

Document: 315168-017

Intel® Trusted Execution
Technology (Intel® TXT)

Software Development Guide

Measured Launch Environment Developer’s Guide

October 2025
Revision 017.7

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
2 Document Number: 315168-017

You may not use or facilitate the use of this document in connection with any infringement or other
legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive,
royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Performance varies depending on system configuration. No
computer system can be absolutely secure. Check with your system manufacturer or retailer or
learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check
with your system manufacturer or retailer.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on
request.

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative
to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document may be
obtained by calling 1-800-548-4725 or visiting the Intel Resource and Documentation Center.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium,
MMX, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 3

Contents
1 Overview .. 13

1.1 Measurement and Intel® Trusted Execution Technology (Intel® TXT) 13
1.2 Dynamic Root of Trust ... 14

1.2.1 Launch Sequence ... 14
1.3 Storing the Measurement ... 15
1.4 Controlled Take-down .. 15
1.5 SMX and VMX Interaction... 15
1.6 Authenticated Code Module .. 15
1.7 Chipset Support .. 16
1.8 TPM Usage ... 17
1.9 Hash Algorithm Support ... 17
1.10 PCR Usage ... 18

1.10.1 Legacy Usage .. 18
1.10.2 Details and Authorities Usage .. 18

1.11 DMA Protection ... 21
1.11.1 DMA Protected Range (DPR).. 21
1.11.2 Protected Memory Regions (PMRs) ... 22
1.11.3 TXT DMA Protection Ranges (TPR) ... 22

1.12 Intel® TXT Shutdown ... 23
1.12.1 Reset Conditions .. 23

2 Measured Launched Environment ... 24
2.1 MLE Architecture Overview ... 24
2.2 MLE Launch .. 28

2.2.1 Intel® TXT Detection and Processor Preparation 28
2.2.2 Detection of Previous Errors .. 29
2.2.3 Loading the SINIT AC Module .. 30
2.2.4 Loading the MLE and Processor Rendezvous .. 34
2.2.5 Performing a Measured Launch .. 39

2.3 MLE Initialization .. 41
2.4 MLE Operation .. 46

2.4.1 Address Space Correctness ... 46
2.4.2 Address Space Integrity.. 46
2.4.3 Physical RAM Regions ... 46
2.4.4 Intel® Trusted Execution Technology Chipset Regions 47
2.4.5 Device Assignment ... 47
2.4.6 Protecting Secrets .. 48
2.4.7 Model Specific Register Handling .. 48
2.4.8 Interrupts and Exceptions ... 48
2.4.9 ACPI Power Management Support .. 49
2.4.10 Processor Capacity Addition (aka CPU Hotplug) 51

2.5 MLE Teardown .. 52
2.6 Other Considerations ... 54

2.6.1 Saving MSR State across a Measured Launch .. 54
3 Verifying Measured Launched Environments .. 56

3.1 Overview ... 56
3.1.1 Versions of LCP Components ... 57

3.2 LCP Components. General provisions ... 57

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
4 Document Number: 315168-017

3.2.1 LCP Policy ... 58
3.2.2 LCP Policy Data ... 60
3.2.3 LCP Policy Element ... 61
3.2.4 Signed Policies .. 62
3.2.5 Supported Cryptographic Algorithms .. 62

3.3 Policy Engine Logic .. 64
3.3.1 Policies ... 64
3.3.2 Processing of Policy Data Files ... 65

3.4 Measuring the Enforced Policy .. 67
3.4.1 No Policy Data and Allow Any Policy ... 68
3.4.2 Policy with LCP_POLICY_DATA ... 68
3.4.3 Effective Policies .. 68
3.4.4 Effective TPM NV info Hash ... 73

3.5 TPM NV RAM .. 74
3.5.1 Auxiliary Index .. 74
3.5.2 Platform Owner Index .. 74
3.5.3 nameAlg Support ... 75

3.6 PCR Extend Policy ... 75
3.6.1 SINIT Policy Selection .. 76

3.7 Revocation ... 76
3.7.1 SINIT Revocation ... 76

4 Development and Deployment Considerations .. 78
4.1 Launch Control Policy Creation ... 78
4.2 Launch Errors and Remediation .. 78
4.3 Determining Trust ... 79

4.3.1 Migration of SEALed Data ... 79
4.4 Deployment ... 80

4.4.1 LCP Provisioning .. 80
4.4.2 SINIT Selection ... 81

4.5 SGX Requirement for TXT Platform.. 81
4.6 Converged BtG/TXT impact on TXT Platform ... 83

 Authenticated Code Modules .. 86
 Authenticated Code Module Format ... 86

 ACM Header format .. 86
 ACM Information Table format ... 91
 Flexible ACM Information Table format ... 96

 Memory Type Cacheability Restrictions ... 100
 Authentication and Execution of AC Module ... 100

 SMX Interaction with Platform ... 102
 Intel® Trusted Execution Technology Configuration Registers 102

 TXT.STS – Status .. 102
 TXT.ESTS – Error Status .. 103
 TXT.ERRORCODE – Error Code ... 103
 TXT.CMD.RESET – System Reset Command ... 105
 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command 105
 TXT.SPAD – BOOTSTATUS ... 106
 TXT.DIDVID – TXT Device ID ... 107
 TXT.VER.EMIF – EMC Version Numer Register 107
 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config Command 107

 TXT.SINIT.BASE – SINIT Base Address .. 108

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 5

 TXT.SINIT.SIZE – SINIT Size ... 108
 TXT.MLE.JOIN – MLE Join Base Address ... 108
 TXT.HEAP.BASE – TXT Heap Base Address ... 109
 TXT.HEAP.SIZE – TXT Heap Size ... 109
 TXT.DPR – DMA Protected Range .. 109
 TXT.SCRATCHPAD – ACM_POLICY_STATUS .. 110
 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command 111
 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command 111
 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command 111
 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command 112
 TXT.PUBLIC.KEY – AC Module Public Key Hash 112
 TXT.DIDVID2 - TXT Device ID 2 ... 112
 TXT.CMD.SECRETS – Set Secrets Command... 113
 TXT.CMD.NO-SECRETS – Clear Secrets Command 113
 TXT.E2STS – Extended Error Status .. 114

 TPM Platform Configuration Registers ... 114
 Intel® Trusted Execution Technology Device Space .. 114

 Intel® TXT Heap Memory .. 116
 Extended Data Elements ... 117

 HEAP_END_ELEMENT .. 117
 HEAP_CUSTOM_ELEMENT .. 118

 BIOS Data Format .. 119
 HEAP_BIOS_SPEC_VER_ELEMENT ... 120
 HEAP_ACM_ELEMENT .. 120
 HEAP_STM_ELEMENT .. 121

 OS to MLE Data Format .. 121
 OS to SINIT Data Format .. 121

 HEAP_EVENT_LOG_POINTER_ELEMENT2_1 .. 123
 HEAP_TPR_REQ_ELEMENT ... 123

 SINIT to MLE Data Format .. 125
 HEAP_MADT_ELEMENT .. 127
 HEAP_MCFG_ELEMENT .. 127
 HEAP_DTPR_ELEMENT ... 128
 HEAP_CEDT_ELEMENT ... 128
 Registry of Extended Heap Elements ... 128

 LCP Data Structures .. 130
 LCP Policy ... 130

 Policy Control ... 130
 LCP_POLICY2 ... 130

 LCP_POLICY_DATA ... 132
 LCP Policy List ... 133

 List Signatures ... 133
 List Structures .. 143

 LCP_POLICY_ELEMENT ... 144
 Structure Endianness .. 144
 Generic Policy Element Structure .. 144
 LCP_CUSTOM_ELEMENT .. 145
 LCP_MLE_ELEMENT2 ... 146
 LCP_PCONF_ELEMENT2 ... 146
 LCP_STM_ELEMENT2 ... 147

 NV AUX Index Data Structure .. 148

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
6 Document Number: 315168-017

 Platform State upon SINIT Exit and Return to MLE 149
 TPM Event Log .. 151

 TPM 2.0 Event Log ... 151
 Events Types ... 153

 ACM Hash Algorithm Support .. 160
 Supported Hash Algorithms ... 160
 Hash Algorithm Lists .. 160
 Hash Algorithm List Subsets .. 160

 ACM Error Codes ... 162
 TPM NV ... 165
 Detailed LCP Checklist .. 167

 Policy Validation Checklist ... 167
 TPM NV AUX Index .. 167
 TPM NV PO Index .. 167
 NPW Mode ... 167
 Policy Data File ... 168
 PO Policy Data File if exists .. 168
 PO Policy Data File List Integrity ... 168

 Policy Enforcement Checklist ... 169
 Policy type handling by SINIT ... 169
 MLE Element Enforcement ... 169
 PCONF Element Enforcement .. 169
 STM Element Enforcement ... 171

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 7

Figures

Figure 1. Launch Control Policy Components ... 57
Figure 2. LCP_POLICY (2) Structure ... 58
Figure 3. LCP_POLICY_DATA Structure ... 61
Figure 4. LCP_POLICY_ELEMENT structure .. 62
Figure 5. Element Descriptor ... 69
Figure 6. TPM 2.0 LCP Policy Details Data Stream .. 70
Figure 7. List Descriptor ... 71
Figure 8. LCP Policy Authorities Data Stream ... 72
Figure 9. Hash Algorithm List Selection.. 161

Tables

Table 1. Digest values extending PCR17 ... 19
Table 2. Digest values extending PCR18 ... 20
Table 3. MLE Header Structure .. 24
Table 4. MLE/SINIT Capabilities Field Bit Definitions ... 26
Table 5. Truth Table of SINIT / MLE functionality ... 27
Table 6. LM-OTS Parameters ... 63
Table 7. LMS Parameters .. 64
Table 8. SGX Index Content .. 82
Table 9. IA32_SE_SVN_STATUS MSR (0x500) ... 82
Table 10. Authenticated Code Module Format .. 86
Table 11. AC module Flags Description ... 89
Table 12. Chipset AC Module Information Table ... 91
Table 13. Chipset ID List .. 93
Table 14. TXT_ACM_CHIPSET_ID Format .. 93
Table 15. Processor ID List ... 94
Table 16. TXT_ACM_PROCESSOR_ID Format... 94
Table 17. TPM Info List ... 94
Table 18. TPM Capabilities Field ... 95
Table 19. ACM Version Information list ... 96
Table 20. Chipset ID List .. 97
Table 21. Chipset 2 ID list .. 98
Table 22. TXT_ACM_CHIPSET_ID_2 format ... 98
Table 23. Processor ID list .. 99
Table 24. TPM Information list ... 99
Table 25. Terminator list ... 100
Table 26. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns............................. 104
Table 27. TPM Locality Address Mapping .. 115
Table 28. Intel® Trusted Execution Technology Heap ... 116
Table 29. BIOS Data Table ... 119
Table 30. MLE Flags Field Bit Definitions .. 120
Table 31. OS to SINIT Data Table ... 122
Table 32. SINIT to MLE Data Table ... 125
Table 33. SINIT Memory Descriptor Record .. 126
Table 34. Extended Heap Elements Registry ... 128
Table 35. AUX Data Structure... 148
Table 36. Platform State upon SINIT exit and return to MLE ... 149
Table 37. Event Types ... 153
Table 38. General TXT.ERRORCODE Register Format ... 162
Table 39. TXT.ERRORCODE Register Format for CPU-initiated TXT-shutdown 162

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
8 Document Number: 315168-017

Table 40. TXT.ERRORCODE Register Format for ACM-initiated TXT-shutdown 163
Table 41. TPM Family 2.0 NV Storage Matrix .. 165

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 9

Revision History

Revision Description Revision Date

001 • Initial release. May 2006

002 • Established public document number
• Edited throughout for clarity.

August 2006

003 • Added launched environment consideration
• Renamed LT to Intel® TXT

October 2006

004 • Updated for production platforms
• Use MLE terminology

August 2007

005 • Updated for latest structure versions and new RLP wakeup mechanism
• Added Launch Control Policy information
• Removed TEP Appendix
• Many miscellaneous changes and additions

June 2008

006 • Miscellaneous errata
• Added definition of LCP v2
• Multiple processor support

December 2009

007 • Miscellaneous errata
• Documented ProcessorIDList support
• Described CPU Hotplug handling
• Updated TXT configuration registers
• Documented new TXT Heap structures
• Added LCP_SBIOS_ELEMENT
• Documented processor and system state after SENTER/RLP wakeup

March 2011

008 • Format updates June 2011

009 • Numerous updates from prior author
• Added text for LCP details/authorities
• Corrected osinitdata offset 84 for versions 6+

April 2013

010 • Corrections to data structures, algorithm detail versus prior versions
• Inclusion of TPM 2.0 changes and additions

March 2014

011 • Update TPM_PCR_INFO_SHORT structure and TPMS_QUOTE_INFO
structure Endianness

May 2014

012 • Added SGX requirement for TXT platform
• Updated LCP changes of TPM2.0 transitions
• Added TCG compliant TXT event log formats
• Documented TPM NV definitions
• Inclusion of detailed LCP checklists

July 2015

013 • Added each MTRR base must be multiple of that MTTR size Prior to
GETSEC[SENTER] execution.

August 2016

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
10 Document Number: 315168-017

Revision Description Revision Date

014 • Added changes related to Converged BtG / TXT technologies and CNSS
Advisory 02-15

May 2017

015 • Fixed structure HEAP_EVENT_LOG_POINTER_ELEMENT2(must be
HEAP_EVENT_LOG_POINTER_ELEMENT2_1)

• Added reserved capability bit 11
• Added CR3 reference to SINIT exit state table
• Corrected errors in the last revisions

November 2017

016 • Re-write of LCP to reflect architectural changes.
• Multiple corrections and updates

September 2019

16.1 • Document update to correct several errors:
• Clarify check for SMX and VMX
• Delete description of deprecated register (at offset 0100h)
• Correctly name register at offset 0200h
• Reflect above changes in listing 3

May 2020

16.2 • LCP_POLICY_LIST2_1 listing will now correctly list KeySignatureOffset
field type as UINT16 instead of UINT32

June 2020

16.3 • Update and clarification of the Pcr18_Extends member of the
PolEltControl bitfield.

September 2020

17.0 Introduction of TXT DMA Protection Ranges (TPR):
• Section 1.11.3 added.
• Section 2.2.4.3 added.
• Section C.4.3 added.
• Section C.5.3 added.
• MLE Header Version field incremented to 2.3 (Table 3)
• ACM Info Table Version field incremented to 8
• MLE/SINIT Capabilities Field Bit Definitions now includes bit 14 - DMA

protection that governs TPR support (Table 4)

November 2020

17.1 Introduction of ACM header version 4.0 for AC modules supporting XMSS
signing.
Listing 3 - correctly specify that InfoTable version must be 5 or greater.

January 2021

17.2 Added HEAP_CEDT_ELEMENT definition in C.5.4.
Section 2.2.5.1 now describes how to calculate physical address width
on systems with Intel® (MK)TME enabled and activated.

August 2021

17.3 Added definition of ACM capabilities bit 16 in table 4.
Added information on flexible ACM info table format available for ACM
with ACM Info Table version 9 and above:

• Appendix A.1.1 added
• Listing 4 in section 2.2.3.1 added
• ACM information table updated

February 2022

17.4 Updated information regarding AUX index size in section I
Intel TXT no longer supports TPM 1.2 devices – all references to this
TPM family have been removed.

April 2023

17.5 Added information regarding post-quantum cryptography.
Updated information about TPM events related to FSP Boot Manifest

March 2025

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 11

Revision Description Revision Date

17.6 Added information regarding LMS support for LCP signing June 2025

17.7 Updated information regarding LMS support – updated LMS and LMOTS
supported types and new structure sizes.

AUX index reference size has increased to 114 bytes.

October 2025

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
12 Document Number: 315168-017

Foreword
Current revision of document reflects MLE visible changes resulting from converging
Boot Guard and Trusted Execution Technologies (Converged BtG/TXT a.k.a. CBnT),
and “CNSS Advisory Memorandum 02-15”, applicable to platforms from 2017 and
beyond. Short summary of changes can be found in Section 4.6

All obsolete features that are no longer supported due to convergence have been
removed from this document, starting from revision 014. If you need to review the
removed information, it is recommended to consult revision 013, available on Intel
RDC, Document Number: 616057.

Revision 17.4 of this document removed references specific to the TPM 1.2 devices. To
review structure listings for TPM 1.2, refer to previous versions of this document.

https://www.intel.com/content/www/us/en/content-details/616057/content-details.html

Overview

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 13

1 Overview
Intel’s technology for safer computing, Intel® Trusted Execution Technology
(Intel® TXT), defines platform-level enhancements that provide the building blocks for
creating trusted platforms.

Whenever the word trust is used, there must be a definition of who is doing the
trusting and what is being trusted. This enhanced platform helps to provide the
authenticity of the controlling environment such that those wishing to rely on the
platform can make an appropriate trust decision. The enhanced platform determines
the identity of the controlling environment by accurately measuring the controlling
software (see Section 1.1).

Another aspect of the trust decision is the ability of the platform to resist attempts to
change the controlling environment. The enhanced platform will resist attempts by
software processes to change the controlling environment or bypass the bounds set by
the controlling environment.

What is the controlling environment for this enhanced platform? The platform is a set
of extensions designed to provide a measured and controlled launch of system
software that will then establish a protected environment for itself and any additional
software that it may execute.

These extensions enhance two areas:

• The launch of the Measured Launched Environment (MLE)

• The protection of the MLE from potential corruption

The enhanced platform provides these launch-and-control interfaces using Safer Mode
Extensions (SMX).

The SMX interface includes the following functions:

• Measured launch of the MLE

• Mechanisms to ensure the above measurement is protected and stored in a secure
location

• Protection mechanisms that allow the MLE to control attempts to modify itself

1.1 Measurement and Intel® Trusted Execution
Technology (Intel® TXT)
Intel® TXT uses the term measurement frequently. Measuring software involves
processing the executable in such way that the result is unique and indicative to any
changes in the executable. A cryptographic hash algorithm meets these needs.

A cryptographic hash algorithm is sensitive to even one-bit changes to the measured
entity. It also produces outputs that are sufficiently large so the potential for collision
(where two hash values are the same) is extremely small. When the term

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
14 Document Number: 315168-017

measurement is used in this specification, the meaning is that the measuring process
takes a cryptographic hash of the measured entity.

The controlling environment is provided by system software such as an OS kernel or
Virtual Machine Manager (VMM). The software launched using the SMX instructions is
known as the Measured Launched Environment (MLE). MLEs provide different launch
mechanisms and increased protection (offering protection from possible software
corruption).

1.2 Dynamic Root of Trust
The central objective of the Intel® TXT platform is to provide a measurement of the
launched execution environment.

One measurement is made when the platform boots, using techniques defined by the
Trusted Computing Group (TCG). The TCG defines a Root of Trust for Measurement
(RTM) that executes on each platform reset; it creates a chain of trust from reset to
the measured environment. As the measurement always executes at platform reset,
the TCG defines this type of RTM as a Static RTM (SRTM).

Maintaining a chain of trust for a length of time may be challenging for an MLE meant
for use in Intel® TXT; this is because an MLE may operate in an environment that is
constantly exposed to unknown software entities. To address this issue, the enhanced
platform provides another RTM with Intel® TXT instructions. The TCG terminology for
this option is Dynamic Root of Trust for Measurement (DRTM). The advantage of a
DRTM (also called the ‘late launch’ option) is that the launch of the measured
environment can occur at any time without resorting to a platform reset. It is possible
to launch an MLE, execute for a time, terminate the MLE, execute without
virtualization, and then launch the MLE again. One possible sequence is:
1. During the BIOS load: (a) launch an MLE for use by the BIOS, (b) terminate the

MLE when its work is done, (c) continue with BIOS processing and hand off to an
OS.

2. Then, the OS loads and launches a different MLE.
3. In both instances, the platform measures each MLE and ensures the proper

storage of the MLE measurement value.

1.2.1 Launch Sequence

When launching an MLE, the environment must load two code modules into memory.
One module is the MLE. The other is known as an authenticated code (AC) module.
The AC module (also referred to as ACM) is only in use during the measurement and
verification process and is chipset-specific. The chipset vendor digitally signs it; the
launch process must successfully validate the digital signature before continuing.

With the AC module and MLE in memory, the launching environment can invoke the
GETSEC[SENTER] instruction provided by SMX.

GETSEC[SENTER] broadcasts messages to the chipset and other physical or logical
processors in the platform. In response, other logical processors perform basic
cleanup, signal readiness to proceed, and wait for messages to join the environment
created by the MLE. As this sequence requires synchronization, there is an initiating
logical processor (ILP) and responding logical processor(s) (RLP(s)). The ILP must be

https://www.trustedcomputinggroup.org/home/
https://www.trustedcomputinggroup.org/home/

Overview

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 15

the system bootstrap processor (BSP), which is the processor with IA32_APIC_BASE
MSR.BSP = 1. RLPs are also often referred to as application processors (APs).

After all logical processors signal their readiness to join and are in the wait state, the
initiating logical processor loads, authenticates, and executes the AC module. The AC
module tests for various chipset and processor configurations and ensures the
platform has an acceptable configuration. It then measures and launches the MLE.

The MLE initialization routine completes system configuration changes (including
redirecting INITs, SMIs, interrupts, etc.); it wakes up the responding logical
processors (RLPs) and brings them into the measured environment. At this point, all
logical processors and the chipset are correctly configured.

At some later point, it is possible for the MLE to exit and then be launched again,
without issuing a system reset.

1.3 Storing the Measurement
SMX operation during the launch provides an accurate measurement of the MLE. After
creating the measurement, the initiating logical processor stores that measurement in
the trusted platform module (TPM), defined by the TCG. An enhanced platform
includes mechanisms that ensure that the measurement of the MLE (completed during
the launch process) is properly reported to the TPM.

With the MLE measurement in the TPM, the MLE can use the measurement value to
protect sensitive information and detect potential unauthorized changes to the MLE
itself.

1.4 Controlled Take-down
Because the MLE controls the platform, exiting the MLE is a controlled process. The
process includes: (a) shutting down any guest virtual machines (VMs) if they were
created; (b) ensuring that memory previously used does not leak sensitive
information.

The MLE cleans up after itself and terminates the MLE control of the environment. If a
VMM was running, the MLE may choose to turn control of the platform over to the
software that was running in one of the VMs.

1.5 SMX and VMX Interaction
A VM abort may occur while in SMX operation. This behavior is described in the Intel
64 and IA-32 Software Developer Manual, Volume 3B. Note that entering
authenticated code execution mode or launching of a measured environment affects
the behavior and response of the logical processors to certain external pin events.

1.6 Authenticated Code Module
To support the establishment of a measured environment, SMX enables the capability
of an authenticated code execution mode. This provides the ability for a special code

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
16 Document Number: 315168-017

module, referred to as an authenticated code module (ACM, also frequently referred to
as SINIT), to be loaded into internal RAM (referred to as authenticated code execution
area or ACEA) within the processor. The AC module is first authenticated and then
executed using a tamper resistant mechanism.

Authentication is achieved by a digital signature in the header of the AC module. The
processor calculates a hash of the AC module and uses the result to validate the
signature. Using SMX, a processor will only initialize processor state or execute the AC
module if it passes authentication. Since the authenticated code module is held within
the internal RAM of the processor, execution of the module can occur in isolation with
respect to the contents of external memory or activities on the external processor
bus.

In addition to SINIT, BIOS contains another ACM – the BIOS AC module used for
performing subordinate tasks such as TXT Opt-in preparation, clearing the memory,
alias checking, etc.

1.7 Chipset Support
One important feature the chipset provides is direct memory access (DMA) protection
via Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d). Intel®
VT-d, under control of the MLE, allows the MLE to protect itself and any other software
such as guest VMs from unauthorized device access to memory. Intel® VT-d blocks
access to specific physical memory pages and the enforcement of the block occurs for
all DMA access to the protected pages. See Section 1.11 for more information on DMA
protection mechanisms.

The Intel® TXT architecture also provides extensions that access certain chipset
registers and TPM address space.

Chipset registers that interact with SMX are accessed from two regions of memory by
system software using memory read/write protocols. These two memory regions,
Intel® TXT public space and Intel® TXT private space, are mappings to the same set of
chipset registers but with different read/write permissions depending on which space
the memory access came through. The Intel® TXT private space is not accessible to
system software until it is unlocked by SMX instructions.

The sets of interface registers accessible within a TPM device are grouped by a locality
attribute and are a separate set of address ranges from the Intel® TXT public and
private spaces. The following localities are defined:

• Locality 0 : Non-trusted and legacy TPM operation

• Locality 1 : An environment for use by the Trusted Operating System

• Locality 2 : MLE access

• Locality 3 : Authenticated Code Module

• Locality 4 : Intel® TXT hardware use only

Similar to Intel® TXT public and private space, some of these localities are only
accessible via SMX instructions and others are not accessible by software until
unlocked by SMX instructions.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 17

1.8 TPM Usage
Intel® TXT makes extensive use of the trusted platform module (TPM) defined by the
Trusted Computing Group (TCG) in the “TPM Library specification for TPM family 2.0”.
Support for TPM 1.2 devices was dropped in the revision 17.4 of this document. The
TPM provides a repository for measurements and the mechanisms to make use of the
measurements. The system makes use of the measurements to both report the
current platform configuration and to provide long-term protection of sensitive
information.

The TPM stores measurements in platform configuration registers (PCRs). Each PCR
provides a storage area that allows an unlimited number of measurements in a fixed
amount of space. They provide this feature by an inherent property of cryptographic
hashes. Outside entities never write directly to a PCR register, they “extend” PCR
contents. The extend operation takes the current value of the PCR, appends the new
value, performs a cryptographic hash on the combined value, and the hash result is
the new PCR value. One of the properties of cryptographic hashes is that they are
order dependent. This means hashing A then B produces a different result from
hashing B then A. This ordering property allows the PCR contents to indicate the order
of measurements.

Sending measurement values from the measuring agent to the TPM is a critical
platform task. The dynamic root of trust for measurement (DRTM) requires specific
messages to flow from the DRTM to the TPM. The Intel® TXT DRTM is the
GETSEC[SENTER] instruction, and the system ensures GETSEC[SENTER] has special
messages to communicate to the TPM. These special messages take advantage of TPM
localities 3 and 4 to protect the messages and inform the TPM that GETSEC[SENTER]
is sending the messages.

Besides the measurements, Intel® TXT uses TPM non-volatile (NV) RAM to store
launch control policy (LCP) data and for inter-ACM communication. Three main indices
used by Intel® TXT are denoted as AUX (auxiliary), PO (platform owner) and SGX
(software guard extension). Detailed information about these indices will be presented
in subsequent Sections 3 and 4.5.

1.9 Hash Algorithm Support
TPM 2.0 provides PCRs in banks—that is, one bank of PCRs for each supported hash
algorithm. For example, a TPM that supports three hashing algorithms will have three
banks of PCRs and thus “measuring an object into PCR” implies hashing of that object
using each of the three hashing algorithms and extending obtained digests into all
banks. The TPM 2.0 specification enumerates all the hash algorithms it allows; of
those, the current TXT components support SHA1, SHA256, SHA384, and SM3_256.

TPM 2.0 devices support algorithm agile “event” commands. These commands extend
measurements to all existing PCR banks at once. Measuring objects of significant size
using event commands may incur performance penalties.

Alternatively, embedded software can be used to compute digests, and the results
then extended into PCRs using non-agile “extend” commands. While this may be
more efficient, software support for all hashing algorithms supported by a given TPM
might not be present. Should this occur, PCRs in banks utilizing algorithms
unsupported by the embedded software will be capped with the value “1”

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
18 Document Number: 315168-017

Whether extend calculations will be done using TPM hardware event commands or
software implementations is an MLE decision and will be communicated to the
launched ACM via the “flags” field, which is described in Table 31.

In TPM2.0 this practice is discouraged and simply cannot be supported when
maximum agility (MA) extend policy is enforced – see Table 31. Therefore, in all
above cases we will not extend constant values as they appear, but we will measure
them instead – that is, we will hash these constant values and extend resultant
digests into PCRs. All such cases are flagged in the explanation of details/authorities
measurements below.

1.10 PCR Usage
As part of the measured launch, Intel® TXT will extend measurements of the elements
and configuration values of the dynamic root of trust into certain TPM PCRs. The
values comprising these measurements (indicated below) are provided in the heap
SinitMleData data table described in the Appendix C.4.2, and in the event log.

While the MLE may choose to extend additional values into these PCRs, the values
described below are those present immediately after the MLE receives control
following the GETSEC[SENTER] instruction.

In addition to values explicitly measured by SINIT and MLE GETSEC[SENTER]
instruction measures the SINIT module itself by the means of
_HASH_START/_HASH_DATA/_HASH_END HW event sequence (will be denoted as
HASH*). This event sequence is described in “TCG Trusted Platform Module Library,
Family 2.0”, and “TCG PC Client Platform TPM Profile Specification for TPM 2.0”.

Since these PCR values are arrived at by a series of measurements, determining their
derivation requires a trace or log of the extending steps executed. These steps are
recorded in the TPM Event Log, described in the Appendix F.

1.10.1 Legacy Usage

Legacy—or original—PCR usage separates the values in the PCRs according to
platform elements and MLE. The platform elements of the trusted computing base
(TCB), such as SINIT and launch control policy (LCP), are measured into PCR 17 and
the MLE is measured into PCR 18.

Legacy (LG) usage support is reported by value of 0 in bit 4 of the Capabilities field of
both SINIT and MLE headers (see Table 4). Because this reporting needs to be
compatible with earlier versions of the Capabilities field, for which bit 4 was reserved,
inverse logic is used to represent LG usage.

Legacy PCR usage is no longer supported by Intel® TXT

1.10.2 Details and Authorities Usage

Details and Authorities (DA) PCR usage separates the values in the PCRs according to
whether the value extended is the actual measurement of a given entity (a detail) or
represents the authority for the given entity (an authority). Details are extended to
PCR 17 and authorities to PCR 18. Evaluators who do not care about rollback can use

Overview

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 19

the authorities PCR (18) and it should remain the same even when elements of the
TCB are changed.

This usage corresponds to a value of 1 in bit 5 of the Capabilities field (see Table 4).

1.10.2.1 PCR 17 (Details)

“Details” measurements include hashes of all components participating in establishing
the trusted execution environment and due to very nature of hash algorithm change
of any component entails change of the final PCR17 value.

PCR 17 is initialized using the _TPM_HASH_* sequence. As part of this sequence,
PCRs 17-23 are reset to 0 before _TPM_HASH_START.

The _HASH_DATA provided in this sequence is the concatenation of digest of the
SINIT ACM that was used in the launch process and the 4-byte value of the SENTER
parameters (in the EDX register and in SinitMleData.EdxSenterFlags). The digest of
SINIT is also optionally stored in the SinitMleData.SinitHash field of the SINIT to MLE
data table (SinitMleData – see Appendix C.4.2).

The result of _HASH_* differs from one CPU family to another and between TPM
families. Originally, Intel® CPUs were computing SINIT digest using SHA1 producing
20-byte output. Newer Intel® CPUs are computing SINIT digest using SHA256
producing 32 bytes.

The obtained data stream (SINIT digest | EDX—24 or 36 bytes, respectively) is sent to
TPM via HASH_DATA. Based on the TPM family, PCR17 gets updated similarly to how
the TPM(2)_Extend () command does it.

The respective PCR17 value is reported based on what kind of TPM family device is
present in the system.

After the initial SINIT measurement, PCR 17 is extended with the digest values of the
items in the table below:

Table 1. Digest values extending PCR17

Item Remarks

Digest of MLE

S-ACM registration data retrieved from the
AUX Index

The extended value is HASHHashAlgId (data)
using HashAlgId of the bank being extended.

Digest of PO.PolicyControl field of the used
policy.

Retrieved from the TPM NV PO index. Coded
as DWORD.

Digest of STM If STM is not enabled the digest =
HASHHashAlgId (0x0) is extended.

Digest of the Capability field of the
OsSinitData table

TPM 2.0 only event. coded as DWORD.

Digest of the effective LCP details i.e. all
matching elements used by the policy

TPM 2.0 only event. Construction of byte
stream containing digests of all elements
contributed to the established policy is
discussed in Section 3.4.3.1

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
20 Document Number: 315168-017

Item Remarks

Digest of the TPM NV index public info
structures

TPM 2.0 only event. Rules how to construct
byte stream for hashing are discussed in
Section 3.4.4.

Digest of Early TXT BIOS

Digest of the Key Manifest signature

Digest of the Boot Policy Manifest signature

Digest of the ACM boot policy status Digest of the ACM_POLICY_STATUS register

Pseudo random value NPW SINIT only event. Renders PCR17
unusable in the production environment.

Unsupported bank capping value OneDigest is extended into PCR bank using
an algorithm that is not supported by SINIT
SW

Note: The table above does not reflect the order of extends. Attester might retrieve the
exact order from the Event Log.

1.10.2.2 PCR 18 (Authorities)

“Authority” measurements include hashes of some unique identifying properties of
signing authorities such as public signature verification keys. This enables the same
authority to issue an update of component without affecting the final PCR18 value,
because the signing authority is unchanged.

The table below shows digests extended to PCR18.

Table 2. Digest values extending PCR18

Item Remarks

Digest of Processor S-CRTM status Coded as DWORD; same value as extended
to PCR17 in TPM 2.0 mode.

Digest of the PO.PolicyControl field of the
platform owner (PO) policy

Coded as DWORD; same value as extended
to PCR17

Digest of the Capability field of the
OsSinitData table

Coded as DWORD; same value as extended
to PCR17 in TPM 2.0 mode

Digest of SINIT signer key The value hashed is modulus of the key

Digest of LCP authorities TPM 2.0 only event. Digest of LCP authorities
i.e. measurement of LCP lists containing
elements contributed to established policy.
Byte stream which is hashed is built using
rules in Section 3.4.3.2.

Digest of the TPM NV index public info
structures

TPM 2.0 only event. same value as extended
to PCR17 in TPM 2.0 mode. Rules how to
construct byte stream for hashing are
discussed in Section 3.4.4.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 21

Item Remarks

Digest of the Key Manifest descriptor

Digest of the Boot Policy Manifest descriptor

Pseudo random value NPW SINIT only event. Renders PCR18
unusable in the production environment.

Unsupported bank capping value OneDigest is extended into PCR bank using
an algorithm that is not supported by SINIT
SW.

Note: As with PCR17, the table above does not reflect the order of extends. Attester might
retrieve the exact order from the Event Log.

1.11 DMA Protection
This section briefly describes three chipset mechanisms that can be used to protect
regions of memory from DMA access by bus master devices. These mechanisms are:

• DMA Protected Range (DPR)
• Protected Memory Regions (PMR)
• TXT DMA Protection Ranges (TPR)

More details on these mechanisms can be found in the sections below, in the latest
External Design Specification (EDS) of the targeted chipset family “Intel®
Virtualization Technology for Directed I/O Architecture Specification” and “Intel®
Trusted Execution Technology (Intel® TXT), DMA Protection Ranges Architecture
Specification”.

1.11.1 DMA Protected Range (DPR)

The DMA Protected Range (DPR) is a region of contiguous physical memory whose last
byte is the byte before the start of SMRAM segment (TSEG), and which is protected
from all DMA access. The DPR size is set and locked by BIOS. This protection is
applied to the final physical address after any other translation (e.g. Intel® VT-d,
graphics address remapping table (GART), etc.).

The DPR covers the Intel® TXT heap and SINIT AC Module reserved memory (as
specified in the TXT.SINIT.BASE/TXT.SINIT.SIZE registers). On current systems it is
no less than 3MB in size, and though this may change in the future it will always be
large enough to cover the heap and SINIT regions.

The MLE itself may reside in the DPR if it does not conflict with either SINIT or heap
areas. If it does reside in the DPR, then the Intel® VT-d PMR or TPR do not need to be
used to cover it. If MLE is not in any of the available ranges, SINIT will not permit the
environment to be launched.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
22 Document Number: 315168-017

1.11.2 Protected Memory Regions (PMRs)

The Intel® VT-d protected memory regions (PMRs) are two ranges of physical
addresses that are protected from DMA access. One region must be in the lower 4GB
of memory and the other may be anywhere in address space. Either or both may be
unused.

The use of the PMRs is not mutually exclusive of DMA remapping. If the MLE enables
DMA remapping, it should place the Intel® VT-d page tables within the PMR region(s)
in order to protect them from DMA activity prior to turning on remapping. While it is
not required that PMRs be disabled once DMA remapping is enabled, if the MLE wants
to manage all DMA protection through remapping tables then it must explicitly disable
the PMR(s).

The MLE may reside within one of the PMR regions. If the MLE is not within the DPR
region then it must be within one of the PMR or TPR regions, otherwise, SINIT will not
permit the environment to be launched.

For more details of the PMRs, see the “Intel® Virtualization Technology for Directed
I/O Architecture Specification”.

There are plans to gradually drop support for PMRs in the future and replace it with an
alternative mechanism - TXT DMA Protection Ranges (TPR). which is best suited for
work with Intel® TXT but can also be utilized in systems that do not support this
technology.

1.11.3 TXT DMA Protection Ranges (TPR)

TXT DMA Protection Ranges is a DMA protection mechanism implemented on the
silicon level. Unlike PMR, it is independent of IOMMU usages. The TPR technology is
designed to work best with Intel® TXT but can also be utilized in platforms that do not
utilize it. TPR does not have dependencies on Intel® VT-d technology.

TPRs protect regions of memory (specifically usable DRAM areas) from DMA access by
bus master devices. They are implemented as several ranges of physical memory
addresses that can be located anywhere in the address space. One limitation is that
these ranges must not overlap with each other, and any other special security HW
ranges that exist in the system. Specifically, TPRs must not overlap DPR, IOMMU PMR,
Isolated Memory Ranges (IMR) and MMIO ranges. Overlap behavior is model-specific
but it is guaranteed that no DMA access will be allowed to any address contained
within any overlapping region.

For more details on the TPR, consult “Intel® TXT DMA Protection Ranges Architecture
Specification”.

The MLE may reside within one of the TPR regions, within PMR or within DPR. If it
does not, SINIT will not permit the environment to be launched.

Overview

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 23

1.12 Intel® TXT Shutdown

1.12.1 Reset Conditions

When an Intel® TXT shutdown condition occurs, the processor or software writes an
error code indicating the reason for the failure to the TXT.ERRORCODE register. It
then writes to the TXT.CMD.RESET command register, initiating a platform reset. After
the write to TXT.CMD.RESET, the processor enters a shutdown sleep state with all
external pin events, bus or error events, machine check signaling, and
MONITOR/MWAIT event signaling masked. Only the assertion of reset back to the
processor takes it out of this sleep state. The Intel® TXT error code register is not
cleared by the platform reset; this makes the error code accessible for post-reset
diagnostics.

The processor can generate an Intel® TXT shutdown during execution of certain
GETSEC leaf functions (for example: ENTERACCS, EXITAC, SENTER, SEXIT), where
recovery from an error condition is not considered reliable. This situation should be
interpreted as an abort of authenticated execution or measured environment launch.

A legacy IA-32 triple-fault shutdown condition is also converted to an Intel® TXT
shutdown sequence if the triple-fault shutdown occurs during authenticated code
execution mode or while the measured environment is active. The same is true for
other legacy non-SMX specific fault shutdown error conditions. Legacy shutdown to
Intel® TXT shutdown conversions is defined as the mode of operation between:

• Execution of the GETSEC functions ENTERACCS issued by the software and
EXITAC issued by the ACM at completion

• Recognition of the message signaling the beginning of the processor rendezvous
after GETSEC[SENTER] and the message signaling the completion of the processor
rendezvous

Additionally, there is a special case. If the processor is in VMX operation while the
measured environment is active, a triple-fault shutdown condition that causes a guest
exiting event back to the VMM supersedes conversion to the Intel® TXT shutdown
sequence. In this situation, the VMM remains in control after the error condition that
occurred at the guest level, and there is no need to abort processor execution.

Given the above situation, if the triple-fault shutdown occurs at the root level of the
MLE or a virtual machine extension (VMX) abort is detected, then an Intel® TXT
shutdown sequence is signaled. For more details on a VMX abort, see Chapter 23, “VM
Exits,” in the Intel 64 and IA-32 Software Developer Manuals, Volume 3B.

§§

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
24 Document Number: 315168-017

2 Measured Launched
Environment
Intel® TXT can launch any type of code. However, this section describes the launch,
operation, and teardown of a VMM using Intel® TXT; the OS bootloader code would
have a similar sequence.

