

Revision 1.01
Order Number: 332060-002

Real Time Instruction Trace

Programming Reference

March 2015

March 2015

Real Time Instruction Trace
Programming Reference v1.01

2

© 2015 Intel Corporation. All Rights Reserved.

Intel Atom, Intel Core, Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or

retailer.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel

products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted

which includes subject matter disclosed herein.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT.

NTEL DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, AND NON-INFRINGEMENT.

The products described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained

by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

http://www.intel.com/design/literature.htm

Contents-Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

3

Table of Contents

LIST OF FIGURES ... 6

LIST OF TABLES .. 7

REVISION HISTORY .. 8

1 INTRODUCTION ... 9

1.1 OVERVIEW... 9
1.2 AVAILABILITY AND USE.. 10
1.3 FEATURES AND CAPABILITIES ... 11
1.4 USING THIS SPECIFICATION ... 12

2 RTIT OPERATIONAL MODEL ... 13

2.1 RTIT ENABLES ... 13
2.1.1 Trigger Enable (TriggerEn) .. 13
2.1.2 Context Enable (ContextEn) .. 13
2.1.3 Filter Enable (FilterEn) ... 14

2.2 CHANGE OF FLOW INSTRUCTION TRACING .. 14
2.2.1 Basic Blocks ... 14
2.2.2 Direct Transfer COFI... 14
2.2.3 Indirect Transfer COFI ... 15
2.2.4 Near JMP Indirect and Near Call Indirect ... 15
2.2.5 Near RET ... 15
2.2.6 Far Transfer COFI .. 16
2.2.7 Flow Control Packet Summary ... 18

2.3 TRACE OUTPUT ... 18
2.3.1 Debug Port ... 18

2.4 TRACE FILTERING ... 19
2.4.1 Filtering by Current Privilege Level (CPL) .. 19
2.4.2 Filter by CR3 .. 19
2.4.3 Filtering by IP .. 19

2.5 TRACE PROGRAMMING ... 20
2.5.1 Trace Example .. 20

2.6 INTERACTION WITH OTHER COMPONENTS ... 21
2.6.1 System Management Mode ... 21
2.6.2 Virtual Machine EXtensions .. 21

3 CONFIGURATION AND CONTROL .. 22

3.1 ENUMERATION .. 22
3.2 RTIT ACCESSIBILITY ... 22
3.3 CPU CONTROL AND MODEL-SPECIFIC REGISTERS ... 22

3.3.1 General MSR notes for RTIT .. 22
3.3.2 RTIT_CTL MSR .. 23
3.3.3 RTIT_STATUS MSR.. 26

Real Time Instruction Trace-Contents

Real Time Instruction Trace
Programming Reference v1.01

March 2015

4

3.3.4 RTIT_CNTP MSR ... 27
3.3.5 RTIT_EVENTS MSR .. 27
3.3.6 RTIT_LIP0-3 MSR .. 28
3.3.7 RTIT_LAST_LIP MSR ... 29
3.3.8 RTIT_CR3_MATCH MSR ... 29
3.3.9 RTIT_PKT_CNT MSR ... 30
3.3.10 RTIT_BASE_ADDR MSR ... 31
3.3.11 RTIT_LIMIT_MASK MSR... 31
3.3.12 RTIT_OFFSET MSR... 32
3.3.13 RTIT_TNT_BUFF MSR ... 32
3.3.14 RTIT_LAST_CALL_NLIP MSR .. 33

4 TRACE PACKETS AND DATA TYPES ... 34

4.1 TRACE PACKET SUMMARY .. 34
4.2 PACKET TYPES .. 35

4.2.1 Packet Stream Boundary (PSB) ... 35
4.2.2 TNT Packet ... 36
4.2.3 Target IP Packet ... 37
4.2.4 Flow Update Packet .. 42
4.2.5 Flow Update event: Buffer Overflow .. 43
4.2.6 Flow Update event: Packet Cycle Counter ... 45
4.2.7 Flow Update event: Packet Generation Enable .. 45
4.2.8 Flow Update event: Packet Generation Disable ... 46
4.2.9 Flow Update event: Far Transfer ... 46
4.2.10 Paging Information Packet (PIP) .. 47
4.2.11 TraceSTOP Packet .. 47
4.2.12 Mini Time Counter (MTC) Packet ... 48
4.2.13 Super Time Sync (STS) Packet ... 49
4.2.14 Cycle Count Packet .. 50
4.2.15 Cycle Accurate Mode ... 51

4.3 SYNCHRONOUS PACKETS ... 51
4.3.1 Packets sent out in various situations ... 52
4.3.2 Understanding Entering/Exiting Packet Enabled Region .. 56

4.4 ASYNCHRONOUS PACKET GENERATION .. 57

APPENDIX A: PROGRAMMING EXAMPLES .. 58

APPENDIX B: OPERATION CONSIDERATION ... 59

4.1 SLEEP STATES ... 59
4.1.1 C1/Halt/Shutdown sleep state .. 59
4.1.2 C2 sleep state ... 59
4.1.3 C4 sleep state ... 59
4.1.4 C6 and S0i1/S0i2/S0i3 sleep state ... 59

4.2 RE-ENABLING RTIT .. 59
4.2.1 Re-Enabling with Same Configuration ... 59
4.2.2 Re-Enabling with Different Output Region ... 60
4.2.3 Re-Enabling with Different Traced Region ... 60

APPENDIX C: BACKGROUND AND RELATED PROCESSOR MECHANISMS 61

Contents-Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

5

4.3 EXISTING DEBUG AND PERFORMANCE MONITORING .. 61
4.4 BREAK POINT .. 61
4.5 LBR/LER .. 61
4.6 PERFORMANCE MONITORING/PEBS ... 62
4.7 DS FOR BTS/PEBS .. 62
4.8 CR3 STATES... 62
4.9 VIRTUAL MACHINE EXTENSION ... 63

APPENDIX D: GLOSSARY AND REFERENCE ... 64

4.10 GLOSSARY ... 64
4.11 REFERENCE DOCUMENTS ... 66

APPENDIX E: ERRATA .. 67

Real Time Instruction Trace-Contents

Real Time Instruction Trace
Programming Reference v1.01

March 2015

6

List of Figures

FIGURE 1: REAL TIME INSTRUCTION TRACE OVERVIEW .. 10
FIGURE 3: RTIT PACKET HEADER LIST ... 34
FIGURE 4: PACKET STREAM BOUNDARY .. 36
FIGURE 5: TAKEN NOT TAKEN PACKET .. 37
FIGURE 6: TARGET IP PACKET ... 37
FIGURE 7: RETURN COMPRESSION WITHOUT NESTED CALLS ... 41
FIGURE 8: RETURN COMPRESSION WITH NESTED CALLS .. 42
FIGURE 9: FLOW UPDATE PACKET ... 43
FIGURE 10: PAGING INFORMATION PACKET ... 47
FIGURE 11: TRACESTOP PACKET ... 48
FIGURE 12: MINI TIME COUNTER PACKET .. 49
FIGURE 13: SUPER TIME SYNCH PACKET .. 50
FIGURE 14: CYCLE COUNT PACKET ... 50

Contents-Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

7

List of Tables

TABLE 1: IP TYPE IN VARIOUS PACKETS ... 17
TABLE 2: CLASSIFYING BRANCHES AND COFI .. 18
TABLE 3: RTIT TRACE EXAMPLE .. 20
TABLE 4: RTIT CTL CONTROL REGISTER ... 23
TABLE 5: CYCLE COUNTER .. 27
TABLE 6: RTIT FILTER ENABLE .. 27
TABLE 7. RTIT EVENT IDS ... 28
TABLE 8: RTIT LIP0-3 ADDRESS RANGE COMPARATORS .. 28
TABLE 9: RTIT LAST LIP ... 29
TABLE 10: RTIT CR3 COMPARATOR ... 29
TABLE 11: RTIT PACKET BYTES COUNTER ... 30
TABLE 12: RTIT OUTPUT BASE ADDRESS .. 31
TABLE 13: RTIT OUTPUT LIMIT MASK .. 31
TABLE 14: RTIT OUTPUT OFFSET ... 32
TABLE 15: RTIT TNT PACKET BUFFER ... 32
TABLE 16: RTIT LAST CALL NLIP .. 33
TABLE 17: TRACE PACKET ENABLING SUMMARY .. 35
TABLE 18: LIP COMPRESSION ... 38
TABLE 19: PACKET GENERATION UNDER DIFFERENT ENABLE CONDITIONS .. 52
TABLE 20: ASYNCHRONOUS PACKETS DESCRIPTIONS ... 57
TABLE 21: GLOSSARY ... 64
TABLE 22: REFERENCES .. 66

Real Time Instruction Trace-Contents

Real Time Instruction Trace
Programming Reference v1.01

March 2015

8

Revision History

Date Revision Description

February 2015 1.00 Initial Release

March 2015 1.01 Added read RTIT_CTL MSR requirement

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

9

1 Introduction

This document describes the programming interfaces of the Real Time Instruction Trace (RTIT) as it
applies to the operational model, configuration and control features, and trace packets and data types
to allow a more detailed design to proceed forward. RTIT is available only on Silvermont- and
Airmont-based products, see 1.2 for details on which products are supported.

The document also gives examples of:

 An overview of common usage models
 Operational considerations for sleep states and security initializations

 Background and related processor mechanisms

1.1 Overview

In current Intel® architecture, Last Branch Record (LBR) and Branch Trace Store (BTS) features allow
observance of internal CPU program flow. Branch information, i.e., the source and destination instruction
pointers, can be stored in a hardware stack, or written to memory via processor support. Debug software
can reproduce program flow based on the branch addresses and source code. However, the overhead
of using BTS is very significant, while LBR only captures the last several branches only, both limitations

that prohibit their use in real-time application debugging.

Real Time Instruction Trace (RTIT) works on the same principle as BTS and LBR. It operates in parallel
to the primary processor pipeline and uses a separate output streaming mechanism that is external to
the processor. This eliminates the limitations of existing debug mechanisms and allows continuous and

efficient runtime application debugging.

RTIT encodes and compresses program flow information, such as branch targets, branch taken/not
taken indications, and carries them to the memory subsystem in real time, avoiding the use of any
processor assist methods. The memory subsystem then forwards the RTIT data out to external receivers
for debug software to post-process and reconstruct program flow.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

10

Figure 1: Real Time Instruction Trace Overview

Atom

Core

Memory

Unit

In
s

tr
 P

tr

B
r

T
a

rg
e

t

RTIT

Trace

Buffer

Packet

generation,

triggering, CRs

8
b

Store Bus

RTIT Block

Retirement

Figure 1 shows how the RTIT logic fits into a System on a Chip (SOC) system. The RTIT Block

monitors the Intel® Atom™ processors core retirement pipeline and generates trace packets upon
retiring change of program flow instructions of interest. RTIT stores the traces in a trace buffer until
they are stored out to memory or to pins.

1.2 Availability and Use
The RTIT programming interface is available as model-specific feature only on certain Intel® Atom™
processors listed below. The definitions and usages of RTIT described in this document apply to those
processors models, in some cases, specific stepping. Intel® Atom™ processors supported by
Family/Model/Steppings are as follows:

Silvermont Microarchitecture:

 0x6/0x37/0x8

 0x6/0x5d/0x0
 0x6/0x5d/0x1
 0x6/0x4a/0x8
 0x6/0x4d/0x8
 0x6/0x5a/0x0

Airmont Microarchitecture:

 0x6/0x4c/0x3

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

11

1.3 Features and Capabilities

RTIT generates a variety of packets that, along with the sources of a program, can be used to produce

an exact execution trace. The packets record information such as Linear and Target Instruction
Pointers (LIP and TIP) and direction of conditional branches within a contiguous code region (basic
blocks). In addition the packets record other contextual, timing, and bookkeeping information to
enable both functional and performance debugging of applications.

RTIT has several control and filtering capabilities to customize and compress the tracing information

collected and to append other processor state and timing information to enable debugging.

 Programmable address comparison registers can be used to qualify RTIT output by
specifying different IP ranges and masks.

 CPL and CR3 filtering modes allow filtering based on CPL execution mode (USER ring-3 or

SUP ring-0) and on CR3 values.

When enabled and appropriately configured, RTIT will collect and generate the following types of trace

information:

Packet stream Boundary (PSB) packets: The PSB acts as a ‘heartbeat’ that is generated at regular
intervals (e.g., every 8K trace packet bytes). PSB is a unique pattern, which allows decodes to sync into
a RTIT byte stream.

Taken Not Taken (TNT) packets: TNT packets track the “direction” of direct conditional branch

(i.e., taken or not taken). TNT packets are 1 byte, including the header. 1 to 6 TNT (Taken-Not-Taken
indications) can be packed in one TNT packet with a ‘1 signifying a taken branch and a ‘0 signifying a
not-taken branch that fell through to next instruction.

Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, and

interrupt handlers. Up to 48 bits of IP can be stored, and the most significant bits that are identical to
the branch LIP or are entirely ‘0s can be suppressed to reduce the packet size.

Flow Update (FUP) packets: FUP packets record a variety of contextual information to aid in

decoding the trace output. These include:

 Buffer Overflow packets (FUP.OVF) indicate that the RTIT internal buffer is full and that
packets are no longer being generated.

 Periodic Cycle Counter (FUP.PCC) is periodically generated based on increments in a cycle
counter.

 Packet Generation Enable (FUP.PGE) packets are generated when RTIT is enabled, or if the
execution enters a region that is configured for RTIT tracing.

 Packet Generation Disable (FUP.PGD) packets are generated when RTIT transitions from a
packet generating mode into a disabled mode due to filtering criteria not being met, or
disabling RTIT.

 Far Transfer (FUP.FAR) packets are generated after a far transfer and will include an address
indicating where the transfer came from. It is usually generated with TIP, and appears
before the corresponding TIP in the trace output.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

12

Paging Information Packet (PIP): PIP record any modifications to the CR3 register while memory
paging is enabled. This, along with process page information from the operating system, allows the
debugger to attribute linear addresses to their correct application source line.

Trace STOP (STOP) packets: STOP packets are generated when the current IP matches a region

specified by the ‘TraceStop’ filter.

Super Time Sync (STS) packets: STS packets are generated upon several processor frequency,

power, and other state global events. They will contain the value in the processor’s HW TSC, and
along with MTC are used by the debug analyzer to synchronize the traces with wall time.

Mini Time Counter (MTC) packets: MTC packets can be generated periodically based on the
processor’s HW TSC, and along with STS are used by the debug analyzer to synchronize the traces

with wall time.

Cycle Count Packet (CCP): CCP packets contain the incremental number of core cycles since the
previous CCP, and are generated after certain other trace packets based on the configuration of the
cycle accurate mode.

1.4 Using This Specification

Chapter 1: Introduction gives an introduction to RTIT, where it is available, and describes the
features and capabilities to customize tracing information based on user needs.

Chapter 2: RTIT Operational Model provides additional details about RTIT including the enabling
and filtering, and describes essential program flow concepts that form the basis of the RTIT tracing
model.

