execution Technology Device Space

There are several memory ranges within Intel® TXT address space provided to access
Intel® TXT related devices. The first range is 0xFED4_xxxx that is divided up into 16
pages. Each page in the FED4 range has specific access attributes. A page in this region
may be accessed by Intel® TXT cycles only, by Intel® TXT cycles and via private space, or
by Intel® TXT cycles, private and public space.

Table 18. TPM Locality Address Mapping

Address Range TPM Locality

FED4 0xxxH Locality 0 (fully public)

FED4 1xxxH Locality 1 (trusted OS)

FED4 2xxxH Locality 2 (MLE access only)

FED4 3xxxH Locality 3 (AC modules access only)

FED4 4xxxH Locality 4 (Hardware or microcode access only)

All others Reserved

The first five pages of the 0xFED4_xxxx region are used for TPM access. Each page
represents a different locality to the TPM. Locality is an attribute used by the TPM to
define how it treats certain transactions. The address range used for commands sent to
the TPM defines locality. All Intel® TXT chipsets must support all localities. Locality 0 is
considered public and accesses it is accepted by the chipset under all circumstances.
Accesses to locality 0 are sent to the ICH even if Intel® TXT is disabled, there has been
no SENTER, or private space is closed. Locality 4 is never open but may only be
accessed with Intel® TXT cycles. There are Intel® TXT commands that will open
localities 1 through 3. Localities 2-3 require that both TXT.CMD.OPEN.LOCALITY and
TXT.CMD.OPEN-PRIVATE be done before allowing accesses in that range to be
accepted. At reset, localities 1 through 3 are closed.

No status read check of the TPM is performed by the processor GETSEC [SENTER]
instruction ahead of the TPM.HASH write sequence. If the TPM is not in acquiesced
state at this time, then the PCRs 17-20 reset and hash registration to PCR 17 may not
succeed. To insure reliable system software functionality for TPM support, it is
recommended that the GETSEC [SENTER] instruction only be executed once the TPM
has acquiesced and ownership has been established in the context of the SENTER
initiating process.

Upon successful execution of GETSEC [SENTER] and relinquishment of control by
SINIT, the TPM’s private space and locality 2 should be left open. No locality should be
active.

§§

APPENDIX C

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 123

 Intel® TXT Heap Memory
Intel® TXT Heap memory is a region of physically contiguous memory that is set aside
by BIOS for the use of Intel® TXT hardware and software. The system software that
launches the measured environment passes data to both the SINIT AC module and the
MLE using Intel® TXT Heap memory. The system software is responsible for filling in the
table contents prior to executing the SENTER instruction. An incorrect format or
incorrect content of this table or tables described by this table will result in failure to
launch the protected environment.

Table 19. Intel® Trusted Execution Technology Heap

Offset Length
(bytes)

Name Description

0 8 BiosDataSize Size in bytes of the Intel® TXT
specific data passed from the
BIOS to system software for
the purposes of launching the
MLE. This size includes the
number of bytes for this field,
so this field cannot be less than
a value of 82.

8 BiosDataSize -
8

BiosData BIOS specific data. The format
of this data is described below
in Table 20.

BiosDataSize 8 OsMleDataSize Size in bytes of the data passed
from the launching system
software to the MLE. This size
includes the number of bytes
for this field, so this field
cannot be less than a value of
81.

BiosDataSize + 8 OsMleDataSiz
e – 8

OsMleData System software -specific data.
Format of data in this field is
considered specific to the
system software vendor.

BiosDataSize +
OsMleDataSize

8 OsSinitDataSize Size in bytes of the data passed
from the launching system
software to the SINIT AC
module. This size includes the
number of bytes for this field,
so this field cannot be less than
a value of 81.

2 For proper data alignment on 64-bit processor architectures this field must be a multiple of 8
bytes.

APPENDIX C

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
124 Document Number: 315168-017

Offset Length
(bytes)

Name Description

BiosDataSize +
OsMLEDataSize + 8

OsSinitDataSi
ze – 8

OsSinitData System software data passed
to the SINIT AC module. The
format of this data is described
below in Table 22.

BiosDataSize +
OsMleDataSize +
OsSinitDataSize

8 SinitMleDataSiz
e

Size in bytes of the data passed
from the launched SINIT AC
module to the MLE. This size
includes the number of bytes
for this field, so this field
cannot be less than a value of
81.

BiosDataSize +
OsMleDataSize +
OsSinitDataSize + 8

SinitMleDataSi
ze – 8

SinitMleData SINIT data passed to the MLE.
The format of this data is
described below in Table 23.

Note: BiosDataSize + OsMleDataSize + OsSinitDataSize + SinitMleDataSize must be less than
or equal to TXT.HEAP.SIZE.

 Extended Data Elements

Extended data elements are self-describing data structures that will be used for all
future extensions to TXT heap tables. The ExtDataElements[] field in each of the heap
tables is an array/list of individual elements, terminated by a HEAP_END_ELEMENT:

ExtDataElements[] ::= <HEAP_EXT_DATA_ELEMENT>* |
<HEAP_END_ELEMENT>

Each element consists of the following data structure:

typedef struct {
 UINT32 Type; // one of HEAP_EXTDATA_TYPE_*
 UINT32 Size;
 UINT8 Data[Size – 8];
} HEAP_EXT_DATA_ELEMENT;

The extended data element structures in the following sub-sections (named
HEAP_*_ELEMENT) correspond to the contents of the Data field for the specific type of
element.

While not required, it is recommended that Size be a 4-byte multiple.

Entities that use the ExtDataElements[] fields must ignore element types that they do
not understand or care about. This allows forward and backward compatibility of these
fields.

APPENDIX C

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 125

 HEAP_END_ELEMENT

#define HEAP_EXTDATA_TYPE_END 0

typedef struct {
 UINT32 Type; // = 0
 UINT32 Size; // = 8
} HEAP_END_ELEMENT;

The HEAP_END_ELEMENT represents the terminating element of a given
ExtDataElements[] list. It contains no Data[] field.

 HEAP_CUSTOM_ELEMENT

#define HEAP_EXTDATA_TYPE_CUSTOM 4

typedef struct {
 UINT32 data1;
 UINT16 data2;
 UINT16 data3;
 UINT16 data4;
 UINT8 data5[6];
} UUID;

typedef struct {
 UUID Uuid;
 UINT8 Data[];
} HEAP_CUSTOM_ELEMENT;

The HEAP_CUSTOM_ELEMENT allows for platform suppliers to communicate supplier-
specific data through a standard location and mechanism. Software wishing to use this
data must understand its format.

Uuid is a UUID value that uniquely identifies the format of the Data field. It is important
to generate the UUID value using a process that will provide a statistically unique value.

The platform supplier defines the Data field’s contents. The size of this data must be
included within the size of the HEAP_EXTDATA_ELEMENT.Size field.

 Benchmarking element

One of the usages of HEAP_CUSTOM_ELEMENT defined by CBnT is delivering of
benchmarking information.

typedef struct {
 UUID Uuid; // 0x06A9C77B, 0x850B476B, 0xB3D0C9B4,
0x7BCB8A85
 UINT32 ModuleId; // Creation data from the ACM header
 UINT32 Count;
 RECORD Record[Count];

APPENDIX C

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
126 Document Number: 315168-017

}

typedef struct {
 UINT16 TaskNumber;
 UINT16 Tag;
 UINT64 Timestamp;
}

ModuleId is SINIT creation data from its header.

Count is count of benchmarking records.

Record is array of RECORD structures.

In a RECORD structure:

TaskNumber is internal sequential SINIT task number;

Timestamp is value of TSC counter at the time when record is created.

Tag is numeric tag associated with any point of interest of SINIT execution flow. For
instance duration of TPM command needs to be measured. For this purpose, two tags
will be assigned – start tag and end tag. Sought duration will be different between two
TSC timestamps (in TSC clocks);

Note: Benchmarking information is available in special build of NPW modules. Such modules
are built by customer demand.

 BIOS Data Format

The format of the data passed from the BIOS to the system software for the purposes
of launching the measured environment is shown in Table 20.

Table 20. BIOS Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the BiosData table. The
current value is 5 for TPM 1.2 family. TPM 2.0
requires version 6 (versions 4∷6 are supported).
This value is incremented for any change to the
definition of this table. Future versions will
always be backwards compatible with previous
versions (new fields will be added at the end).

APPENDIX C

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 127

Offset Length
(bytes)

Name Description

4 4 BiosSinitSize This field indicates the size of the SINIT AC
module provided by system BIOS. A value of 0
indicates the BIOS is not providing an SINIT AC
module for system software use. A non-0 value
indicates that the AC module will be at the
location specified by the TXT.SINIT.BASE
register and be of the specified size.

8 8 Reserved1 BIOS data table no longer contains LcpPdBase
field since the field was associated with
currently removed PS LCP Policy Data File.

16 8 Reserved2 BIOS data table no longer contains LcpPdSize
field since this field was associated with
currently removed PS LCP Policy Data File

24 4 NumLogProcs This is the total number of logical processors in
the system. The minimum value in this register
must be at least 1.

Versions >= 3

28 4 SinitFlags BIOS-provided information for SINIT AC module
consumption. Bit definition will be dependent
on the chipset. Currently none are defined

Versions >= 5 with updates in version 6

32 4 MleFlags BIOS-provided information for system software
and the MLE, about TXT capabilities of the BIOS.
See Table 21.

Versions >= 4

36 BiosDataSi
ze - 36

ExtDataElement
s[]

Array/list of extended data element structures.
See below for element definitions.

Table 21. MLE Flags Field Bit Definitions

Bit position Description

Versions >= 5

0 Support for TXT/VT-x/VT-d ACPI PPI specification Note 1

Versions >= 6

2:1 00: legacy state / platform undefined
01: client platform, client SINIT is required
10: server platform, server SINIT is required
11: Reserved/illegal, must be ignored

All versions

31:3 Reserved, must be zero

APPENDIX C

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
128 Document Number: 315168-017

Note: “Intel® Trusted Execution Technology (Intel® TXT) – One-Touch Enabling, Intel TXT
Provisioning Interface. Addendum to TCG Physical Presence Interface (PPI)
Specification”

 HEAP_BIOS_SPEC_VER_ELEMENT

#define HEAP_EXTDATA_TYPE_BIOS_SPEC_VER 1

typedef struct {
 UINT16 SpecVerMajor;
 UINT16 SpecVerMinor;
 UINT16 SpecVerRevision;
} HEAP_BIOS_SPEC_VER_ELEMENT;

The HEAP_BIOS_SPEC_VER_ELEMENT contains fields that indicate the version of the
TXT BIOS specification to which this platforms BIOS corresponds. This element type is
mainly useful for diagnostic tools.

 HEAP_ACM_ELEMENT

#define HEAP_EXTDATA_TYPE_ACM 2

typedef struct {
 UINT32 NumAcms;
 UINT64 AcmAddrs[NumAcms]; // physical address of ACM
} HEAP_ACM_ELEMENT;

The HEAP_ACM_ELEMENT allows BIOS to indicate the ACMs that it contains and their
locations in memory.

BIOSes that support this element type should report all ACMs that they carry; both
BIOS ACMs and SINIT ACMs.

Note: For SINIT ACM address in the AcmAddrs array shall point to the uncompressed module
image in the TXT heap memory (Same as in TXT.SINIT.BASE register – see Appendix
B.1.10).

Since the TXT architecture requires that BIOS provide at least one BIOS ACM, NumAcms
must always be greater than 0.

AcmAddrs[] is an array of physical addresses of each of the ACMs.

 HEAP_STM_ELEMENT

#define HEAP_EXTDATA_TYPE_STM 3

typedef struct {
 UINT8 Data[];

APPENDIX C

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 129

} HEAP_STM_ELEMENT;

The HEAP_STM_ELEMENT allows BIOS to indicate to the MLE STM related BIOS
properties. Its format is specified in “SMI Transfer Monitor (STM) User Guide”
https://firmware.intel.com/content/smi-transfer-monitor-stm.

The platform supplier defines the Data field’s contents. The size of this data must be
included within the size of the HEAP_EXTDATA_ELEMENT.Size field.

 OS to MLE Data Format

Each system software vendor may have a different format for this data, and any MLE
being launched by system software must understand the format of that software’s
handoff data.

 OS to SINIT Data Format

Table 22 defines the format of the data passed from the launching system software to
the SINIT AC module in the OsSinitData field.

Table 22. OS to SINIT Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the OsSinitData table.
Current values are 6 for TPM 1.2 family and 7
for TPM 2.0 family. No other values are
supported. This value is incremented for any
change to the definition of this table. Future
versions will always be backwards compatible
with previous versions (new fields will be
added at the end).

Versions <= 6

4 4 Reserved Reserved for future use

Version = 7

4 4 Flags Bit 0: PCR Extend Policy Control
0 – Maximum Agility Policy
1 – Maximum Performance Policy

Versions >=4

8 8 MLE
PageTableBase

Physical address of MLE page table (the MLE
page directory pointer table address)

16 8 MLE Size Size in bytes of the MLE image

24 8 MLE HeaderBase Linear address of MLE header (linear address
within the MLE page tables)

https://firmware.intel.com/content/smi-transfer-monitor-stm

APPENDIX C

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
130 Document Number: 315168-017

Offset Length
(bytes)

Name Description

32 8 PMR Low Base Physical base address of the PMR Low region
(must be 2MB aligned). Can be set to zero if
not desired to be enabled by SINIT. The
MVMM must be loaded in one of the DPR, PRM
low, or the PMR high regions.

40 8 PMR Low Size Size of the PMR Low Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

48 8 PMR High Base Physical base address of the PMR High region
(must be 2MB aligned). Can be set to zero if
not desired to be enabled by SINIT.

56 8 PMR High Size Size of the PMR HIGH Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

64 8 LCP PO Base Physical base address of the Platform Owner’s
Launch Control Policy, LCP_POLICY_DATA
structure.

72 8 LCP PO Size Size of the Launch Control Policy Platform
Owner’s Policy Data.

80 4 Capabilities Bit vector of capabilities that SINIT is
requested to use. This must be a subset of the
ones SINIT supports - Table 4. Note that for
CBnT bits 5:4 must be 11b, since D/A mapping
is the only one supported.

Versions >= 6

84 8 EFI RSDP Pointer Physical address of RSDP when an EFI boot
was performed. If not provided or invalid SINIT
attempts to find the standard ACPI RSDP
pointer.