2.1 MLE Architecture Overview
Any Measured Launched Environment (MLE) will generally consist of three main
sections of code: initialization, dispatch routine, and shutdown. The initialization code
is run each time the Intel® TXT environment is launched. This code includes code to
set up the MLE on the ILP and join code to initialize the RLPs.

After initialization, the MLE behaves like the unmeasured version would have; in the
case of a VMM, this is trapping various guest operations and virtualizing certain
processor states.

Finally, the MLE prepares for shutdown by again synchronizing the processors,
clearing any state, and executing the GETSEC[SEXIT] instruction.

Table 3 shows the format of the MLE Header structure stored within the MLE image.
The SINIT AC module uses the MLE Header structure to set up the correct initial MLE
state and to find the MLE entry point. The header is part of the MLE hash.

Table 3. MLE Header Structure

Field Offset Size
(bytes)

Description

UUID (universally
unique identifier)

0 16 Identifies this structure
5aac8290-6f47-a774-0f5c-55a2cb51b642

HeaderLen 16 4 Length of header in bytes

Version 20 4 Version number of this structure

EntryPoint 24 4 Linear entry point of MLE

FirstValidPage 28 4 Starting linear address/first valid page of MLE

MleStart 32 4 Offset within MLE binary file of first byte of
MLE, as specified in page table

MleEnd 36 4 Offset within MLE binary file of last byte + 1 of
MLE, as specified in page table

Capabilities 40 4 Bit vector of MLE-supported capabilities

CmdlineStart 44 4 Starting linear address of command line buffer

CmdlineEnd 48 4 Ending linear address of command line buffer

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 25

UUID: This field contains a UUID which uniquely identifies this MLE Header Structure.
The UUID is defined as follows:

ULONG UUID0; // 9082AC5A
ULONG UUID1; // 74A7476F
ULONG UUID2; // A2555C0F
ULONG UUID3; // 42B651CB

This UUID value should only exist in the MLE (binary) in this field of the MLE header.
This implies that this UUID should not be stored as a variable nor placed in the code
to be assigned to this field. This can also be ensured by analyzing the binary.

HeaderLen: this field contains the length in bytes of the MLE Header Structure.

Version: this field contains the version of the MLE header, where the upper two bytes
are the major version and the lower two bytes are the minor version. Changes in the
major version indicate that an incompatible change in behavior is required of the MLE
or that the format of the structure is not backwards compatible.

Version 2.2 (20002H) indicates legacy MLE not aware of TPR-based DMA protection.

Version 2.3 (20003H) is the currently supported version for MLEs supporting TPR-
based DMA protection.

EntryPoint: this field is the linear address, within the MLE’s linear address space, at
which the ILP will begin execution upon successful completion of the GETSEC[SENTER]
instruction.

FirstValidPage: this field is the starting linear address of the MLE. This will be
verified by SINIT to match the first valid entry in the MLE page tables.

MleStart / MleEnd: these fields are intended for use by software that needs to know
which portion of an MLE binary file is the MLE, as defined by its page table. This
might be useful for calculating the MLE hash when the entire binary file is not being
used as the MLE.

Note: linear addresses start at the beginning of the executable region of the binary,
not the beginning of the file. The offset between the beginning of the binary file and
beginning of the linear address space is ABI-dependent.

Capabilities: this bit vector represents TXT-related capabilities that the MLE
supports. It will be used by the SINIT AC module to determine whether the MLE is
compatible with it and as needed for any optional capabilities. The currently defined
bits for this are listed in Table 4.

CmdlineStart / CmdlineEnd: these fields are intended for use by software that
needs to calculate the MLE hash. For MLEs that include a command line in their
identity, these are linear addresses within the MLE of the beginning and end of a
buffer that contains the command line bytes. The buffer is padded with 0 bytes at the
end. MLEs that do not include the command line in their identity should set these
fields to 0.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
26 Document Number: 315168-017

Table 4. MLE/SINIT Capabilities Field Bit Definitions

Bit Description

0 Support for GETSEC[WAKEUP] for RLP wakeup

All MLEs should support this.

1 = supported/requested

0 = not supported

1 Support for RLP wakeup using MONITOR address (SinitMleData.RlpWakeupAddr)

All MLEs should support this.

1 = supported/requested

0 = not supported

2 The ECX register will contain the pointer to the MLE page table on return from SINIT
to the MLE EntryPoint

1 = supported/requested

0 = not supported

3 STM support

1 = supported/requested

0 = not supported

4 No longer supported: reserved/ignored

5 No longer supported: forced to 1 for compatibility reasons

7-6 Platform Type

00: legacy / platform undefined

01: client platform ACM

10: server platform ACM

11: reserved / illegal

8 MAXPHYADDR supported

0: 36 bits MTRR masks computed, regardless of actual width

1: actual width MTRR masks computed as reported by CPUID function
0x80000008

Always forced to “1” by SINIT (see notes)

9 Supported format of TPM 2.0 event log:

= 0 – Original TXT TPM 2.0 Event Log

= 1 – “TCG PC Client Platform. EFI Protocol Specification” compatible Event Log

Always forced to “1”

10 Converged BtG / TXT support (CBnT):
= 0 – CBnT is not supported
= 1 – CBnT is supported

13:11 Startup ACM support for Backup Action. Reserved in SINIT and MLE. Must be zero.

14 DMA Protection:
= 0 Supports Legacy SINIT / MLE DMA protection (PMR)
= 1 supports TPR-based DMA protection

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 27

Bit Description

15 Startup ACM reset attack mitigation support.
Reserved in SINIT and MLE. Must be 0.

16 TME support
= 1 - S-ACM supports TME-based TXT enhancements
= 0 - S-ACM does not support TME-based TXT enhancements
Reserved in SINIT and MLE. Must be 0.

17 CSE/TEE secure channel
= 1 – supported
= 0 – not supported
Reserved in SINIT and MLE. Must be 0.

18 BtG integrity measurement style
= 0 – composite classic BtG style using PCR0_DATA
=1 – TCG PC Client PFP compliant.
Reserved in SINIT and MLE. Must be 0.

19 Communication NEM Buffer between ACM and BIOS support
= 0 – not supported
= 1 – supported
Reserved in SINIT and MLE. Must be 0.

31:20 Reserved. Must be 0.

Note: Legacy TBOOT computes MTRR masks assuming 36-bit address bus width. This may
lead to the creation of potentially disjoint WB cache ranges and violation of CRAM
protections. To remedy case and support legacy MLE/SINIT behavior the following has been
added:

BIT8 of Capabilities field in ACM info table and MLE header was defined to indicate use
of bus width method. Both MLE and SINIT will examine this bit in counterpart module
and amend execution as follows in Table 5.

Note: MLE is not expected to perform any operation to support TME-based TXT
enhancements. Capabilities bit 16 in MLE header shall be marked as reserved for SINIT ACM
usage.

Operating system can request clearing the TME key by setting bit 0 of the
IA32_TME_CLEAR_SAVED_KEY MSR (0x9FB).

CPUID.TME bit (CPUID.(EAX=07H, ECX=0H): ECX[13]) indicates the presence of the
IA32_TME_CAPABILITY MSR. If set, bit 30 of the IA32_TME_CAPABILITY MSR
indicates presence of the IA32_TME_CLEAR_SAVED_KEY MSR.

Note: Reset attack mitigation has been deprecated from TXT on Intel® server platforms.
The operating system must utilize the MOR interface to request it from BIOS. Refer to TCG
PC Client Platform Reset Attack Mitigation Specification for details.

Table 5. Truth Table of SINIT / MLE functionality

MLE SINIT Functionality

Legacy
BIT8 = 0

Legacy
BIT8 = 0

Both use 36 bits

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
28 Document Number: 315168-017

New BIT8
= 1

Legacy
BIT8 = 0

MLE sees BIT==0 and prepares 36-bit MTRR masks. Legacy
SINIT ignores BIT8 in MLE header

Legacy
BIT8 = 0

New BIT8
= 1

Legacy MLE ignores BIT8 in SINIT ACM Info Table and prepares
36-bit MTRR masks. SINIT checks MLE header and validates
masks as 36 bits

New BIT8
= 1

New BIT8
= 1

Both use actual bus width.

2.2 MLE Launch
At some point system software will start an Intel® TXT measured environment. This
may be done at operating system loader time or could be done after the operating
system boots. From this point on we will assume that the operating system is starting
the Intel® TXT measured environment and refer to this code as the system software.

After the measured environment startup, the application processors (RLPs) will not
respond to system inter-processor interrupts (SIPIs) as they did before SENTER. Once
the measured environment is launched, the RLPs cannot run the real-mode MP startup
code and their startup must be initiated by an alternate method. The new MP startup
algorithm does not allow the RLPs to leave protected mode with paging on. The OS
may also be required to detect whether a measured environment has been established
and use this information to decide which MP startup algorithm is appropriate (the
standard MP startup algorithm or the modified algorithm).

This section shows the pseudocode for preparing the system for the SMX measured
launch. The following describes the process in several sub-sections:
• Intel® TXT detection and processor preparation
• Detection of previous errors
• Loading the SINIT AC module
• Loading the MLE and processor rendezvous
• Performing a measured launch

2.2.1 Intel® TXT Detection and Processor Preparation

Lines 1 - 4: Before attempting to launch the measured environment, the system
software should check that all logical processors support VMX and SMX (the check for
VMX support is not necessary if the environment to be launched will not use VMX).

For single-processor socket systems, it is sufficient if this action is only performed by
the ILP. This includes physical processors containing multiple logical processors. In
order to correctly handle multiple processor socket systems, this check must be
performed on all logical processors. It is possible that two physical processors within
the same system may differ in terms of SMX and VMX capabilities.

For details on detecting and enabling VMX see chapter 19, “Introduction to Virtual-
Machine Extensions”, in the Intel 64 and IA-32 Software Developer Manuals, Volume
3B. For details on detecting and enabling SMX support see chapter 6, “Safer Mode
Extensions Reference”, in the Intel 64 and IA-32 Software Developer Manuals, Volume
2B.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 29

Lines 5 - 9: System software should check that the chipset supports Intel® TXT prior
to launching the measured environment. The presence of the Intel® TXT chipset can
be detected by executing GETSEC[CAPABILITIES] with EAX=0 & EBX=0. This
instruction will return the ‘Intel® TXT Chipset’ bit set in EAX if an Intel® TXT chipset is
present. The processor must enable SMX before executing the GETSEC instruction.

Lines 10 – 12: System software should also verify that the processor supports all
GETSEC instruction leaf indices that will be needed. The minimal set of instructions
required will depend on the system software and MLE, but is most likely SENTER,
SEXIT, WAKEUP, SMCTRL, CAPABILITIES and PARAMETERS. The supported leaves
are indicated in the EAX register after executing the GETSEC[CAPABILITIES]
instruction as indicated above.

Listing 1. Intel® TXT Detection Pseudocode

// Intel TXT detection
// Execute on all logical processors for compatibility with
// multiple processor systems
//
1. CPUID(EAX=1);
2. IF (SMX not supported) OR (VMX not supported) {
3. Fail measured environment startup;
4. }
//
// Enable SMX on ILP & check for Intel TXT chipset
//
5. CR4.SMXE = 1;
6. GETSEC[CAPABILITIES];
7. IF (Intel TXT chipset NOT present) {
8. Fail measured environment startup;
9. }
10. IF (All needed SMX GETSEC leaves are NOT supported) {
11. Fail measured environment startup;
12. }

2.2.2 Detection of Previous Errors

In order to prevent a cycle of failures or system resets, it is necessary for the system
software to check for errors from a previous launch. Errors that are detected by
system software prior to executing the GETSEC[SENTER] instruction will be specific to
that software and, if persistent, will be in a manner specific to the software. Errors
generated during execution of the GETSEC[SENTER] instruction result in a system
reset and the error code being stored in the TXT.ERRORCODE register. Possible
remediation steps are described in Section 4.2.

Lines 1 - 3: The error code from an error generated during the GETSEC[SENTER]
instruction is stored in the TXT.ERRORCODE register, which is persistent across soft
resets. Non-zero values other than 0xC000001 indicate an error. Error codes are
specific to an SINIT AC module and can be found in a text file that is distributed with
the module. Errors that are not AC-module specific are listed in Appendix H.

Lines 9 - 12: If the TXT_RESET.STS bit of the TXT.ESTS register is set, then in order
to maintain TXT integrity the GETSEC[SENTER] instruction will fail. System software
should detect this condition as early as possible and terminate the attempted
measured launch and report the error. The cause of the error must be corrected if
possible, and the system should be power-cycled to clear this bit and permit a launch.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
30 Document Number: 315168-017

Listing 2. Error Detection Pseudocode

//
// Detect previous GETSEC[SENTER] failures
//
1. IF (TXT.ERRORCODE != 0 && TXT.ERRORCODE != SUCCESS) {
2. Terminate measured launch ;
3. Report error ;
4. If remedial action known {
5. Take remedial action ;
6. Power-cycle system ;
7. }
8. }
//
// Detect previous TXT Reset
//
9. IF (TXT.ESTS[TXT_RESET.STS] != 0) {
10. Report error ;
11. Terminate measured launch ;
12. }

2.2.3 Loading the SINIT AC Module

This action is only performed by the ILP.

BIOS may already have the correct SINIT AC module loaded into memory or system
software may need to load the SINIT code into memory from disk. The system
software may determine if an SINIT AC module is already loaded by examining the
preferred SINIT load location (see below) for a valid SINIT AC module header.

System software should always use the most recent version of the SINIT AC module
available to it. It can determine this by comparing the Date fields in the AC module
headers.

System software should also match a prospective SINIT AC module to the chipset
before loading and attempting to launch the module. This is described in the next two
sections of this document.

System software owns the policy for deciding which SINIT module to load. In many
cases, it must load the previously loaded SINIT AC module in order to unseal data
sealed to a previously launched environment. If an SINIT AC module is to be changed
(e.g., upgraded to the latest version), any secrets sealed to the current measured
launch may require migration prior to launching via an updated SINIT AC module. It
should be noted that server platforms typically carry an appropriate SINIT AC module
within their BIOS, and that a BIOS update may result in an SINIT AC module update
outside of system software control. For further discussion on this issue, see Section
4.3.1.

BIOS reserves a region of physically contiguous memory for the SINIT AC module,
which it specifies through the TXT.SINIT.BASE and TXT.SINIT.SIZE Intel® TXT
configuration registers. By convention, at least 192 KB of physically contiguous
memory is allocated for the purpose of loading the SINIT AC module; this has
increased to 320 KB for latest generation processors. System software must use this
region for any SINIT AC module it loads.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 31

The SINIT AC module must be located on a 4 KB aligned memory location. The SINIT
AC module must be mapped WB using the MTRRs and all other memory must be
mapped to one of the supportable memory types returned by GETSEC[PARAMETERS].
The MTRRs that map the SINIT AC module must not overlap more than 4 KB of
memory beyond the end of the SINIT AC image. See the GETSEC[ENTERACCS]
instruction and the Authenticated Code Module Format, Appendix A.1, for more details
on these restrictions.

The pages containing the SINIT AC module image must be present in memory before
attempting to launch the measured environment. The SINIT AC module image must
be loaded in the lower 4 GB of memory. System software should check that the SINIT
AC module will fit within the AC execution region as specified by the
GETSEC[PARAMETERS] leaf. System software should not utilize the memory
immediately after the SINIT AC module up to the next 4 KB boundary. On certain
Intel® TXT implementations, execution of the SINIT AC module will corrupt this region
of memory.

2.2.3.1 Matching an AC Module to the Platform

As part of system software loading an SINIT AC module, the system software should
first verify that the file to be loaded is really an SINIT AC module. This may be done at
installation time or runtime. Lines 1 - 13 in Listing 3 below show how to do this.

Each AC module is designed for a specific chipset or set of chipsets, platform type,
and, optionally, processor(s). Software can examine the Chipset ID and Processor ID
Lists embedded in the AC module binary to determine which chipsets and processors
an AC module supports. Software should read the chipset’s TXT.DIDVID register and
parse the Chipset ID List to find a matching entry. If the AC module also contains a
Processor ID List, then software should also match the AC module against the
processor CPUID and IA32_PLATFORM_ID MSR. If the ACM Info Table version is 5 or
greater, software should verify that the Platform Type bits within the Capabilities field
match that of the current platform (server versus client). Attempting to execute an
AC module that does not match the chipset and processor, and platform type when
specified, will result in AC module failing to complete its normal execution and Intel®
TXT Shutdown.

Listing 3. AC Module Matching Pseudocode

TXT_ACM_HEADER *AcmHdr; // see Table 10.
TXT_CHIPSET_ACM_INFO_TABLE *InfoTable; // see Table 12

//
// Find the Chipset AC Module Information Table
//
1. AcmHdr = (TXT_ACM_HEADER *)AcmImageBase;
2. UserAreaOffset = (AcmHdr->HeaderLen + AcmHdr->ScratchSize)*4;
3. InfoTable = (TXT_CHIPSET_ACM_INFO_TABLE *)(AcmBase +
 UserAreaOffset);
//
// Verify image is really an AC module
//
4. IF (InfoTable->UUID0 != 0x7FC03AAA) OR
5. (InfoTable->UUID1 != 0x18DB46A7) OR
6. (InfoTable->UUID2 != 0x8F69AC2E) OR
7. (InfoTable->UUID3 != 0x5A7F418D) {
8. Fail: not an AC module;

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
32 Document Number: 315168-017

9. }
//
// Verify it is an SINIT AC module
//
10. IF (AcmHdr->ModuleType != 2) OR
11. (InfoTable->ChipsetACMType != 1) {
12. Fail: not an SINIT AC module;
13. }
//
// Verify that platform type and platform match, if specified
//
14. IF (InfoTable->Version >= 5) {
15. IF (InfoTable->Capabilities[7:6] != 01 AND
16. PlatformType == CLIENT) {
17. Fail: Non-client ACM on client platform
18. }
19. IF (InfoTable->Capabilities[7:6] != 10 AND
20. PlatformType == SERVER) {
21. Fail: Non-server ACM on server platform
22. }
23. }
//
// Verify AC module and chipset production flags match
//
24. IF (AcmHdr->Flags[15] == TXT.VER.EMIF[31]) {
25. Fail: production flags mismatch;
26. }
//
// Match AC module to system chipset
//
TXT_ACM_CHIPSET_ID_LIST *ChipsetIdList; // see Table 13
TXT_ACM_CHIPSET_ID *ChipsetId; // see Table 14
32. ChipsetIdList = (TXT_ACM_CHIPSET_ID_LIST *)
33. (AcmImageBase + InfoTable->ChipsetIdList);
//
// Search through all ChipsetId entries and check for a match.
//
34. FOR (i = 0; i < ChipsetIdList->Count; i++) {
35. //
36. // Check for a match with this ChipsetId entry.
37. //
38. ChipsetId = ChipsetIdList->ChipsetIDs[i];
39. IF ((TXT.DIDVID[VID] == ChipsetId->VendorId) &&
40. (TXT.DIDVID[DID] == ChipsetId->DeviceId) &&
41. ((((ChipsetId->Flags & 0x1) == 0) &&
42. (TXT.DIDVID[RID] == ChipsetId->RevisionId)) ||
43. (((ChipsetId->Flags & 0x1) == 0x1) &&
44. (TXT.DIDVID[RID] & ChipsetId->RevisionId != 0)))) {
45. AC module matches system chipset;
46. GOTO CheckProcessor;
47. }
48. }
49. Fail: AC module does not match system chipset;
CheckProcessor:
//
// Match AC module to processor
//
TXT_ACM_PROCESSOR_ID_LIST *ProcessorIdList; // see Table 15
TXT_ACM_PROCESSOR_ID *ProcessorId; // see Table 15

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 33

50. ProcessorIdList = (TXT_ACM_PROCESSOR_ID_LIST *)
51. (AcmImageBase + InfoTable->ProcessorIdList);
//
// Search through all ProcessorId entries and check for a match.
//
52. FOR (i = 0; i < ProcessorIdList->Count; i++) {
53. //
54. // Check for a match with this ProcessorId entry.
55. //
56. ProcessorId = ProcessorIdList->ProcessorIDs[i];
57. IF (ProcessorId->FMS ==
58. (cpuid[1].EAX & ProcessorId->FMSMask)) &&
59. (ProcessorId->PlatformID ==
60. (IA32_PLATFORM_ID MSR & ProcessorId->PlatformMask))
61. AC module matches processor;
62. }
63. }
64. Fail: AC module does not match processor;

With the introduction of the flexible ACM information table format (see A.1.3) SINIT
selection logic changed. The listing below shows how to parse the new table format.

Listing 4. Flexible ACM info table handling

1. //TXT.DIDVID2 see B.1.22
2. //Flexible ACM info table format see A.1.3
3. IF (InfoTable->Version < 9) {
4. Fall back to legacy flow above
5. }
6. InfoListPointer = &AcmUser64 + ACM Info Table Base.Length
7. WHILE (InfoListPointer->ID != “NULL”) {
8. SWITCH (InfoListPointer->ID) {
9. CASE “CS1L” {
10. Execute the legacy flow for ChipsetId matching described in the
11. listing above.
12. Fail if no match is found.
13. }
14. CASE “CPUL” {
15. Execute legacy flow for ProcessorId matching described in the
16. listing above.
17. Fail if no match is found
18. }
19. CASE “VERL” {
20. Process ACM revision as needed
21. }
22. CASE “CS2L” {
23. Register = TXT.DIDVID2
24. FOR (i = 0; i < InfoListPointer->Count; i++) {
25. //Apply mask to DID field
26. Register.DID &= InfoListPointer->ChipsetId[i].RegisterMask
27. IF(Register.VID==InfoListPointer->ChipsetId[i].VendorId &&
28. Register.DID==InfoListPointer->ChipsetId[i].DevideID) {
29. Success - exit this flow
30. }
31. } //For loop end
32. }
33. DEFAULT {
34. Continue

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
34 Document Number: 315168-017

35. }
36. } //Switch end
37. Move InfoListPointer to next list
38. } // While loop end
39. Fail: ACM does not support system chipset 2

2.2.3.2 Verifying Compatibility of SINIT with the MLE

Over time, new features and capabilities may be added to the SINIT AC module that
can be utilized by an MLE that is aware of those features. Likewise, features or
capabilities may be added that require an MLE to be aware of them in order to
interoperate properly. In order to expose these features and capabilities and permit
the MLE and SINIT to determine whether they support a compatible set, the MLE
header contains a Capabilities field (see Table 3) that corresponds to the Capabilities
field in the SINIT AC module Information Table (see Table 12).

In addition, the MinMleHeaderVer field in the AC module information table allows
SINIT to indicate that it requires a certain minimal version of an MLE. This allows for
new behaviors or features requiring MLE support that may not be present in older
versions.

Listing 4 shows the pseudocode for the MLE to determine if it is compatible with the
provided SINIT AC module.

While lines 4 – 6 may be redundant with current SINIT AC modules if the MLE
supports both RLP wakeup mechanisms, they permit graceful handling of future
changes.

Listing 5. SINIT/MLE Compatibility Pseudocode

//
// Check that SINIT supports this version of the MLE
//
1. IF (InfoTable->MinMleHeaderVer > MleHeader.Version) {
2. Fail: SINIT requires a newer MLE
3. }

//
// Check that the known RLP wakeup mechanisms are supported
//
4. IF (MLE does NOT support at least one RLP wakeup mechanism

specified in InfoTable->Capabilities) {
5. Fail: RLP wakeup mechanisms are incompatible
6. }

2.2.4 Loading the MLE and Processor Rendezvous

2.2.4.1 Loading the MLE

System software allocates memory for the MLE and MLE page table. The MLE is not
required to be loaded into physically contiguous memory. The pages containing the
MLE image must be pinned in memory and all these pages must be located in physical
memory below 4 GB.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 35

System software creates an MLE page table structure to map the entire MLE image.
The pages containing the MLE page tables must be pinned in memory prior to
launching the measured environment. The MLE page table structure must be in the
format of the IA-32 Physical Address Extension (PAE) page table structure.

The MLE page table has several special requirements:

• The MLE page tables may contain only 4 KB pages.

• A breadth-first search of page tables must produce increasing physical addresses.

• Neither the MLE nor the page tables may overlap certain regions of memory:
 Device memory (PCI, PCIe*, etc.)
 Addresses between [640k, 1M] or above Top of Memory (TOM)
 ISA hole (if enabled)
 Intel® TXT heap or SINIT memory regions
 Intel® VT-d DMAR tables

• There may not be any invalid (not-present) page table entries after the first valid
entry (i.e., there may not be any gaps in the MLE’s linear address space).

• Page Directories must be in a lower physical address than the Page Tables.

• Page-Directory-Pointer-Table must be in a lower physical address than the Page-
Directories.

• Page table pages must be in lower physical addresses than the MLE.

Later, the SINIT AC module will check that the MLE page table matches these
requirements before calculating the MLE digest. The second rule above implies that
the MLE must be loaded into physical memory in an ordered fashion: a scan of MLE
virtual addresses must find increasing physical addresses. The system software can
order its list of physical pages before loading the MLE image into memory.

The MLE is not required to begin at linear address 0. There may be any number of
invalid/not-present entries in the page table prior to the beginning of the MLE pages
(i.e., first valid page). The starting linear address should be placed in the
FirstValidPage field of the MLE header structure (see Section 2.1).

If the MLE is to use this page table after launch, it needs to ensure that the entry
point page is identity-mapped so that when it enables paging post-launch, the
physical address of the instruction after paging is enabled will correspond to its linear
address in the paged environment.

System software writes the physical base address of the MLE page table’s page
directory to the Intel® TXT Heap. The size in bytes of the MLE image is also written to
the Intel® TXT Heap.

2.2.4.2 Intel® Trusted Execution Technology Heap Initialization

Information can be passed from system software to the SINIT AC module and from
system software to the MLE using the Intel® TXT Heap. The SINIT AC module will also
use this region to pass data to the MLE.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
36 Document Number: 315168-017

The system software launching the measured environment is responsible for
initializing the following in the Intel® TXT Heap memory (this initialization must be
completed before executing GETSEC[SENTER]):

• Initialize contents of the Intel® TXT Heap Memory (see Section C)

• Initialize contents of the OsMleData (see Appendix C.3) and OsMleDataSize (with
the size of the OsMleData field + 8H) fields.

• Initialize contents of the OsSinitData (see Appendix C.4) and OsSinitDataSize
(with the size of the OsSinitData field + 8H) fields.

As described in Section 1.11, the MLE must be protected from DMA by being
contained within either the DMA Protected Range (DPR), one of the Intel® VT-d
Protected Memory Regions (PMR) or within one of the TXT DMA Protection Ranges
(TPR).

If MLE is protected using Intel® VT-d PMR, the OsSinitData structure has fields for
specifying regions of memory to protect from DMA (PMR Low/High Base/Size).

If MLE is protected using TXT DMA Protection Ranges, the protection regions are
specified in HEAP_TPR_REQ_ELEMENT (see C.4.2), within the ExtDataElements field of
the OsSinitData structure.

If the MLE resides within the DPR, then both PMR and TPR settings may be missing
from the OsSinitData structure. Otherwise, either PMR or TPR fields must specify a
region that contains the MLE and the page tables. Additionally, TPR and PMR can both
request a larger region of memory, and even additional regions (PMR supports up to
two protected regions, number of supported TPR regions is platform-dependent) if
there is more than just MLE data that should be DMA-protected.

SINIT will process the MLE’s DMA protection request via TPR or PMR and ignore
settings related to the other DMA-protection technology. That means, if TPR is
requested, PMR fields will be ignored and vice versa, without generating errors.

If the system software is using Intel® VT-d DMA remapping to protect areas of
memory from DMA and the MLE requests PMR-based protection, then it must disable
DMA remapping before it executes GETSEC[SENTER]. In order to do this securely,
system software should determine what PMR or TPR range(s) are necessary to cover
the entire address range being DMA protected using the remapping tables. It should
then initialize the ranges appropriately and enable them before disabling remapping.
The PMR or TPR values it provides in the OsSinitData PMR fields or in
HEAP_TPR_REQ_ELEMENT must correspond to the values that it has programmed.
Once the MLE has control, it can re-enable remapping using the previous tables (after
validating them).

Note: Intel IOMMU hardware needs to protect some data using PMRs. In order to prevent
misuse of this ability, SINIT requires the DMA Address Translation to be disabled
before calling GETSEC[SENTER]. Additionally, it forcefully disables Queued
Invalidation and Interrupt Remapping features.

SINIT supports the following PMR or TPR states on entry:

• PMR and TPR are disabled and no enabling requests exist in the OsSinitData
structure. SINIT will verify that all required memory regions (MLE code and page
tables, LCP data) reside in DPR.

• PMR or TPR are disabled and requests to enable either TPR or PMR exist in
OsSinitData structure. SINIT will enable PMR/TPR per request.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 37

• PMR or TPR are enabled and their settings are identical to those requested in
OsSinitData structure. SINIT will verify those settings against the request.

• PMR or TPR are enabled and no enabling requests exist in the OsSinitData
structure. SINIT will assume that this is an attack and abort execution.

If the MLE or subsequent code will be enabling Intel® VT-d DMA remapping, then the
DMAR information that will be needed should be protected from malicious DMA activity
until the remapping tables can be established to protect it. The SINIT AC module
makes a copy of the DMAR tables in the SinitMleData region (located at an offset
specified by the SinitVtdDmarTable field). Because this region is within the TXT heap,
it is protected from DMA by the DPR. If the MLE or subsequent code does not use this
copy of the DMAR tables, then it should protect the original tables (within the ACPI
area) with the PMR or TPR range specified in the OsSinitData structure. Likewise, the
memory range used for the remapping tables should also be protected with the PMR
or TPR until remapping is enabled.

If the Platform Owner TXT launch control policy (LCP - see Section 3.2.1 for more
details) is of type POLTYPE_LIST, then there must be an associated data file that
contains the remainder of the policy. This Policy Data File must be placed in memory
by system software, with its starting address and size specified in the LCP PO Base
and LCP PO Size fields of the OsSinitData structure. The data must be wholly
contained within a DMA protected region of memory, either within the DPR (e.g. in the
TXT heap), or within the bounds specified for the PMR or TPR.

2.2.4.3 DMA protection capability handling

There will be a transition period during which TPR-based and PMR-based DMA
protection will have to be supported by SINIT and operating systems. This section
explains how DMA protection will be handled before and after this period.

MLE

MLEs aware of TPR will query SINIT’s MinMleHeaderVer field and the value of the DMA
protection capability field.

If SINIT is TPR-capable, MLE will set OsSinit.Capabilities[14] to 1. Else, it will keep
OsSinit.Capabilities[14] as 0 and request use of PMRs. Legacy MLEs, not aware of TPR
will treat this bit as reserved and keep its value at 0.

SINIT during transition

SINIT which supports TPR will have its MinMleHeaderVer field set to 2.2, to allow use
of the legacy MLE and will act in accordance to OsSinit.Capabilities[14] bit.

Legacy SINIT, not aware of TPR, will have its MinMleHeaderVer field set to 2.2 as well,
but will treat OsSinit.Capabilities[14] as reserved and always configure PMRs.

SINIT after the transition period

SINIT will support TPR exclusively. The MinMleHeaderVer field will be set to 2.3. SINIT
will examine the version of the MLE and will abort execution if it is not supported.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
38 Document Number: 315168-017

2.2.4.4 Rendezvousing Processors and Saving State

Listing 5 shows the pseudo-code for rendezvousing and saving states of all
processors.

Line 1: If launching the measured environment after operating system boot, then all
processors should be brought to a rendezvous point before executing
GETSEC[SENTER]. At the rendezvous point each processor will set up for
GETSEC[SENTER] and save any state needed to resume after the measured launch. If
processors are not rendezvoused before executing SENTER, then the processors that
did not rendezvous will lose their current operating state including possibly the fact
that an in-service interrupt has not been acknowledged.

Lines 2 – 7: All processors check that they support SMX and enable SMX in
CR4.SMXE.

Lines 8 - 10: The MLE should preserve machine check status registers if bit 6 in the
TXT Extension Flags returned by GETSEC[PARAMETERS] (see Section 2.2.5.1 for
details) is set. If this bit returns 0 or parameter type ‘5’ is not supported, the MLE
must log and clear machine check status registers.

Line 11: Check that certain CR0 bits are in the required state for a successful
measured environment launch.

Line 12: System software allocates memory to save its state for restoration post
measured launch. The OsMleData portion of the Intel® TXT Heap is reserved for this
purpose (see Appendix C.2), though the size must be set appropriately for the
memory to be available.

Line 13: The ILP saves enough state in memory to allow a return to OS execution
after the measured launch and then continues launch execution. The RLPs save
enough space in memory to allow return to OS execution after measured launch then
execute HLT or spin waiting for transition to the measured environment.

Certain MSRs are modified by executing the GETSEC[SENTER] instruction. For
example, bits within the IA32_MISC_ENABLE and IA32_DEBUGCTL MSRs are set to
predetermined values. It may be desirable to restore certain bits within these MSRs to
their pre-launch state after the MLE launch. If this is desired, then before executing
GETSEC[SENTER], software should save the contents of these MSRs in the OsMleData
area. The launched software can restore the original values into these MSRs after the
GETSEC[SENTER] returns or, alternatively, the MLE can restore these MSRs with their
original values during MLE initialization.

It is expected that most MLEs will want to restore the MTRR and IA32_MISC_ENABLE
MSR states after the MLE launch, to provide optimal performance of the system.

Listing 6. Pseudo-code for Rendezvousing Processors and Saving State

1. Rendezvous all processors;
//
// The following code is run on all processors
//
// Enable SMX
//
2. CPUID(EAX=1);
3. IF (SMX not supported) OR (VMX not supported) {

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 39

4. Fail measured environment startup;
5. } ELSE {
6. CR4.SMXE = 1;
7. }
8. IF (GETSEC[PARAMETERS](type=5)[6] == 1) {
9. Clear Machine Check Status Registers;
10. }
11. Ensure CR0.CD=0, CR0.NW=0, and CR0.NE=1;
//
// Save current system software state in Intel TXT Heap
//
12. Allocate memory for OsMleData;
13. Fill in OsMleData with system software state (including MTRR and

IA32_MISC_ENABLE MSR states);

2.2.5 Performing a Measured Launch

2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution

System software must set up the variable range MTRRs to map all of memory (except
the region containing the SINIT AC module) to one of the supported memory types as
returned by GETSEC [PARAMETERS] before executing GETSEC [SENTER]. System
software first saves the current MTRR settings in the OsMleData area and verifies that
the default memory type is one of the types returned by GETSEC [PARAMETERS]
(default memory type is specified in the IA32_MTRR_DEF_TYPE MSR). Next, the
variable range MTRRs are set to map the SINIT AC module as WB, making sure that
each variable MTRR base is a multiple of that MTRR's size. The SINIT AC module must
be covered by the MTRRs such that no more than (4K-1) bytes after the module are
mapped WB. For example, if an SINIT AC module is 11KB bytes in size, an 8KB and a
4KB MTRR or three 4KB MTRRs should be used to map it, not a single 32KB MTRR.
Any unused variable range MTRRs should have their valid bit cleared.

If the 8th bit of the ACM’s Info Table Capabilities field is clear, the mask MTRRs
covering the SINIT AC module should not set any bits beyond bit 35 (which
corresponds to a 36-bit physical address space), or SINIT will treat this as an error
condition. If that bit is set, the mask should cover the full range indicated by the
MAXPHYADDR MSR.

AC modules also checks if (MK)TME (Intel® Multi-Key Total Memory Encryption) is
enabled via CPUID.TME (CPUID.(EAX=07H, ECX=0H): ECX[13]) and activated via
MSR 982h i.e. IA32_TME_ACTIVATE. If (MK)TME is enabled and activated, the
physical address width used in MTRR mask computation must take into consideration
the number of MK_TME_KEID_BITS (IA_32_TME_ACTIVATE[35:32]). Therefore,
physical address width shall be calculated as:

PA_WIDTH = CPUID.80000008H.EAX[7:0] - IA32_TME_ACTIVATE[35:32].

Listing 6 shows the pseudo-code for correctly setting the ILP and RLP MTRRs. This
code follows the recommendation in the IA-32 Software Developer’s Manual.

After MTRR setup is complete, the RLPs mask interrupts (by executing CLI), signal the
ILP that they have interrupts masked, and execute halt. Before executing GETSEC
[SENTER], the ILP waits for all RLPs to indicate that they have disabled their
interrupts. If the ILP executed a GETSEC [SENTER] while an RLP was servicing an

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
40 Document Number: 315168-017

interrupt, the interrupt servicing will not complete, possibly leaving the interrupting
device unable to generate further interrupts.

Listing 7. MTRR Setup Pseudo-code

//
// Pre-MTRR change
//
1. Disable interrupts (via CLI);
2. Wait for all processors to reach this point;
3. Disable and flush caches (i.e. CRO.CD=1, CR0.NW=0, WBINVD);
4. Save CR4
5. IF (CR4.PGE == 1) {
6. Clear CR4.PGE
7. }
8. Flush TLBs
9. Disable all MTRRs (i.e., IA32_MTRR_DEF_TYPE.e=0)
//
// Use MTRRs to map SINIT memory region as WB, all other regions
// are mapped to a value reported supportable by
// GETSEC[PARAMETERS]
//
10. Set default memory type (IA32_MTRR_DEF_TYPE.type) to one reported by

GETSEC[PARAMETERS];
11. Disable all fixed MTRRs (IA32_MTRR_DEF_TYPE.fe=0);
12. Disable all variable MTRRs (clear valid bit);
13. Read SINIT size from the SINIT AC header;
14. Program variable MTRRs to cover the AC execution region, memtype=WB

(re-enable each one used), make sure each variable MTRRs base must be
a multiple of that MTRR's size;

//
// Post-MTRR changes
//
15. Flush caches (WBINVD);
16. Flush TLBs;
17. Enable MTRRs (i.e. MTRRdefType.e=1);
18. Enable caches (i.e. CRO.CD=0, CR0.NW=0);
19. Restore CR4;
20. Wait for all processors to reach this point;
21. Enable interrupts;
//
// RLPs stop here
//
22. IF (IA32_APIC_BASE.BSP != 1) {
23. CLI;
24. set bit indicating we have interrupts disabled;
25. HLT;
26. }
27. Wait for all RLPs to signal that they have their interrupts disabled

2.2.5.2 Selection of Launch Capabilities

System software must select the capabilities that it wishes to use for the launch. It
must choose a subset of the capabilities supported by the SINIT AC module. For
mandatory capabilities, such as the RLP wakeup mechanism, one of the supported
options must be chosen.

28. OsSinitData.Capabilities = selected capabilities;

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 41

2.2.5.3 TPM Preparation

System software must ensure that the TPM is ready to accept commands and that
there is no currently active locality (TPM.ACCESS_x.activeLocality bit is clear for all
localities) before executing the GETSEC[SENTER] instruction.

29. Read TPM Status Register until it is ready to accept a command
30. For all localities x, ensure that ACCESS_x.activeLocality is 0

2.2.5.4 Intel® Trusted Execution Technology Launch

The ILP is now ready to launch the measuring process. System software executes the
GETSEC[SENTER] instruction. See chapter 6, “Safer Mode Extensions Reference”, in
the Intel 64 and IA-32 Software Developer Manuals, Volume 2B for the details of
GETSEC[SENTER] operation.

31. EBX = Physical Base Address of SINIT AC Module
32. ECX = size of the SINIT AC Module in bytes
33. EDX = 0
34. GETSEC[SENTER]

2.3 MLE Initialization
This section describes the initialization of the MLE. Listing 8 shows the pseudo-code
for MLE initialization. Appendix E provides reference to platform resources modified by
the execution of the GETSEC instruction - MLE should save and restore any values it
may require after return from SINIT module execution.

The MLE initialization code is executed on the ILP when the SINIT AC module executes
the GETSEC[EXITAC] instruction—the MLE initialization code is the first MLE code to
run after GETSEC[SENTER] and within the measured environment. The SINIT AC
module obtains the MLE initialization code entry point from the EntryPoint field in the
MLE Header data structure whose address is specified in the OsSinitData entry in the
Intel® TXT Heap. The MLE initialization code is responsible for setting up the
protections necessary to safely launch any additional environments or software. The
initialization includes Intel® TXT hardware initialization, waking and initializing the
RLPs, MLE software initialization and initialization of the STM (if one is being used).
This section describes the details of MLE initialization.

During MLE initialization, the ILP executes the GETSEC[WAKEUP] instruction, bringing
all RLPs into the MLE initialization code. Each RLP gets its initial state from the MLE
JOIN data structure (see the Intel 64 and IA-32 Software Developer Manual, Volume
2B, Table 6-11). The ILP sets up the MLE JOIN data structure and loads its physical
address in the TXT.MLE.JOIN register prior to executing GETSEC[WAKEUP]. Generally,
the RLP initialization code will be very similar to the ILP initialization code.