Chapter 3: Configuration and Control details the various mechanisms necessary for configuring,

enabling, controlling, and collecting RTIT data in an operating system or Virtual Machine Monitor.

Chapter 4: Trace Packets and Data Types details the packets generated by RTIT to assist
developers in decoding RTIT data and utilizing it to recreate an application execution trace.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

13

2 RTIT Operational Model

This chapter describes the overall RTIT mechanism and explains essential concepts used throughout
the remainder of the document. Reading this chapter will provide a basic understanding of how RTIT
operates, and a detailed understanding of the various features and capabilities offered by RTIT.

This chapter is organized as follows: Section 2.1 explains the different circumstances and context

during which RTIT will be generating trace packets. Section 2.2 explains the notions of flow control
that are used by the RTIT mechanism to produce an execution trace. Section 2.3 describes the
primary mechanism for streaming RTIT packets. Section 2.4 describes the different filters that can be
used to restrict which execution streams are traced by RTIT. Section 2.5 gives an overall view of RTIT

programming and provides an example of such programming. Finally, Section 2.6 describes how RTIT

will behave while the processor is in non-standard execution modes.

2.1 RTIT Enables

RTIT has a variety of enables and disables that interact to ultimately decide if a packet should be
generated. This state is referred to as Packet Enable and is synonymous with PacketGenEnable, Packet

Generation Enable or PacketEn.

When Packet Enable is set, we are in the code that RTIT is monitoring and packets are being
generated to log what is being executed. PacketEn is composed of 4 other states according to this
relationship:

PacketEn = TriggerEn && ContextEn && FilterEn

Each of these states is detailed in the following subsections.

2.1.1 Trigger Enable (TriggerEn)

TriggerEn (Trigger Enable) is the primary indicator that RTIT is active. TriggerEn is defined using two
fields:

TriggerEn = (RTIT_CTL[Trace_En] AND RTIT_CTL[TraceActive]).

Software can get the current TriggerEn value by reading the RTIT_STATUS[TriggerEn] MSR bit. When
TriggerEn is clear, RTIT is inactive and no packets are generated.

2.1.2 Context Enable (ContextEn)

Context Enable (ContextEn) indicates that the processor is in the state that RTIT is configured to watch.

For example, if RTIT is configured to watch only application code (RTIT_CTL[OS]=0), then ContextEn

will be 0 when the CPU is in CPL0.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

14

Software can get the current ContextEn value by reading the RTIT_STATUS[ContextEn] MSR bit.
ContextEn is defined as follows:

 ContextEn = !(

 (RTIT_CTL[OS]=0 AND CPL=0) OR
 (RTIT_CTL[USER]=0 AND CPL=1,2,3) OR
 (RTIT_CTL[CR3En]=1 AND RTIT_CR3_MATCH !=CR3) OR
 (In SMM mode) OR
 (In VMX mode))

When ContextEn is cleared, many packets are not generated, including all branch packets. However,
some packets, such as the MTC, may still be generated while ContextEn is clear.

2.1.3 Filter Enable (FilterEn)

Filter Enable indicates that the CPU Instruction Pointer (IP) is within the range of the IPs that RTIT is

configured to watch. See section 2.4.3 for details on IP filtering.

Software can get the state of Filter Enable by an MSR read of RTIT_STATUS[FilterEn].

Filter enable is only ‘usually’ correct because it may be incorrect if the RANGE0/1 ranges are not set up

correctly. It is also frozen when either Trace_En or ContextEn are 0.

2.2 Change of Flow Instruction Tracing

2.2.1 Basic Blocks

A program block is a section of code where no jumps or branches occur. The IPs in this block of code

need not be traced, as the CPU will execute them from start until end without redirecting code flow.

Instructions such as branches, and external events such as exceptions or interrupts, can change the
program flow. These instructions and events that change program flow are called COFI (Change of Flow
Instructions). The program block is divided into these three categories:

 Direct transfer COFI.

 Indirect transfer COFI.
 Far transfer COFI.

The following subsections describe the IA architecture COFI events that result in trace packet
generation. For detailed description of the instructions, please refer to “Intel® 64 and IA-32
Architectures Software Developer’s Manual Volume 2A/2B: Instruction Set Reference.”

2.2.2 Direct Transfer COFI

These types of instructions include conditional jumps, and jumps that are to a Linear Instruction Pointer
(LIP) that is embedded in the instruction bytes. It is not necessary to output the LIP of the destination
address since it can be obtained through the source code. It is only necessary to indicate whether the
conditional branch is taken or not.

2.2.2.1 Jump if condition is met (Jcc) and LOOP

To track this type of instruction, RTIT uses a single bit of TAKEN or NOT TAKEN (TNT) to indicate the
program flow after the instruction. When the condition check is evaluated to true (i.e., the branch will

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

15

be taken), the processor IP will update to the target IP specified in the instruction. This is encoded as
TAKEN in the RTIT TNT packet; otherwise, the program will simply go to the next LIP, and is encoded
in the TNT as NOT TAKEN.

Jcc and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, RTIT will

compact several TNT bits in a single packet. This can output up to 6 consecutive TNT bits in one TNT
packet.

2.2.2.2 Unconditional Direct Jumps

There is no RTIT output for direct unconditional jumps (like JMP near relative or CALL near relative)
since they can be directly inferred from the application assembly. Direct unconditional jumps do not
generate a TNT bit or a Target IP packet.

2.2.3 Indirect Transfer COFI

Indirect transfer instructions involve updating the LIP from a register or memory location. Since the

register or memory contents can vary at any time during execution, there is no way to know the target
of the indirect transfer until the register or memory contents are read. As a result, the disassembled
code cannot be used alone to determine the target of a COFI. Therefore, RTIT must send out the
destination LIP in the trace packet for debug software to determine the target address of the COFI.

Indirect Transfer instructions will generate a Target IP packet (TIP) which contains the target linear

address of the branch or the new instruction pointer.

2.2.4 Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or

memory location. Therefore RTIT must expose this target address to the debug software in order to
determine the target of the COFI.

2.2.5 Near RET

When a CALL instruction executes, it pushes the address of the next instruction following the CALL
onto the stack. Upon completion of the call procedure, the RET instruction is often used to pop the

return address off of the call stack and redirect code flow back to the instruction following the call.

A RET instruction simply transfers program flow to the address it popped off the stack. Because it is
possible for software to change the Extended IP (EIP) on the stack within the call procedure prior to
executing the RET instruction, the debug software can be misled if it always assumes code flow will
return to the instruction following the last call. Therefore, even for near RET, a Target IP Packet is

sent to handle this case.

A special case is applied if the target of the RET matches the Next LIP (NLIP) of the last CALL
instruction. Then only a single TNT bit of “Taken” is generated instead of a Target IP Packet.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

16

2.2.6 Far Transfer COFI

All operations that change the instruction pointer which are not near jumps are “far transfers”. This

includes exceptions, interrupts, traps, and instructions that do far transfers (i.e. SYSENTER, SYSEXIT,
SYSCALL, SYSRET, software interrupts, far jump, far call, far RET and IRET).

Far transfers that produce RTIT packets will produce a Flow Update Packet of type Far Transfer
(FUP.FAR) followed by a Target IP packet (TIP); unless the far transfer also jumps out of the filtered
region while keeping ContextEn==1. A far transfer that causes FilterEn to become 0 but keeps

ContextEn at 1 will produce Flow Update packet of type PacketGenerationDisable (FUP.PGD instead of
FUP.FAR) followed by a Target IP packet. This is a form of compression and simplifies the hardware.

The following table indicates exactly which LIP will be included in the FUP.FAR or FUP.PGD generated
by a far transfer.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

17

Table 1: IP Type in Various Packets

Event Flow Update LIP Note

Far CALL/JUMP
SYSENTER/SYSEXIT
SYSCALL/SYSRET
Far RET

IRET

Address of next instruction
(Next Linear Instruction
Pointer)

This does not match LBR FROM field, which
records the address of the branch
instruction. RTIT trace analysis does not
need this flow update packet since it should

know where the branch is, but it would
require more hardware to suppress it.

External Interrupt

NMI/SMI
Traps
Machine Check (trap-

like)

Address of next instruction

(NLIP) that would have
been executed

This matches the LBR FROM field value and

also the EIP value which is saved onto the
stack. Remember that LBRs are linear (not
effective) addresses for Intel® Atom™

processors.

INIT/SIPI Address of next instruction
(NLIP) that would have
been executed

Lower certainty on INIT and SIPI behavior.
Not important to RTIT usage.

(FUP.PGD only)

Walking out or region
Non-far transfer that
changes ContextEn to 0

Address of next instruction

(NLIP) that would have
been executed

LBRs have no such concept.

(FUP.PGD only)
Near jump out of region

Address of next instruction
(NLIP) that would have
been executed

This does not match the LBR field, which
would record the address of the branch
instruction.

Exceptions/Faults
Machine check (fault-

like)

Address of the instruction
which took the

exception/fault (Current
LIP)

This matches the LBR FROM field value and
also the EIP value which is saved onto the

stack.

Asynchronous Flow Update
Packet
 Buffer Overflow
 Periodic Cycle Counter

Address of next instruction
(NLIP/BLIP) that will execute
after the instruction where the
condition occurred

LBRs have no such concept.

PacketEn goes from 0 to 1

(includes VM-entry and
RSM)

Address of where we entered
region (BLIP or NLIP)

LBRs have no such concept.

VM-exit Address that is saved into the
VMCS as guest RIP

LBRs have no such concept.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

18

2.2.7 Flow Control Packet Summary

The following table summarized the trace packets as per each instruction

Table 2: Classifying branches and COFI

Instruction Packet Note

Jcc/LOOP TNT Branch taken/not taken packet.

Near Jump (indirect)

Near Call (indirect)
Near RET

Target IP Branch destination LIP(BLIP) is sent in target IP

Packet.

Far Transfers, including:

Far Jump/CALL
Far RET/IRET
Exception/Interrupt/Trap
SYSENTER/SYSEXIT
SYSCALL/SYSRET

Flow Update LIP before the far transfer. Same as recorded in LBRs

(or would be pushed onto stack).

Target IP Branch destination LIP(BLIP) is sent in target IP
Packet.

2.3 Trace Output

RTIT packet data is written by the CPU to the memory subsystem. RTIT writes use the USWC memory

type, regardless of what is specified by the MTRRs.

The RTIT output destination is specified by writing a platform physical address to the
RTIT_BASE_ADDR MSR to serve as the destination base, and a mask value to the RTIT_LIMIT_MASK

MSR to dictate the size of the region. The use of platform physical addressing means that RTIT writes
are not affected by page tables or EPT tables.

The RTIT_OFFSET MSR holds the offset into the region specified by RTIT_BASE_ADDR and
RTIT_LIMIT_MASK. Thus the physical address to which RTIT stores are directed is computed as
follows:

RTIT_BASE_ADDR + (RTIT_OFFSET & RTIT_LIMIT_MASK)

Note that the buffer is treated as circular, and hence once the offset value reaches the mask value,

writes will wrap around and write at offset 0 again.

2.3.1 Debug Port

In order to send RTIT output to a debug port, the platform-specific memory-mapped I/O (MMIO) address

for the port of interest should be written to the RTIT_BASE_ADDR MSR, with the RTIT_LIMIT_MASK
value set to match the size of the desired MMIO range. As described above, RTIT output will be written

to this address range in a circular fashion.

When such a debug port is in use, the RTIT_CTL.Dest bit should be cleared.

Please see SoC documentation to determine which debug port options exist for your platform.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

19

2.4 Trace Filtering

2.4.1 Filtering by Current Privilege Level (CPL)

RTIT provides the ability to specify whether tracing occurs when code is executing in CPL0 or not. RTIT

can be configured to be enabled only when in CPL0, when in CPL1/2/3, or at all CPLs. When in a non-
enabled CPL, the Context Enable is cleared.

The CPL value that is used to determine the RTIT Context Enable is read after instruction retirement.
This means that speculative CPL changed will not affect the RTIT state. For example, a page fault
which triggers a change of CPL from 3 to 0 will not send out a TIP packet if RTIT is configured to only

monitor CPL 1/2/3. A FUP packet will still be generated to indicate a traced region was left.

2.4.2 Filter by CR3

To reduce the total trace size, it is important to be able to trace a single application without requiring
software intervention every time applications are switched.

Since CR3 (the page table pointer) is the primary piece of CPU state that indicates which application is

running, RTIT can enable or disable tracing depending on the CR3 value. This is done through the CR3
filtering/matching feature.

If the RTIT user desires to only trace a single CR3, then they can program that CR3 value into

RTIT_CR3_MATCH MSR and set RTIT_CTL.CR3En. When the CR3 value does not match that in
RTIT_CR3_MATCH, the processor will disable RTIT (ContextEn forced to 0). When the CR3 value does
match of RTIT_CR3_MATCH, then the processor will stop disabling RTIT because of the CR3 value
(although it could remain disabled due to other filters like CPL). If RTIT_CTL.CR3En is 0, then all CR3s
are monitored (RTIT tracing is not disabled by the CR3 value).

The Paging Information Packet is sent out in various situations to explain to the analyzer which app is

being executed. When a non-paging mode is entered (CR0.PG is cleared), a paging information packet
is generated. This will not affect the current CR3 filtering because it is not a direct change in the value
of CR3.

OS-specific techniques will need to be used to discover the CR3 value that corresponds to a particular

already-running application. If the application can only be started when RTIT is already running, other
techniques (like OS debug hooks, OS modification or using a special driver) may need to be used to
discover the CR3 value and subsequently update the RTIT CR3 filters.

2.4.3 Filtering by IP

RTIT can be configured to enable control flow packet generation only when the CPU is executing code

within certain IP ranges. This is controlled with FilterEn, which, if IP filtering is enabled, is set only

when the IP is in one of the ranges specified by SW. If the IP is outside of these ranges, then FilterEn
is cleared and no control flow packets are enabled.

IP filtering is enabled using the RTIT_EVENTS MSR. This MSR configures use of the RTIT_LIP[0123]

MSRs, which are used to define the base and limit of the range(s) in which tracing is enabled. Current
RTIT implementations have 2 such ranges, known as RANGE0 and RANGE1. RANGE0 is defined by
[RTIT_LIP0..RTIT_LIP2-1], while RANGE1 is defined by [RTIT_LIP1..RTIT_LIP3-1].

EventIDs are used for IP filtering, and for TraceStop. RTIT_EVENTS[Filter Event ID] and

RTIT_EVENTS[Stop Trace Event ID] are programmed with event ID encodings, which are details in

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

20

section 3.3.5. Note that the Filter event ID and TraceStop event ID are two separate fields, and thus
different conditions can cause those actions.

To save power, the comparison of the IP to the RANGE0/1 ranges is done only when

RTIT_CTL[Trace_En] is set. This means that the FilterEn value will not be changed by the IP when
Trace_En is cleared. This means that leaving Trace_En set but disabling RTIT by having Trace_Active
cleared consumes more power than if Trace_En was also cleared.