92 OsSinitD
ataSize -
92

ExtDataElements[] Array/list of extended data element structures.
See below for element definitions. Note that
for CBnT, there must be a single
HEAP_EVENT_LOG_POINTER_ELEMENT(2_1)
structure with a HEAP_END_ELEMENT
terminating the list.

 HEAP_TPM_EVENT_LOG_ELEMENT

This element specifies the pointer to the event log structure describing event log
memory allocated by OS. Log will be created by SINIT. This element version is used to
request TPM 1.2 style event log.

#define HEAP_EXTDATA_TYPE_TPM_EVENT_LOG_PTR 5

typedef struct {
 UINT64 EventLogPhysAddr;

APPENDIX C

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 131

} HEAP_TPM_EVENT_LOG_ELEMENT;

The HEAP_TPM_EVENT_LOG_ELEMENT is used for system software to inform SINIT of
the location of the TPM PCR event log that the system software has allocated. See
Appendix F for additional information about the log.

EventLogPhysAddr is the physical address of the event log structure. The event log
structure must be completely below 4GB.

SINIT in TPM 1.2 mode will require HEAP_TPM_EVENT_LOG_ELEMENT to be present
since event log is required for attestation.

 HEAP_EVENT_LOG_POINTER_ELEMENT2_1

This element describes event log SINIT creates in TPM 2.0 mode which is compatible
with format described in “TCG PC Client Platform Firmware Profile” specification.

Note that that HEAP_EXTDATA_TYPE_EVENT_LOG_POINTER2 element which was used
in transition period when TCG event log format has not been yet finalized is no longer
supported by SINIT.

#define HEAP_EXTDATA_TYPE_EVENT_LOG_POINTER2_1 8

typedef struct {
 UINT64 PhysicalAddress;
 UINT32 AllocatedEventContainerSize;
 UINT32 FirstRecordOffset;
 UINT32 NextrecordOffset;
} HEAP_EVENT_LOG_POINTER_ELEMENT2_1;

PhysicalAddress: Physical address of the event log base.

AllocatedEventContainerSize: Size of allocated event log memory.

FirstRecordOffset: Offset of the first record in event log.

NextRecordOffset: Offset of the free memory beyond the end of last entered record.

SINIT in TPM2.0 mode will require HEAP_EVENT_LOG_POINTER_ELEMENT2_1 to be
present since event log is required for attestation and many of the SinitMleData table
fields carrying similar data are removed in TPM2.0 mode – see Table 23

See Appendix F for further explanation.

 HEAP_TPR_REQ_ELEMENT
typedef struct {
 UINT32 TprRangeBase; //Physical address of the TPR
 UINT32 TprRangeSize; //Size of the requested TPR
} TPR_RANGE;

APPENDIX C

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
132 Document Number: 315168-017

#define HEAP_EXTDATA_TYPE_TPR_REQ 13

typedef struct {
 UINT32 TprCnt; //Count of TPRs in the TPR request array
 TPR_RANGE TprReqArr[TprCnt];
} HEAP_TPR_REQ_ELEMENT;

The HEAP_TPR_REQ_ELEMENT contains ranges to be DMA protected.

SINIT will abort with error if the number of requested TPRs exceeds the number of
TPRs reported in the DTPR ACPI table.

 SINIT to MLE Data Format

Table 23 below defines the format of the SINIT data presented to the MLE.

Table 23. SINIT to MLE Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the SinitMleData table. CBnT
fixed the following version numbers based on
TPM family: for TPM 1.2 generated table has
version 8; for TPM 2.0 family generated table has
value 9.
This value is incremented for any change to the
definition of this table. Future versions will
always be backwards compatible with previous
versions (new fields will be added at the end).
See NOTE

Versions <= 8

4 20 BiosAcmID ID of the BIOS AC module in the system

24 4 EdxSenterFlags Value of EDX SENTER control flags

28 8 MsegValid MSEG MSR (Valid bit only)

36 20 SinitHash SHA1 hash of the SINIT AC module:
SHA1(SHA256(SINIT))

56 20 MleHash SHA1 hash of the MLE

76 20 StmHash SHA1 hash of STM. This is only valid if MsegValid
= 1, else will contain zero

96 20 LcpPolicyHash SHA1 Hash of the LCP policy that was enforced;
if no hash is needed based on the LCP policy
control field this will contain zero

116 4 PolicyControl Taken from the LCP policy used

Versions >= 9

4 20 Reserved Must be zero

24 4 Reserved Must be zero

APPENDIX C

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 133

Offset Length
(bytes)

Name Description

28 8 Reserved Must be zero

36 20 Reserved Must be zero

56 20 Reserved Must be zero

76 20 Reserved Must be zero

96 20 Reserved Must be zero

116 4 Reserved Must be zero

Versions >= 7

120 4 RlpWakeupAddr MONITOR physical address used for waking up
RLPs (write 32bit non-0 value)

124 4 Reserved Reserved for future use. Must be zero

128 4 NumberOfSinitM
drs

Number of SINIT Memory Descriptor Records

132 4 SinitMdrTableOf
fset

Offset (in bytes, from start of this table) to the
start of an array of SINIT Memory Descriptor
Records as defined below. Each record describes
a memory region as defined by the SINIT AC
module
(see Table 24).

136 4 SinitVtdDmarTa
bleSize

Length of the Intel® Virtualization Technology
(Intel® VT) for Directed I/O (Intel® VT-d) DMAR
table pointed to by the SinitVtdDmarTableOffset
field.

140 4 SinitVtdDmarTa
bleOffset

Offset (in bytes, from start of this table) to the
start of the SINIT provided DMAR table dump for
the MLE.

Version = 8

144 4 ProcessorSCRT
MStatus

Bit 0 = 1 if PCR 0 measurement for this boot was
rooted in processor hardware. This is possible
only if all logical processors implement S-CRTM
and the platform is designed to take advantage
of that capability.
Bit 0 = 0 if PCR0 measurement for this boot was
rooted in BIOS.
Bits 31:1 – Reserved for future use and must be
zero.

Versions >= 9

144 4 Reserved Must be zero

Versions >= 8

148 SinitMle
DataSize
- 148

ExtDataElement
s[]

Array/list of extended data element structures.
See below for element definitions.

APPENDIX C

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
134 Document Number: 315168-017

Note: Maximum version generated by SINIT in TPM 1.2 mode must be 8. In TPM 2.0 mode
SINIT must generate version 9. Changes were caused by deprecating of number of
fields having insufficient size for agile digests and replacing them by event log records.

Table 24. SINIT Memory Descriptor Record

Offset Length
(bytes)

Name Description

0 8 Address Physical address of the memory range described in
this record.

8 8 Length Length of the memory range.

16 1 Type Memory range type. Valid values:
0 Usable, good memory
1 SMRAM– Overlaid – deprecated
2 SMRAM– Non-Overlaid – deprecated
3 PCIe - PCIe Extended Configuration Region
4 Persistent memory
5–255 Reserved

17 7 Reserved Reserved for future use

The array of Memory Descriptor Records (MDRs) is not necessarily ordered and some
MDRs may be of 0 length, in which case they should be ignored.

Memory of type 0 is usable for the MLE and any code or data that it may load. SINIT
will verify that the MLE and its page table are located in memory of this type.

Memory types 1 and 2 are deprecated in future versions of SINIT, as SMRAM regions
are not of use to the MLE.

Memory of type 3 is the PCI Express extended configuration region. The MLE may use
this to verify that the PCIE configuration specified in the ACPI tables is using the
appropriate address space.

Memory of type 4 is persistent, saving content in NV memory persisting over reset. If
content is not encrypted, MLE shall not place secrets into this memory since it might be
exposed upon reboot.

 HEAP_MADT_ELEMENT
#define HEAP_EXTDATA_TYPE_MADT 6

typedef struct {
 UINT8 MadtData[];
} HEAP_MADT_ELEMENT;

The HEAP_MADT_ELEMENT contains a copy of the ACPI MADT table

APPENDIX C

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 135

MadtData contains a validated copy of the ACPI MADT table. Its size is specified in the
MADT header as well as the Size field of the element. The format of the MADT table is
described in the version of the “Advanced Configuration and Power Interface
Specification” implemented by the platform.

 HEAP_MCFG_ELEMENT
#define HEAP_EXTDATA_TYPE_MCFG 9

typedef struct {
 UINT8 McfgData[];
} HEAP_MCFG_ELEMENT;

HEAP_MCFG_ELEMENT contains a copy of the ACPI MCFG table

McfgData contains a validated copy of the ACPI MCFG table. Its size is specified in the
MCFG header as well as the Size field of the element. The format of the MCFG table is
described in the version of the “Advanced Configuration and Power Interface
Specification” implemented by the platform.

 HEAP_DTPR_ELEMENT
#define HEAP_EXTDATA_TYPE_DTPR 14

typedef struct {
 UINT8 DtprData[];
} HEAP_DTPR_ELEMENT;

HEAP_DTPR_ELEMENT contains a DMA-protected and verified copy of the ACPI DTPR
table for MLE consumption.

 Registry of Extended Heap Elements

Heap element types are global for all heap tables. Registry has been added for
facilitating of reference.

Table 25. Extended Heap Elements Registry

Type Label Comment

0 HEAP_END_ELEMENT This element is mandatory
terminator of the list of extended
elements after each of the heap
tables.

1 HEAP_BIOS_SPEC_VER_ELEMENT Element specifies revision of TXT
BIOS WG specification supported by
given BIOS

APPENDIX C

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
136 Document Number: 315168-017

Type Label Comment

2 HEAP_ ACM_ELEMENT Element provides information about
quantity and position of BIOS
embedded AC Modules, including
SINIT if present.

3 HEAP_STM_ELEMENT Element specifies STM related BIOS
properties

4 HEAP_CUSTOM_ELEMENT Element can be customized for non-
standard use

5 HEAP_TPM_EVENT_LOG _ELEMENT Element provides pointer to TPM 1.2
style Event Log.

6 HEAP_MADT_ELEMENT Element encases MADT table copied
to DPR

7 HEAP_EVENT_LOG_POINTER_ELEMENT2 Element provides pointers to Event
Log(s) of original TXT TPM 2.0 style

8 HEAP_EVENT_LOG_POINTER_ELEMENT2_1 Element provides pointer to TCG
Compliant TXT TPM 2.0 style Event
Log

9 HEAP_MCFG_ELEMENT Element encases MCFG table copied
to DPR

10-
12

N/A Types 10::12 are used in BIOS ACM
to SINIT communication.

13 HEAP_TPR_REQ_ELEMENT Contains requested TPR ranges.

14 HEAP_DTPR_ELEMENT Contains DMA-protected copy of the
ACPI DTPR table.

§§

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 137

 LCP Data Structures
SINIT supports LCP with both TPM 1.2 and TPM 2.0 families of devices. Despite that
fundamentally all structures used by LCP in TPM 1.2 and TPM 2.0 modes of operations
are designed for the same purpose, they are somewhat different between families.

To disambiguate usage of the structures in the following sections they are grouped by
type with an explicit identification of the TPM family they are used with.

Common LCP definitions used with both supported TPM families are presented below.

• Identification of policy type and maximal number of lists in LCP data file:

#define LCP_POLTYPE_LIST 0
#define LCP_POLTYPE_ANY 1
#define LCP_MAX_LISTS 8

 LCP Policy

Platform Owner policy structure has type LCP_POLICY (TPM 1.2) or LCP_POLICY2
(TPM2.0). Respective object is stored in the TPM NV PO index.

 Policy Control

typedef struct {
 UINT32 reserved:1;
 UINT32 NPW_OK:1; // NPW OK
 UINT32 Reserved2:1;
 UINT32 Pconf_Enforced:1; // Functionality see Appendix J.2.3
 UINT32 reserved3:28;
} PolicyControl

NPW_OK bit when set, tells Non-Production SINIT that it is allowed to run. If unset,
SINIT will abort execution.

PCONF_Enforced bit when set, forces SINIT to seek second PCONF element match – see
Appendix J.2.3. If unset, SINIT continues after first PCONF element match is found.

 LCP_POLICY

TPM 1.2 structure only

The required fields for LCP_POLICY are as follows:

• Cryptographic definitions and structures

#define LCP_POLHALG_SHA1 0

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
138 Document Number: 315168-017

Note: TPM 1.2 structures use non-TCG compliant crypto algorithm IDs.

typedef struct {
 UINT8 SHA1[20];
} LCP_HASH;

typedef struct {
 UINT16 Version; // 0x0204
 UINT8 HashAlg; // LCP_POLHALG_SHA1
 UINT8 PolicyType; // one of LCP_POLTYPE_*
 UINT8 SINITMinVersion;
 UINT8 Reserved1;
 UINT16 DataRevocationCounters[LCP_MAX_LISTS];
 UINT32 PolicyControl;
 UINT8 MaxSinitMinVer;
 UINT8 Reserved1;
 UINT16 Reserved2;
 UINT32 Reserved3;
 LCP_HASH PolicyHash;
 } LCP_POLICY;

Version must be 2.4

HashAlg identifies the hashing algorithm used for the PolicyHash field. For TPM 1.2
mode of operation it must be LCP_POLHALG_SHA1.

PolicyType indicates whether an additional LCP_POLICY_DATA structure is required.
Supported values are LCP_POLTYPE_LIST and LCP_POLTYPE_ANY.

SinitMinVersion specifies the minimum version of SINIT that can be used.

DataRevocationCounters is an array of elements corresponding to an array of policy
lists in LCP Policy Data File. This array provides a mechanism to revoke signed lists in
that object.

The PolicyControl field contains policy bits with global LCP impact. Its content is
deciphered in Appendix D.

The MaxSinitMinVersion field specifies the maximum value this policy will allow a
revocation utility to set the AUX.AUXRevocation.SinitMinVer to.