If the MLE restores any state from the environment of the launching system software,
it must first validate this state before committing it. This is because state from the
environment prior to the GETSEC[SENTER] instruction is not considered trustworthy
and could lead to loss of MLE integrity.

Lines 1 – 8: The MLE loads CR3 with the MLE page directory physical address and
enables paging. The SINIT AC module has just transferred control to the MLE with
paging off, now the MLE must setup its own environment. The MLE’s GDT is loaded at
line 3 and the MLE does a far jump to load the correct MLE CS and cause a fetch of

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
42 Document Number: 315168-017

the MLE descriptor from the GDT. At line 5 a stack is setup for the MLE initialization
routine and, at line 6, the MLE segment registers are loaded. Next the MLE loads its
IDT and initializes the exception handlers.

All instructions and data that were used before paging was enabled must reside on the
same physical page as the MLE entry point and must access data with relative
addressing. This is because the page tables may have been subverted by untrusted
code prior to launch and so the MLE entry point’s page may have been copied to a
different physical address than the original. The MLE must also verify that this page is
identity mapped prior to enabling paging (to ensure that the linear address of the
instruction following enabling of paging is the same as its physical address).

If the MLE cannot guarantee that it was loaded at a fixed address, then it must create
the identity mapping dynamically. Because the physical address of the identity page
could overlap with the virtual address range that the MLE wants to use in its page
tables, the MLE may need to create a trampoline page table. In such case, the
trampoline page table would consist of an identity-mapped page for the physical
address of the MLE entry point and a virtual address mapping of that page which is
guaranteed not to be within the desired address range (i.e. a trampoline page). That
virtual address mapping would also need to be added to the page table that the MLE
ultimately wants to run on. This way the MLE can enable paging to the trampoline
page table (at the identity mapped address) and then jump to the trampoline page’s
address and then switch page tables (CR3’s) to the final table where it will begin
executing at the virtual address of the trampoline page but in the final page table.

If the MLE does not enable paging, then it must also validate that the physical
addresses specified in the page table used for the launch are the expected ones. And
as above, it must do this in code that resides on the same physical page as the MLE
entry point and must use only relative addressing. The reason for this validation is
that the page table could have been altered to place the MLE pages at different
physical addresses than expected, without having altered the MLE measurement.

Because the MLE page table that was used for measurement does not contain pages
other than those belonging to the MLE, if it wishes to continue to run in a paged
environment it will need to either extend the page tables to map the additional
address space needed (e.g. TXT configuration space, etc.) or create new page tables.
This should be done after it has finished establishing a safe environment. The
cacheability requirements for the address space of any MLE-established page tables
must follow the guidelines below.

Line 9: The MLE checks the MTRRs which were saved in the OsMleData area of the
Intel® TXT Heap (see Appendix C.3). It looks for overlapping regions with invalid
memory type combinations and variable MTRRs describing non-contiguous memory
regions. If either of these checks fails, the MLE should fail the measured launch or
correct the failure.

Before the original MTRRs are restored, the MLE must ensure that all its own pages
will be mapped with defined memory types once the variable MTRRs are enabled. The
MLE must ensure that the combined memory type as specified by the page table entry
and variable MTRRs results in a defined memory type.

The MLE must also ensure that the TXT Device Space (0xFED20000 – 0xFED4FFFF) is
mapped as UC so that accesses to these addresses will be properly handled by the
chipset.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 43

Line 10: The MLE should check that the system memory map that it will use is
consistent with the memory regions and types as specified in the Memory Descriptor
Records (MDRs) returned in the SinitMleData structure. Alternately, the MLE may use
this table as its map of system memory. This check is necessary as the system
memory map is most likely generated by untrusted software and so could contain
regions that, if used for trusted code or secrets, might lead to compromise of that
data. If the MLE will be using PCI Express* devices, it should verify that it is accessing
their configuration space through the address range specified by the PCIE MDR type
(3).

Line 11-14: The MLE should verify type of DMA protection used. MLE verifies whether
settings that were used by SINIT to program PMRs or TPRs, as specified in the
OsSinitData table, contain the expected values. While the MLE can only be launched if
the settings cover itself and its page tables (or the pages fall within the DPR), settings
beyond these regions could have been subverted by untrusted code prior to the
launch.

Line 15: The ILP must re-enable SMIs that were disabled as part of the SENTER
process; most systems will not function properly if SMIs are disabled for any length of
time. It is recommended that the MLE enable SMIs on the ILP before enabling them
on the RLPs, since some BIOS SMI handlers may hang if they receive an SMI on an AP
and cannot generate one on the BSP to rendezvous all threads. Newer CPUs may
automatically enable SMIs on entry to the MLE; for such CPUs there is no harm in
executing GETSEC[SMCTRL].

Lines 16 – 20: If this is the ILP then the MLE does the one-time initialization, builds
the MLE JOIN data structure and wakes the RLPs. This structure contains the physical
addresses of the MLE entry point and the MLE GDT, along with the MLE GDT size and
must be located in the lower 4GB of memory. The ILP writes the physical address of
this structure to the TXT.MLE.JOIN register. An RLP will read the startup information
from the MLE JOIN data structure when it is awakened. The MLE writer should ensure
that the MLE JOIN data structure does not cross a page boundary between two non-
contiguous pages. The MLE image must be built or loaded such that its GDT is located
on a single page. Enough of the RLP entry point code must be on a single page to
allow the RLPs to enable paging.

Lines 21 – 30: The MLE must look at the OsSinitData.Capabilities field to see which
RLP wakeup mechanism was chosen by the pre-SENTER code and thus used by SINIT.
If the MLE wants to enforce that certain capabilities or wakeup mechanism was used,
then it can choose to error if it finds that not to be the case. For future compatibility,
MLEs should support both RLP wakeup mechanisms.

Line 33: The MLE checks several items to ensure they are consistent across all
processors:

• All processors must have consistent SMM Monitor Control MSR settings. The
processors must all be opt-in and have the same MSEG region or the processors
must be all opt-out.

• Ensure all processors have compatible VMX features. The compatible VMX features
will depend on the specific MLE implementation. For example, some
implementation may require all processors support Virtual Interrupt Pending.

• Ensure all processors have compatible feature sets. Some MLE implementations
may depend on certain feature being available on all processors. For example,
some MLE implementation may depend on all processors supporting SSE2.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
44 Document Number: 315168-017

If the MLE will use VMX then it should verify that bit 1 (VMX in SMX operation) in
the IA32_FEATURE_CONTROL MSR is set. Bit 2 (VMX outside SMX operation) may
also be set depending on the BIOS being used and on whether TXT has been
enabled.

• Ensure all processors have a valid microcode patch loaded or all processors have
the same microcode patch loaded. This check will depend on the specific MLE
implementation. Some MLE implementations may require the same patch be
loaded on all processors, other MLE implementations may contain a microcode
patch revocation list and require all processors have a microcode patch loaded
which is not on the revocation list.

Line 34: The MLE must wakeup the RLPs while the memory type for the SINIT AC
module region is WB cache-able. This is a requirement of the MONITOR mechanism
for RLP wakeup. Since this is not guaranteed to be true of the original MTRRs, it is
safest to wait until after the RLPs have been awakened before restoring the MTRRs to
their pre-SENTER values. Alternatively, the MLE could ensure that this is the case and
adjust the MTRRs if it is not. It could then restore the MTRRs before waking the RLPs.
In either case, when restoring the MTRRs they should be made the same for each
processor.

Line 35: The MLE should restore the IA32_MISC_ENABLE MSR to the value saved in
the OsMleData structure. This MSR was set to predefined values as part of SENTER in
order to provide a more consistent environment to the authenticated code module.
Most MLEs should be able to safely restore the previous value without any need to
verify it. The MLE should wait until the RLPs are awakened before restoring the MSR
in case the original MSR did not have the Enable MONITOR FSM bit (18) set. See
Appendix E for the processor state of the ILP after SENTER and the states of the RLPs
after waking.

Line 36: The machine-check exceptions flag (CR4.MCE) is cleared by the
GETSEC[SENTER] instruction. If the MLE supports the machine-check architecture,
then it should initialize the exception mechanism and enable exception reporting.

Line 37: The MLE enables SMIs on each RLP.

Line 38: The MLE enables VMX in the CR4 register. This is required before any VMX
instruction can be executed.

Line 39: The MLE allocates and sets up the root controlling VMCS then executes
VMXON, enabling VMX root operation.

Lines 40 – 43: The MLE sets up the guest VM. At line 37 the MLE allocates memory for
the guest VMCS. This memory must be 4KB aligned. The MLE executes VMCLEAR with
a pointer to this VMCS in order to mark this VMCS clear and allow a VMLAUNCH of the
guest VM. At line 42 the MLE executes VMPTRLD so that it can initialize the VMCS at
line 44. Now at line 44 the guest VM is launched for the first time.

Note: On the last extend of the TPM by the SINIT AC module, it may not wait to see if the
command is complete – so the MLE needs to make sure that the TPM is ready before using it.

Listing 8: MLE Initialization Pseudo-code

//
// MLE entry point – ILP and RLP(s) enter here
//

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 45

1. Load CR3 with MLE page table pointer (OsSinitData.MLE
PageTableBase);

2. Enable paging;
3. Load the GDTR with the linear address of MLE GDT;
4. Long jump to force reload the new CS;
5. Load MLE SS, ESP;
6. Load MLE DS, ES, FS, GS;
7. Load the IDTR with the linear address of MLE IDT;
8. Initialize exception handlers;
//
// Validate state
//
9. Check MTRR settings from OsMleData area;
10. Validate system memory map against MDRs
// Handle DMA protection
11. IF (SINIT and MLE support TPR)
12. Validate TPR settings against expected values
13. ELSE
14. Validate VT-d PMR settings against expected values
//
// Enable SMIs
//
15. execute GETSEC[SMCTRL];
//
// Wake RLPs
//
16. IF (ILP) {
17. Initialize memory protection and other data structures;
18. Build JOIN structure;
19. TXT.MLE.JOIN = physical address of JOIN structure;
20. IF (RLP exist) {
21. IF (OsSinitData.Capabilities is set to MONITOR wakeup

mechanism) {
22. SinitMleData.RlpWakeupAddr = 1;
23. }
24. ELSE IF (OsSinitData.Capabilities is set to GETSEC wakeup

mechanism) {
25. GETSEC[WAKEUP];
26. }
27. ELSE {
28. Fail: Unknown RLP wakeup mechanism;
29. }
30. }
31. }
32. Wait for all processors to reach this point;
33. Do consistency checks across processors;
34. Restore MTRR settings on all processors;
35. Restore IA32_MISC_ENABLE MSR from OsMleData
36. Enable machine-check exception handling
37. RLPs execute GETSEC[SMCTRL]
//
// Enable VMX
//
38. CR4.VMXE = 1;
//
// Start VMX operation
//
39. Allocate and setup the root controlling VMCS, execute VMXON(root

controlling VMCS);

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
46 Document Number: 315168-017

//
// Set up the guest container
//
40. Allocate memory for and setup guest VMCS;
41. VMCLEAR guest VMCS;
42. VMPTRLD guest VMCS;
43. Initialize guest VMCS from OsMleData area;
//
// All processors launch back into guest
//
44. VMLAUNCH guest;

2.4 MLE Operation
The dispatch routine is responsible for handling all VMExits from the guest. The guest
VMExits are caused by various situations, operations or events occurring in the guest.
The dispatch routine must handle each VMExit appropriately to maintain the measured
environment. In addition, the dispatch routine may need to save and restore some of
processor state not automatically saved or restored during VM transitions. The MLE
must also ensure that it has an accurate view of the address space and that it restricts
access to certain of the memory regions that the GETSEC[SENTER] process will have
enabled. The following subsections describe various key components of the MLE
dispatch routine.

2.4.1 Address Space Correctness

It is likely that most MLEs will rely on the e820 memory map to determine which
regions of the address space are physical RAM and which of those are usable (e.g. not
reserved by BIOS). However, as this table is created by BIOS it is not protected from
tampering prior to a measured launch. An MLE, therefore, cannot rely on it to contain
an accurate view of physical memory.

After a measured launch, SINIT will provide the MLE with an accurate list of the actual
RAM regions as part of the SinitMleData structure of the Intel® TXT Heap (see
Appendix C.4.2). The SinitMDR field of this data structure specifies the regions of
physical memory that are valid for use by the MLE. This data structure can also be
used to accurately determine SMRAM and PCIe extended configuration space, if the
MLE handles these specifically.

2.4.2 Address Space Integrity

There are several regions of the address space (both physical RAM and Intel® TXT
chipset regions) that have special uses for Intel® TXT. Some of these should be
reserved for the MLE and some can be exposed to one or more guests/VMs.

2.4.3 Physical RAM Regions

There are two regions of physical RAM that are used by Intel® TXT and are reserved
by BIOS prior to the MLE launch. These are the SINIT AC module region and the
Intel® TXT Heap. Each region’s base address and size The Intel® TXT configuration

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 47

registers (e.g. TXT.SINIT.BASE and TXT.SINIT.SIZE) specify each region’s base
address and size.

The SINIT and Intel® TXT Heap regions are only required for measured launch and
may be used for other purposes afterwards. However, if the measured environment
must be re-launched (e.g. after resuming from the S3 state), the MLE may wish to
preserve and protect these regions.

2.4.4 Intel® Trusted Execution Technology Chipset Regions

There are two Intel® TXT chipset regions: Intel® TXT configuration register space and
Intel® TXT Device Space. These regions are described in Appendix B.

2.4.4.1 Intel® Trusted Execution Technology Configuration Space

The configuration register space is divided into public and private regions. The public
region generally provides read only access to configuration registers and the MLE may
choose to allow access to this region by guests. The private region allows write
access, including to the various command registers. This region should be reserved to
the MLE to ensure proper operation of the measured environment.

2.4.4.2 Intel® Trusted Execution Technology Device Space

The Intel® TXT Device Space supports access to TPM localities. Localities three and
four are not usable by the MLE even after the measured environment has been
established, and so do not need any special treatment. Locality two is unlocked when
the Intel® TXT private configuration space is opened during the launch process.
Locality one is not usable unless it has been explicitly unlocked (via the
TXT.CMD.OPEN.LOCALITY1 command). If the MLE wants to reserve access to locality
two for itself then it needs to ensure that guest/VM access to these regions behaves
as a TPM abort, as defined by TCG for non-accessible localities. This behavior is that
memory reads return FFh and writes are discarded. The MLE can provide this
behavior by any one of the following:

• Trapping guest/VM accesses to the regions and emulating the defined behavior.
• Instead, it could map these regions onto one of the hardware-reserved localities

(three or four) and let the hardware provide the defined behavior.
• If the MLE does not need access to locality 2 then it can close this locality

(TXT.CMD.CLOSE.LOCALITY2) so neither itself nor guests will have access to it.

Note: Addresses FED45000H – FED7FFFFH are Intel reserved for expansion.

2.4.5 Device Assignment

If the MLE exposes devices to untrusted VMs, it must take care to completely protect
itself from any affects (either intentional or otherwise) of these devices. For devices
which use DMA to access memory, the MLE can protect itself using Intel® VT for
Directed IO (Intel® VT-d) to prevent unwanted access to memory and through VMX to
manage access to device configuration space. For other types of devices, their
interactions with the system, and how they affect it, should be fully understood before
allowing an untrusted VM to access them.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
48 Document Number: 315168-017

2.4.6 Protecting Secrets

If there is data in memory whose confidentiality must be maintained, then the MLE
should set the Intel® TXT secrets flag so that the Intel® TXT hardware will maintain
protection even if the measured environment is lost before performing a shutdown
(e.g., hardware reset). Writing to the TXT.CMD.SECRETS configuration register can do
this. The teardown process will clear this flag once it has scrubbed memory and
removed any confidential data.

2.4.7 Model Specific Register Handling

Model Specific Registers (MSRs) pose challenges for a measured environment. Certain
MSRs may directly leak information from one guest to another. For example, the
Extended Machine Check State registers may contain secrets at the time a machine
check is taken. Other MSRs might be used to indirectly probe trusted code. The non-
trusted guest could use the Performance Counter MSRs, for example, to determine
secrets (e.g., keys) used by the trusted code. Other MSRs can modify the MLE’s
operation and destroy the integrity of the measured environment.

The VMX architecture allows the MLE to trap all guest MSR accesses. Certain VMX
implementations will also allow the MLE to use a bitmap to selectively trap MSR
accesses. The MLE must use these VMX features to check certain guest MSR accesses,
ensuring that no secrets are leaked and that MLE operation is not compromised.

An MLE might virtualize some of the MSRs. The VMX architecture provides a
mechanism to automatically save selected guest MSRs and load selected MLE MSRs on
VMEXIT. Selected guest MSRs may be automatically loaded on VMENTER. These
features allow the MLE to virtualize MSRs, keeping a separate MSR copy for the guest
and MLE. Note that using this feature will slow VMEXIT and VMENTER times. The VMX
architecture provides a separate set of VMCS registers for the automatic saving and
restoring of the fast system call MSRs.

There is a limit to the number of MSRs that can be swapped during a VMX transition.
Bits 27:25 of the VMX_BASE_MSR+5 indicate the recommended maximum number of
MSRs that can be saved or loaded in VMX transition MSR-load or MSR-store lists.
Specifically, if the value of these bits is N, then 512 * (N + 1) is the recommended
maximum number of MSRs referenced in each list. If the limit is exceeded, undefined
processor behavior may result (including a machine check during the VMX transition).

There are certain MSRs that cannot be included in the MSR-load or MSR-store lists. In
the initial VMX implementations, IA32_BIOS_UPDT_TRIG and IA32_BIOS-SIGN_ID
may not be loaded as part of a VM-Entry or VM-Exit. The list of MSRs that cannot be
loaded in VMX transitions is implementation specific - refer to the Intel® 64 and IA-32
Architectures Software Developer’s Manual for details.

The MLE must contain a built-in policy for handling guest MSR access. This MSR
handling policy must deal with all architectural MSRs that might be accessed by guest
code. The built-in MSR policy must deny access to all non-architectural MSRs.

2.4.8 Interrupts and Exceptions

To preserve the integrity of the measured environment, the MLE must be careful in
how it handles exceptions and interrupts. It needs to ensure that its IDT (Interrupt

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 49

Descriptor Table) has a handler for all exceptions and interrupts. The MLE should also
ensure that if it uses interrupts for internal signaling that it does so securely.
Likewise, it is best if exception handlers do not try and recover from the exception but
instead properly terminate the environment.

2.4.9 ACPI Power Management Support

Certain ACPI power state transitions may remove or cause failure to the Intel® TXT
protections. The MLE must control such ACPI power state transitions. The following
sections describe the various ACPI power state transitions and how the MLE must deal
with these state transitions.

2.4.9.1 T-state Transitions

T-states allow reduced processor core temperature through software-controlled clock
modulation. T-state transitions do not affect the Intel® TXT protections, so the MLE
does not need to control T-state transitions. The MLE may wish to control T-state
transitions for other purposes, e.g., to enforce its own power management or
performance policies.

2.4.9.2 P-State Transitions

P-state transitions allow software to change processor operating voltage and
frequency to improve processor utilization and reduce processor power consumption.
On some systems, where the processor does not enforce allowed combinations, the
MLE must ensure software does not write an invalid combination into the GV3 MSRs.

2.4.9.3 C-State Transitions

C-states allow the processor to enter lower power state. The C0 state is the only C-
state where the processor is actually executing code – in the remaining C-states the
processor enters a lower power state and does not execute code. In these lower
power C-states the Intel® TXT protections remain intact; therefore, the MLE does not
need to monitor or control the C-state transitions. The MLE may wish to control C-
state transitions for other purposes.

2.4.9.4 S-State Transitions

The S0 state is the system working state – the remaining S-states are low-power,
system-wide sleep states. Software transitions from the S0 working state to the other
S-states by writing to the PM1 control register (PM1_CNT) in the chipset. Since the
Intel® TXT protections are removed when the system enters the S3, S4 or S5 states,
and the BIOS will gain control of the system on resume from these states, the MLE
must remove secrets from memory before allowing the system to enter one of these
sleeps states. Note that entering S1 does not remove Intel® TXT protections and Intel
chipsets do not support the S2 sleep state.

The Intel® TXT chipset provides hardware to detect when the software attempts to
enter a sleep state while the secrets flag is set (the TXT.SECRETS.STS bit of the
TXT.E2STS register). The Intel® TXT chipset will reset the system if it detects a write
to the PM1_CNT register that will force the system into S3, S4 or S5 while the secrets
flag is set. If the Intel® TXT chipset does detect this situation and resets the system,

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
50 Document Number: 315168-017

then the BIOS AC module or code within Trusted BIOS ensures that memory is
scrubbed before passing control onward. To avoid this reset and scrubbing process,
the MLE should remove secrets from memory and teardown the Intel® TXT
environment before allowing a transition to S3, S4 or S5.

Before tearing down the Intel® TXT environment, the MLE may remove secrets from
memory (clearing pages with secrets) or encrypt secrets for later use (e.g. for a later
measured environment launch). Once this operation is complete the MLE must issue
the TXT.CMD.NO-SECRETS command to clear the secrets flag. After this command is
issued, the MLE may allow a transition to S3, S4 or S5 sleep state. The MLE teardown
procedure is described in more detail in Section 2.5.

2.4.9.4.1 S3

The S3 state provides special challenges for the MLE because the resume process uses
the in-memory state from when S3 was entered. This means that unlike a normal
boot process where trust is established as each component launches, the trust that
existed at entry to S3 must be maintained/verified on resume.

Since the TXT environment must be torn down before entering S3, it will have to be
re-established on resume. This part of the S3 resume process is nearly identical to the
original launch. Because S3 resume should leave the platform in the same state as
before S3 was entered, the PCRs should also have the same values. This means that
the MLE launched on resume should be the same as the initial one launched, which
means that the code/data being measured cannot include any state from before
entering S3. If some state from before entering S3 is needed on resume, then it must
be validated post-launch (since it is not being measured).

The MLE needs to ensure that the integrity of the TCB will be maintained across the
transition. There are two possible sources for loss of integrity across S3: malicious
DMA and compromise of the in-memory BIOS image. The initial, pre-S3 TXT launch
process protects against DMA and so the S3 resume process should maintain such
protection. Most BIOS will execute portions of their S3 resume code from their in-
memory image without first re-copying it from flash. Since this in-memory image
could have been modified by any privileged software or firmware that executed as
part of the original, pre-S3 boot process (e.g., option ROMs, bootloader, etc.), this too
needs to be defended against.

The TXT launch process done as part of S3 resume ensures integrity and DMA
protection for the measured part of the MLE itself. For the remainder of the TCB this
can be accomplished by creating a memory integrity code for the TCB and sealing it to
the MLE’s launch-time measurements just before the TXT protections are removed
prior to entering S3 (the sealed data creation attributes should include a locality that
is only available to the TCB). On resume and after a successful launch, the MLE can
re-calculate the value for the memory image and compare it with the sealed value to
determine if the memory image has been compromised).

If there were additional measurements extended to the DRTM PCRs as part of the
original boot process, these will need to be re-established since these PCRs are
cleared when the MLE is re-launched. The entity that makes the measurements should
seal the measurement values (not the resulting PCR values) to the PCRs values in
effect just before it extends the measurements into the PCRs (the sealed data creation
attributes should include a locality that is only available to software trusted by the
entity). On resume from S3, when that entity is resumed it will unseal the values and
re-extend them into the appropriate PCRs.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 51

It may be necessary for the MLE to seal additional information that is required to
securely re-establish the trusted environment. For instance, the portion of the TCB
needed to re-establish final DMA protections (e.g. with VT-d DMA remapping) will
need to be DMA protected by the MLE as part of the post-resume launch. The MLE
may need to save the bounds of this region prior to entering S3 (both in plain text and
sealed). It would then use the plain text saved bounds to determine the DMA
protection values to specify as part of the re-launch. Post-launch the MLE would
unseal the bounds information and verify it against the bounds specified in the launch.

Because the boot process on resuming from an S3 state does not re-measure the
elements of the SRTM, software prior to entering the S3 state must execute the
appropriate TPM2_Shutdown (requesting state) command to inform the TPM to
preserve the state of its PCRs. Upon resume from S3, the BIOS must provide a flag to
TPM_Startup to indicate that the TPM is to restore the saved state. If the TPM’s state
is not saved prior to entering S3, then the TPM will be non-functional after resuming.
Normally an OS TPM driver would perform the TPM state preservation command when
the OS indicated that it was entering S3. However, if the MLE cannot be sure that the
environment it establishes will perform this command, it may wish to do so itself prior
to entering S3. If the MLE alters the TPM state (e.g. extending to PCRs, etc.) after
TPM state preservation command has been issued then the TPM may invalidate the
previously saved state. In such cases, the MLE must also perform this command and it
should be the last TPM command that is executed, in order to ensure that the state is
not changed afterwards. There is no harm if this command is executed multiple times
prior to S3.

2.4.10 Processor Capacity Addition (aka CPU Hotplug)

VMMs and OS kernels not accommodating or executing within an Intel® TXT measured
launch assume control of application processors during boot using INIT-SIPI-SIPI
mechanism. Upon receipt of a SIPI, the processor resumes execution at the specified
SIPI vector.

On the other hand, an MLE issues GETSEC[WAKEUP] (or a write to the wakeup
address) to assume control of application processors (RLPs) following SENTER. The
RLPs begin execution at an address pointed to by the MLE JOIN data structure. Intel®
TXT for multiprocessor platforms enables processor capacity addition (also known as
CPU hotplug or hotadd) after the Intel® TXT environment has been launched.
Processor capacity addition can be a result of physical addition of a processor package
to a running system or bringing a processor package online that was previously
inactive. The Intel® TXT processor capacity addition flow makes use of INIT-SIPI-SIPI
as the RLP wakeup mechanism, but the hot added logical processors use the MLE JOIN
data structure to determine their entry point.

The processor capacity addition flow for an MLE is documented below:
4. New processors are released from reset. They execute measured BIOS code.
5. BIOS configures the new processors. At the end of configuration, BIOS clears the

BSP flag in the IA32_APIC_BASE register of new processors and leaves them in a
CLI/HLT loop.

6. The MLE is notified of this event via the standard ACPI mechanism.
7. Some MLEs may choose to allow write access to the Intel® TXT public

configuration region by guests. However, during the processor capacity addition
flow, the MLE must prevent guests from writing to the public region in order to
prevent them from modifying the TXT.MLE.JOIN register in the middle of this flow.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
52 Document Number: 315168-017

8. The MLE must prepare the MLE JOIN data structure for the new processors. It may
choose to use the same values as it did for the initial RLPs, or it may use different
ones. In either case, they are subject to the same restrictions as for the initial RLP
wakeup. The MLE then writes the physical address of the JOIN data structure into
the TXT.MLE.JOIN register.

9. The MLE issues the INIT–SIPI-SIPI sequence to each newly added logical
processor to take control of these processors.

10. In response to the SIPI, each new processor will detect that this is a capacity
addition to an existing measured environment and resume execution at the entry
point specified in the MLE JOIN data structure. The processor will ignore the SIPI
vector that may have been supplied. The new processor gets its initial state from
the MLE JOIN data structure just like an RLP would during the MLE launch process.

2.5 MLE Teardown
This section describes an orderly measured environment teardown. This occurs when
the guest OS or the MLE decides to tear down the measured environment (for
example prior to entering an ACPI sleep state such as S3). The listing below shows
the pseudo-code for teardown of the measured environment.

Line 1: Rendezvous all processors at “exiting Intel® TXT environment” point in guest.
No need for the guests to save their state as their state will be stored in a VMCS on
VMEXIT to the monitor.

Lines 2 and 3: After all processors in the guest rendezvous, all processors execute a
VMCALL to the teardown routine in the MLE. Once in the MLE, each processor
increments a counter in trusted memory. All processors except the BSP/ILP (the
processor with IA32_APIC_BASE MSR.BSP=1) wait on a memory barrier. The ILP
waits for all other processors to enter MLE teardown routine then signals the other
processors to resume with teardown.

If one or more processors fail to reach the rendezvous in the guest, the ILP may
timeout and VMCALL to the MLE teardown routine. If one or more processors fail to
arrive in the MLE teardown routine, the ILP forces all other processors into the MLE
with an NMI IPI. Both these conditions are treated as errors – the ILP should proceed
with the measured environment teardown but log an error.

At line 4, each processor reads all guest state from its VMCS and stores this data in
memory, since after VMXOFF the processors will no longer be able to access data in
their VMCS. This state will be needed to restore the guest execution after teardown.

The MLE automatically saves certain guest state (general purpose registers which are
not part of the VMCS guest area) on VM Exit. The MLE may need to restore this state
when it reenters the guest after the GETSEC[SEXIT].

Line 5: Once all processors are in the MLE and have saved guest state from the VMCS,
all processors clear their appropriate registers to remove secrets from these registers.

Lines 6: All processors flush VMCS contents to memory using VMCLEAR. The MLE
must flush any VMCS that might contain secrets – this would include all guest VMCSes
in a multi-VM environment.

Line 7: The processors wait until all processors have reached this point before
resuming execution. This allows all the VMCS flushes to complete before the ILP

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 53

encrypts or scrubs secrets. Processors should execute an SFENCE to ensure all writes
are completed before continuing.

Line 9: The ILP encrypts and stores exposed secrets from all trusted VMs. Note that
encrypted secrets will have to be stored in memory until the OS can put them to disk.
This will require extra memory above and beyond the memory holding secrets. This
step assumes that the RLPs do not have secrets that are not visible to the ILP.
Therefore, when the ILP scrubs/encrypts all secrets, this will deal with secrets in the
RLP caches also.

Line 10: The ILP again clears appropriate registers to remove any secrets from those
registers.

Line 11: The ILP scrubs all trusted memory (except the teardown routine itself and
encrypted memory). Note that the scrub itself clears secrets still held in the cache.

Line 12: The ILP executes WBINVD to invalidate its caches (to ensure last few pages
of zeros get to memory).

Lines 13 - 16: If the MLE is going to enter the S3 state, the ILP calculates a memory
integrity code and seals it.

Line 17: The ILP caps, or extends, the dynamic PCRs with some value. This prevents
an attacker from unsealing the secrets after the teardown using the same PCRs, since
the dynamic PCRs are not reset after GETSEC[SEXIT].

Line 18: The ILP writes the NoSecrets in memory command. (TXT.CMD.NO-SECRETS)

Line 19: The ILP should unlock the system memory configuration (TXT.CMD.UNLOCK-
MEM-CONFIG) (that was locked by SINIT) once secrets have been removed from
memory. This will facilitate re-launching the MLE and may be necessary for a graceful
shutdown of the system.

Line 20: The ILP closes Intel® TXT private configuration space.

Line 23: The RLPs wait while the ILP encrypts and scrubs secrets from memory.

Line 25: Each processor then disables processor virtualization. If an STM was
launched, it must be torn down before VMX is disabled. See Intel 64 and IA-32
Software Developer Manual, Volume 3B, Section 25.15.7 for more information.

Lines 26 - 31: The RLPs wait on a memory barrier while the ILP executes the
GETSEC[SEXIT] instruction to initiate the teardown of SMX operation.

At end of GETSEC[SEXIT], the ILP simply continues to the next instruction (still
running in monitor’s context – paging on). The ILP signals the RLPs to continue.

Lines 32 and 33: The former monitor code now restores guest state left behind when
the guest executed the VMCALL to enter the MLE teardown routine. All processors
perform the transition to guest OS, now operating as normal environment rather than
guest.

The guest MSRs must be restored when restarting the guest OS. The MLE can restore
the MSRs with information in the VMCS (VM-exit MSR store count) and the VM-exit
MSR store area, or the guest OS could save important MSR settings before calling the
teardown routine and restore its own MSR settings after resuming after teardown.

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
54 Document Number: 315168-017

If the MLE is going to return control to a designated guest after tearing down, then
the MLE must ensure that no interrupts are left pending or not serviced before
returning control to the designated guest. Any interrupts left pending or not serviced
may prevent further interrupt servicing once the designated guest is restarted.

Listing 9. Measured Environment Teardown Pseudo-code

1. Rendezvous processors in guest OS;
2. All processors VMCALL teardown in MLE;
3. Rendezvous all processors in MLE teardown routine;
4. All processors read guest state from VMCS, store values in memory;
// Remove and encrypt all secrets from registers and memory
//
5. All processors clear their appropriate registers;
6. All processors flush VMCS contents to memory using VMCLEAR;
7. Wait for all processors to reach this point;
8. IF (ILP) {
9. Encrypt and store secrets in memory;
10. Again, clear appropriate registers to remove secrets;
11. Scrub all trusted memory;
12. WBINVD caches;
13. IF (S3) {
14. Create memory integrity code
15. Seal memory integrity code
16. }
17. “cap” dynamic TPM PCRs;
18. Write to TXT.CMD.NO-SECRETS;
19. Unlock memory configuration
20. Close private Intel TXT configuration space;
21. Signal RLPs that scrub is complete;
22. } ELSE { // RLP
23. Wait for ILP to signal completion of memory scrub;
24. }
//
// Stop VMX operation
//
25. VMXOFF;
//
// RLPs wait while ILP executes SEXIT
//
26. IF (ILP) {
27. GETSEC[SEXIT];
28. signal completion of SEXIT;
29. } ELSE {
30. wait for ILP to signal completion of SEXIT;
31. }
// Transition back to the guest OS
32. Restore guest OS state from device memory;
33. Transition back to guest OS context;

2.6 Other Considerations

2.6.1 Saving MSR State across a Measured Launch

Execution of the GETSEC[SENTER] instruction loads certain MSRs with pre-defined
values. For example, GETSEC[SENTER] will load IA32_DEBUGCTL MSR with 0H and

Measured Launched Environment

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 55

will load the GV3 MSR with a predetermined value. The software can deal with this in
several different ways. The launching software may save the state of these MSRs
before measured launch and restore the state after the launch returns. In this case
the MLE will need to check the values that are restored. Another approach is to have
the launch software save the desired state and have the MLE restore the values before
resuming the guest. The software could also leave these MSRs in the state established
by GETSEC[SENTER].

The IA32_MISC_ENABLE MSR should be saved and restored around measured launch
and teardown.

§§

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
56 Document Number: 315168-017

3 Verifying Measured Launched
Environments
Launch Control Policy (LCP) is the verification mechanism for the Intel® TXT verified
launch process. LCP is used to determine whether the current platform configuration
or the environment to be launched meets specified criteria. Policies may be defined by
the Platform Owner, as well as leveraged from Boot Guard (BtG) verifications.

LCP allows the Platform Owner (PO) to specify environments that may be launched by
the GETSEC[SENTER] instruction.

The addition of LCP to the platform indirectly now makes them more manageable.
Measured Launched Environments (MLEs) no longer must worry about sealing secrets
to several platform configurations when they know a policy is in place to check these
before their launch takes place; they just need to seal to a representation of this
policy. This becomes useful when the platform’s configuration changes, e.g. the BIOS
is replaced, because the new BIOS configurations can be added to the policy the value
to which any MLE secret is sealed to need not change – thus reducing the burden of
migrating the MLEs secrets if another component in the platform changes.

LCP requirements can be summarized as:

• Provide the Platform Owner with the ability to control which measured
environments can be immediately launched by the GETSEC[SENTER]
instruction.

• Provide the Platform Owner with the ability to control which platform
configurations, as measured by the Static Root of Trust, are permitted to
perform GETSEC[SENTER].

• Provide the Platform Owner with an ability to control which STM is permitted
to run in SMRAM and MLE suppliers with an ability to require STM presence.

• Provide this mechanism in a manner which prevents it from being undermined
by untrusted software.

• If no policy is present on the platform then the platform shall continue the
Intel® TXT launch process allowing any configuration and MLE to be launched.

The policy described in this section applies to TXT-capable platforms produced in 2017
and later. Policy definitions for earlier platforms can be found in earlier versions of
this document.

3.1 Overview
The Launch Control Policy architecture consists of the following components:

• LCP Policy Engine. This is part of the SINIT ACM which enforces the policies stored
on the platform.

• LCP Policy. This policy takes a form of structure residing in the TPM PO NV index.
This structure defines some of the policies and creates a linkage to LCP Policy
Data File.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 57

• LCP Policy Data File. Linked to a policy structure in the TPM PO index, is structured
to be a nested collection of lists and valid policy elements, such as measurements
of MLEs, platform configurations, and other objects.

Figure 1 shows how these components relate to each other.

When the platform boots, its state is measured and recorded by the Static Root of
Trust for Measurement (SRTM) and the other components which make up the static
chain of trust; these events occur from when the platform is powered on until the
Intel® TXT measured launch (or until some component breaks the static chain). At this
point GETSEC[SENTER] is invoked, and control is passed through the Authenticated
Code Execution Area (ACEA) to the SINIT authenticated code module. The LCP engine
in SINIT reads the PO LCP Policy Index in the TPM NV, decides which policy to use,
and checks the Platform Configuration and the Measured Launched Environment as
required by the chosen policy. The measured environment is then launched if the
policy is satisfied.

Figure 1. Launch Control Policy Components

3.1.1 Versions of LCP Components

The following Section 3.2 provides a detailed description of LCP components and data
structures they operate.

Appendix D contains all the minutia of structure formats.

3.2 LCP Components. General provisions
The policy that the SINIT AC module implements is named as Platform Owner (PO)
policy. PO policy is stored in the non-volatile memory of the Trusted Platform Module
(TPM NV). By storing the policy in the TPM NV, access controls can be applied to it; it
also enables the policy to persist across platform power cycles.

Besides PO TPM NV index, Intel® TXT also uses other TPM NV indices: the Auxiliary
TXT index (AUX) and the Software Guard Extension index (SGX).

Platform Owner
LCP_Policy

…

…

TPM PCRs

TPM NV Ram

PO
LCP_POLICY_DATA

Static Chain
of Trust MLE SINIT(LCP)

Execution Control
Write/Read Operation
Data Reference

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
58 Document Number: 315168-017

The AUX index is used as internal inter-ACM communication area. Main data it
contains is:

• BIOS ACM registration data to be extended by SINIT into PCR17 since BIOS ACM
is in TXT Trusted Computing Base (TCB).

• Revocation data described in Section 3.7

• Digests of various components passed from S-ACM to SINIT

The SGX index is used as BIOS / MLE inter-communication area. Its usage is
described in Section 4.5

3.2.1 LCP Policy

The LCP_POLICY2 structure (for a full listing see Appendix D.1) is used for the
Platform Owner policy. The size of the structure currently needs to be kept to a
minimum in order to preserve the scarce resources of the TPM NV storage, which is
why additional structures for Platform Owner policy (LCP_POLICY_DATA) that can
persist elsewhere are provided to handle additional information.

Figure 2. LCP_POLICY (2) Structure

Figure 2 diagrammatically illustrates main fields of the LCP_POLICY and LCP_POLICY2
structures (fields not to scale):

Version specifies the version of the structures and, implicitly, of the policy engine
semantics. It is of the format <major>.<minor> where the major version is the MSB
of the field and the minor version is the LSB. All minor versions of a given major
version will be backwards compatible. If new fields are added they will be at the end
and the semantics of all previous minor versions are maintained (though they can be
extended). Major versions are not guaranteed to be backwards compatible with each
other thus SINIT will fail to launch if it finds a major version that it is not compatible
with.

The version of the LCP_POLICY structure is defined as 2.4 (0x0204) and the version of
the LCP_POLICY2 structure is 3.2 (0x0302)

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 59

HashAlg identifies the hashing algorithm used for the PolicyHash field. If the algorithm
type is not supported by ACM processing the policy, then it shall stop processing the
policy and fail.

PolicyType indicates whether an additional LCP_POLICY_DATA structure is required.

• If the PolicyType field is LCP_POLTYPE_ANY, then the value in the PolicyHash field
is ignored and the environment to be launched is simply measured before
execution control is passed to it. No corresponding LCP_POLICY_DATA is
expected.

• If the PolicyType field is LCP_POLTYPE_LIST, then the value of PolicyHash is the
result of computing a hash over the LCP_POLICY_DATA structure per the rules
below.

If the type specified is not supported by the ACM processing the policy, then it shall
stop processing the policy and fail.

SinitMinVersion specifies the minimum version of SINIT that can be used. This value
corresponds to the AcmVersion field in the AC module Information Table (see Table
12). This value must be less than or equal to the value of AcmVersion in the executing
SINIT image for that SINIT to continue; otherwise SINIT will fail the launch. If there
is an LCP_MLE_ELEMENT2 element in a policy, then the SinitMinVersion in that
element will be combined with the value in the LCP_POLICY, per the description in
Appendix D.4.4. This is done to allow MLE supplier to request a minimum version of
SINIT that MLE requires. If there is no LCP_MLE_ELEMENT element in the policy, then
the value in the LCP_POLICY will be used.