It is important to note that, though no control flow packets are generated from outside of the IP filter

ranges, some packets can be generated at this time. Periodic packets, such as MTC and PSB, can still
be generated when FilterEn is 0.

2.5 Trace Programming

RTIT provides the end-user with a highly configurable set of tracing capabilities and programmable
events for both performance analysis and debug. RTIT is configured through code execution via the
WRMSR and RDMSR instructions.

2.5.1 Trace Example

If RTIT was programmed to trace all CPLs and the address filters were restricting the IP range to

instruction between 0x100-0x110, then the following RTIT packets would be generated:

Table 3: RTIT Trace Example

Step CLIP NLIP Instruction RTIT output

1 0x020 0x023 Jmp to 102 1. FUP.PacketGenEnable of 102 (BLIP)

2 0x100 0x102 Xor eax, eax Nothing

3 0x102 0x105 Far JMP to 983 1. FUP.PacketGenDisable of 105 (NLIP)
2. TIP of 983 (BLIP)

4 0x983 0x985 Far JMP to 10E 1. FUP.PacketGenEnabled of 10E (BLIP)

5 0x10E 0x113 Divide that causes
Divide by 0 fault
Fault handler at
345

1. FUP.PacketGenDisabled of 10E (NLIP)
2. TIP of 345 (BLIP)

6 0x345 0x348 Add (first instr of
fault handler

Nothing

7 348 34c POP ret address to
RAX

Nothing

8 34c 350 Modify RAX to point
to 113

Nothing

9 350 353 PUSH new ret addr

of 113 onto stack
Nothing

10 353 357 IRET to 113 Nothing (since 113 is outside of range)

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

21

2.6 Interaction with Other Components

2.6.1 System Management Mode

RTIT is always disabled during System Management Mode (SMM). Whenever a System Management

Interrupt (SMI) occurs, the CPU will set an internal “We are in SMM mode” bit that will force
ContextEn to become 0 if it was not already 0. If this caused PacketEn to transition from 1 to 0, then a
FUP.PGD will be sent out with the address of the next instruction that would have executed had the
SMI not occurred. A TIP packet is never generated on an SMI since the SMI results in ContextEn is 0
(and any operation that disabled ContextEn does not send out a TIP).

Whenever an RSM occurs, the CPU will clear the internal “We are in SMM mode” bit, which will thus

stop forcing ContextEn to 0. In the normal case, this will cause ContextEn to return to the value that it

was before the SMI. If that causes PacketEn to transition from 0 to 1, then a FUP.PGE will be
generated with the address of the target of the RSM (the next instruction to execute after the RSM). If
the SMM return address was not modified, this will usually be the same address as was seen on the
FUP.PGD generated on the preceding SMI.

As discussed earlier, the software SMM handler could do various things that would cause the RSM to
return to a different instruction or mode than was executing before the SMI. For example, it could
change the return address to be outside of the filtered region when it was inside the filtered region
before the SMI. Or it could change the CR3 value.

The RSM simply clears the “We are in SMM mode” bit that was forcing ContextEn to 0. FilterEnable

and the CPL will also be re-evaluated automatically based on the processor settings mode that the
RSM is loading (whether it was the same as that before the SMI or not).

The RSM re-evaluates whether the CR3 matches the RTIT_CR3_MATCH MSR, and determines the SMI

does not. Therefore, it is not needed on the SMI since the SMI will clear ContextEn and it cannot be

set until the RSM occurs.

2.6.2 Virtual Machine EXtensions

RTIT is always disabled in Virtual Machine EXtensions (VMX) host mode (this mode is also referred to
as VMM, root mode, or the hypervisor).

Whenever a VM exit occurs, the CPU will set an internal “We are in VMM mode” bit that will force
ContextEn to become 0 if it was not already 0. If this caused PacketEn to transition from 1 to 0, then a
FUP.PGD will be sent out with the address that is saved into the VMCS as the RIP. A TIP packet is
never generated on a VM exit since the VM exit results in ContextEn of 0 (and any operation that

disabled ContextEn does not send out a TIP).

Whenever a VM entry occurs, the CPU will clear the internal “We are in VMM mode” bit, which will thus
stop forcing ContextEn to 0. In the normal case, this will cause ContextEn to return to the value that it

was before the VM exit. If that causes PacketEn to transition from 0 to 1, then a FUP.PGE will be

generated with the address of the target of the VM entry. If the VMCS guest RIP field was not
modified, this will usually be the same address as was seen on the FUP.PGE generated on the
preceding VM exit. VM entry will re-evaluate whether CR3 matches RTIT_CR3_MATCH.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

22

3 Configuration and Control

This chapter details the mechanism for configuring, enabling and controlling the operation of RTIT. It
is intended for developers who are writing software to support RTIT operation, whether in the OS/VMM
or in the debug controller. This section can also be used as a reference for programming the relevant
RTIT MSRs.

3.1 Enumeration

For Intel® Atom™ processors, RTIT is not architectural and is therefore not enumerated in any way.
To determine if the processor does support RTIT, the user can verify the Family, Model, and Stepping,

and then use a try-accept to test for RTIT functionality.

3.2 RTIT accessibility

RTIT is configured via model-specific registers (MSRs). These can be controlled through either JTAG

or ring-0 software. For details about JTAG access, please contact your Intel sales representative.

3.3 CPU Control and Model-Specific Registers

3.3.1 General MSR notes for RTIT

All RTIT MSRs are described below, and are duplicated per logical processor. Until the RTIT_CTL

MSR (0x768) has been read any attempt to write any RTIT MSR, or read any RTIT MSR

other than RTIT_CTL, will result in a #GP fault.

For all RTIT MSRs, any MSR write that attempts to change (which usually means ‘set’) bits marked
reserved will cause a #GP fault. RTIT MSRs are not cleared by INIT.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

23

3.3.2 RTIT_CTL MSR

Table 4: RTIT CTL Control Register

Bit Name Description

0 Trace_En Global Enable Disable

1 Cycle_Acc 0 : Cycle Accurate Mode is Disabled
1: Cycle Accurate Mode is Enabled

2 OS 0: Indicates OS level COFI will not be traced
1: Indicates OS level COFI will be traced

3 User 1: Indicates USER level COFI will be traced
0: Indicates USER level COFI will not be traced

4 STS_on_CR3 Generates STS packet on CR3 changes

[6:5] Rsvd Reserved

7 CR3En 0: Disables CR3 Filtering
1: Enables CR3 Filtering

8 Dest 0: Output to DRAM disabled
1: Output to DRAM enabled

9 MTC_En 0: MTC packet generation disabled
1: Enabled

10 STS_En 0: STS packet generation disabled
1: Enabled

11 Cmprs_Ret Compresses Return address

12 Less_Pkts Generate less packets to improve bandwidth

13 TraceActive This is another overall RTIT valid bit which needs to be set
for TriggerEnable to be 1 (just like RTIT_CTL.Trace_En). It is
different from Trace_En in that it can be cleared by the
TraceStop action. An MSR write that clears TraceActive
should not cause a TraceStop packet, however.

[15:14] MTC_Range Defines TSC granularity
00:TSC[14:7]
01:TSC[16:9]
02:TSC[18:11]
03:TSC[20:13]

[31:16] Reserved Reserved

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

24

RTIT_CTL [0]: Trace_En

Trace_En globally turns on or off the RTIT architecture. The reset value of Trace_En is 0, disabling RTIT

by default.

It is recommended that software set Trace_En before setting TraceActive (below) when enabling tracing.
Similarly, software should clear TraceActive before clearing Trace_En when disabling tracing. If both
Trace_En and TraceActive transition 0->1 or 1->0 in the same WRMSR, undefined behavior may result.

RTIT_CTL [1]: CYCLE_ACC

CYCLE_ACC enables or disables the cycle accurate mode of RTIT COFI tracing. When set (1’b1), a cycle

count packet is appended to all outbound RTIT traffic with the exception of the PSB packet.

RTIT_CTL [2]: OS

The OS bit is used to indicate that whether CPL0 code (usually OS code) should be traced. See 2.4.1.

When this bit is cleared and the current CPL is 0, then the ContextEn will be 0 (which disables many
things, including COFI packets).

RTIT_CTL [3]: USER

The USER bit is used to indicate whether CPL1, CPL2, and CPL3 code (usually application code) should

be traced or not. See 2.4.1. When this bit is cleared and the current CPL is 1, 2 or 3 (>0), then the
ContextEn will be 0 (which disables many things including COFI packets).

RTIT_CTL [4]: STS_on_CR3

This bit being set will cause Super Time Synch Packets to be sent out on MOV CR3 operations
RTIT_CTL [6:5]: Reserved.

RTIT_CTL [7]: CR3En

When this bit is set, CR3 filtering is enabled and ContextEn will be zero if the CR3 value does not
matches what is in RTIT_CR3_MATCH MSR. When ContextEn is 0, COFI packets are not generated.

When this bit is cleared, the CR3 value RTIT_CR3_MATCH do not affect ContextEn. This behavior is

described in more detail in the “Tracing one app (CR3 filtering)” section.

RTIT_CTL [8]: Dest

Set when enabling RTIT with output to DRAM.

RTIT_CTL [9]: MTC_En

Used to enable or disable the Mini Time Counter. See Mini Time Counter (MTC) Packet section for
more details.

RTIT_CTL[10]: STS_En

Used to enable or disable Synch packet generation. A value of ‘1’ enables STS packet generation,
while a value of ‘0’ disables STS packet generation.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

25

RTIT_CTL [11]: CMPRS_RET

Setting this bit changes the behavior of indirect transfer packet generation. When set, near RET

instructions may be compressed against the NLIP of the preceding call. See Indirect Transfer
compression for returns (RET) section for more details.

RTIT_CTL [12]: LESS_PKTS

The LESS_PKTS bit is used to decrease the number of packets generated and thereby decrease

bandwidth demands. Please refer to the following table for a complete representation of which
packets are inhibited when LESS_PKTS is set. Enable Groups and Packet Generation.

RTIT_CTL [13]: TraceActive

The TraceActive bit must be set before anything in RTIT occurs because it is part of TriggerEnable.

Thus when TraceActive is 0, TriggerEnable is 0 (and RTIT is off). It is cleared by TraceStop action and
is settable only by an MSR write (e.g. WRMSR).

As described in the Trace_En section above, TraceActive should only be modified while Trace_En is set.

RTIT_CTL [15:14]: MTC Range

MTC Count allows the user to specify which bits of the TSC will become bit 15:8 of the MTC packet as

follows:

 MTC Range Resulting TSC in MTC packet

00 TSC[14:7]
01 TSC[16:9]
02 TSC[18:11]
03 TSC[20:13]

RTIT_CTL[31:16] Reserved.

MSR writes to any reserved bits results in a #GP0 fault.

MSR writes to RTIT_CTL will cause an RTIT drain and will not end until that drain is completed and all

RTIT stores are globally observed. This ensures that any changes to RTIT_CTL are visible in memory
by the time the MSR write completes. Thus, if software turns off RTIT by clearing TraceActive, it can
count on fields like RTIT_OFFSET to be correct and constant after the MSR write.

A write to RTIT_CTL that causes RTIT_STATUS[TriggerEn] to become set (meaning that

RTIT_CTL[Trace_En] and RTIT_CTL[TraceActive] are both set and one of them was not set before) will
cause the PSB packet to be sent out.

An MSR write to RTIT_CTL that causes PacketEn to become 0 (e.g. by clearing OS or USR or by setting
CR3En) will cause a FUP.PGD packet to be generated. An MSR write that causes PacketEn to become 0

by clearing TraceActive or Trace_En may not generate a FUP.PGD. See the FUP.PGD section for more
details.

An MSR write to RTIT_CTL that causes PacketEn to become 1 will cause a FUP.PGE packet to be sent.
The MSR address is 0x768. Reset value = 0.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

26

3.3.3 RTIT_STATUS MSR

RTIT_STATUS can be read or written by software, but some bits (like ContextEn) are read-only and

cannot be modified directly. Any writes that attempt to modify these read-only bits will have no effect
on the value; but will not cause a #GP (they are not checked as reserved bits).

The MSR address is 0x769. Reset value=0.

RTIT STATUS [0]: FilterEn

This is the bit that is set upon entering a tracing region and cleared upon leaving a tracing region. It
indicates that the IP is within the filtered regions (but can be manipulated). It is one of the three
enables that make up Packet Enable.

RTIT STATUS [1]: ContextEn

This is the context enable bit. It is set when we are in the right context for tracing (e.g. correct CPL,

CR3 value, not in VMM/SMM, etc.) It is one of the three enables that make up Packet Enable. It is
read-only.

RTIT STATUS [2]: TriggerEn

This is the trigger enable bit. It is set when RTIT is overall enabled (RTIT_CTL[Trace_En] AND
RTIT_CTL[TraceActive]). It is one of the three enables that make up Packet Enable and is read-only.

RTIT STATUS [3]: Buffer_Overflow

This bit indicates that there is currently a buffer overflow that is pending. Under certain circumstances,
software may need to context-switch that information.

It is read/write and can be updated directly by the processor or by software through MSR writes.

RTIT STATUS [31:4]: RESERVED

MSR writes to any reserved bits result in a #GP0 fault.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

27

3.3.4 RTIT_CNTP MSR

The MSR address is 0x76B. Reset Value: 22'b0

Table 5: Cycle Counter

Bit Name Description

[21 : 0] CNTP Count is a 22-bit incrementing counter value

[31 : 22] Reserved Reserved

CNTP is a 22-bit incrementing counter that counts up at a rate equal to the processor core clock.
CNTP can be used to generate info on cycle count between packets in cycle accurate mode. More

details of this counter are in the “Cycle Counter” section.

The counter value CNTP is reset back to 22’b0, when

 CPU reset occurs (warm or cold)

 CNTP overflows
 A packet is sent out with a cycle count (the current value of CNTP). This occurs on almost

every packet sent out in Cycle Accurate mode (RTIT_CTL[Cycle_Acc]).

The RTIT hardware will attempt to send out a Periodic Cycle Count (FUP.PCC) Packet when the MSB

(bit 21) of CNTP is set and it is in the appropriate mode. For more details, see the “Flow Update event:
Packet Cycle Counter” section.

3.3.5 RTIT_EVENTS MSR

The MSR address is 0x76C. Reset Value: 32'b0.

Table 6: RTIT Filter Enable

Bit Name Description

[2:0] Filter_Event_ID EventID which will control RTIT_STATUS.FilterEn (Filter

Enable mode bit)

[5:3] TraceStop_Event_ID EventID which will cause a TraceStop action (Stops Tracing
by clearing RTIT_CTL.TraceActive)

[31:6] Reserved Reserved

RTIT_EVENTS provides a means to conditionally enable RTIT based on the user defined events.

Filter Event_ID allows the user to specify for which IPs FilterEnable should be set and for which it should

be clear.