PolicyHash field is described in Section 3.2.1.1

 LCP_POLICY2
TPM 2.0 structure only

• Key algorithms

#define TPM_ALG_RSA 0x0001 // Key algorithm

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 139

#define TPM_ALG_ECC 0x0023

• Hashing algorithms

#define TPM_ALG_SHA1 0x0004
#define TPM_ALG_SHA256 0x000B
#define TPM_ALG_SHA384 0x000C
#define TPM_ALG_NULL 0x0010
#define TPM_ALG_SM3_256 0x0012

• Signature algorithms

#define TPM_ALG_RSASSA 0x0014
#define TPM_ALG_RSAPSS 0x0016
#define TPM_ALG_ECDSA 0x0018
#define TPM_ALG_SM2 0x001B

• Digest sizes per hashing algorithm

#define SHA1_DIGEST_SIZE 20
#define SHA256_DIGEST_SIZE 32
#define SHA384_DIGEST_SIZE 48
#define SM3_256_DIGEST_SIZE 32

typedef union {
 UINT8 sha1[SHA1_DIGEST_SIZE];
 UINT8 sha256[SHA256_DIGEST_SIZE];
 UINT8 sha384[SHA384_DIGEST_SIZE];
 UINT8 sm3[SM3_256_DIGEST_SIZE];
} LCP_HASH2;

• Owner’s selection of crypto algorithms

LcpHashAlgMask identifies the Platform Owner’s selection of HashAlgIDs permitted
during LCP policy evaluation. It uses the following HashAlgID mask definition:

typedef struct {
 UINT16 TPM_ALG_SHA1:1; // BIT0
 UINT16 Reserved:2; // BITS[2:1]
 UINT16 TPM_ALG_SHA256:1; // BIT3
 UINT16 Reserved:1; // BIT4
 UINT16 TPM_ALG_SM3_256:1; // BIT5
 UINT16 TPM_ALG_SHA384:1; // BIT6
 UINT16 Reserved:9;
} LCP_APPROVED_HASH_ALG;

LcpSignAlgMask identifies the Platform Owner’s selection of signature algorithms
permitted during LCP policy evaluation. A fully specified signature algorithm definition
is comprised of the signature algorithm and its public key size, the internally used hash
algorithm, and, for SM2, the curve used.

typedef struct {
 UINT32 Reserved:2 // BITS[1:0]

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
140 Document Number: 315168-017

 UINT32 TPM_ALG_RSA*/2048/SHA1:1 // BIT2: Legacy
 UINT32 TPM_ALG_RSA*/2048/SHA256:1 // BIT3: Legacy
 UINT32 Reserved:2 // BITS[5:4]
 UINT32 TPM_ALG_RSA*/3072/SHA256:1 // BIT6: NOTE 1
 UINT32 TPM_ALG_RSA*/3072/SHA384:1 // BIT7: NOTE 1
 UINT32 Reserved2:4 // BITS[11:8]
 UINT32 ECDSA/P256/SHA256:1 // BIT12: NOTE 2
 UINT32 ECDSA/P384/SHA384:1 // BIT13: NOTE 2
 UINT32 Reserved3:2 // BITS[15:14]
 UINT32 TPM_ALG_SM2/SM2_CURVE/SM3:1 // BIT16: SMX
 UINT32 Reserved4:15
} LCP_APPROVED_SIGNATURE_ALG;

Note: Possible use of RSASSA or RSAPSS algorithm: based on alluded higher post-quantum
resistance of RSA vs. ECDSA algorithms (https://eprint.iacr.org/2017/598) and to
reduce LCP complexity modern SINITs are built without support of ECDSA signatures,
however this support can be added per demand.

typedef struct {
 UINT16 Version; // 0x0302 == Version 3.2
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT8 PolicyType; // one of LCP_POLTYPE_*
 UINT8 SINITMinVersion;
 UINT16 DataRevocationCounters[LCP_MAX_LISTS];
 UINT32 PolicyControl;
 UINT8 MaxSinitMinVer;
 UINT8 Reserved;
 UINT16 LcpHashAlgMask // LCP_APPROVED_HASH_ALG
 UINT32 LcpSignAlgMask // LCP_APPROVED_SIGNATURE_ALG
 UINT32 Reserved2;
 LCP_HASH2 PolicyHash;
 } LCP_POLICY2;

All field definitions except of mask fields are identical to LCP_POLICY structure.

LacpHashAlgMask and LcpSignAlgMask fields allow Owner to select which algorithms
SINIT can use when looking for a match.

 LCP_POLICY_DATA

When LCP_POLICY*. PolicyType is set to LCP_POLTYPE_LIST, there must exist a Policy
Data File which the SINIT policy engine will process.

Where this file resides on the platform is platform dependent, but it must be
provisioned into the Intel® TXT heap data structures (see Appendix C.3) before
executing the GETSEC[SENTER] instruction. While not required, it is recommended that
software place the LCP_POLICY_DATA on a 4-byte aligned boundary to reduce access
alignment penalties.

typedef struct {

https://eprint.iacr.org/2017/598

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 141

 char FileSignature[32];
 UINT8 Reserved[3];
 UINT8 NumLists;
 LCP_POLICY_LIST PolicyLists[NumLists];
} LCP_POLICY_DATA, LCP_POLICY_DATA2

Note: When Intel® TXT was upgraded to support TPM 2.0 family, LCP_POLICY_DATA
structure was aliased to LCP_POLICY_DATA2 without changing of its content to
maintain naming coherency.

FileSignature is the string “Intel(R) TXT LCP_POLICY_DATA\0\0\0\0”, where ‘\0’ is a
single byte whose value is 0x00. This field is intended for use by software that needs to
determine if a given file is an LCP_POLICY_DATA file.

The Reserved field must be set to all 0s.

The NumLists field must be less than or equal to LCP_MAX_LISTS.

Each list in PolicyLists may be either signed or unsigned.

 LCP Policy List

 List Signatures

SINIT supports two different signature formats: LCP_SIGNATURE2 designed for
platforms using RSASSA signatures; and LCP_SIGNATURE2_1 designed for platforms
utilizing RSAPSS signature algorithm.

Using both RSASSA and RSAPSS algorithms and therefore LCP_SIGNATURE2 and
LCP_SIGNATURE2_1 signature format is not possible.

LCP_SIGNATURE2_1 is identical to the one used by Intel® Boot Guard technology.

 LCP_SIGNATURE2 structure

The LCP_SIGNATURE2 structure includes as a subcomponent LCP_SIGNATURE
structure historically used in TPM 1.2 mode but for clarity of its use in the new structure
format aliased to LCP_RSA_SIGNATURE. Also, non-standard definitions of crypto
algorithms used in LCP_SIGNATURE structures are deprecated.

typedef struct {
 UINT16 RevocationCounter;
 UINT16 PubkeySize;
 UINT8 PubkeyValue[PubkeySize];
 UINT8 SigBlock[PubkeySize];
} LCP_SIGNATURE, LCP_RSA_SIGNATURE;

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
142 Document Number: 315168-017

The RevocationCounter field is a monotonically increasing value that can be used, in
conjunction with the corresponding index of the DataRevocationCounters field in
LCP_POLICY, to provide a method of revoking (or preventing rollback) of signed
policies.

PubkeySize is public key size in bytes. Supported public key sizes are 2048 and 3072
bits and therefore field values are 256 or 384. Minimal required public key size is 2048
bits.

PubkeyValue is the modulus of the public key. The exponent is assumed to be fixed and
must be 65537.

SigBlock is the actual signature with size 256 or 384 bytes.

Another subcomponent of LCP_SIGNATURE2 structure is LCP_ECC_SIGNATURE
structure shown below.

typedef struct {
 UINT16 RevocationCounter;
 UINT16 PubkeySize;
 UINT32 Reserved; // For future expansion
 UINT8 Qx[PubkeySize] // x coordinate Public key
 UINT8 Qy[PubkeySize] // y coordinate Public key
 UINT8 R[PubkeySize] // R component of Signature
 UINT8 S[PubkeySize] // S component of Signature
} LCP_ECC_SIGNATURE;

Here RevocationCounter and PubkeySize fields are identical to ones used in
LCP_RSA_SIGNATURE structure except that PubkeySize must be 32 or 48 bytes
corresponding to supported curves.

Qx and Qy are coordinates of the ECC/SM2 public key.

R and S are components of a signature.

As specified for all policy data, both the PubkeyValue and SigBlock must be in little-
endian byte order. This may require tools that generate policies to reverse the byte
order of keys and signatures produced by tools that use the ASN.1/big-endian format.

Taken together LCP_RSA_SIGNATURE and LCP_ECC_SIGNATURE form new
LCP_SIGNATURE2 structure as follows.

typedef union {
 LCP_RSA_SIGNATURE RsaSignature;
 LCP_ECC_SIGNATURE EccSignature;
} LCP_SIGNATURE2;

 LCP_SIGNATURE2_1 structure

This structure is complex and includes several substructures described below.

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 143

RSA_PUBLIC_KEY structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT32 Exponent
 UINT8 Modulus[KeySize/8]
} RSA_PUBLIC_KEY;

Where Version is the version of the structure in major:minor format and must be equal
to 0x10;

KeySize represents number of bits in the public key modulus. Supported values are
2048 and 3072 bits;

Exponent must be standard 0x10001;

Modulus is the modulus of a public key in little endian format – 256 or 384 bytes.

ECC_PUBLIC_KEY structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT8 Qx[KeySize/8];
 UINT8 Qy[KeySize/8];
} ECC_PUBLIC_KEY;

Where Version is identical to RSA_PUBLIC_KEY above.

KeySize is number of bits of public key coordinate – must be 256 for SM2 algorithm
and 256 or 384 for ECDSA algorithm.

Qx and Qy are two coordinates of public key in little endian format – 32 or 48 bytes
each.

RSA_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT16 HashAlg;
 UINT8 Signature[KeySize/8];
} RSA_SIGNATURE;

Where Version is the version of the structure in major:minor format and must be equal
to 0x10;

KeySize represents the number of bits in the public key modulus. Supported values are
2048 and 3072 bits;

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
144 Document Number: 315168-017

HashAlg is hash algorithm used by signing process. Supported are TPM_ALG_SHA1
(legacy only), TPM_ALG_SHA256, and TPM_ALG_SHA384;

Signature is RSASSA or RSAPSS signature in little endian format – 256 or 384 bytes.

ECC_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT16 HashAlg;
 UINT8 R[KeySize/8];
 UINT8 S[KeySize/8];
} ECC_SIGNATURE;

Where Version is the version of the structure in major:minor format and must be equal
to 0x10;

KeySize is number of bits of signature coordinate – must be 256 for SM2 algorithm and
256 or 384 for ECDSA algorithm.

HashAlg is hash algorithm used by signing process. Supported are TPM_ALG_SM3_256
for SM2 signatures and TPM_ALG_SHA256, and TPM_ALG_SHA384 for ECDSA
signatures respectively.

R and S are SM2 or ECDSA signature coordinates in little endian format – 32 or 48 bytes
each.

RSA_KEY_AND_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeyAlg; // TPM_ALG_RSA
 UINT8 Key[sizeof(RSA_PUBLIC_KEY)];
 UINT16 SigScheme;
 UINT8 Signature[sizeof(RSA_SIGNATURE)];
} RSA_KEY_AND_SIGNATURE;

Where Version is the version of the structure in major:minor format and must be equal
to 0x10;

KeyAlg is key type algorithm per “TCG Trusted Platform Module Library” specification.
Must be TPM_ALG_RSA;

Key is RSA_PUBLIC_KEY structure;

SigScheme is signature scheme. Must be TPM_ALG_RSASSA or TPM_ALG_RSAPSS;

Signature is RSA_SIGNATURE structure.

ECC_KEY_AND_SIGNATURE structure

typedef struct {

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 145

 UINT8 Version; // 0x10
 UINT16 KeyAlg; // TPM_ALG_ECC
 UINT8 Key[sizeof(ECC_PUBLIC_KEY)];
 UINT16 SigScheme;
 UINT8 Signature[sizeof(ECC_SIGNATURE)];
} ECC_KEY_AND_SIGNATURE;

Where Version is the version of the structure in major:minor format and must be equal
to 0x10;

KeyAlg is key type algorithm per “TCG Trusted Platform Module Library” specification.
Must be TPM_ALG_ECC;

Key is ECC_PUBLIC_KEY structure;

SigScheme is signature scheme. Must be TPM_ALG_ECDSA or TPM_ALG_SM2;

Signature is ECC_SIGNATURE structure.

KEY_AND_SUGNATURE structure

typedef union {
 RSA_KEY_AND_SIGNATURE RsaKeyAndSignature;
 ECC_KEY_AND_SIGNATURE EccKeyAndSignature;
} KEY_AND_SIGNATURE;

This structure is a union of RSA and ECC key and signature structures.

LCP_SIGNATURE2_1 structure

Finally, LCP_SIGNATURE2_1 structure is analogous to LCP_SIGNATURE2 structure
where key and signature details are wrapped into KeyAndSignature field.

typedef struct {
 UINT16 RevocationCounter;
 KEY_AND_SIGNATURE KeyAndSignature;
} LCP_SIGNATURE2_1;

Here RevocationCounter field is identical to one used in LCP_SIGNATURE2 structure.

• Tabular forms of key and signature structures

Since both RSA_KEY_AND_SIGNATURE and ECC_KEY_AND_SIGNATURE are quite
complex and contain several nested substructures, the following tabular form of them
shall clarify and visualize relationship of the components.

Table 26. RSA_KEY_AND_SIGNATURE

Name Size
(bytes)

Sub-structure Comment

Version 1 0x10

KeyAlg 2 Must be TPM_ALG_RSA =
0x1

Key Varies RSA_PUBLIC_KEY_STRUCT

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
146 Document Number: 315168-017

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 2048, 3072

Exponent 4 0x10001

Modulus [] KeySize
/ 8

In LE format

Size varies: 263 bytes for
2048-bit key and 392
bytes for 3072-bit key

SigScheme 2 TPM_ALG_RSASSA = 0x14
or TPM_ALG_RSAPSS =
0x16.

Signature Varies

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 2048, 3072

HashAlg 2 Hash algorithm =
SHA1, SHA256,
SHA384, SHA512

Signature [] KeySize
/ 8

In LE format

RSA_SIGNATURE_STRUCT
Size varies: 261 bytes for
2048-bit key and 390
bytes for 3072-bit key

Table 27. ECC_KEY_AND_SIGNATURE

Name Size
(bytes)

Sub-structure Comment

Version 1 0x10

KeyAlg 2 Must be TPM_ALG_ECC =
0x23

Key Varies

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 256, 384

Qx [] KeySize
/ 8

Qx coordinate in LE
format

Qy [] KeySize
/ 8

Qy coordinate in LE
format

ECC_PUBLIC_KEY_STRUCT

Size varies: 67 bytes for
256-bit key and 99 bytes
for 384-bit key

SigScheme 2 PM_ALG_ECDSA = 0x18
or TPM_ALG_SM2 = 0x1B.

