
 
 
 
 
 
 

Revision 1.01 
Order Number:  332060-002 

                  

Real Time Instruction Trace 
 
Programming Reference 

 
March 2015 

 
 



 
 
 
 
 
 

March 2015 

 
  
 

Real Time Instruction Trace 
Programming Reference v1.01 

2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2015 Intel Corporation. All Rights Reserved. 
 

Intel Atom, Intel Core, Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.   

*Other names and brands may be claimed as the property of others. 
 

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or 

retailer. 

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel 

products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted 

which includes subject matter disclosed herein. 

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY 
THIS DOCUMENT.   

NTEL DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE, 
MERCHANTABILITY, AND NON-INFRINGEMENT. 

 

The products described in this document may contain design defects or errors known as errata which may cause the product to 

deviate from published specifications.  Current characterized errata are available on request. 

 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained 

by calling 1-800-548-4725, or go to:  http://www.intel.com/design/literature.htm

http://www.intel.com/design/literature.htm


 
Contents-Real Time Instruction Trace 

 
 
 
 

March 2015 

 
  
 

Real Time Instruction Trace 
Programming Reference v1.01 

3 
 

Table of Contents 

LIST OF FIGURES ......................................................................................................................................... 6 

LIST OF TABLES ............................................................................................................................................ 7 

REVISION HISTORY .................................................................................................................................... 8 

1 INTRODUCTION ..................................................................................................................................... 9 

1.1 OVERVIEW....................................................................................................................................................... 9 
1.2 AVAILABILITY AND USE................................................................................................................................ 10 
1.3 FEATURES AND CAPABILITIES ..................................................................................................................... 11 
1.4 USING THIS SPECIFICATION ....................................................................................................................... 12 

2 RTIT OPERATIONAL MODEL ........................................................................................................... 13 

2.1 RTIT ENABLES ............................................................................................................................................. 13 
2.1.1 Trigger Enable (TriggerEn) .......................................................................................................... 13 
2.1.2 Context Enable (ContextEn) ........................................................................................................ 13 
2.1.3 Filter Enable (FilterEn) ................................................................................................................... 14 

2.2 CHANGE OF FLOW INSTRUCTION TRACING ................................................................................................ 14 
2.2.1 Basic Blocks ....................................................................................................................................... 14 
2.2.2 Direct Transfer COFI....................................................................................................................... 14 
2.2.3 Indirect Transfer COFI ................................................................................................................... 15 
2.2.4 Near JMP Indirect and Near Call Indirect ............................................................................... 15 
2.2.5 Near RET ............................................................................................................................................. 15 
2.2.6 Far Transfer COFI ............................................................................................................................ 16 
2.2.7 Flow Control Packet Summary ................................................................................................... 18 

2.3 TRACE OUTPUT ............................................................................................................................................. 18 
2.3.1 Debug Port ......................................................................................................................................... 18 

2.4 TRACE FILTERING ......................................................................................................................................... 19 
2.4.1 Filtering by Current Privilege Level (CPL) .............................................................................. 19 
2.4.2 Filter by CR3 ...................................................................................................................................... 19 
2.4.3 Filtering by IP .................................................................................................................................... 19 

2.5 TRACE PROGRAMMING ................................................................................................................................. 20 
2.5.1 Trace Example .................................................................................................................................. 20 

2.6 INTERACTION WITH OTHER COMPONENTS ................................................................................................. 21 
2.6.1 System Management Mode ......................................................................................................... 21 
2.6.2 Virtual Machine EXtensions .......................................................................................................... 21 

3 CONFIGURATION AND CONTROL ................................................................................................ 22 

3.1 ENUMERATION .............................................................................................................................................. 22 
3.2 RTIT ACCESSIBILITY ................................................................................................................................... 22 
3.3 CPU CONTROL AND MODEL-SPECIFIC REGISTERS ................................................................................... 22 

3.3.1 General MSR notes for RTIT ........................................................................................................ 22 
3.3.2 RTIT_CTL MSR .................................................................................................................................. 23 
3.3.3 RTIT_STATUS MSR.......................................................................................................................... 26 



 
Real Time Instruction Trace-Contents 

 
 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

      
 

March 2015 
 

4   
 

3.3.4 RTIT_CNTP MSR ............................................................................................................................... 27 
3.3.5 RTIT_EVENTS MSR .......................................................................................................................... 27 
3.3.6 RTIT_LIP0-3 MSR ............................................................................................................................ 28 
3.3.7 RTIT_LAST_LIP MSR ....................................................................................................................... 29 
3.3.8 RTIT_CR3_MATCH MSR ................................................................................................................. 29 
3.3.9 RTIT_PKT_CNT MSR ....................................................................................................................... 30 
3.3.10 RTIT_BASE_ADDR MSR ............................................................................................................. 31 
3.3.11 RTIT_LIMIT_MASK MSR............................................................................................................. 31 
3.3.12 RTIT_OFFSET MSR....................................................................................................................... 32 
3.3.13 RTIT_TNT_BUFF MSR ................................................................................................................. 32 
3.3.14 RTIT_LAST_CALL_NLIP MSR .................................................................................................... 33 

4 TRACE PACKETS AND DATA TYPES ............................................................................................. 34 

4.1 TRACE PACKET SUMMARY ............................................................................................................................ 34 
4.2 PACKET TYPES .............................................................................................................................................. 35 

4.2.1 Packet Stream Boundary (PSB) ................................................................................................. 35 
4.2.2 TNT Packet ......................................................................................................................................... 36 
4.2.3 Target IP Packet ............................................................................................................................... 37 
4.2.4 Flow Update Packet ........................................................................................................................ 42 
4.2.5 Flow Update event: Buffer Overflow ........................................................................................ 43 
4.2.6 Flow Update event: Packet Cycle Counter ............................................................................. 45 
4.2.7 Flow Update event: Packet Generation Enable .................................................................... 45 
4.2.8 Flow Update event: Packet Generation Disable ................................................................... 46 
4.2.9 Flow Update event: Far Transfer ............................................................................................... 46 
4.2.10 Paging Information Packet (PIP) ............................................................................................ 47 
4.2.11 TraceSTOP Packet ........................................................................................................................ 47 
4.2.12 Mini Time Counter (MTC) Packet ........................................................................................... 48 
4.2.13 Super Time Sync (STS) Packet ............................................................................................... 49 
4.2.14 Cycle Count Packet ...................................................................................................................... 50 
4.2.15 Cycle Accurate Mode ................................................................................................................... 51 

4.3 SYNCHRONOUS PACKETS ............................................................................................................................. 51 
4.3.1 Packets sent out in various situations ..................................................................................... 52 
4.3.2 Understanding Entering/Exiting Packet Enabled Region .................................................. 56 

4.4 ASYNCHRONOUS PACKET GENERATION ...................................................................................................... 57 

APPENDIX A: PROGRAMMING EXAMPLES ...................................................................................... 58 

APPENDIX B: OPERATION CONSIDERATION ............................................................................... 59 

4.1 SLEEP STATES ............................................................................................................................................... 59 
4.1.1 C1/Halt/Shutdown sleep state .................................................................................................... 59 
4.1.2 C2 sleep state ................................................................................................................................... 59 
4.1.3 C4 sleep state ................................................................................................................................... 59 
4.1.4 C6 and S0i1/S0i2/S0i3 sleep state ........................................................................................... 59 

4.2 RE-ENABLING RTIT .................................................................................................................................... 59 
4.2.1 Re-Enabling with Same Configuration ..................................................................................... 59 
4.2.2 Re-Enabling with Different Output Region ............................................................................. 60 
4.2.3 Re-Enabling with Different Traced Region ............................................................................. 60 

APPENDIX C: BACKGROUND AND RELATED PROCESSOR MECHANISMS ........................ 61 



 
Contents-Real Time Instruction Trace 
 
 

 
 

 

March 2015 

 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

5 
 

4.3 EXISTING DEBUG AND PERFORMANCE MONITORING .................................................................................. 61 
4.4 BREAK POINT ................................................................................................................................................ 61 
4.5 LBR/LER ...................................................................................................................................................... 61 
4.6 PERFORMANCE MONITORING/PEBS ........................................................................................................... 62 
4.7 DS FOR BTS/PEBS .................................................................................................................................... 62 
4.8 CR3 STATES................................................................................................................................................. 62 
4.9 VIRTUAL MACHINE EXTENSION ................................................................................................................... 63 

APPENDIX D: GLOSSARY AND REFERENCE ................................................................................... 64 

4.10 GLOSSARY ................................................................................................................................................. 64 
4.11 REFERENCE DOCUMENTS ......................................................................................................................... 66 

APPENDIX E: ERRATA .............................................................................................................................. 67 



 
Real Time Instruction Trace-Contents 

 
 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

      
 

March 2015 
 

6   
 

List of Figures 

FIGURE 1: REAL TIME INSTRUCTION TRACE OVERVIEW ........................................................................................ 10 
FIGURE 3: RTIT PACKET HEADER LIST ................................................................................................................... 34 
FIGURE 4: PACKET STREAM BOUNDARY .................................................................................................................. 36 
FIGURE 5: TAKEN NOT TAKEN PACKET .................................................................................................................... 37 
FIGURE 6: TARGET IP PACKET ................................................................................................................................. 37 
FIGURE 7: RETURN COMPRESSION WITHOUT NESTED CALLS ................................................................................. 41 
FIGURE 8: RETURN COMPRESSION WITH NESTED CALLS ........................................................................................ 42 
FIGURE 9: FLOW UPDATE PACKET ........................................................................................................................... 43 
FIGURE 10: PAGING INFORMATION PACKET ........................................................................................................... 47 
FIGURE 11: TRACESTOP PACKET ........................................................................................................................... 48 
FIGURE 12: MINI TIME COUNTER PACKET .............................................................................................................. 49 
FIGURE 13: SUPER TIME SYNCH PACKET ................................................................................................................ 50 
FIGURE 14: CYCLE COUNT PACKET ......................................................................................................................... 50 

  



 
Contents-Real Time Instruction Trace 
 
 

 
 

 

March 2015 

 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

7 
 

List of Tables 

TABLE 1: IP TYPE IN VARIOUS PACKETS ................................................................................................................. 17 
TABLE 2: CLASSIFYING BRANCHES AND COFI ........................................................................................................ 18 
TABLE 3: RTIT TRACE EXAMPLE .............................................................................................................................. 20 
TABLE 4: RTIT CTL CONTROL REGISTER ............................................................................................................... 23 
TABLE 5: CYCLE COUNTER ........................................................................................................................................ 27 
TABLE 6: RTIT FILTER ENABLE ................................................................................................................................ 27 
TABLE 7. RTIT EVENT IDS ....................................................................................................................................... 28 
TABLE 8: RTIT LIP0-3 ADDRESS RANGE COMPARATORS .................................................................................... 28 
TABLE 9: RTIT LAST LIP ......................................................................................................................................... 29 
TABLE 10: RTIT CR3 COMPARATOR ....................................................................................................................... 29 
TABLE 11: RTIT PACKET BYTES COUNTER ............................................................................................................. 30 
TABLE 12: RTIT OUTPUT BASE ADDRESS .............................................................................................................. 31 
TABLE 13: RTIT OUTPUT LIMIT MASK .................................................................................................................... 31 
TABLE 14: RTIT OUTPUT OFFSET ........................................................................................................................... 32 
TABLE 15: RTIT TNT PACKET BUFFER ................................................................................................................... 32 
TABLE 16: RTIT LAST CALL NLIP .......................................................................................................................... 33 
TABLE 17: TRACE PACKET ENABLING SUMMARY .................................................................................................... 35 
TABLE 18: LIP COMPRESSION ................................................................................................................................. 38 
TABLE 19: PACKET GENERATION UNDER DIFFERENT ENABLE CONDITIONS ........................................................ 52 
TABLE 20: ASYNCHRONOUS PACKETS DESCRIPTIONS ........................................................................................... 57 
TABLE 21: GLOSSARY ............................................................................................................................................... 64 
TABLE 22: REFERENCES ............................................................................................................................................ 66 

 
  



 
Real Time Instruction Trace-Contents 

 
 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

      
 

March 2015 
 

8   
 

Revision History 

 

 

 

Date Revision Description 

February 2015 1.00 Initial Release 

March 2015 1.01 Added read RTIT_CTL MSR requirement 

   

   

   

   



 
Real Time Instruction Trace 

 
 
 
 

March 2015 

 
  
 

Real Time Instruction Trace 
Programming Reference v1.01 

9 
 

1 Introduction 

This document describes the programming interfaces of the Real Time Instruction Trace (RTIT) as it 
applies to the operational model, configuration and control features, and trace packets and data types 
to allow a more detailed design to proceed forward.  RTIT is available only on Silvermont- and 
Airmont-based products, see 1.2 for details on which products are supported. 

 
The document also gives examples of: 

 An overview of common usage models 
 Operational considerations for sleep states and security initializations 

 Background and related processor mechanisms 
 

1.1 Overview 

In current Intel® architecture, Last Branch Record (LBR) and Branch Trace Store (BTS) features allow 
observance of internal CPU program flow. Branch information, i.e., the source and destination instruction 
pointers, can be stored in a hardware stack, or written to memory via processor support. Debug software 
can reproduce program flow based on the branch addresses and source code. However, the overhead 
of using BTS is very significant, while LBR only captures the last several branches only, both limitations 

that prohibit their use in real-time application debugging.   

Real Time Instruction Trace (RTIT) works on the same principle as BTS and LBR. It operates in parallel 
to the primary processor pipeline and uses a separate output streaming mechanism that is external to 
the processor. This eliminates the limitations of existing debug mechanisms and allows continuous and 

efficient runtime application debugging.  

RTIT encodes and compresses program flow information, such as branch targets, branch taken/not 
taken indications, and carries them to the memory subsystem in real time, avoiding the use of any 
processor assist methods.  The memory subsystem then forwards the RTIT data out to external receivers 
for debug software to post-process and reconstruct program flow. 
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Figure 1: Real Time Instruction Trace Overview 
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Figure 1 shows how the RTIT logic fits into a System on a Chip (SOC) system. The RTIT Block 

monitors the Intel® Atom™ processors core retirement pipeline and generates trace packets upon 
retiring change of program flow instructions of interest.  RTIT stores the traces in a trace buffer until 
they are stored out to memory or to pins. 

 

1.2 Availability and Use 
The RTIT programming interface is available as model-specific feature only on certain Intel® Atom™ 
processors listed below. The definitions and usages of RTIT described in this document apply to those 
processors models, in some cases, specific stepping.   Intel® Atom™ processors supported by 
Family/Model/Steppings are as follows: 

Silvermont Microarchitecture: 

 0x6/0x37/0x8 

 0x6/0x5d/0x0 
 0x6/0x5d/0x1 
 0x6/0x4a/0x8 
 0x6/0x4d/0x8 
 0x6/0x5a/0x0 

Airmont Microarchitecture: 

 0x6/0x4c/0x3 
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1.3 Features and Capabilities 

RTIT generates a variety of packets that, along with the sources of a program, can be used to produce 

an exact execution trace. The packets record information such as Linear and Target Instruction 
Pointers (LIP and TIP) and direction of conditional branches within a contiguous code region (basic 
blocks).  In addition the packets record other contextual, timing, and bookkeeping information to 
enable both functional and performance debugging of applications. 