DataRevocationCounters is an array of elements corresponding to an array of policy
lists in the LCP policy data file. This array provides a mechanism to revoke signed lists
in that object. Index of elements in this array corresponds to LCP List
(LCP_POLICY_LIST2, LCP_POLICY_LIST2_1) number in the LCP policy data file
(LCP_POLICY_DATA) and contains a minimum RevocationCounter value in the
signature of this Policy List (LCP_SIGNATURE2, LCP_SIGNATURE2_1) which will be
accepted by a policy engine. If the value in the RevocationCounter field is less than
this value, then SINIT will fail the launch.

Example: if an LCP policy list which is LCP_POLICY_DATA[#N] is signed and has its
RevocationCounter field set to M, DataRevocationCounters [#N] element must be less
or equal to M, otherwise SINIT will fail.

For any LCP_POLICY_LISTs that are not signed, the corresponding
DataRevocationCounters index will be ignored. Values in DataRevocationCounters
indices not corresponding to existing lists in the policy data file will be ignored as well.

The PolicyControl field contains policy bits with global LCP impact. Its content is
deciphered in Appendix D.1.1. Field is essentially simplified with only two bits left:

• Bit 1 tells a Non-Production Worthy SINIT that it can run. This puts Owner in
control of what kind of SINIT can be executed in production environment

• Bit 3 signifies how platform configuration via PCONF element is enforced – just
platform owner’s selected configuration or both platform owner’s and platform
supplier’s configurations. Detailed description can be found in Appendix J.2.3

Note: Bit 1 Identifies whether the platform will allow AC Modules marked as pre-production
to be used to launch the MLE. If this bit is 0 and a pre-production AC Module has been

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
60 Document Number: 315168-017

invoked, it will cause a TXT reset during GETSEC[SENTER]. The use of any pre-production AC
Module will result in PCRs 17 and 18 being capped with (pseudo) random values.

The MaxSinitMinVersion field specifies the maximum value of
AUX.AUXRevocation.SinitMinVer this policy will allow a revocation utility to set. The
value of “0” in this field means the SINIT minimum version may not be changed and
“0xFF” allows unconditional changes to the SINIT minimum version.

Two new fields LcpHashAlgMask and LcpSignAlgMask are defined in LCP_POLICY2
structure. They specify hash and signature algorithm sets Platform Owner tells SINIT
to grant. If LCP engine encounters a list with unauthorized signature algorithm, it will
abort.

If the LCP engine encounters elements with unauthorized hash algorithms, it will skip
them not allowing to match but will record the fact that given element type exists and
will require a match for this element type to be satisfied upon the end of a scan.

PolicyHash field is described in Section 3.2.1.1

3.2.1.1 PolicyHash Field for LCP_POLTYPE_LIST

For policies of type LCP_POLTYPE_LIST, the LCP_POLICY_DATA may contain multiple
lists, some of which are signed and some of which are not. In order to realize the
value of signed policies, PolicyHash can’t be a simple hash over the entire
LCP_POLICY_DATA or even changes to signed policy lists would cause a change in the
measurement of the policy.

The measurement of a policy list depends on whether the list is signed.

For a list signed using any algorithm supported by the ACM, the measurement is the
hash (as specified by the HashAlg field of the corresponding LCP_POLICY) of the public
(verification) key in the PubkeyValue member (it is called Modulus in
RSA_PUBLIC_KEY structure of LCP_SIGNATURE2_1) of the Signature field for RSA, the
Qx and Qy public coordinates for elliptic curve signatures or the LMS public key.

For unsigned lists (with SigAlgorithm = LCP_POLSALG_NONE or KeySignatureOffset =
0 – see Appendix D.3.1.1 and D.3.1.2 respectively), the measurement is the hash
specified by the HashAlg field of the corresponding LCP_POLICY(2)) of the entire list
(LCP_POLICY_LIST).

The value of the PolicyHash field will be the hash of all policy list measurements
concatenated (there is no end padding if the number of lists present is less than
LCP_MAX_LISTS), even if there is only one list measurement. For example, if there is
only a single list then the value of PolicyHash will be HASHHashAlg(HASHHashAlg(list)).

3.2.2 LCP Policy Data

The purpose of the LCP_POLICY_DATA structure is to provide any additional data
needed to enforce the policy but in a separate entity that doesn’t have to consume
TPM NV space. A full description of LCP_POLICY_DATA can be found in Appendix D.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 61

Figure 3. LCP_POLICY_DATA Structure

The PolicyLists[] field allows the policy data file to contain a maximum of
LCP_MAX_LISTS(currently, 8 lists) LCP policy lists. An LCP policy list may be either
signed or unsigned and can contain any type of LCP_POLICY_ELEMENT structures
(e.g. for MLE policy, platform configuration policy, etc.).

The structure of LCP policy list corresponds to the LCP_LIST structure – see Appendix
D.3.2.3.

3.2.3 LCP Policy Element

Policy elements are self-describing entities that contain the actual policy conditions.
Since they are self-describing, policy engine can ignore the elements that it fails to

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
62 Document Number: 315168-017

understand or does not support. This allows for adding new element types without
breaking backwards compatibility. Element structures for all supported element types
are fully described in Appendix D.4.

Figure 4. LCP_POLICY_ELEMENT structure

Size Type PolEltControl Data[Size - 12]

Figure 4 diagrammatically illustrates the LCP_POLICY_ELEMENT structure (fields not to
scale):

Size is the size (in bytes) of the entire LCP_POLICY_ELEMENT structure, including the
type-specific Data and the Size field itself. The policy engine can use this to skip over
an element that it does not understand or support.

Type is the type of the element. Currently CBnT supports the following types of
elements: MLE, PCONF, STM, and Custom.

The PolEltControl provides several control bits divided into two groups of 16 bits each.
One is specific to the element type and the other applies to all element types in a list
(see Appendix D.4). Currently, this field is only utilized in LCP_MLE_ELEMENT and
reserved in all other element types.

The contents of the Data[] field depend on the type of element (see Appendix D.4).

3.2.4 Signed Policies

The purpose of signed policies is to provide a mechanism that allows policy authors to
update the list of permissible environments without having to update the TPM NV
(note that if revocation is used, then the TPM NV must be updated to increment the
revocation counter). This allows updates to be a simple file pushes rather than
physical or remote platform touches. It also facilitates sealing against the policy, as
sealed data does not have to be migrated when the policy is updated.

The use of this mechanism places certain responsibilities on policy authors:

• The private signature key always needs to be kept secure and under the control of
the key owner.

• The private signature key needs to be strong enough for the full lifetime of the
policy (this period has been estimated to be up to seven years).

3.2.5 Supported Cryptographic Algorithms

LCP lists may use the following signature algorithms:

o RSASSA PKCS V1.5 / 2048- and 3072-bit keys / SHA256 and SHA384

o RSAPSS / 2048- and 3072-bit keys / SHA256 and SHA384

o ECDSA, curves P256 and P384

o SM2

o LMS

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 63

3.2.5.1 RSASSA, RSAPSS, and ECDSA

Support will be limited to versions RSASSA-PKCS1-v1_5, RSASSA-PSS and ECDSA as
defined in “NIST, FIPS PUB 186-4, Federal Information Processing Standards
Publication, Digital Signature Standard (DSS), July 2013”

Signatures will be supported only with the following approved hash functions:
TPM_ALG_SHA1; TPM_ALG_SHA256; TPM_ALG_SHA384.

Supported key sizes are 2048 and 3072 bits.

3.2.5.2 SM2

Implementation will follow the definition in “State Cryptography Administration, Public
Key Cryptographic Algorithm SM2 Based on Elliptic Curves, December 2010”

Since SM2 is a variation of ECC, it will share format of signature structure used for
ECCDSA with the following differences:

• It uses the SM3 hash algorithm

• It defaults to the Fp-256 curve as specified in “Recommended Curve Parameters
for Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves”

It is the responsibility of the policy author to ensure that their policy uses an
algorithm supported by the version of the AC module being used. If the policy
specifies an unsupported algorithm, it will fail and, depending on the ACM evaluating
the policy, the environment will not be permitted to launch, or the platform will not
boot.

3.2.5.3 LMS

Implementation follows the definition of NIST SP 800-208 “Recommendation for
Stateful Hash-Based Signature Algorithms, October 2020”.

For LCP list signing the following parameter sets were selected:

Table 6. LM-OTS Parameters

LM-OTS parameter set LMOTS_type n w P Description

LMOTS_SHA256_N24_W4 0x00000007 24 4 51 LM-OTS parameter
set for SHA256/192

n – number of bytes in 192-bit hash value

w – the width (in bits) of the Winternitz coefficient

P – the number of n-byte string elements that make up the LM-OTS signature

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
64 Document Number: 315168-017

Table 7. LMS Parameters

LMS parameter set LMS_type m h Description

LMS_SHA256_M24_H20 0x0000000D 24 20 LMS parameter set for
SHA256/192

h – the height of the Merkle tree

m – the number of bytes associated with each tree node

3.2.5.4 List Signatures

Additional restriction of an applicable signature algorithms is associated with the
LcpHashAlgMask and LcpSignAlgMask fields of the LCP_POLICY2 structure described in
Section 3.2.1

Not only signature algorithm of a signed list must be permitted by an LcpSignAlgMask,
but HashAlgIDs used in signatures when creating an encoded message will be limited
to those included in the LcpHashAlgMask.

Consider the following scenario: if the RSASSA signature is to use SHA256 to prepare
encoded message, SHA256 must be permitted by LcpHashAlgMask. Otherwise, the list
will be skipped and not participate in establishing the LCP policy.

3.3 Policy Engine Logic

3.3.1 Policies

ALL TPM Modes

Before evaluating a policy, the policy engine must first verify the policy’s integrity. For
a policy of type LCP_POLTYPE_LIST, the engine must verify each
LCP_POLICY_LIST2(_1) in the LCP_POLICY_DATA. In the signed list case, the
signature must be verified as well. For an unsigned list, the hash of the list must be
calculated. The hash of the LCP_POLICY_DATA structure is calculated per Section
3.2.1.1 above and then compared with the hash in the LCP_POLICY(2) that was read
from the TPM NVRAM.

The policy engine must scan the policy for each policy element it supports. When a
policy contains multiple lists in its LCP_POLICY_DATA, the policy engine will evaluate
each list sequentially. As soon as it finds a match that satisfies the policy element
being evaluated (e.g. MLE, platform configuration, etc.) it will stop evaluating further
elements and lists. Exception of this rule is evaluation of LCP_PCONF_ELEMENT(2)
which depends on the PO.PolicyControl.Pconf_Enforced enforcement flag per
description in Appendix J.2.3.

For a policy of type LCP_POLTYPE_ANY, the policy engine will treat that policy as
successfully evaluating every policy element type.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 65

For a policy of type LCP_POLTYPE_LIST, for every policy element type supported by
the ACM evaluating the policy that is present in any of the lists, at least one instance
of that element type must evaluate successfully for the policy to succeed. If a
particular policy element type is not in any of the lists, then that condition is not
evaluated, and any state is accepted. For instance:

If SINIT is processing a policy that contains two lists, the first containing only an
LCP_MLE_ELEMENT(2) and the second containing only an LCP_PCONF_ELEMENT(2),
then the MLE being launched must appear in the first list’s LCP_MLE_ELEMENT(2) and
the current platform configuration must satisfy the second list’s
LCP_PCONF_ELEMENT(2); otherwise the launch will fail.

If SINIT is processing a policy that contains two lists, each containing only an
LCP_MLE_ELEMENT(2) element, then the MLE being launched must appear in at least
one list’s LCP_MLE_ELEMENT(2). Since no other element types are present, any other
platform condition or state is acceptable (e.g. any PCR values).

While Policy Engine logic described so far is applicable to any mode of operation, its
logic in TPM 2.0 mode has additional peculiarities.

TPM 2.0 mode

ACMs’ ability to evaluate LCP elements present in policy data file depends on its
hashing capabilities originated from two sources - embedded software and TPM
hashing commands. Based on these two sources ACM builds lists of supported hashing
algorithms following logic described in Appendix G. Using these lists for evaluation of
different element types is described below.

• Evaluation of MLE and STM policy elements

The evaluation of MLE and STM policy elements is determined by the
EFF_HashAlgIDList as described in Appendix G.3. Elements of the above types hashed
with HashAlgIDs not in this list will cause the policy engine abort.

Use of list is not Extend Policy dependent.

• Evaluation of PCONF LCP elements

The evaluation of PCONF elements depends on TPM capabilities and will be limited
only by PCR banks supported by a given TPM i.e. by PCR_HashAlgIDList as described
in Appendix G.3.

Hash algorithm used to compute composite digest will be also determined by
LCP_TPM_HashAlgIDList as described in Appendix G.3 ensuring that the HashAlgID
associated with such elements is permitted by PO policy and that the PCRs
implementing the PCONF HashAlgID indeed exist.

Use of LCP_TPM_HashAlgIDList list is not Extend Policy dependent.

3.3.2 Processing of Policy Data Files
Policy Engine in TPM2.0 mode processes only TPM 2.0 style policy elements. All
unrecognized elements are ignored in this mode.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
66 Document Number: 315168-017

Policy Engine scans the data file in two phases – the first phase is used to perform
integrity verification (validation) of the file, second phase is used to enforce (evaluate)
the policy.

During every scan the policy engine processes all lists in the data file and all of the
elements in list in the order of appearance.

3.3.2.1 Integrity Verification
During the verification phase the policy engine must validate all kinds of signatures of
the policy data lists. The policy engine must exit with an error if signature cannot be
validated for any reason.

Note: This is needed to thwart the following attack: if the policy engine skipped a signed list
with an unrecognized signature algorithm, an adversary might simply change the
signature algorithm identifier to something not supported by SINIT causing the entire
list, which would otherwise be evaluated, to be skipped thus ignoring intended
policies.

During the integrity verification phase, the overall hash of the policy data file is
computed and compared to the value of the PolicyHash field, stored in the PO index.

The policy engine will check hash algorithms of all elements in all lists not skipped due
the reasons mentioned earlier and abort with error if it finds one not supported by
ACM. This requirement is aimed to thwart a special form of ACM substitution attack
when an ACM is substituted by an analogous ACM which lacks support of some of the
crypto-algorithms.

Other checks performed are verification of structure versions, sizes of all components
TPM capabilities etc.

Any discovered integrity error during this phase causes platform reset.

TPM NV Indices

The policy engine checks TPM NV index attributes and sizes. In TPM 2.0 mode, it will
run additional checks outlined below:

• nameAlg strength check.

o When each of the indices is verified, the policy engine will compare
nameAlg of the index to the minimal algorithm required and abort with
error if it is not of the required strength.

The minimal required nameAlg is SHA256 or SM3, provided they are
supported by current TPM. If the only TPM supported algorithm is SHA1, it
will be accepted by the policy engine and no error will be generated.

• The policy engine will also ensure the following, as a matter of integrity:

o PO.LcpHashAlgMask, PO.LcpSignAlgMask are not empty:

each bit set in a PO.LcpHashAlgMask mask means that a relevant hash
algorithm is permitted; each bit set in PO.LcpSignAlgMask mask means
that relevant combination of signature algorithm, key size, hash algorithm
and curve is permitted.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 67

o All hash algorithms permitted by PO.LcpHashAlgMask and
PO.LcpSignAlgMask are supported by ACM;

o PO.HashAlg is permitted by PO.LcpHashAlgMask

3.3.2.2 Policy Enforcement
During the policy enforcement phase, the policy engine seeks elements in the
following order: MLE; PCONF; STM. In short, the second phase is comprised of three
sequential scans.

The policy engine will check revocation counters associated with lists and will skip any
revoked lists and ignore their content.

In the TPM 2.0 mode, when evaluating list signatures, if a combination of signature
algorithm, key size, hash algorithm, and curve is not permitted by LcpSignAlgMask,
the policy engine will skip such list and ignore its content.

During each scan, elements of each type are evaluated in the order of appearance in
the policy data file, irrespective to hash algorithms they are using.

In TPM 2.0 mode for each found element the policy engine will consult
LcpHashAlgMask. It will process the element only if its HashAlgID is permitted by the
mask, otherwise it will be skipped.

The policy engine will apply the following enforcement logic:

‒ It will record each new element type as “required” when it is first discovered.
‒ In the TPM 2.0 mode only, the “required” assertion is recorded only if the

element’s hash algorithm is permitted by LcpHashAlgMask.
Element types filtered out by LcpHashAlgMask will not trigger the “required”
assertion.

‒ If a match for a “required” element type is not found at the end of evaluation,
an error will be generated.

There are three possible results of policy enforcement:

‒ Successful policy evaluation i.e. all required matches were found. Control is
passed to further SINIT tasks;

‒ Assumed successful policy evaluation. Some of the element types were not
found at all and are assumed to be successfully evaluated. Control is passed
to further SINIT tasks;

‒ No match found error. Platform is reset.

3.4 Measuring the Enforced Policy
The LCP engine in SINIT will extend to PCR 17 a hash value which represents the
policy or policies against which the environment was launched. This hash value is
determined by the rules in the following sections.

It is important that for all policy cases a measurement will always be extended to PCR
17 in order to prevent the MLE from later extending a value of a policy that was not
evaluated. This is an issue because PCR 17 is open to locality 2 extends and the MLE
executes with locality 2 access. If this was not done, such MLE could get access to
data that was sealed against some known policy by another MLE.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
68 Document Number: 315168-017

The above consideration is correct in general but was especially important for a legacy
implementation of Intel® TXT when the event log creation was an optional SINIT
function.

With CBnT the situation changed because:

• The event log creation is a mandatory SINIT function;
• There are several extends SINIT performs as a matter of integrity regardless

of the LCP policy type;
• Last event in the extend sequence is always extended to both PCR 17 and 18

and is not optional. This makes it impossible for any MLE to deduce and
extend into PCR any data, which would allow it to arrive at any predefined PCR
value another MLE might have used to seal secrets.

3.4.1 No Policy Data and Allow Any Policy

When no owner policy is executed i.e. the PO index is not provisioned, is provisioned
with LCP_POLTYPE_LIST policy but none of its policy elements are understood by the
ACMs’ policy engine, it contains no policy elements, or an owner policy exists and is of
type LCP_POLTYPE_ANY, then:

• A number of extends are made to PCR 17 and PCR 18 with the last one not
optional event.

3.4.2 Policy with LCP_POLICY_DATA

Because the measurement may contain the measurements of more than one policy
list, it is important that SINIT ACMs for all platforms order the list measurements in
the same way so that identical policy evaluations will extend PCR 17 with the same
value.

The policy engine will order the policy list measurements according to the order in
which it evaluates policy elements. For this version of the specification, the following
policy element types are evaluated in this order: LCP_POLELT_TYPE_MLE,
LCP_POLELT_TYPE_PCONF and LCP_POLTYPE_STM. If additional policy element types
are supported in the future, their evaluation order will be specified.

The policy engine will not allow more than one list to be signed with the same
signature key and will abort if such lists are found. This is because measuring of such
lists produces the same digest, which may allow substitute attacks when lists are
swapped.

The above principles are applicable to all generations of policy engines – legacy and
combined, while the combined policy engine logic extends them to accommodate TPM
2.0 algorithm agility, new format of LCP structures, and new data combining
possibilities.

3.4.3 Effective Policies

Effective LCP policies are those enforced by the policy engine. They fall into two
categories: Effective LCP Policy Details, and Effective LCP Policy Authorities.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 69

The effective LCP policy details value is the collection of all matching elements
discovered by the policy engine. The value of effective LCP policy details is measured
into PCR 17 – the “details” PCR. To achieve it, SINIT concatenates digests and other
pertinent data describing such elements, hashes the obtained byte stream and
extends the hash into PCR 17.

The effective value of LCP policy authorities is the collection of all lists, containing
matching elements discovered by the policy engine. The value of effective LCP policy
authorities is measured into PCR 18 – the “authorities” PCR. To achieve it SINIT
concatenates list digests and other relevant data describing such lists, hashes the
obtained byte stream and extends the hash into PCR 18.

3.4.3.1 Effective LCP Policy Details

The effective LCP policy details hash represents all elements contributing to the
currently established policy. Each of the elements is represented by a descriptor per
element type. All descriptors are concatenated into a byte stream, which is then
hashed using the rule described below and extended into PCR 17.

Descriptors now have two forms: Absent Descriptor, and Present Descriptor.
Difference between them is the value of Existence Indicator. If an element was
matched during the enforcement scan, its Present Descriptor will be present in
EffLcpPolicyDetailsData. If an element was not matched and was satisfied by default,
its descriptor is reduced to just an Absent Descriptor. Form of descriptors is depicted
below:

Figure 5. Element Descriptor

The descriptor contains: one byte of Existence Indicator concatenated with DWORD
PolEltControl, WORD of Hash Algorithm ID, and variable size Digest corresponding to
hash algorithm.

Formal definition of the structures is presented below:

#define ELT_IND UINT8
#define POL_CONTROL UINT32

typedef struct {
 ELT_IND EltIndicator; // Boolean presence indicator ==
“1”
 POL_CONTROL PolControl;
 TPMT_HA EffEltDigest; // Standard TPM 2.0 library
structure
} EFF_ELT_PRESENT_DESCRIPTOR;

typedef struct {

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
70 Document Number: 315168-017

 ELT_IND EltIndicator; // Boolean presence indicator ==
“0”
} EFF_ELT_ABSENT_DESCRIPTOR;
typedef union {
 EFF_ELT_PRESENT_DESCRIPTOR PresDescr;
 EFF_ELT_ABSENT_DESCRIPTOR AbsDescr;
}EFF_ELT_DESCRIPTOR, E_E_D;

EltIndicator is a byte size Boolean value initialized to “1” to indicate that given
element type has contributed to the established policy. In this case it is followed by
details of the element satisfying the policy. EltIndicator is initialized to “0” to indicate
that the given element type was not found in policy files and was satisfied by default.

PolControl is PolEltControl field of the element satisfying the policy.

EffEltDigest is a standard TPM 2.0 library structure describing the matching digest
value of the element satisfying the policy. It contains HashAlgId and a digest value.

For each of the elements involved, this last structure will be initialized to {1,
EffPolicyControl, EffEltDigest} if matched, or {0} otherwise.

After all matching element descriptors are constructed, the overall form of Effective
LCP Policy Details Data (EffLcpPolicyDetailsData) is depicted below:

Figure 6. TPM 2.0 LCP Policy Details Data Stream

LCP_PCONF1_ELEMENT and LCP_PCONF2_ELEMENT Descriptors represent first and
second instance of PCONF element provided that PO.PolicyControl.PCONF_Enforced
flag is set per Appendix J.2.3.

If LCP_PCONF2_ELEMENT is not available for any reason, it must be represented by
an Absent Descriptor.

Above description can be formally expressed as:

EffLcpPolicyDetailsData = E_E_DMLE | E_E_DPCONF1 | E_E_DPCONF2 | E_E_DSTM

Effective LCP Policy Details Digest is computed as:

LcpEffPolicyDetails = HASHHashAlgId(EffLcpPolicyDetailsData)

Here, the hashing algorithm is determined by a PCR bank being extended i.e.
HashAlgId is the Hash Algorithm ID of extended PCR bank.

Finally, PCR 17 will be extended as:

PCR 17 = TPM2_Extend (LcpEffPolicyDetails, HashAlgId)

If LCP policy was “ANY”, a single byte of “0” will be measured into PCR 17 instead of
using a relevant PCR bank’s HashAlgId.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 71

3.4.3.2 Effective LCP Policy Authorities

The Effective LCP Authorities Hash provides aggregated information about all
authorities (policy lists) contributing to the currently established policy. It will be
computed as follows: each authority will be described using the LIST_SIGN_DSCR
structure defined below; all authority descriptors will be concatenated into a byte
stream; that byte stream will be hashed using the rule described below and extended
into PCR 18.

By the same reason as with Effective LCP Policy Details Data - since size occupied by
each of the digests is variable, it is no longer possible to allocate fixed size for each of
the Descriptors.

Solution is analogous to the one used for Effective LCP Policy Details:

Descriptors have two forms: Signed Descriptor, and Unsigned Descriptor. Difference
between them is depicted below. Unsigned descriptor is required to have SignAlg
hardcoded to be TPM_ALG_NULL. It is also missing all signature attributes.

If more than one matching element is found in the same list, List’s Descriptor is
inserted only once. Missing List Descriptor is not replaced by any dummy data – it is
skipped.

Figure 7. List Descriptor

Each signed list will be represented using the following structure:

typedef struct {
 UINT16 SignAlg;
 UINT16 HashAlg;
 UINT16 PubKeySize;
 TPMT_HA EffAuthDigest;
} LIST_SIGN_DSCR;

SignAlg is one of the supported signature algorithms, either TPM_ALG_RSASSA,
TPM_ALG_RSAPSS, TPM_ALG_ECDSA, TPM_ALG_LMS or SM2.

HashAlg is the algorithm paired with the signature algorithm used to compute
message digest.

PubKeySize is the public key size in bytes.

EffAuthDigest is a standard TPM2.0 library structure describing the digest of the public
key of this authority. It includes the hash algorithm ID used to hash this Authority,
concatenated with the digest value of the public key field used for the list’s signature
in memory.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
72 Document Number: 315168-017

• For RSASSA/RSAPSS signatures, the PubKeyValue[PubkeySize] field of
LCP_RSA_SIGNATURE is hashed using the HashAlg specified in the PO NV Index.
The size of the hashed data is PubkeySize.

• For SM2/ECDSA signatures, the Qx[PubkeySize] and Qy[Pubkeysize] components
of LCP_ECC_SIGNATURE are hashed using the HashAlg specified in the PO TPM NV
index. The size of the hashed data in PubkeySize * 2.

Each unsigned list will be represented using the following structure:

typedef struct {
 UINT16 SignAlg;
 TPMT_HA EffAuthDigest;
} LIST_UNSIGN_DSCR;

SignAlg is TPM_ALG_NULL.

EffAuthDigest is a standard TPM 2.0 library structure describing the digest of the
entire unsigned list. The entire list will be hashed using the HashAlg in the PO TPM NV
Index. The size of the hashed data is the size of the unsigned list itself.

Any list will be represented by the following structure:

typedef union {
 LIST_SIGN_DSCR SignedList;
 LIST_UNSIGN_DSCR UnsignedList;
} EFF_LIST_DSCR, E_L_D;

After all matching list descriptors are constructed, the overall form of Effective LCP
Policy Authorities Data (EffLcpPolicyAuthoritiesData) is depicted below. Concatenation
must be exactly in the shown order.

Figure 8. LCP Policy Authorities Data Stream

If more than one matching element is found in the same list, list’s digest inserted only
once. Missing list digest is not replaced by zero digest – it is skipped.

Above description can be formally expressed as:

EffLcpPolicyAuthoritiesData = E_L_DMLE | E_L_DPCONF1 | E_L_DPCONF2 | E_L_DSTM

Note: Authorities providing a match of PCONF elements Policy Data File are included
individually. This is done to cover the case when two PCONF elements are required to
match – see PO.PolicyControl.Pconf_Enforced bit description in Appendix J.2.3

All signed LCP lists in each of the LCP Policy Data Files must use unique signing keys.
If authority needs to supply more than one signed LCP list, it must maintain unique
signing key for each of the lists.

Effective LCP Policy Authorities Digest then is computed as:

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 73

LcpEffPolicyAuhorities = HASHHashAlgId(EffLcpPolicyAuthoritiesData)

Here used hashing algorithm is determined by PCR bank being extended i.e.
HashAlgId is the Hash Algorithm ID of extended PCR bank.

Finally, PCR 18 will be extended as:

PCR 18 = TPM2_Extend (LcpEffPolicyAuhorities, HashAlgId)

If LCP policy is evaluated to ANY, single byte with value 0 will be measured to PCR18
instead using relevant PCR bank HashAlgId.

3.4.4 Effective TPM NV info Hash
TPM 2.0 mode relevant only

For an attester, evaluating the trustworthiness of a platform/environment, the
properties of the TPM NV indices used by Intel® TXT are of considerable interest.
Therefore, SINIT will extend these properties into PCRs 17 and 18 and log the
extension process into the event log in a form that facilitates inspection.

TPMS_NV_PUBLIC structure is used as the descriptor of TPM NV index properties.
Based on that, the following structures are built:

#define IDX_IND UINT8

typedef struct {
 IDX_IND IndexIndicator;
 TPMS_NV_PUBLIC IndexProperties;
} EFF_IDX_PRESENT_DESCRIPTOR;
typedef struct {
 IDX_IND IndexIndicator;
} EFF_IDX_ABSENT_DESCRIPTOR;

IndexIndicator is a Boolean byte size value initialized to “1” to indicate that index has
been provisioned and to “0” if not.

IndexProperties is a standard TPM 2.0 library structure fully describing index
properties.

typedef union {
 EFF_IDX_PRESENT_DESCRIPTOR PresDescr;
 EFF_IDX_ABSENT_DESCRIPTOR AbsDescr;
} EFF_IDX_DESCRIPTOR, E_I_D;

For each of the indices:

• If present, its E_I_D = {1, PresDescr}
• If absent, its E_I_D = {0}

The data to be hashed will be:

LcpEffNvInfoData = E_I_DAUX | E_I_DPO

Where E_I_DAUX and E_I_DPO are descriptors of AUX and PO index respectively.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
74 Document Number: 315168-017

Note: SGX index is intended for BIOS use and its descriptor is not included in the above
data stream.

The data extended into PCR 17 and 18 will be:

LcpEffNvInfoHash = HASHHashAlgId (LcpEffNvInfoData)

3.5 TPM NV RAM
As mentioned in Section 1.8 Intel® TXT and its CBnT version intensively uses TPM
shielded storage to pass required information from Startup ACM to SINIT and to house
Launch Control Policy data. Two indices AUX and PO are allocated for these purposes.
Complete index provisioning data can be found in Table 41.

3.5.1 Auxiliary Index

Its content is readable by any SW at any locality and writable only via locality 3 (i.e.
ACM only).

AUX index data layout is described in Appendix D.5

Its size is usually to 118 bytes to accommodate digests produced by SHA256 and
SHA384 algorithms. However, this value is platform-specific and may be changed on
Intel’s discretion.

The option to delete this index is governed by BIT30 in the TxtFlags structure of the
TXT Element in Boot Policy Manifest – details can be found in Table 41 and notes that
follow this table.

Its nameAlg – one of the major index parameters defining strength of data protection
is discussed in Section 3.5.3 below.

3.5.2 Platform Owner Index

Platform Owner (PO) index purpose is to house Platform Owner’s LCP Policy. Full
discussion of and index layout can be found in Section 3.2.1

The PO index is controlled by Platform Owner’s credentials. It also can be read by any
SW and written / deleted by a Platform Owner only.

Index provisioning data are specified in Table 41

Index size can vary (but can also be fixed at maximum value) based on the sizes of
the digests stored in the PolicyHash area (see Appendix D.1.2).

Index contains two new fields LcpSignAlgMask and LcpHashAlgMask also described in
Appendix D.1.2

Like TPM 2.0 mode AUX index, it requires careful selection of nameAlg – see Section
3.5.3 below.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 75

3.5.3 nameAlg Support

When defining a TPM NV index, the nameAlg parameter specifies the Hashing
algorithm used by the policy controlling that index and therefore the cryptographic
strength used to protect that index’s data.

There must be constraints on what nameAlg may be used for TPM NV indices. The
Platform Owner is free to select one algorithm out of those supported by the TPM
(TPM_HashAlgIDList from Appendix G.3) that meets cryptographic strength
constraints for its intended use.

PO or AUX indices cannot contain any settings controlling the strength of their own
protection, as these would be self-referential and impossible to configure initially. An
insufficiently strong nameAlg may lead to insufficient policy protection of index access,
making the contents of such index vulnerable.

ACMs will be built requiring a minimum bit-length for allowed hash algorithms. For
example, if this built-in minimum requirement is 256 bits, then SHA256 and SM3
satisfy it.

The nameAlg parameter for AUX and PO indices must meet this requirement, or the
ACM will generate a reset. The exception to this is when the nameAlg is the only
supported algorithm on the platform, even if it does not meet the minimum.

Note that when the nameAlg for an index meets the minimum requirement,
algorithms used within the index need not; that index’s contents will be trusted,
irrespective of the strength of internal protections for contained items.

3.6 PCR Extend Policy
TPM 2.0 family of devices support different sets of commands to extend
measurements into PCR banks:

• The Extend command allows to extend already computed digest(s) into one or
several selected PCR banks;

• The Event and Event Sequence commands allow sending data stream to TPM
which will then compute digests and extend them into all existing banks of PCRs
at once.

Since expected performance of these sets of commands is different, ACM will support
Extend Policy prescribing set of commands used to extend PCRs

Two policy settings will be supported:

1 Maximum Agility (MA). When this policy is selected ACM will extend PCRs
using commands TPM2_PCR_Event; TPM2_HashSequenceStart;
TPM2_HashUpdate; TPM2_EventSequenceComplete. These commands will
extend all existing PCR banks at the expense of possible performance loss.

2 Maximum Performance (MP). When this policy is selected ACM will use
embedded SW to compute hashes and then will use TPM2_PCR_Extend
commands to extend them into PCRs. If PCRs utilizing hash algorithms not
supported by SW are discovered, they will be capped with “1” value. This
policy will ensure maximum possible performance at the expense of possible
capping of some of the PCRs.

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
76 Document Number: 315168-017

PCR Extend Policy is delivered to SINIT via OS to SINIT Data heap table – see
Appendix C.4

3.6.1 SINIT Policy Selection

ISVs supplying MLE solutions can retrieve information of SINIT supported embedded
SW algorithms from TPM Info List Table (see Table 17) and examine capabilities of
installed TPM to make a comprehensive choice.

The Maximum Agility Extend Policy setting is envisioned to be suitable for non-time
critical uses and can be statically chosen.

Nevertheless, MLE developers have a possibility to apply installation time logic based
on discovered capabilities. If all TPM PCR banks are supported by SINIT embedded
SW, MP Extend Policy can be chosen. Otherwise, MA Extend Policy must be a choice.
Chosen policy may be delivered to MLE via configuration setting.

3.7 Revocation

3.7.1 SINIT Revocation

LCP also enables a limited self-revocation mechanism for SINIT. SINIT itself enforces
this on launch and a failure (i.e. the executing SINIT was revoked) results in a TXT
reset with an error code stored in the TXT.ERRORCODE register. The algorithm or
process that SINIT uses to determine whether it has been revoked is described in the
SinitMinVersion field in Section 3.2.1. The rationale for this decision-making process
follows.

The ACM Info Table of a SINIT module contains that module’s version number, per
Table 12. The SinitMinVersion field of the PO Index defines the minimum version of a
SINIT module that is allowed to execute to completion. SINIT verifies that its version
meets that required and performs a self-revocation (via LT-RESET) if it does not. This
mechanism allows the Platform Owners to restrict execution of SINIT versions prior to
one they specify.

The upper boundary of SinitMinVersion field of the PO Index might need to be
controlled too. The case when it might be needed is when Platform Owner wants to
prevent SINIT update as part of the OS update push.

The MaxSinitMinVersion field in the PO Index allows the platform owner to control
such SinitMinVersion update. Unless this field is set to 0xFF, the value given is the
maximum value to which SinitMinVersion may be set to by a revocation ACM.

A SINIT version satisfying a platform SinitMinVersion may be found to have a security
flaw resulting in platform vulnerabilities affecting all released platforms and all of the
Platform Owners. An orthogonal self-revocation mechanism is provided for this case.
In addition to its version number, each SINIT has a security version number (SVN).
The platform AUX Index contains a reference value this field can be verified against.
If the SVN is below the required version, SINIT performs a self-revocation as above.

This AUX Index field is only updatable from locality 3, and hence can only be modified
by a special “revocation” ACM or by adding of respected functionality to select set of

Verifying Measured Launched Environments

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 77

BIOS / Startup ACM functions (called collectively “revocation module”). Such
revocation module would increase the AUX Index SVN requirement to a new target
value, precluding execution of SINIT modules with lower SVN values, effectively
revoking them.

§§

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
78 Document Number: 315168-017

4 Development and Deployment
Considerations

4.1 Launch Control Policy Creation
Depending on the usage model, it may be desirable to create a Launch Control Policy
at the time the MLE is built. This would apply in the cases where only one MLE is
expected to run on the system. In such cases, the policy can be pre-created and
provisioned during the installation of the MLE.

If multiple MLEs are expected to run on the system, or if there is to be a platform
configuration policy, then it is likely that the policy will need to be created at the time
of deployment. As each element type is allowed in a policy list, each MLE will have its
own list if any of its list elements must differ from those of others.

In either case, it is advisable that the policy should contain a SinitMinVersion value
that corresponds to the lowest versioned SINIT that is required. In the case of a
system that supports multiple MLEs, a different SinitMinVersion may be specified with
each MLE’s policy element. The effective SinitMinVersion value will be the highest of
the values in the PO policy, and matching MLE element (for each one that exists). This
effective SinitMinVersion will be compared to the AcmVersion of the SINIT being used.
Setting the SinitMinVersion value in the policy prevents an attacker from substituting
an older version of SINIT (if there is one for a given platform) that may have security
issues.

4.2 Launch Errors and Remediation
If there is an error during a measured launch, the platform will be reset, and an error
code will be coded in the TXT.ERRORCODE register. It is important for MLE vendors to
consider how their software will handle such errors and allow users or administrators
to remediate them.

If an MLE is launched automatically either as part of the boot process or as part of an
operating system’s launch process, it needs to be able to detect a previous failure in
order to prevent a continuous cycle of boot failures. Such failures may occur as part
of the loading and preparation for the GETSEC[SENTER] instruction or they may occur
during the processing of that instruction before the MLE is given control.

In the former case, it is the MLE launching software that is detecting the error
condition (e.g. a mismatched SINIT ACM, TXT not being enabled, etc.) and that
software can use whatever mechanism it chooses to persist the error or to handle it at
that time. In the latter case, the system will be reset before the MLE launching
software can handle the error so that software should be able to detect the error in
the TXT.ERRORCODE register and take appropriate action.

What remediation action will be required depends on the error itself. If the MLE
launch happens early in the boot process, the launching software may need a way of
booting into a remediation operating system. If the launch happens within an

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 79

operating system environment, the software may be able to remediate errors in that
environment.

4.3 Determining Trust
While a TXT Launch Control Policy can be used to prevent software use of TPM locality
2 and access to TXT private space, it is not a general mechanism to prevent unwanted
software from executing on a system. Consequently, an MLE cannot itself determine
whether it is running in a TXT measured environment (it could be running on an
emulator that spoofs PCR values, chipset registers, etc.).

In order to gain trust in an MLE (or rather, in software that uses TXT with the
intention of being an MLE), the PCR values for the MLE (PCRs 17 and 18) must be
used to make the trust “decision”. The trust “decision” must either be made by a
party external to the MLE’s system (i.e. remote attestation) or by the release of some
data that is not available to untrusted software (i.e. local attestation).

Remote attestation involves a remote party requesting the MLE to provide a TPM
quote of the PCRs needed to determine trust (at least 17 and 18) and that remote
party verifying the quote and making a trust determination of the PCR values. The
remote party can then act on the trust level in various ways (disconnect the MLE
system from the network, not provide it with network credentials, etc.). The details
involved in the remote attestation process can be found at the Trusted Computing
Group’s (TCG) website (Trusted Computing Group).

Local attestation, also known as SEALing, uses the TPM to encrypt some data bound
to certain PCR values (and/or locality). The data is typically SEALed by the MLE
system when the system is in a trusted state (there are multiple ways to establish an
initial trusted state) and the PCR/binding made to values that represent the desired
trusted state (the initial and final states don’t have to be the same as long as they are
both trusted). The SEALed data is then persistently stored, so it can be retrieved and
UNSEALed when the trusted MLE is running. The specifics of SEALing can also be
found on the TCG website.

4.3.1 Migration of SEALed Data

If SEALing/local attestation is used to protect data, then the MLE must be able to
accommodate the upgrading/changing of components whose measurements are in the
PCRs being SEALed to. Since PCRs 17 and 18 contain the TCB for the MLE, at a
minimum this would include SINIT, LCP, the MLE, etc. (see Section 1.10 for the
complete contents of these PCRs). If data is SEALed to additional PCRs then changes
to the entities that are measured into these other PCRs must also be handled. While
data may be sealed to PCRs, locality, or an auth value, or any combination thereof,
migration is only an issue when PCRs are sealed to.