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 147

Name Size
(bytes)

Sub-structure Comment

Signature Varies

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 256, 384

HashAlg 2 Hash algorithm =
SHA256, SHA384
for ECC and SM3 for
SM2

Signature [] KeySize
/ 8

In LE format

ECC_SIGNATURE_STRUCT
Size varies: 69 bytes for
256-bit key and 101 bytes
for 384-bit key

 List Structures

Historical LCP_POLICY_LIST structure used in only TPM 1.2 mode of operation is
deprecated and replaced by LCP_POLICY_LIST2, and LCP_POLICY_LIST2_1 structures
supporting algorithm agility.

Since the new list structures allow mixture of TPM 1.2 and TPM 2.0 style LCP elements,
use of legacy LCP_POLICY_LIST structure is not required.

LCP_POLICY_LIST2 is designed for platforms using RSASSA signatures, and
LCP_POLICY_LIST2_1 is designed for platforms utilizing RSAPSS signature algorithm.

The use of both RSASSA and RSAPSS algorithms and therefore LCP_POLICY_LIST2 and
LCP_POLICY_LIST2_1 list format is not possible.

 LCP_POLICY_LIST2 Structure

typedef struct {
 UINT16 Version; // 0x0201
 UINT16 SigAlgorithm; // one of TPM_ALG_* above
 UINT32 PolicyElementsSize;
 LCP_POLICY_ELEMENT PolicyElements[];
#if (SigAlgorithm != TPM_ALG_NULL)
 LCP_SIGNATURE2 Signature;
#endif
} LCP_POLICY_LIST2;

Version must be 2.1.

SigAlgorithm field uses TPM2.0 compatible numeric values.

PolicyElementsSize specifies the size (in bytes) of all LCP_POLICY_ELEMENT structures
in the object. It may be 0. An LCP_POLICY_LIST2 with no elements can be used as a

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
148 Document Number: 315168-017

“placeholder” signed list that can be updated at runtime with the actual signed data but
without having to re-provision the LCP_POLICY in TPM NV.

If SigAlgorithm is not a TPM_ALG_NULL, then the Signature field must be present (else
it must not). For a signed list, the signature will be calculated over the entire
LCP_POLICY_LIST2 structure, including the Signature member, except for the SigBlock
field (if SigAlgorithm is TPM_ALG_RSASSA) or R and S fields (if SigAlgorithm is
TPM_ALG_ECDSA).

Mixture of TPM 1.2 and TPM2.0 style LCP_POLICY_ELEMENT structures is allowed.

Note: By allowing a mix of legacy and new LCP_POLICY_ELEMENT structures in the same list,
each Authority can create one single list covering both TPM1.2 and TPM2.0 LCP data.

 LCP_POLICY_LIST2_1 Structure

typedef struct {
 UINT16 Version; // 0x0300
 UINT16 KeySignatureOffset;
 UINT32 PolicyElementsSize;
 LCP_POLICY_ELEMENT PolicyElements[];
#if (KeySignatureOffset != 0)
 LCP_SIGNATURE2_1 KeySignature;
#endif
} LCP_POLICY_LIST2_1;

Version, in major:minor format, must be 0x300 to signify incompatible layout change.

KeySignatureOffset must be zero for unsigned lists. For signed lists it must be offset of
KeyAndSignature field of KEYAND_SIGNATURE structure. Entire content of the list from
its base and up to KeyAndSignature field is covered by the signature (to disambiguate -
RevocationCounter is also included into hashed area). KeyAndSignature itself is
excluded from the hash.

PolicyElementsSize is identical to LCP_POLICY_LIST2 structure.

Mixture of TPM 1.2 and TPM2.0 style LCP_POLICY_ELEMENT structures is allowed.

 LCP_LIST

typedef union {
 LCP_POLICY_LIST2 PolicyListOld; // RSASSA
 LCP_POLICY_LIST2_1 PolicyListNew; // RSAPSS
} LCP_LIST;

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 149

 LCP_POLICY_ELEMENT

 Policy Elements

The LCP structures used for TPM 1.2 and presented in the subsections below are not
articulate enough to support the algorithmic agility possible with TPM 2.0 devices. New
elements based on the existing elements have been defined to add such support. The
changes have been designed to allow lists comprised of both TPM 1.2 and TPM 2.0
elements. This minimizes space requirements for NV RAM and simplifies processing
logic. Where possible, the new element structures use constants as defined in the TCG
2.0 specification. In the subsections below each element definition is attributed as to
what TPM family it is associated with.

 Structure Endianness

Endianness deals with the sequencing order of stored bytes. There are two common
sequencing orders: Little Endian (LE - format used by Intel) and Big Endian (BE – format
used by TCG TPM specifications). All structures and data in the following sections are in
Little Endian format, even LCP_POLICY, with a few exceptions of fields where some of
the standard TPM structures are used:

‒ TPM_PCR_INFO_SHORT structure in PCONF TPM1.2 definition is a standard
TPM 1.2 structure, it should be in Big Endian format, while the rest of PCONF
structure is in Little Endian format.

‒ TPMS_QUOTE_INFO structure in PCONF TPM2.0 definition is a standard TPM
2.0 structure. Likewise, it should be in Big Endian format, while the rest of
PCONF structure is in Little Endian format.

 Generic Policy Element Structure

typedef struct {
 UINT32 Size;
 UINT32 Type;
 UINT32 PolEltControl;
 UINT8 Data[Size – 12];
} LCP_POLICY_ELEMENT;

The structures in the following sub-sections correspond to the contents of the Data
field for the specific type of element.

While not required, it is recommended that Size be a 4-byte multiple.

PolEltControl field is split by half and each half has different scope of applicability.

‒ Lower bits 15:0 have LIST scope i.e. impact all elements of a given LCP list.

‒ Higher bits 31:16 are intended for element type–specific uses.

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
150 Document Number: 315168-017

Current PolEltControl field bit definitions are as the following:

typedef struct {
UINT32 Reserved: 1 // Must be 0
UINT32 STM_Required: 1
UINT32 Pcr18_Extends: 1
UINT32 Reserved2: 13 // Must be 0
UINT32 Reserved3: 16 // Must be 0

} PolEltControl

STM_Required bit when set to “1” requires STM to be enabled. Defined in
LCP_MLE_ELEMENT structure only and is reserved in all other element type structures.

Pcr18_Extends bit controls whether certain events are extended to PCR18 (see Table
29):

• If set to “1”, The EVTYPE_KM_INFO_HASH and EVTYPE_BPM_INFO_HASH
events are not generated and EVTYPE_SINIT_PUBKEY_HASH is extended to
PCR17.

• If set to “0”, EVTYPE_KM_INFO_HASH and EVTYPE_BPM_INFO_HASH are
created (and extended to PCR18) and EVTYPE_SINIT_PUBKEY_HASH is
extended to PCR18.

Bits of Reserved2 (15:3) and Reserved3 (31:16) fields are currently undefined and
should be set to zero. Use of Reserved bit (0) is obsolete. It must be set to zero.

Sections D.4.4 to D.4.9 list in detail all supported policy element types, which then
occupy the Data field in LCP_POLICY_ELEMENT structure.

 LCP_MLE_ELEMENT

TPM 1.2 mode element only

#define LCP_POLELT_TYPE_MLE 0

typedef struct {
 UINT8 SINITMinVersion;
 UINT8 HashAlg; // one of LCP_POLHALG_*
 UINT16 NumHashes;
 LCP_HASH Hashes[NumHashes];
} LCP_MLE_ELEMENT;

The LCP_MLE_ELEMENT represents a list of the acceptable MLEs, as measured by their
hashes. SINIT will match the policy if MLE hash (as calculated when traversing its pages
in the MLE page table) matches any hash within the list.

SINIT will use the largest of the SinitMinVersion fields (the one in LCP_POLICY and the
one in the LCP_MLE_ELEMENT which contains the matching MLE hash) to determine
the minimum allowable version of SINIT.

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 151

HashAlg specifies the hash algorithm to use when measuring the MLE and values in
Hashes[]. This must be LCP_POLHALG_SHA1 as the only algorithm supported by TPM
1.2. If NumHashes is 0, then this element will evaluate to false for all MLEs.

 LCP_PCONF_ELEMENT

TPM 1.2 mode element only

#define LCP_POLELT_TYPE_PCONF 1

typedef struct {
 UINT16 NumPCRInfos;
 TPM_PCR_INFO_SHORT PCRInfos[NumPCRInfos];
} LCP_PCONF_ELEMENT;

The LCP_PCONF_ELEMENT represents a list of acceptable PCR values on the platform
at launch. The platform will satisfy the policy if the PCR values at the time of launch
match any of the PCRInfos within the list. When processing the platform configuration
list, the LCP engine reads the appropriate PCR’s as defined by the first
TPM_PCR_INFO_SHORT value in the list, concatenates them and cryptographically
hashes them together. The result is compared to the hash value in the
TPM_PCR_INFO_SHORT. If there is no match, this process is repeated for each member
of the list. As soon as a match is found, the LCP engine proceeds.

Additionally, it is recommended, although not necessary, that all
TPM_PCR_INFO_SHORT structures in the platform configuration list test the same set
of PCR values. If NumPCRInfos is 0, then this element will evaluate to false for all
platform configurations.

Various TPM_* structures have been copied below to facilitate understanding of the list
structure.

TPM_PCR_INFO_SHORT:

typedef struct tdTPM_PCR_INFO_SHORT{
 TPM_PCR_SELECTION pcrSelection;
 TPM_LOCALITY_SELECTION localityAtRelease;
 TPM_COMPOSITE_HASH digestAtRelease;
} TPM_PCR_INFO_SHORT;

TPM_PCR_SELECTION

typedef struct tdTPM_PCR_SELECTION {
 UINT16 sizeOfSelect;
 [size_is(sizeOfSelect)] BYTE pcrSelect[];
} TPM_PCR_SELECTION;

TPM_LOCALITY_SELECTION

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
152 Document Number: 315168-017

#define TPM_LOCALITY_SELECTION BYTE // Each bit is the
//corresponding locality

TPM_PCR_COMPOSITE

typedef struct tdTPM_DIGEST{
 BYTE digest[digestSize];
} TPM_DIGEST;
typedef TPM_DIGEST TPM_COMPOSITE_HASH; // hash of
//TPM_PCR_COMPOSITE object

 LCP_CUSTOM_ELEMENT

#define LCP_POLELT_TYPE_CUSTOM 3

typedef struct {
 UINT32 data1;
 UINT16 data2;
 UINT16 data3;
 UINT16 data4;
 UINT8 data5[6];
} UUID;

typedef struct {
 UUID uuid;
 UINT8 Data[];
} LCP_CUSTOM_ELEMENT;

The LCP_CUSTOM_ELEMENT allows users, ISVs, IT, etc. to define policy-related data
which can then be carried as part of a policy and interpreted by user/ISV/IT software.
Because the data is contained within a policy, its integrity will be verified by SINIT as
part of policy processing.

Uuid is a UUID value that uniquely identifies the format of the Data field. This field will
be used by all custom software that may have its own policy data. It is thus important
to generate the UUID value using a process that will provide a statistically unique value.

The Data field’s contents are defined by the entity that “owns” the UUID of the element.
The size of this data must be included within the size of the
LCP_POLICY_ELEMENT.Size field.

 LCP_MLE_ELEMENT2

TPM 2.0 mode element only

#define LCP_POLELT_TYPE_MLE2 0x10
typedef struct {
 UINT8 SINITMinVersion;
 UINT8 Reserved

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 153

 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumHashes;
 LCP_HASH2 Hashes[NumHashes];
} LCP_MLE_ELEMENT2;

Definitions of all fields are identical to LCP_MLE_ELEMENT.

 LCP_PCONF_ELEMENT2

TPM 2.0 mode element only

The PCONF Element structure is designed such that it can be created using the
TPM2_Quote command and evaluated using the TPM2_PolicyPCR command.

Following below is number of structures copied from TCG TPM 2.0 library specification
to facilitate understanding of PCONF creation and evaluation process.

The TPM2_Quote command returns the following structure:

typedef struct {
 UINT16 size;
 TPMS_ATTEST attestationData;
} TPM2B_ATTEST;

Where TPMS_ATTEST has the following form (only the last field is shown):

typedef struct {
 (...) ;
TPMU_ATTEST attested; // == TPMS_QUOTE_INFO
} TPMS_ATTEST;

TPMU_ATTEST is a union, where the relevant member within is the
TPMS_QUOTE_INFO structure:

typedef struct {
 TPML_PCR_SELECTION pcrSelect;
 TPM2B_DIGEST pcrDigest
} TPMS_QUOTE_INFO;

pcrSelect is a TPML_PCR_SELECTION structure denoting the PCRs being quoted, and
the pcrDigest is a TPM2B_DIGEST structure wherein the digest is a composite digest of
the PCRs being quoted.

typedef struct {
 UINT16 hash; // One of TPM_ALG_* algorithm IDs
 UINT8 sizeofSelect;
 UINT8 pcrSelect[sizeofSelect];
} TPMS_PCR_SELECTION;

typedef struct {
 UINT32 count; // must be 1 for use in PCONF
 TPMS_PCR_SELECTION pcrSelections;

APPENDIX D

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
154 Document Number: 315168-017

} TPML_PCR_SELECTION;

typedef struct {
 UINT16 size;
 UINT8 buffer[size];
} TPM2B_DIGEST;

The new PCONF_ELEMENT structure is then defined as:

#define LCP_POLELT_TYPE_PCONF2 0x11
typedef struct {
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumPCRInfos;
 TPMS_QUOTE_INFO PCRInfos[NumPCRInfos];
} LCP_PCONF_ELEMENT2;

Since TPMS_QUOTE_INFO is a standard TPM 2.0 structure its fields, where applicable,
are inserted in big endian format. Rest of the LCP_PCONF_ELEMENT2 structure is in
little endian format.

TPML_PCR_SELECTION structure, which is a sub-component of the new
LCP_PCONF_ELEMENT2 definition, contains the “count” field which allows making
multiple PCR selections using different HashAlgIDs.

The “count” field is kept in PCONF element definition to use as much of unmodified
TPM2.0 structures as possible but for the purpose of TXT count will be enforced to be
“1”. SINIT code will validate “count == 1” condition and will abort if it is not met.