RTIT has several control and filtering capabilities to customize and compress the tracing information 

collected and to append other processor state and timing information to enable debugging. 

 Programmable address comparison registers can be used to qualify RTIT output by 
specifying different IP ranges and masks. 

 CPL and CR3 filtering modes allow filtering based on CPL execution mode (USER ring-3 or 

SUP ring-0) and on CR3 values. 

When enabled and appropriately configured, RTIT will collect and generate the following types of trace 

information: 

Packet stream Boundary (PSB) packets: The PSB acts as a ‘heartbeat’ that is generated at regular 
intervals (e.g., every 8K trace packet bytes). PSB is a unique pattern, which allows decodes to sync into 
a RTIT byte stream. 

Taken Not Taken (TNT) packets: TNT packets track the “direction” of direct conditional branch 

(i.e., taken or not taken). TNT packets are 1 byte, including the header. 1 to 6 TNT (Taken-Not-Taken 
indications) can be packed in one TNT packet with a ‘1 signifying a taken branch and a ‘0 signifying a 
not-taken branch that fell through to next instruction. 

Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, and 

interrupt handlers. Up to 48 bits of IP can be stored, and the most significant bits that are identical to 
the branch LIP or are entirely ‘0s can be suppressed to reduce the packet size. 

Flow Update (FUP) packets: FUP packets record a variety of contextual information to aid in 

decoding the trace output. These include: 

 Buffer Overflow packets (FUP.OVF) indicate that the RTIT internal buffer is full and that 
packets are no longer being generated. 

 Periodic Cycle Counter (FUP.PCC) is periodically generated based on increments in a cycle 
counter.  

 Packet Generation Enable (FUP.PGE) packets are generated when RTIT is enabled, or if the 
execution enters a region that is configured for RTIT tracing. 

 Packet Generation Disable (FUP.PGD) packets are generated when RTIT transitions from a 
packet generating mode into a disabled mode due to filtering criteria not being met, or 
disabling RTIT. 

 Far Transfer (FUP.FAR) packets are generated after a far transfer and will include an address 
indicating where the transfer came from. It is usually generated with TIP, and appears 
before the corresponding TIP in the trace output. 
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Paging Information Packet (PIP): PIP record any modifications to the CR3 register while memory 
paging is enabled. This, along with process page information from the operating system, allows the 
debugger to attribute linear addresses to their correct application source line. 

Trace STOP (STOP) packets: STOP packets are generated when the current IP matches a region 

specified by the ‘TraceStop’ filter.  

Super Time Sync (STS) packets: STS packets are generated upon several processor frequency, 

power, and other state global events. They will contain the value in the processor’s HW TSC, and 
along with MTC are used by the debug analyzer to synchronize the traces with wall time. 

Mini Time Counter (MTC) packets: MTC packets can be generated periodically based on the 
processor’s HW TSC, and along with STS are used by the debug analyzer to synchronize the traces 

with wall time. 

Cycle Count Packet (CCP): CCP packets contain the incremental number of core cycles since the 
previous CCP, and are generated after certain other trace packets based on the configuration of the 
cycle accurate mode. 

 

1.4 Using This Specification  

Chapter 1: Introduction gives an introduction to RTIT, where it is available, and describes the 
features and capabilities to customize tracing information based on user needs. 

Chapter 2: RTIT Operational Model provides additional details about RTIT including the enabling 
and filtering, and describes essential program flow concepts that form the basis of the RTIT tracing 
model.  

Chapter 3: Configuration and Control details the various mechanisms necessary for configuring, 

enabling, controlling, and collecting RTIT data in an operating system or Virtual Machine Monitor.  

Chapter 4: Trace Packets and Data Types details the packets generated by RTIT to assist 
developers in decoding RTIT data and utilizing it to recreate an application execution trace. 
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2 RTIT Operational Model 

This chapter describes the overall RTIT mechanism and explains essential concepts used throughout 
the remainder of the document. Reading this chapter will provide a basic understanding of how RTIT 
operates, and a detailed understanding of the various features and capabilities offered by RTIT. 

This chapter is organized as follows: Section 2.1 explains the different circumstances and context 

during which RTIT will be generating trace packets. Section 2.2 explains the notions of flow control 
that are used by the RTIT mechanism to produce an execution trace. Section 2.3 describes the 
primary mechanism for streaming RTIT packets. Section 2.4 describes the different filters that can be 
used to restrict which execution streams are traced by RTIT. Section 2.5 gives an overall view of RTIT 

programming and provides an example of such programming. Finally, Section 2.6 describes how RTIT 

will behave while the processor is in non-standard execution modes. 

2.1 RTIT Enables 

RTIT has a variety of enables and disables that interact to ultimately decide if a packet should be 
generated. This state is referred to as Packet Enable and is synonymous with PacketGenEnable, Packet 

Generation Enable or PacketEn. 
 

When Packet Enable is set, we are in the code that RTIT is monitoring and packets are being 
generated to log what is being executed. PacketEn is composed of 4 other states according to this 
relationship: 

PacketEn = TriggerEn && ContextEn && FilterEn  
 

Each of these states is detailed in the following subsections. 

2.1.1 Trigger Enable (TriggerEn) 

TriggerEn (Trigger Enable) is the primary indicator that RTIT is active. TriggerEn is defined using two 
fields:  

TriggerEn = (RTIT_CTL[Trace_En] AND RTIT_CTL[TraceActive]). 

Software can get the current TriggerEn value by reading the RTIT_STATUS[TriggerEn] MSR bit. When 
TriggerEn is clear, RTIT is inactive and no packets are generated. 

2.1.2 Context Enable (ContextEn) 

Context Enable (ContextEn) indicates that the processor is in the state that RTIT is configured to watch. 

For example, if RTIT is configured to watch only application code (RTIT_CTL[OS]=0), then ContextEn 

will be 0 when the CPU is in CPL0. 
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Software can get the current ContextEn value by reading the RTIT_STATUS[ContextEn] MSR bit. 
ContextEn is defined as follows: 

   ContextEn = !( 

     (RTIT_CTL[OS]=0 AND CPL=0) OR  
     (RTIT_CTL[USER]=0 AND CPL=1,2,3) OR  
     (RTIT_CTL[CR3En]=1 AND RTIT_CR3_MATCH !=CR3) OR  
     (In SMM mode) OR  
     (In VMX mode)) 

When ContextEn is cleared, many packets are not generated, including all branch packets. However, 
some packets, such as the MTC, may still be generated while ContextEn is clear. 

2.1.3 Filter Enable (FilterEn) 

Filter Enable indicates that the CPU Instruction Pointer (IP) is within the range of the IPs that RTIT is 

configured to watch.  See section 2.4.3 for details on IP filtering. 

Software can get the state of Filter Enable by an MSR read of RTIT_STATUS[FilterEn]. 

Filter enable is only ‘usually’ correct because it may be incorrect if the RANGE0/1 ranges are not set up 

correctly. It is also frozen when either Trace_En or ContextEn are 0. 

2.2 Change of Flow Instruction Tracing 

2.2.1 Basic Blocks 

A program block is a section of code where no jumps or branches occur. The IPs in this block of code 

need not be traced, as the CPU will execute them from start until end without redirecting code flow.  

Instructions such as branches, and external events such as exceptions or interrupts, can change the 
program flow. These instructions and events that change program flow are called COFI (Change of Flow 
Instructions).  The program block is divided into these three categories: 

 Direct transfer COFI. 

 Indirect transfer COFI.  
 Far transfer COFI.   

The following subsections describe the IA architecture COFI events that result in trace packet 
generation. For detailed description of the instructions, please refer to “Intel® 64 and IA-32 
Architectures Software Developer’s Manual Volume 2A/2B: Instruction Set Reference.” 

2.2.2 Direct Transfer COFI 

These types of instructions include conditional jumps, and jumps that are to a Linear Instruction Pointer 
(LIP) that is embedded in the instruction bytes. It is not necessary to output the LIP of the destination 
address since it can be obtained through the source code. It is only necessary to indicate whether the 
conditional branch is taken or not. 

2.2.2.1 Jump if condition is met (Jcc) and LOOP 

To track this type of instruction, RTIT uses a single bit of TAKEN or NOT TAKEN (TNT) to indicate the 
program flow after the instruction. When the condition check is evaluated to true (i.e., the branch will 
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be taken), the processor IP will update to the target IP specified in the instruction. This is encoded as 
TAKEN in the RTIT TNT packet; otherwise, the program will simply go to the next LIP, and is encoded 
in the TNT as NOT TAKEN. 

Jcc and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, RTIT will 

compact several TNT bits in a single packet. This can output up to 6 consecutive TNT bits in one TNT 
packet. 

2.2.2.2 Unconditional Direct Jumps 

There is no RTIT output for direct unconditional jumps (like JMP near relative or CALL near relative) 
since they can be directly inferred from the application assembly. Direct unconditional jumps do not 
generate a TNT bit or a Target IP packet. 

2.2.3 Indirect Transfer COFI 

Indirect transfer instructions involve updating the LIP from a register or memory location.  Since the 

register or memory contents can vary at any time during execution, there is no way to know the target 
of the indirect transfer until the register or memory contents are read.  As a result, the disassembled 
code cannot be used alone to determine the target of a COFI.  Therefore, RTIT must send out the 
destination LIP in the trace packet for debug software to determine the target address of the COFI. 

Indirect Transfer instructions will generate a Target IP packet (TIP) which contains the target linear 

address of the branch or the new instruction pointer. 

2.2.4 Near JMP Indirect and Near Call Indirect 

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or 

memory location.  Therefore RTIT must expose this target address to the debug software in order to 
determine the target of the COFI.   

2.2.5 Near RET 

When a CALL instruction executes, it pushes the address of the next instruction following the CALL 
onto the stack.  Upon completion of the call procedure, the RET instruction is often used to pop the 

return address off of the call stack and redirect code flow back to the instruction following the call. 

A RET instruction simply transfers program flow to the address it popped off the stack.  Because it is 
possible for software to change the Extended IP (EIP) on the stack within the call procedure prior to 
executing the RET instruction, the debug software can be misled if it always assumes code flow will 
return to the instruction following the last call.  Therefore, even for near RET, a Target IP Packet is 

sent to handle this case.  

A special case is applied if the target of the RET matches the Next LIP (NLIP) of the last CALL 
instruction. Then only a single TNT bit of “Taken” is generated instead of a Target IP Packet. 
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2.2.6 Far Transfer COFI 

All operations that change the instruction pointer which are not near jumps are “far transfers”. This 

includes exceptions, interrupts, traps, and instructions that do far transfers (i.e. SYSENTER, SYSEXIT, 
SYSCALL, SYSRET, software interrupts, far jump, far call, far RET and IRET). 

Far transfers that produce RTIT packets will produce a Flow Update Packet of type Far Transfer 
(FUP.FAR) followed by a Target IP packet (TIP); unless the far transfer also jumps out of the filtered 
region while keeping ContextEn==1. A far transfer that causes FilterEn to become 0 but keeps 

ContextEn at 1 will produce Flow Update packet of type PacketGenerationDisable (FUP.PGD instead of 
FUP.FAR) followed by a Target IP packet. This is a form of compression and simplifies the hardware. 

The following table indicates exactly which LIP will be included in the FUP.FAR or FUP.PGD generated 
by a far transfer. 
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Table 1: IP Type in Various Packets 

Event  Flow Update LIP  Note  

Far CALL/JUMP 
SYSENTER/SYSEXIT 
SYSCALL/SYSRET 
Far RET 

IRET 

Address of next instruction 
(Next Linear Instruction 
Pointer) 

This does not match LBR FROM field, which 
records the address of the branch 
instruction. RTIT trace analysis does not 
need this flow update packet since it should 

know where the branch is, but it would 
require more hardware to suppress it. 

External Interrupt 

NMI/SMI 
Traps 
Machine Check (trap-

like) 

Address of next instruction 

(NLIP) that would have 
been executed 

This matches the LBR FROM field value and 

also the EIP value which is saved onto the 
stack. Remember that LBRs are linear (not 
effective) addresses for Intel® Atom™ 

processors. 

INIT/SIPI Address of next instruction 
(NLIP) that would have 
been executed 

Lower certainty on INIT and SIPI behavior. 
Not important to RTIT usage. 

(FUP.PGD only) 

Walking out or region 
Non-far transfer that 
changes ContextEn to 0 

Address of next instruction 

(NLIP) that would have 
been executed 

LBRs have no such concept. 

(FUP.PGD only) 
Near jump out of region   

Address of next instruction 
(NLIP) that would have 
been executed 

This does not match the LBR field, which 
would record the address of the branch 
instruction. 

Exceptions/Faults 
Machine check (fault-

like)  

Address of the instruction 
which took the 

exception/fault (Current 
LIP) 

This matches the LBR FROM field value and 
also the EIP value which is saved onto the 

stack.  

Asynchronous  Flow Update 
Packet 
   Buffer Overflow 
   Periodic Cycle Counter 

Address of next instruction 
(NLIP/BLIP) that will execute 
after the  instruction where the 
condition occurred  

LBRs have no such concept. 

PacketEn goes from 0 to 1 

(includes VM-entry and 
RSM) 

Address of where we entered  
region (BLIP or NLIP) 

LBRs have no such concept. 

VM-exit Address that is saved into the 
VMCS as guest RIP 

LBRs have no such concept. 
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2.2.7 Flow Control Packet Summary 

The following table summarized the trace packets as per each instruction  

Table 2: Classifying branches and COFI 

Instruction Packet Note 

Jcc/LOOP TNT Branch taken/not taken packet. 

Near Jump (indirect) 

Near Call (indirect) 
Near RET 

Target IP Branch destination LIP(BLIP) is sent in target IP 

Packet. 

Far Transfers, including: 

Far Jump/CALL 
Far RET/IRET 
Exception/Interrupt/Trap 
SYSENTER/SYSEXIT 
SYSCALL/SYSRET 

Flow Update LIP before the far transfer. Same as recorded in LBRs 

(or would be pushed onto stack).  

Target IP Branch destination LIP(BLIP) is sent in target IP 
Packet. 

 

2.3 Trace Output 

RTIT packet data is written by the CPU to the memory subsystem.  RTIT writes use the USWC memory 

type, regardless of what is specified by the MTRRs.   

The RTIT output destination is specified by writing a platform physical address to the 
RTIT_BASE_ADDR MSR to serve as the destination base, and a mask value to the RTIT_LIMIT_MASK 

MSR to dictate the size of the region.  The use of platform physical addressing means that RTIT writes 
are not affected by page tables or EPT tables. 

The RTIT_OFFSET MSR holds the offset into the region specified by RTIT_BASE_ADDR and 
RTIT_LIMIT_MASK.  Thus the physical address to which RTIT stores are directed is computed as 
follows: 

RTIT_BASE_ADDR + (RTIT_OFFSET & RTIT_LIMIT_MASK) 

Note that the buffer is treated as circular, and hence once the offset value reaches the mask value, 

writes will wrap around and write at offset 0 again. 