When one of the elements of the SEALed data’s PCRs is changed, the TPM will no
longer UNSEAL that data. So, if no migration or backup of the plaintext data is made,
then after the next measured launch that data will not be available to the new MLE.
And unless the original MLE can be re-launched, the data will be lost. Thus, some
provision for making the data available to the new MLE must be made while the data
is still available in plaintext form (UNSEALed), i.e. in the original MLE.

http://www.trustedcomputinggroup.org/

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
80 Document Number: 315168-017

The most seamless and secure method for migrating the data to the new environment
is for the original environment to re-SEAL the data to the new environment. This
requires the original environment to calculate what the PCR values will be in the new
environment. For PCRs 17 and 18, this can be done using the information included in
Section 1.10, coupled with knowing or being able to calculate the constituent values
for the new components. Alternately, if the new environment were run on a trusted
system (so that nothing would tamper with the measurements), the PCR values could
then be collected from that system and used directly as the new values without having
to calculate them from the components.

Other methods, such as password-based recovery, key escrow, etc. would be the
same as for any other encrypted data and have similar tradeoffs.

4.4 Deployment

4.4.1 LCP Provisioning

4.4.1.1 TPM Ownership

In the following discussion term “ownership” shall be understood broadly as a set of
owner policies and authentication values allowing owners to control the TPM.

Because creation and writing to the Platform Owner policy TPM NV index requires the
TPM owner authorization credential, the installation program should accommodate
differing IT policies for how and when TPM ownership is established. In some
enterprises, IT may take ownership before a system is deployed to an end user. In
others, the TPM may be un-owned until the first application that requires ownership
establishes it.

Since the TPM owner authorization credential will be required to modify the Platform
Owner policy, if the installation program creates the credential it should provide a
mechanism for securely saving that credential either locally or remotely.

4.4.1.2 Policy Provisioning

The Platform Owner policy TPM NV index will need to be created by the MLE
installation program (or other TPM management software) if does not already exist.
This can be done with the TPM_NV_DefineSpace or TPM2_NV_DefineSpace command
or corresponding higher-level TPM interface (e.g. via a TCG Software Stack or TSS).

Once the index has been created, the installation program can write the policy into the
index using the TPM_NV_WriteValue or TPM2_NV_Write command or corresponding
higher-level TPM interface (e.g. via a TCG Software Stack or TSS).

Because creating and writing to the Platform Owner policy index requires the TPM
owner authorization credential, care should be taken to protect the credential when it
is being used and to erase or delete it from memory as soon as it is no longer needed.

Ideally, policy provisioning would occur in a secure environment or be performed by
an agent that can be verified as trustworthy. An example of the former would be on
an isolated network immediately after receiving the system. Another would be
booting from a CD containing provisioning software. An example of the latter would

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 81

be to use Intel® TXT to launch a provisioning MLE or agent that was then attested to
by a remote entity which could provide the owner authorization credential upon
successful attestation.

4.4.2 SINIT Selection

Because the SINIT AC module is specific to a chipset, different platforms may have
different SINIT ACMs. If an MLE is intended to run on multiple platforms with different
chipsets, the MLE installation program will need to determine which SINIT ACM to
install if the platform BIOS does not provide the SINIT ACM or if the MLE wants to use
a later version.

Comparing the chipset compatibility information in the SINIT ACM’s Chipset ID List
with the corresponding information for the platform accomplishes this. This would be
identical to the process for verifying SINIT ACM compatibility at launch time, as
described in Section 2.2.3.1.

4.5 SGX Requirement for TXT Platform
Software Guard Extensions (SGX) is a set of instructions and mechanisms for memory
accesses added to Intel® Architecture processors. These extensions allow an
application to instantiate a protected container, referred to as an enclave. An enclave
is a protected area in the application’s address space, which provides confidentiality
and integrity even in the presence of privileged malware. Accesses to the enclave
memory area from any software not resident in the enclave are prevented. For more
details about SGX, refer to Intel SGX Programming Reference Guide.

Since TXT ACMs are in Trusted Computing Base (TCB) of SGX, SGX SW must be made
aware of the SGX Security Version Numbers (SGX SVN) of all ACMs in the system.
Passing of ACM SGX SVNs to SGX SW is performed via dedicated BIOS_SE_SVN MSR
programming of which is the BIOS responsibility. This BIOS task is trivial if all ACMs in
the system are carried in BIOS flash but presents a special challenge to client
platforms carrying SINIT ACM on HDD where it is not available for BIOS examination.

In order to avoid ungraceful resets resulted from mismatch of expected and actual
SVN (security version number) of SINIT ACM during launch of SGX and TXT,
requirements of SGX, TXT and BIOS interface developed for client platforms should be
followed.

The interface allows the TXT runtime software to convey to BIOS the value of SINIT
SVN to be used during next POST. In worst case, one additional system reboot after
update of SINIT in TXT software stack is required.

The Interface is based on a mailbox mechanism implemented as SGX TPM NV index
with unrestricted read and write capabilities. TXT runtime software will write into this
index with SGX SVN discovered in SINIT ACM and BIOS will read this index and
program into the SINIT_SVN field of BIOS_SE_SVN MSR.

SGX TPM NV Index is mandatory on the client platforms supporting TXT. If this index
doesn’t exist, SINIT_SVN field of BIOS_SE_SVN MSR may remain at default 0xFF
value or be arbitrarily chosen by BIOS and this might cause TXT shutdown when
GETSEC[SENTER] is executed after first non-faulty SGX instruction. The Index size is
8 bytes.

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
82 Document Number: 315168-017

Details of SGX index definition for the TPM 2.0 platforms can be found in Table 41.

The following must be noted for the index definition:

• authValue of index by convention must remain at default value “empty
buffer”. This will enable unrestricted access by any agent from any locality.

• Deletion of the SGX index can only be performed under control of the OEM
policy – analogously to other TXT indices.

Table 8 diagrammatically illustrates the SGX index structure.

Table 8. SGX Index Content

Bytes 1 - 7. Reserved, must be zero. Byte 0. SGX SINIT_SVN.
Saved by MLE of specially defined tool. Must
be initialized to default value of 1.

Table 9 shows content of IA32_SE_SVN_STATUS MSR used by software components.
It is a read-only MSR.

Table 9. IA32_SE_SVN_STATUS MSR (0x500)

Bits Name Comment

0 Lock 0 – BIOS_SE_SVN MSR can be floated down.
Launching a properly signed ACM will not lead
to LT shutdown irrespective of its SE SVN
1 - BIOS_SE_SVN MSR is locked. Launching
of ACM with SGX SVN lower than value of
SINIT_SVN field will LT reset platform.

15:1 Reserved

23:16 SINIT_SVN Reflect values of bits 23:16 of BIOS_SE_SVN
MSR (SINIT_SVN) on CPUs that enumerate
CPUID.feature_flags.SMX as 1.
On CPUs that enumerate
CPUID.feature_flags.SMX as 0, these bits are
reserved (0).

63:24 reserved

Line 1: SINIT may be present in BIOS flash as is practice for server platforms, and
workstations. In this case BIOS is responsible for finding the SINIT module,
decompressing it and placing it in heap SINIT memory. It also has to program
BiosSinitSize field in the BIOS Data table – see Table 29.

Lines 2, 3: If SINIT is present in BIOS flash as signaled by value of BiosSinitSize field,
MLE may exit this flow since BIOS has all necessary information to program
BIOS_SE_SVN MSR. SGX index may not exist and is ignored if it exists. MLE shall not
generate any SGX index related errors.

Lines 4, 5: MLE shall exit this flow if SGX is not supported by CPU

Line 7: SGX SVN value is in SINIT header in a word at offset 0x1E

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 83

Lines 8, 9: Architectural IA32_SE_SVN_STATUS MSR carries the same SINIT SGX
information which is programmed into BIOS_SE_SVN MSR. MLE shall avoid accessing
non-architectural BIOS_SE_SVN MSR. It shall retrieve programmed SINIT SGX SVN
value from IA32_SE_SVN_STATUS MSR instead. If value retrieved from
IA32_SE_SVN_STATUS MSR differs from SINIT SGX SVN, value of SGX index must be
updated and system reset to let BIOS use the updated information.

Lines 10, 11: If BIT 0 of IA32_SE_SVN_STATUS MSR is “0” SGX is not active and MLE
may continue to launch SINIT. If BIT 0 of IA32_SE_SVN_STATUS MSR is “1” SGX is
active and attempt to launch SINIT will lead to ungraceful platform reset. MLE shall
avoid it by one of the possible actions: It may post message to user and reset
platform after a short delay to let BIOS use correct SINIT SGX SVN number at next
boot. Alternatively, it may post message to user and let him reset platform manually
at a proper time.

Listing 10. SGX Support on TXT Platform Pseudo code

1. Find appropriate SINIT for platform.
2. If SINIT is already present in SINIT memory
3. Exit this flow
//
// Enumerate SGX support. Analyze CPUID.feature_flags.SE bit
// (leaf 7, sub-leaf 0, EBX.bit2).
//
4. If CPUID.feature_flags.SE bit is not set {
5. Exit this flow
6. }
7. Read SINIT_SVN 16-bit value from SINIT header offset 0x1E
8. If IA32_SE_SVN_STATUS[23:16] != SINIT_SVN {
//
// Write SINIT_SVN value from ACM header into SGX TPM NV index
//
9. SGX TPM NV index  SINIT_SVN
//
// Read IA32_SE_SVN_STATUS MSR, lock bit (Bit 0)
//
10. If IA32_SE_SVN_STATUS MSR[0] == 1 { // SGX is active
11. Reset platform
12. }
13. }

4.6 Converged BtG/TXT impact on TXT Platform
Both Server TXT and Boot Guard (BtG) technologies require a Startup ACM to be
executed at platform reset. Intel® CPUs can support only a single such ACM and
therefore combining a BtG ACM with a Startup ACM is inevitable for platforms
supporting both technologies. This combining requirement triggered the whole set of
upgrades targeted to better align both technologies, and their mutual benefits.

Short list of the most fundamental changes follows. Complete information can be
found in “Converged Boot Guard and Intel® Trusted Execution Technologies. BIOS
Specification”.

https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=575623
https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=575623

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
84 Document Number: 315168-017

1. BtG, Startup and BIOS ACMs are combined into a single binary referred to as
Startup ACM (S-ACM). The Startup function of the S-ACM performs all steps
required by BtG and TXT.

2. Client and Server TXT flavors are unified. Client reset attack mitigation was
changed to be carried out by BIOS and not by the SCLEAN function.

3. Information about OEM-established policies consumed by the Startup function is
delivered using a BtG Key and Boot Policy manifests (KM and BPM). Delivering
information using FIT table records was eliminated.

4. KM and BPM are included into MLE TCB and are measured into dynamic PCRs
5. Platform Supplier LCP is removed. Instead TXT uses results of BtG BIOS

verifications that has been found to be analogous to “Signed BIOS” LCP policy. As
a result, the PS index, its associated Policy Data File and SBIOS element are
eliminated.

6. Supported cryptography has been reduced per recommendation of “CNSS
Advisory Memorandum 02-15”

Majority of these changes occur in pre-boot space and are of little interest for MLE but
some of the changes impact MLE and other may be of interest for future updates. The
following list contains all MLE-visible changes resulted from conversion, used or not:

1. Platform Supplier’s policy is now handled by BtG. Respectively no PS LCP data file
will be present, and no PS index will be provisioned. Therefore no “merging” of PS
and PO policies is needed, and overall LCP handling is simplified.

2. PO index content is simplified:
MaxBiosacMinVersion field was removed since now S-ACM revocation is handled
using BtG style;
PolicyControl flags were essentially simplified – all of them are reserved except of
NPW_OK and Pconf_Enforced – see Section 3.2.1.
Consequently, version of PO index data structure changed to 2.4 and 3.2
respectively for TPM 1.2 and TPM 2.0

3. Functionality associated with Pconf_Enforced bit changes. Previously it required to
satisfy PCONF element matches in both PS and PO LCP policies. Now it requires
matching of PCONF elements in two consecutive policy lists. Complete explanation
is in Appendix J.2.3

4. SBIOS element is removed and associated element types 2, 0x12 are reserved.

5. New capability flag is defined in “ACM Info Table” to indicate ACM compliance to
“Converged BtG and TXT Technologies” requirements. Similar flag is defined in the
capabilities field of MLE header. Respectively, “ACM Info Table” version is
incremented to 7 and MLE Header version is incremented to 2.2. See Table 4

6. BIOS data table no longer contains LcpPdBase and LcpPdSize fields since these
fields were associated with currently removed PS LCP Data file – see Appendix C.2

7. ProcessorSCRTMStatus field of SinitMleData heap table will be set to “1” when
with BtG/TXT PCR0 measurement is performed by Startup ACM function – see
Appendix C.4.2

8. MLE will see new events logged into TXT event log. Full list of new events can be
found in Table 37.

9. Three new registers have been defined in TXT device space: new
ACM_POLICY_STATUS register at offset 0x378 has been defined to carry
combination of BtG and TXT polies. MLE may benefit from it if needed;
ACM_ERROR_STATUS register at offset 0x328 carries pre-boot error code
information instead or TXT.ERRORCODE register (Layout of this register is not

Development and Deployment Considerations

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 85

disclosed since it is of no value for OS). TXT.ERRORCODE register is left to
exclusive use of SINIT and CPU uCode; BOOTSTATUS register at offset 0xA0
caries status flags of Startup function execution. Detailed information of layout of
these registers can be found in B and in “Converged Boot Guard and Intel®
Trusted Execution Technologies. BIOS Specification for Client CNL and Server ICX
platforms”.

10. TXT has been extended to handle ACMs with 3072-bit signatures and new crypto
algorithms.

§§

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
86 Document Number: 315168-017

 Authenticated Code Modules

 Authenticated Code Module Format
An authenticated code module (AC module) is required to conform to a specific
format. At the top level the module is composed of three sections: module header,
internal working scratch space, and user code and data. The module header contains
critical information necessary for the processor to properly authenticate the entire
module, including the encrypted signature and RSA-based public key. The processor
also uses other fields of the AC module for initializing the remaining processor state
after authentication.

The format of the authenticated-code module is in Table 10. This definition represents
revisions 0.0, 3.0, 4.0 and 5.0 of the AC module header (defined in the HeaderVersion
field). ACMs with version 3.0 support converge of Boot Guard and TXT. Modules with
header version 4.0 support XMSS algorithm for signing, and header version 5.0
indicates further hardening of the module.

 ACM Header format

Table 10. Authenticated Code Module Format

Field Offset

Version 0.0
/ 3.0 / 4.0

/ 5.0

Size (bytes)

Version 0.0 /
3.0 / 4.0 /

5.0

Description

ModuleType 0 2 2 = Module type

ModuleSubType 2 2 Module sub-type:
0 – TXT ACM (SINIT)
1 – S-ACM (Startup ACM)

HeaderLen 4 4 Header length (in 4 byte multiples)
Version 0.0: 161
Version 3.0: 224
Version 4.0: 928

HeaderVersion 8 4 Module format version in major.minor
format.
Version 0.0: SINIT ACM before 2017
Version 3.0 (0x30000): CBnT SINIT
ACM3
Version 4.0 (0x40000): SINIT ACM
supporting XMSS
Version 5.0 (0x50004): cryptological
hardening of the AC Modules.

ChipsetID 12 2 Module release identifier

Flags 14 2 Module-specific flags

ModuleVendor 16 4 Module vendor identifier (set to
00008086H)

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 87

Field Offset

Version 0.0
/ 3.0 / 4.0

/ 5.0

Size (bytes)

Version 0.0 /
3.0 / 4.0 /

5.0

Description

Date 20 4 Creation date (BCD format:
year.month.day)

Size 24 4 Module size (in 4 byte multiples)

TXT SVN 28 2 TXT Security Version Number

SGX SVN 30 2 Software Guard Extensions (Secure
Enclaves) Security Version Number

CodeControl 32 4 Authenticated code control flags

ErrorEntryPoint 36 4 Error response entry point offset
(bytes)

GDTLimit 40 4 GDT limit (defines last byte of GDT)

GDTBasePtr 44 4 GDT base pointer offset (bytes)

SegSel 48 4 Segment selector initializer

EntryPoint 52 4 Authenticated code entry point offset
(bytes)

Reserved2 56 64 Reserved for future extensions

KeySize 120 4 Module public key size less the
exponent (in multiples of four bytes)
64 - for version 0.0
96 – for versions 3.0 and 4.0

ScratchSize 124 4 Scratch field size (in multiples of four
bytes)
143 = (2 * KeySize + 15) – for
version 0.0
208 = (2 * KeySize + 16) – for
version 3.0
896 - for version 4.0

RSAPubKey 128 256 / 384 KeySize * 4 = Module public key

RSAPubExp 384 / absent 4 / 0 Version 0.0: Module public key
exponent
Version 3.0 and later: omitted

RSASig 388 / 512 256 / 384 KeySize * 4 = PKCS #1.5 RSA
Signature

ACM header version == 4

XMSSPubKey 896 64 XMSS public key data

XMSSSig 960 2692 XMSS signature

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
88 Document Number: 315168-017

Field Offset

Version 0.0
/ 3.0 / 4.0

/ 5.0

Size (bytes)

Version 0.0 /
3.0 / 4.0 /

5.0

Description

Reserved3 3652 60 Reserved for future extensions.
Should be zeroes.

End of AC module header

Scratch 644 / 896 /
3712

572 / 832 /
3584

ScratchSize * 4 = Internal scratch
area used during initialization (needs
to be all 0s).

User Area 1216 / 1728 /
7296

N * 64 User code/data (modulo-64 byte
increments)

ModuleType

Indicates the module type. The following module types are defined:

2 = Chipset authenticated code module.

Only ModuleType 2 is supported by GETSEC functions SENTER and ENTERACCS.

ModuleSubType

Indicates whether the module is capable of being executed at processor reset.

0 = ACM cannot be executed at processor reset

1 = ACM is capable of being executed at processor reset

ModuleSubType 1 is not supported for use by the GETSEC[SENTER] instruction.

HeaderLen

Length of the authenticated module header specified in 32-bit quantities. The
header spans the beginning of the module to the end of the signature field. This is
fixed to 161 for AC module version 0.0, 224 for AC module version 3.0 and 912
for AC module version 4.0.

HeaderVersion

Specifies the AC module header version. Major and minor vendor field are
specified, with bits 15:0 holding the minor value and bits 31:16 holding the major
value. This should be initialized to zero for header version 0.0, 0300H for header
version 3.0 and 0400H for header version 4.0. The processor will reject
unsupported header versions, resulting in an abort during authentication.

ChipsetID

Module-specific chipset identifier.

Flags

Module-specific flags. The following bits are currently defined:

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 89

Table 11. AC module Flags Description

Bit position Description

13:0 Reserved (must be 0)

14 Production (0) or pre-production (1)

15 Production (0) or debug (1) signed

ModuleVendor

Module creator vendor ID. Use the PCI SIG* assignment for vendor IDs to define
this field. The following vendor ID is currently recognized:

00008086H = Intel

Date

Creation date of the module. Encode this entry in the BCD format as follows:
year.month.day with two bytes for the year, one byte for the day, and one byte
for the month. For example, a value of 20131231H indicates module creation on
December 31, 2013.

Size

Total size of module specified in 32-bit quantities. This includes the header,
scratch area, user code and data.

TXT SVN

TXT Security Version Number

SGX SVN

Software Guard Extensions (a.k.a. Secure Enclaves) Security Version Number

CodeControl

Authenticated code control word. Defines specific actions or properties for the
authenticated code module.

ErrorEntryPoint

If bit 0 of the CodeControl word is 1, the processor will vector to this location if a
snoop hit to a modified line was detected during the load of an authenticated code
module. If bit 0 is 0, then enabled error reporting via bit 1 of a HITM during ACEA
load will result in an abort of the authentication process and signaling of an Intel®
Trusted Execution Technology shutdown condition.

GDTLimit

Limit of the GDT in bytes, pointed to by GDTBasePtr. This is loaded into the limit
field of the GDTR upon successful authentication of the code module.

GDTBasePtr

Pointer to the GDT base. This is an offset from the authenticated code module
base address.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
90 Document Number: 315168-017

SegSel

Segment selector for initializing CS, DS, SS, and ES of the processor after
successful authentication. CS is initialized to SegSel while DS, SS, and ES are
initialized to SegSel + 8.

EntryPoint

Entry point into the authenticated code module. This is an offset from the module
base address. The processor begins execution from this point after successful
authentication.

Reserved2

Reserved. Should contain zeros. May contain some nonzero values in v4.0.

KeySize

Defines the width the RSA public key in dwords applied for authentication, less the
size of the exponent. The information in this field is intended to support external
software parsing of an AC module independent of the module version. It is the
responsibility of the developer to reflect an accurate KeySize. This field is not
checked for consistency by the processor.

ScratchSize

Defines the width of the scratch field size specified in 32-bit quantities.
For version 0.0 of the AC module header, ScratchSize is defined by
KeySize * 2 + 15.

For version 3.0 it is KeySize * 2 + 16.

The information in this field is intended to support external software parsing of an
AC module independent of the module version. It is the responsibility of software
to reflect an accurate ScratchSize. The processor does not check this field.

RSAPubKey

Contains a public key modulus to be used for decrypting the signature of the
module. The size of this field in bytes is defined as KeySize*4.

RSAPubExp

Header 0.0: Contains standard public key exponent.
Header 3.0 and 4.0: Not present and is assumed to be standard value 0x10001.

RSASig

The RSASSA PKCS #1.5 RSA Signature of the module. The RSA Signature signs an
area that includes some of the module header and the USER AREA data field
(which represents the body of the module). Parts of the module header not
included are: the RSA Signature, public key, and the scratch field.

XMSSPubKey

This field is only present in header 4.0. It contains the XMSS public key.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 91

XMSSSig

This field contains the XMSS signature. Like in RSASig, the AC module header is
included in the signature up to (but not including) the RSAPubKey field.

Reserved3

Reserved field. Should contain zeroes.

Scratch

Used for temporary scratch storage by the processor during authentication. This
area can be used by the user code during execution for data storage needs.

User Area

User code and data represented in modulo-64 byte increments. In addition, the
boundary between data and code should be aligned to 1024 bytes. The user code
and data region are allocated from the first byte after the end of the Scratch field
to the end of the AC module.

The chipset AC module information table is located at the start of the User Area
and contains supplementary information that is specific to chipset AC modules.
The chipset ID list is described in more detail in Section 2.2.3.1.

 ACM Information Table format

ACM Information Table presented below is the legacy format, which will be replaced
by flexible ACM Information Table as described in A.1.3.

Table 12. Chipset AC Module Information Table

Field Offset
(Bytes)

Width
(Bytes)

Description

UUID 0 16 UUID of the Chipset AC module information table
defined as:

aa3ac07f-a746-db18-2eac-698f8d417f5a

UINT32 UUID0; // 0x7FC03AAA
UINT32 UUID1; // 0x18DB46A7
UINT32 UUID2; // 0x8F69AC2E
UINT32 UUID3; // 0x5A7F418D

This UUID is used to identify a file/memory image
as being a chipset AC module.

ChipsetACMType 16 1 Module type (00h = BIOS; 01h = SINIT)
Bit 3, if set, flags the ACM as a revocation module,
hence “8” is a BIOS revocation AC, “9” is a SINIT
revocation AC.

Version 17 1 Version of this table. Table versions are always
backwards compatible. The highest version
defined is currently 9. Version 5 included all
changes added to suport TPM 2.0 family.
Version 6 adds the ACM Revision field.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
92 Document Number: 315168-017

Field Offset
(Bytes)

Width
(Bytes)

Description

Version 7 adds new the ACM capabilities field for
Converged BtG and TXT (CBnT) support
Version 8 adds support for TPR-based DMA
protection. Bit 14 of the capabilities field indicates
the DMA protection mechanism.
Version 9 adds support for the flexible ACM
information table format. It is the final version of
this table, further updates will be reflected in the
ACM Version Information list.

Length 18 2 Length of this table in bytes.

ChipsetIDList 20 4 Location of the Chipset ID list used to identify
chipsets supported by the AC Module. This field is
an offset in bytes from the start of the AC Module.
See Table 13 for details.
Version 9: offset from the beginning of the AC
Module to the count field of the Chipset ID list.

OsSinitDataVer 24 4 Indicates the maximum version number of the OS
to SINIT data structure that this module supports.
It is assumed that the module is backward
compatible with previous versions.

MinMleHeaderVer 28 4 Indicates the minimum version number of the MLE
Header data structure that this module
supports/requires. MLEs with more recent header
versions are responsible for determining whether
they can support this version of the ACM.

Capabilities 32 4 Bit vector of supported capabilities. The values
match those of the Capabilities field in the MLE
header. This can be used by an MLE to determine
whether the ACM is compatible with it and to
determine any optional capabilities it might
support. See Table 4.

AcmVersion 36 1 Version of this AC Module. It is compared against
the SinitMinVersion field in LCP_POLICY(2) to
determine if the module is revoked.
This field is reserved in version 9 of this table.

ACM Revision 37 3 ACM Revision in the format:
<Major>.<Minor>.<Build> = XX.YY.ZZ where X, Y
and Z are hexadecimal digits. Range for each of
the fields is therefore 0 – FF. It is assumed that
this revision will be added by BIOS to the list of
records and will be examined by tools such as
TxtBtgInfo and Brand Verification.
This field is reserved in version 9 of this table.

ProcessorIDList 40 4 Location of the Intel® TXT Processor ID list used to
identify Intel® TXT processors supported by this AC
Module. This field is an offset in bytes from the
start of the AC Module. See Table 15 for details.
Version 9: offset from the beginning of the AC
Module to the count field of the Processor ID list.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 93

Field Offset
(Bytes)

Width
(Bytes)

Description

Version >= 5
TPMInfoList 44 4 Location of table of TPM capabilities supported by

ACM. This field is an offset in bytes from ACM
start.
Version 9: offset from the beginning of the AC
Module to the TpmCapabilities field of the TPM
information list.

Version >= 9
ACM Info Tables 48 varies Flexible ACM info list tables start. Must end with a

Terminator list. See A.1.3.

Table 13. Chipset ID List

Field Offset
(Bytes)

Width
(Bytes)

Description

Count 0 4 Number of entries in the array ChipsetID

ChipsetIDs[] 4 Count * sizeof
(TXT_ACM_CH
IPSET_ID)

An array of count entries of the structure
TXT_ACM_CHIPSET_ID (see Table 14).

Table 14. TXT_ACM_CHIPSET_ID Format

Field Offset
(Bytes)

Width
(Bytes)

Description

Flags 0 4 Set of flags to further describe functions of
the chipset ID structure.
Bit Description:
[0]: RevisionIdMask – if 0, the RevisionId
field must exactly match the
TXT.DIDVID.RID field. If 1, the RevisionId
field is a bitwise mask that can be used to
test for any bits set in the TXT.DIDVID.RID
field. If any bits are set, the RevisionId is a
match.
[31:1]: Reserved for future use. Must be 0.

VendorID 4 2 Indicates the chipset vendor this AC Module
is designed to support. This field is
compared against the TXT.DIDVID.VID
field.

DeviceID 6 2 Indicates the chipset vendor’s device that
this AC Module is designed to support. This
field is compared against the
TXT.DIDVID.DID field.

RevisionID 8 2 Indicates the revision of the chipset
vendor’s device that this AC module is
designed to support. This field is used
according to the RevisionIdMask bit in the
Flags field.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
94 Document Number: 315168-017

Field Offset
(Bytes)

Width
(Bytes)

Description

Reserved 10 6 Reserved for future use.

Table 15. Processor ID List

Field Offset
(Bytes)

Width
(Bytes)

Description

Count 0 4 Number of entries in the array ProcessorID

ProcessorIDs[] 4 Count *
sizeof
(TXT_ACM_P
ROCESSOR_I
D)

An array of count entries of the structure
TXT_ACM_PROCESSOR_ID (see next
table).

Table 16. TXT_ACM_PROCESSOR_ID Format

Field Offset
(Bytes)

Width
(Bytes)

Description

FMS 0 4 Indicates the Family/Model/Stepping of the
processor this AC Module is designed to
support. This field is compared against the
corresponding value returned from the
CPUID instruction.

FMSMask 4 4 Mask to apply to FMS

PlatformID 8 8 Indicates the Platform ID of the processor
this AC Module is designed to support. This
field is compared against the value in the
IA32_PLATFORM_ID MSR.

PlatformMask 16 8 Mask to apply to Platform ID

Table 17. TPM Info List

Field Offset
(Bytes)

Width
(Bytes)

Description

TPM Capabilities 0 4 TPM supported capabilities (described
below)

Count 4 2 Number of entries in AlgortihmID[]

AlgorithmID[] 6 Count *
UINT16

An array of “Count” entries of algorithm
IDs supported by SINIT ACM per the TPM2
specification enumeration in Part 2, Table
7:
TPM_ALG_RSA == 0x0001
TPM_ALG_SHA1 == 0x0004
TPM_ALG_SHA256 == 0x000B
TPM_ALG_SM3_256 == 0x0012
Etc.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 95

Table 18. TPM Capabilities Field

Bit Position Description

1:0 TPM2 PCR Extend Policy Support
= 00b: illegal
= 01b: Maximum Agility Policy. Measurements are done using TPM PCR
event and sequence commands when a PCR algorithm is not included in
the embedded set of algorithms.
= 10b: Maximum Performance Policy. Measurements are done using
embedded fixed set of algorithms and TPM PCR extend commands
= 11b: Both policy types are supported

5:2 TPM family support
= 0000b: illegal
= 0001b: illegal
= 0010b: discrete TPM 2.0 supported
= 1000b: firmware TPM 2.0 supported
Above settings can be combined to indicate multiple support options

6 TPM NV index set supported:
= 0: Initial TPM 2.0 TPM NV index set out of 0x180_xxxx and
0x140_xxxx ranges
= 1: TCG compliant TPM 2.0 TPM NV index set out of Intel Reserved
range of indices 0x1C1_0100 – 0x1C1_00x13F
This bit will always be forced to “1”

31:7 Reserved, must be zero

Notes on TPM2 PCR Extend Policy:

TPM2 PCR Extended Policy Support is a field describing ACM policy regarding integrity
collection commands used:

‒ Maximum Agility PCR Extend Policy: ACM can support algorithm agile
commands TPM2_PCR_Event; TPM2_HashSequenceStart; TPM2_HashUpdate;
TPM2_EventSequenceComplete. When this policy is selected, ACM will use the
commands above if not all PCR algorithms are covered by embedded set of
algorithms and will extend all existing PCR banks. Side effect of this policy is
possible performance loss.

‒ Maximum Performance PCR Extend Policy: ACM can support several hash
algorithms via embedded SW. When this policy is selected, ACM will use
embedded SW to compute hashes and then will use TPM2_PCR_Extend
commands to extend them into PCRs. If PCRs utilizing hash algorithms not
supported by SW are discovered, they will be capped with “1” value. This
policy, when selected, will ensure maximum possible performance but has side
effect of possible capping of some of the PCRs.

For an ACM that supports both extend policies, it will use the one indicated in the flags
field in the OsSinitData structure (Table 31).

Notes on TPM family:

0010b - Discrete TPM 2.0 supported: this includes all interfaces that are supported
with this family – TIS1.3, and PTP2.0.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
96 Document Number: 315168-017

0011b – Both combinations above are supported

1000b – TPM2.0 family is supported over CRB interface.

1010b – TPM2.0 family is supported over FIFO and CRB interfaces, etc.

 Flexible ACM Information Table format

Flexible ACM Information table format allows adding of new and optional lists.
Currently defined lists are:

• ACM Version Information list

• Chipset ID list

• Chipset 2 ID list

• Processor ID list

• TPM Information list

• Terminator list

Structures are defined as presented in the tables below.

ACM module supporting flexible information table format will have the Version field in
Chipset AC Module Information Table set to 9 (see Table 12).

All list have the same header format containing unique ID represented as 4 bytes, a
size field, which must reflect any optional alignment bytes appended to the end of the
table and a revision field, in which bytes[0:2] - minor revision, bytes[3:4] - major
revision.

Flexible information table lists must be appended to the base of the original ACM
information table, they must be contiguous, and their sizes must be on a double word
boundary.

 ACM Version Information list

Table 19. ACM Version Information list

Field Offset Width Description

Header

ID 0 4 Table ID: “VERL” - [0x56, 0x45, 0x52, 0x4C]

Size 4 4 Size of this table

Revision 8 4 Must be 1.0

Body

ACM info table
version

12 4 Presented in the following form: Major.Minor.Flavor
(1 byte, 1 byte, 2 bytes)

Generation
version

16 4 Presented in the following form: Major.Minor.Flavor
(1 byte, 1 byte, 2 bytes)

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 97

Field Offset Width Description

Header

Core version 20 4 Presented in the following form: Major.Minor.Flavor
(1 byte, 1 byte, 2 bytes)

ACM revision 24 4 Presented in the following form: Major.Minor.Flavor
(1 byte, 1 byte, 2 bytes)

ACM Security
version

28 4 SINIT AC Module: SINIT version
S-ACM: Min SINIT SVN

ACM info table version - this field will hold ACM info table version value. It is
assumed that if value 0x9 is present at offset 17 of the ACM information table, this
table will hold actual version of that table.

Generation version and core version - internal field indicating ACM generation.

ACM Revision - ACM revision field from ACM information table moved to this location

ACM security version - ACM version field from ACM information table moved to this
location. For SINIT modules it holds the module version. For S-ACM it holds minimal
supported SINIT SVN and is copied to the TPM AUX index.

 Chipset ID list

Table 20. Chipset ID List

Field Offset Width Description

Header

ID 0 4 Table ID: “CS1L” - [0x43, 0x53, 0x31, 0x4C]

Size 4 4 Size of this table

Revision 8 4 Must be 1.0

Body

Count 12 4 Number of entries in the ChipsetID array

ChipsetID 16 Count *
sizeof(TXT_ACM
_CHIPSET_ID)

Array of TXT_ACM_CHIPSET_ID structures

ChipsetID - this table format is presented in Table 13.

Note: ChipsetID offset as defined in Table 12 must point to the Count field of the Chipset ID
list for backward compatibility.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
98 Document Number: 315168-017

 Chipset 2 ID list

Table 21. Chipset 2 ID list

Field Offset Width Description

Header

ID 0 4 Table ID: “CS2L” - [0x43, 0x53, 0x32, 0x4C]

Size 4 4 Size of this table

Revision 8 4 Must be 1.0

Body

Count 12 4 Number of entries in the ChipsetID array

ChipsetID
2

16 Count *
sizeof(TXT_ACM_
CHIPSET_ID_2)

Array of TXT_ACM_CHIPSET_ID_2 structures

ChipsetID2 - format of this structure is presented below.

Chipset 2 ID list is optional, if it is not present, ACM supports all SKUs listed in Chipset
ID list.

The TXT.DIDVID2 register (see B.1.22) contains device ID with which the AC module
is compatible. TXT_ACM_CHIPSET_ID_2 structure contains a mask which must be
applied to the value of DID field of the TXT.DIDVID2 register.

Table 22. TXT_ACM_CHIPSET_ID_2 format

Field Offset Width Description

Flags 0 4 Reserved for future use.

VendorID 4 2 Indicates the chipset vendor this AC Module is
designed to support. This field is compared against
the VID field of the TXT.DIDVID2 register.

DeviceID 6 2 Indicates the chipset vendor’s device that this AC
Module is designed to support. This field is
compared against the DID field of the
TXT.DIDVID2 register after applying a mask.

RevisionID 8 2 Indicates the revision of the chipset vendor’s
device that this AC module is designed to support.
This field has a fixed hardcoded value and is
ignored.

RegisterMask 10 2 Mask to be applied to the value of DID field of the
TXT.DIDVID2 register.

Reserved 14 4 Reserved for future use.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 99

 Processor ID list

Table 23. Processor ID list

Field Offset Width Description

Header

ID 0 4 Table ID: “CPUL” - [0x43, 0x50, 0x55, 0x4C]

Size 4 4 Size of this table

Revision 8 4 Must be 1.0

Body

Count 12 4 Number of entries in the ChipsetID array

Processor
ID

16 Count *
sizeof(TXT_ACM_
PROCESSOR_ID)

Array of TXT_ACM_PROCESSOR_ID structures

ProcessorID - format of this structure is presented in Table 15.

Note: ProcessorID offset as defined in Table 12 must point to the Count field of the
Processor ID list for backward compatibility.

 TPM information list

Table 24. TPM Information list

Field Offset Width Description

Header

ID 0 4 Table ID: “TPML” - [0x54, 0x50, 0x4D, 0x4C]

Size 4 4 Size of this table

Revision 8 4 Must be 1.0

Body

TpmCapabilities 12 4 TPM supported capabilities

Count 16 2 Number of entries in AlgorithmID array

AlgorithmID 18 Count *
sizeof(UINT16)

Array of algorithm IDs

The format of this table’s body is the same as described in Table 17.

Note: A zero-padding may be introduced at the bottom of the body of this table to ensure
its overall size is a multiple of four bytes. The padding size must be included in the Size field.

Note: TpmInfoList offset as defined in Table 12 must point to the TpmCapabilites field of
the TPM Information list for backward compatibility.

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
100 Document Number: 315168-017

 Terminator list

This list must be the last structure in the flexible ACM information table. It only
contains a header.

Table 25. Terminator list

Field Offset Width Description

Header

ID 0 4 Table ID: “NULL” - [0x4E, 0x55, 0x4C, 0x4C]

Size 4 4 Size of this table

Revision 8 4 Must be 1.0

 Memory Type Cacheability Restrictions
Prior to launching the authenticated execution environment using the GETSEC leaf
functions ENTERACCS or SENTER, processor MTRRs (Memory Type Range Registers)
must first be initialized to map out the authenticated RAM addresses as WB (write-
back). Failure to do so may affect the ability for the processor to maintain isolation of
the loaded authenticated code module. The processor will signal an Intel® TXT
shutdown condition with the #BadACMMType error code during the loading of the
authenticated code module if non-WB memory is detected.

Note that despite that CPU enforces only 4KB SINIT alignment, such allocation may
require too many MTRRs to provide the WB cache-ability. It is suggested then, that
BIOS allocate SINIT memory on the 128KB boundary. This combined with specially
selected SINIT sizes will allow using minimal number of MTRRs (up to 3).

While physical addresses within the load module must be mapped as WB, the memory
type for locations outside of the module boundaries must be mapped to one of the
supported memory types as returned by GETSEC[PARAMETERS] (or UC as default).
This is required to support inter-operability across SMX capable processor
implementations.

 Authentication and Execution of AC Module
Authentication is performed after loading the code module into the authenticated code
execution area. Information from the authenticated code module header is used to
support the authentication process. The RSAPubKey header version 0.0 field contains
a public key plus a 32-bit exponent (skipped in the header 3.0 and is assumed to be a
standard one) used for decrypting the signature of the authenticated code module.
The signature is held in encrypted form in the RSASig header field and it represents
the PKCS #1.5 of RSA Signature of the module. The RSA Signature signs an area that
includes the sum of the module header and the entire USER AREA data field, which
represents the body of the module. Those parts of the module header not included
are: the RSA Signature, the public key, and the scratch field. An inconsistent
authenticated code module format, inconsistent comparison of the public key hash, or
mismatch of the decrypted signature against the computed hash of the authenticated
module or a corrupted signature padding value results in an abort of the

Authenticated Code Modules

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 101

authentication process and signaling of an Intel® TXT shutdown condition. As part of
the authentication step, the processor stores the decrypted signature of the AC
module in the first 20 or 32 bytes (depending on the CPU family) of the ‘Scratch’ field
of the AC module header.

After authentication has completed successfully, the private configuration space of the
Intel® TXT-capable chipset is unlocked. At this point, only the authenticated code
module or system software executing in authenticated code execution mode is allowed
to gain access to the restricted chipset state for the purpose of securing the platform.

The architectural state of the processor is partially initialized from contents held in the
header of the authenticated code module. The processor GDTR, CS, and DS selectors
are initialized from fields within the authenticated code module. Since the
authenticated code module must be relocatable, all address references must be
relative to the authenticated code module base address in EBX. The processor GDTR
base value is initialized to the AC module header field GDT BasePtr + module base
address held in EBX and the GDTR limit is set to the value in the GDT Limit field. The
CS selector is initialized to the AC module header SegSel field, while the DS selector is
initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0,
LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read
access for CS. The processor begins the authenticated code module execution with the
EIP set to the AC module header EntryPoint field + module base address (EBX). The
AC module-based fields used for initializing the processor state are checked for
consistency and any failure results in a shutdown condition.