 LCP_STM_ELEMENT2

TPM 2.0 mode element only

#define LCP_POLELT_TYPE_STM2 0x14
typedef struct {
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumHashes;
 LCP_HASH2 Hashes[NumHashes];
} LCP_STM_ELEMENT2;

The LCP_STM_ELEMENT represents a list of the acceptable MSEG objects, which can be
either an STM, or a PPAM module used by Intel® Nifty Rock technology, as measured by
their hashes. SINIT will match the policy if MSEG object hash (as calculated when
evaluating its header data) matches any hash within the list.

HashAlg specifies the hash algorithm to use when measuring the MSEG object and the
values in Hashes[].

If NumHashes is 0 then this element will evaluate to false for all MSEG objects.

APPENDIX D

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 155

 NV AUX Index Data Structure

The AUX Index data structure requires some modification to accommodate
algorithmically agile digests. The modified structure definition follows:

typedef struct {
 UINT8 MinVer;
 UINT8 Flags;
} ACM_AUX_REVOCATION;

typedef struct {
 ACM_AUX_REVOCATION SinitRevocation;
 ACM_AUX_REVOCATION Reserved;
} Revocation Area;

Table 28. AUX Data Structure

Revocation
area

BIOS AC
registration
data

AUX Data
Version

Other data Internal TXT digest
area

The table above diagrammatically illustrates contents of the AUX index.

Revocation area – storage containing minimal revisions of modules allowed to run.

BIOS AC registration data - contains value uniquely identifying BIOS ACM installed in
the system. This value is extended into PCR 17 by SINIT module since BIOS ACM is in
TXT TCB

AUX Data Version – identifies version of the structure. This version allows SINIT module
to farther qualify AUX data and prevent forward compatibility issues.

Other data – BIOSAC / SINIT intercommunication area.

Internal TXT digest area - BIOSAC / SINIT intercommunication area containing variable
size data values in TPMT_HA format.

§§

APPENDIX E

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
156 Document Number: 315168-017

 Platform State upon SINIT Exit
and Return to MLE

The following table describes the state of the ILP after returning to the MLE from
GETSEC[SENTER] and the RLPs after waking from SENTER. This is the state seen by the
MLE.

Table 29. Platform State upon SINIT exit and return to MLE

Resource ILP on MLE re-entry point RLP on MLE re-entry point

CPU

CR0 PG0, AM0,WP0; others
unchanged

PG0, CD0, NW0,
AM0, WP0; PE1,
NE1

XCR0 AVX State1 Note 1, SSE
State1; others unchanged

Unchanged

CR3 Undefined Undefined

CR4 0x00004000 0x00004000

EFLAGS 0x000000XX (XX =
Undefined)

0x000000XX (XX =
Undefined)

EIP [MLEHeader.EntryPoint] [TXT.MLE.JOIN + 12]

ESP Undefined Undefined

EBP Undefined Undefined

ECX Pointer to MLE page
table Note 2

Undefined

EBX [MLEHeader.EntryPoint] Undefined

EAX, EDI, ESI Undefined Undefined

CS Sel=[SINIT.SegSel], base=0,
limit=0xFFFFF, G=1, D=1,
AR=0x9B

Sel=[TXT.MLE.JOIN + 8],
base=0, limit=0xFFFFF, G=1,
D=1, AR=0x9B

DS, ES, SS Undefined Sel=[TXT.MLE.JOIN + 8] + 8,
base=0, limit=FFFFFH, G=1,
D=1, AR=0x93

GDTR Base=[SINIT.GDTBase],
Limit=[SINIT.GDTLimit] Note 3

Base=[TXT.MLE.JOIN + 4],
Limit=[TXT.MLE.JOIN]

DR7 0x00000400 0x00000400

MMX/XMM registers Values at the SENTER
unchanged.

Values at the SENTER
unchanged.

YMM / ZMM Undefined Undefined

IA32_DEBUGCTL MSR 0 0

APPENDIX E

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 157

Resource ILP on MLE re-entry point RLP on MLE re-entry point

CPU

IA32_EFER MSR 0 0

IA32_MISC_ENABLE MSR IA32_MISC_ENABLE &
0xFFF37CEA Notes 4, 5

IA32_MISC_ENABLE &
0xFEE324A8 Note 5

Performance counters and
counter control registers

0 0

IA32_APIC_BASE MSR 35:12 cleared to 0xFEE00
NOTE 6

35:12 cleared to 0xFEE00,
bit 8 (BSP) cleared to 0 NOTE 6

LTCS
Private Space Open
TXT.ERRORCODE 0xC0000001

TPM
Locality No locality active. Locality 2 open,

PCI
PCI Index/Data ports
0xCF8-0xCFF

Undefined

VT-D

Global Command and
Global Status registers

Queued Invalidation (QI) and Interrupt Remapping (IR) is
forced to be disabled in all enabled VT-d units.

Note:

- AVX State is set only if CPU supports AVX.
- If bit 2 of the Capabilities field in SINIT’s Chipset AC Module Information Table

is set, then ECX will contain the pointer to the MLE’s page table. If clear, the
content of ECX is undefined.

- GDTR on entry to MLE retains values established by SINIT and is therefore
incorrect and unusable for MLE. MLE developers should establish their own
GDT immediately.

- Bit 3 (thermal monitor enabled) will be set to 1 if it was previously clear.
- Bit 18 (MONITOR/MWAIT enable) will be set to 1 if it was previously clear and

bit 1 of OsSinitData.Capabilities (use of MONITOR for RLP wakeup) is set.
- Before exit, SINIT module restores ILP IA32_APIC_BASE MSR APIC base

address to the value of ACPI MADT table. Restoring the RLP ILP and
IA32_APIC_BASE MSR values is responsibility of the MLE.

- The TPM will not have any locality active following SENTER.

§§

APPENDIX F

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
158 Document Number: 315168-017

 TPM Event Log
The TPM Event Log is a data structure that describes the data whose hashes are
extended to the TPM PCR indices. This allows remote attestation verifiers to
reconstruct the PCR values in order to make trust decisions about their components.
This event log is equivalent to the one generated by BIOS (see “TCG PC Client Specific
Implementation Specification for Conventional BIOS”) but is for the use of system
software and SINIT.

System software allocates the memory for the log and provides the physical address of
the container (see Table 28) to SINIT in a HEAP_TPM_EVENT_LOG_ELEMENT in the
OsSinitData.ExtDataElements[] field – see Appendix C.4.1 or in a
HEAP_TPM_EVENT_LOG_ELEMENT2_1 element – see Appendix C.4.2.

A CBnT compatible SINIT ACM supports only details/authorities PCR mappings (see –
Section 1.10.2 and Table 4) and requires this element to be present. SINIT ACM will
abort execution if system software does not provide this element.

There are no requirements for event log to be in DMA protected memory – SINIT will
not enforce it.

 TPM 1.2 Event Log

Event Log Container

Logically Event log Container comprises of an Event Log header followed by an array of
records. Header provides full description of a log while records are structures
describing actual extend events.

Table 30. Event Log Container Format

Field Offset Size
(bytes)

Description

Signature 0 20 “TXT Event Container\0”

Reserved 20 12 Must be 0

ContainerVerMajo
r

32 1 Major version number of this structure. The
current value is 1. Different major versions
indicate incompatible structure format and/or
behaviors.

ContainerVerMino
r

33 1 Minor version number of this structure. The
current value is 0. Different minor versions
indicate compatible structure format (i.e. new
fields added at the end) and/or behaviors.

APPENDIX F

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 159

Field Offset Size
(bytes)

Description

PCREventVerMajo
r

34 1 Major version number of the PCREvent
structure. The current value is 1. Different
major versions indicate incompatible
structure format and/or behaviors.

PCREventVerMino
r

35 1 Minor version number of the PCREvent
structure. The current value is 0. Different
minor versions indicate compatible structure
format (i.e. new fields added at the end)
and/or behaviors.

ContainerSize 36 4 Allocated size of container, including
PCREvents[]

PCREventsOffset 40 4 Offset (in bytes, from start of this table) to the
start of PCREvents[] array.

NextEventOffset 44 4 Offset (in bytes, from start of this table) of the
next byte after the last event in PCREvents[].
I.e. the offset of the next available event slot.

PCREvents[] PCREven
tsOffset

Container
Size -

PCREvent
sOffset

Array of event records - TPM12_PCREvent
structures (see below)

Record Structure

typedef struct {
 UINT32 PCRIndex;
 UINT32 Type;
 UINT8 Digest[20];
 UINT32 Size;
 UINT8 Data[Size];
} TPM12_PCREvent;

TPM12_PCREvent structure describes a single event record where the Data field
contains actual data whose SHA1 hash was extended into the specified PCRIndex.
Depending on the event Type, the Data[] may be the entire hashed object or just a
description (e.g. version). All PCR events in the PCREvents [] array are in the order in
which the PCR extends were performed. Because Data[] is not a fixed size for each
event, the events must be traversed in order.

PCRIndex is the index of the TPM PCR into which the hash of the data was extended.

Type indicates the event type, as described in Table 29.

Digest is the SHA1 hash that was extended in this event.

Size is the size of the Data.

Data is either the actual data that digested to Digest, or a description of same,
determined by Type.

APPENDIX F

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
160 Document Number: 315168-017

 TPM 2.0 Event Log

“TCG PC Client Platform. EFI Protocol Specification” defined new event logging
structure suitable for multi-algorithm event logging. To maintain TCG compliance,
SINIT modules will support this event log format in TPM 2.0 mode of execution.

TCG Compliant Event Logging Structures

Information below is identical to one presented in “TCG PC Client Platform. EFI Protocol
Specification” and is included for easy reference. In case of any discrepancies,
information included in the TCG specification shall take precedence.

typedef struct {
 UINT32 PCRIndex;
 UINT32 EventType;
 TPML_DIGEST_VALUES Digest;
 UINT32 EventSize;
 BYTE Event[EventSize];
} TCG_PCR_EVENT2;

Where TPML_DIGEST_VALUES structure layout is presented below:

typedef struct {
 UINT32 count; // Count of TPMT_HA structures
 struct {
 UINT16 AlgorithmID; // Hash algorithm of array element
X
 // TPMI_ALG_HASH
 UINT8 digest[AlgorithmID_DIGEST_SIZE] // Digest value in
 // array element X
 } TPMT_HA digests[count] // Array of TPMT_HA structures
} TPML_DEGEST_VALUES;

Note that although the type names from TPM 2.0 Library Specification are used, the
encoding of the count member and the AlgorithmID are little-endian as is the rest of the
log format.

First record of the log must follow TCG_PCR_EVENT structure in TPM 1.2 format and
declare revision of the supported EFI Platform specification

typedef struct {
 UINT32 PCRIndex; // 0
 UINT32 EventType; // 3 == EV_NO_ACTION
 UINT8 Digest[20]; // ZeroSha1Digest[20] = {00, 00…00}
 UINT32 EventDataSize; // sizeof(EventData[])
 UINT8 EventData[]; // TCG_EfiSpecIDEventStruct
} TCG_PCR_EVENT;

typedef struct {
 UINT8 signature[16]; // ‘Spec ID Event03’, 00

APPENDIX F

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 161

 UINT32 platformClass; // 00 – PC Client Platform
Class;
 // 01 – Server Platform Class
 UINT8 specVersionMinor; // 00 – minor of 2.00
 UINT8 specVersionMajor; // 02 – major of 2.00
 UINT8 specErrata; // 00 – errata of 2.00
 UINT8 uintnSize; // 01 for UINT32; 02 for UINT64
 UINT32 numberOfAlgorithms; // Number of hash algorithms used
in this event log
 TCG_EfiSpecIdEventAlgorithmSize digestSizes[numberOfAlgorithms]
 // array/ of value pairs
 UINT8 vendorInfoSize; // FF is maximum
 UINT8 vendorInfo[VendorInfoSize]; // Vendor specific
} TCG_EfiSpecIDEventStruct;

typedef struct {
 UINT16 algorithmId;
 UINT16 digestSize;
} TCG_EfiSpecIdEventAlgorithmSize;

The digest of this record MUST NOT be extended into any PCR.

Bit9 in the capabilities field of ACM Info Table ACMInfoTable.Capabilities[9] added to
declare format of supported event log – see Table 4 with this revision of specification is
always forced to “1”.

 Events Types

The following event types are defined for SINIT event logging. Events for legacy PCR
mapping (LG) are removed from the table.

For brevity of description the following equation – Digest = HashHashAlgId (EventData)
shall be read as:

• TPM1.2 – SHA1 (EventData);
• TPM2.0 – TPML_DIGEST_VALUES structure filled with respective number of

hashes corresponding to HashAlgIds of all PCR banks.

APPENDIX F

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
162 Document Number: 315168-017

Table 31. Event Types

Event Type Value Digest and Event PCR Comments

EVTYPE_BASE (EB) 0x400 Base of TXT event types N/A
EVTYPE_PCR_MAPPING EB + 1 Digest=

ZeroDigestHashAlgIDSize
NOTE 1
EventData=Selected
PCR Mapping DWORD
EventData=0 if using
legacy PCR Mapping;
EventData=1 if using
D/A mapping.
EventDataSize = 4

0xFF

Not extended –
informative only.
Since LG mapping is
not supported this
event is reserved.

EVTYPE_HASH_START EB + 2 Digest=HashHashAlgID
(EventData)
EventData=SinitHash +
EDX
EventDataSize = 36.

17 EventData is SINIT
Hash and EDX value
stored during SINIT
authentication
process in ACM
header scratch area.

EVTYPE_MLE_HASH EB + 4 Digest= HashHashAlgID
(MLE)
EventData=EmptyBuffer
NOTE 2
EventDataSize=0

17

EVTYPE_BIOSAC_REG
_DATA

EB +
10

Digest = BIOS AC
registration data
EventData=EmptyBuffer
EventDataSize = 0

17

TPM 1.2:
BIOS AC registration
data are 20 bytes of
data stored in AUX
index, uniquely
identifying BIOS ACM.