2.3.1 Debug Port 

In order to send RTIT output to a debug port, the platform-specific memory-mapped I/O (MMIO) address 

for the port of interest should be written to the RTIT_BASE_ADDR MSR, with the RTIT_LIMIT_MASK 
value set to match the size of the desired MMIO range.  As described above, RTIT output will be written 

to this address range in a circular fashion. 

When such a debug port is in use, the RTIT_CTL.Dest bit should be cleared. 

Please see SoC documentation to determine which debug port options exist for your platform.   
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2.4 Trace Filtering 

2.4.1 Filtering by Current Privilege Level (CPL) 

RTIT provides the ability to specify whether tracing occurs when code is executing in CPL0 or not. RTIT 

can be configured to be enabled only when in CPL0, when in CPL1/2/3, or at all CPLs. When in a non-
enabled CPL, the Context Enable is cleared. 

The CPL value that is used to determine the RTIT Context Enable is read after instruction retirement. 
This means that speculative CPL changed will not affect the RTIT state. For example, a page fault 
which triggers a change of CPL from 3 to 0 will not send out a TIP packet if RTIT is configured to only 

monitor CPL 1/2/3.  A FUP packet will still be generated to indicate a traced region was left. 

2.4.2 Filter by CR3 

To reduce the total trace size, it is important to be able to trace a single application without requiring 
software intervention every time applications are switched. 

Since CR3 (the page table pointer) is the primary piece of CPU state that indicates which application is 

running, RTIT can enable or disable tracing depending on the CR3 value. This is done through the CR3 
filtering/matching feature. 

If the RTIT user desires to only trace a single CR3, then they can program that CR3 value into 

RTIT_CR3_MATCH MSR and set RTIT_CTL.CR3En. When the CR3 value does not match that in 
RTIT_CR3_MATCH, the processor will disable RTIT (ContextEn forced to 0). When the CR3 value does 
match of RTIT_CR3_MATCH, then the processor will stop disabling RTIT because of the CR3 value 
(although it could remain disabled due to other filters like CPL). If RTIT_CTL.CR3En is 0, then all CR3s 
are monitored (RTIT tracing is not disabled by the CR3 value).  

The Paging Information Packet is sent out in various situations to explain to the analyzer which app is 

being executed. When a non-paging mode is entered (CR0.PG is cleared), a paging information packet 
is generated. This will not affect the current CR3 filtering because it is not a direct change in the value 
of CR3.  

OS-specific techniques will need to be used to discover the CR3 value that corresponds to a particular 

already-running application. If the application can only be started when RTIT is already running, other 
techniques (like OS debug hooks, OS modification or using a special driver) may need to be used to 
discover the CR3 value and subsequently update the RTIT CR3 filters. 

2.4.3 Filtering by IP 

RTIT can be configured to enable control flow packet generation only when the CPU is executing code 

within certain IP ranges.  This is controlled with FilterEn, which, if IP filtering is enabled, is set only 

when the IP is in one of the ranges specified by SW.  If the IP is outside of these ranges, then FilterEn 
is cleared and no control flow packets are enabled. 

IP filtering is enabled using the RTIT_EVENTS MSR.  This MSR configures use of the RTIT_LIP[0123] 

MSRs, which are used to define the base and limit of the range(s) in which tracing is enabled.  Current 
RTIT implementations have 2 such ranges, known as RANGE0 and RANGE1.  RANGE0 is defined by 
[RTIT_LIP0..RTIT_LIP2-1], while RANGE1 is defined by [RTIT_LIP1..RTIT_LIP3-1]. 

EventIDs are used for IP filtering, and for TraceStop.  RTIT_EVENTS[Filter Event ID] and 

RTIT_EVENTS[Stop Trace Event ID] are programmed with event ID encodings, which are details in 
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section 3.3.5.  Note that the Filter event ID and TraceStop event ID are two separate fields, and thus 
different conditions can cause those actions. 

To save power, the comparison of the IP to the RANGE0/1 ranges is done only when 

RTIT_CTL[Trace_En] is set. This means that the FilterEn value will not be changed by the IP when 
Trace_En is cleared. This means that leaving Trace_En set but disabling RTIT by having Trace_Active 
cleared consumes more power than if Trace_En was also cleared. 

It is important to note that, though no control flow packets are generated from outside of the IP filter 

ranges, some packets can be generated at this time.  Periodic packets, such as MTC and PSB, can still 
be generated when FilterEn is 0.   

 

2.5 Trace Programming 

RTIT provides the end-user with a highly configurable set of tracing capabilities and programmable 
events for both performance analysis and debug.  RTIT is configured through code execution via the 
WRMSR and RDMSR instructions.   

2.5.1 Trace Example  

If RTIT was programmed to trace all CPLs and the address filters were restricting the IP range to 

instruction between 0x100-0x110, then the following RTIT packets would be generated:  

Table 3: RTIT Trace Example 

Step CLIP NLIP Instruction RTIT output 

1 0x020 0x023 Jmp to 102 1. FUP.PacketGenEnable of 102 (BLIP) 

2 0x100 0x102 Xor eax, eax Nothing 

3 0x102 0x105 Far JMP to 983 1. FUP.PacketGenDisable of 105 (NLIP) 
2.  TIP of 983 (BLIP)  

4 0x983 0x985 Far JMP to 10E 1. FUP.PacketGenEnabled of 10E (BLIP) 

5 0x10E 0x113 Divide that causes 
Divide by 0 fault 
Fault handler at 
345 

1. FUP.PacketGenDisabled of 10E (NLIP)  
2. TIP of 345 (BLIP) 

6 0x345 0x348 Add (first instr of 
fault handler 

Nothing 

7 348 34c POP ret address to 
RAX 

Nothing 

8 34c 350 Modify RAX to point 
to 113 

Nothing 

9 350 353 PUSH new ret addr 

of 113 onto stack 
Nothing 

10 353 357 IRET to 113 Nothing (since 113 is outside of range) 
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2.6 Interaction with Other Components 

2.6.1 System Management Mode 

RTIT is always disabled during System Management Mode (SMM). Whenever a System Management 

Interrupt (SMI) occurs, the CPU will set an internal “We are in SMM mode” bit that will force 
ContextEn to become 0 if it was not already 0. If this caused PacketEn to transition from 1 to 0, then a 
FUP.PGD will be sent out with the address of the next instruction that would have executed had the 
SMI not occurred. A TIP packet is never generated on an SMI since the SMI results in ContextEn is 0 
(and any operation that disabled ContextEn does not send out a TIP). 

Whenever an RSM occurs, the CPU will clear the internal “We are in SMM mode” bit, which will thus 

stop forcing ContextEn to 0. In the normal case, this will cause ContextEn to return to the value that it 

was before the SMI. If that causes PacketEn to transition from 0 to 1, then a FUP.PGE will be 
generated with the address of the target of the RSM (the next instruction to execute after the RSM). If 
the SMM return address was not modified, this will usually be the same address as was seen on the 
FUP.PGD generated on the preceding SMI. 

As discussed earlier, the software SMM handler could do various things that would cause the RSM to 
return to a different instruction or mode than was executing before the SMI. For example, it could 
change the return address to be outside of the filtered region when it was inside the filtered region 
before the SMI. Or it could change the CR3 value. 

The RSM simply clears the “We are in SMM mode” bit that was forcing ContextEn to 0. FilterEnable 

and the CPL will also be re-evaluated automatically based on the processor settings mode that the 
RSM is loading (whether it was the same as that before the SMI or not). 

The RSM re-evaluates whether the CR3 matches the RTIT_CR3_MATCH MSR, and determines the SMI 

does not. Therefore, it is not needed on the SMI since the SMI will clear ContextEn and it cannot be 

set until the RSM occurs. 

2.6.2 Virtual Machine EXtensions 

RTIT is always disabled in Virtual Machine EXtensions (VMX) host mode (this mode is also referred to 
as VMM, root mode, or the hypervisor). 

Whenever a VM exit occurs, the CPU will set an internal “We are in VMM mode” bit that will force 
ContextEn to become 0 if it was not already 0. If this caused PacketEn to transition from 1 to 0, then a 
FUP.PGD will be sent out with the address that is saved into the VMCS as the RIP. A TIP packet is 
never generated on a VM exit since the VM exit results in ContextEn of 0 (and any operation that 

disabled ContextEn does not send out a TIP). 

Whenever a VM entry occurs, the CPU will clear the internal “We are in VMM mode” bit, which will thus 
stop forcing ContextEn to 0. In the normal case, this will cause ContextEn to return to the value that it 

was before the VM exit. If that causes PacketEn to transition from 0 to 1, then a FUP.PGE will be 

generated with the address of the target of the VM entry. If the VMCS guest RIP field was not 
modified, this will usually be the same address as was seen on the FUP.PGE generated on the 
preceding VM exit. VM entry will re-evaluate whether CR3 matches RTIT_CR3_MATCH. 
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3 Configuration and Control 

This chapter details the mechanism for configuring, enabling and controlling the operation of RTIT. It 
is intended for developers who are writing software to support RTIT operation, whether in the OS/VMM 
or in the debug controller. This section can also be used as a reference for programming the relevant 
RTIT MSRs. 

3.1 Enumeration 

For Intel® Atom™ processors, RTIT is not architectural and is therefore not enumerated in any way.  
To determine if the processor does support RTIT, the user can verify the Family, Model, and Stepping, 

and then use a try-accept to test for RTIT functionality. 

3.2 RTIT accessibility 

RTIT is configured via model-specific registers (MSRs).  These can be controlled through either JTAG 

or ring-0 software.  For details about JTAG access, please contact your Intel sales representative. 

3.3 CPU Control and Model-Specific Registers  

3.3.1 General MSR notes for RTIT 

All RTIT MSRs are described below, and are duplicated per logical processor.  Until the RTIT_CTL 

MSR (0x768) has been read any attempt to write any RTIT MSR, or read any RTIT MSR 

other than RTIT_CTL, will result in a #GP fault. 

For all RTIT MSRs, any MSR write that attempts to change (which usually means ‘set’) bits marked 
reserved will cause a #GP fault.  RTIT MSRs are not cleared by INIT.  
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3.3.2 RTIT_CTL MSR 

Table 4: RTIT CTL Control Register 

Bit Name Description 

0 Trace_En Global Enable Disable 

1 Cycle_Acc 0 : Cycle Accurate Mode is Disabled 
1:  Cycle Accurate Mode is Enabled 

2 OS 0:  Indicates OS level COFI will not be traced 
1:  Indicates OS level COFI will be traced 

3 User 1:  Indicates USER level COFI will be traced 
0:  Indicates USER level COFI will not be traced 

4 STS_on_CR3 Generates STS packet on CR3 changes 

[6:5] Rsvd Reserved 

7 CR3En 0: Disables CR3 Filtering 
1: Enables CR3 Filtering 

8 Dest 0: Output to DRAM disabled 
1: Output to DRAM enabled 

9 MTC_En 0: MTC packet generation disabled   
1: Enabled 

10 STS_En 0: STS packet generation disabled   
1: Enabled 

11 Cmprs_Ret Compresses Return address 

12 Less_Pkts Generate less packets to improve bandwidth 

13 TraceActive This is another overall RTIT valid bit which needs to be set 
for TriggerEnable to be 1 (just like RTIT_CTL.Trace_En). It is 
different from Trace_En in that it can be cleared by the 
TraceStop action.  An MSR write that clears TraceActive 
should not cause a TraceStop packet, however. 

[15:14] MTC_Range Defines  TSC granularity 
00:TSC[14:7] 
01:TSC[16:9] 
02:TSC[18:11] 
03:TSC[20:13] 

[31:16] Reserved Reserved 
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RTIT_CTL [0]: Trace_En 

Trace_En globally turns on or off the RTIT architecture.  The reset value of Trace_En is 0, disabling RTIT 

by default.   

It is recommended that software set Trace_En before setting TraceActive (below) when enabling tracing.  
Similarly, software should clear TraceActive before clearing Trace_En when disabling tracing.  If both 
Trace_En and TraceActive transition 0->1 or 1->0 in the same WRMSR, undefined behavior may result. 

RTIT_CTL [1]: CYCLE_ACC 

CYCLE_ACC enables or disables the cycle accurate mode of RTIT COFI tracing.  When set (1’b1), a cycle 

count packet is appended to all outbound RTIT traffic with the exception of the PSB packet. 

RTIT_CTL [2]: OS  

The OS bit is used to indicate that whether CPL0 code (usually OS code) should be traced.  See 2.4.1. 

When this bit is cleared and the current CPL is 0, then the ContextEn will be 0 (which disables many 
things, including COFI packets). 

RTIT_CTL [3]: USER  

The USER bit is used to indicate whether CPL1, CPL2, and CPL3 code (usually application code) should 

be traced or not. See 2.4.1. When this bit is cleared and the current CPL is 1, 2 or 3 (>0), then the 
ContextEn will be 0 (which disables many things including COFI packets). 

RTIT_CTL [4]: STS_on_CR3 

This bit being set will cause Super Time Synch Packets to be sent out on MOV CR3 operations 
RTIT_CTL [6:5]: Reserved. 

RTIT_CTL [7]: CR3En 

When this bit is set, CR3 filtering is enabled and ContextEn will be zero if the CR3 value does not 
matches what is in RTIT_CR3_MATCH MSR. When ContextEn is 0, COFI packets are not generated. 

When this bit is cleared, the CR3 value RTIT_CR3_MATCH do not affect ContextEn. This behavior is 

described in more detail in the “Tracing one app (CR3 filtering)” section. 

RTIT_CTL [8]: Dest 

Set when enabling RTIT with output to DRAM. 

RTIT_CTL [9]: MTC_En 

Used to enable or disable the Mini Time Counter. See Mini Time Counter (MTC) Packet section for 
more details. 

RTIT_CTL[10]: STS_En 

Used to enable or disable Synch packet generation. A value of ‘1’ enables STS packet generation, 
while a value of ‘0’ disables STS packet generation. 
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RTIT_CTL [11]: CMPRS_RET 

Setting this bit changes the behavior of indirect transfer packet generation.  When set, near RET 

instructions may be compressed against the NLIP of the preceding call. See Indirect Transfer 
compression for returns (RET) section for more details. 

RTIT_CTL [12]: LESS_PKTS 

The LESS_PKTS bit is used to decrease the number of packets generated and thereby decrease 

bandwidth demands.  Please refer to the following table for a complete representation of which 
packets are inhibited when LESS_PKTS is set. Enable Groups and Packet Generation. 

RTIT_CTL [13]: TraceActive 

The TraceActive bit must be set before anything in RTIT occurs because it is part of TriggerEnable. 

Thus when TraceActive is 0, TriggerEnable is 0 (and RTIT is off). It is cleared by TraceStop action and 
is settable only by an MSR write (e.g. WRMSR). 

As described in the Trace_En section above, TraceActive should only be modified while Trace_En is set. 

RTIT_CTL [15:14]: MTC Range 

MTC Count allows the user to specify which bits of the TSC will become bit 15:8 of the MTC packet as 

follows: 

    MTC Range   Resulting TSC in MTC packet 

00                                         TSC[14:7] 
01                                         TSC[16:9] 
02                                         TSC[18:11] 
03                                         TSC[20:13] 

RTIT_CTL[31:16] Reserved. 