§§

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
102 Document Number: 315168-017

 SMX Interaction with Platform

 Intel® Trusted Execution Technology
Configuration Registers
Intel® TXT configuration registers are a subset of chipset registers. These registers are
mapped into two regions of memory, representing the public and private configuration
spaces. Registers in the private space can only be accessed after a measured
environment has been established and before the TXT.CMD.CLOSE-PRIVATE command
has been issued. The private space registers are mapped to the address range starting
at FED20000H. The public space registers are mapped to the address range starting at
FED30000H and are available before, during and after a measured environment
launch. All registers are defined as 64 bits and return 0’s for the unimplemented bits.
The offsets in the table are from the start of either the public or private spaces (all
registers are available within both spaces, though with different permissions).

After writing to one of the command registers (e.g. TXT.CMD.SECRETS), software
should read the corresponding status flag for that command (e.g. TXT.E2STS
[SECRETS.STS]) to ensure that the command has completed successfully.

 TXT.STS – Status
Description This is the general status register. AC modules and the MLE use this read-only

register to get the status of various Intel® TXT features.

Offset 000H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

0 SENTER.DONE.
STS

The chipset sets this bit when it sees all threads have done an
TXT.CYC.SENTER-ACK.
When any of the threads does the TXT.CYC.SEXIT-ACK the
TXT.THREADS.JOIN and TXT.THREADS.EXISTS registers will not
be equal, so the chipset will clear this bit.

1 SEXIT.DONE.
STS

This bit is set when all bits in the TXT.THREADS.JOIN register are
clear. Thus, this bit will be set immediately after reset (since the
bits are all 0).
Once all threads have done a TXT.CYC.SEXIT-ACK, the
TXT.THREAD.JOIN register will be 0, so the chipset will set this
bit.

5:2 Reserved Reserved

6 MEM-CONFIG-
LOCK.STS

This bit will be set to 1 when the memory configuration has been
locked.
Cleared by TXT.CMD.UNLOCK.MEMCONFIG or by a system reset.

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 103

Bits Field Name Field Description

7 PRIVATE-
OPEN.STS

This bit will be set to 1 when TXT.CMD.OPEN-PRIVATE is
performed.
Cleared by TXT.CMD.CLOSE-PRIVATE or by a system reset.

14:8 Reserved Reserved

15 TXT.LOCALITY1.O
PEN.STS

This bit is set when the TXT.CMD.OPEN.LOCALITY1 command is
seen by the chipset. It is cleared on reset or when
TXT.CMD.CLOSE.LOCALITY1 is seen.

16 TXT.LOCALITY2.O
PEN.STS

This bit is set when either the TXT.CMD.OPEN.LOCALITY2
command or the TXT.CMD.OPEN.PRIVATE is seen by the chipset.
It is cleared on reset, when either TXT.CMD.CLOSE.LOCALITY2 or
TXT.CMD.CLOSE.PRIVATE is seen, and by the GETSEC[SEXIT]
instruction.

63:17 Reserved Reserved

 TXT.ESTS – Error Status
Description This is the error status register that contains status information associated

with various error conditions. The contents of this register are preserved
across soft resets.

Offset 008H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description
0 TXT_RESET.

STS
This bit is set to ‘1’ to indicate that an event occurred which may
prevent the proper use of TXT (possibly including a TXT reset).
To maintain TXT integrity, while this bit is set a TXT measured
environment cannot be established; consequently, Safer Mode
Extension (SMX) instructions GETSEC[ENTERACCS] and GETSEC
[SENTER] will fail.
This bit is sticky and will only be cleared on a power cycle.

7:1 Reserved Reserved

 TXT.ERRORCODE – Error Code
Description This register holds the Intel® TXT shutdown error code. A soft reset does not

clear the contents of this register; a hard reset/power cycle will clear the
contents. This was formerly labeled the TXT.CRASH register.

Offset 030H

Pub Attribs

Priv Attribs

RO
RW

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
104 Document Number: 315168-017

Bits Field Name Field Description
3:0 Type2 /Module

Type
0 = BIOS ACM
1= SINIT

9:4 Type2 / Class Code 0-0x3f = Class code clusters several congeneric errors into a
group

14:10 Type2 /Major Error
Code

0-0x1f = Error Code within current Class Code.

15 Software Source 0 = Authenticated Code Module
1 = MLE

27:16 Type1 /Minor Error
Code

This Field value depends on Class Code and / or Major Error Code.

29:28 Type1/Reserved This is implementation and source specific. Provides details on the
failure condition.

30 Processor/Software 0 = Error condition reported by processor (see Table 26)
1 = Error condition reported by software

31 Valid/Invalid 0 = Register content invalid, the rest of the register contents
should be ignored.
1 = Valid error

Note: Upon successful execution, SINIT will put 0xC0000001 in the register.

Note: The format of the Type field for errors reported by SINIT is defined in an errors text
file included with each SINIT AC module. This file also includes the definition of the error
codes produced by that version of SINIT. Error definitions which are stable across SINIT AC
Modules can be found in Appendix H.

Table 26. Type Field Encodings for Processor-Initiated Intel® TXT Shutdowns

Type Error condition Mnemonic

0 Legacy shutdown #LegacyShutdown

1-4 Reserved Reserved

5 Load memory type error in
Authenticated Code Execution Area

#BadACMMType

6 Unrecognized AC module format #UnsupportedACM

7 Failure to authenticate #AuthenticateFail

8 Invalid AC module format #BadACMFormat

9 Unexpected snoop hit detected #UnexpectedHITM

10 Invalid event #InvalidEvent Note 2

11 Invalid MLE JOIN format #BadJOINFormat

12 Unrecoverable machine check
condition

#UnrecovMCError

13 VMX abort error occurred #VMXAbort

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 105

Type Error condition Mnemonic

14 Authenticated code execution area
corruption

#ACMCorrupt

15 Invalid voltage/bus ratio #InvalidVIDBRatio

16 – 65535 Reserved Reserved

Note: The conditions under which most of these errors are generated can be found in the
pseudo code of the SMX instructions in Chapter 6, “Safer Mode Extensions Reference”, of the
Intel 64 and IA-32 Software Developer Manuals, Volume 2B.

Note: #InvalidEvent can be generated by the following:

- A CPU reset which is not caused by a TXT Reset
- A non-virtualized INIT event
- During RLP wakeup, bit 0 of the RLPs’ IA32_SMM_MONITOR_CTL MSR does

not match that of the ILP
- An SENTER/SEXIT/WAKEUP event is received post-VMXON
- A thread wakes from the wait-for-SIPI state while another thread in the same

CPU is executing an AC Module

 TXT.CMD.RESET – System Reset Command
Description A write to this register causes a system reset. The processor performs this as

part of an Intel® TXT shutdown, after writing to the TXT.ERRORCODE register.

Offset 038H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command
Description A write to this register causes the Intel® TXT-capable chipset private

configuration space to be locked. Locality 2 will also be closed. Once locked,
conventional memory read/write operations can no longer be used to access
these registers. The private configuration space can only be opened for the
MLE by successfully executing GETSEC[SENTER].

Offset 048H

Pub Attribs

Priv Attribs

WO (a serializing operation, such as a read of the register, is required after the
write to ensure that any future chipset operations see the write)

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
106 Document Number: 315168-017

Bits Field Name Field Description

7:0

 TXT.SPAD – BOOTSTATUS
Description This register is used by Startup ACM to convey to BIOS results of its operation.

In general, it is of no interest to OS SW and is provided as reference. Bit
definitions are not architectural and therefore are not guaranteed to be
absolutely stable across all platform generations.

Offset A0H

Pub Attribs

Priv Attribs

RO
RW

Bits Field Name Field Description

29:0 Reserved

30 TXT Startup
success

Indicates TXT Startup Success. Signifies successful TXT data
preparation for BIOS, SINIT and MLE

46:31 Boot Status General Startup ACM to BIOS status communication.

47 Memory power
down executed

Indicates that memory content was cleared via power down

52:48 Boot Status details Startup ACM to BIOS communication in MP platforms.

53 TXT Policy enable Startup ACM indication of run-time enabled status of TXT. This
can be result of either absence of FIT type 0xA record or that FIT
type 0xA record exists and its policy setting enables TXT.

58:54 Boot Status details Startup ACM to BIOS communication in MP platforms.

59 BIOS trusted Indicates that BIOS is trusted.

60 TXT Policy disable Indicates that TXT has been disabled by runtime FIT type 0xA
record policy setting

61 Boot Status details Startup ACM to BIOS communication in MP platforms. For details
reader is referred to respective CBnT server BIOS specification.

62 CPU Error Indicates ACM authentication error

63 S-ACM success Indicates that S-ACM successfully enforced its logic for all
provisioned technologies. Successful execution of TXT specifically
is indicated by bit 30

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 107

 TXT.DIDVID – TXT Device ID
Description This register contains the vendor, device, and revision IDs for the memory

controller or chipset.

Offset 110H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

15:0 VID Vendor ID: 8086 for Intel® components

31:16 DID Device ID: specific to the chipset/platform

47:32 RID Revision ID: specific to the chipset/platform

63:48 ID-EXT Extended ID: specific to the chipset/platform

 TXT.VER.EMIF – EMC Version Numer Register
Description This register identifies whether the memory controller or chipset is debug or

release fused.

Offset 200H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

30:0 Reserved Reserved

31 DEBUG.FUSE 0 = Chipset is debug fused
1 = Chipset is production fused

 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config
Command

Description When this command is invoked, the chipset unlocks all memory configuration
registers.

Offset 218H

Pub Attribs

Priv Attribs

-
WO (a serializing operation, such as a read of the register, is required after the
write to ensure that any future chipset operations.)

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
108 Document Number: 315168-017

Bits Field Name Field Description

7:0

 TXT.SINIT.BASE – SINIT Base Address
Description This register contains the physical base address of the memory region set

aside by the BIOS for loading an SINIT AC module. If BIOS has provided an
SINIT AC module, it will be located at this address. System software that
provides an SINIT AC module must store it to this location.

Offset 270H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

 TXT.SINIT.SIZE – SINIT Size
Description This register contains the size (in bytes) of the memory region set aside by the

BIOS for loading an SINIT AC module. This register is initialized by the BIOS.

Offset 278H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

 TXT.MLE.JOIN – MLE Join Base Address
Description Holds a physical address pointer to the base of the join data structure used to

initialize RLPs in response to GETSEC[WAKEUP].

Offset 290H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 109

 TXT.HEAP.BASE – TXT Heap Base Address
Description This register contains the physical base address of the Intel® TXT Heap

memory region. The BIOS initializes this register.

Offset 300H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

 TXT.HEAP.SIZE – TXT Heap Size
Description This register contains the size (in bytes) of the Intel® TXT Heap memory

region. The BIOS initializes this register.

Offset 308H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

31:0

 TXT.DPR – DMA Protected Range
Description This register defines the DMA Protected Range of memory in which the TXT

heap and SINIT region are located.

Offset 330H

Pub Attribs

Priv Attribs

RW
RW

Bits Field Name Field Description

0 Lock Bits 19:0 are locked down in this register when this bit is set.

3:1 Reserved Reserved

11:4 Size This is the size of memory, in MB, that will be protected from
DMA accesses. A value of 0x00 in this field means no additional
memory is protected.
The DPR range works independently of any other DMA
protections, such as VT-d, and is done post any VT-d translation
or TXT checks.

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
110 Document Number: 315168-017

Bits Field Name Field Description

19:12 Reserved Reserved

31:20 Top Top address + 1 of DPR. This is the base of TSEG.

Note: Modern platforms utilizing SGX technology implement the DPR register as part of
uncore, not as part of PCH and thus TXT.DPR register has been deprecated with no
underlying HW functionality.
Actual DPR register is implemented as the PCIE register with a typical BDFR 0.0.0.0x5C.
Platform manufacturers shall consult respective external data sheets to verify the above
numeric value as it may change.

 TXT.SCRATCHPAD – ACM_POLICY_STATUS
Description This register is used by Startup ACM to convey to BIOS enforced policies. Only

bits that might be of interest for OS SW are provided as a reference. Bit
definitions are not architectural and therefore are not guaranteed to be
absolutely stable across all platform generations.

Offset 378H

Pub Attribs

Priv Attribs

RO
RW

Bits Field Name Field Description

12:0 Reserved

14:13 TPM type TPM type detected by Startup ACM:
= 0 – No TPM
= 1 – dTPM 1.2 – unsupported
= 2 – dTPM 2.0
= 3 – PTT

31:15 Reserved

34:32 S-CRTM Status Startup ACM SCRTM establishment:
= 0 – not established by Startup ACM
> 0 – established by Startup ACM

35:33 Reserved

36 TPM Startup
locality

Indication of locality at which TPM2_Startup command was
executed:
= 0 – locality 3
= 1 – locality 0

63:37 Reserved

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 111

 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command
Description Writing to this register “opens” the TPM locality 1 address range, enabling

decoding by the chipset and thus access to the TPM.
This locality is not automatically opened after GETSEC[SENTER] and must be
opened explicitly.
This locality will not be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 380H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command
Description Writing to this register “closes” the TPM locality 1 address range, disabling

decoding by the chipset and thus access to the TPM.
This locality will not be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 388H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command
Description Writing to this register “opens” the TPM locality 2 address range, enabling

decoding by the chipset and thus access to the TPM.
This locality is automatically opened after GETSEC[SENTER].
This locality will be closed by the TXT.CMD.CLOSE-PRIVATE command.

Offset 390H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description
7:0

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
112 Document Number: 315168-017

 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command
Description Writing to this register “closes” the TPM locality 2 address range, disabling

decoding by the chipset and thus access to the TPM.
This locality will be closed by the TXT.CMD.CLOSE-PRIVATE command or by
the GETSEC[SEXIT] instruction.

Offset 398H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

 TXT.PUBLIC.KEY – AC Module Public Key Hash
Description This register contains the hash of the public key used for the verification of AC

Modules. The size, hash algorithm, and value are specific to the memory
controller or chipset.

Offset 400H

Pub Attribs

Priv Attribs

RO
RO

Bits Field Name Field Description

255:0

Note: Modern platforms utilizing SGX technology implement the Public Key Hash register as
part of the CPU core, not as part of PCH and thus TXT.PUBLIC.KEY register has been
deprecated with no underlying HW functionality. Any value it may contain does not have
meaning and must be disregarded.
Actual Public Key Hash is typically available in CPU MSRs 0x20∷0x23.
Platform manufacturers shall consult respective external data sheets to verify the above
numeric values as it may change.

 TXT.DIDVID2 - TXT Device ID 2
Description This register contains the vendor, device, and revision IDs for the memory

controller or chipset.

Offset 810H

Pub Attribs

Priv Attribs

RO
RO

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 113

Bits Field Name Field Description

15:0 VID Vendor ID - 0x8086 for Intel Corporation

16:31 DID Masked DID value

32:47 RID Set to 1 must be ignored

48:63 Reserverd

 TXT.CMD.SECRETS – Set Secrets Command
Description Writing to this register indicates to the chipset that there are secrets in

memory. The chipset tracks this fact with a sticky bit. If the platform reboots
with this sticky bit set the BIOS AC module (or BIOS on multiprocessor TXT
systems) will scrub memory. The chipset also uses this bit to detect invalid
sleep state transitions. If software tries to transition to S3, S4, or S5 while
secrets are in memory then the chipset will reset the system.
The MLE issues the TXT.CMD.SECRETS command prior to placing secrets in
memory for the first time.

Offset 8E0H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

 TXT.CMD.NO-SECRETS – Clear Secrets Command
Description Writing to this register indicates there are no secrets in memory.

The MLE will write to this register after removing all secrets from memory as
part of the TXT teardown process.

Offset 8E8H

Pub Attribs

Priv Attribs

-
WO

Bits Field Name Field Description

7:0

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
114 Document Number: 315168-017

 TXT.E2STS – Extended Error Status
Description This register is used to read the status associated with various errors that

might be detected. The contents of this register are preserved across soft
resets.

Offset 8F0H

Pub Attribs

Priv Attribs

RO
RW

Bits Field Name Field Description

0 Reserved Reserved

1 SECRETS.STS 0 = Chipset acknowledges that no secrets are in memory
1 = Chipset believes that secrets are in memory and will provide
reset protection

63:2 Reserved Reserved

 TPM Platform Configuration Registers
The TPM contains Platform Configuration Registers (PCRs). The purpose of a PCR is to
contain measurements. From a TPM standpoint, the TPM does not care what entity
uses a PCR to store a measurement.

The TPM provides two types of PCRs: static and dynamic. Static PCRs only reset on
system reset; dynamic PCRs reset upon request. Static PCRs are written by the static
root of trust for measurement (SRTM). In the PC, the SRTM begins with the BIOS boot
block. The dynamic PCRs are written by the dynamic root of trust for measurement
(DRTM). In the PC, the DRTM is the process initiated by GETSEC[SENTER].

A PC TPM requires a minimum of 24 PCRs. The first 16 are designated the static Root
of Trust and the next eight are designated the dynamic Root of Trust. Intel® TXT uses
PCRs 17 and 18 within the dynamic Root of Trust to measure the MLE.

PCRs for TPM 2.0 devices will be sized appropriately for the largest digest resulting
from algorithms they support, typically 256 bits or greater. This is elaborated in
Section 1.8, 1.9, 1.10, and 3.6 above.

 Intel® Trusted Execution Technology Device
Space
There are several memory ranges within Intel® TXT address space provided to access
Intel® TXT related devices. The first range is 0xFED4_xxxx that is divided up into 16
pages. Each page in the FED4 range has specific access attributes. A page in this
region may be accessed by Intel® TXT cycles only, by Intel® TXT cycles and via
private space, or by Intel® TXT cycles, private and public space.

SMX Interaction with Platform

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 115

Table 27. TPM Locality Address Mapping

Address Range TPM Locality

FED4 0xxxH Locality 0 (fully public)

FED4 1xxxH Locality 1 (trusted OS)

FED4 2xxxH Locality 2 (MLE access only)

FED4 3xxxH Locality 3 (AC modules access only)

FED4 4xxxH Locality 4 (Hardware or microcode access only)

All others Reserved

The first five pages of the 0xFED4_xxxx region are used for TPM access. Each page
represents a different locality to the TPM. Locality is an attribute used by the TPM to
define how it treats certain transactions. The address range used for commands sent
to the TPM defines locality. All Intel® TXT chipsets must support all localities. Locality
0 is considered public and accesses it is accepted by the chipset under all
circumstances. Accesses to locality 0 are sent to the ICH even if Intel® TXT is
disabled, there has been no SENTER, or private space is closed. Locality 4 is never
open but may only be accessed with Intel® TXT cycles. There are Intel® TXT
commands that will open localities 1 through 3. Localities 2-3 require that both
TXT.CMD.OPEN.LOCALITY and TXT.CMD.OPEN-PRIVATE be done before allowing
accesses in that range to be accepted. At reset, localities 1 through 3 are closed.

No status read check of the TPM is performed by the processor GETSEC [SENTER]
instruction ahead of the TPM.HASH write sequence. If the TPM is not in acquiesced
state at this time, then the PCRs 17-20 reset and hash registration to PCR 17 may not
succeed. To insure reliable system software functionality for TPM support, it is
recommended that the GETSEC [SENTER] instruction only be executed once the TPM
has acquiesced and ownership has been established in the context of the SENTER
initiating process.

Upon successful execution of GETSEC [SENTER] and relinquishment of control by
SINIT, the TPM’s private space and locality 2 should be left open. No locality should
be active.

§§

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
116 Document Number: 315168-017

 Intel® TXT Heap Memory
Intel® TXT Heap memory is a region of physically contiguous memory that is set aside
by BIOS for the use of Intel® TXT hardware and software. The system software that
launches the measured environment passes data to both the SINIT AC module and
the MLE using Intel® TXT Heap memory. The system software is responsible for filling
in the table contents prior to executing the SENTER instruction. An incorrect format or
incorrect content of this table or tables described by this table will result in failure to
launch the protected environment.

Table 28. Intel® Trusted Execution Technology Heap

Note: BiosDataSize + OsMleDataSize + OsSinitDataSize + SinitMleDataSize must be less
than or equal to TXT.HEAP.SIZE.

Offset Length

(bytes)
Name Description

0 8 BiosDataSize Size in bytes of the Intel® TXT
specific data passed from the
BIOS to system software for
the purposes of launching the
MLE. This size includes the
number of bytes for this field,
so this field’s value cannot be
less than 8.

8 BiosDataSize - 8 BiosData BIOS specific data. The format
of this data is described below
in Table 29.

BiosDataSize 8 OsMleDataSize Size in bytes of the data passed
from the launching system
software to the MLE. This size
includes the number of bytes
for this field, so this field’s
value cannot be less than 8.

BiosDataSize + 8 OsMleDataSize –
8

OsMleData System software -specific data.
Format of data in this field is
considered specific to the
system software vendor.

BiosDataSize +
OsMleDataSize

8 OsSinitDataSize Size in bytes of the data passed
from the launching system
software to the SINIT AC
module. This size includes the
number of bytes for this field,
so this field’s value cannot be
less than 8.

BiosDataSize +
OsMLEDataSize +
8

OsSinitDataSize
– 8

OsSinitData System software data passed
to the SINIT AC module. The
format of this data is described
below in Table 31.

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 117

Offset Length
(bytes)

Name Description

BiosDataSize +
OsMleDataSize +
OsSinitDataSize

8 SinitMleDataSize Size in bytes of the data passed
from the launched SINIT AC
module to the MLE. This size
includes the number of bytes
for this field, so this field’s
value cannot be less than 8.

BiosDataSize +
OsMleDataSize +
OsSinitDataSize +
8

SinitMleDataSize
– 8

SinitMleData SINIT data passed to the MLE.
The format of this data is
described below in Table 32.

Note: For proper data alignment on 64-bit processor architectures all table sizes must be a
multiple of 8 bytes.

 Extended Data Elements
Extended data elements are self-describing data structures that will be used for all
future extensions to TXT heap tables. The ExtDataElements[] field in each of the heap
tables is an array/list of individual elements, terminated by a HEAP_END_ELEMENT:

ExtDataElements[] ::= <HEAP_EXT_DATA_ELEMENT>* | <HEAP_END_ELEMENT>

Each element consists of the following data structure:

typedef struct {
 UINT32 Type; // one of HEAP_EXTDATA_TYPE_*
 UINT32 Size;
 UINT8 Data[Size – 8];
} HEAP_EXT_DATA_ELEMENT;

The extended data element structures in the following sub-sections (named
HEAP_*_ELEMENT) correspond to the contents of the Data field for the specific type of
element.

While not required, it is recommended that Size be a 4-byte multiple.

Entities that use the ExtDataElements[] fields must ignore element types that they do
not understand or care about. This allows forward and backward compatibility of
these fields.

 HEAP_END_ELEMENT
#define HEAP_EXTDATA_TYPE_END 0

typedef struct {
 UINT32 Type; // = 0
 UINT32 Size; // = 8
} HEAP_END_ELEMENT;

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
118 Document Number: 315168-017

The HEAP_END_ELEMENT represents the terminating element of a given
ExtDataElements[] list. It contains no Data[] field.

 HEAP_CUSTOM_ELEMENT
#define HEAP_EXTDATA_TYPE_CUSTOM 4

typedef struct {
 UINT32 data1;
 UINT16 data2;
 UINT16 data3;
 UINT16 data4;
 UINT8 data5[6];
} UUID;

typedef struct {
 UUID Uuid;
 UINT8 Data[];
} HEAP_CUSTOM_ELEMENT;

The HEAP_CUSTOM_ELEMENT allows for platform suppliers to communicate supplier-
specific data through a standard location and mechanism. Software wishing to use
this data must understand its format.

Uuid is a UUID value that uniquely identifies the format of the Data field. It is
important to generate the UUID value using a process that will provide a statistically
unique value.

The platform supplier defines the Data field’s contents. The size of this data must be
included within the size of the HEAP_EXTDATA_ELEMENT.Size field.

 Benchmarking element

One of the usages of HEAP_CUSTOM_ELEMENT defined by CBnT is delivering of
benchmarking information.

typedef struct {
 UUID Uuid; // 0x06A9C77B, 0x850B476B, 0xB3D0C9B4,
0x7BCB8A85
 UINT32 ModuleId; // Creation data from the ACM header
 UINT32 Count;
 RECORD Record[Count];
}

typedef struct {
 UINT16 TaskNumber;
 UINT16 Tag;
 UINT64 Timestamp;
}

ModuleId is SINIT creation data from its header.

Count is count of benchmarking records.

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 119

Record is array of RECORD structures.

In a RECORD structure:

TaskNumber is internal sequential SINIT task number;

Timestamp is value of TSC counter at the time when record is created.

Tag is numeric tag associated with any point of interest of SINIT execution flow. For
instance duration of TPM command needs to be measured. For this purpose, two tags
will be assigned – start tag and end tag. Sought duration will be different between two
TSC timestamps (in TSC clocks);

Note: Benchmarking information is available in special build of NPW modules. Such modules
are built by customer demand.

 BIOS Data Format
The format of the data passed from the BIOS to the system software for the purposes
of launching the measured environment is shown in Table 29.

Table 29. BIOS Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the BiosData table. The
current value is 6 (versions 4∷6 are supported).
This value is incremented for any change to the
definition of this table. Future versions will
always be backwards compatible with previous
versions (new fields will be added at the end).

4 4 BiosSinitSize This field indicates the size of the SINIT AC
module provided by system BIOS. A value of 0
indicates the BIOS is not providing an SINIT AC
module for system software use. A non-0 value
indicates that the AC module will be at the
location specified by the TXT.SINIT.BASE
register and be of the specified size.

8 8 Reserved1 BIOS data table no longer contains LcpPdBase
field since the field was associated with currently
removed PS LCP Policy Data File.

16 8 Reserved2 BIOS data table no longer contains LcpPdSize
field since this field was associated with
currently removed PS LCP Policy Data File

24 4 NumLogProcs This is the total number of logical processors in
the system. The minimum value in this register
must be at least 1.

Versions >= 3

28 4 SinitFlags BIOS-provided information for SINIT AC module
consumption. Bit definition will be dependent on
the chipset. Currently none are defined

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
120 Document Number: 315168-017

Offset Length
(bytes)

Name Description

Versions >= 5 with updates in version 6

32 4 MleFlags BIOS-provided information for system software
and the MLE, about TXT capabilities of the BIOS.
See Table 30.

Versions >= 4

36 BiosDataSi
ze - 36

ExtDataElement
s[]

Array/list of extended data element structures.
See below for element definitions.

Table 30. MLE Flags Field Bit Definitions

Bit position Description

Versions >= 5

0 Support for TXT/VT-x/VT-d ACPI PPI specification Note 1

Versions >= 6

2:1 00: legacy state / platform undefined
01: client platform, client SINIT is required
10: server platform, server SINIT is required
11: Reserved/illegal, must be ignored

All versions

31:3 Reserved, must be zero

Note: “Intel® Trusted Execution Technology (Intel® TXT) – One-Touch Enabling, Intel TXT
Provisioning Interface. Addendum to TCG Physical Presence Interface (PPI) Specification”

 HEAP_BIOS_SPEC_VER_ELEMENT
#define HEAP_EXTDATA_TYPE_BIOS_SPEC_VER 1

typedef struct {
 UINT16 SpecVerMajor;
 UINT16 SpecVerMinor;
 UINT16 SpecVerRevision;
} HEAP_BIOS_SPEC_VER_ELEMENT;

The HEAP_BIOS_SPEC_VER_ELEMENT contains fields that indicate the version of the
TXT BIOS specification to which this platforms BIOS corresponds. This element type
is mainly useful for diagnostic tools.

 HEAP_ACM_ELEMENT
#define HEAP_EXTDATA_TYPE_ACM 2

typedef struct {

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 121

 UINT32 NumAcms;
 UINT64 AcmAddrs[NumAcms]; // physical address of ACM
} HEAP_ACM_ELEMENT;

The HEAP_ACM_ELEMENT allows BIOS to indicate the ACMs that it contains and their
locations in memory.

BIOSes that support this element type should report all ACMs that they carry; both
BIOS ACMs and SINIT ACMs.

Note: For SINIT ACM address in the AcmAddrs array shall point to the uncompressed
module image in the TXT heap memory (Same as in TXT.SINIT.BASE register – see
Appendix B.1.10).

Since the TXT architecture requires that BIOS provide at least one BIOS ACM,
NumAcms must always be greater than 0.

AcmAddrs[] is an array of physical addresses of each of the ACMs.

 HEAP_STM_ELEMENT
#define HEAP_EXTDATA_TYPE_STM 3

typedef struct {
 UINT8 Data[];
} HEAP_STM_ELEMENT;

The HEAP_STM_ELEMENT allows BIOS to indicate to the MLE STM related BIOS
properties. Its format is specified in “SMI Transfer Monitor (STM) User Guide”
https://firmware.intel.com/content/smi-transfer-monitor-stm.

The platform supplier defines the Data field’s contents. The size of this data must be
included within the size of the HEAP_EXTDATA_ELEMENT.Size field.

 OS to MLE Data Format
Each system software vendor may have a different format for this data, and any MLE
being launched by system software must understand the format of that software’s
handoff data.

 OS to SINIT Data Format
Table 31 defines the format of the data passed from the launching system software to
the SINIT AC module in the OsSinitData field.

https://firmware.intel.com/content/smi-transfer-monitor-stm

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
122 Document Number: 315168-017

Table 31. OS to SINIT Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the OsSinitData table.
Current values is 7 for TPM 2.0 family. No
other values are supported. This value is
incremented for any change to the definition of
this table. Future versions will always be
backwards compatible with previous versions
(new fields will be added at the end).

Versions <= 6

4 4 Reserved Reserved for future use

Version = 7

4 4 Flags Bit 0: PCR Extend Policy Control
0 – Maximum Agility Policy
1 – Maximum Performance Policy

Versions >=4

8 8 MLE PageTableBase Physical address of MLE page table (the MLE
page directory pointer table address)

16 8 MLE Size Size in bytes of the MLE image

24 8 MLE HeaderBase Linear address of MLE header (linear address
within the MLE page tables)

32 8 PMR Low Base Physical base address of the PMR Low region
(must be 2MB aligned). Can be set to zero if
not desired to be enabled by SINIT. The MVMM
must be loaded in one of the DPR, PRM low, or
the PMR high regions.

40 8 PMR Low Size Size of the PMR Low Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

48 8 PMR High Base Physical base address of the PMR High region
(must be 2MB aligned). Can be set to zero if
not desired to be enabled by SINIT.

56 8 PMR High Size Size of the PMR HIGH Region (must be 2MB
granular). Set to zero if not desired to be
enabled by SINIT.

64 8 LCP PO Base Physical base address of the Platform Owner’s
Launch Control Policy, LCP_POLICY_DATA
structure.

72 8 LCP PO Size Size of the Launch Control Policy Platform
Owner’s Policy Data.

80 4 Capabilities Bit vector of capabilities that SINIT is
requested to use. This must be a subset of
the ones SINIT supports - Table 4. Note that
for CBnT bits 5:4 must be 11b, since D/A
mapping is the only one supported.

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 123

Offset Length
(bytes)

Name Description

Versions >= 6

84 8 EFI RSDP Pointer Physical address of RSDP when an EFI boot
was performed. If not provided or invalid
SINIT attempts to find the standard ACPI
RSDP pointer.

92 OsSinitD
ataSize -
92

ExtDataElements[] Array/list of extended data element structures.
See below for element definitions. Note that
for CBnT, there must be a single
HEAP_EVENT_LOG_POINTER_ELEMENT2_1
structure with a HEAP_END_ELEMENT
terminating the list.

 HEAP_EVENT_LOG_POINTER_ELEMENT2_1

This element describes event log SINIT creates in TPM 2.0 mode which is compatible
with format described in “TCG PC Client Platform Firmware Profile” specification.

Note that that HEAP_EXTDATA_TYPE_EVENT_LOG_POINTER2 element which was used
in transition period when TCG event log format was never finalized is no longer
supported by SINIT.

#define HEAP_EXTDATA_TYPE_EVENT_LOG_POINTER2_1 8

typedef struct {
 UINT64 PhysicalAddress;
 UINT32 AllocatedEventContainerSize;
 UINT32 FirstRecordOffset;
 UINT32 NextrecordOffset;
} HEAP_EVENT_LOG_POINTER_ELEMENT2_1;

PhysicalAddress: Physical address of the event log base.

AllocatedEventContainerSize: Size of allocated event log memory.

FirstRecordOffset: Offset of the first record in event log.

NextRecordOffset: Offset of the free memory beyond the end of last entered record.

SINIT in TPM2.0 mode will require HEAP_EVENT_LOG_POINTER_ELEMENT2_1 to be
present since event log is required for attestation and many of the SinitMleData table
fields carrying similar data are removed in TPM2.0 mode – see Table 32

See Appendix F for further explanation.

 HEAP_TPR_REQ_ELEMENT
typedef struct {
 UINT64 TprRangeBase; //Physical address of the TPR
 UINT64 TprRangeSize; //Size of the requested TPR
} TPR_RANGE;

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
124 Document Number: 315168-017

#define HEAP_EXTDATA_TYPE_TPR_REQ 13

typedef struct {
 UINT32 TprCnt; //Count of TPRs in the TPR request array
 TPR_RANGE TprReqArr[TprCnt];
} HEAP_TPR_REQ_ELEMENT;

The HEAP_TPR_REQ_ELEMENT contains ranges to be DMA protected.

SINIT will abort with error if the number of requested TPRs exceeds the number of
TPRs reported in the DTPR ACPI table.

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 125

 SINIT to MLE Data Format
Table 32 below defines the format of the SINIT data presented to the MLE.

Table 32. SINIT to MLE Data Table

Offset Length
(bytes)

Name Description

0 4 Version Version number of the SinitMleData table. CBnT
fixed the following version number for the TPM
2.0 family generated table at value 9.
This value is incremented for any change to the
definition of this table. Future versions will
always be backwards compatible with previous
versions (new fields will be added at the end, see
note).

Versions <= 8

4 20 BiosAcmID ID of the BIOS AC module in the system

24 4 EdxSenterFlags Value of EDX SENTER control flags

28 8 MsegValid MSEG MSR (Valid bit only)

36 20 SinitHash SHA1 hash of the SINIT AC module:
SHA1(SHA256(SINIT))

56 20 MleHash SHA1 hash of the MLE

76 20 StmHash SHA1 hash of STM. This is only valid if MsegValid
= 1, else will contain zero

96 20 LcpPolicyHash SHA1 Hash of the LCP policy that was enforced;
if no hash is needed based on the LCP policy
control field this will contain zero

116 4 PolicyControl Taken from the LCP policy used

Versions >= 9

4 20 Reserved Must be zero

24 4 Reserved Must be zero

28 8 Reserved Must be zero

36 20 Reserved Must be zero

56 20 Reserved Must be zero

76 20 Reserved Must be zero

96 20 Reserved Must be zero

116 4 Reserved Must be zero

Versions >= 7

120 4 RlpWakeupAddr MONITOR physical address used for waking up
RLPs (write 32bit non-0 value)

124 4 Reserved Reserved for future use. Must be zero

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
126 Document Number: 315168-017

Offset Length
(bytes)

Name Description

128 4 NumberOfSinitM
drs

Number of SINIT Memory Descriptor Records

132 4 SinitMdrTableOff
set

Offset (in bytes, from
TXT_HEAP.SinitMleDataSize) to the start of an
array of SINIT Memory Descriptor Records as
defined below. Each record describes a memory
region as defined by the SINIT AC module
(see Table 33).

136 4 SinitVtdDmarTab
leSize

Length of the Intel® Virtualization Technology
(Intel® VT) for Directed I/O (Intel® VT-d) DMAR
table pointed to by the SinitVtdDmarTableOffset
field.

140 4 SinitVtdDmarTab
leOffset

Offset (in bytes, from
TXT_HEAP.SinitMleDataSize) to the start of the
SINIT provided DMAR table dump for the MLE.

Version = 8

144 4 ProcessorSCRTM
Status

Bit 0 = 1 if PCR 0 measurement for this boot was
rooted in processor hardware. This is possible
only if all logical processors implement S-CRTM
and the platform is designed to take advantage
of that capability.
Bit 0 = 0 if PCR0 measurement for this boot was
rooted in BIOS.
Bits 31:1 – Reserved for future use and must be
zero.

Versions >= 9

144 4 Reserved Must be zero

Versions >= 8

148 SinitMle
DataSize
- 148

ExtDataElement
s[]

Array/list of extended data element structures.
See below for element definitions.

Table 33. SINIT Memory Descriptor Record

Offset Length
(bytes)

Name Description

0 8 Address Physical address of the memory range described in
this record.

8 8 Length Length of the memory range.

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 127

Offset Length
(bytes)

Name Description

16 1 Type Memory range type. Valid values:
0 Usable, good memory
1 SMRAM– Overlaid – deprecated
2 SMRAM– Non-Overlaid – deprecated
3 PCIe - PCIe Extended Configuration Region
4 Persistent memory
5–255 Reserved

17 7 Reserved Reserved for future use

The array of Memory Descriptor Records (MDRs) is not necessarily ordered and some
MDRs may be of 0 length, in which case they should be ignored.

Memory of type 0 is usable for the MLE and any code or data that it may load. SINIT
will verify that the MLE and its page table are located in memory of this type.

Memory types 1 and 2 are deprecated in future versions of SINIT, as SMRAM regions
are not of use to the MLE.

Memory of type 3 is the PCI Express extended configuration region. The MLE may use
this to verify that the PCIE configuration specified in the ACPI tables is using the
appropriate address space.

Memory of type 4 is persistent, saving content in NV memory persisting over reset. If
content is not encrypted, MLE shall not place secrets into this memory since it might
be exposed upon reboot.

 HEAP_MADT_ELEMENT
#define HEAP_EXTDATA_TYPE_MADT 6

typedef struct {
 UINT8 MadtData[];
} HEAP_MADT_ELEMENT;

The HEAP_MADT_ELEMENT contains a copy of the ACPI MADT table

MadtData contains a validated copy of the ACPI MADT table. Its size is specified in
the MADT header as well as the Size field of the element. The format of the MADT
table is described in the version of the “Advanced Configuration and Power Interface
Specification” implemented by the platform.

 HEAP_MCFG_ELEMENT
#define HEAP_EXTDATA_TYPE_MCFG 9

typedef struct {
 UINT8 McfgData[];
} HEAP_MCFG_ELEMENT;

HEAP_MCFG_ELEMENT contains a copy of the ACPI MCFG table

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
128 Document Number: 315168-017

McfgData contains a validated copy of the ACPI MCFG table. Its size is specified in the
MCFG header as well as the Size field of the element. The format of the MCFG table is
described in the version of the “Advanced Configuration and Power Interface
Specification” implemented by the platform.

 HEAP_DTPR_ELEMENT
#define HEAP_EXTDATA_TYPE_DTPR 14

typedef struct {
 UINT8 DtprData[];
} HEAP_DTPR_ELEMENT;

HEAP_DTPR_ELEMENT contains a DMA-protected and verified copy of the ACPI DTPR
table for MLE consumption.

 HEAP_CEDT_ELEMENT
#define HEAP_EXTDATA_TYPE_CEDT 15

typedef struct {

UINT8 CedtData[];
} HEAP_CEDT_ELEMENT;

HEAP_CEDT_ELEMENT contains a DMA-protected and verified copy of the ACPI CEDT
table for MLE consumption.

 Registry of Extended Heap Elements

Heap element types are global for all heap tables. Registry has been added for
facilitating of reference.

Table 34. Extended Heap Elements Registry

Type Label Comment

0 HEAP_END_ELEMENT This element is mandatory terminator
of the list of extended elements after
each of the heap tables.

1 HEAP_BIOS_SPEC_VER_ELEMENT Element specifies revision of TXT BIOS
WG specification supported by given
BIOS

2 HEAP_ ACM_ELEMENT Element provides information about
quantity and position of BIOS
embedded AC Modules, including
SINIT if present.

3 HEAP_STM_ELEMENT Element specifies STM related BIOS
properties

4 HEAP_CUSTOM_ELEMENT Element can be customized for non-
standard use

Intel® TXT Heap Memory

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 129

Type Label Comment

5 HEAP_TPM_EVENT_LOG _ELEMENT Element provides pointer to TPM 1.2
style Event Log. No longer supported.

6 HEAP_MADT_ELEMENT Element encases MADT table copied to
DPR

7 HEAP_EVENT_LOG_POINTER_ELEMENT2 Element provides pointers to Event
Log(s) of original TXT TPM 2.0 style

8 HEAP_EVENT_LOG_POINTER_ELEMENT2_1 Element provides pointer to TCG
Compliant TXT TPM 2.0 style Event
Log

9 HEAP_MCFG_ELEMENT Element encases MCFG table copied to
DPR

10-12 N/A Types 10::12 are used in BIOS ACM to
SINIT communication.