TraceStop Event_ID allows the user to specify which IPs should cause the TraceStop action. The
TraceStop action stops tracing (by clearing RTIT_CTL.TraceActive it causes TriggerEn to become 0) and
also causes a TraceStop packet to be generated.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

28

Table 7. RTIT Event IDs

EventID Event Name

000 RANGE0

001 RANGE1

010 RANGE0 || RANGE1

011 Reserved

100 Reserved

101 Reserved

110 Always off

111 Always on

The table above describes the event IDs that can be programmed to either the Filter_Event_ID or the

TraceStop_Event_ID. RANGE0 is defined as [RTIT_LIP0..RTIT_LIP2-1], while RANGE1 is defined as
[RTIT_LIP1..RTIT_LIP3-1]. When RANGE0 and/or RANGE1 is used for one of these fields, this means
that software that either executes an instruction at the base IP (specified by RTIT_LIP0 or RTIT_LIP2),
or executes a taken branch or event whose target is within the range, will trigger the chosen behavior,
be it FilterEn assertion to enable tracing, or TraceStop. Correspondingly, software that executes an

instruction at the limit IP (RTIT_LIP1 or RTIT_LIP3), or a taken branch or event whose target is
outside the range, will cause the CPU to detect that software has left the range.

This means that if RTIT is enabled from within RANGE0 or RANGE1, the CPU will not trigger the
FilterEn or TraceStop behavior until either the IP at the range base is executed, or until a taken
branch or event lands within the range. If neither of these occurs before the software executes the IP

at the limit of the range, no triggering will occur.

Note that behavior when RANGE0 and RANGE1 overlap, or when the range base is greater than the

range limit, is undefined. Software should avoid such scenarios, as undesirable behavior is likely to
ensue.

3.3.6 RTIT_LIP0-3 MSR

MSR numbers are 0x760, 0x761, 0x762, 0x763. Reset Value: 64’b0

Table 8: RTIT LIP0-3 Address Range Comparators

Bit Name Description

[47:0] LIPN_ADDR Holds the LIP for comparison for TraceLIPN

[63:48] LIP_SIGN_EXT Reads return the sign-extended value of bit 47 for
each bit in this field. Writes to it have no effect.

These MSRs serve to define the base and limit values for RANGE0 and RANGE1. See the

RTIT_EVENTS MSR for more details.

Note that reads of this MSR will return 0 for the LIP_SIGN_EXT field.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

29

3.3.7 RTIT_LAST_LIP MSR

The MSR address is: 0x76E. Reset Value: 64’b0.

Table 9: RTIT Last LIP

Bit Name Description

[15:0] CMPRS_LIP_LOW Holds LIP[31:16] of the compressed LIP

[31:16] CMPRS_LIP_HIGH Holds LIP[47:32] of the compressed LIP

[32] CMPRS_LIP_Valid Indicates the compressed LIP values are valid

[63:33] Reserved Reserved as 0

 LIP Compression compares the LIP being sent out with the last LIP sent out, so only 16-bit
chunks which change are sent out. This further reduces the bandwidth requirements required
by RTIT.

 LIP Compression applies to the Flow Update Packets (FUP) and Target IP Packet.

o Compressed LIP High (CLH) is compared against LIP[47:32] of the packet being

generated, while Compressed LIP Low is compared against LIP 31.

This entire MSR is cleared to 0 (reset value) when a PSB packet is generated and when a buffer
overflow packet is generated.

3.3.8 RTIT_CR3_MATCH MSR

RTIT CR3 Match registers have the programmed CR3 value for trace filtering. The bits correspond to
that defined in CR3 MSR. The MSR address is: 0x777. Reset Value: 64’b0.

Table 10: RTIT CR3 Comparator

Bit Name Description

[63:36] Reserved Reserved

[35:5] CR3[35:5] Matches contents of CR3 [35:5]

[4:0] Reserved Reserved

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

30

3.3.9 RTIT_PKT_CNT MSR

RTIT_PKT_CNT holds the number of packet bytes that have been generated since either RTIT was

initially enabled, or a PSB packet was last sent out. It does not count packets that were dropped due
to buffer overflow, since they were not ‘generated’. The Pkt_Cnt should also count the bytes in the
PSB packet itself.

The MSR address is: 0x77C. Reset Value: 0x00020000.

Table 11: RTIT Packet Bytes Counter

Bit Name Description

[13:0] Pkt_Cnt Contains the number of bytes of RTIT packets generated since last PSB

[15:14] Reserved Reserved

[17:16] Pkt_Mask Indicates what value of Pkt_Cnt should cause a PSB to be sent out

The Pkt_Mask field indicates when a PSB packet will be sent (which will also clear the Pkt_Cnt field).

 Pkt_Mask value PSB sent out when this Pkt_Cnt bit is set

0 11 (size of roughly 2047 bytes)
1 12 (size of roughly 4095 bytes)
2 13 (size of roughly 8191 bytes)
3 14 (size of roughly 16383 bytes) <= Note that bit 14 does not

exist in this field; so consider it overflow of this field.

So when the Pkt_Mask value is 0, then the PSB is sent out (and the Pkt_Cnt field is cleared) whenever

the Pkt_Cnt value has a value with bit 11 set.

Usually, this would occur due to a packet being generated and causing the Pkt_Cnt to be incremented
to a value that has the ‘monitored bit’ set. So unless an MSR write is used to change Pkt_Cnt, a

Pkt_Mask of 2 will mean that a PSB packet is generated approximately every 8095 (213-1) packet
bytes generated. The Pkt_Cnt will also be reset to 0.

This is evaluated on writes to this MSR and after every packet is generated. Thus the PSB will not be
generated in the middle of a packet, but may be generated between the packets generated by a single

instruction.

For example: Pkt_Cnt value is 0xffc and PKT_Mask is 1 and a far transfer then occurs. It generates a
FUP.FAR packet of 7 bytes (no compression was possible) and a FUP.TIP packet of 5 bytes (zero
compression). The hardware detects the FUP.FAR would increase the Pkt_Cnt to a value with bit 12 set
(the monitored bit). As a result, it changes the Pkt_Cnt to 0 (not 3, which is what would happen if we

simply cleared bit 12 of the output). Then a PSB packet is generated (which is 9 bytes in size), and
the Pkt_Cnt is incremented to a value of 9. Then the FUP.TIP is sent out and the Pkt_Cnt is
incremented by 5 to a value of 0xE. The end result is the packets sent out are FUP.FAR, PSB, FUP.TIP
and the Pkt_Cnt goes from 0xffc to 0xE.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

31

The PSB packet clears out the last LIP and last CALL NLIP compression; however, this does not take
effect until the packet that caused the Pkt_Cnt overflow is drained from the internal RTIT buffer into
memory unit buffers. This means that some number of packets in the trace after the PSB packet may
not have the last LIP and last CALL NLIP compression. On Intel® Atom™ processors, the LAST_LIP

and LAST_CALL_NLIP compression are guaranteed to be cleared no more than 4 packets after the PSB
packet.

3.3.10 RTIT_BASE_ADDR MSR

The MSR address is: 0x770. Reset Value: 0xFDC00000.

Table 12: RTIT Output Base Address

Bit Name Description

[5:0] Reserved Reserved as 0

[35:6] Base_Phys_Addr The physical base address for the RTIT output

[63:36] Reserved Reserved as 0

RTIT_BASE_ADDR holds the physical base address where the RTIT packets will be written. Whenever
hardware uses the base value, it will actually use (BASE AND ~MASK). This means that any bit which

is set in both the base and mask MSR will be treated as if it was 0 in the base for all address
calculations.

It is redundant for software to set the same bit in the base and mask MSR. It is still valid, but the
hardware will act as if the base MSR value was 0 for the purpose of address calculations.

3.3.11 RTIT_LIMIT_MASK MSR

The MSR address is: 0x771. Reset Value: 0x7F.

Table 13: RTIT Output Limit Mask

Bit Name Description

[5:0] Rsvd_as_1 Reserved as 3F

[21:6] Mask_Value Mask value ANDed with RTIT write pointer offset

[31:22] Reserved Reserved

The CPU will AND this value to the RTIT base offset to figure out when the RTIT base offset pointer
need to wrap back to 0. Since this field is defined up to bit 21, an RTIT output buffer of up to 4 MB in

size (222) can be supported.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

32

3.3.12 RTIT_OFFSET MSR

The MSR address is: 0x772. Reset Value: 32’bh000.

Table 14: RTIT Output Offset

Bit Name Description

[21:0] Offset Holds the value added to base to determine write address

This MSR holds the offset within the current RTIT buffer. Adding it to the RTIT base will tell which

physical address the next RTIT output byte should be sent to.

Since the value in this MSR will change as bytes drain from internal RTIT buffers, it can change even
when no packets are being generated. To ensure that it is ‘settled’ an RTIT-draining operation should
be done (like a WRMSR to RTIT_CTL) between the last thing can generate a packet and an accesses to
this MSR.

3.3.13 RTIT_TNT_BUFF MSR

The TNT_BUFF MSR should be initialized by writing a value of 1 instead of 0. Software should not
attempt to write all zeroes to this MSR, as the hardware may not function correctly and may not
generate the correct packets. A MSR write that attempts to write a value of all zeroes will cause a
#GP.

The MSR address is 0x77D. This register is reset to a value of 1’b1.

Table 15: RTIT TNT Packet Buffer

Bit Name Description

[6:0] TNT Corresponds to TNT packet byte0.

All bits to the right of the MSB are valid when the MSB is set (1) (just like the actual TNT packet.)

RTIT_TNT_BUFF is a R/W MSR used to accumulate TNT packet bits as they are generated. Capturing
the TNT bits for the next TNT packet in this MSR allows the processor to save and restore them in C6
events. There is also an MSR to allow software to change the value of this MSR on context switches.

As TNT bits shift in from the right, the valid bit (the first leading ‘1’ i.e. MSB) is also left shifted. Once
the valid bit (MSB/leading’1’) is in bit position 6, a full TNT packet exists (and it should be soon sent
out).

Once the full TNT packet is generated, the lower byte is sent out as a TNT packet (with cycle count

added after it if Cycle Accurate mode is enabled), and this MSR is reset back to ‘1’. For more
information on TNT packet generation and byte contents, please refer to the TNT packet description.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

33

3.3.14 RTIT_LAST_CALL_NLIP MSR

MSR write will cause a #GP on any attempt to set a reserved bit.

The MSR address is 0x76F. Reset Value: 32’bh000.

Table 16: RTIT Last Call NLIP

Bit Name Description

[31:0] Call_NLIP[31:0] Stores the NLIP[31:0] of the last Call Instruction

[47:32] Call_NLIP[47:32] Stores the NLIP [47:32] of the last Call Instruction

48 NLIP_Valid The stored NLIP[47:0] is valid

The RTIT_LAST_CALL_NLIP registers are used to store the NLIP of the last call retired. This is used
for compressing the packet generation of indirect call/returns. For more details on the underlying
architecture and a description of return compression please refer to the indirect transfer compression

for returns section: “Indirect Transfer compression for returns (RET)”.

This entire MSR is cleared to 0 (reset value) when a PSB packet is generated and when a buffer
overflow packet is generated.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

34

4 Trace Packets and Data Types

This chapter details the data generated by RTIT. It is useful for developers writing the interpretation
code that will decode the data from RTIT and apply it to the traced source code. This chapter can also
be used as a reference for the data structures and formats generated by RTIT.

4.1 Trace Packet Summary

The following summarize the trace packet header.

 7 6 5 4 3 2 1 0

TNT

0 1 TNT 6 TNT

0 0 1 TNT 5 TNT

0 0 0 1 TNT 4 TNT

0 0 0 0 1 TNT 3 TNT

0 0 0 0 0 1 TNT 2 TNT

0 0 0 0 0 0 1 TNT 1 TNT

FUP

1 0 0 0 0 Zext CNT PKT Gen Enable

1 0 0 0 1 Zext CNT PKT Gen Disable

1 0 0 1 0 Zext CNT Buffer Overflow

1 0 0 1 1 Zext CNT Periodic Cycle Count

1 0 1 0 x X x x Reserved

1 0 1 1 0 Zext CNT Target IP

1 0 1 1 1 Zext CNT Far Transfer

Extended

1 1 0 0 0 0 0 0 PSB

1 1 0 0 0 0 0 1 TraceSTOP (stop trigger)

1 1 0 0 0 0 1 CR0.PG Paging Information

1 1 0 0 0 1 RNG MTC

1 1 0 0 1 X x x Reserved

1 1 0 1 ACBR[5:2] Super Time Synch

1 1 1 X X Reserved

Figure 2: RTIT Packet Header List

The table below indicates in what modes certain packets are sent out. It is a summary table and
should match the information documented in each of the specific packet sections.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

35

Table 17: Trace Packet Enabling Summary

Packet When enabled

“Branch packets” - TNT, TIP, FUP.Far Transfer, TriggerEn && ContextEn &&
FilterEn

FUP.PacketGenEn TriggerEn && ContextEn &&
FilterEn

FUP.PacketGenDis TriggerEn

TraceStop Clearing of TriggerEn

Packet Stream Buffer TriggerEn

Super Time Synch and Mini-Time Counter with

RTIT_CTL[LESS_PKTS] set

TriggerEn && ContextEn &&

FilterEn

Super Time Synch and Mini-Time Counter with
RTIT_CTL[LESS_PKTS] clear

TriggerEn

FUP.PCC with RTIT_CTL[LESS_PKTS] set TriggerEn && ContextEn &&
FilterEn

FUP.PCC with RTIT_CTL[LESS_PKTS] clear TriggerEn && ContextEn

FUP.Buffer Overflow TriggerEn && ContextEn

Cycle Counter incrementing with RTIT_CTL[LESS_PKTS] set TriggerEn && ContextEn

Cycle Counter incrementing with RTIT_CTL[LESS_PKTS] clear TriggerEn && ContextEn &&
FilterEn

4.2 Packet Types

4.2.1 Packet Stream Boundary (PSB)

A PSB packet is for trace simulation software to identify a trace stream boundary. The trace packet
output port size is not aligned to a trace packet word width, and the packets are written circularly into

the external debugger trace buffer; it cannot be determined whether the data stream carries a valid
trace packet, or just junk data.

A PSB packet consists of header 8’b1100_0000, and 8 contiguous bytes of 0, clearly indicating the
packet stream boundary.

The bytes of zeroes in PSB should be more than the largest possible trace packet payload that might

contain zeroes. So far, the injected packet can have up to 7 bytes of 0s, hence we put the PSB
payload to be 8 bytes.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

36

A PSB will be generated when either of the following occurs:

 Trigger Enable (RTIT_STATUS[TriggerEn]) goes from 0 to 1

o This will only happen on an MSR write (e.g. WRMSR or VMX MSR load table) to
RTIT_CTL that sets RTIT_CTL[TraceActive] and RTIT_CTL[Trace_En].

 RTIT_PKT_CNT[Pkt_Mask] indicates that a PSB packet should be sent out

o E.g., it can be configured to send out packets every 8K packet bytes.

o See MSR definition for RTIT_PKT_CNT for more details

PSB packets may be generated in other cases as well. The trace decoder should be tolerant of extra
PSBs.

7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 3: Packet Stream Boundary

When the PSB is generated from value indicated by Pkt_Mask field, both RET and Last LIP

compression MSRs have their valid bits cleared.