MSR writes to any reserved bits results in a #GP0 fault. 

MSR writes to RTIT_CTL will cause an RTIT drain and will not end until that drain is completed and all 

RTIT stores are globally observed. This ensures that any changes to RTIT_CTL are visible in memory 
by the time the MSR write completes. Thus, if software turns off RTIT by clearing TraceActive, it can 
count on fields like RTIT_OFFSET to be correct and constant after the MSR write. 

A write to RTIT_CTL that causes RTIT_STATUS[TriggerEn] to become set (meaning that 

RTIT_CTL[Trace_En] and RTIT_CTL[TraceActive] are both set and one of them was not set before) will 
cause the PSB packet to be sent out. 

An MSR write to RTIT_CTL that causes PacketEn to become 0 (e.g. by clearing OS or USR or by setting 
CR3En) will cause a FUP.PGD packet to be generated. An MSR write that causes PacketEn to become 0 

by clearing TraceActive or Trace_En may not generate a FUP.PGD. See the FUP.PGD section for more 
details. 

An MSR write to RTIT_CTL that causes PacketEn to become 1 will cause a FUP.PGE packet to be sent. 
The MSR address is 0x768. Reset value = 0. 
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3.3.3 RTIT_STATUS MSR 

RTIT_STATUS can be read or written by software, but some bits (like ContextEn) are read-only and 

cannot be modified directly. Any writes that attempt to modify these read-only bits will have no effect 
on the value; but will not cause a #GP (they are not checked as reserved bits). 

The MSR address is 0x769. Reset value=0. 

RTIT STATUS [0]: FilterEn 

This is the bit that is set upon entering a tracing region and cleared upon leaving a tracing region. It 
indicates that the IP is within the filtered regions (but can be manipulated). It is one of the three 
enables that make up Packet Enable. 

RTIT STATUS [1]: ContextEn 

This is the context enable bit. It is set when we are in the right context for tracing (e.g. correct CPL, 

CR3 value, not in VMM/SMM, etc.) It is one of the three enables that make up Packet Enable. It is 
read-only.  

RTIT STATUS [2]: TriggerEn 

This is the trigger enable bit. It is set when RTIT is overall enabled (RTIT_CTL[Trace_En] AND 
RTIT_CTL[TraceActive]). It is one of the three enables that make up Packet Enable and is read-only.  

 
RTIT STATUS [3]: Buffer_Overflow 

This bit indicates that there is currently a buffer overflow that is pending. Under certain circumstances, 
software may need to context-switch that information.  

It is read/write and can be updated directly by the processor or by software through MSR writes. 

RTIT STATUS [31:4]: RESERVED 

MSR writes to any reserved bits result in a #GP0 fault. 
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3.3.4 RTIT_CNTP MSR 

The MSR address is 0x76B. Reset Value: 22'b0 

Table 5: Cycle Counter 

Bit Name Description 

[ 21 : 0 ] CNTP Count is a 22-bit incrementing counter value 

[ 31 : 22] Reserved  Reserved 

CNTP is a 22-bit incrementing counter that counts up at a rate equal to the processor core clock.  
CNTP can be used to generate info on cycle count between packets in cycle accurate mode. More 

details of this counter are in the “Cycle Counter” section. 

The counter value CNTP is reset back to 22’b0, when 

 CPU reset occurs (warm or cold) 

 CNTP overflows  
 A packet is sent out with a cycle count (the current value of CNTP). This occurs on almost 

every packet sent out in Cycle Accurate mode (RTIT_CTL[Cycle_Acc]). 

The RTIT hardware will attempt to send out a Periodic Cycle Count (FUP.PCC) Packet when the MSB 

(bit 21) of CNTP is set and it is in the appropriate mode. For more details, see the “Flow Update event: 
Packet Cycle Counter” section. 

3.3.5 RTIT_EVENTS MSR 

The MSR address is 0x76C. Reset Value: 32'b0. 

Table 6: RTIT Filter Enable 

Bit Name Description  

[2:0] Filter_Event_ID EventID which will control  RTIT_STATUS.FilterEn (Filter 

Enable mode bit) 

[5:3] TraceStop_Event_ID EventID which will cause a TraceStop action (Stops Tracing 
by clearing RTIT_CTL.TraceActive) 

[31:6] Reserved Reserved 

RTIT_EVENTS provides a means to conditionally enable RTIT based on the user defined events.  

Filter Event_ID allows the user to specify for which IPs FilterEnable should be set and for which it should 

be clear. 

TraceStop Event_ID allows the user to specify which IPs should cause the TraceStop action. The 
TraceStop action stops tracing (by clearing RTIT_CTL.TraceActive it causes TriggerEn to become 0) and 
also causes a TraceStop packet to be generated. 
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Table 7. RTIT Event IDs 

EventID Event Name 

000 RANGE0 

001 RANGE1 

010 RANGE0 || RANGE1 

011 Reserved 

100 Reserved 

101 Reserved 

110 Always off 

111 Always on 

 

The table above describes the event IDs that can be programmed to either the Filter_Event_ID or the 

TraceStop_Event_ID.  RANGE0 is defined as [RTIT_LIP0..RTIT_LIP2-1], while RANGE1 is defined as 
[RTIT_LIP1..RTIT_LIP3-1].  When RANGE0 and/or RANGE1 is used for one of these fields, this means 
that software that either executes an instruction at the base IP (specified by RTIT_LIP0 or RTIT_LIP2), 
or executes a taken branch or event whose target is within the range, will trigger the chosen behavior, 
be it FilterEn assertion to enable tracing, or TraceStop.  Correspondingly, software that executes an 

instruction at the limit IP (RTIT_LIP1 or RTIT_LIP3), or a taken branch or event whose target is 
outside the range, will cause the CPU to detect that software has left the range. 

This means that if RTIT is enabled from within RANGE0 or RANGE1, the CPU will not trigger the 
FilterEn or TraceStop behavior until either the IP at the range base is executed, or until a taken 
branch or event lands within the range.  If neither of these occurs before the software executes the IP 

at the limit of the range, no triggering will occur. 

Note that behavior when RANGE0 and RANGE1 overlap, or when the range base is greater than the 

range limit, is undefined.  Software should avoid such scenarios, as undesirable behavior is likely to 
ensue. 

3.3.6 RTIT_LIP0-3 MSR 

MSR numbers are 0x760, 0x761, 0x762, 0x763. Reset Value: 64’b0 

Table 8: RTIT LIP0-3 Address Range Comparators 

Bit Name Description 

[47:0] LIPN_ADDR Holds the LIP for comparison for TraceLIPN 

[63:48] LIP_SIGN_EXT Reads return the sign-extended value of bit 47 for 
each bit in this field. Writes to it have no effect.  

These MSRs serve to define the base and limit values for RANGE0 and RANGE1.  See the 

RTIT_EVENTS MSR for more details. 

Note that reads of this MSR will return 0 for the LIP_SIGN_EXT field. 
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3.3.7 RTIT_LAST_LIP MSR 

The MSR address is: 0x76E.  Reset Value: 64’b0. 

Table 9: RTIT Last LIP 

Bit Name Description  

[15:0] CMPRS_LIP_LOW  Holds LIP[31:16] of the compressed LIP 

[31:16] CMPRS_LIP_HIGH Holds LIP[47:32] of the compressed LIP 

[32] CMPRS_LIP_Valid Indicates the compressed LIP values are valid 

[63:33] Reserved Reserved as 0 

 LIP Compression compares the LIP being sent out with the last LIP sent out, so only 16-bit 
chunks which change are sent out.  This further reduces the bandwidth requirements required 
by RTIT. 

 LIP Compression applies to the Flow Update Packets (FUP) and Target IP Packet. 

o Compressed LIP High (CLH) is compared against LIP[47:32] of the packet being 

generated, while Compressed LIP Low is compared against LIP 31. 

 
This entire MSR is cleared to 0 (reset value) when a PSB packet is generated and when a buffer 
overflow packet is generated. 

3.3.8 RTIT_CR3_MATCH MSR 

RTIT CR3 Match registers have the programmed CR3 value for trace filtering.  The bits correspond to 
that defined in CR3 MSR. The MSR address is: 0x777.  Reset Value: 64’b0. 
 

Table 10: RTIT CR3 Comparator 

Bit Name Description 

[63:36] Reserved Reserved 

[35:5] CR3[35:5] Matches contents of CR3 [35:5]  

[4:0] Reserved Reserved 
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3.3.9 RTIT_PKT_CNT MSR 

RTIT_PKT_CNT holds the number of packet bytes that have been generated since either RTIT was 

initially enabled, or a PSB packet was last sent out. It does not count packets that were dropped due 
to buffer overflow, since they were not ‘generated’.   The Pkt_Cnt should also count the bytes in the 
PSB packet itself. 

The MSR address is: 0x77C. Reset Value: 0x00020000. 

 

Table 11: RTIT Packet Bytes Counter 

Bit Name Description 

[13:0] Pkt_Cnt Contains the number of bytes of RTIT packets generated since last PSB 

[15:14] Reserved Reserved 

[17:16] Pkt_Mask Indicates what value of Pkt_Cnt should cause a PSB to be sent out 

The Pkt_Mask field indicates when a PSB packet will be sent (which will also clear the Pkt_Cnt field).  

 Pkt_Mask value  PSB sent out when this Pkt_Cnt bit is set 

0                                         11 (size of roughly 2047 bytes) 
1                                         12 (size of roughly 4095 bytes) 
2                                         13 (size of roughly 8191 bytes) 
3                                         14 (size of roughly 16383 bytes) <= Note that bit 14 does not  

exist in this field; so consider it overflow of this field. 

So when the Pkt_Mask value is 0, then the PSB is sent out (and the Pkt_Cnt field is cleared) whenever 

the Pkt_Cnt value has a value with bit 11 set.  

Usually, this would occur due to a packet being generated and causing the Pkt_Cnt to be incremented 
to a value that has the ‘monitored bit’ set. So unless an MSR write is used to change Pkt_Cnt, a 

Pkt_Mask of 2 will mean that a PSB packet is generated approximately every 8095 (213-1) packet 
bytes generated. The Pkt_Cnt will also be reset to 0. 

This is evaluated on writes to this MSR and after every packet is generated. Thus the PSB will not be 
generated in the middle of a packet, but may be generated between the packets generated by a single 

instruction. 

For example: Pkt_Cnt value is 0xffc and PKT_Mask is 1 and a far transfer then occurs. It generates a 
FUP.FAR packet of 7 bytes (no compression was possible) and a FUP.TIP packet of 5 bytes (zero 
compression). The hardware detects the FUP.FAR would increase the Pkt_Cnt to a value with bit 12 set 
(the monitored bit).  As a result, it changes the Pkt_Cnt to 0 (not 3, which is what would happen if we 

simply cleared bit 12 of the output). Then a PSB packet is generated (which is 9 bytes in size), and 
the Pkt_Cnt is incremented to a value of 9. Then the FUP.TIP is sent out and the Pkt_Cnt is 
incremented by 5 to a value of 0xE. The end result is the packets sent out are FUP.FAR, PSB, FUP.TIP 
and the Pkt_Cnt goes from 0xffc to 0xE. 
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The PSB packet clears out the last LIP and last CALL NLIP compression; however, this does not take 
effect until the packet that caused the Pkt_Cnt overflow is drained from the internal RTIT buffer into 
memory unit buffers. This means that some number of packets in the trace after the PSB packet may 
not have the last LIP and last CALL NLIP compression. On Intel® Atom™ processors, the LAST_LIP 

and LAST_CALL_NLIP compression are guaranteed to be cleared no more than 4 packets after the PSB 
packet. 

3.3.10 RTIT_BASE_ADDR MSR 

 
The MSR address is: 0x770. Reset Value: 0xFDC00000. 

Table 12: RTIT Output Base Address 

Bit Name Description 

[5:0] Reserved Reserved as 0 

[35:6] Base_Phys_Addr The physical base address for the RTIT output 

[63:36] Reserved Reserved as 0 

RTIT_BASE_ADDR holds the physical base address where the RTIT packets will be written. Whenever 
hardware uses the base value, it will actually use (BASE AND ~MASK). This means that any bit which 

is set in both the base and mask MSR will be treated as if it was 0 in the base for all address 
calculations.  

It is redundant for software to set the same bit in the base and mask MSR. It is still valid, but the 
hardware will act as if the base MSR value was 0 for the purpose of address calculations. 

3.3.11 RTIT_LIMIT_MASK MSR 

 
The MSR address is: 0x771. Reset Value: 0x7F. 

Table 13: RTIT Output Limit Mask 

Bit Name Description 

[5:0]  Rsvd_as_1 Reserved as 3F 

[21:6] Mask_Value Mask value ANDed with RTIT write pointer offset 

[31:22] Reserved Reserved 
 

The CPU will AND this value to the RTIT base offset to figure out when the RTIT base offset pointer 
need to wrap back to 0. Since this field is defined up to bit 21, an RTIT output buffer of up to 4 MB in 

size (222) can be supported. 

  



 
Real Time Instruction Trace 

 
 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

      
 

March 2015 
 

32   
 

3.3.12 RTIT_OFFSET MSR 

The MSR address is: 0x772. Reset Value: 32’bh000. 

Table 14: RTIT Output Offset 

Bit Name Description 

[21:0] Offset Holds the value added to base to determine write address 

This MSR holds the offset within the current RTIT buffer. Adding it to the RTIT base will tell which 

physical address the next RTIT output byte should be sent to. 

Since the value in this MSR will change as bytes drain from internal RTIT buffers, it can change even 
when no packets are being generated. To ensure that it is ‘settled’ an RTIT-draining operation should 
be done (like a WRMSR to RTIT_CTL) between the last thing can generate a packet and an accesses to 
this MSR. 

3.3.13 RTIT_TNT_BUFF MSR 

The TNT_BUFF MSR should be initialized by writing a value of 1 instead of 0. Software should not 
attempt to write all zeroes to this MSR, as the hardware may not function correctly and may not 
generate the correct packets. A MSR write that attempts to write a value of all zeroes will cause a 
#GP. 

The MSR address is 0x77D. This register is reset to a value of 1’b1. 
 

Table 15: RTIT TNT Packet Buffer 

Bit Name Description  

[6:0] TNT Corresponds to TNT packet byte0.  

All bits to the right of the MSB are valid when the MSB is set (1) (just like the actual TNT packet.) 

RTIT_TNT_BUFF is a R/W MSR used to accumulate TNT packet bits as they are generated.  Capturing 
the TNT bits for the next TNT packet in this MSR allows the processor to save and restore them in C6 
events.  There is also an MSR to allow software to change the value of this MSR on context switches.  

As TNT bits shift in from the right, the valid bit (the first leading ‘1’ i.e. MSB) is also left shifted. Once 
the valid bit (MSB/leading’1’) is in bit position 6, a full TNT packet exists (and it should be soon sent 
out). 