13 HEAP_TPR_REQ_ELEMENT Contains requested TPR ranges.

14 HEAP_DTPR_ELEMENT Contains DMA-protected copy of the
ACPI DTPR table.

15 HEAP_CEDT_ELEMENT Contains DMA-protected copy of the
ACPI CEDT.

§§

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
130 Document Number: 315168-017

 LCP Data Structures
LCP definitions are presented in this section.

• Identification of policy type and maximal number of lists in LCP data file:

#define LCP_POLTYPE_LIST 0
#define LCP_POLTYPE_ANY 1
#define LCP_MAX_LISTS 8

 LCP Policy
Platform Owner policy structure has type LCP_POLICY2. Respective object is stored in
the TPM NV PO index.

 Policy Control

typedef struct {
 UINT32 reserved:1;
 UINT32 NPW_OK:1; // NPW OK
 UINT32 Reserved2:1;
 UINT32 Pconf_Enforced:1; // Functionality see Appendix J.2.3
 UINT32 reserved3:28;
} PolicyControl

NPW_OK bit when set, tells Non-Production SINIT that it is allowed to run. If unset,
SINIT will abort execution.

PCONF_Enforced bit when set, forces SINIT to seek second PCONF element match –
see Appendix J.2.3. If unset, SINIT continues after first PCONF element match is
found.

 LCP_POLICY2
• Key algorithms

#define TPM_ALG_RSA 0x0001 // Key algorithm
#define TPM_ALG_ECC 0x0023

• Hashing algorithms

#define TPM_ALG_SHA1 0x0004
#define TPM_ALG_SHA256 0x000B
#define TPM_ALG_SHA384 0x000C
#define TPM_ALG_NULL 0x0010
#define TPM_ALG_SM3_256 0x0012

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 131

• Signature algorithms

#define TPM_ALG_RSASSA 0x0014
#define TPM_ALG_RSAPSS 0x0016
#define TPM_ALG_ECDSA 0x0018
#define TPM_ALG_SM2 0x001B
#define TPM_ALG_LMS 0x0070

• Digest sizes per hashing algorithm

#define SHA1_DIGEST_SIZE 20
#define SHA256_DIGEST_SIZE 32
#define SHA384_DIGEST_SIZE 48
#define SM3_256_DIGEST_SIZE 32

typedef union {
 UINT8 sha1[SHA1_DIGEST_SIZE];
 UINT8 sha256[SHA256_DIGEST_SIZE];
 UINT8 sha384[SHA384_DIGEST_SIZE];
 UINT8 sm3[SM3_256_DIGEST_SIZE];
} LCP_HASH2;

typedef struct {
 UINT16 Version; // 0x0302 == Version 3.2
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT8 PolicyType; // one of LCP_POLTYPE_*
 UINT8 SINITMinVersion;
 UINT16 DataRevocationCounters[LCP_MAX_LISTS];
 UINT32 PolicyControl;
 UINT8 MaxSinitMinVer;
 UINT8 Reserved;
 UINT16 LcpHashAlgMask // LCP_APPROVED_HASH_ALG
 UINT32 LcpSignAlgMask // LCP_APPROVED_SIGNATURE_ALG
 UINT32 Reserved2;
 LCP_HASH2 PolicyHash;
 } LCP_POLICY2;

Version field indicates the LCP version, it must be at least 3.0 and the latest supported
version is 3.2.

HashAlg identifies the hashing algorithm used to create the PolicyHash.

SinitMinVersion specifies the minimum version of SINIT that can be used.

DataRevocationCounters is an array of elements corresponding to an array of policy
lists in LCP Policy Data File. This array provides a mechanism to revoke signed lists in
that object.

PolicyControl contains policy bits with global LCP impact, it is described in Appendix
D.1.1.

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
132 Document Number: 315168-017

MaxSinitMinVersion field specifies the maximum value this policy will allow a
revocation utility to set the AUX.AUXRevocation.SinitMinVer field to.

LcpHashAlgMask identifies the Platform Owner’s selection of HashAlgIDs permitted
during LCP policy evaluation. It uses the following HashAlgID mask definition:

typedef struct {
 UINT16 TPM_ALG_SHA1:1; // BIT0
 UINT16 Reserved:2; // BITS[2:1]
 UINT16 TPM_ALG_SHA256:1; // BIT3
 UINT16 Reserved:1; // BIT4
 UINT16 TPM_ALG_SM3_256:1; // BIT5
 UINT16 TPM_ALG_SHA384:1; // BIT6
 UINT16 Reserved:9;
} LCP_APPROVED_HASH_ALG;

LcpSignAlgMask identifies the Platform Owner’s selection of signature algorithms
permitted during LCP policy evaluation. A fully specified signature algorithm definition
is comprised of the signature algorithm and its public key size, the internally used
hash algorithm, and, for SM2, the curve used.

typedef struct {
 UINT32 Reserved:2 // BITS[1:0]
 UINT32 TPM_ALG_RSA*/2048/SHA1:1 // BIT2: Legacy
 UINT32 TPM_ALG_RSA*/2048/SHA256:1 // BIT3: Legacy
 UINT32 Reserved:2 // BITS[5:4]
 UINT32 TPM_ALG_RSA*/3072/SHA256:1 // BIT6: NOTE below
 UINT32 TPM_ALG_RSA*/3072/SHA384:1 // BIT7: NOTE below
 UINT32 Reserved2:4 // BITS[11:8]
 UINT32 ECDSA/P256/SHA256:1 // BIT12: NOTE below
 UINT32 ECDSA/P384/SHA384:1 // BIT13: NOTE below
 UINT32 Reserved3:2 // BITS[15:14]
 UINT32 TPM_ALG_SM2/SM2_CURVE/SM3:1 // BIT16: SMX
 UINT32 TPM_ALG_LMS_SHA256_M24_H20 // BIT17
 UINT32 Reserved4:14
} LCP_APPROVED_SIGNATURE_ALG;

Note: Possible use of RSASSA or RSAPSS algorithm: based on alluded higher post-quantum
resistance of RSA vs. ECDSA algorithms (https://eprint.iacr.org/2017/598) and to reduce LCP
complexity modern SINITs are built without support of ECDSA signatures, however this
support can be added per demand.

PolicyHash is described in detail in Section 3.1.1.

 LCP_POLICY_DATA
When LCP_POLICY*. PolicyType is set to LCP_POLTYPE_LIST, there must exist a Policy
Data File which the SINIT policy engine will process.

Where this file resides on the platform is platform dependent, but it must be
provisioned into the Intel® TXT heap data structures (see Appendix C.3) before
executing the GETSEC[SENTER] instruction. While not required, it is recommended

https://eprint.iacr.org/2017/598

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 133

that software place the LCP_POLICY_DATA on a 4-byte aligned boundary to reduce
access alignment penalties.

typedef struct {
 char FileSignature[32];
 UINT8 Reserved[3];
 UINT8 NumLists;
 LCP_POLICY_LIST PolicyLists[NumLists];
} LCP_POLICY_DATA, LCP_POLICY_DATA2

Note: When Intel® TXT was upgraded to support TPM 2.0 family, LCP_POLICY_DATA
structure was aliased to LCP_POLICY_DATA2 without changing of its content to maintain
naming coherency.

FileSignature is the string “Intel(R) TXT LCP_POLICY_DATA\0\0\0\0”, where ‘\0’ is a
single byte whose value is 0x00. This field is intended for use by software that needs
to determine if a given file is an LCP_POLICY_DATA file.

The Reserved field must be set to all 0s.

The NumLists field must be less than or equal to LCP_MAX_LISTS.

Each list in PolicyLists may be either signed or unsigned.

 LCP Policy List

 List Signatures

SINIT supports two different signature formats: LCP_SIGNATURE2 designed for
platforms using RSASSA signatures; and LCP_SIGNATURE2_1 designed for platforms
utilizing RSAPSS signature algorithm. Both structures can alternatively contain ECDSA
or SM2 signatures. However, both LCP_SIGNATURE2 and LCP_SIGNATURE2_1
signature formats is not possible.

LCP_SIGNATURE2_1 is identical to the one used by Intel® Boot Guard technology.

 LCP_SIGNATURE2 structure

typedef struct {
 UINT16 RevocationCounter;
 UINT16 PubkeySize;
 UINT8 PubkeyValue[PubkeySize];
 UINT8 SigBlock[PubkeySize];
} LCP_RSA_SIGNATURE;

The RevocationCounter field is a monotonically increasing value that can be used, in
conjunction with the corresponding index of the DataRevocationCounters field in
LCP_POLICY, to provide a method of revoking (or preventing rollback) of signed
policies.

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
134 Document Number: 315168-017

PubkeySize is public key size in bytes. Supported public key sizes are 2048 and 3072
bits and therefore field values are 256 or 384. Minimal required public key size is 2048
bits.

PubkeyValue is the modulus of the public key. The exponent is assumed to be fixed
and must be 65537.

SigBlock is the actual signature with size 256 or 384 bytes.

Another subcomponent of LCP_SIGNATURE2 structure is LCP_ECC_SIGNATURE
structure shown below.

typedef struct {
 UINT16 RevocationCounter;
 UINT16 PubkeySize;
 UINT32 Reserved; // For future expansion
 UINT8 Qx[PubkeySize] // x coordinate Public key
 UINT8 Qy[PubkeySize] // y coordinate Public key
 UINT8 R[PubkeySize] // R component of Signature
 UINT8 S[PubkeySize] // S component of Signature
} LCP_ECC_SIGNATURE;

Here RevocationCounter and PubkeySize fields are identical to ones used in
LCP_RSA_SIGNATURE structure except that PubkeySize must be 32 or 48 bytes
corresponding to supported curves.

Qx and Qy are coordinates of the ECC/SM2 public key.

R and S are components of a signature.

As specified for all policy data, both the PubkeyValue and SigBlock must be in little-
endian byte order. This may require tools that generate policies to reverse the byte
order of keys and signatures produced by tools that use the ASN.1/big-endian format.

Taken together LCP_RSA_SIGNATURE and LCP_ECC_SIGNATURE form new
LCP_SIGNATURE2 structure as follows.

typedef union {
 LCP_RSA_SIGNATURE RsaSignature;
 LCP_ECC_SIGNATURE EccSignature;
} LCP_SIGNATURE2;

 LCP_SIGNATURE2_1 structure

This structure is complex and includes several substructures described below.

RSA_PUBLIC_KEY structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT32 Exponent
 UINT8 Modulus[KeySize/8]
} RSA_PUBLIC_KEY;

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 135

Where Version is the version of the structure in major:minor format and must be
equal to 0x10;

KeySize represents number of bits in the public key modulus. Supported values are
2048 and 3072 bits;

Exponent must be standard 0x10001;

Modulus is the modulus of a public key in little endian format – 256 or 384 bytes.

ECC_PUBLIC_KEY structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT8 Qx[KeySize/8];
 UINT8 Qy[KeySize/8];
} ECC_PUBLIC_KEY;

Where Version is identical to RSA_PUBLIC_KEY above.

KeySize is number of bits of public key coordinate – must be 256 for SM2 algorithm
and 256 or 384 for ECDSA algorithm.

Qx and Qy are two coordinates of public key in little endian format – 32 or 48 bytes
each.

LMS_PUBLIC_KEY structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize; // 0x30
 XDR_LMS_KEY PubKey[KeySize]
} LMS_PUBLIC_KEY;

Where Version is identical to RSA_PUBLIC_KEY above.

KeySize is the number of bytes in the public key component and must be 48 (30h).

PublicKey is the public key in the XDR format:

typedef struct {
 UINT32 LMS_type; // 0xD
 UINT32 LMOTS_type; // 0x7
 UINT8 I[16];
 UINT8 T1[24];
} XDR_LMS_KEY;

LMS_PubKey[56] = LMS_type[4] || LMOTS_type[4] || I[16] || T1[24]

LMS_type is the LMS algorithm type and defines all LMS parameters; its value is set to
0x0000000D (big endian).

LMOTS_type is the LMS-OTS algorithm type and defines all LM-OTS parameters; its
value is set to 0x00000007 (big endian).

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
136 Document Number: 315168-017

I is the LMS key pair identifier.

T1 is the m-byte string associated with the 1st node of the binary Merkel tree.

RSA_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT16 HashAlg;
 UINT8 Signature[KeySize/8];
} RSA_SIGNATURE;

Where Version is the version of the structure in major:minor format and must be
equal to 0x10;

KeySize represents the number of bits in the public key modulus. Supported values
are 2048 and 3072 bits;

HashAlg is hash algorithm used by signing process. Supported are TPM_ALG_SHA1
(legacy only), TPM_ALG_SHA256, and TPM_ALG_SHA384;

Signature is RSASSA or RSAPSS signature in little endian format – 256 or 384 bytes.

ECC_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize;
 UINT16 HashAlg;
 UINT8 R[KeySize/8];
 UINT8 S[KeySize/8];
} ECC_SIGNATURE;

Where Version is the version of the structure in major:minor format and must be
equal to 0x10;

KeySize is number of bits of signature coordinate – must be 256 for SM2 algorithm
and 256 or 384 for ECDSA algorithm.

HashAlg is hash algorithm used by signing process. Supported are TPM_ALG_SM3_256
for SM2 signatures and TPM_ALG_SHA256, and TPM_ALG_SHA384 for ECDSA
signatures respectively.

R and S are SM2 or ECDSA signature coordinates in little endian format – 32 or 48
bytes each.

LMS_SIG_BLOCK structure

This structure’s size is always 1740 bytes.

typedef struct {
 UINT32 q;
 LMOTS_SIG_BLOCK Signature; // 1252 bytes
 UINT32 Type;

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 137

 UINT8 Path[24][20] // m * h;
} LMS_SIG_BLOCK;

q is the leaf number of binary tree (big endian).

Signature is the LMOTS signature block, its contents are listed below.

Type defines the LMS parameters and is always set to 0xD (big endian).

Path is the h-count of m-byte hash output strings

LMOTS_SIG_BLOCK structure

This structure’s size is always 1252 bytes.

typedef struct {
 UINT32 Type;
 UINT8 Seed[24];
 UINT8 Y[24][51] // n * P;
} LMOTS_SIG_BLOCK;

Type defines the LMOTS parameters and is always set to 0x7 (big endian).

Seed is a string of 24 random bytes.

Y represents P-count of n-byte hash output strings.

LMS_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeySize; // 0x30
 UINT16 HashAlg;
 LMS_SIG_BLOCK Signature; // Size is 1740 bytes
} LMS_SIGNATURE;

Version is the version of the structure in major:minor format and must be equal to
0x10.

KeySize is the number of bytes in the public key component and must always be set
to 48 (30h).

HashAlg is the hashing algorithm used by the signing process and must always be set
to TPM_ALG_SHA256.

Signature is the signature block.

RSA_KEY_AND_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeyAlg; // TPM_ALG_RSA
 UINT8 Key[sizeof(RSA_PUBLIC_KEY)];
 UINT16 SigScheme;
 UINT8 Signature[sizeof(RSA_SIGNATURE)];
} RSA_KEY_AND_SIGNATURE;

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
138 Document Number: 315168-017

Where Version is the version of the structure in major:minor format and must be
equal to 0x10;

KeyAlg is key type algorithm per “TCG Trusted Platform Module Library” specification.
Must be TPM_ALG_RSA;

Key is RSA_PUBLIC_KEY structure;

SigScheme is signature scheme. Must be TPM_ALG_RSASSA or TPM_ALG_RSAPSS;

Signature is RSA_SIGNATURE structure.

ECC_KEY_AND_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeyAlg; // TPM_ALG_ECC
 UINT8 Key[sizeof(ECC_PUBLIC_KEY)];
 UINT16 SigScheme;
 UINT8 Signature[sizeof(ECC_SIGNATURE)];
} ECC_KEY_AND_SIGNATURE;

Where Version is the version of the structure in major:minor format and must be
equal to 0x10;
KeyAlg is key type algorithm per “TCG Trusted Platform Module Library” specification.
Must be TPM_ALG_ECC;
Key is ECC_PUBLIC_KEY structure;
SigScheme is signature scheme. Must be TPM_ALG_ECDSA or TPM_ALG_SM2;
Signature is ECC_SIGNATURE structure.
LMS_KEY_AND_SIGNATURE structure

typedef struct {
 UINT8 Version; // 0x10
 UINT16 KeyAlg; // TPM_ALG_LMS
 LMS_PUBLIC_KEY Key;
 UINT16 SigScheme; // TPM_ALG_LMS
 LMS_SIGNATURE Signature;
} LMS_KEY_AND_SIGNATURE;

Version is the version of the structure in major:minor format and must be equal to
0x10.

KeyAlg and SigScheme indicate LMS signature and key and must always be set to
TPM_ALG_LMS.

The Signature field contains the LMS and LMOTS signature structures.

KEY_AND_SUGNATURE structure

typedef union {
 RSA_KEY_AND_SIGNATURE RsaKeyAndSignature;
 ECC_KEY_AND_SIGNATURE EccKeyAndSignature;
 LMS_KEY_AND_SIGNATURE LmsKeyAndSignature;
} KEY_AND_SIGNATURE;

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 139

This structure is a union of RSA and ECC key and signature structures.

LCP_SIGNATURE2_1 structure
Finally, LCP_SIGNATURE2_1 structure is analogous to LCP_SIGNATURE2 structure
where key and signature details are wrapped into KeyAndSignature field.

typedef struct {
 UINT16 RevocationCounter;
 KEY_AND_SIGNATURE KeyAndSignature;
} LCP_SIGNATURE2_1;

Here RevocationCounter field is identical to one used in LCP_SIGNATURE2 structure.
• Tabular forms of key and signature structures

Since RSA_KEY_AND_SIGNATURE, ECC_KEY_AND_SIGNATURE and
LMS_KEY_AND_SIGNATURE are quite complex and contain several nested
substructures, the following tabular form of them shall clarify and visualize
relationship of the components.

RSA_KEY_AND_SIGNATURE

Name Size
(bytes)

Sub-structure Comment

Version 1
[7] Hybrid signature flag

= 0 – single signature

= 1 – hybrid signature

LCP does not support
hybrid signing. This bit
must be 0.

[6:0] Version in
major/:minor format
Must be 0x10

KeyAlg 2 Must be TPM_ALG_RSA =
0x1

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
140 Document Number: 315168-017

Key Varies

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 2048, 3072

Exponent 4 0x10001

Modulus [] KeySize
/ 8

In LE format

RSA_PUBLIC_KEY_STRUCT
Size varies: 263 bytes for
2048-bit key and 392
bytes for 3072-bit key

SigScheme 2 TPM_ALG_RSASSA =
0x14 or
TPM_ALG_RSAPSS =
0x16.

Signature Varies

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 2048, 3072

HashAlg 2 Hash algorithm =
SHA1, SHA256,
SHA384, SHA512

Signature [] KeySize
/ 8

In LE format

RSA_SIGNATURE_STRUCT
Size varies: 261 bytes for
2048-bit key and 390
bytes for 3072-bit key

ECC_KEY_AND_SIGNATURE

Name Size
(bytes)

Sub-structure Comment

Version 1
[7] Hybrid signature flag

= 0 – single signature

= 1 – hybrid signature

LCP does not support
hybrid signing. This bit
must be 0.

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 141

Name Size
(bytes)

Sub-structure Comment

[6:0] Version in
major/:minor format
Must be 0x10

KeyAlg 2 Must be TPM_ALG_ECC =
0x23

Key Varies

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 256, 384

Qx [] KeySize
/ 8

Qx coordinate in LE
format

Qy [] KeySize
/ 8

Qy coordinate in LE
format

ECC_PUBLIC_KEY_STRUCT
Size varies: 67 bytes for
256-bit key and 99 bytes
for 384-bit key

SigScheme 2 PM_ALG_ECDSA = 0x18
or TPM_ALG_SM2 = 0x1B.

Signature Varies

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 In bits = 256, 384

HashAlg 2 Hash algorithm =
SHA256, SHA384
for ECC and SM3 for
SM2

Signature
[]

KeySize
/ 8

In LE format

ECC_SIGNATURE_STRUCT
Size varies: 69 bytes for
256-bit key and 101 bytes
for 384-bit key

LMS_KEY_AND_SIGNATURE

Name Size
(bytes)

 Sub-structure Comment

Version 1 [7] Hybrid signature
flag

= 0 – single signature

= 1 – hybrid signature

LCP does not support
hybrid signing. This bit
must be 0.

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
142 Document Number: 315168-017

Name Size
(bytes)

 Sub-structure Comment

[6:0] Version in
major/:minor format

Must be 0x10

KeyAlg 2 Key algorithm, must be
TPM_ALG_LMS = 0x70

Key 59

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 56 bytes

PubKey [] KeySize Public key in XDR
format

LMS_PUBLIC_KEY_STR
UCT

SigScheme 2 Signature scheme,
must be TPM_ALG_LMS
= 0x70

Signature 2833

Name Size
(bytes)

Comment

Version 1 0x10

KeySize 2 48 bytes

HashAlg 2 Hash algorithm =
TPM_ALG_SHA256

LMS_Signatu
re []

2828 In big endian format

LMS_SIGNATURE_STR
UCT

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 143

 List Structures

LCP_POLICY_LIST2 is designed for platforms using RSASSA signatures, and
LCP_POLICY_LIST2_1 is designed for platforms utilizing RSAPSS signature algorithm.
Both structures can be used for platforms using ECDSA or SM2 signing.

The use of both LCP_POLICY_LIST2 and LCP_POLICY_LIST2_1 list formats is not
possible.

 LCP_POLICY_LIST2 Structure (Version 2.1)

typedef struct {
 UINT16 Version; // 0x0201
 UINT16 SigAlgorithm; // one of TPM_ALG_* above
 UINT32 PolicyElementsSize;
 LCP_POLICY_ELEMENT PolicyElements[];
#if (SigAlgorithm != TPM_ALG_NULL)
 LCP_SIGNATURE2 Signature;
#endif
} LCP_POLICY_LIST2;

Version must be 2.1.

SigAlgorithm field uses TPM2.0 compatible numeric values.

PolicyElementsSize specifies the size (in bytes) of all LCP_POLICY_ELEMENT structures
in the object. It may be 0. An LCP_POLICY_LIST2 with no elements can be used as a
“placeholder” signed list that can be updated at runtime with the actual signed data
but without having to re-provision the LCP_POLICY in TPM NV.

If SigAlgorithm is not a TPM_ALG_NULL, then the Signature field must be present
(else it must not). For a signed list, the signature will be calculated over the entire
LCP_POLICY_LIST2 structure, including the Signature member, except for the
SigBlock field (if SigAlgorithm is TPM_ALG_RSASSA) or R and S fields (if SigAlgorithm
is TPM_ALG_ECDSA).

 LCP_POLICY_LIST2_1 Structure (Version 3.0)

typedef struct {
 UINT16 Version; // 0x0300
 UINT16 KeySignatureOffset;
 UINT32 PolicyElementsSize;
 LCP_POLICY_ELEMENT PolicyElements[];
#if (KeySignatureOffset != 0)
 LCP_SIGNATURE2_1 KeySignature;
#endif
} LCP_POLICY_LIST2_1;

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
144 Document Number: 315168-017

Version, in major:minor format, must be 0x300 to signify incompatible layout change.

KeySignatureOffset must be zero for unsigned lists. For signed lists it must be offset
of KeyAndSignature field of KEYAND_SIGNATURE structure. Entire content of the list
from its base and up to KeyAndSignature field is covered by the signature (to
disambiguate - RevocationCounter is also included into hashed area).
KeyAndSignature itself is excluded from the hash.

PolicyElementsSize is identical to LCP_POLICY_LIST2 structure.

 LCP_LIST

typedef union {
 LCP_POLICY_LIST2 PolicyListOld; // RSASSA
 LCP_POLICY_LIST2_1 PolicyListNew; // RSAPSS
} LCP_LIST;

 LCP_POLICY_ELEMENT

 Structure Endianness

Endianness deals with the sequencing order of stored bytes. There are two common
sequencing orders: Little Endian (LE - format used by Intel) and Big Endian (BE –
format used by TCG TPM specifications). All structures and data in the following
sections are in Little Endian format with an exception of the TPMS_QUOTE_INFO
structure in the LCP_PCONF_ELEMENT2 definition, which is a standard TPM 2.0
structure and should contain data in Big Endian format, while the rest of the structure
is in Little Endian format.

 Generic Policy Element Structure

typedef struct {
 UINT32 Size;
 UINT32 Type;
 UINT32 PolEltControl;
 UINT8 Data[Size – 12];
} LCP_POLICY_ELEMENT;

The structures in the following sub-sections correspond to the contents of the Data
field for the specific type of element.

While not required, it is recommended that Size be a 4-byte multiple.

PolEltControl field is reserved and must be set to 0 for each element except for
LCP_MLE_ELEMENT2.

Current PolEltControl field bit definitions are defined below:

typedef struct {
UINT32 Reserved: 1 // Must be 0
UINT32 STM_Required: 1
UINT32 Pcr18_Extends: 1

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 145

UINT32 Reserved2: 13 // Must be 0
UINT32 Reserved3: 16 // Must be 0

} PolEltControl

STM_Required bit when set to “1” requires STM to be enabled.

Pcr18_Extends bit controls whether certain events are extended to PCR18 (see Table
37). If PCR18_Extends is equal to 0:

• EVTYPE_SINIT_PUBKEY_HASH and EVTYPE_FBM_INFO_HASH are extended to
PCR18

• EVTYPE_KM_INFO_HASH and EVTYPE_BPM_INFO_HASH are generated and
extended to PCR18

If PCR18_Extends is equal to 1:

• EVTYPE_SINIT_PUBKEY_HASH and EVTYPE_FBM_INFO_HASH are extended to
PCR17
EVTYPE_KM_INFO_HASH and EVTYPE_BPM_INFO_HASH are not created

Bits of Reserved2 (15:3) and Reserved3 (31:16) fields are currently undefined and
should be set to zero. Use of Reserved bit (0) is obsolete. It must be set to zero.

Sections D.4.4 to D.4.9 list in detail all supported policy element types, which then
occupy the Data field in LCP_POLICY_ELEMENT structure.

 LCP_CUSTOM_ELEMENT

#define LCP_POLELT_TYPE_CUSTOM 3

typedef struct {
 UINT32 data1;
 UINT16 data2;
 UINT16 data3;
 UINT16 data4;
 UINT8 data5[6];
} UUID;

typedef struct {
 UUID uuid;
 UINT8 Data[];
} LCP_CUSTOM_ELEMENT;

The LCP_CUSTOM_ELEMENT allows users, ISVs, IT, etc. to define policy-related data
which can then be carried as part of a policy and interpreted by user/ISV/IT software.
Because the data is contained within a policy, its integrity will be verified by SINIT as
part of policy processing.

Uuid is a UUID value that uniquely identifies the format of the Data field. This field
will be used by all custom software that may have its own policy data. It is thus
important to generate the UUID value using a process that will provide a statistically
unique value.

The Data field’s contents are defined by the entity that “owns” the UUID of the
element. The size of this data must be included within the size of the
LCP_POLICY_ELEMENT.Size field.

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
146 Document Number: 315168-017

 LCP_MLE_ELEMENT2
TPM 2.0 mode element only.

#define LCP_POLELT_TYPE_MLE2 0x10
typedef struct {
 UINT8 SINITMinVersion;
 UINT8 Reserved
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumHashes;
 LCP_HASH2 Hashes[NumHashes];
} LCP_MLE_ELEMENT2;

Definitions of all fields are identical to LCP_MLE_ELEMENT.

 LCP_PCONF_ELEMENT2
TPM 2.0 mode element only.

The PCONF Element structure is designed such that it can be created using the
TPM2_Quote command and evaluated using the TPM2_PolicyPCR command.

Following below is number of structures copied from TCG TPM 2.0 library specification
to facilitate understanding of PCONF creation and evaluation process.

The TPM2_Quote command returns the following structure:

typedef struct {
 UINT16 size;
 TPMS_ATTEST attestationData;
} TPM2B_ATTEST;

Where TPMS_ATTEST has the following form (only the last field is shown):

typedef struct {
 (...) ;
TPMU_ATTEST attested; // == TPMS_QUOTE_INFO
} TPMS_ATTEST;

TPMU_ATTEST is a union, where the relevant member within is the
TPMS_QUOTE_INFO structure:

typedef struct {
 TPML_PCR_SELECTION pcrSelect;
 TPM2B_DIGEST pcrDigest
} TPMS_QUOTE_INFO;

pcrSelect is a TPML_PCR_SELECTION structure denoting the PCRs being quoted, and
the pcrDigest is a TPM2B_DIGEST structure wherein the digest is a composite digest
of the PCRs being quoted.

typedef struct {
 UINT16 hash; // One of TPM_ALG_* algorithm IDs
 UINT8 sizeofSelect;

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 147

 UINT8 pcrSelect[sizeofSelect];
} TPMS_PCR_SELECTION;

typedef struct {
 UINT32 count; // must be 1 for use in PCONF
 TPMS_PCR_SELECTION pcrSelections;
} TPML_PCR_SELECTION;

typedef struct {
 UINT16 size;
 UINT8 buffer[size];
} TPM2B_DIGEST;

The new PCONF_ELEMENT structure is then defined as:

#define LCP_POLELT_TYPE_PCONF2 0x11
typedef struct {
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumPCRInfos;
 TPMS_QUOTE_INFO PCRInfos[NumPCRInfos];
} LCP_PCONF_ELEMENT2;

Since TPMS_QUOTE_INFO is a standard TPM 2.0 structure its fields, where applicable,
are inserted in big endian format. Rest of the LCP_PCONF_ELEMENT2 structure is in
little endian format.

TPML_PCR_SELECTION structure, which is a sub-component of the new
LCP_PCONF_ELEMENT2 definition, contains the “count” field which allows making
multiple PCR selections using different HashAlgIDs.

The “count” field is kept in PCONF element definition to use as much of unmodified
TPM2.0 structures as possible but for the purpose of TXT count will be enforced to be
“1”. SINIT code will validate “count == 1” condition and will abort if it is not met.

 LCP_STM_ELEMENT2
TPM 2.0 mode element only.

#define LCP_POLELT_TYPE_STM2 0x14
typedef struct {
 UINT16 HashAlg; // one of TPM_ALG_*
 UINT16 NumHashes;
 LCP_HASH2 Hashes[NumHashes];
} LCP_STM_ELEMENT2;

The LCP_STM_ELEMENT represents a list of the acceptable MSEG objects, which can
be either an STM, or a PPAM module used by Intel® Nifty Rock technology, as
measured by their hashes. SINIT will match the policy if MSEG object hash (as
calculated when evaluating its header data) matches any hash within the list.

HashAlg specifies the hash algorithm to use when measuring the MSEG object and the
values in Hashes[].

If NumHashes is 0 then this element will evaluate to false for all MSEG objects.

LCP Data Structures

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
148 Document Number: 315168-017

 NV AUX Index Data Structure
The AUX Index data structure needs to accommodate algorithmically agile digests.
The structure definition follows the listings below:

typedef struct {
 UINT8 MinVer;
 UINT8 Flags;
} ACM_AUX_REVOCATION;

typedef struct {
 ACM_AUX_REVOCATION SinitRevocation;
 ACM_AUX_REVOCATION Reserved;
} Revocation Area;

Table 35. AUX Data Structure

Revocation
area

BIOS AC
registration
data

AUX
Data
Version

Other data Internal TXT digest
area

The table above diagrammatically illustrates contents of the AUX index.

Revocation area – storage containing minimal revisions of modules allowed to run.

BIOS AC registration data - contains value uniquely identifying BIOS ACM installed in
the system. This value is extended into PCR 17 by SINIT module since BIOS ACM is in
TXT TCB

AUX Data Version – identifies version of the structure. This version allows SINIT
module to farther qualify AUX data and prevent forward compatibility issues.

Other data – BIOSAC / SINIT intercommunication area.

Internal TXT digest area - BIOSAC / SINIT intercommunication area containing
variable size data values in TPMT_HA format.

§§

Platform State upon SINIT Exit and Return to MLE

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 149

 Platform State upon SINIT Exit
and Return to MLE
The following table describes the state of the ILP after returning to the MLE from
GETSEC[SENTER] and the RLPs after waking from SENTER. This is the state seen by
the MLE.

Table 36. Platform State upon SINIT exit and return to MLE

Resource ILP on MLE re-entry point RLP on MLE re-entry
point

CPU

CR0 PG0, AM0,WP0; others
unchanged

PG0, CD0, NW0,
AM0, WP0; PE1, NE1

XCR0 AVX State1 Note 1, SSE
State1; others unchanged

Unchanged

CR3 Undefined Undefined

CR4 0x00004000 0x00004000

EFLAGS 0x000000XX (XX =
Undefined)

0x000000XX (XX =
Undefined)

EIP [MLEHeader.EntryPoint] [TXT.MLE.JOIN + 12]

ESP Undefined Undefined

EBP Undefined Undefined

ECX Pointer to MLE page
table Note 2

Undefined

EBX [MLEHeader.EntryPoint] Undefined

EAX, EDI, ESI Undefined Undefined

CS Sel=[SINIT.SegSel], base=0,
limit=0xFFFFF, G=1, D=1,
AR=0x9B

Sel=[TXT.MLE.JOIN + 8],
base=0, limit=0xFFFFF,
G=1, D=1, AR=0x9B

DS, ES, SS Undefined Sel=[TXT.MLE.JOIN + 8] +
8, base=0, limit=FFFFFH,
G=1, D=1, AR=0x93

GDTR Base=[SINIT.GDTBase],
Limit=[SINIT.GDTLimit] Note 3

Base=[TXT.MLE.JOIN + 4],
Limit=[TXT.MLE.JOIN]

DR7 0x00000400 0x00000400

MMX/XMM registers Values at the SENTER
unchanged.

Values at the SENTER
unchanged.

YMM / ZMM Undefined Undefined

IA32_DEBUGCTL MSR 0 0

IA32_EFER MSR 0 0

Platform State upon SINIT Exit and Return to MLE

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
150 Document Number: 315168-017

Resource ILP on MLE re-entry point RLP on MLE re-entry
point

IA32_MISC_ENABLE MSR IA32_MISC_ENABLE &
0xFFF37CEA Notes 4, 5

IA32_MISC_ENABLE &
0xFEE324A8 Note 5

Performance counters and
counter control registers

0 0

IA32_APIC_BASE MSR 35:12 cleared to 0xFEE00
Note 6

35:12 cleared to 0xFEE00,
bit 8 (BSP) cleared to 0 Note 6

LTCS
Private Space Open
TXT.ERRORCODE 0xC0000001

TPM
Locality No locality active. Locality 2 open,

PCI
PCI Index/Data ports
0xCF8-0xCFF

Undefined

VT-D

Global Command and Global
Status registers

Queued Invalidation (QI) and Interrupt Remapping (IR) is
forced to be disabled in all enabled VT-d units.

Note:

1. AVX State is set only if CPU supports AVX.
2. If bit 2 of the Capabilities field in SINIT’s Chipset AC Module Information Table

is set, then ECX will contain the pointer to the MLE’s page table. If clear, the
content of ECX is undefined.

3. GDTR on entry to MLE retains values established by SINIT and is therefore
incorrect and unusable for MLE. MLE developers should establish their own
GDT immediately.

4. Bit 3 (thermal monitor enabled) will be set to 1 if it was previously clear.
5. Bit 18 (MONITOR/MWAIT enable) will be set to 1 if it was previously clear and

bit 1 of OsSinitData.Capabilities (use of MONITOR for RLP wakeup) is set.
6. Before exit, SINIT module restores ILP IA32_APIC_BASE MSR APIC base

address to the value of ACPI MADT table. Restoring the RLP ILP and
IA32_APIC_BASE MSR values is responsibility of the MLE.

7. The TPM will not have any locality active following SENTER.

§§

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 151

 TPM Event Log
The TPM Event Log is a data structure that describes the data whose hashes are
extended to the TPM PCR indices. This allows remote attestation verifiers to
reconstruct the PCR values in order to make trust decisions about their components.
This event log is equivalent to the one generated by BIOS (see “TCG PC Client Specific
Implementation Specification for Conventional BIOS”) but is for the use of system
software and SINIT.

System software allocates the memory for the log and provides the physical address
of the container to SINIT in the HEAP_TPM_EVENT_LOG_ELEMENT2_1 element in the
OsSinitData.ExtDataElements[] field – see Appendix C.4.1.

A CBnT compatible SINIT ACM supports only details/authorities PCR mappings (see –
Section 1.10.2 and Table 4) and requires this element to be present. SINIT ACM will
abort execution if system software does not provide this element.

There are no requirements for event log to be in DMA protected memory – SINIT will
not enforce it.

 TPM 2.0 Event Log
“TCG PC Client Platform. EFI Protocol Specification” defined new event logging
structure suitable for multi-algorithm event logging. To maintain TCG compliance,
SINIT modules will support this event log format in TPM 2.0 mode of execution.

TCG Compliant Event Logging Structures

Information below is identical to one presented in “TCG PC Client Platform. EFI
Protocol Specification” and is included for easy reference. In case of any
discrepancies, information included in the TCG specification shall take precedence.

typedef struct {
 UINT32 PCRIndex;
 UINT32 EventType;
 TPML_DIGEST_VALUES Digest;
 UINT32 EventSize;
 BYTE Event[EventSize];
} TCG_PCR_EVENT2;

Where TPML_DIGEST_VALUES structure layout is presented below:

typedef struct {
 UINT32 count; // Count of TPMT_HA structures
 struct {
 UINT16 AlgorithmID; // Hash algorithm of array element X
 // TPMI_ALG_HASH
 UINT8 digest[AlgorithmID_DIGEST_SIZE] // Digest value in
 // array element X
 } TPMT_HA digests[count] // Array of TPMT_HA structures
} TPML_DEGEST_VALUES;

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
152 Document Number: 315168-017

Note that although the type names from TPM 2.0 Library Specification are used, the
encoding of the count member and the AlgorithmID are little-endian as is the rest of
the log format.

First record of the log must follow TCG_PCR_EVENT structure in TPM 1.2 format and
declare revision of the supported EFI Platform specification

typedef struct {
 UINT32 PCRIndex; // 0
 UINT32 EventType; // 3 == EV_NO_ACTION
 UINT8 Digest[20]; // ZeroSha1Digest[20] = {00, 00…00}
 UINT32 EventDataSize; // sizeof(EventData[])
 UINT8 EventData[]; // TCG_EfiSpecIDEventStruct
} TCG_PCR_EVENT;

typedef struct {
 UINT8 signature[16]; // ‘Spec ID Event03’, 00
 UINT32 platformClass; // 00 – PC Client Platform Class;
 // 01 – Server Platform Class
 UINT8 specVersionMinor; // 00 – minor of 2.00
 UINT8 specVersionMajor; // 02 – major of 2.00
 UINT8 specErrata; // 00 – errata of 2.00
 UINT8 uintnSize; // 01 for UINT32; 02 for UINT64
 UINT32 numberOfAlgorithms; // Number of hash algorithms used
in this event log
 TCG_EfiSpecIdEventAlgorithmSize digestSizes[numberOfAlgorithms]
 // array/ of value pairs
 UINT8 vendorInfoSize; // FF is maximum
 UINT8 vendorInfo[VendorInfoSize]; // Vendor specific
} TCG_EfiSpecIDEventStruct;

typedef struct {
 UINT16 algorithmId;
 UINT16 digestSize;
} TCG_EfiSpecIdEventAlgorithmSize;

The digest of this record MUST NOT be extended into any PCR.

Bit9 in the capabilities field of ACM Info Table ACMInfoTable.Capabilities[9] added to
declare format of supported event log – see Table 4 with this revision of specification
is always forced to “1”.

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 153

 Events Types
The following event types are defined for SINIT event logging. Events for legacy PCR
mapping (LG) are removed from the table.

For brevity of description the following equation – Digest = HashHashAlgId (EventData)
shall be read as TPML_DIGEST_VALUES structure filled with respective number of
hashes corresponding to HashAlgIds of all PCR banks.

Bit 2 (PCR18_Extends) of the PolEltControl field in LCP_MLE_ELEMENT2 impacts how
some of the events are extended.

Table 37. Event Types

Event Type Value Digest and Event PCR Comments

EVTYPE_BASE (EB) 0x400 Base of TXT event types N/A
EVTYPE_PCR_MAPPING EB +

1
Digest=
ZeroDigestHashAlgIDSize
EventData=Selected PCR
Mapping DWORD
EventData=0 if using
legacy PCR Mapping;
EventData=1 if using D/A
mapping.
EventDataSize = 4

0xFF

Not extended –
informative only.
Since LG mapping is
not supported this
event is reserved.
ZeroDigestHashAlgIDSize is
the array of 0x00
bytes with a size
corresponding to a
hash algorithm.
ZeroDigest20 is array
of 20 0x00 bytes

EVTYPE_HASH_START EB +
2

Digest=HashHashAlgID
(EventData)
EventData=SinitHash +
EDX
EventDataSize = 36.