The PSB packet can be sent out when TriggerEn is set.

More than one PSB may be generated at stream boundaries.

4.2.2 TNT Packet

TNT packet contains the instruction flow information for conditional direct jumps (Jcc and LOOP) and
RETs whose target matches the last NLIP.

Embedded in the packet header are the T/NT fields:

 T indicates that the transfer is taken. This is indicated by ‘1.

 NT indicates that the transfer is not taken (fall through). This is indicated by ‘0.

 Up to 6 T/NT fields can be packed in a single TNT packet.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

37

0 1 TNT 6 TNT

0 0 1 TNT 5 TNT

0 0 0 1 TNT 4 TNT

0 0 0 0 1 TNT 3 TNT

0 0 0 0 0 1 TNT 2 TNT

0 0 0 0 0 0 1 TNT 1 TNT

Figure 4: Taken Not Taken Packet

TNT packets are sent whenever 6 direct transfers are collected, or if any other packet needs to be

sent. For example, we could have 4 direct branches followed by an indirect, which would trigger a TNT
packet with the 4 branches, followed by the Target IP packet with the indirect target.

The following cases will cause a partial TNT to be sent:

 Flow Update Packet

 Target IP Packet
 Paging Information Packet

A case that will cause many packets is that we are building a TNT Packet, and then execute a far

transfer (e.g. an interrupt). Under this circumstance, we first send a partial TNT Packet, then a Flow
Update Packet and finally a Target IP Packet.

Note that a full TNT packet that causes a buffer overflow may be delayed instead of being dropped
and could be sent out before the buffer overflow packet is sent out. In this case, the cycle time of the

TNT packet will reflect when the buffer overflow packet was generated and not when the 6th jump was
recorded into the TNT packet. More details on this scenario, including how to detect it, are
documented in the buffer overflow packet section.

Also note that the TNT buffer is not drained on a TraceStop action. To properly understand what
occurred at the very end of the trace, the RTIT analyzer may need to manually read out the contents

of RTIT_TNT_BUFF MSR (e.g. with RDMSR).

4.2.3 Target IP Packet

For every indirect jump and procedure call, exception/interrupt, and interrupt return, a Target IP
Packet containing destination address is generated.

7 6 5 4 3 2 1 0

1 0 1 1 0 Zext CNT

BLIP

BLIP

BLIP

BLIP

BLIP

BLIP

Figure 5: Target IP Packet

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

38

Target IP Packet contains 2B, 4B, or 6B BLIP payload, depending on the compression. CNT indicating
BLIP size in the number of bytes:

 2’00: 2 bytes of BLIP - this is the minimum size of BLIP

 2’01: 4 bytes of BLIP
 2’10: 6 bytes of BLIP - no compression is applied
 2’11: reserved

Zext is used to indicate whether the BLIP payload is compressed with zero extension or comparison

with LIP sent out previously, as discussed below.

4.2.3.1 LIP Compression

There are two ways to compress a LIP: by noting it did not change much from the last LIP sent out, or

by noting that the upper bytes are zeroes.

The LIP is compared with the LIP that was saved into the RTIT_LAST_LIP MSR, which holds the LIP of
whatever was sent out in the last LIP-containing packet (Target IP or Flow Update). RTIT_LAST_LIP is

updated with the full LIP, even if that packet did not send out that full LIP due to it also being
compressed. If the previous packet that sent out a LIP had the same bytes in the MSB bytes (upper
part) of the address, then we can avoid sending them again in the current packet.

The LIP is also checked to see whether MSB bytes consist solely of zeroes. If so, we only send the
non-zero bytes of LIP; and we set the Zext bit to indicate that the higher bytes are zeroes.

The lowered count field implies that the upper bits are either the same as the previous LIP, or zero
(depending on Zext bit).

The matching and zero checking are for two groups: higher 2 bytes of BLIP (BLIP5/4), and middle 2

bytes of BLIP (BLIP3/2). The following table summarizes CNT and Zext based on the bits:

Table 18: LIP Compression

 CNT in packet Zext in
packet

Match
of 47:32

Match
of 31:16

LIP[47:32]
is all 0s

LIP[31:16]
is all 0s

CNT = 0 (2 byte LIP) Zext = 0 1 1 0 X

CNT = 0 (2 byte LIP) Zext = 0 1 1 1 0

CNT = 0 (2 byte LIP) Zext = 1 X X 1 1

CNT = 1 (4 byte LIP) Zext = 0 1 0 0 X

CNT = 1 (4 byte LIP) Zext = 1 X 0 1 0

CNT = 1 (4 byte LIP) Zext = 1 0 X 1 0

CNT = 2 (6 byte LIP) Zext = 0 0 X 0 X

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

39

“Match of 47:32” being 1 means that bits 47:32 of the LIP that this packet wants to send out are
equal to RTIT_LAST_LIP[CMPRS_LIP_HIGH] (which usually holds LIP[47:32] of the LIP that was sent
out in the last packet that had a LIP—even if that previous packet was also compressed (and thus
didn’t send out those bytes)).

An X means that the table row applies regardless of whether it was 0 or 1. Note that zero extension is
a preferred compression mechanism over LIP match, as it is easier for software to reconstruct LIP.

The compressed LIP is only updated when RTIT is not generating a buffer overflow packet. It is also

cleared on each PSB generated.

LIP compression occurs prior to storing the trace message in the RITT Buffer. The following are
possible LIP insertion/compression scenarios:

1. If the LIP being inserted into the buffer is the first LIP to be inserted, then it can't be

compressed, as there is nothing to compress against. However, the Last LIP compare register
should be updated with the current LIP, in this case to prepare for subsequent compression.

2. If the LIP being inserted into the buffer is not the first LIP to be inserted, then the LIP being

inserted is compressed against the contents of the Last LIP compare register, and Last LIP
compare takes on the new value of the LIP currently being inserted.

3. In the event two RTIT packets are to be inserted back to back, then LIP0 is compressed
against Last LIP register (or bypass), then LIP1 compressed against LIP0, and LIP1 updates
the Last LIP compare MSR.

4. In the event three RTIT packets are to be inserted back to back (three LIP generating events

occurred in a single retirement window), LIP0 compresses against Last LIP MSR (or bypass),

then LIP1 compresses against LIP0, and then LIP2 compressed against LIP1 and LIP2 updates
the Last LIP MSR.

4.2.3.2 Indirect Transfer compression for returns (RET)

In addition to LIP compression, RTIT has the ability to further compress indirect transfer packets for

call/return pairs if enabled (RTIT_CTL.CMPRS_RET is set). A ‘pair’ is defined as a near CALL
instruction (direct or indirect) followed by a near RET instruction that returns execution to the
instruction following that previous call.

This current architecture does not support compressing the indirect transfer packet if the near RET

does not return to the exact same address as the NLIP of the last near CALL that was traced (as held
in RTIT_LAST_CALL_NLIP MSR). Thus only the innermost CALL/RET pairs of nested subroutines will
have their compression on their RET.

Likewise, if the software does not RET to the NLIP of the last CALL (e.g., the return address on the

stack was modified), then the RET’s packet will not be compressed through indirect transfer
compression.

If return compression is enabled, when a call is executed with PacketEn set, the NLIP of the call (the
return address) is not only pushed on the stack, but RTIT stores a copy in RTIT_LAST_CALL_NLIP and
sets the NLIPVal bit. If the subsequent return instruction target address matches the address in

RTIT_LAST_CALL_NLIP (and NLIPVal is set), then a Taken indication is added to the TNT history (if
this TNT update completes the six entries needed for a full TNT packet, then a full TNT packet will be
generated). If the return address does not match RTIT_LAST_CALL_NLIP (e.g., due to nested calls, or
the return address was changed on the stack), then the return will generate a Target IP packet (just
like when RET compression is disabled).

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

40

A RET instruction whose RTIT output is compressed (it only updates TNT buffer instead of sending out
a TIP) will not update RTIT_LAST_LIP MSR. Architecturally, it would be fine either way, but this is the
current plan.

Only near call instructions that start with PacketEn set will modify RTIT_LAST_CALL_NLIP. So near

call which is within the filtered region and has PacketEn of 1 but jumps outside the filter region will
still modify RTIT_LAST_CALL_NLIP with its NLIP.

A call instruction that does not start with PacketEn set and RTIT_CTL[CMPRS_RET] set will not write

its NLIP into RTIT_LAST_CALL_NLIP. So a call whose CLIP is outside the filter enable region (and thus
packet_en is 0) will not modify RTIT_LAST_CALL_NLIP, even if the call’s target or NLIP is within the
filter enable region.

Far calls will also not modify RTIT_LAST_CALL_NLIP.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

41

Figure 6: Return compression without nested calls

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

42

Figure 7: Return compression with nested calls

In the example above, the behavior differs once the second call is encountered (without a RET in

between the two calls). Once the call at address 0x405 is encountered, the call’s NLIP is pushed onto
the stack and copied into the RTIT_LAST_CALL_NLIP register, overwriting the previous call’s NLIP
(steps 3 and 4). After the call at address 0x405 is retired (step 3), code flow is redirected to the
target of the call (_buffer). Code flow continues in this routine until the RET at address 0x502 is
encountered. The RET pulls its return address off the stack, and RTIT compares the return address to
the address stored in RTIT_LAST_CALL_NLIP. For this RET at address 0x502 (step 5), the return

address and the address in RTIT_LAST_CALL_NLIP matches and a Taken indication is stored in the

TNT history. The INC AX instruction at address 0x409 is executed next, then the RET at address
0x40c. For this ret, the return address is again pulled off the stack and compared with address in
RTIT_LAST_CALL_NLIP; in this case there is no match, as RTIT_LAST_CALL_NLIP contains the NLIP of
the previous call (address 0x405) and not the address on the stack (address 0x00a). Since the return
address does not match the RTIT_LAST_CALL_NLIP address, the TNT history is not updated, and RTIT
generates an indirect transfer packet.

RTIT_LAST_CALL_NLIP enable bit is cleared on each PSB generated and is also cleared on buffer
overflow (just in case the buffer overflow prevented some of the info needed for the analyzer to know
the last CALL).

4.2.4 Flow Update Packet

Flow Update Packet is generated for certain situations, as identified by the Event field of the packet:

 Event 3’b000: the real time trace package generation is enabled.
 Event 3’b001: the real time trace package generation is disabled.

 Event 3’b010: the trace architecture just recovered from the buffer overflow.
 Event 3’b011: periodic cycle count.
 Event 3’b110: This encoding indicates that it is not a FUP. It is actually a Target IP Packet,

as described in the section above.
 Event 3’b111: far transfer events: exceptions, traps, interrupts, far jumps.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

43

As described in Section 2.2, the NLIP bus sends the CLIP for exceptions and NLIP for other far transfer
events. NLIP0 is sent on the payload for all other Flow Update Packets. Up to 48 bits or 6 bytes of LIP
is sent for debug software to figure out the current program flow location. The number of bytes of LIP
field is indicated by the CNT field of the packet.

The same compression and zero extension as the Target IP Packet is applied to the Flow Update
Packet.

7 6 5 4 3 2 1 0

1 0 Event Zext CNT

LIP

LIP

LIP

LIP

LIP

LIP

Figure 8: Flow Update Packet

4.2.5 Flow Update event: Buffer Overflow

When new packets need to be generated but the CPU’s internal RTIT buffers are all full, a RTIT “buffer

overflow” occurs. When this occurs, the Buffer_Overflow bit in RTIT_STATUS MSR will be set. When
RTIT_STATUS[Buffer_Overflow] is set, the following things occur:

a) No packets will be generated (as they would need to enter the CPU’s internal RTIT

buffer)
1. Ideally, this means that RTIT_LAST_LIP MSR and RTIT_LAST_CALL_NLIP will

not be modified (since they are only modified when packets are generated).
However, this is not critical, since these MSRs are cleared when the Buffer
Overflow clears out.

2. This means that Pkt_Cnt will not increment (since only incremented when

packets are generated).
b) No conditional branches will update the partial TNT information (RTIT_TNT_BUFF

MSR).
c) The cycle counter will increment, but will not generate PCC packets (see below).

The address comparisons to RANGE0 or RANGE1 continue during a buffer overflow and TriggerEn,

ContextEn, and FilterEn may change during a buffer overflow. Any FUP.PGE or FUP.PGD packets that
would have been generated will be dropped/lost.

The cycle counter does not stop incrementing due to a buffer overflow. However, the periodic cycle

counter packet will not be dropped due to a buffer overflow. Instead, the periodic cycle counter

(FUP.PCC) will not be generated (and thus the cycle counter will not be auto-reset) until after the
buffer overflow has cleared out (and after the buffer overflow packet has been sent). If the buffer
overflow packet contains a cycle count that can cause the cycle counter to be reset without any
FUP.PCC being needed. A buffer overflow should never last long enough to cause the cycle counter to
overflow. Any mini time counter (MTC) packets that need to be sent during a buffer overflow will be
dropped. If only a few MTC packets are dropped, the RTIT analyzer should be able to detect this by

noticing that the time value in the first MTC packet after the buffer overflow incremented by more
than one. If the buffer overflow lasted so long that that >255 MTC packets are lost (and thus the MTC

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

44

packet ‘wraps’ its 8-bit TSC value), then the RTIT analyzer may be unable to properly understand the
trace. If this is suspected, MTC_range should be increased.

The buffer overflow condition will not be cleared until:

a) The RTIT buffer has completely drained to the memory unit and is empty.
b) An instruction is starting while TriggerEn==1 and ContextEn==1 at the beginning of

the instruction.

When the buffer overflow condition is cleared by the above conditions, the buffer overflow has
‘naturally’ cleared (to differentiate from being cleared by an MSR write). When the buffer overflow is
naturally cleared, the Buffer_Overflow bit of RTIT_STATUS is cleared, a FUP.BuffOvf (flow update
packet of type buffer overflow - event field is 010b) is generated, and the valid bits of the

RTIT_LAST_LIP and RTIT_LAST_CALL_NLIP MSRs are cleared. They are cleared before the overflow

packet is sent, so the FUP.BuffOvf will never contain a last LIP compressed address.

The address contained in the FUP.BuffOvf will be the start of the next instruction after the currently
executing instruction (the NLIP of the current instruction). Thus, on clearing of a buffer overflow, the
analyzer will know exactly where the CPU is now executing, but will not know the exact instruction

where the buffer overflow occurred.

If there are taken/not taken indications in RTIT_TNT_BUFF, then they will be sent out before the
FUP.BuffOvf is sent. They will represent taken/not taken branches before the buffer overflow occurred,
and thus can help the analyzer understand what code was executing when the buffer overflow

occurred. This will also occur if the RTIT_TNT_BUFF was completely full with 6 branches and it was the
TNT packet itself that attempted to cause the overflow. In that case, the full TNT packet will not be
dropped and will still be seen in the trace before the buffer overflow packet.