Once the full TNT packet is generated, the lower byte is sent out as a TNT packet (with cycle count 

added after it if Cycle Accurate mode is enabled), and this MSR is reset back to ‘1’.  For more 
information on TNT packet generation and byte contents, please refer to the TNT packet description. 
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3.3.14 RTIT_LAST_CALL_NLIP MSR 

MSR write will cause a #GP on any attempt to set a reserved bit. 

The MSR address is 0x76F. Reset Value: 32’bh000. 

Table 16: RTIT Last Call NLIP 

Bit Name Description 

[31:0] Call_NLIP[31:0] Stores the NLIP[31:0] of the last Call Instruction 

[47:32] Call_NLIP[47:32] Stores the NLIP [47:32] of the last Call Instruction 

48 NLIP_Valid The stored NLIP[47:0] is valid 

The RTIT_LAST_CALL_NLIP registers are used to store the NLIP of the last call retired.  This is used 
for compressing the packet generation of indirect call/returns.  For more details on the underlying 
architecture and a description of return compression please refer to the indirect transfer compression 

for returns section: “Indirect Transfer compression for returns (RET)”. 

This entire MSR is cleared to 0 (reset value) when a PSB packet is generated and when a buffer 
overflow packet is generated. 
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4 Trace Packets and Data Types 

This chapter details the data generated by RTIT. It is useful for developers writing the interpretation 
code that will decode the data from RTIT and apply it to the traced source code. This chapter can also 
be used as a reference for the data structures and formats generated by RTIT. 

4.1 Trace Packet Summary 

The following summarize the trace packet header.   

 

 7 6 5 4 3 2 1 0   

TNT 

0 1 TNT 6 TNT 

0 0 1 TNT 5 TNT 

0 0 0 1 TNT 4 TNT 

0 0 0 0 1 TNT 3 TNT 

0 0 0 0 0 1 TNT 2 TNT 

0 0 0 0 0 0 1 TNT 1 TNT 

FUP 

1 0 0 0 0 Zext CNT PKT Gen Enable 

1 0 0 0 1 Zext CNT PKT Gen Disable 

1 0 0 1 0 Zext CNT Buffer Overflow 

1 0 0 1 1 Zext CNT Periodic Cycle Count 

1 0 1 0 x X x x Reserved 

1 0 1 1 0 Zext CNT Target IP  

1 0 1 1 1 Zext CNT Far Transfer 

Extended 

1 1 0 0 0 0 0 0 PSB 

1 1 0 0 0 0 0 1 TraceSTOP (stop trigger) 

1 1 0 0 0 0 1 CR0.PG Paging Information 

1 1 0 0 0 1 RNG MTC 

1 1 0 0 1 X x x Reserved 

1 1 0 1 ACBR[5:2] Super Time Synch 

1 1 1 X X Reserved 

Figure 2: RTIT Packet Header List 

The table below indicates in what modes certain packets are sent out. It is a summary table and 
should match the information documented in each of the specific packet sections. 
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Table 17: Trace Packet Enabling Summary 

Packet  When enabled  

“Branch packets”  - TNT, TIP, FUP.Far Transfer,  TriggerEn && ContextEn && 
FilterEn 

FUP.PacketGenEn TriggerEn && ContextEn && 
FilterEn 

FUP.PacketGenDis TriggerEn 

TraceStop  Clearing of TriggerEn  

Packet Stream Buffer TriggerEn  

Super Time Synch and Mini-Time Counter with 

RTIT_CTL[LESS_PKTS] set  

TriggerEn && ContextEn && 

FilterEn  

Super Time Synch and Mini-Time Counter with 
RTIT_CTL[LESS_PKTS] clear  

TriggerEn  

FUP.PCC with RTIT_CTL[LESS_PKTS] set  TriggerEn && ContextEn && 
FilterEn 

FUP.PCC with RTIT_CTL[LESS_PKTS] clear  TriggerEn && ContextEn 

FUP.Buffer Overflow TriggerEn && ContextEn 

Cycle Counter incrementing with RTIT_CTL[LESS_PKTS] set TriggerEn && ContextEn  

Cycle Counter incrementing with RTIT_CTL[LESS_PKTS] clear TriggerEn && ContextEn && 
FilterEn 

4.2 Packet Types 

4.2.1 Packet Stream Boundary (PSB) 

A PSB packet is for trace simulation software to identify a trace stream boundary. The trace packet 
output port size is not aligned to a trace packet word width, and the packets are written circularly into 

the external debugger trace buffer; it cannot be determined whether the data stream carries a valid 
trace packet, or just junk data. 

A PSB packet consists of header 8’b1100_0000, and 8 contiguous bytes of 0, clearly indicating the 
packet stream boundary.   

The bytes of zeroes in PSB should be more than the largest possible trace packet payload that might 

contain zeroes.  So far, the injected packet can have up to 7 bytes of 0s, hence we put the PSB 
payload to be 8 bytes. 
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A PSB will be generated when either of the following occurs: 

 Trigger Enable (RTIT_STATUS[TriggerEn]) goes from 0 to 1 

o This will only happen on an MSR write (e.g. WRMSR or VMX MSR load table) to 
RTIT_CTL that sets RTIT_CTL[TraceActive] and RTIT_CTL[Trace_En]. 

 RTIT_PKT_CNT[Pkt_Mask] indicates that a PSB packet should be sent out  

o E.g., it can be configured to send out packets every 8K packet bytes. 

o See MSR definition for RTIT_PKT_CNT for more details 

PSB packets may be generated in other cases as well.  The trace decoder should be tolerant of extra 
PSBs. 

 

7 6 5 4 3 2 1 0 

1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Figure 3: Packet Stream Boundary 

When the PSB is generated from value indicated by Pkt_Mask field, both RET and Last LIP 

compression MSRs have their valid bits cleared. 

The PSB packet can be sent out when TriggerEn is set. 

More than one PSB may be generated at stream boundaries. 

4.2.2 TNT Packet  

TNT packet contains the instruction flow information for conditional direct jumps (Jcc and LOOP) and 
RETs whose target matches the last NLIP. 

Embedded in the packet header are the T/NT fields:  

 T indicates that the transfer is taken. This is indicated by ‘1. 

 NT indicates that the transfer is not taken (fall through). This is indicated by ‘0. 

 Up to 6 T/NT fields can be packed in a single TNT packet. 
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0 1 TNT 6 TNT 

0 0 1 TNT 5 TNT 

0 0 0 1 TNT 4 TNT 

0 0 0 0 1 TNT 3 TNT 

0 0 0 0 0 1 TNT 2 TNT 

0 0 0 0 0 0 1 TNT 1 TNT 

Figure 4: Taken Not Taken Packet 

TNT packets are sent whenever 6 direct transfers are collected, or if any other packet needs to be 

sent. For example, we could have 4 direct branches followed by an indirect, which would trigger a TNT 
packet with the 4 branches, followed by the Target IP packet with the indirect target. 

The following cases will cause a partial TNT to be sent: 

 Flow Update Packet 

 Target IP Packet 
 Paging Information Packet 

A case that will cause many packets is that we are building a TNT Packet, and then execute a far 

transfer (e.g. an interrupt).  Under this circumstance, we first send a partial TNT Packet, then a Flow 
Update Packet and finally a Target IP Packet. 

Note that a full TNT packet that causes a buffer overflow may be delayed instead of being dropped 
and could be sent out before the buffer overflow packet is sent out. In this case, the cycle time of the 

TNT packet will reflect when the buffer overflow packet was generated and not when the 6th jump was 
recorded into the TNT packet. More details on this scenario, including how to detect it, are 
documented in the buffer overflow packet section. 

Also note that the TNT buffer is not drained on a TraceStop action. To properly understand what 
occurred at the very end of the trace, the RTIT analyzer may need to manually read out the contents 

of RTIT_TNT_BUFF MSR (e.g. with RDMSR). 

4.2.3 Target IP Packet  

For every indirect jump and procedure call, exception/interrupt, and interrupt return, a Target IP 
Packet containing destination address is generated. 

 

7 6 5 4 3 2 1 0 

1 0 1 1 0 Zext CNT 

BLIP 

BLIP 

BLIP 

BLIP 

BLIP 

BLIP 

Figure 5: Target IP Packet 
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Target IP Packet contains 2B, 4B, or 6B BLIP payload, depending on the compression.  CNT indicating 
BLIP size in the number of bytes: 

 2’00: 2 bytes of BLIP - this is the minimum size of BLIP 

 2’01: 4 bytes of BLIP 
 2’10: 6 bytes of BLIP - no compression is applied 
 2’11: reserved 

Zext is used to indicate whether the BLIP payload is compressed with zero extension or comparison 

with LIP sent out previously, as discussed below. 

4.2.3.1 LIP Compression 

There are two ways to compress a LIP: by noting it did not change much from the last LIP sent out, or 

by noting that the upper bytes are zeroes. 

The LIP is compared with the LIP that was saved into the RTIT_LAST_LIP MSR, which holds the LIP of 
whatever was sent out in the last LIP-containing packet (Target IP or Flow Update). RTIT_LAST_LIP is 

updated with the full LIP, even if that packet did not send out that full LIP due to it also being 
compressed. If the previous packet that sent out a LIP had the same bytes in the MSB bytes (upper 
part) of the address, then we can avoid sending them again in the current packet.  

The LIP is also checked to see whether MSB bytes consist solely of zeroes.  If so, we only send the 
non-zero bytes of LIP; and we set the Zext bit to indicate that the higher bytes are zeroes. 

The lowered count field implies that the upper bits are either the same as the previous LIP, or zero 
(depending on Zext bit). 

The matching and zero checking are for two groups: higher 2 bytes of BLIP (BLIP5/4), and middle 2 

bytes of BLIP (BLIP3/2).  The following table summarizes CNT and Zext based on the bits: 

Table 18: LIP Compression 

  

 CNT in packet Zext in 
packet  

Match 
of 47:32 

Match 
of 31:16 

LIP[47:32] 
is all 0s 

LIP[31:16] 
is all 0s 

CNT = 0 (2 byte LIP) Zext = 0 1 1 0 X 

CNT = 0 (2 byte LIP) Zext = 0 1 1 1 0 

CNT = 0 (2 byte LIP) Zext = 1 X X 1 1 

CNT = 1 (4 byte LIP) Zext = 0 1 0 0 X 

CNT = 1 (4 byte LIP) Zext = 1 X 0 1 0 

CNT = 1 (4 byte LIP) Zext = 1 0 X 1 0 

CNT = 2 (6 byte LIP) Zext = 0 0 X 0 X 
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“Match of 47:32” being 1 means that bits 47:32 of the LIP that this packet wants to send out are 
equal to RTIT_LAST_LIP[CMPRS_LIP_HIGH] (which usually holds LIP[47:32] of the LIP that was sent 
out in the last packet that had a LIP—even if that previous packet was also compressed (and thus 
didn’t send out those bytes)). 

An X means that the table row applies regardless of whether it was 0 or 1. Note that zero extension is 
a preferred compression mechanism over LIP match, as it is easier for software to reconstruct LIP. 

The compressed LIP is only updated when RTIT is not generating a buffer overflow packet.  It is also 

cleared on each PSB generated. 

LIP compression occurs prior to storing the trace message in the RITT Buffer.  The following are 
possible LIP insertion/compression scenarios: 

  
1. If the LIP being inserted into the buffer is the first LIP to be inserted, then it can't be 

compressed, as there is nothing to compress against.  However, the Last LIP compare register 
should be updated with the current LIP, in this case to prepare for subsequent compression.  

 
2. If the LIP being inserted into the buffer is not the first LIP to be inserted, then the LIP being 

inserted is compressed against the contents of the Last LIP compare register, and Last LIP 
compare takes on the new value of the LIP currently being inserted. 

  

3. In the event two RTIT packets are to be inserted back to back, then LIP0 is compressed 
against Last LIP register (or bypass), then LIP1 compressed against LIP0, and LIP1 updates 
the Last LIP compare MSR. 

  
4. In the event three RTIT packets are to be inserted back to back (three LIP generating events 

occurred in a single retirement window), LIP0 compresses against Last LIP MSR (or bypass), 

then LIP1 compresses against LIP0, and then LIP2 compressed against LIP1 and LIP2 updates 
the Last LIP MSR. 

4.2.3.2 Indirect Transfer compression for returns (RET) 

In addition to LIP compression, RTIT has the ability to further compress indirect transfer packets for 

call/return pairs if enabled (RTIT_CTL.CMPRS_RET is set).  A ‘pair’ is defined as a near CALL 
instruction (direct or indirect) followed by a near RET instruction that returns execution to the 
instruction following that previous call.   

This current architecture does not support compressing the indirect transfer packet if the near RET 

does not return to the exact same address as the NLIP of the last near CALL that was traced (as held 
in RTIT_LAST_CALL_NLIP MSR). Thus only the innermost CALL/RET pairs of nested subroutines will 
have their compression on their RET. 

Likewise, if the software does not RET to the NLIP of the last CALL (e.g., the return address on the 

stack was modified), then the RET’s packet will not be compressed through indirect transfer 
compression.  

If return compression is enabled, when a call is executed with PacketEn set, the NLIP of the call (the 
return address) is not only pushed on the stack, but RTIT stores a copy in RTIT_LAST_CALL_NLIP and 
sets the NLIPVal bit.  If the subsequent return instruction target address matches the address in 

RTIT_LAST_CALL_NLIP (and NLIPVal is set), then a Taken indication is added to the TNT history (if 
this TNT update completes the six entries needed for a full TNT packet, then a full TNT packet will be 
generated).  If the return address does not match RTIT_LAST_CALL_NLIP (e.g., due to nested calls, or 
the return address was changed on the stack), then the return will generate a Target IP packet (just 
like when RET compression is disabled). 
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A RET instruction whose RTIT output is compressed (it only updates TNT buffer instead of sending out 
a TIP) will not update RTIT_LAST_LIP MSR. Architecturally, it would be fine either way, but this is the 
current plan. 

Only near call instructions that start with PacketEn set will modify RTIT_LAST_CALL_NLIP.  So near 

call which is within the filtered region and has PacketEn of 1 but jumps outside the filter region will 
still modify RTIT_LAST_CALL_NLIP with its NLIP. 

A call instruction that does not start with PacketEn set and RTIT_CTL[CMPRS_RET] set will not write 

its NLIP into RTIT_LAST_CALL_NLIP. So a call whose CLIP is outside the filter enable region (and thus 
packet_en is 0) will not modify RTIT_LAST_CALL_NLIP, even if the call’s target or NLIP is within the 
filter enable region.   

Far calls will also not modify RTIT_LAST_CALL_NLIP. 
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Figure 6: Return compression without nested calls 
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Figure 7: Return compression with nested calls 

In the example above, the behavior differs once the second call is encountered (without a RET in 

between the two calls).  Once the call at address 0x405 is encountered, the call’s NLIP is pushed onto 
the stack and copied into the RTIT_LAST_CALL_NLIP register, overwriting the previous call’s NLIP 
(steps 3 and 4).  After the call at address 0x405 is retired (step 3), code flow is redirected to the 
target of the call (_buffer).  Code flow continues in this routine until the RET at address 0x502 is 
encountered.  The RET pulls its return address off the stack, and RTIT compares the return address to 
the address stored in RTIT_LAST_CALL_NLIP.  For this RET at address 0x502 (step 5), the return 

address and the address in RTIT_LAST_CALL_NLIP matches and a Taken indication is stored in the 

TNT history.  The INC AX instruction at address 0x409 is executed next, then the RET at address 
0x40c.  For this ret, the return address is again pulled off the stack and compared with address in 
RTIT_LAST_CALL_NLIP; in this case there is no match, as RTIT_LAST_CALL_NLIP contains the NLIP of 
the previous call (address 0x405) and not the address on the stack (address 0x00a).  Since the return 
address does not match the RTIT_LAST_CALL_NLIP address, the TNT history is not updated, and RTIT 
generates an indirect transfer packet. 