Digest= HashHashAlgID
(EventData)
EventData=BIOS AC
Registration Data
EventDataSize=32

17 TPM 2.0:
EventData are 32
bytes of data stored
in AUX index,
uniquely identifying
BIOS ACM.

EVTYPE_CPU_SCRTM
_STAT

EB +
11

Digest= HashHashAlgID
(EventData)
EventData=CPU SCRTM
status DWORD
EventData=0 if SCRTM
was established by
BIOS;
EventData=1 if SCRTM
was established by CPU

EventDataSize = 4

18

TPM 1.2

17 & 18 TPM 2.0

APPENDIX F

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 163

Event Type Value Digest and Event PCR Comments

EVTYPE_LCP_CONTROL
_ HASH

EB +
12

Digest = HashHashAlgID
(EventData)
EventData = LCP
PolControl DWORD
EventDataSize=4

17 &18 EventData is effective
PolControl derived
from TPM PO Index.
If index does not exist
PolControl=0

EVTYPE_ELEMENTS
_HASH

EB +
13

Digest =
SHA1(EventData)
EventData = array of
matching LCP elements
data as filled by LCP.
EventDataSize=3 * (20 +
4)=72

17 TPM 1.2

N/A N/A Reserved in TPM2.0
mode

EVTYPE_STM_HASH EB +
14

If STM is present
Digest=SHA1(STM)
If STM is not present
Digest=ZeroDigest20

NOTE

1
EventData=EmptyBuffer
NOTE 2
EventDataSize=0

17 TPM 1.2:
If STM is not present
ZeroDigest20 is
extended instead.

If STM is present
Digest=HashHashAlgID
(STM)
If STM is not present
Digest= HashHashAlgID
(0x00)
EventData=Empty buffer
EventDataSize=0

TPM 2.0:
If STM is not present,
hash of single byte
with zero value will be
measured instead

EVTYPE_OSSINITDATA_
CAP_HASH

EB +
15

Digest=HashHashAlgID
(EventData)
EventData=OsSinitData
Capabilities DWORD
EventDataSize=4

18

EventData is
capabilities DWORD
passed to SINIT by
MLE Preamble
TPM 1.2: Extended to
PCR18 only

17 & 18 Ditto
TPM 2.0: Extended to
PCR 17 & 18

EVTYPE_SINIT
PUBKEY HASH

EB +
16

Digest=HashHashAlgID
(PUBKEY_HASH)
EventData=EmptyBuffer
EventDataSize=0

17 or 18,
see Note
4 below

PUBKEY_HASH is
digest of ACM Signer
key. It can be
retrieved from MSRs
0x20::0x23 NOTE 4

APPENDIX F

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
164 Document Number: 315168-017

Event Type Value Digest and Event PCR Comments

EVTYPE_LCP_HASH EB +
17

Digest =
SHA1(EventData)
EventData = array of
digests of lists
(authorities) containing
matching LCP elements
data as filled by LCP.
EventDataSize=
[1∷3] * 20=20∷60

18 TPM 1.2:
Size is variable
because digest of
each contributing
authority is inserted
only once regardless
of how may matching
elements it may
contain.

N/A N/A Reserved in TPM2.0
mode

EVTYPE_LCP_DETAILS
_HASH

EB +
18

N/A N/A Reserved in TPM 1.2
mode

Digest= HashHashAlgID
(EventData)
EventData=
concatenation of digests
and policy controls of
matching policy
elements.
EventDataSize=
sizeof(EventData)
If policy evaluates to
ANY, Then
Digest= HashHashAlgID
(0x00)
EventData=0x00
EventDataSize=1

17 TPM 2.0:
EventData is
concatenation of
policy controls and
digests of all
matching elements
contributed to
effective policy.
Analogous to event
type 13 but uses
different event
format.

EVTYPE_LCP
_AUTHORITIES_HASH

EB +
19

N/A N/A Reserved in TPM 1.2
mode

Digest= HashHashAlgID
(EventData)
EventData=
concatenation of list
descriptors containing
matching policy
elements.
EventDataSize=
sizeof(EventData)
If policy evaluates to
ANY, Then
Digest= HashHashAlgID
(0x00)
EventData=0x00
EventDataSize=1

18 TPM 2.0:
EventData is
concatenation of list
description structures
of all lists containing
matching elements
contributed to
effective policy.
Analogous to event
type 17 but uses
different event
format.

EVTYPE_NV_INFO
_HASH

EB +
20

N/A N/A Reserved in TPM 1.2
mode

APPENDIX F

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 165

Event Type Value Digest and Event PCR Comments

Digest= HashHashAlgID
(EventData)
EventData=array of
TPMS_NV_PUBLIC
structures of defined
indices.
EventDataSize=
sizeof(EventData)

17 &
18

TPM 2.0:
EventData is
concatenation of
TPMS_NV_PUBLIC
structures of all
defined TPM NV
indices (AUX & PO).

EVTYPE_COLD_BOOT
_BIOS_HASH

EB +
21

Digest= HashHashAlgID
(S-BIOS)

EventData=”TXT cold boot
BIOS”

EventDataSize=
sizeof(EventData)

17 TPM 1.2:
S-BIOS is Early TXT
BIOS verified &
measured by S-ACM.
SHA1 digest is taken
either from BPM or
AUX index.
EventData is string
“TXT cold boot BIOS”
TPM2.0:
Ditto.
TPML_DIGEST
_VALUES structure
extended to PCR is
populated by digests
taken either from
BPM or AUX index.
Ditto.

EVTYPE_KM_HASH EB +
22

N/A N/A Reserved in TPM 1.2
mode

Digest= HashHashAlgID
(Key Manifest Signature)
EventData=”Key
Manifest signature”.
EventDataSize=
sizeof(EventData)

17 Digest is analogous to
the above entry, but
hashed object is
signature of key
manifest.
EventData is string
“Key Manifest
signature”

EVTYPE_BPM_HASH EB +
23

N/A N/A Reserved in TPM 1.2
mode

Digest= HashHashAlgID
(Boot Policy Manifest
signature).
EventData=”Boot Policy
Manifest signature”.
EventDataSize=
sizeof(EventData)

17 Digest is analogous to
the above entry, but
hashed object is
signature of boot
policy manifest.
EventData is string
“Boot Policy Manifest
signature”

EVTYPE_KM_INFO
_HASH

EB +
24

N/A N/A Reserved in TPM 1.2
mode

APPENDIX F

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
166 Document Number: 315168-017

Event Type Value Digest and Event PCR Comments

Digest= HashHashAlgID
(EventData)
EventData=Key Manifest
descriptor.
EventDataSize=
sizeof(EventData)

18 NOTE

5
Digest is analogous to
the above entry, but
hashed object is key
manifest descriptor
NOTE 5
EventData key
manifest descriptor

EVTYPE_BPM_INFO
_HASH

EB +
25

N/A N/A Reserved in TPM 1.2
mode

Digest= HashHashAlgID
(EventData)
EventData=Boot Policy
Manifest descriptor.
EventDataSize=
sizeof(EventData)

18 NOTE

5
Digest is analogous to
the above entry, but
hashed object is boot
policy manifest
descriptor NOTE 5
EventData boot policy
manifest descriptor

EVTYPE_BOOT_POL
_HASH

EB +
26

N/A N/A Reserved in TPM 1.2
mode

Digest= HashHashAlgID
(EventData)
EventData=
ACM_POLICY_STATUS
register.
EventDataSize=
sizeof(EventData)

17 Digest is analogous to
the above entry, but
hashed object is
ACM_POLICY
_STATUS register.
EventData is QWORD
register LT 0x378

EVTYPE_RANDOM
_VALUE

EB +
254

N/A N/A Reserved in TPM 1.2
mode

Digest= HashHashAlgId
(EventData)
EventData =
YYMMDDWW NOTE 5
EventDataSize = 4

17 &
18

Caps PCR value.
Executed as part of
NPW module only.

EVTYPE_CAP_VALUE EB +
255

N/A N/A Reserved in TPM 1.2
mode

Digest= OneDigest NOTE 6 17 &
18

Caps PCR value if
digest cannot be
computed due to
limited embedded
SW capabilities. No
real event log entry
will be created for this
action.

APPENDIX F

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 167

Note:

1. ZeroDigestHashAlgIDSize is the array of 0x00 bytes with a size corresponding to a
hash algorithm. ZeroDigest20 is array of 20 0x00 bytes

2. EmptyBuffer is zero length array of bytes.
3. MSRs numbers delivering digest of signer key are not architectural and are not

guaranteed to be stable across all future platforms.
4. EVTYPE_SINIT_PUBKEY_HASH is extended to either PCR17 or PCR18

depending on the Pcr18_Extends bit in the PolEltControl field of the
LCP_POLICY_ELEMENT (see D.4.3).

5. EVTYPE_KM_INFO_HASH and EVTYPE_BPM_INFO_HASH events creation and
respective PCR 18 extends are controlled by a value of PCR18 Extend bit (bit 2)
of a PolEltControl of an LCP element (see D.4.3).

6. YYMMDDWW are concatenated RTC bytes representing year, month, day of the
month and day of the week respectively.

7. OneDigest is sequence of bytes: 01,00,00…00 with a total size equal to
HashAlgId_DIGEST_SIZE of capped TPM bank

§§

APPENDIX G

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
168 Document Number: 315168-017

 ACM Hash Algorithm Support

 Supported Hash Algorithms

ACM support will be not restricted to fixed set of hash algorithms. Instead it will
support a variable list of algorithms which may include any algorithms supported by
TPM 2.0 specification limited only by PRD, space and supporting libraries, and defined
on by-project bases.

List of currently supported algorithms is presented in 3.2.5

 Hash Algorithm Lists

Based on the list of TPM 2.0 supported algorithms the ACM creates the following lists
of hash algorithms for different usages:

– TPM_HashAlgIDList - list of TPM supported HashAlgIDs. This is the list of all
HashAlgIDs supported by given entity of the TPM device. Determined
dynamically at run time;

– PCR_HashAlgIDList - list of HashAlgIDs for which given specimen of TPM device
implements dynamic PCRs 17 & 18. Determined dynamically at run time;

– ACM_HashAlgIDList - list of ACM Supported HashAlgIDs. This is the list of
HashAlgIDs supported by ACM via embedded SW. It is established at ACM build
time and reported via ACM Info Table – see Table 15

– Lcp_HashAlgIDList - List of LCP prescribed HashAlgIDs. This is the list stored in
PO TPM NV index by Platform Owner. This list is described below.

 Hash Algorithm List Subsets

ACM will detect content of all four HashAlgID Lists:
1. TPM_HashAlgIDList will be detected querying of TPM capabilities.
2. PCR_HashAlgIDList will be created as a subset of TPM_HashAlgIDList.

PCR_HashAlgIDList may not coincide with TPM_HashAlgIDList because “TPM
Library specification for TPM family 2.0” allows empty PCR banks.

3. ACM_HashAlgIDList is defined by ACM build options.
4. Lcp_HashAlgIDList – will be read from PO index. This list will represent Platform

Policy.

APPENDIX G

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 169

Figure 11. Hash Algorithm List Selection

Based on the above lists, ACM will create a few derivative lists to handle permissible
hashing while performing LCP enforcement:

– EFF_HashAlgIDList = (ACM_HashAlgIDList U TPM_HashAlgIDList) ∩
LCP_HashAlgIDList
This list contains all hashes supplied by all crypto-engines available for ACM –
embedded SW and TPM intersected with effective Platform Policy mask. This
list will be used to enforce LCP policy represented by MLE, and STM elements.

Note: Current implementation of ACM does not use TPM based hashing commands and
therefore TPM_HashAlgId list for practical purposes can be considered empty.

– LCP policy enforcement represented by PCONF elements will be as follows:

o PCR Selection used by PCONF element will be limited only by PCR banks
supported by given TPM i.e. by PCR_HashAlgIDList;

o Hash algorithm used to compute composite digest will be handled by one
of two rules:

 If composite hash will be handled by TPM2_PolicyPCR command,
permissible algorithm will be one of supported by TPM and Platform
Policy i.e.
LCP_TPM_HashAlgIDList = TPM_HashAlgIDList ∩ LCP_HashAlgIDList.
This option #1 is currently supported by ACM and LCP tools.

 If composite hash will be computed by ACM SW, permissible
algorithm will be selected by EFF_HashAlgIDList.
This option #2 is a stretch goal.

– If PCR Extend Policy is selected to be MP, then
ACM_PCR_HashAlgIDList = ACM_HashAlgIDList ∩ PCR_HashAlgIDList list will
represent all extended PCR banks. All PCRs not included in this list will be
capped.

PCR Extend Policy = MA
Extended PCRsTP

M
_H

as
hA

lg
ID

Li
st

AC
M

_H
as

hA
lg

ID
Li

st

PC
R_

H
as

hA
lg

ID
Li

st PCR Extend Policy = MP
Extended PCRs

PCR Extend Policy = MP
Capped PCRs

LCP Elements:
MLE, STM, SBIOS

LC
P_

H
as

hA
lg

ID
Li

st

PCONF
Composite
Hash
Option 1

PCONF
Composite
Hash
Option 2

PCONF
PCR
Selection

APPENDIX G

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
170 Document Number: 315168-017

– If PCR Extend Policy is selected to be MA, then all TPM PCRs will be extended
and none will be capped.

§§

APPENDIX H

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 171

 ACM Error Codes
After a successful measured launch, the TXT.ERRORCODE register will contain
0xC0000001 value. Failed launches leave other values in this register, which survive
warm resets and may be useful for diagnosis and remediation of the failure’s cause.

The tables below describe the format of this register as written during CPU-initiated
and ACM-initiated shutdowns.

Table of TXT.ERRORCODE values stable across ACM releases, available in prior
revisions of this document has been removed as proven to have little value. Instead,
Intel will provide an “Error Code” tool accompanied by an Excel spreadsheet and CSV
file as part of SINIT release kit. Both will contain error values and relevant descriptions
matching released SINIT ACM.

Note: Excel spreadsheet is saved in CSV format to speed-up browsing.

Release kits for released SINITs can be found at http://software.intel.com/en-
us/articles/intel-trusted-execution-technology.

Table 32. General TXT.ERRORCODE Register Format

Bit Name Description

31 Valid Valid error when set to 1. The rest of the register contents should be
ignored if '0'.

30 External 0 – induced by processor, 1 – induced by external software.

29:16 Type1 Implementation and source specific

15 SW
source

0 – ACM; 1 – MLE

14:0 Type2 Implementation and source specific. Provides details about cause of
shutdown.

Table 33. TXT.ERRORCODE Register Format for CPU-Initiated TXT-Shutdown

Bit Name Value / Error

31 Valid 1

30 External 0

29:24 Reserved 0

23:16 Extended
value

All errors except #0x10 == 0
Error #0x10 = ACM SVN

15 Reserved 0

14:0 Type2 0 = Legacy shutdown (non-TXT-specific).