Full TNT packets include cycle count packets; but that in this case, the TNT packet cycle count will be
the time when the buffer overflow was drained and not when the 6th branch occurred that filled up the

TNT buffer. When the trace analyzer sees a full TNT packet followed by a buffer overflow and the

buffer overflow packet has a cycle count of 0 that means this situation has occurred. In this case, the
trace analyzer should not treat the cycle count at the end of the full TNT packet as the time when the
6th jump retired; instead, it is the time when the buffer overflow packet was sent.

If a TraceStop action occurred during the buffer overflow (which means that the IP matched that

specified in RANGE0 or RANGE1 and that range was programmed to cause a TraceStop by
TraceStop_Event_ID), then that TraceStop action will be held pending during the buffer overflow and
will not be dropped. Once the buffer overflow packet has been sent, the TraceStop action will occur—
which includes clearing out RTIT_CTL[Trace_Active], sending out the TraceStop packet, and possibly
draining RTIT buffers again. This means that the buffer overflow packet may contain an address
reached after the filtering logic pended the TraceStop action. It also means that the cycle counter will
continue running after the filtering logic pended the TraceStop action.

The FUP.BuffOvf can cause a PSB packet to be generated due to its incrementing of Pkt_Cnt.

If TriggerEn becomes 0 and then goes back to 1 (due to an MSR write) during a buffer overflow, a PSB

packet will be generated. It is possible for this PSB packet to be seen in the trace before the buffer
overflow packet, even though the re-setting of TriggerEn occurs after the buffer overflow started.
Additionally, if a TraceStop packet was pending when TriggerEn became 0, the PSB packet may come
out before the TraceStop packet.

Although the packet ordering does not match the order in which the actions occurred, this is not

expected to be a real problem for the RTIT analyzer, since the purpose of the PSB packet is still met
(which is to ensure that the header bytes can be found in the trace).

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

45

The Buffer_Overflow can also be changed by software writing RTIT_STATUS MSR. Clearing the bit
through an MSR write is not a ‘natural’ clearing and it will not cause a buffer overflow packet to be
generated. If the Buffer_Overflow bit is set through an MSR write to RTIT_STATUS that must have the
same effect as if a packet was generated when the buffer was full (e.g. preventing further packets

from getting into the internal buffer while Buffer_Overflow bit is set).

If an RTIT drain occurs (e.g. as part of a WRMSR to RTIT_CTL) while Buffer_Overflow is set, the drain
will complete without Buffer_Overflow being cleared. This is because Buffer_Overflow only clears
naturally (meaning not through MSR write) at instruction boundaries. Thus it is possible for a drain to

complete without forcing out the Buffer Overflow packet (FUP.BuffOvf) that is generated by the
natural clearing of RTIT_STATUS[Buffer_Overflow].

4.2.6 Flow Update event: Packet Cycle Counter

This is commonly called “FUP.PCC”. The RTIT hardware will send out a Periodic Cycle Count
(FUP.PCC) Packet at the beginning of an instruction when the MSB (bit 21) of RTIT_CNTP[CNTP] is set,

the cycle count is enabled (RTIT_CTL[CYCLE_ACC]==1), and the processor is in the appropriate
mode.

When LESS_PKTS is set, FUP.PCC packets are only sent out when (TriggerEn && ContextEn &&
FilterEn) == 1.

When LESS_PKTS is clear, FUP.PCC packets are only sent out when (TriggerEn && ContextEn) ==

1.

The address in the FUP.PCC’s LIP field is the NLIP of the instruction (the first byte of the next
sequential instruction). This is the same as the buffer overflow packet. This can lead to an address

being sent out which is never executed (e.g. the instruction sequentially after a RET). The RTIT_CNTP
packet may be delayed if another packet non-PSB needs to be sent out at the same time.

Although it is only sent out at instruction boundaries, it is normally sent out when it is ‘half full’ (its
MSB is set). So there is little chance of the cycle counter overflowing before the FUP.PCC could be sent
out.

Since the Periodic Cycle Count packet is only sent out in cycle accurate mode (assuming an MSR write
isn’t used to set the MSB of CNTP), it will naturally include the cycle count. And thus sending it out will
also clear out the cycle counter (CNTP) – since that happens whenever the cycle count packet is sent.
Sometimes this packet is incorrectly referred to as the “Cycle Count Overflow packet”.

4.2.7 Flow Update event: Packet Generation Enable

This is commonly called “FUP.PGE”. This packet is generated when PacketEn transitions from 0 to 1.

This can happen for a range of reasons including:

a) “Walking into the region” (having FilterEn become set due to the NLIP matching the region
specified by Filter EventID).

b) Jumping into the region (having FilterEn become set due to the branch target being within the
region specified by Filter EventID).

c) Having ContextEnable become 1 and already being in the right range.
a. This could happen due to a WRMSR to an RTIT MSR, a CR3 changing operation, a

change in CPL, a VM-entry, or RSM.

d) Enabling RTIT (TriggerEn from 0 to 1) and being in the right mode and IP range such that
ContextEn and FilterEn also become 1.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

46

The FUP.PGE is actually sent out by the instruction that ‘ends’ in the right mode/range.

The LIP carried in the FUP.PGE packet is the address of the next instruction that should execute

(assuming no trap/interrupt), which will always be an address in the right mode/range.

4.2.8 Flow Update event: Packet Generation Disable

This is commonly called “FUP.PGD.” This packet is generated when PacketEn transitions from 1 to 0,
with an exception mentioned later.

This can happen for a range of reasons including:

a) “Walking out the region” (having FilterEn become 0 due to the NLIP matching the end of the

region specified by Filter EventID).

b) Jumping out the region (having FilterEn become cleared due to the branch target being
outside the region specified by Filter EventID).

c) Having ContextEnable become 0.
a. This could happen due to a WRMSR to an RTIT MSR, a CR3 changing operation, a

change in CPL, a VM-exit or a SMI.

The FUP.PGD is actually sent out by the instruction that ‘ends’ outside of the right mode/range. Thus,
it is generated by an instruction that started with PacketEn set.

The LIP carried in the FUP.PGD packet is the NLIP of the instruction that caused PacketEn to go from 1
to 0. If it was not an instruction that caused PacketEn to be cleared (e.g., it was an interrupt or trap
or VM exit), then it is the address that would be saved into the LBR FROM field, or into the VMCS or
into the SMRAM.

There is one exception where PacketEn goes from 1 to 0 without a FUP.PGD being generated. A

FUP.PGD may not be generated when TriggerEn becomes 0. This TriggerEn clearing could be due to an
MSR write that clears TraceActive or Trace_En or by a TraceStop event that clears TraceActive. This
aspect of the architecture may be changed in future versions of RTIT if it is a problem for software.
This can cause PacketEn to become 0 without the contents of TNT_BUFF being forced out in a partial

TNT. This could lead to a partial TNT on the next FUP.PGE (which is unusual; but allowed). That partial
TNT would specify where RTIT was disabled.

4.2.9 Flow Update event: Far Transfer

This is commonly called “FUP.FAR”. It is sent out on far transfers to explain where the trace was
before the far transfer. This is important for asynchronous transfers like faults and interrupts; but is

sent out on all far transfers to be consistent. See table 2 (Classifying branches/COFI) for details of
which instructions cause a FUP.FAR to be sent out. The address that is contained in the FUP.FAR is
described in Table 1 (Address in various packets).

On a branch that would naturally generate both a FUP.FAR and a FUP.PGD, the FUP.PGD will replace
the FUP.FAR and no FUP.FAR will be sent. This is a form of compression, and is also thought to

simplify the hardware.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

47

4.2.10 Paging Information Packet (PIP)

This packet will be generated with the new CR3 value and paging enable, on

 MOV CR3 operation
 MOV CR0 that changes the CR0.PG value

The Paging Information Packet is generated in the above cases when ContextEn and TriggerEn are

both 1 and RTIT_CTL[CR3En] is 0. When RTIT_CTL[Cr3_En] is 1, then software should know what the
CR3 value is whenever ContextEn is 1 and no paging information packet is generated (for simplicity,
this also includes when CR0.PG changes).

The purpose of the PIP is to tell the RTIT analyzer which application is running so that it can

understand which code corresponds to the linear addresses which RTIT is outputting. Some older

versions of Linux* would leave CR3 unchanged and would switch applications by changing PLM4
entries. RTIT will have trouble with such operating systems unless they are modified to log when they
are changing address spaces.

7 6 5 4 3 2 1 0

1 1 0 0 0 0 1 CR0.PG

CR3[7:0]

CR3[15:8]

CR3[23:16]

CR3[31:24]

CR3[39:32]

Figure 9: Paging Information Packet

The new CR3 and CR0.PG values are the ones reported in the packet. There are ways that the CR3 or

CR0.PG can be changed without sending out a paging info packet, like task switches or INIT. A paging
info packet should not be sent out SMIs, RSMs, VM-exits or VM-entry to SMM mode (although SMIs,
VM-exits and VM-entry to SMM will always end with ContextEn==0 anyway).

The RTIT_CTL.STS_on_CR3 bit may cause a STS packet to be sent out (after the Paging Info packet

when Paging Info packets are sent out) if STS packets are sent out in the current mode (depends on
LESS_PKTS; ContextEn evaluated after CR3 value change) on MOV CR3 operations. This can help tell
the analyzer what the current time is, even if there has been no other event that sends out STS
packets for a long time. STS packets might be sent out due to STS_on_CR3 even when Paging Info
packets are not sent out (e.g. because RTIT_CTL[CR3En] is 1).

4.2.11 TraceSTOP Packet

When the IP matches the range specified by the TraceStop EventID while (RTIT_STATUS[ContextEn]

and RTIT_STATUS[TriggerEn] are set), a TraceStop action occurs. This clears RTIT_CTL[TraceActive]
and causes a TraceStop packet to be generated.

The TraceStop action also forces FilterEn to 0.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

48

Note that the TNT buffer is not drained on a TraceStop action. To properly understand what occurred
at the very end of the trace, the RTIT analyzer may need to manually read out the contents of
RTIT_TNT_BUFF MSR (e.g. with RDMSR).

7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1

Figure 10: TraceSTOP Packet

4.2.12 Mini Time Counter (MTC) Packet

The MTC packet, along with the STS packet, helps the analyzer figure out the wall-clock time when

packets were generated. Wall-clock time information can be used to synchronize with other debug

streams (e.g. the RTIT stream from another core, a video recording of the display). MTC, like STS, is
based on the HW TSC that the processor uses to generate IA32_TIMESTAMP_COUNTER (and for
RDTSC).

RTIT can be configured to watch a specified 8-bit range of the HW TSC. Whenever that 8-bit range

being watched changes, an MTC packet will be sent out with the new value of that 8-bit range. This
allows the analyzer to keep track of how much time has elapsed since the last STS packet was sent by
keeping track of how many MTC packets were sent and what their value was.

It is possible for MTC packets to be lost due to buffer overflows. However unless >2^8 MTC packets
are dropped in a row, software will be able to notice that MTC packets were dropped by noticing the

missing packet (e.g. the last time was 0x1a and the new time is 0x1c implies that the packet for 0x1b
was dropped).

MTC packets are enabled by setting RTIT_CTL[MTC_En]. The specific bits are specified by the

RTIT_CTL[MTC_Range] field. A value of ’00 means that HW TSC[14:7] are sent out in the TSC portion

of MTC packets whenever HW TSC [14:7] changes (which is whenever TSC[7] changes). A value of ’01
means that HW TSC [16:9] are sent out in MTC whenever they change. A value of ’10 means that HW
TSC [18:11] are sent out in MTC whenever they change. A value of ’11 means that HW TSC [20:13]
are sent out in MTC whenever they change.

Thus software can either choose to have MTC packets sent out more frequently with finer granularity

of time info (but causes more packet bandwidth and allows wrapping more frequently), or can have
MTC packets sent out less frequently with less granular time info (but less packet bandwidth and less
chance of wrapping in an overflow).

MTC packets are generated whenever TriggerEn is 1 if RTIT_CTL[LESS_PKTS] is clear and whenever

TriggerEn, ContextEn, and FilterEn are all 1 if LESS_PKTS is set.

The RNG field will be the current RTIT_CTL[MTC_Range] value. The MTC will be sent out whenever the
8-bits of the TSC that are to be sent out change. It should be inserted into the buffer immediately

after the TSC changes. The MTC packet may not be sent out when the CPU is in a sleep state.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

49

The following is the MTC Packet format.

7 6 5 4 3 2 1 0

1 1 0 0 0 1 RNG

8b TSC (granularity based on count)

Figure 11: Mini Time Counter Packet

Due to per-core offset and VMCS offset, the value in the MTC packet may not be the same value as

read on RDTSC or MSR read of IA32_TIME_STAMP_COUNTER MSR. Software can tell the difference
between the HW TSC (which is sent out by MTC and STS packets) and the
IA32_TIME_STAMP_COUNTER value (also read out by RDTSC) by reading out the per-core offset

through a RDMSR of IA32_TSC_OFFSET. Software techniques may need to be used to discover the

VMCS offset.

4.2.13 Super Time Sync (STS) Packet

This packet will send out both the frequency and current time stamp counter value of the core. This
packet is architecturally sent on:

 Core frequency change

 Sleep state wakeup (any sleep state, including C1/C2/C4/C6/S0i2)
 Clock modulation (e.g., due to TM1 or IA32_CLOCK_MODULATION MSR)
 On MOV CR3 operations (when RTIT_CTL. STS_on_CR3 is set)

STS packets may be sent for other cases as well.

The packet includes 5 bytes of “Big time Counter” (which corresponds to the hardware TSC
creg[39:0]). Software can see the difference between the hardware TSC creg and the software TSC
(what is returned on RDTSC) by doing a RDMSR of IA32_TSC_OFFSET MSR (which is introduced on
Silvermont and Haswell). The packet also includes the “Actual Core/Bus ratio” (which is the current

core/bus ratio), and the “Effective Core/Bus ratio” (which is the core/bus ratio that software effectively
operates at when clock modulation is factored in).

Since the big time counter value contains HW TSC creg bit [39:0], it will wrap around in ~500 seconds
on a 2GHz GUAR_RATIO part. This should be enough detail to sync up the trace packets from different

CPU cores.