RTIT_LAST_CALL_NLIP enable bit is cleared on each PSB generated and is also cleared on buffer 
overflow (just in case the buffer overflow prevented some of the info needed for the analyzer to know 
the last CALL). 

4.2.4 Flow Update Packet 

Flow Update Packet is generated for certain situations, as identified by the Event field of the packet: 

 Event 3’b000: the real time trace package generation is enabled. 
 Event 3’b001: the real time trace package generation is disabled. 

 Event 3’b010: the trace architecture just recovered from the buffer overflow. 
 Event 3’b011: periodic cycle count. 
 Event 3’b110: This encoding indicates that it is not a FUP. It is actually a Target IP Packet, 

as described in the section above. 
 Event 3’b111: far transfer events: exceptions, traps, interrupts, far jumps. 
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As described in Section 2.2, the NLIP bus sends the CLIP for exceptions and NLIP for other far transfer 
events. NLIP0 is sent on the payload for all other Flow Update Packets. Up to 48 bits or 6 bytes of LIP 
is sent for debug software to figure out the current program flow location.  The number of bytes of LIP 
field is indicated by the CNT field of the packet.  

The same compression and zero extension as the Target IP Packet is applied to the Flow Update 
Packet. 

 

7 6 5 4 3 2 1 0 

1 0 Event Zext CNT 

LIP 

LIP 

LIP 

LIP 

LIP 

LIP 

Figure 8: Flow Update Packet 

4.2.5 Flow Update event: Buffer Overflow 

When new packets need to be generated but the CPU’s internal RTIT buffers are all full, a RTIT “buffer 

overflow” occurs. When this occurs, the Buffer_Overflow bit in RTIT_STATUS MSR will be set. When 
RTIT_STATUS[Buffer_Overflow] is set, the following things occur: 

a) No packets will be generated (as they would need to enter the CPU’s internal RTIT 

buffer) 
1. Ideally, this means that RTIT_LAST_LIP MSR and RTIT_LAST_CALL_NLIP will 

not be modified (since they are only modified when packets are generated). 
However, this is not critical, since these MSRs are cleared when the Buffer 
Overflow clears out. 

2. This means that Pkt_Cnt will not increment (since only incremented when 

packets are generated). 
b) No conditional branches will update the partial TNT information (RTIT_TNT_BUFF 

MSR). 
c) The cycle counter will increment, but will not generate PCC packets (see below). 

The address comparisons to RANGE0 or RANGE1 continue during a buffer overflow and TriggerEn, 

ContextEn, and FilterEn may change during a buffer overflow. Any FUP.PGE or FUP.PGD packets that 
would have been generated will be dropped/lost. 

The cycle counter does not stop incrementing due to a buffer overflow. However, the periodic cycle 

counter packet will not be dropped due to a buffer overflow. Instead, the periodic cycle counter 

(FUP.PCC) will not be generated (and thus the cycle counter will not be auto-reset) until after the 
buffer overflow has cleared out (and after the buffer overflow packet has been sent). If the buffer 
overflow packet contains a cycle count that can cause the cycle counter to be reset without any 
FUP.PCC being needed.  A buffer overflow should never last long enough to cause the cycle counter to 
overflow. Any mini time counter (MTC) packets that need to be sent during a buffer overflow will be 
dropped. If only a few MTC packets are dropped, the RTIT analyzer should be able to detect this by 

noticing that the time value in the first MTC packet after the buffer overflow incremented by more 
than one. If the buffer overflow lasted so long that that >255 MTC packets are lost (and thus the MTC 
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packet ‘wraps’ its 8-bit TSC value), then the RTIT analyzer may be unable to properly understand the 
trace. If this is suspected, MTC_range should be increased. 

The buffer overflow condition will not be cleared until:  

a) The RTIT buffer has completely drained to the memory unit and is empty. 
b) An instruction is starting while TriggerEn==1 and ContextEn==1 at the beginning of 

the instruction. 

When the buffer overflow condition is cleared by the above conditions, the buffer overflow has 
‘naturally’ cleared (to differentiate from being cleared by an MSR write). When the buffer overflow is 
naturally cleared, the Buffer_Overflow bit of RTIT_STATUS is cleared, a FUP.BuffOvf (flow update 
packet of type buffer overflow - event field is 010b) is generated, and the valid bits of the 

RTIT_LAST_LIP and RTIT_LAST_CALL_NLIP MSRs are cleared.  They are cleared before the overflow 

packet is sent, so the FUP.BuffOvf will never contain a last LIP compressed address. 

The address contained in the FUP.BuffOvf will be the start of the next instruction after the currently 
executing instruction (the NLIP of the current instruction). Thus, on clearing of a buffer overflow, the 
analyzer will know exactly where the CPU is now executing, but will not know the exact instruction 

where the buffer overflow occurred. 

If there are taken/not taken indications in RTIT_TNT_BUFF, then they will be sent out before the 
FUP.BuffOvf is sent. They will represent taken/not taken branches before the buffer overflow occurred, 
and thus can help the analyzer understand what code was executing when the buffer overflow 

occurred. This will also occur if the RTIT_TNT_BUFF was completely full with 6 branches and it was the 
TNT packet itself that attempted to cause the overflow. In that case, the full TNT packet will not be 
dropped and will still be seen in the trace before the buffer overflow packet. 

Full TNT packets include cycle count packets; but that in this case, the TNT packet cycle count will be 
the time when the buffer overflow was drained and not when the 6th branch occurred that filled up the 

TNT buffer. When the trace analyzer sees a full TNT packet followed by a buffer overflow and the 

buffer overflow packet has a cycle count of 0 that means this situation has occurred. In this case, the 
trace analyzer should not treat the cycle count at the end of the full TNT packet as the time when the 
6th jump retired; instead, it is the time when the buffer overflow packet was sent.  
 
If a TraceStop action occurred during the buffer overflow (which means that the IP matched that 

specified in RANGE0 or RANGE1 and that range was programmed to cause a TraceStop by 
TraceStop_Event_ID), then that TraceStop action will be held pending during the buffer overflow and 
will not be dropped. Once the buffer overflow packet has been sent, the TraceStop action will occur—
which includes clearing out RTIT_CTL[Trace_Active], sending out the TraceStop packet, and possibly 
draining RTIT buffers again. This means that the buffer overflow packet may contain an address 
reached after the filtering logic pended the TraceStop action. It also means that the cycle counter will 
continue running after the filtering logic pended the TraceStop action. 

The FUP.BuffOvf can cause a PSB packet to be generated due to its incrementing of Pkt_Cnt.  

If TriggerEn becomes 0 and then goes back to 1 (due to an MSR write) during a buffer overflow, a PSB 

packet will be generated. It is possible for this PSB packet to be seen in the trace before the buffer 
overflow packet, even though the re-setting of TriggerEn occurs after the buffer overflow started. 
Additionally, if a TraceStop packet was pending when TriggerEn became 0, the PSB packet may come 
out before the TraceStop packet. 

Although the packet ordering does not match the order in which the actions occurred, this is not 

expected to be a real problem for the RTIT analyzer, since the purpose of the PSB packet is still met 
(which is to ensure that the header bytes can be found in the trace). 
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The Buffer_Overflow can also be changed by software writing RTIT_STATUS MSR. Clearing the bit 
through an MSR write is not a ‘natural’ clearing and it will not cause a buffer overflow packet to be 
generated. If the Buffer_Overflow bit is set through an MSR write to RTIT_STATUS that must have the 
same effect as if a packet was generated when the buffer was full (e.g. preventing further packets 

from getting into the internal buffer while Buffer_Overflow bit is set). 

If an RTIT drain occurs (e.g. as part of a WRMSR to RTIT_CTL) while Buffer_Overflow is set, the drain 
will complete without Buffer_Overflow being cleared. This is because Buffer_Overflow only clears 
naturally (meaning not through MSR write) at instruction boundaries. Thus it is possible for a drain to 

complete without forcing out the Buffer Overflow packet (FUP.BuffOvf) that is generated by the 
natural clearing of RTIT_STATUS[Buffer_Overflow]. 

4.2.6 Flow Update event: Packet Cycle Counter 

This is commonly called “FUP.PCC”.  The RTIT hardware will send out a Periodic Cycle Count 
(FUP.PCC) Packet at the beginning of an instruction when the MSB (bit 21) of RTIT_CNTP[CNTP] is set, 

the cycle count is enabled (RTIT_CTL[CYCLE_ACC]==1), and the processor is in the appropriate 
mode.  

When LESS_PKTS is set, FUP.PCC packets are only sent out when (TriggerEn && ContextEn && 
FilterEn) == 1. 

When LESS_PKTS is clear, FUP.PCC packets are only sent out when (TriggerEn && ContextEn) == 

1. 
 
The address in the FUP.PCC’s LIP field is the NLIP of the instruction (the first byte of the next 
sequential instruction). This is the same as the buffer overflow packet. This can lead to an address 

being sent out which is never executed (e.g. the instruction sequentially after a RET). The RTIT_CNTP 
packet may be delayed if another packet non-PSB needs to be sent out at the same time.  

Although it is only sent out at instruction boundaries, it is normally sent out when it is ‘half full’ (its 
MSB is set). So there is little chance of the cycle counter overflowing before the FUP.PCC could be sent 
out. 

Since the Periodic Cycle Count packet is only sent out in cycle accurate mode (assuming an MSR write 
isn’t used to set the MSB of CNTP), it will naturally include the cycle count. And thus sending it out will 
also clear out the cycle counter (CNTP) – since that happens whenever the cycle count packet is sent. 
Sometimes this packet is incorrectly referred to as the “Cycle Count Overflow packet”. 

4.2.7 Flow Update event: Packet Generation Enable 

This is commonly called “FUP.PGE”. This packet is generated when PacketEn transitions from 0 to 1.  

This can happen for a range of reasons including: 

a) “Walking into the region” (having FilterEn become set due to the NLIP matching the region 
specified by Filter EventID). 

b) Jumping into the region (having FilterEn become set due to the branch target being within the 
region specified by Filter EventID). 

c) Having ContextEnable become 1 and already being in the right range. 
a. This could happen due to a WRMSR to an RTIT MSR, a CR3 changing operation, a 

change in CPL, a VM-entry, or RSM. 

d) Enabling RTIT (TriggerEn from 0 to 1) and being in the right mode and IP range such that 
ContextEn and FilterEn also become 1. 



 
Real Time Instruction Trace 

 
 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

      
 

March 2015 
 

46   
 

The FUP.PGE is actually sent out by the instruction that ‘ends’ in the right mode/range.  

The LIP carried in the FUP.PGE packet is the address of the next instruction that should execute 

(assuming no trap/interrupt), which will always be an address in the right mode/range. 

4.2.8 Flow Update event: Packet Generation Disable 

This is commonly called “FUP.PGD.”  This packet is generated when PacketEn transitions from 1 to 0, 
with an exception mentioned later. 

This can happen for a range of reasons including: 

a) “Walking out the region” (having FilterEn become 0 due to the NLIP matching the end of the 

region specified by Filter EventID). 

b) Jumping out the region (having FilterEn become cleared due to the branch target being 
outside the region specified by Filter EventID). 

c) Having ContextEnable become 0. 
a. This could happen due to a WRMSR to an RTIT MSR, a CR3 changing operation, a 

change in CPL, a VM-exit or a SMI. 

The FUP.PGD is actually sent out by the instruction that ‘ends’ outside of the right mode/range. Thus, 
it is generated by an instruction that started with PacketEn set. 

The LIP carried in the FUP.PGD packet is the NLIP of the instruction that caused PacketEn to go from 1 
to 0. If it was not an instruction that caused PacketEn to be cleared (e.g., it was an interrupt or trap 
or VM exit), then it is the address that would be saved into the LBR FROM field, or into the VMCS or 
into the SMRAM. 

There is one exception where PacketEn goes from 1 to 0 without a FUP.PGD being generated. A 

FUP.PGD may not be generated when TriggerEn becomes 0. This TriggerEn clearing could be due to an 
MSR write that clears TraceActive or Trace_En or by a TraceStop event that clears TraceActive. This 
aspect of the architecture may be changed in future versions of RTIT if it is a problem for software. 
This can cause PacketEn to become 0 without the contents of TNT_BUFF being forced out in a partial 

TNT. This could lead to a partial TNT on the next FUP.PGE (which is unusual; but allowed). That partial 
TNT would specify where RTIT was disabled. 

4.2.9 Flow Update event: Far Transfer 

This is commonly called “FUP.FAR”.  It is sent out on far transfers to explain where the trace was 
before the far transfer. This is important for asynchronous transfers like faults and interrupts; but is 

sent out on all far transfers to be consistent. See table 2 (Classifying branches/COFI) for details of 
which instructions cause a FUP.FAR to be sent out. The address that is contained in the FUP.FAR is 
described in Table 1 (Address in various packets). 

On a branch that would naturally generate both a FUP.FAR and a FUP.PGD, the FUP.PGD will replace 
the FUP.FAR and no FUP.FAR will be sent. This is a form of compression, and is also thought to 

simplify the hardware. 
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4.2.10 Paging Information Packet (PIP) 

This packet will be generated with the new CR3 value and paging enable, on  

 MOV CR3 operation  
 MOV CR0 that changes the CR0.PG value 

The Paging Information Packet is generated in the above cases when ContextEn and TriggerEn are 

both 1 and RTIT_CTL[CR3En] is 0. When RTIT_CTL[Cr3_En] is 1, then software should know what the 
CR3 value is whenever ContextEn is 1 and no paging information packet is generated (for simplicity, 
this also includes when CR0.PG changes). 

The purpose of the PIP is to tell the RTIT analyzer which application is running so that it can 

understand which code corresponds to the linear addresses which RTIT is outputting. Some older 

versions of Linux* would leave CR3 unchanged and would switch applications by changing PLM4 
entries. RTIT will have trouble with such operating systems unless they are modified to log when they 
are changing address spaces. 
 

7 6 5 4 3 2 1 0 

1 1 0 0 0 0 1 CR0.PG 

CR3[7:0] 

CR3[15:8] 

CR3[23:16] 

CR3[31:24] 

CR3[39:32] 

Figure 9: Paging Information Packet 

The new CR3 and CR0.PG values are the ones reported in the packet. There are ways that the CR3 or 

CR0.PG can be changed without sending out a paging info packet, like task switches or INIT.  A paging 
info packet should not be sent out SMIs, RSMs, VM-exits or VM-entry to SMM mode (although SMIs, 
VM-exits and VM-entry to SMM will always end with ContextEn==0 anyway). 