 1 – 4 = Reserved

http://software.intel.com/en-us/articles/intel-trusted-execution-technology
http://software.intel.com/en-us/articles/intel-trusted-execution-technology

APPENDIX H

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
172 Document Number: 315168-017

Bit Name Value / Error

 5 = Authenticated RAM load memory type error

 6 = Unrecognized AC module format

 7 = Failure to authenticate

 8 = Invalid AC module format

 9 = Unexpected snoop hit detected

 0xA = Illegal event or IllegalProcessorState – collection of various
illegal causes.

1. A CPU reset occurs during AC-mode or post-SENTER and
LT.E2STS[RESET.STS] == 0 (I.E. reset was not caused by an LT-
shutdown).

2. A non-virtualized INIT event occurs while post-SENTER.

3. LTSX only: During RLP WAKEUP, the RPL thread’s value of MSR bit
IA32_SMM_MONITOR_CTL[0] (aka MSEG valid) does not match
the ILP thread’s value.

4. An SENTER, SEXIT, or WAKEUP doorbell is received while post-
VMXON.

5. A thread wakes from wait-for-SIPI while some other thread in the
same package is in AC-mode.

#1 is by far the most common observed in post-Si debug.

 0xB = Invalid JOIN format

 0xC = Unrecoverable machine check condition

 0xD = VMX abort

 0xE = AC memory corruption

 0xF = Illegal voltage/bus ratio

 0x10 = Low SGX security level post 1st SGX instruction:

 0x11-0xFFFF = Reserved

Table 34. TXT.ERRORCODE Register Format for ACM-Initiated TXT-Shutdown

Bit Name Description

31 Valid Valid error when set to 1. The rest of the register contents should be
ignored if '0'.

30 External = 1– induced by external software.

29:28 Type1 /
Reserved

Free for specific implementation

27:16 Type1 /
Minor
Error Code

Field value depends on Class Code and / or Major Error Code.
Several examples are:

1. If Class Code = “TPM Access” and
Major Error Code = “TPM retuned an error” –
Field value = TPM returned error code

APPENDIX H

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 173

Bit Name Description

TPM returned error code is posted in different format for TPM 1.2
and TPM 2.0 modes.
TPM 1.2: If error code is fatal, it occupies bits [23:16] and bit 24
remains clean. For non-fatal error codes lower byte is placed into
bits [23:16] and bit 24 is asserted. For instance, error code 0x803
will be translated into 0x103. This is legacy error code
representation.
TPM 2.0: TPM returned error code is posted as is.

2. If Class Code = “Launch Control Policy and
Major Error Code = “Policy Integrity Fail” –
Field value = (LIST_INDEX << 6) + Specific Minor Error Code

3. If Class Code = “Range Check Error” –
Field value = Index of first range in conflict with another
range according to Project Range Table.

15 SW source 0 = ACM; 1 = MLE

14:10 Type2 /
Major
Error Code

0 – 0x1F = Error code within current class code

9:4 Type2 /
Class Code

0 – 0x3F = Class code clusters several congeneric errors into a
group.

3:0 Type2 /
Module
Type

0 = BIOS ACM
1 = SINIT

§§

APPENDIX I

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
174 Document Number: 315168-017

 TPM NV
Table 35. TPM Family 1.2 NV Storage Matrix

Name Label Index Value Description Public Size
in bytes Attributes Read

Auth
Write
Auth

Locality
Write

Locality
Read

PCR
Write or

Read

LCP Platform Owner PO 0x40000001 LCP Structure for
Platform Owner

Platform
Specific
Size: 54

OWNERWRITE None Owner Any Any Any

Launch Auxiliary AUX IVB and before
platforms:
0x50000002
IVB after PRT and
beyond platforms:
0x50000003

Inter – module mail
box
BIOSAC
registration data

Platform
Specific
LT-CX Size:
64
LT-SX Size:
96

None None None 3 or 4 Any Any

SGX SVN SGX 0x50000004 BIOS – MLE mail
box. Value of SINIT
SVN and flags

Platform
Specific
Size: 8

None None None 3 - 0 3 - 0 Any

Table 36. TPM Family 2.0 NV Storage Matrix

Name Label Index Value Description Public Size in
bytes

Attributes
TPMA_NV_ Auth Value Auth

Policy
Locality

Write
Locality

Read
Locality Delete

LCP
Platform
Owner

PO 0x1C1_0106
NOTE3

LCP
Structure for
Platform
Owner

Platform Specific
Size: >= 38 +
HASHALGID_DIG
EST_SIZE Note 1

OWNERWRITE
POLICYWRITE
AUTHREAD
NO_DA

Empty
Buffer

Owner
policy

Any,
controlle
d by
Owner
choice

Any Any, controlled by Owner
choice

APPENDIX I

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 175

Name Label Index Value Description Public Size in
bytes

Attributes
TPMA_NV_ Auth Value Auth

Policy
Locality

Write
Locality

Read
Locality Delete

Launch
Auxiliary

AUX 0x1C1_0102

NOTE3
Inter –
module mail
box
BIOSAC
registration
data

Platform
Specific
Size: >= 40 + 2
*
HASHALGID_D
IGEST_SIZE
Note 1

POLICYWRITE
POLICY_DELETE
WRITE_STCLEAR
AUTHREAD
NO_DA
PLATFORMCREAT
E

Empty
Buffer

Fixed
policy
Note 2

3 or 4 Any 3 or 4

SGX SVN SGX 0x1C1_0104
NOTE3

BIOS – MLE
mail box.
Value of
SINIT SVN
and flags

Platform Specific
Size: 8

AUTHWRITE
POLICY_DELETE
AUTHREAD
NO_DA
PLATFORMCREAT
E

Empty
Buffer

OEM
policy

Any Any Any, controlled by OEM
policy

Note: HASHALGID_DIGEST_SIZE is the size of the digest of respective hash algorithm used to store data in the index. Respective sizes in bytes for all used algorithms are:
- SHA1_DIGEST_SIZE = 20
- SHA256_DIGEST_SIZE = 32
- SM3_256_DIGEST_SIZE = 32
- SHA384_DIGEST_SIZE = 48

Note: Policy digest must match the following:
- Let policy A to be:

A = TPM2_PolicyLocality (Locality 3 & Locality 4)
- Let policy B to be:

B = TPM2_PolicyCommandCode (TPM_CC_NV_UndefineSpecial)
- AuthPolicy can be computed as:

authPolicy = {A} OR {{A} AND {B}}
Note: Initially, TXT used index handles selected from 0x180_xxxx and 0x140_xxxx ranges based on early version of TCG “Registry of reserved TPM 2.0 handles and localities” and TXT

legacy. Later revision of TCG registry repurposed the above ranges creating mismatch between TXT practice and normative TCG document. Moreover, selection of TXT related NV
index handles from the ranges assigned to OEMs and Users does not guarantee its conflict free usage. In order to address both issues Intel requested TCG to assign “Intel
Reserved” range of indices 0x1C1_0100 - 0x1C1_013F for TXT and other purposes out of range 0x1C1_xxxx reserved for component vendors.

Note: TXT ACMs will support only 0x1C1_xxxx index set. Indication of supported set is provided via TPM capabilities – see Table 16 but will always be forced to “1”.

APPENDIX J

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
176 Document Number: 315168-017

 Detailed LCP Checklist

 Policy Validation Checklist

The following checks must be performed by the LCP Policy Engine to validate LCP data
integrity:

 TPM NV AUX Index
1. Index must be provisioned.

2. Index attributes must be per Table 33 for TPM 1.2 index and per Table 34 for TPM
2.0 index.

3. nameAlg hashing algorithm must have at least 256-bit digest e.g. be either SHA256
/ SM3 or stronger.

4. Size must be per Table 33 and Table 34 for TPM 1.2 and TPM 2.0 AUX indices
respectively.

5. Read AUX index data and analyze content.

6. Additional verification steps can be added since AUX index content is platform
specific.

 TPM NV PO Index
1. Index may be provisioned.

2. Index attributes must be per Table 33 for TPM 1.2 index and per Table 34 for TPM
2.0 index.

3. nameAlg hashing algorithm must have at least 256-bit digest e.g. be either SHA256
/ SM3 or stronger

4. Read PO index data and analyze content.

5. PO.Version must be per 3.2.1.

6. PO.HashAlg must be SHA1 for TPM 1.2 index and one of the supported algorithms
per 3.2.5 for TPM 2.0 index.

7. TPM 2.0 mode: PO.HashAlg must be permitted by PO.LcpHashAlgMask.

8. Size must be per Table 33 for TPM 1.2 index and per Table 34 for TPM 2.0 index.
Size of PO.PolicyHash field must be equal digest size of PO.HashAlg field.

9. PO.PolicyType must be either LCP_POLTYPE_LIST or LCP_POLTYPE_ANY – see
3.2.1.

10. PO.SinitMinVersion must be not greater than value of AcmVersion field in Table 8.

11. TPM 2.0 mode: algorithms corresponding to set bits in PO.LcpHashAlgMask and
PO.LcpSignAlgMask must be supported by ACM per 3.2.5.

APPENDIX J

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 177

 NPW Mode
Detect whether system in NPW mode and is allowed to run:

1. System is in NPW mode if:

a. NPW bit is asserted in Flags field of SINIT header or

b. Startup ACM ACM_SVN value is < 2 or

c. If AUX index Startup ACM self-registration area is in initial TPM NV state
(“All ones for TPM 1.2 or “All zeros” for TPM 2.0).

2. If system is in NPW mode PolicyControl.NPW_OK bit must be asserted – see 3.2.1.

3. If PO index is undefiled, and platform is in NPW mode, SINIT must abort execution.

 Policy Data File
1. If PO.PolicyType is LCP_POLTYPE_LIST, then respective PO Policy Data File must

exist and be accessible.

 PO Policy Data File if exists
1. Loop through all lists as indicated by File.NumberOfLists value

2. Validate signature of each of the lists:

a. If list is unsigned – skip to step 3 computation of list digest.

b. If list is signed but signature is not supported by Policy Engine – abort since
this prevents validation of data integrity.

c. If list is signed and signature is supported – validate signature. Supported
signature algorithms are listed in Appendix D.3.1.

3. Compute the digest of the list:

a. For unsigned list compute digest as ListDigest[ListNumber] = PO.HashAlg
(ListData), where PO.HashAlg is hashing algorithm in PO index per
Appendix D.1 and hashing is performed over entire unsigned list data.

b. For signed list compute digest as ListDigest[ListNumber] = PO.HashAlg
(ListPublicKey), where PO.HashAlg is hashing algorithm in PO index per 0
and ListPublicKey is either PublicKey field of RSASSA signature or
concatenation of Qx|Qy public key components fields of SM2/ECDSA
signature – signature formats are in Appendix D.3.1.

4. Compute digest of entire PO Policy Data File by concatenation of all digests of
individual lists and hashing it once more using the same PO.HashAlg e.g.
PO.PolicyDataFileDigest = PO.HashAlg(List0Digest[0]|…|ListDigest[N])

5. Computed PO.PolicyDataFileDigest file digest must match value of PO.PolicyHash
field of PO index.

 PO Policy Data File List Integrity
1. List.Version must be per Appendix D.3.2.

APPENDIX J

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
178 Document Number: 315168-017

2. Loop through all elements of the list and sum-up their sizes. Obtained value must
match File.PolicyElementsSize field value. Empty list with a File.PolicyElementsSize
== 0 is a valid placeholder. It must contain no elements.

3. Validate hash algorithms used by elements. Scan through all elements in list while
checking their Elt.HashAlgorithm values. Abort if any is not supported by ACM per
0. In TPM 1.2 mode scan only TPM 1.2 style elements while in TPM 2.0 mode scan
only TPM 2.0 style elements.

4. In TPM 2.0 mode only, verify that Count field of TPMS_QUOTE_INFO structure
which is part of PCONF element definition equals 1.

5. If list is signed check the List.RevocationCounter value. If it is lesser than
PO.DataRevocationCounter [ListNumber] abort with error. ListNumber here is the
orderly list number in the Policy Data File.

 Policy Enforcement Checklist

 Policy type handling by SINIT
1. For SINIT module: if PO.PolicyType equals to LCP_POLTYPE_ANY, allow any

platform configuration and any MLE and STM to run. Exit policy enforcement logic.

 MLE Element Enforcement
1. Start of MLE element scan. Process lists and elements in the lists in the order of

appearance. Look for MLE elements. Skip all other element types.

a. TPM 1.2: Scan all lists looking for TPM 1.2 style MLE elements.

b. TPM 2.0: Scan all lists only looking for TPM 2.0 style MLE elements.

i. If list is signed and List.SignatureAlgorithm is not permitted by
PO.LcpSignAlgMask, skip the list.

2. Start of matching loop.

a. For every MLE type element found do the following:

i. TPM 2.0: Check HashAlgorithm field against PO.LcpHashAlgMask value.
If not permitted by a mask skip element.

ii. Indicate MLE element present: record MLE_MATCH_REQUIRED flag;

iii. Try to match element:

1. Scan through all digests in element digest array comparing digest
with computed MLE digest. It is assumed that MLE digest has been
calculated before LCP execution flow.

2. If match is found

a. Check the value of Elt.SinitMinVersion field. It must be not
greater than value of AcmVersion field in Table 8. If greater
abort with error – SINIT is revoked.

APPENDIX J

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 179

b. Check PolEltControl.STM_is_required bit of matching element.
If asserted but previous execution has not found STM present,
exit with error.

c. Save value of PolEltControl.PCR_Extends bit – it will be
consumed outsize of LCP content by a PCR 18 extend code.

d. MLE policy is satisfied - continue to the next element type.

3. If match is not found yet – continue to the “Start of matching loop”.

3. End of matching loop.

4. If this point is reached – no match was found.

a. If MLE_MATCH_REQUIRED_FLAG is asserted – exit with error.

b. MLE_MATCH_REQUIRED_FLAG is de-asserted, assumed MLE policy is
satisfied – continue to the next element type.

 PCONF Element Enforcement
1. Start of PCONF element scan. Process lists and elements in the lists in the order of

appearance. Look for PCONF elements. Skip all other element types.

a. TPM 1.2: Scan all lists looking for TPM 1.2 style PCONF elements.

b. TPM 2.0: Scan all lists only looking for TPM 2.0 style PCONF elements.

i. If list is signed and List.SignatureAlgorithm is not permitted by
PO.LcpSignAlgMask, skip the list.