When RTIT_CTL.LESS_PKTS is zero, then STS should be sent out whenever TriggerEn is one. When
RTIT_CTL.LESS_PKTS is one, then STS should be sent out whenever (TriggerEn && ContextEn &&
FilterEn) is 1. STS packets should only be sent out when RTIT_CTL[STS_EN] is set.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

50

7 6 5 4 3 2 1 0

1 1 0 1
Actual Core/Bus
Ratio[5:2]

ACBR[1:0] Effective Core/Bus Ratio[5:0]

Big Time Counter 0 (HW TSC[7:0])

Big Time Counter 1 (HW TSC[15:8])

Big Time Counter 2 (HW TSC[23:16])

Big Time Counter 3 (HW TSC[31:24])

Big Time Counter 4 (HW TSC[39:32])

Figure 12: Super Time Synch packet

4.2.14 Cycle Count Packet

For certain RTIT trace packets additional cycle count will be appended after the normal packet in cycle

accurate mode. The following is the cycle count packet format:

7 6 5 4 3 2 1 0

Cycle Count 0 CCNT

Cycle Count 1

Cycle Count 2

Figure 13: Cycle Count Packet

CCNT is used to indicate the cycle count length:

 2’b01: 1B Cycle Count Packet. Cycle Count 0 carries the value in RTIT_CNTP[5:0]. This is for

the case when RTIT_CNTP[21:6] == 0;

 2’b10: 2B Cycle Count Packet. Cycle Count 0 carries the value in RTIT_CNTP[5:0]; Cycle
Count 1 carries the value in RTIT_CNTP[13:6]. This is for the case when RTIT_CNTP[21:14]

== 0;

 2’b11: 3B Cycle Count Packet. Cycle Count 0 carries the value in RTIT_CNTP[5:0]; Cycle
Count 1 carries the value in RTIT_CNTP[13:6]; Cycle Count 2 carries the value in
RTIT_CNTP[21:14].

 2’b00: reserved

The RTIT cycle counter may stop in sleep states. An STS packet should be sent out on wakeup from
any sleep states where the cycle counter does not count.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

51

4.2.15 Cycle Accurate Mode

Cycle accurate mode is enabled when RTIT_CTL.Cycle_Acc is set.

The following RTIT packets will always be followed by a cycle count packet when the cycle accurate
mode is enabled:

 Full TNT Packet (a TNT packet with info on 6 branches)

 Target IP Packet
 Flow Update Packet
 Paging Information Packet
 Mini Time Count
 Super Time Sync

The appended cycle count sends out the value stored in RTIT_CNTP. The count increments every CPU

core clock, and value is an accurate indication of the program flow (specifically the time between
retiring the instructions that generated the packets).

The cycle count in RTIT_CNTP only tells the time since the last cycle count packet. So every time a

Cycle Count packet is sent, RTIT_CNTP[CNTP] is reset to zero.

The cycle count packet is not appended to partial TNT packets, TraceSTOP, or Packet Stream Buffer. It
is not appended to the Partial TNT packet (a TNT packet of less than 6 branches) because it is not
needed. The partial TNT packet is always immediately followed by another packet (which will have

forced out the partial TNT). The partial TNT packet will have a cycle count packet.

Conditional jumps update the TNT buffer, but do not generate a TNT packet or a cycle count packet.
Thus the exact time those jumps retired is not indicated in the RTIT output.

4.3 Synchronous packets

There are three types of packets generated on flow control instructions (e.g., branches), and one

packet generated on paging changes. The packet layout and complete descriptions can be found in
the packet section of this document; however, the following table provides a brief description of the
three synchronous packets (TNT, Target IP, and Flow Update) packets as well as the paging change
packet (Paging Info Packet)

 “TNT” packet: Holds taken/not taken info about direct, conditional jumps (e.g. JNZ)

• Target IP Packet: Holds destination address of indirect jump/transfers (e.g., JMP
indirect or #PF exception)

• Flow Update packet: Explains where we came from (e.g., address pushed onto stack for
#PF exception)

• Paging Info packet: Generated on CR3 changes or paging enable/disable. Explains
which app we switched to and whether paging is enabled.

Direct unconditional branches such as JMP near relative do not generate packets.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

52

4.3.1 Packets sent out in various situations

The following table describes what packets are generated with each type of operation.

Table 19: Packet Generation under Different Enable Conditions

Operation PacketEn set
before we
fetched this
instruction?

PacketEn set
after this
instruction
completes?

Branches
in the TNT
buffer?

Packets
generated

1 Normal non-jump
operation (EOM)

Yes yes x Nothing

2 Normal non-jump

operation (EOM)

No no x Nothing

3 Normal non-jump
operation (EOM)

Yes no no FUP.PGD with
NLIP

4 Normal non-jump
operation (EOM)

Yes no yes TNT, FUP.PGD
with NLIP

5 Normal non-jump

operation (EOM)

No yes no (yes is

not possible
here, even
if there is a
buffer
overflow)

FUP.PGE with NLIP

6 Unconditional
direct jump (like

JMP near)

Yes yes x Nothing

7 Unconditional
direct jump (like
JMP near)

No no x Nothing

8 Unconditional
direct jump (like
JMP near)

Yes no no FUP.PGD with
NLIP

9 Unconditional
direct jump (like
JMP near)

Yes no yes TNT, FUP.PGD
with NLIP

10 Unconditional
direct jump (like
JMP near)

No yes no (yes is
impossible)

FUP.PGE with
BLIP

11 Conditional taken
jump that does
not fill up the
internal TNT

buffer (not the
6th conditional
jump)

Any any x Same as direct
jump

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

53

Operation PacketEn set
before we
fetched this
instruction?

PacketEn set
after this
instruction
completes?

Branches
in the TNT
buffer?

Packets
generated

12 Conditional not
taken jump that
does not fill up
the internal TNT
buffer (not the
6th conditional

jump)

Any any x Same as "normal
non-jump
operation"

13 Conditional taken

jump up that fills

up the internal
TNT buffer

Yes yes yes (no is

not

possible)

TNT

14 Conditional taken
jump up that fills
up the internal
TNT buffer

No no yes (no is
not
possible)

impossible,
because wouldn't
update TNT buffer

15 Conditional taken
jump up that fills
up the internal
TNT buffer

Yes no yes (no is
not
possible)

TNT, FUP.PGD
with NLIP

16 Conditional taken
jump up that fills
up the internal
TNT buffer

No yes yes (no is
not
possible)

impossible,
because wouldn't
update TNT buffer

17 Conditional not
taken jump up
that fills up the

internal TNT
buffer

Yes yes yes (no is
not
possible)

TNT

18 Conditional not

taken jump up
that fills up the
internal TNT
buffer

No no yes (no is

not
possible)

impossible,

because wouldn't
update TNT buffer

19 Conditional not
taken jump up
that fills up the
internal TNT

buffer

Yes no yes (no is
not
possible)

TNT, FUP.PGD
with NLIP

20 Conditional not
taken jump up
that fills up the

internal TNT
buffer

No yes yes (no is
not
possible)

impossible,
because wouldn't
update TNT buffer

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

54

Operation PacketEn set
before we
fetched this
instruction?

PacketEn set
after this
instruction
completes?

Branches
in the TNT
buffer?

Packets
generated

21 Near indirect
jump (like RET or
CALL indirect
mem)

Yes yes no TIP with BLIP

22 Near indirect
jump (like RET or
CALL indirect
mem)

Yes yes yes TNT, TIP with BLIP

23 Near indirect
jump (like RET or
CALL indirect

mem)

No no x Nothing

24 Near indirect
jump (like RET or

CALL indirect
mem)

Yes no no TIP with BLIP and
FUP.PGD with

NLIP

25 Near indirect

jump (like RET or
CALL indirect
mem)

Yes no yes TNT, TIP with BLIP

and FUP.PGD with
NLIP

26 Near indirect
jump (like RET or

CALL indirect
mem)

No yes no (yes is
impossible)

Just FUP.PGE with
BLIP

27 Far Transfer (Far
Jump/Call/Ret/Int
errupt/Exception/
etc.)

Yes yes no FUP.Far with NLIP
(see footnote) and
TIP with BLIP

28 Far Transfer (Far
Jump/Call/Ret/Int
errupt/Exception/
etc.)

Yes yes yes TNT, FUP.Far with
NLIP (see footnote
2) and TIP with
BLIP

29 Far Transfer (Far
Jump/Call/Ret/Int
errupt/Exception/

etc.)

No no x Nothing

30 Far Transfer (Far

Jump/Call/Ret/Int
errupt/Exception/
etc.)

Yes no (but

ContextEn is 1)

no FUP.PGD with

NLIP (see
footnotes 2 and 6)
and TIP with BLIP

31 Far Transfer (Far
Jump/Call/Ret/Int
errupt/Exception/
etc.)

Yes no (but
ContextEn is 1)

yes TNT, FUP.PGD
with NLIP (see
footnotes 2 and 6)
and TIP with BLIP

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

55

Operation PacketEn set
before we
fetched this
instruction?

PacketEn set
after this
instruction
completes?

Branches
in the TNT
buffer?

Packets
generated

32 Far Transfer (Far
Jump/Call/Ret/Int
errupt/Exception/
etc.)

Yes no (ContextEn is
now 0)

no FUP.PGD with
NLIP (see footnote
2)

33 Far Transfer (Far
Jump/Call/Ret/Int
errupt/Exception/
etc.)

Yes no (ContextEn is
now 0)

yes TNT, FUP.PGD
with NLIP (see
footnote 2)

34 Far Transfer (Far
Jump/Call/Ret/Int
errupt/Exception/

etc.)

no (ContextEn
was 0)

Yes no (yes is
impossible)

Just FUP.PGE with
BLIP

35 Far Transfer (Far
Jump/Call/Ret/Int

errupt/Exception/
etc.)

no (ContextEn
was 1)

Yes no (yes is
impossible)

Just FUP.PGE with
BLIP

36 SMI or VM-exit Yes No no FUP.PGD with

address saved into
VMCS/SMRAM as
IP

37 SMI or VM-exit Yes No yes TNT, FUP.PGD
with address

saved into
VMCS/SMRAM as
IP

38 RSM or VM-entry No Yes no (yes is
impossible)

FUP.PGE with BLIP

39 MOV to CR3 Yes Yes no CR3 packet when
enabled, STS
when enabled

40 MOV to CR3 Yes Yes yes TNT, CR3 packet
when enabled,
STS when enabled

41 MOV to CR3 No No no (yes is
impossible)

CR3 packet when
enabled in the
current mode, STS

when enabled

42 MOV to CR3 No Yes no (yes is
impossible)

CR3 packet when
enabled in the
current mode,

STS when
enabled, FUP.PGE
with NLIP

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

56

Operation PacketEn set
before we
fetched this
instruction?

PacketEn set
after this
instruction
completes?

Branches
in the TNT
buffer?

Packets
generated

43 MOV to CR3 Yes no no CR3 packet when
enabled in the
current mode, STS
when enabled,
FUP.PGD with
NLIP

44 MOV to CR3 Yes no yes TNT, CR3 packet
when enabled in

the current mode,

STS when
enabled, FUP.PGD
with NLIP

Footnote 1: The order of the packets will be that specified in the list.
Footnote 2: The "NLIP" of a far transfer which changes privilege levels is actually the address it
would have saved into the FROM field of the LBRs for Intel® Atom™ processors (or on the
stack).This is actually the CLIP for exceptions.
Footnote 3: This does not list cycle count packets. For now, assume that each TNT, FUP and TIP
has a cycle count packet after it. Any second or third cycle counts sent out on an instruction should

be 0 (since sending out the first cycle count zeroed it.

4.3.2 Understanding Entering/Exiting Packet Enabled

Region

Whether an instruction generates a synchronous packet is determined by the value of packet enable at

the start of the instruction.

A conditional (taken or not taken) jump that starts with PacketEn cleared and ends with PacketEn set

does not update the TNT buffer. A conditional jump that starts with PacketEn set and ends with

PacketEn cleared does update the TNT buffer; but it will also immediately follow it by generating a
FUP.PGD packet that will evict whatever is in the TNT buffer.

A RET that starts with PacketEn cleared and ends with PacketEn set does not send out a TIP or update

the TNT buffer. A RET that starts with PacketEn set and ends with PacketEn cleared does sent out the

TIP or updates the TNT buffer (depending on whether it matches LAST_CALL_NLIP)

An indirect jump that starts with PacketEn cleared and ends with PacketEn set does not send out a TIP

packet. An indirect jump that starts with PacketEn set and ends with PacketEn cleared does send out a

TIP packet.

A far transfer that starts with PacketEn cleared and ends with PacketEn set does not send out a

FUP.FAR or a TIP packet. A far transfer that starts with PacketEn set and ends with PacketEn cleared

does send out a TIP packet (although the FUP.FAR is likely combined with the needed FUP.PGD
packet).

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

57

A CALL that starts with PacketEn cleared and ends with PacketEn set does not update

LAST_CALL_NLIP. A CALL that starts with PacketEn set and ends with PacketEn cleared does update

LAST_CALL_NLIP.

4.4 Asynchronous Packet Generation

There are six packet types that are not directly linked to instructions, exceptions, traps, or interrupts.
The packet layout and complete descriptions can be found in the packet section of this document;

however, the following table provides a brief description of the six asynchronous packet types.

Table 20: Asynchronous Packets Descriptions

Packet Description

Packet Stream Buffer (PSB) Packet Indicates start of trace, or a synchronization point

Flow Update Packet (FUP) Sent out when cycle counter overflows

Sent when turning on packet generation (e.g. where did we

enter monitored routine)

Sent when turning off packet generation (e.g. where did we

leave monitored routine)

Trace Stop packet Sent when we trigger TraceStop. This turns off RTIT and
ends packet generation

Mini Time Counter Packet A small wall-clock time counter that can be used to

synchronize time between cores

Super Time Synch packet Sends out the big time counter (40 bits of HW TSC) and

core/bus ratio when frequency may have changed

Can be used to synchronize time between cores and tells the

frequency

Finally shows when the CPU is waking up out of sleep
state/STPCLK. (the packet doesn’t specify which sleep state)

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

58

Appendix A: Programming Examples

The following section provides examples for a few of the many available RTIT configurations.
To ensure consistent tracing, configure RTIT prior to enabling it.

Scenario: The user desires to trace a single, specific user application.

Configuration:
Set RTIT Control to trace only USER level code.
Set the Trace LIP addresses to cover the desired application address of interest.
Set the CR3 match address to the CR3 of the user application.

Start tracing: Set Trace_En to enable tracing.

Scenario: The user desires to trace all applications both user and OS, and activate tracing.

Configuration:
Set RTIT Control to trace both OS and USER level code.

Start tracing: Set Trace_En to enable tracing.

Scenario: The user desires to trace OS driver code only.
Configuration:

Set RTIT Control to trace OS level code and activate tracing.
Set the Filter En address to the desired driver’s address of interest.

Start tracing: Set Trace_En to enable tracing.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

59

Appendix B: Operation Consideration

4.1 Sleep states

4.1.1 C1/Halt/Shutdown sleep state

During the C1, halt and shutdown sleep states:
 The cycle counter will stop counting.
 MiniTime counter packets will not be issued.
 The RTIT buffer will stop draining to memory.

 An STS packet will be sent on waking up from C1, halt, and shutdown sleep states.

4.1.2 C2 sleep state

During the C2 sleep state:
 The cycle counter will stop counting.
 MiniTime counter packets will not be issued.
 The RTIT buffer will stop draining to memory.
 An STS packet will be sent on waking up from C2 sleep state.

4.1.3 C4 sleep state

During the C4 sleep state:
 The cycle counter will stop counting.
 MiniTime counter packets will not be sent.
 The RTIT buffer will be fully drained before entering C4 state.

 All of the above will happen for a brief time even if there is a C4 abort and sleep state is not
truly entered.

 An STS packet will be sent on waking up from C4 sleep state.