The RTIT_CTL.STS_on_CR3 bit may cause a STS packet to be sent out (after the Paging Info packet 

when Paging Info packets are sent out) if STS packets are sent out in the current mode (depends on 
LESS_PKTS; ContextEn evaluated after CR3 value change) on MOV CR3 operations. This can help tell 
the analyzer what the current time is, even if there has been no other event that sends out STS 
packets for a long time. STS packets might be sent out due to STS_on_CR3 even when Paging Info 
packets are not sent out (e.g. because RTIT_CTL[CR3En] is 1). 

4.2.11 TraceSTOP Packet 

When the IP matches the range specified by the TraceStop EventID while (RTIT_STATUS[ContextEn] 

and RTIT_STATUS[TriggerEn] are set), a TraceStop action occurs. This clears RTIT_CTL[TraceActive] 
and causes a TraceStop packet to be generated.  

The TraceStop action also forces FilterEn to 0.  
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Note that the TNT buffer is not drained on a TraceStop action. To properly understand what occurred 
at the very end of the trace, the RTIT analyzer may need to manually read out the contents of 
RTIT_TNT_BUFF MSR (e.g. with RDMSR). 

 

7 6 5 4 3 2 1 0 

1 1 0 0 0 0 0 1 

Figure 10: TraceSTOP Packet 

4.2.12 Mini Time Counter (MTC) Packet  

The MTC packet, along with the STS packet, helps the analyzer figure out the wall-clock time when 

packets were generated. Wall-clock time information can be used to synchronize with other debug 

streams (e.g. the RTIT stream from another core, a video recording of the display).  MTC, like STS, is 
based on the HW TSC that the processor uses to generate IA32_TIMESTAMP_COUNTER (and for 
RDTSC). 

RTIT can be configured to watch a specified 8-bit range of the HW TSC. Whenever that 8-bit range 

being watched changes, an MTC packet will be sent out with the new value of that 8-bit range. This 
allows the analyzer to keep track of how much time has elapsed since the last STS packet was sent by 
keeping track of how many MTC packets were sent and what their value was. 

It is possible for MTC packets to be lost due to buffer overflows. However unless >2^8 MTC packets 
are dropped in a row, software will be able to notice that MTC packets were dropped by noticing the 

missing packet (e.g. the last time was 0x1a and the new time is 0x1c implies that the packet for 0x1b 
was dropped). 

MTC packets are enabled by setting RTIT_CTL[MTC_En]. The specific bits are specified by the 

RTIT_CTL[MTC_Range] field. A value of ’00 means that HW TSC[14:7] are sent out in the TSC portion 

of MTC packets whenever HW TSC [14:7] changes (which is whenever TSC[7] changes). A value of ’01 
means that HW TSC [16:9] are sent out in MTC whenever they change. A value of ’10 means that HW 
TSC [18:11] are sent out in MTC whenever they change. A value of ’11 means that HW TSC [20:13] 
are sent out in MTC whenever they change.  

Thus software can either choose to have MTC packets sent out more frequently with finer granularity 

of time info (but causes more packet bandwidth and allows wrapping more frequently), or can have 
MTC packets sent out less frequently with less granular time info (but less packet bandwidth and less 
chance of wrapping in an overflow). 

MTC packets are generated whenever TriggerEn is 1 if RTIT_CTL[LESS_PKTS] is clear and whenever 

TriggerEn, ContextEn, and FilterEn are all 1 if LESS_PKTS is set.  

The RNG field will be the current RTIT_CTL[MTC_Range] value. The MTC will be sent out whenever the 
8-bits of the TSC that are to be sent out change. It should be inserted into the buffer immediately 

after the TSC changes. The MTC packet may not be sent out when the CPU is in a sleep state.  

  



 
Real Time Instruction Trace 
 

 
 

 

March 2015 

 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

49 
 

The following is the MTC Packet format. 

 

7 6 5 4 3 2 1 0 

1 1 0 0 0 1 RNG 

8b TSC (granularity based on count) 

Figure 11: Mini Time Counter Packet 

Due to per-core offset and VMCS offset, the value in the MTC packet may not be the same value as 

read on RDTSC or MSR read of IA32_TIME_STAMP_COUNTER MSR. Software can tell the difference 
between the HW TSC (which is sent out by MTC and STS packets) and the 
IA32_TIME_STAMP_COUNTER value (also read out by RDTSC) by reading out the per-core offset 

through a RDMSR of IA32_TSC_OFFSET. Software techniques may need to be used to discover the 

VMCS offset. 

4.2.13 Super Time Sync (STS) Packet 

This packet will send out both the frequency and current time stamp counter value of the core. This 
packet is architecturally sent on: 

 Core frequency change 

 Sleep state wakeup (any sleep state, including C1/C2/C4/C6/S0i2) 
 Clock modulation (e.g., due to TM1 or IA32_CLOCK_MODULATION MSR) 
 On MOV CR3 operations (when RTIT_CTL. STS_on_CR3 is set) 

STS packets may be sent for other cases as well. 

The packet includes 5 bytes of “Big time Counter” (which corresponds to the hardware TSC 
creg[39:0]). Software can see the difference between the hardware TSC creg and the software TSC 
(what is returned on RDTSC) by doing a RDMSR of IA32_TSC_OFFSET MSR (which is introduced on 
Silvermont and Haswell). The packet also includes the “Actual Core/Bus ratio” (which is the current 

core/bus ratio), and the “Effective Core/Bus ratio” (which is the core/bus ratio that software effectively 
operates at when clock modulation is factored in).  

Since the big time counter value contains HW TSC creg bit [39:0], it will wrap around in ~500 seconds 
on a 2GHz GUAR_RATIO part. This should be enough detail to sync up the trace packets from different 

CPU cores. 

When RTIT_CTL.LESS_PKTS is zero, then STS should be sent out whenever TriggerEn is one. When 
RTIT_CTL.LESS_PKTS is one, then STS should be sent out whenever (TriggerEn && ContextEn && 
FilterEn) is 1. STS packets should only be sent out when RTIT_CTL[STS_EN] is set. 
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7 6 5 4 3 2 1 0 

1 1 0 1 
Actual Core/Bus 
Ratio[5:2] 

ACBR[1:0] Effective Core/Bus Ratio[5:0] 

Big Time Counter 0 (HW TSC[7:0]) 

Big Time Counter 1 (HW TSC[15:8]) 

Big Time Counter 2 (HW TSC[23:16]) 

Big Time Counter 3 (HW TSC[31:24]) 

Big Time Counter 4 (HW TSC[39:32]) 

Figure 12: Super Time Synch packet 

 

4.2.14 Cycle Count Packet 

For certain RTIT trace packets additional cycle count will be appended after the normal packet in cycle 

accurate mode. The following is the cycle count packet format: 

 

7 6 5 4 3 2 1 0 

Cycle Count 0  CCNT 

Cycle Count 1  

Cycle Count 2 

Figure 13: Cycle Count Packet 

CCNT is used to indicate the cycle count length: 

 2’b01: 1B Cycle Count Packet.  Cycle Count 0 carries the value in RTIT_CNTP[5:0].  This is for 

the case when RTIT_CNTP[21:6] == 0; 

 2’b10: 2B Cycle Count Packet.  Cycle Count 0 carries the value in RTIT_CNTP[5:0]; Cycle 
Count 1 carries the value in RTIT_CNTP[13:6].  This is for the case when RTIT_CNTP[21:14] 

== 0; 

 2’b11: 3B Cycle Count Packet.  Cycle Count 0 carries the value in RTIT_CNTP[5:0]; Cycle 
Count 1 carries the value in RTIT_CNTP[13:6]; Cycle Count 2 carries the value in 
RTIT_CNTP[21:14].   

 2’b00: reserved 

The RTIT cycle counter may stop in sleep states. An STS packet should be sent out on wakeup from 
any sleep states where the cycle counter does not count. 
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4.2.15 Cycle Accurate Mode 

Cycle accurate mode is enabled when RTIT_CTL.Cycle_Acc is set.   

The following RTIT packets will always be followed by a cycle count packet when the cycle accurate 
mode is enabled: 

 Full TNT Packet (a TNT packet with info on 6 branches) 

 Target IP Packet 
 Flow Update Packet 
 Paging Information Packet 
 Mini Time Count 
 Super Time Sync 

The appended cycle count sends out the value stored in RTIT_CNTP.  The count increments every CPU 

core clock, and value is an accurate indication of the program flow (specifically the time between 
retiring the instructions that generated the packets). 

The cycle count in RTIT_CNTP only tells the time since the last cycle count packet. So every time a 

Cycle Count packet is sent, RTIT_CNTP[CNTP] is reset to zero. 

The cycle count packet is not appended to partial TNT packets, TraceSTOP, or Packet Stream Buffer. It 
is not appended to the Partial TNT packet (a TNT packet of less than 6 branches) because it is not 
needed. The partial TNT packet is always immediately followed by another packet (which will have 

forced out the partial TNT). The partial TNT packet will have a cycle count packet. 

Conditional jumps update the TNT buffer, but do not generate a TNT packet or a cycle count packet. 
Thus the exact time those jumps retired is not indicated in the RTIT output. 

4.3  Synchronous packets 

There are three types of packets generated on flow control instructions (e.g., branches), and one 

packet generated on paging changes.  The packet layout and complete descriptions can be found in 
the packet section of this document; however, the following table provides a brief description of the 
three synchronous packets (TNT, Target IP, and Flow Update) packets as well as the paging change 
packet (Paging Info Packet) 

 “TNT” packet:   Holds taken/not taken info about direct, conditional jumps (e.g. JNZ) 

• Target IP Packet:  Holds destination address of indirect jump/transfers (e.g., JMP 
indirect or #PF exception) 

• Flow Update packet:  Explains where we came from (e.g., address pushed onto stack for 
#PF exception) 

• Paging Info packet:  Generated on CR3 changes or paging enable/disable. Explains 
which app we switched to and whether paging is enabled. 

 

Direct unconditional branches such as JMP near relative do not generate packets. 
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4.3.1 Packets sent out in various situations 

The following table describes what packets are generated with each type of operation.  

Table 19: Packet Generation under Different Enable Conditions 

# Operation PacketEn set 
before we 
fetched this 
instruction? 

PacketEn set 
after this 
instruction 
completes? 

Branches 
in the TNT 
buffer? 

Packets 
generated 

1 Normal non-jump 
operation (EOM) 

Yes yes x Nothing 

2 Normal non-jump 

operation (EOM) 

No no x Nothing 

3 Normal non-jump 
operation (EOM) 

Yes no no FUP.PGD with 
NLIP 

4 Normal non-jump 
operation (EOM) 

Yes no yes TNT, FUP.PGD 
with NLIP 

5 Normal non-jump 

operation (EOM) 

No yes no  (yes is 

not possible 
here, even 
if there is a 
buffer 
overflow) 

FUP.PGE with NLIP 

6 Unconditional 
direct jump (like 

JMP near) 

Yes yes x Nothing 

7 Unconditional 
direct jump (like 
JMP near) 

No no x Nothing 

8 Unconditional 
direct jump (like 
JMP near) 

Yes no no FUP.PGD with 
NLIP 

9 Unconditional 
direct jump (like 
JMP near) 

Yes no yes TNT, FUP.PGD 
with NLIP 

10 Unconditional 
direct jump (like 
JMP near) 

No yes no (yes is 
impossible) 

FUP.PGE with 
BLIP 

11 Conditional taken 
jump that does 
not fill up the 
internal TNT 

buffer (not the 
6th conditional 
jump)  

Any any x Same as direct 
jump 



 
Real Time Instruction Trace 
 

 
 

 

March 2015 

 
 
 

Real Time Instruction Trace 
Programming Reference v1.01 

53 
 

# Operation PacketEn set 
before we 
fetched this 
instruction? 

PacketEn set 
after this 
instruction 
completes? 

Branches 
in the TNT 
buffer? 

Packets 
generated 

12 Conditional not 
taken jump that 
does not fill up 
the internal TNT 
buffer (not the 
6th conditional 

jump)  

Any any x Same as "normal 
non-jump 
operation" 

13 Conditional taken 

jump up that fills 

up the internal 
TNT buffer 

Yes yes yes (no is 

not 

possible) 

TNT  

14 Conditional taken 
jump up that fills 
up the internal 
TNT buffer 

No no yes (no is 
not 
possible) 

impossible, 
because wouldn't 
update TNT buffer 

15 Conditional taken 
jump up that fills 
up the internal 
TNT buffer 

Yes no yes (no is 
not 
possible) 

TNT, FUP.PGD 
with NLIP  

16 Conditional taken 
jump up that fills 
up the internal 
TNT buffer 

No yes yes (no is 
not 
possible) 

impossible, 
because wouldn't 
update TNT buffer 

17 Conditional not 
taken jump up 
that fills up the 

internal TNT 
buffer 

Yes yes yes (no is 
not 
possible) 

TNT  

18 Conditional not 

taken jump up 
that fills up the 
internal TNT 
buffer 

No no yes (no is 

not 
possible) 

impossible, 

because wouldn't 
update TNT buffer 

19 Conditional not 
taken jump up 
that fills up the 
internal TNT 

buffer 

Yes no yes (no is 
not 
possible) 

TNT, FUP.PGD 
with NLIP 

20 Conditional not 
taken jump up 
that fills up the 

internal TNT 
buffer 

No yes yes (no is 
not 
possible) 

impossible, 
because wouldn't 
update TNT buffer 
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# Operation PacketEn set 
before we 
fetched this 
instruction? 

PacketEn set 
after this 
instruction 
completes? 

Branches 
in the TNT 
buffer? 

Packets 
generated 

21 Near indirect 
jump (like RET or 
CALL indirect 
mem) 

Yes yes no TIP with BLIP 

22 Near indirect 
jump (like RET or 
CALL indirect 
mem) 

Yes yes yes TNT, TIP with BLIP 

23 Near indirect 
jump (like RET or 
CALL indirect 

mem) 

No no x Nothing 

24 Near indirect 
jump (like RET or 

CALL indirect 
mem) 

Yes no no TIP with BLIP and 
FUP.PGD with 

NLIP 

25 Near indirect 

jump (like RET or 
CALL indirect 
mem) 

Yes no yes TNT, TIP with BLIP 

and FUP.PGD with 
NLIP 

26 Near indirect 
jump (like RET or 

CALL indirect 
mem) 

No yes no (yes is 
impossible) 

Just FUP.PGE with 
BLIP 

27 Far Transfer (Far 
Jump/Call/Ret/Int
errupt/Exception/
etc.) 

Yes yes no FUP.Far with  NLIP 
(see footnote) and 
TIP with BLIP 

28 Far Transfer (Far 
Jump/Call/Ret/Int
errupt/Exception/
etc.) 

Yes yes yes TNT, FUP.Far with  
NLIP (see footnote 
2) and TIP with 
BLIP 

29 Far Transfer (Far 
Jump/Call/Ret/Int
errupt/Exception/

etc.) 

No no x Nothing 

30 Far Transfer (Far 

Jump/Call/Ret/Int
errupt/Exception/
etc.) 