17 EventData is SINIT
Hash and EDX value
stored during SINIT
authentication process
in ACM header scratch
area.

EVTYPE_MLE_HASH EB +
4

Digest= HashHashAlgID
(MLE)
EventData=EmptyBuffer
EventDataSize=0

17 EmptyBuffer is a zero
length array of bytes

EVTYPE_BIOSAC_REG
_DATA

EB +
10

Digest= HashHashAlgID
(EventData)
EventData=BIOS AC
Registration Data
EventDataSize=32

17 TPM 2.0:
EventData are 32
bytes of data stored
in AUX index,
uniquely identifying
BIOS ACM.

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
154 Document Number: 315168-017

Event Type Value Digest and Event PCR Comments

EVTYPE_CPU_SCRTM
_STAT

EB +
11

Digest= HashHashAlgID
(EventData)
EventData=CPU SCRTM
status DWORD
EventData=0 if SCRTM
was established by BIOS;
EventData=1 if SCRTM
was established by CPU

EventDataSize = 4

17 & 18 TPM 2.0

EVTYPE_LCP_CONTROL
_ HASH

EB +
12

Digest = HashHashAlgID
(EventData)
EventData = LCP
PolControl DWORD
EventDataSize=4

17 &18 EventData is effective
PolControl derived
from TPM PO Index.
If index does not exist
PolControl=0

EVTYPE_ELEMENTS
_HASH

EB +
13

N/A N/A Reserved in TPM2.0
mode

EVTYPE_STM_HASH EB +
14

If STM is present
Digest=HashHashAlgID
(STM)
If STM is not present
Digest= HashHashAlgID
(0x00)
EventData=Empty buffer
EventDataSize=0

17 If STM is not present,
hash of single byte
with zero value will be
measured instead

EVTYPE_OSSINITDATA_
CAP_HASH

EB +
15

Digest=HashHashAlgID
(EventData)
EventData=OsSinitData
Capabilities DWORD
EventDataSize=4

17 & 18 EventData is
capabilities DWORD
passed to SINIT by
MLE Preamble

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 155

Event Type Value Digest and Event PCR Comments

EVTYPE_SINIT
PUBKEY HASH

EB +
16

Digest=HashHashAlgID
(PUBKEY_HASH)
EventData=EmptyBuffer
EventDataSize=0

17 or
18

PUBKEY_HASH is
digest of ACM Signer
key. It can be
retrieved from MSRs
0x20::0x23.
Note that MSR
numbers delivering
digest of signer key
are not architectural
and are not
guaranteed to be
stable across all
future platforms
If
LcpMleElement2.PolElt
Control[2] is 0 this
event is extended to
PCR18, else it is
extended to PCR17

EVTYPE_LCP_HASH EB +
17

N/A N/A Reserved in TPM2.0
mode

EVTYPE_LCP_DETAILS
_HASH

EB +
18

Digest= HashHashAlgID
(EventData)
EventData=
concatenation of digests
and policy controls of
matching policy
elements.
EventDataSize=
sizeof(EventData)
If policy evaluates to
ANY, Then
Digest= HashHashAlgID
(0x00)
EventData=0x00
EventDataSize=1

17 EventData is
concatenation of
policy controls and
digests of all
matching elements
contributed to
effective policy.
Analogous to event
type 13 but uses
different event
format.

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
156 Document Number: 315168-017

Event Type Value Digest and Event PCR Comments

EVTYPE_LCP
_AUTHORITIES_HASH

EB +
19

Digest= HashHashAlgID
(EventData)
EventData=
concatenation of list
descriptors containing
matching policy
elements.
EventDataSize=
sizeof(EventData)
If policy evaluates to
ANY, Then
Digest= HashHashAlgID
(0x00)
EventData=0x00
EventDataSize=1

18 EventData is
concatenation of list
description structures
of all lists containing
matching elements
contributed to
effective policy.
Analogous to event
type 17 but uses
different event
format.

EVTYPE_NV_INFO
_HASH

EB +
20

Digest= HashHashAlgID
(EventData)
EventData=array of
TPMS_NV_PUBLIC
structures of defined
indices.
EventDataSize=
sizeof(EventData)

17 & 18 EventData is
concatenation of
TPMS_NV_PUBLIC
structures of all
defined TPM NV
indices (AUX & PO).

EVTYPE_COLD_BOOT
_BIOS_HASH

EB +
21

Digest= HashHashAlgID (S-
BIOS)
EventData=”TXT cold
boot BIOS”
EventDataSize=
sizeof(EventData)

17 S-BIOS is Early TXT
BIOS verified &
measured by S-ACM.
TPML_DIGEST
_VALUES structure
extended to PCR is
populated by digests
taken either from BPM
or AUX index.
EventData is string
“TXT cold boot BIOS”

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 157

Event Type Value Digest and Event PCR Comments

EVTYPE_KM_HASH EB +
22

Digest= HashHashAlgID (Key
Manifest Signature)
EventData=”Key Manifest
signature”.
EventDataSize=
sizeof(EventData)

17 Digest is analogous to
the above entry, but
hashed object is
signature of key
manifest.
EventData is string
“Key Manifest
signature”

EVTYPE_BPM_HASH EB +
23

Digest= HashHashAlgID
(Boot Policy Manifest
signature).
EventData=”Boot Policy
Manifest signature”.
EventDataSize=
sizeof(EventData)

17 Digest is analogous to
the above entry, but
hashed object is
signature of boot
policy manifest.
EventData is string
“Boot Policy Manifest
signature”

EVTYPE_KM_INFO
_HASH

EB +
24

Digest= HashHashAlgID
(EventData)
EventData=Key Manifest
descriptor.
EventDataSize=
sizeof(EventData)

18 or
skipped

Digest is analogous to
the above entry, but
hashed object is key
manifest descriptor.
EventData is the key
manifest descriptor
If
LcpMleElement2.PolElt
Control[2] is 0 this
event is extended to
PCR18, else it is not
created

EVTYPE_BPM_INFO
_HASH

EB +
25

Digest= HashHashAlgID
(EventData)
EventData=Boot Policy
Manifest descriptor.
EventDataSize=
sizeof(EventData)

18 or
skipped

Digest is analogous to
the above entry, but
hashed object is boot
policy manifest
descriptor
EventData is the boot
policy manifest
descriptor.
If
LcpMleElement2.PolElt
Control[2] is 0 this
event is extended to
PCR18, else it is not
created

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
158 Document Number: 315168-017

Event Type Value Digest and Event PCR Comments

EVTYPE_BOOT_POL
_HASH

EB +
26

Digest= HashHashAlgID
(EventData)
EventData=
ACM_POLICY_STATUS
register.
EventDataSize =
sizeof(EventData)

17 Digest is analogous to
the above entry, but
hashed object is
ACM_POLICY
_STATUS register.
EventData is QWORD
register LT 0x378

EVTYPE_FBM_HASH EB +
27

Digest= HashHashAlgID (FSP
Boot Manifest).

EventData = ”FSP Boot
Manifest signature”

EventDataSize =
sizeof(EventData)

18 Digest is analogous to
the above entry, but
hashed object is the
signature of the FSP
Boot Manifest.
EventData is string
“FSP Boot Manifest
signature”

EVTYPE_FBM_INFO_
HASH

EB +
28

Digest = HashHashAlgID
(EventData).

EventData = FSP Boot
Manifest Descriptor

EventDataSize =
sizeof(EventData)

17 or
18

Digest is analogous to
the above entry, but
hashed object is FSP
Boot Manifest
Descriptor.
If
LcpMleElement2.PolElt
Control[2] is 0 this
event is extended to
PCR18, else it is
extended to PCR17

EVTYPE_RANDOM
_VALUE

EB +
254

Digest= HashHashAlgId
(EventData)
EventData = YYMMDDW
EventDataSize = 4

17 & 18 Caps PCR value.
Executed as part of
NPW module only.
YYMMDDWW are
concatenated RTC
bytes representing
year, month, day of
the month and day of
the week respectively.

TPM Event Log

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 159

Event Type Value Digest and Event PCR Comments

EVTYPE_CAP_VALUE EB +
255

Digest= OneDigest 17 & 18 Caps PCR value if
digest cannot be
computed due to
limited embedded SW
capabilities. No real
event log entry will be
created for this
action.
OneDigest is
sequence of bytes:
01,00,00…00 with a
total size equal to
HashAlgId_DIGEST_S
IZE of the capped
TPM bank

§§

ACM Hash Algorithm Support

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
160 Document Number: 315168-017

 ACM Hash Algorithm Support

 Supported Hash Algorithms
ACM support will be not restricted to fixed set of hash algorithms. Instead, it will
support a variable list of algorithms which may include any algorithms supported by
TPM 2.0 specification limited only by PRD, space and supporting libraries, and defined
on by-project bases.

List of currently supported algorithms is presented in 3.2.5

 Hash Algorithm Lists
Based on the list of TPM 2.0 supported algorithms the ACM creates the following lists
of hash algorithms for different usages:

– TPM_HashAlgIDList - list of TPM supported HashAlgIDs. This is the list of all
HashAlgIDs supported by given entity of the TPM device. Determined
dynamically at run time;

– PCR_HashAlgIDList - list of HashAlgIDs for which given specimen of TPM
device implements dynamic PCRs 17 & 18. Determined dynamically at run
time;

– ACM_HashAlgIDList - list of ACM Supported HashAlgIDs. This is the list of
HashAlgIDs supported by ACM via embedded SW. It is established at ACM
build time and reported via ACM Info Table – see Table 17

– Lcp_HashAlgIDList - List of LCP prescribed HashAlgIDs. This is the list stored
in PO TPM NV index by Platform Owner. This list is described below.

 Hash Algorithm List Subsets
ACM will detect content of all four HashAlgID Lists:
1. TPM_HashAlgIDList will be detected querying of TPM capabilities.
2. PCR_HashAlgIDList will be created as a subset of TPM_HashAlgIDList.

PCR_HashAlgIDList may not coincide with TPM_HashAlgIDList because “TPM
Library specification for TPM family 2.0” allows empty PCR banks.

3. ACM_HashAlgIDList is defined by ACM build options.
4. Lcp_HashAlgIDList – will be read from PO index. This list will represent Platform

Policy.

ACM Hash Algorithm Support

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 161

Figure 9. Hash Algorithm List Selection

Based on the above lists, ACM will create a few derivative lists to handle permissible
hashing while performing LCP enforcement:

– EFF_HashAlgIDList = (ACM_HashAlgIDList U TPM_HashAlgIDList) ∩
LCP_HashAlgIDList
This list contains all hashes supplied by all crypto-engines available for ACM –
embedded SW and TPM intersected with effective Platform Policy mask. This
list will be used to enforce LCP policy represented by MLE, and STM elements.

Note: Current implementation of ACM does not use TPM based hashing commands and
therefore TPM_HashAlgId list for practical purposes can be considered empty.

– LCP policy enforcement represented by PCONF elements will be as follows:
o PCR Selection used by PCONF element will be limited only by PCR banks

supported by given TPM i.e. by PCR_HashAlgIDList;
o Hash algorithm used to compute composite digest will be handled by one

of two rules:
 If composite hash will be handled by TPM2_PolicyPCR command,

permissible algorithm will be one of supported by TPM and Platform
Policy i.e.
LCP_TPM_HashAlgIDList = TPM_HashAlgIDList ∩ LCP_HashAlgIDList.
This option #1 is currently supported by ACM and LCP tools.

 If composite hash will be computed by ACM SW, permissible
algorithm will be selected by EFF_HashAlgIDList.
This option #2 is a stretch goal.

– If PCR Extend Policy is selected to be MP, then
ACM_PCR_HashAlgIDList = ACM_HashAlgIDList ∩ PCR_HashAlgIDList list will
represent all extended PCR banks. All PCRs not included in this list will be
capped.

– If PCR Extend Policy is selected to be MA, then all TPM PCRs will be extended
and none will be capped.

§§

PCR Extend Policy = MA
Extended PCRsTP

M
_H

as
hA

lg
ID

Li
st

AC
M

_H
as

hA
lg

ID
Li

st

PC
R_

H
as

hA
lg

ID
Li

st PCR Extend Policy = MP
Extended PCRs

PCR Extend Policy = MP
Capped PCRs

LCP Elements:
MLE, STM, SBIOS

LC
P_

H
as

hA
lg

ID
Li

st

PCONF
Composite
Hash
Option 1

PCONF
Composite
Hash
Option 2

PCONF
PCR
Selection

ACM Error Codes

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
162 Document Number: 315168-017

 ACM Error Codes
After a successful measured launch, the TXT.ERRORCODE register will contain
0xC0000001 value. Failed launches leave other values in this register, which survive
warm resets and may be useful for diagnosis and remediation of the failure’s cause.

The tables below describe the format of this register as written during CPU-initiated
and ACM-initiated shutdowns.

Table of TXT.ERRORCODE values stable across ACM releases, available in prior
revisions of this document, has been removed as proven to have little value. Instead,
Intel will provide an “Error Code” tool accompanied by an Excel spreadsheet and CSV
file as part of SINIT release kit. Both will contain error values and relevant
descriptions matching released SINIT ACM.

Note: Excel spreadsheet is saved in CSV format to speed-up browsing.

Release kits for released SINITs can be found at Intel® Trusted Execution Technology
(TXT) for Client Platforms.

Table 38. General TXT.ERRORCODE Register Format

Bit Name Description

31 Valid Valid error when set to 1. The rest of the register contents should be
ignored if '0'.

30 External 0 – induced by processor, 1 – induced by external software.

29:16 Type1 Implementation and source specific

15 SW
source

0 – ACM; 1 – MLE

14:0 Type2 Implementation and source specific. Provides details about cause of
shutdown.

Table 39. TXT.ERRORCODE Register Format for CPU-initiated TXT-shutdown

Bit Name Value / Error

31 Valid 1

30 External 0

29:24 Reserved 0

23:16 Extended
value

All errors except #0x10 == 0
Error #0x10 = ACM SVN

15 Reserved 0

14:0 Type2 0 = Legacy shutdown (non-TXT-specific).

 1 – 4 = Reserved

 5 = Authenticated RAM load memory type error

 6 = Unrecognized AC module format

http://software.intel.com/en-us/articles/intel-trusted-execution-technology
http://software.intel.com/en-us/articles/intel-trusted-execution-technology

ACM Error Codes

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 163

Bit Name Value / Error

 7 = Failure to authenticate

 8 = Invalid AC module format

 9 = Unexpected snoop hit detected

 0xA = Illegal event or IllegalProcessorState – collection of various
illegal causes.

1. A CPU reset occurs during AC-mode or post-SENTER and
LT.E2STS[RESET.STS] == 0 (I.E. reset was not caused by an LT-
shutdown).

2. A non-virtualized INIT event occurs while post-SENTER.

3. LTSX only: During RLP WAKEUP, the RPL thread’s value of MSR bit
IA32_SMM_MONITOR_CTL[0] (aka MSEG valid) does not match
the ILP thread’s value.

4. An SENTER, SEXIT, or WAKEUP doorbell is received while post-
VMXON.

5. A thread wakes from wait-for-SIPI while some other thread in the
same package is in AC-mode.

#1 is by far the most common observed in post-Si debug.

 0xB = Invalid JOIN format

 0xC = Unrecoverable machine check condition

 0xD = VMX abort

 0xE = AC memory corruption

 0xF = Illegal voltage/bus ratio

 0x10 = Low SGX security level post 1st SGX instruction:

 0x11-0xFFFF = Reserved

Table 40. TXT.ERRORCODE Register Format for ACM-initiated TXT-shutdown

Bit Name Description

31 Valid Valid error when set to 1. The rest of the register contents should be
ignored if '0'.

30 External = 1– induced by external software.

29:28 Type1 /
Reserved

Free for specific implementation

27:16 Type1 /
Minor Error
Code

Field value depends on Class Code and / or Major Error Code. Several
examples are:

1. If Class Code = “TPM Access” and
Major Error Code = “TPM retuned an error” –
Field value = TPM 2.0 returned error code

TPM returned error code is posted as is.
2. If Class Code = “Launch Control Policy and

Major Error Code = “Policy Integrity Fail” –
Field value = (LIST_INDEX << 6) + Specific Minor Error Code

ACM Error Codes

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
164 Document Number: 315168-017

Bit Name Description

3. If Class Code = “Range Check Error” –
Field value = Index of first range in conflict with another range
according to Project Range Table.

15 SW source 0 = ACM; 1 = MLE

14:10 Type2 /
Major Error
Code

0 – 0x1F = Error code within current class code

9:4 Type2 /
Class Code

0 – 0x3F = Class code clusters several congeneric errors into a group.

3:0 Type2 /
Module
Type

0 = BIOS ACM
1 = SINIT

§§

TPM NV

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 165

 TPM NV
Table 41. TPM Family 2.0 NV Storage Matrix

Name Label Index
Value Description Public Size in

bytes
Attributes
TPMA_NV_

Auth
Value

Auth
Policy

Locality
Write

Locality
Read

Locality
Delete

LCP
Platform
Owner

PO 0x1C1_0106
NOTE3

LCP Structure
for Platform
Owner

Platform Specific
Size: >= 38 +
HASHALGID_DIG
EST_SIZE Note 1

OWNERWRITE
POLICYWRITE
AUTHREAD
NO_DA

Empty
Buffer

Owner
policy

Any,
controlled
by Owner
choice

Any Any,
controlled
by Owner
choice

Launch
Auxiliary

AUX 0x1C1_0102

NOTE3
Inter –
module mail
box
BIOSAC
registration
data

Size: 118
bytes NOTE5

POLICYWRITE
POLICY_DELETE
WRITE_STCLEAR
AUTHREAD
NO_DA
PLATFORMCREATE

Empty
Buffer

Fixed
policy
Note 2

3 or 4 Any 3 or 4

SGX SVN SGX 0x1C1_0104
NOTE3

BIOS – MLE
mail box.
Value of
SINIT SVN
and flags

Platform Specific
Size: 8

AUTHWRITE
POLICY_DELETE
AUTHREAD
NO_DA
PLATFORMCREATE

Empty
Buffer

OEM
policy

Any Any Any,
controlled
by OEM
policy

Note: HASHALGID_DIGEST_SIZE is the size of the digest of respective hash algorithm used to store data in the index.
Respective sizes in bytes for all used algorithms are:

- SHA1_DIGEST_SIZE = 20
- SHA256_DIGEST_SIZE = 32
- SM3_256_DIGEST_SIZE = 32
- SHA384_DIGEST_SIZE = 48

Note: Policy digest must match the following:
- Let policy A to be:

A = TPM2_PolicyLocality (Locality 3 & Locality 4)
- Let policy B to be:

B = TPM2_PolicyCommandCode (TPM_CC_NV_UndefineSpecial)

TPM NV

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 166

- AuthPolicy can be computed as:
authPolicy = {A} OR {{A} AND {B}}

Note: TXT used index handles selected from 0x180_xxxx and 0x140_xxxx ranges based on early version of TCG “Registry of
reserved TPM 2.0 handles and localities” and TXT legacy. Later revision of TCG registry repurposed the above ranges creating
mismatch between TXT practice and normative TCG document. Moreover, selection of TXT related NV index handles from the ranges
assigned to OEMs and Users does not guarantee its conflict free usage. To address both issues Intel requested TCG to assign “Intel
Reserved” range of indices 0x1C1_0100 - 0x1C1_013F for TXT and other purposes out of range 0x1C1_xxxx reserved for component
vendors.

Note: TXT ACMs will support only 0x1C1_xxxx index set. Indication of supported set is provided via TPM capabilities – see Table 18
but will always be forced to “1”.

Note: The AUX index size is typically 118 bytes, but due to its size being platform-dependent this value could be changed at Intel’s
discretion.

§§

Detailed LCP Checklist

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 167

 Detailed LCP Checklist

 Policy Validation Checklist
The following checks must be performed by the LCP Policy Engine to validate LCP data
integrity:

 TPM NV AUX Index
1. Index must be provisioned.
2. Index attributes must be per Table 41.
3. nameAlg hashing algorithm must have at least 256-bit digest e.g. be either

SHA256 / SM3 or stronger.
4. Size must be per Table 41.
5. Read AUX index data and analyze content.
6. Additional verification steps can be added since AUX index content is platform

specific.

 TPM NV PO Index
1. Index may be provisioned.
2. Index attributes must be per Table 41.
3. nameAlg hashing algorithm must have at least 256-bit digest e.g. be either

SHA256 / SM3 or stronger
4. Read PO index data and analyze content.
5. PO.Version must be per 3.2.1.
6. PO.HashAlg must be one of the supported algorithms per 3.2.5
7. PO.HashAlg must be permitted by PO.LcpHashAlgMask.
8. Size must be per Table 41 for TPM 2.0 index. Size of PO.PolicyHash field must

be equal digest size of PO.HashAlg field.
9. PO.PolicyType must be either LCP_POLTYPE_LIST or LCP_POLTYPE_ANY – see

3.2.1.
10. PO.SinitMinVersion must be not greater than value of AcmVersion field in

Table 10.
11. Algorithms corresponding to set bits in PO.LcpHashAlgMask and

PO.LcpSignAlgMask must be supported by ACM per 3.2.5.

 NPW Mode
Detect whether system in NPW mode and is allowed to run:

1. System is in NPW mode if:
a. NPW bit is asserted in Flags field of SINIT header or
b. Startup ACM ACM_SVN value is < 2 or
c. If AUX index Startup ACM self-registration area is in initial TPM NV

state (“All zeros”).

Detailed LCP Checklist

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
168 Document Number: 315168-017

2. If system is in NPW mode PolicyControl.NPW_OK bit must be asserted – see
3.2.1.

3. If PO index is undefiled, and platform is in NPW mode, SINIT must abort
execution.

 Policy Data File
1. If PO.PolicyType is LCP_POLTYPE_LIST, then respective PO Policy Data File

must exist and be accessible.

 PO Policy Data File if exists
1. Loop through all lists as indicated by File.NumberOfLists value
2. Validate signature of each of the lists:

a. If list is unsigned – skip to step 3 computation of list digest.
b. If list is signed but signature is not supported by Policy Engine – abort

since this prevents validation of data integrity.
c. If list is signed and signature is supported – validate signature. Supported

signature algorithms are listed in Appendix D.3.1.
3. Compute the digest of the list:

a. For unsigned list compute digest as ListDigest[ListNumber] = PO.HashAlg
(ListData), where PO.HashAlg is hashing algorithm in PO index per
Appendix D.1 and hashing is performed over entire unsigned list data.

b. For signed list compute digest as ListDigest[ListNumber] = PO.HashAlg
(ListPublicKey), where PO.HashAlg is hashing algorithm in PO index per 0
and ListPublicKey is either PublicKey field of RSASSA signature or
concatenation of Qx|Qy public key components fields of SM2/ECDSA
signature – signature formats are in Appendix D.3.1.

4. Compute digest of entire PO Policy Data File by concatenation of all digests of
individual lists and hashing it once more using the same PO.HashAlg e.g.
PO.PolicyDataFileDigest = PO.HashAlg(List0Digest[0]|…|ListDigest[N])

5. Computed PO.PolicyDataFileDigest file digest must match value of PO.PolicyHash
field of PO index.

 PO Policy Data File List Integrity
1. List.Version must be per Appendix D.3.2.
2. Loop through all elements of the list and sum-up their sizes. Obtained value

must match File.PolicyElementsSize field value. Empty list with a
File.PolicyElementsSize == 0 is a valid placeholder. It must contain no
elements.

3. Validate hash algorithms used by elements. Scan through all elements in list
while checking their Elt.HashAlgorithm values. Abort if any is not supported by
ACM per 0. Scan only supported style elements.

4. Verify that Count field of TPMS_QUOTE_INFO structure which is part of PCONF
element definition equals 1.

5. If list is signed check the List.RevocationCounter value. If it is lesser than
PO.DataRevocationCounter [ListNumber] abort with error. ListNumber here is
the orderly list number in the Policy Data File.

Detailed LCP Checklist

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 169

 Policy Enforcement Checklist

 Policy type handling by SINIT
1. For SINIT module: if PO.PolicyType equals to LCP_POLTYPE_ANY, allow any

platform configuration and any MLE and STM to run. Exit policy enforcement
logic.

 MLE Element Enforcement
1. Start of MLE element scan. Process lists and elements in the lists in the order

of appearance. Look for MLE elements. Skip all other element types.
a. Scan all lists only looking for supported MLE elements.

i. If list is signed and List.SignatureAlgorithm is not permitted by
PO.LcpSignAlgMask, skip the list.

2. Start of matching loop.
a. For every MLE type element found do the following:

i. Check HashAlgorithm field against PO.LcpHashAlgMask value. If not
permitted by a mask skip element.

ii. Indicate MLE element present: record MLE_MATCH_REQUIRED flag;
iii. Try to match element:

1. Scan through all digests in element digest array comparing digest
with computed MLE digest. It is assumed that MLE digest has been
calculated before LCP execution flow.

2. If match is found
a. Check the value of Elt.SinitMinVersion field. It must be not

greater than value of AcmVersion field in Table 10. If greater
abort with error – SINIT is revoked.

b. Check PolEltControl.STM_is_required bit of matching element.
If asserted but previous execution has not found STM present,
exit with error.

c. Save value of PolEltControl.PCR_Extends bit – it will be
consumed outsize of LCP content by a PCR 18 extend code.

d. MLE policy is satisfied - continue to the next element type.
3. If match is not found yet – continue to the “Start of matching

loop”.
3. End of matching loop.
4. If this point is reached – no match was found.

a. If MLE_MATCH_REQUIRED_FLAG is asserted – exit with error.
b. MLE_MATCH_REQUIRED_FLAG is de-asserted, assumed MLE policy is

satisfied – continue to the next element type.

 PCONF Element Enforcement
1. Start of PCONF element scan. Process lists and elements in the lists in the

order of appearance. Look for PCONF elements. Skip all other element types.
a. Scan all lists only looking for TPM 2.0 style PCONF elements.

Detailed LCP Checklist

Intel® Trusted Execution Technology (Intel® TXT)
Software Development Guide October 2025
170 Document Number: 315168-017

i. If list is signed and List.SignatureAlgorithm is not permitted by
PO.LcpSignAlgMask, skip the list.

2. Initialize variable. Set PCONF_MATCHES_FOUND = 0
3. Start of matching loop PASS 1.

a. For every PCONF type element found do the following:
i. Check HashAlgorithm field against PO.LcpHashAlgMask value. If not

permitted by a mask skip element.
ii. Indicate PCONF element present: record

PCONF_MATCH_REQUIRED_FLAG_PASS_1
iii. Try to match element.

1. Scan through all PCRInfos structures in element array, query PCRs
according to PCR Selection structure and compute relevant
Composite Digest of selected PCR values.

2. Then compare this digest to value stored in element’s PCRInfo
structure.

3. If match is found – increment PCONF_MATCHES_FOUND

a. If PO.PolicyControl.Pconf_Enforced bit is de-asserted, assumed
PCONF policy is satisfied – continue to the next element type

b. If PO.PolicyControl.Pconf_Enforced bit is asserted
i. Skip rest of elements in current list and go to the next list.
ii. Then go to the “Start of PO matching loop PASS 2”

4. If match is not found yet – continue to the “Start of PO matching
loop PASS 1”

4. End of matching loop PASS 1
5. Start of matching loop PASS 2.

a. Repeat all steps of “Matching loop PASS 1” above with the following
changes:
i. If PCONF element is found, record it in

PCONF_MATCH_REQUIRED_FLAG_PASS_2
ii. After match is found and PCONF_MATCHES_FOUND is incremented
1. If PCONF_MATCHES_FOUND == 2, PCONF policy is satisfied –

continue to the next element type
iii. If match is not found yet – continue to the “Start of matching loop

PASS 2”
6. End of matching loop PASS 2
7. At this point either singe or two matching passes were executed

a. If PO.PolicyControl.Pconf_Enforced bit is de-asserted
i. If PCONF_MATCH_REQUIRED_FLAG_PASS_1 is de-asserted, assumed

PCONF policy is satisfied – continue to the next element type.
ii. Else PCONF_MATCH_REQUIRED_FLAG_PASS_1 is asserted - exit with

error.
b. If PO.PolicyControl.Pconf_Enforced bit is asserted. Only one special

configuration entails an error – all other are successes.

Detailed LCP Checklist

Intel® Trusted Execution Technology (Intel® TXT)
October 2025 Software Development Guide
Document Number: 315168-017 171

i. If PCONF_MATCH_REQUIRED_FLAG_PASS_1 == 1 and
PCONF_MATCH_REQUIRED_FLAG_PASS_2 == 1 and
PCONF_MATCHES_FOUND == 1 – exit with error.

ii. Else assumed PCONF policy is satisfied – continue to the next element
type.

 STM Element Enforcement
1. If prior execution has not found STM in the system – (based on MSEG enable

status – see Table 32) scan of STM elements is not performed. Only if matching
MLE element requires STM this will generate an error exit – see Appendix J.2.2.

2. Start of STM element scan. Process lists and elements in the lists in the order of
appearance. Look for STM elements. Skip all other element types.
a. Scan all lists only looking for TPM 2.0 style STM elements.

i. If list is signed and List.SignatureAlgorithm is not permitted by
PO.LcpSignAlgMask, skip the list.

3. Start of matching loop
a. For every STM type element found do the following:

i. TPM 2.0: Check HashAlgorithm field against PO.LcpHashAlgMask value.
If not permitted by a mask skip element

ii. Indicate STM element present: record STM_MATCH_REQUIRED flag
iii. Try to match element:

1. Scan through all digests in element digest array comparing digest
with computed STM digest. It is assumed that STM digest has been
calculated before LCP execution flow.

2. If match is found, STM policy is satisfied – continue to the next task.
This is the last element type

3. If match is not found yet – continue to the “Start of matching loop”
4. End of matching loop
5. If this point is reached – no match was found.

a. If STM_MATCH_REQUIRED_FLAG is asserted - exit with error since no match
was found

6. STM_MATCH_REQUIRED_FLAG is de-asserted, assumed STM policy is satisfied –
continue to the next task. This is the last element type

§§

	1 Overview
	1.1 Measurement and Intel® Trusted Execution Technology (Intel® TXT)
	1.2 Dynamic Root of Trust
	1.2.1 Launch Sequence

	1.3 Storing the Measurement
	1.4 Controlled Take-down
	1.5 SMX and VMX Interaction
	1.6 Authenticated Code Module
	1.7 Chipset Support
	1.8 TPM Usage
	1.9 Hash Algorithm Support
	1.10 PCR Usage
	1.10.1 Legacy Usage
	1.10.2 Details and Authorities Usage
	1.10.2.1 PCR 17 (Details)
	1.10.2.2 PCR 18 (Authorities)

	1.11 DMA Protection
	1.11.1 DMA Protected Range (DPR)
	1.11.2 Protected Memory Regions (PMRs)
	1.11.3 TXT DMA Protection Ranges (TPR)

	1.12 Intel® TXT Shutdown
	1.12.1 Reset Conditions

	2 Measured Launched Environment
	2.1 MLE Architecture Overview
	2.2 MLE Launch
	2.2.1 Intel® TXT Detection and Processor Preparation
	2.2.2 Detection of Previous Errors
	2.2.3 Loading the SINIT AC Module
	2.2.3.1 Matching an AC Module to the Platform
	2.2.3.2 Verifying Compatibility of SINIT with the MLE

	2.2.4 Loading the MLE and Processor Rendezvous
	2.2.4.1 Loading the MLE
	2.2.4.2 Intel® Trusted Execution Technology Heap Initialization
	2.2.4.3 DMA protection capability handling
	2.2.4.4 Rendezvousing Processors and Saving State

	2.2.5 Performing a Measured Launch
	2.2.5.1 MTRR Setup Prior to GETSEC[SENTER] Execution
	2.2.5.2 Selection of Launch Capabilities
	2.2.5.3 TPM Preparation
	2.2.5.4 Intel® Trusted Execution Technology Launch

	2.3 MLE Initialization
	2.4 MLE Operation
	2.4.1 Address Space Correctness
	2.4.2 Address Space Integrity
	2.4.3 Physical RAM Regions
	2.4.4 Intel® Trusted Execution Technology Chipset Regions
	2.4.4.1 Intel® Trusted Execution Technology Configuration Space
	2.4.4.2 Intel® Trusted Execution Technology Device Space

	2.4.5 Device Assignment
	2.4.6 Protecting Secrets
	2.4.7 Model Specific Register Handling
	2.4.8 Interrupts and Exceptions
	2.4.9 ACPI Power Management Support
	2.4.9.1 T-state Transitions
	2.4.9.2 P-State Transitions
	2.4.9.3 C-State Transitions
	2.4.9.4 S-State Transitions
	2.4.9.4.1 S3

	2.4.10 Processor Capacity Addition (aka CPU Hotplug)

	2.5 MLE Teardown
	2.6 Other Considerations
	2.6.1 Saving MSR State across a Measured Launch

	3 Verifying Measured Launched Environments
	3.1 Overview
	3.1.1 Versions of LCP Components

	3.2 LCP Components. General provisions
	3.2.1 LCP Policy
	3.2.1.1 PolicyHash Field for LCP_POLTYPE_LIST

	3.2.2 LCP Policy Data
	3.2.3 LCP Policy Element
	3.2.4 Signed Policies
	3.2.5 Supported Cryptographic Algorithms
	3.2.5.1 RSASSA, RSAPSS, and ECDSA
	3.2.5.2 SM2
	3.2.5.3 LMS
	3.2.5.4 List Signatures

	3.3 Policy Engine Logic
	3.3.1 Policies
	3.3.2 Processing of Policy Data Files
	3.3.2.1 Integrity Verification
	3.3.2.2 Policy Enforcement

	3.4 Measuring the Enforced Policy
	3.4.1 No Policy Data and Allow Any Policy
	3.4.2 Policy with LCP_POLICY_DATA
	3.4.3 Effective Policies
	3.4.3.1 Effective LCP Policy Details
	3.4.3.2 Effective LCP Policy Authorities

	3.4.4 Effective TPM NV info Hash

	3.5 TPM NV RAM
	3.5.1 Auxiliary Index
	3.5.2 Platform Owner Index
	3.5.3 nameAlg Support

	3.6 PCR Extend Policy
	3.6.1 SINIT Policy Selection

	3.7 Revocation
	3.7.1 SINIT Revocation

	4 Development and Deployment Considerations
	4.1 Launch Control Policy Creation
	4.2 Launch Errors and Remediation
	4.3 Determining Trust
	4.3.1 Migration of SEALed Data

	4.4 Deployment
	4.4.1 LCP Provisioning
	4.4.1.1 TPM Ownership
	4.4.1.2 Policy Provisioning

	4.4.2 SINIT Selection

	4.5 SGX Requirement for TXT Platform
	4.6 Converged BtG/TXT impact on TXT Platform

	A Authenticated Code Modules
	A.1 Authenticated Code Module Format
	A.1.1 ACM Header format
	A.1.2 ACM Information Table format
	A.1.3 Flexible ACM Information Table format
	A.1.3.1 ACM Version Information list
	A.1.3.2 Chipset ID list
	A.1.3.3 Chipset 2 ID list
	A.1.3.4 Processor ID list
	A.1.3.5 TPM information list
	A.1.3.6 Terminator list

	A.2 Memory Type Cacheability Restrictions
	A.3 Authentication and Execution of AC Module

	B SMX Interaction with Platform
	B.1 Intel® Trusted Execution Technology Configuration Registers
	B.1.1 TXT.STS – Status
	B.1.2 TXT.ESTS – Error Status
	B.1.3 TXT.ERRORCODE – Error Code
	B.1.4 TXT.CMD.RESET – System Reset Command
	B.1.5 TXT.CMD.CLOSE-PRIVATE – Close Private Space Command
	B.1.6 TXT.SPAD – BOOTSTATUS
	B.1.7 TXT.DIDVID – TXT Device ID
	B.1.8 TXT.VER.EMIF – EMC Version Numer Register
	B.1.9 TXT.CMD.UNLOCK-MEM-CONFIG – Unlock Memory Config Command
	B.1.10 TXT.SINIT.BASE – SINIT Base Address
	B.1.11 TXT.SINIT.SIZE – SINIT Size
	B.1.12 TXT.MLE.JOIN – MLE Join Base Address
	B.1.13 TXT.HEAP.BASE – TXT Heap Base Address
	B.1.14 TXT.HEAP.SIZE – TXT Heap Size
	B.1.15 TXT.DPR – DMA Protected Range
	B.1.16 TXT.SCRATCHPAD – ACM_POLICY_STATUS
	B.1.17 TXT.CMD.OPEN.LOCALITY1 – Open Locality 1 Command
	B.1.18 TXT.CMD.CLOSE.LOCALITY1 – Close Locality 1 Command
	B.1.19 TXT.CMD.OPEN.LOCALITY2 – Open Locality 2 Command
	B.1.20 TXT.CMD.CLOSE.LOCALITY2 – Close Locality 2 Command
	B.1.21 TXT.PUBLIC.KEY – AC Module Public Key Hash
	B.1.22 TXT.DIDVID2 - TXT Device ID 2
	B.1.23 TXT.CMD.SECRETS – Set Secrets Command
	B.1.24 TXT.CMD.NO-SECRETS – Clear Secrets Command
	B.1.25 TXT.E2STS – Extended Error Status

	B.2 TPM Platform Configuration Registers
	B.3 Intel® Trusted Execution Technology Device Space

	C Intel® TXT Heap Memory
	C.1 Extended Data Elements
	C.1.1 HEAP_END_ELEMENT
	C.1.2 HEAP_CUSTOM_ELEMENT
	C.1.2.1 Benchmarking element

	C.2 BIOS Data Format
	C.2.1 HEAP_BIOS_SPEC_VER_ELEMENT
	C.2.2 HEAP_ACM_ELEMENT
	C.2.3 HEAP_STM_ELEMENT

	C.3 OS to MLE Data Format
	C.4 OS to SINIT Data Format
	C.4.1 HEAP_EVENT_LOG_POINTER_ELEMENT2_1
	C.4.2 HEAP_TPR_REQ_ELEMENT

	C.5 SINIT to MLE Data Format
	C.5.1 HEAP_MADT_ELEMENT
	C.5.2 HEAP_MCFG_ELEMENT
	C.5.3 HEAP_DTPR_ELEMENT
	C.5.4 HEAP_CEDT_ELEMENT
	C.5.5 Registry of Extended Heap Elements

	D LCP Data Structures
	D.1 LCP Policy
	D.1.1 Policy Control
	D.1.2 LCP_POLICY2

	D.2 LCP_POLICY_DATA
	D.3 LCP Policy List
	D.3.1 List Signatures
	D.3.1.1 LCP_SIGNATURE2 structure
	D.3.1.2 LCP_SIGNATURE2_1 structure

	D.3.2 List Structures
	D.3.2.1 LCP_POLICY_LIST2 Structure (Version 2.1)
	D.3.2.2 LCP_POLICY_LIST2_1 Structure (Version 3.0)
	D.3.2.3 LCP_LIST

	D.4 LCP_POLICY_ELEMENT
	D.4.1 Structure Endianness
	D.4.2 Generic Policy Element Structure
	D.4.3 LCP_CUSTOM_ELEMENT
	D.4.4 LCP_MLE_ELEMENT2
	D.4.5 LCP_PCONF_ELEMENT2
	D.4.6 LCP_STM_ELEMENT2

	D.5 NV AUX Index Data Structure

	E Platform State upon SINIT Exit and Return to MLE
	F TPM Event Log
	F.1 TPM 2.0 Event Log
	F.2 Events Types

	G ACM Hash Algorithm Support
	G.1 Supported Hash Algorithms
	G.2 Hash Algorithm Lists
	G.3 Hash Algorithm List Subsets

	H ACM Error Codes
	I TPM NV
	J Detailed LCP Checklist
	J.1 Policy Validation Checklist
	J.1.1 TPM NV AUX Index
	J.1.2 TPM NV PO Index
	J.1.3 NPW Mode
	J.1.4 Policy Data File
	J.1.5 PO Policy Data File if exists
	J.1.6 PO Policy Data File List Integrity

	J.2 Policy Enforcement Checklist
	J.2.1 Policy type handling by SINIT
	J.2.2 MLE Element Enforcement
	J.2.3 PCONF Element Enforcement
	J.2.4 STM Element Enforcement