4.1.4 C6 and S0i1/S0i2/S0i3 sleep state

During the C6 (or S0i1 or S0i2 or S0i3) sleep state:
 The cycle counter will stop counting.
 MiniTime counter packets will not be sent.
 The RTIT buffer will be fully drained before entering the sleep state.

 All of the above will happen for a brief time even if there is an abort and the sleep state is not
truly entered.

 An STS packet will be sent on waking up from C6 or S0i1 or S0i2 or S0i3 sleep states.

4.2 Re-Enabling RTIT

The sequence of steps required to enable RTIT after the initial configuration or to re-
enable RTIT after a TraceStop packet is received will depend on the intended tracing

configuration.

4.2.1 Re-Enabling with Same Configuration

1. Clear FilterEn and BuffOvf through RTIT_STATUS_MSR (see Section 3.3.2)

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

60

2. Reset RTIT_TNT_BUFF MSR using it’s reset value(see Section 3.3.13)
3. Optionally Reset the following MSRs using their corresponding reset values

a. RTIT_CNTP MSR (see Section 3.3.4)
b. RTIT_LAST_LIP MSR (see Section 3.3.7)
c. RTIT_LAST_CALL_NLIP MSR (see Section 3.3.14)

4.2.2 Re-Enabling with Different Output Region

In addition to the steps in section 4.2.1, if the output region will be changed or if the
STM/PTI block was reinitialized (e.g. by an earlier TraceStop closing the file handle)
then the RTIT_OFFSET MSR will need to be initialized (see Section 3.3.12).

If the output region is a new memory location, then RTIT_BASEADDR MSR and

RTIT_LIMIT_MASK MSR will need to be updated (see Sections 3.3.10 and 3.3.11
respectively).

4.2.3 Re-Enabling with Different Traced Region

In addition to the steps in section 4.2.1, if the trace coverage will be changed then the

RTIT_EVENTS MSR and the RTIT_LIP0-3 MSRs will need to be initialized appropriately
(see Sections 3.3.5 and 0 respectively).

It may also be necessary to update the RTIT_CTL MSR and the RTIT_CR3_MATCH MSR
(see Sections 3.3.2 and 3.3.8 respectively) depending on the new trace coverage

requirements.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

61

Appendix C: Background and Related

Processor Mechanisms

4.3 Existing debug and performance monitoring

The following are a list of available debug and monitoring features in Intel® Atom™ processors.

 Break point

 LBR/LER

 Performance monitoring/PEBS
 DS for BTS/PEBS

Those features are compared with real time trace in the following sections.

4.4 Break point

There are 4 sets of debug break point registers, which are stored in 64b MSR DR0 through DR3.
Depending on configuration bits R/W0 though R/W1 in MSR DR7, the following are the possible
actions:

 00 — Break on instruction execution only.

 01 — Break on data writes only.
 10 — Break on I/O reads or writes.
 11 — Break on data reads or writes but not instruction fetches.

After the break point trigger, a fault is raised for instruction break point, and a trap is raised for data

and I/O access.

4.5 LBR/LER

After branch instruction retired, or after exception, the FROM and TO information of the LIP is
collected in a buffer. This buffer can be drained out of system bus or into the memory with processor

support.

Real time trace leverages extensively the LBR/LER buffer with regard to the indirect jump. The target
destination LIP will be carried out in branch address packet. But real time trace does not just output
the raw LIP, as stored in LBR. The MSBs that do not change from previous LIP packet will be

suppressed, and MSBs of zero will also be suppressed.

For direct jump where TO Lip is readily available from the assembly code, a simple TAKEN or NOT

TAKEN bit is sent by real time trace to indicate the program flow, and up to 6 T/NT bits can be packed
in a single byte of trace packet.

Except for the branch prediction, real time trace covers all the information in LBR/LER, with efficiency

greatly improved by compression.

The draining of the buffer is discussed in BTS/DS section.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

62

4.6 Performance monitoring/PEBS

There are architecturally defined performance counters to monitor events such as:

 Unhalted Core Cycles
 Instruction Retired
 Unhalted Reference Cycles
 LLC Reference
 LLC Misses

 Branch Instruction Retired
 Branch Misses Retired

And PEBS counts more precise events such as how many load retired that missed L1.

Real time trace is different in the following:

 Real time trace counts events at instruction level. i.e., how many times the instruction in
certain LIP is executed. This event can be used as enabling events for counter. As counters in

real time trace are fully programmable, it is easily concatenated for larger capacity.

 Real time trace provide cycle accurate mode, so that the exact flow and timing of the program
is available.

4.7 DS for BTS/PEBS

DS is the way to write LBR and performance counters into memory. IA32_DS_AREA MSR holds the LIP

to DS buffer management area.

 DS save area is within kernel space, and can be larger than a page and can straddle page

boundaries.

 DS buffer management area contains buffer base to BTS/PEBS, along with index, max IP,
threshold and other information

 Based on the buffer base and index, BTS/PEBS can be written into appropriate part of the

memory.

 The BTS/PEBS write can be configured so that if the threshold is cross, an exception is raised.

Based on the way how DS storage is managed, the processor first has to fetch the buffer management

information from DS save area and then store the buffer. This is a cycle-consuming process.

4.8 CR3 States

CR3 is the control register by which the memory paging is managed. This register can be loaded with

MOV instruction.

X86 supports 3 paging modes:

 32-bit
 PAE
 IA-32e

For 32-bit mode, the following fields of CR3 are used:

 Bit 3: PWT

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

63

 Bit 4: PCD
 Bit [31:12]: Page directory address

For PAE mode, the following fields of CR3 are used:

 Bit [31:5]: Address of page-directory-pointer table

For IA-32E mode, the following fields of CR3 are used:

 Bit 3: PWT
 Bit 4: PCD
 Bit [`MAXPHYADDR-1:12]: physical address to PML4 table

4.9 Virtual Machine Extension

VMX refers to Virtual Machine EXtension, which supports processor virtualization for multiple software

environments.

The following instructions to enter VM mode will affect the programming flow:

 VMCALL
 VMRESUME
 VMLAUNCH
 VMEXIT – (VMX exits can be caused by either an exception or event)

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

64

Appendix D: Glossary and Reference

4.10 Glossary

The document uses the terms listed in the following table.

Table 21: Glossary

Term Definition

Last Branch

Record (LBR)

Debug feature that stores last branch information in a hardware stack,

see SDM

Branch Trace
Store (BTS)

Debug mode that stores branch information to memory, see SDM

Model-Specific
Registers (MSR)

Control registers used to enable and disable certain features of the
processor implementation.

Tangier (TNG) LPIA SOC based on Silvermont core

MIPI Mobile Industry Processor Interface

PTI MIPI Parallel Trace Interface

LIP Linear Instruction Pointer

NLIP Next LIP. This is the same as current LIP + instruction length

BLIP Branch LIP. This is the target of the branch, or event handler address
for exceptions/interrupts

CPL Current Privilege Level, see SDM

CR3 Control Registers to the head of the page tables. See SDM

Trigger_Start Event that causes entrance to the TriggerEnable mode.

Trigger_Stop Event that causes an exit from the TriggerEnable mode, and generally
disables RTIT functionality.

Filter_Event Event that enables the Packet Enable region, which starts packet
generation

ContextEn In the correct mode to be tracing. E.g. right CPL, CR3 value, SMM,
VMM, etc.

TriggerEn RTIT is enabled (not de-featured) and we have seen the start trigger

condition, but not the stop trigger condition

PacketEn The context and trigger enables are set and the filter tells us that we

should be sending out packets.
Most packets are only sent out when PacketEn is set.

Packet Stream
Boundary (PSB)

RTIT output packet that is used to help a trace reader find packet start
edge

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

65

TNT Packet RTIT packet that contains taken/not-taken info for direct, conditional
branches

Flow Update

Packet

RTIT packet that contains the “from” address for far transfers, as well

as when entering/leaving packet enable mode

Target IP Packet RTIT packet that contains the target of a branch, sent out on indirect
branches

Change of Flow
(COFI)

X86 instruction or event that causes a program flow change, e.g.
Branches, exceptions, interrupts.

Direct Transfer
COFI

X86 branch whose target is embedded in the instruction bytes. These
are not traced by RTIT, as only conditional branches are traced.

Indirect Transfer

COFI

X86 branches whose targets are in a register or memory location,

which requires the trace to contain the branch target to track program
flow.

Far Transfer
COFI

Far jumps, interrupts, exceptions that use signal_event_jump Uop.
Both the “from” and “to” address are required to track program flow
for interrupts/exceptions.

Big Time
Counter (BTC)

[31:0] of BNL_CR_TSC creg (this is not the exact same as the
IA32_CR_TSC MSR that software observes)

Mini Time
Counter (MTC)

[13:6] of BNL_CR_TSC creg (this is not the exact same as the
IA32_CR_TSC MSR that software observes)

Super TC packet Packet with BTC and frequency info sent on Silvermont frequency
changes

Mini TC packet Packet with MTC sent based on an MTC mask MSR

Event resource Hardware resources used to generate events, ex. Address

comparators.

Event definition Boolean combinations of Event Resources used to generate events, ex.

Trigger_Start

Cycle Accurate
Mode

Mode in which the cycle count is appended to RTIT packets. Used for
performance analysis.

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

66

4.11 Reference Documents

Table 22: References

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic
Architecture

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2A/2B:
Instruction Set Reference

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A/3B: System

Programming Guide

All Software Developer Manuals (SDM) are available at:

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

67

Appendix E: Errata

E1 RTIT Trace May Contain FUP.FAR Packet With Incorrect Address

Problem: The FUP.FAR (Flow Update Packet for Far Transfer) generated by RTIT (Real

Time Instruction Trace) on a far transfer instruction should contain the linear

address of the first byte of the next sequential instruction after the far transfer

instruction. Due to this erratum, far transfer instructions with more than 3

prefixes may incorrectly include an address between the first byte of the far

transfer instruction and the last byte of the far transfer instruction.

Implication: The RTIT Trace decoder may incorrectly decode the trace due to an incorrect

address in the FUP packet.

Workaround: The RTIT trace decoder can identify a FUP.FAR in the middle of a far transfer

instruction and treat that FUP.FAR as if it was coming from the first byte of the

following sequential instruction.

Status: No fix

E2 Extra RTIT FUP.PGD Packets Can Result From Use Of IP Filtering Or
TraceStop

Problem: When this erratum occurs, the RTIT (Real Time Instruction Trace) output will

contain extra FUP.PGD (Flow Update Packet, Packet Generation Disabled)

packets. An instruction execution or event under the following conditions may

produce an extra FUP.PGD packet:

1. PacketEn (an internal enable signal computed by ANDing the TriggerEn [bit

2], ContextEn [bit 1], and FilterEn [bit 0] fields in the RTIT_STATUS MSR

[769H]) is 0 both before and after the instruction or event,

2. And either

a. The instruction or event causes RTIT_STATUS.FilterEn to change from

1 to 0, or

b. The instruction or event causes RTIT_CTL.TraceActive (MSR 768H) to

be cleared by a TraceStop condition.

3. And either

a. The instruction or event causes RTIT_STATUS.ContextEn to change

from 0 to 1, or

b. The instruction is a WRMSR that sets both RTIT_CTL.Trace_En and

the RTIT_CTL.TraceActive to 1, with one or both of those bits having

been 0 before the WRMSR instruction.

Implication: The RTIT Trace decoder may incorrectly decode the trace due to an

unexpected FUP.PGD packet.

Workaround: The RTIT trace decoder can identify and ignore extra FUP.PGD packets by

ignoring any FUP.PGD that follows another FUP.PGD, without an intervening

FUP.PGE (Flow Update Packet, Packet Generation Enabled).

Real Time Instruction Trace

Real Time Instruction Trace
Programming Reference v1.01

March 2015

68

Status: No fix

E3 RTIT May Delay The PSB By One Packet

Problem: After an RTIT (Real Time Instruction Trace) packet that exceeds the limit

specified by Pkt_Mask in RTIT_PKT_CNT (MSR 77Ch) bits [17:16], the PSB

(Packet Stream Boundary) packet should be sent immediately. Due to this

erratum, the PSB packet may be delayed by one packet.

Implication: The PSB packet may be delayed by one packet.

Workaround: None identified.

Status: No fix

E4 RTIT TraceStop Condition Detected During Buffer Overflow May Not Clear
TraceActive

Problem: If an RTIT (Real Time Instruction Trace) TraceStop condition is detected while

RTIT_STATUS.Buffer_Overflow MSR (769H) bit 3 is set, the processor may not

clear RTIT_CTL.TraceActive MSR (768H) bit 13, and tracing will continue after

the overflow resolves. Such a case will be evident if the TraceStop packet is

inserted before overflow is resolved, as indicated by the FUP.BuffOvf (Flow

Update Packet for Buffer Overflow) packet.

Implication: The RTIT trace will continue tracing beyond the intended stop point.

Workaround: None identified.

Status: No fix

E5 RTIT FUP.BuffOvf Packet May Be Incorrectly Followed By A TIP Packet

Problem: When RTIT (Real Time Instruction Trace) suffers an internal buffer overflow,

packet generation stops temporarily, after which a FUP.BuffOvf (Flow Update

Packet for Buffer Overflow) is sent to indicate the LIP that follows the

instruction upon which tracing resumes. In some cases, however, this packet

will be immediately followed by a FUP.TIP (Flow Update Packet for Target IP)

which was generated by a branch instruction that executed during the

overflow. The IP payload of this FUP.TIP will be the LIP of the instruction upon

which tracing resumes.

Implication: The spurious FUP.TIP packet may cause the RTIT trace decoder to fail.

Workaround: The RTIT trace decoder should ignore any FUP.TIP packet that immediately

follows a FUP.BuffOvf whose IP matches the IP payload of the FUP.BuffOvf.

Real Time Instruction Trace

March 2015

Real Time Instruction Trace
Programming Reference v1.01

69

Status: No fix

E6 RTIT CYC Packet Payload Values May Be Off By 1 Cycle

Problem: When RTIT (Real Time Instruction Trace) is enabled with RTIT_CTL.Cyc_Acc

MSR (768H) bit 1 set to 1, all CYC (Cycle Count) packets have a payload value

that is one less than the number of cycles that have actually passed. Note that

for CYC packets with a payload value of 0, the correct value may be 0 or 1.

Implication: The trace decoder will produce inaccurate performance data when using CYC

packets to track software performance.

Workaround: As a partial workaround, the trace decoder should add 1 to the payload

value of any CYC packet with a non-zero payload.

Status: No fix

E7 First MTC Packet After RTIT Enable May Be Incorrect

Problem: When RTIT (Real Time Instruction Trace) is enabled, indicated by TriggerEn in

bit 2 of the RTIT_STATUS MSR (769H) transitioning from 0 to 1, the first MTC

(Mini Time Counter) packet may be sent at the wrong time.

Implication: The RTIT trace decoder will make incorrect assumptions about the TSC value

based on an asynchronous MTC packet.

Workaround: The RTIT trace decoder should ignore the first MTC that follows trace

enabling.

Status: No fix