2. Initialize variable. Set PCONF_MATCHES_FOUND = 0

3. Start of matching loop PASS 1.

a. For every PCONF type element found do the following:

i. TPM 2.0: Check HashAlgorithm field against PO.LcpHashAlgMask value. If
not permitted by a mask skip element.

ii. Indicate PCONF element present: record
PCONF_MATCH_REQUIRED_FLAG_PASS_1

iii. Try to match element.

1. Scan through all PCRInfos structures in element array, query PCRs
according to PCR Selection structure and compute relevant Composite
Digest of selected PCR values.

2. Then compare this digest to value stored in element’s PCRInfo structure.

3. If match is found – increment PCONF_MATCHES_FOUND

a. If PO.PolicyControl.Pconf_Enforced bit is de-asserted, assumed
PCONF policy is satisfied – continue to the next element type

b. If PO.PolicyControl.Pconf_Enforced bit is asserted

i. Skip rest of elements in current list and go to the next list.

ii. Then go to the “Start of PO matching loop PASS 2”

APPENDIX J

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide January 2021
180 Document Number: 315168-017

4. If match is not found yet – continue to the “Start of PO matching loop
PASS 1”

4. End of matching loop PASS 1

5. Start of matching loop PASS 2.

a. Repeat all steps of “Matching loop PASS 1” above with the following changes:

i. If PCONF element is found, record it in
PCONF_MATCH_REQUIRED_FLAG_PASS_2

ii. After match is found and PCONF_MATCHES_FOUND is incremented

1. If PCONF_MATCHES_FOUND == 2, PCONF policy is satisfied – continue to
the next element type

iii. If match is not found yet – continue to the “Start of matching loop PASS 2”

6. End of matching loop PASS 2

7. At this point either singe or two matching passes were executed

a. If PO.PolicyControl.Pconf_Enforced bit is de-asserted

i. If PCONF_MATCH_REQUIRED_FLAG_PASS_1 is de-asserted, assumed
PCONF policy is satisfied – continue to the next element type.

ii. Else PCONF_MATCH_REQUIRED_FLAG_PASS_1 is asserted - exit with error.

b. If PO.PolicyControl.Pconf_Enforced bit is asserted. Only one special
configuration entails an error – all other are successes.

i. If PCONF_MATCH_REQUIRED_FLAG_PASS_1 == 1 and
PCONF_MATCH_REQUIRED_FLAG_PASS_2 == 1 and
PCONF_MATCHES_FOUND == 1 – exit with error.

ii. Else assumed PCONF policy is satisfied – continue to the next element type.

 STM Element Enforcement
1. If prior execution has not found STM in the system – (based on MSEG enable

status – see Table 23) scan of STM elements is not performed. Only if matching
MLE element requires STM this will generate an error exit – see Appendix J.2.2.

2. Start of STM element scan. Process lists and elements in the lists in the order of
appearance. Look for STM elements. Skip all other element types.

a. TPM 1.2: Scan all lists looking for TPM 1.2 style STM elements.

b. TPM 2.0: Scan all lists only looking for TPM 2.0 style STM elements.

i. If list is signed and List.SignatureAlgorithm is not permitted by
PO.LcpSignAlgMask, skip the list.

3. Start of matching loop

a. For every STM type element found do the following:

i. TPM 2.0: Check HashAlgorithm field against PO.LcpHashAlgMask value. If
not permitted by a mask skip element

APPENDIX J

 Intel® Trusted Execution Technology (Intel® TXT)
January 2021 Software Development Guide
Document Number: 315168-017 181

ii. Indicate STM element present: record STM_MATCH_REQUIRED flag

iii. Try to match element:

1. Scan through all digests in element digest array comparing digest
with computed STM digest. It is assumed that STM digest has been
calculated before LCP execution flow.

2. If match is found, STM policy is satisfied – continue to the next task.
This is the last element type

3. If match is not found yet – continue to the “Start of matching loop”

4. End of matching loop

5. If this point is reached – no match was found.

a. If STM_MATCH_REQUIRED_FLAG is asserted - exit with error since no match
was found

6. STM_MATCH_REQUIRED_FLAG is de-asserted, assumed STM policy is satisfied –
continue to the next task. This is the last element type

§§

	Software Development Guide
	Notices and Disclaimers
	Contents
	Revision History
	Foreword
	1.0 Overview
	1.1 Measurement and Intel® Trusted Execution Technology (Intel® TXT)
	1.2 Dynamic Root of Trust
	1.2.1 Launch Sequence

	1.3 Storing the Measurement
	1.4 Controlled Take-down
	1.5 SMX and VMX Interaction
	1.6 Authenticated Code Module
	1.7 Chipset Support
	1.8 TPM Usage
	1.9 Hash Algorithm Support
	1.10 PCR Usage
	1.10.1 Legacy Usage
	1.10.2 Details and Authorities Usage
	1.10.2.1 PCR 17 (Details)
	1.10.2.2 PCR 18 (Authorities)

	1.11 DMA Protection
	1.11.1 DMA Protected Range (DPR)
	1.11.2 Protected Memory Regions (PMRs)
	1.11.3 TXT DMA Protection Ranges (TPR)

	1.12 Intel® TXT Shutdown
	1.12.1 Reset Conditions

	2.0 Measured Launched Environment
	2.1 MLE Architecture Overview
	2.2 MLE Launch
	2.2.1 Intel® TXT Detection and Processor Preparation
	2.2.2 Detection of Previous Errors
	2.2.3 Loading the SINIT AC Module
	2.2.3.1 Matching an AC Module to the Platform
	2.2.3.2 Verifying Compatibility of SINIT with the MLE

	2.2.4 Loading the MLE and Processor Rendezvous
	2.2.4.1 Loading the MLE
	2.2.4.2 Intel® Trusted Execution Technology Heap Initialization
	2.2.4.3 DMA protection capability handling
	2.2.4.4 Rendezvousing Processors and Saving State

	2.2.5 Performing a Measured Launch
	2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution
	2.2.5.2 Selection of Launch Capabilities
	2.2.5.3 TPM Preparation
	2.2.5.4 Intel® Trusted Execution Technology Launch

	2.3 MLE Initialization
	2.4 MLE Operation
	2.4.1 Address Space Correctness
	2.4.2 Address Space Integrity
	2.4.3 Physical RAM Regions
	2.4.4 Intel® Trusted Execution Technology Chipset Regions
	2.4.4.1 Intel® Trusted Execution Technology Configuration Space
	2.4.4.2 Intel® Trusted Execution Technology Device Space

	2.4.5 Device Assignment
	2.4.6 Protecting Secrets
	2.4.7 Model Specific Register Handling
	2.4.8 Interrupts and Exceptions
	2.4.9 ACPI Power Management Support
	2.4.9.1 T-state Transitions
	2.4.9.2 P-State Transitions
	2.4.9.3 C-State Transitions
	2.4.9.4 S-State Transitions
	2.4.9.4.1 S3

	2.4.10 Processor Capacity Addition (aka CPU Hotplug)

	2.5 MLE Teardown
	2.6 Other Considerations
	2.6.1 Saving MSR State across a Measured Launch

	3.0 Verifying Measured Launched Environments
	3.1 Overview
	3.1.1 Versions of LCP Components

	3.2 LCP Components. General provisions
	3.2.1 LCP Policy
	3.2.1.1 PolicyHash Field for LCP_POLTYPE_LIST

	3.2.2 LCP Policy Data
	3.2.3 LCP Policy Element
	3.2.4 Signed Policies
	3.2.5 Supported Cryptographic Algorithms
	3.2.5.1 RSASSA, RSAPSS, and ECDSA
	3.2.5.2 SM2
	3.2.5.3 List Signatures

	3.3 Policy Engine Logic
	3.3.1 Policies
	3.3.2 Processing of Policy Data Files
	3.3.2.1 Integrity Verification
	3.3.2.2 Policy Enforcement

	3.4 Measuring the Enforced Policy
	3.4.1 No Policy Data and Allow Any Policy
	3.4.2 Policy with LCP_POLICY_DATA
	3.4.3 Effective Policies
	3.4.3.1 TPM 1.2 LCP Policy Details
	3.4.3.2 TPM 1.2 LCP Policy Authorities
	3.4.3.3 TPM 2.0 Effective LCP Policy Details
	3.4.3.4 TPM 2.0 Effective LCP Policy Authorities

	3.4.4 Effective TPM NV info Hash

	3.5 TPM NV RAM
	3.5.1 Auxiliary Index
	3.5.2 Platform Owner Index
	3.5.3 nameAlg Support

	3.6 PCR Extend Policy
	3.6.1 SINIT Policy Selection

	3.7 Revocation
	3.7.1 SINIT Revocation

	4.0 Development and Deployment Considerations
	4.1 Launch Control Policy Creation
	4.2 Launch Errors and Remediation
	4.3 Determining Trust
	4.3.1 Migration of SEALed Data

	4.4 Deployment
	4.4.1 LCP Provisioning
	4.4.1.1 TPM Ownership
	4.4.1.2 Policy Provisioning

	4.4.2 SINIT Selection

	4.5 SGX Requirement for TXT Platform
	4.6 Converged BtG/TXT Impact on TXT Platform

	APPENDIX A. Intel® TXT Execution Technology Authenticated Code Modules
	A.1 Authenticated Code Module Format
	A.1.1 Memory Type Cacheability Restrictions
	A.1.2 Authentication and Execution of AC Module

	APPENDIX B. SMX Interaction with Platform
	B.1 Intel® Trusted Execution Technology Configuration Registers
	B.1.1 TXT.STS – Status
	B.1.2 TXT.ESTS – Error Status
	B.1.3 TXT.ERRORCODE – Error Code
	B.1.4 TXT.CMD.RESET – System Reset Command
	B.1.5 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command
	B.1.6 TXT.SPAD – BOOTSTATUS
	B.1.7 TXT.DIDVID – TXT Device ID
	B.1.8 TXT.VER.EMIF – EMC Version Numer Register
	B.1.9 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config Command
	B.1.10 TXT.SINIT.BASE – SINIT Base Address
	B.1.11 TXT.SINIT.SIZE – SINIT Size
	B.1.12 TXT.MLE.JOIN – MLE Join Base Address
	B.1.13 TXT.HEAP.BASE – TXT Heap Base Address
	B.1.14 TXT.HEAP.SIZE – TXT Heap Size
	B.1.15 TXT.DPR – DMA Protected Range
	B.1.16 TXT.SCRATCHPAD – ACM_POLICY_STATUS
	B.1.17 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command
	B.1.18 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command
	B.1.19 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command
	B.1.20 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command
	B.1.21 TXT.PUBLIC.KEY – AC Module Public Key Hash
	B.1.22 TXT.CMD.SECRETS – Set Secrets Command
	B.1.23 TXT.CMD.NO-SECRETS – Clear Secrets Command
	B.1.24 TXT.E2STS – Extended Error Status

	B.2 TPM Platform Configuration Registers
	B.3 Intel® Trusted Execution Technology Device Space

	APPENDIX C. Intel® TXT Heap Memory
	C.1 Extended Data Elements
	C.1.1 HEAP_END_ELEMENT
	C.1.2 HEAP_CUSTOM_ELEMENT
	C.1.2.1 Benchmarking element

	C.2 BIOS Data Format
	C.2.1 HEAP_BIOS_SPEC_VER_ELEMENT
	C.2.2 HEAP_ACM_ELEMENT
	C.2.3 HEAP_STM_ELEMENT

	C.3 OS to MLE Data Format
	C.4 OS to SINIT Data Format
	C.4.1 HEAP_TPM_EVENT_LOG_ELEMENT
	C.4.2 HEAP_EVENT_LOG_POINTER_ELEMENT2_1
	C.4.3 HEAP_TPR_REQ_ELEMENT

	C.5 SINIT to MLE Data Format
	C.5.1 HEAP_MADT_ELEMENT
	C.5.2 HEAP_MCFG_ELEMENT
	C.5.3 HEAP_DTPR_ELEMENT
	C.5.4 Registry of Extended Heap Elements

	APPENDIX D. LCP Data Structures
	D.1 LCP Policy
	D.1.1 Policy Control
	D.1.2 LCP_POLICY
	D.1.3 LCP_POLICY2

	D.2 LCP_POLICY_DATA
	D.3 LCP Policy List
	D.3.1 List Signatures
	D.3.1.1 LCP_SIGNATURE2 structure
	D.3.1.2 LCP_SIGNATURE2_1 structure

	D.3.2 List Structures
	D.3.2.1 LCP_POLICY_LIST2 Structure
	D.3.2.2 LCP_POLICY_LIST2_1 Structure
	D.3.2.3 LCP_LIST

	D.4 LCP_POLICY_ELEMENT
	D.4.1 Policy Elements
	D.4.2 Structure Endianness
	D.4.3 Generic Policy Element Structure
	D.4.4 LCP_MLE_ELEMENT
	D.4.5 LCP_PCONF_ELEMENT
	D.4.6 LCP_CUSTOM_ELEMENT
	D.4.7 LCP_MLE_ELEMENT2
	D.4.8 LCP_PCONF_ELEMENT2
	D.4.9 LCP_STM_ELEMENT2

	D.5 NV AUX Index Data Structure

	APPENDIX E. Platform State upon SINIT Exit and Return to MLE
	APPENDIX F. TPM Event Log
	F.1 TPM 1.2 Event Log
	F.2 TPM 2.0 Event Log
	F.3 Events Types

	APPENDIX G. ACM Hash Algorithm Support
	G.1 Supported Hash Algorithms
	G.2 Hash Algorithm Lists
	G.3 Hash Algorithm List Subsets

	APPENDIX H. ACM Error Codes
	APPENDIX I. TPM NV
	APPENDIX J. Detailed LCP Checklist
	J.1 Policy Validation Checklist
	J.1.1 TPM NV AUX Index
	J.1.2 TPM NV PO Index
	J.1.3 NPW Mode
	J.1.4 Policy Data File
	J.1.5 PO Policy Data File if exists
	J.1.6 PO Policy Data File List Integrity

	J.2 Policy Enforcement Checklist
	J.2.1 Policy type handling by SINIT
	J.2.2 MLE Element Enforcement
	J.2.3 PCONF Element Enforcement
	J.2.4 STM Element Enforcement