Yes no (but 

ContextEn is 1) 

no FUP.PGD with  

NLIP (see 
footnotes 2 and 6) 
and TIP with BLIP 

31 Far Transfer (Far 
Jump/Call/Ret/Int
errupt/Exception/
etc.) 

Yes no (but 
ContextEn is 1) 

yes TNT, FUP.PGD 
with  NLIP (see 
footnotes 2 and 6) 
and TIP with BLIP 
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# Operation PacketEn set 
before we 
fetched this 
instruction? 

PacketEn set 
after this 
instruction 
completes? 

Branches 
in the TNT 
buffer? 

Packets 
generated 

32 Far Transfer (Far 
Jump/Call/Ret/Int
errupt/Exception/
etc.) 

Yes no (ContextEn is 
now 0) 

no FUP.PGD with 
NLIP (see footnote 
2) 

33 Far Transfer (Far 
Jump/Call/Ret/Int
errupt/Exception/
etc.) 

Yes no (ContextEn is 
now 0) 

yes TNT, FUP.PGD 
with NLIP (see 
footnote 2) 

34 Far Transfer (Far 
Jump/Call/Ret/Int
errupt/Exception/

etc.) 

no (ContextEn 
was 0) 

Yes no (yes is 
impossible) 

Just FUP.PGE with 
BLIP 

35 Far Transfer (Far 
Jump/Call/Ret/Int

errupt/Exception/
etc.) 

no (ContextEn 
was 1) 

Yes no (yes is 
impossible) 

Just FUP.PGE with 
BLIP 

36 SMI or VM-exit Yes No no FUP.PGD with 

address saved into 
VMCS/SMRAM as 
IP 

37 SMI or VM-exit Yes No yes TNT, FUP.PGD 
with address 

saved into 
VMCS/SMRAM as 
IP 

38 RSM or VM-entry No Yes no (yes is 
impossible) 

FUP.PGE with BLIP 

39 MOV to CR3 Yes Yes no CR3 packet when 
enabled, STS 
when enabled 

40 MOV to CR3 Yes Yes yes TNT, CR3 packet 
when enabled, 
STS when enabled 

41 MOV to CR3 No No no (yes is 
impossible) 

CR3 packet when 
enabled in the 
current mode, STS 

when enabled 

42 MOV to CR3 No Yes no (yes is 
impossible) 

CR3 packet when 
enabled in the 
current mode,  

STS when 
enabled, FUP.PGE 
with NLIP 
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# Operation PacketEn set 
before we 
fetched this 
instruction? 

PacketEn set 
after this 
instruction 
completes? 

Branches 
in the TNT 
buffer? 

Packets 
generated 

43 MOV to CR3 Yes no no CR3 packet when 
enabled in the 
current mode, STS 
when enabled, 
FUP.PGD with 
NLIP 

44 MOV to CR3 Yes no yes TNT, CR3 packet 
when enabled in 

the current mode,  

STS when 
enabled, FUP.PGD 
with NLIP 

Footnote 1: The order of the packets will be that specified in the list. 
Footnote 2: The "NLIP" of a far transfer which changes privilege levels is actually the address it 
would have saved into the FROM field of the LBRs for Intel® Atom™ processors (or on the 
stack).This is actually the CLIP for exceptions. 
Footnote 3: This does not list cycle count packets. For now, assume that each TNT, FUP and TIP 
has a cycle count packet after it. Any second or third cycle counts sent out on an instruction should 

be 0 (since sending out the first cycle count zeroed it. 

4.3.2 Understanding Entering/Exiting Packet Enabled 

Region 

Whether an instruction generates a synchronous packet is determined by the value of packet enable at 

the start of the instruction. 

A conditional (taken or not taken) jump that starts with PacketEn cleared and ends with PacketEn set 

does not update the TNT buffer. A conditional jump that starts with PacketEn set and ends with 

PacketEn cleared does update the TNT buffer; but it will also immediately follow it by generating a 
FUP.PGD packet that will evict whatever is in the TNT buffer. 

A RET that starts with PacketEn cleared and ends with PacketEn set does not send out a TIP or update 

the TNT buffer. A RET that starts with PacketEn set and ends with PacketEn cleared does sent out the 

TIP or updates the TNT buffer (depending on whether it matches LAST_CALL_NLIP) 

An indirect jump that starts with PacketEn cleared and ends with PacketEn set does not send out a TIP 

packet. An indirect jump that starts with PacketEn set and ends with PacketEn cleared does send out a 

TIP packet. 

A far transfer that starts with PacketEn cleared and ends with PacketEn set does not send out a 

FUP.FAR or a TIP packet. A far transfer that starts with PacketEn set and ends with PacketEn cleared 

does send out a TIP packet (although the FUP.FAR is likely combined with the needed FUP.PGD 
packet). 
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A CALL that starts with PacketEn cleared and ends with PacketEn set does not update 

LAST_CALL_NLIP. A CALL that starts with PacketEn set and ends with PacketEn cleared does update 

LAST_CALL_NLIP. 

4.4 Asynchronous Packet Generation 

There are six packet types that are not directly linked to instructions, exceptions, traps, or interrupts.  
The packet layout and complete descriptions can be found in the packet section of this document; 

however, the following table provides a brief description of the six asynchronous packet types. 

Table 20: Asynchronous Packets Descriptions 

Packet Description 

Packet Stream Buffer (PSB) Packet Indicates start of trace, or a synchronization point 

Flow Update Packet (FUP) Sent out when cycle counter overflows 

Sent when turning on packet generation (e.g. where did we 

enter monitored routine) 

Sent when turning off packet generation (e.g. where did we 

leave monitored routine) 

Trace Stop packet Sent when we trigger TraceStop. This turns off RTIT and 
ends packet generation 

Mini Time Counter Packet A small wall-clock time counter that can be used to 

synchronize time between cores 

Super Time Synch packet Sends out the big time counter (40 bits of HW TSC) and 

core/bus ratio when frequency may have changed 

Can be used to synchronize time between cores and tells the 

frequency 

Finally shows when the CPU is waking up out of sleep 
state/STPCLK. (the packet doesn’t specify which sleep state) 
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Appendix A: Programming Examples 

The following section provides examples for a few of the many available RTIT configurations. 
To ensure consistent tracing, configure RTIT prior to enabling it. 

 
Scenario:  The user desires to trace a single, specific user application. 

 
Configuration:   
Set RTIT Control to trace only USER level code. 
Set the Trace LIP addresses to cover the desired application address of interest. 
Set the CR3 match address to the CR3 of the user application. 
 

 

Start tracing: Set Trace_En to enable tracing.   

      
Scenario:  The user desires to trace all applications both user and OS, and activate tracing. 

 

Configuration:   
Set RTIT Control to trace both OS and USER level code. 
 

Start tracing: Set Trace_En to enable tracing.   

 

Scenario:  The user desires to trace OS driver code only. 
Configuration:   

Set RTIT Control to trace OS level code and activate tracing. 
Set the Filter En address to the desired driver’s address of interest. 

 

Start tracing: Set Trace_En to enable tracing.    
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Appendix B: Operation Consideration 

4.1 Sleep states 

4.1.1 C1/Halt/Shutdown sleep state 

During the C1, halt and shutdown sleep states: 
 The cycle counter will stop counting. 
 MiniTime counter packets will not be issued. 
 The RTIT buffer will stop draining to memory. 

 An STS packet will be sent on waking up from C1, halt, and shutdown sleep states. 

4.1.2 C2 sleep state 

During the C2 sleep state: 
 The cycle counter will stop counting. 
 MiniTime counter packets will not be issued. 
 The RTIT buffer will stop draining to memory. 
 An STS packet will be sent on waking up from C2 sleep state. 

4.1.3 C4 sleep state 

During the C4 sleep state: 
 The cycle counter will stop counting. 
 MiniTime counter packets will not be sent. 
 The RTIT buffer will be fully drained before entering C4 state. 

 All of the above will happen for a brief time even if there is a C4 abort and sleep state is not 
truly entered. 

 An STS packet will be sent on waking up from C4 sleep state. 

4.1.4 C6 and S0i1/S0i2/S0i3 sleep state 

During the C6 (or S0i1 or S0i2 or S0i3) sleep state: 
 The cycle counter will stop counting. 
 MiniTime counter packets will not be sent. 
 The RTIT buffer will be fully drained before entering the sleep state. 

 All of the above will happen for a brief time even if there is an abort and the sleep state is not 
truly entered. 

 An STS packet will be sent on waking up from C6 or S0i1 or S0i2 or S0i3 sleep states. 

4.2 Re-Enabling RTIT 

The sequence of steps required to enable RTIT after the initial configuration or to re-
enable RTIT after a TraceStop packet is received will depend on the intended tracing 

configuration. 

4.2.1 Re-Enabling with Same Configuration 

1. Clear FilterEn and BuffOvf through RTIT_STATUS_MSR (see Section  3.3.2) 
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2. Reset RTIT_TNT_BUFF MSR using it’s reset value(see Section 3.3.13) 
3. Optionally Reset the following MSRs using their corresponding reset values 

a. RTIT_CNTP MSR (see Section 3.3.4) 
b. RTIT_LAST_LIP MSR (see Section 3.3.7) 
c. RTIT_LAST_CALL_NLIP MSR (see Section 3.3.14) 

4.2.2 Re-Enabling with Different Output Region 

In addition to the steps in section 4.2.1, if the output region will be changed or if the 
STM/PTI block was reinitialized (e.g. by an earlier TraceStop closing the file handle) 
then the RTIT_OFFSET MSR will need to be initialized (see Section 3.3.12). 

If the output region is a new memory location, then RTIT_BASEADDR MSR and 

RTIT_LIMIT_MASK MSR will need to be updated (see Sections 3.3.10 and 3.3.11 
respectively). 

4.2.3 Re-Enabling with Different Traced Region 

In addition to the steps in section 4.2.1, if the trace coverage will be changed then the 

RTIT_EVENTS MSR and the RTIT_LIP0-3 MSRs will need to be initialized appropriately 
(see Sections 3.3.5 and 0 respectively). 

It may also be necessary to update the RTIT_CTL MSR and the RTIT_CR3_MATCH MSR 
(see Sections 3.3.2 and 3.3.8 respectively) depending on the new trace coverage 

requirements. 
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Appendix C: Background and Related 

Processor Mechanisms 

4.3 Existing debug and performance monitoring 

The following are a list of available debug and monitoring features in Intel® Atom™ processors. 

 Break point 

 LBR/LER 

 Performance monitoring/PEBS 
 DS for BTS/PEBS 

Those features are compared with real time trace in the following sections. 

4.4 Break point 

There are 4 sets of debug break point registers, which are stored in 64b MSR DR0 through DR3.  
Depending on configuration bits R/W0 though R/W1 in MSR DR7, the following are the possible 
actions: 

 00 — Break on instruction execution only. 

 01 — Break on data writes only. 
 10 — Break on I/O reads or writes. 
 11 — Break on data reads or writes but not instruction fetches.  

After the break point trigger, a fault is raised for instruction break point, and a trap is raised for data 

and I/O access. 

4.5 LBR/LER 

After branch instruction retired, or after exception, the FROM and TO information of the LIP is 
collected in a buffer.  This buffer can be drained out of system bus or into the memory with processor 

support. 

Real time trace leverages extensively the LBR/LER buffer with regard to the indirect jump.  The target 
destination LIP will be carried out in branch address packet.  But real time trace does not just output 
the raw LIP, as stored in LBR.  The MSBs that do not change from previous LIP packet will be 

suppressed, and MSBs of zero will also be suppressed.   

For direct jump where TO Lip is readily available from the assembly code, a simple TAKEN or NOT 

TAKEN bit is sent by real time trace to indicate the program flow, and up to 6 T/NT bits can be packed 
in a single byte of trace packet.   

Except for the branch prediction, real time trace covers all the information in LBR/LER, with efficiency 

greatly improved by compression. 

The draining of the buffer is discussed in BTS/DS section. 
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4.6 Performance monitoring/PEBS 

There are architecturally defined performance counters to monitor events such as: 

 Unhalted Core Cycles 
 Instruction Retired  
 Unhalted Reference Cycles  
 LLC Reference  
 LLC Misses  

 Branch Instruction Retired  
 Branch Misses Retired 

And PEBS counts more precise events such as how many load retired that missed L1. 

Real time trace is different in the following: 

 Real time trace counts events at instruction level. i.e., how many times the instruction in 
certain LIP is executed.  This event can be used as enabling events for counter.  As counters in 

real time trace are fully programmable, it is easily concatenated for larger capacity. 

 Real time trace provide cycle accurate mode, so that the exact flow and timing of the program 
is available. 

4.7 DS for BTS/PEBS 

DS is the way to write LBR and performance counters into memory. IA32_DS_AREA MSR holds the LIP 

to DS buffer management area.   

 DS save area is within kernel space, and can be larger than a page and can straddle page 

boundaries. 

 DS buffer management area contains buffer base to BTS/PEBS, along with index, max IP, 
threshold and other information 

 Based on the buffer base and index, BTS/PEBS can be written into appropriate part of the 

memory. 

 The BTS/PEBS write can be configured so that if the threshold is cross, an exception is raised. 

Based on the way how DS storage is managed, the processor first has to fetch the buffer management 

information from DS save area and then store the buffer.  This is a cycle-consuming process.   

4.8 CR3 States 

CR3 is the control register by which the memory paging is managed.  This register can be loaded with 

MOV instruction.   

X86 supports 3 paging modes: 

 32-bit 
 PAE 
 IA-32e 

For 32-bit mode, the following fields of CR3 are used: 

 Bit 3: PWT 
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 Bit 4: PCD 
 Bit [31:12]: Page directory address 

For PAE mode, the following fields of CR3 are used: 

 Bit [31:5]: Address of page-directory-pointer table 

 
For IA-32E mode, the following fields of CR3 are used: 

 Bit 3: PWT 
 Bit 4: PCD 
 Bit [`MAXPHYADDR-1:12]:  physical address to PML4 table 

4.9 Virtual Machine Extension 

VMX refers to Virtual Machine EXtension, which supports processor virtualization for multiple software 

environments. 

The following instructions to enter VM mode will affect the programming flow: 

 VMCALL 
 VMRESUME 
 VMLAUNCH 
 VMEXIT – (VMX exits can be caused by either an exception or event) 
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Appendix D: Glossary and Reference 

4.10 Glossary 

The document uses the terms listed in the following table. 

Table 21: Glossary 

Term Definition 

Last Branch 

Record (LBR) 

Debug feature that stores last branch information in a hardware stack, 

see SDM 

Branch Trace 
Store (BTS) 

Debug mode that stores branch information to memory, see SDM 

Model-Specific 
Registers (MSR) 

Control registers used to enable and disable certain features of the 
processor implementation. 

Tangier (TNG) LPIA SOC based on Silvermont core 

MIPI Mobile Industry Processor Interface 

PTI MIPI Parallel Trace Interface 

LIP Linear Instruction Pointer 

NLIP Next LIP. This is the same as current LIP + instruction length 

BLIP Branch LIP. This is the target of the branch, or event handler address 
for exceptions/interrupts 

CPL Current Privilege Level, see SDM 

CR3 Control Registers to the head of the page tables. See SDM 

Trigger_Start Event that causes entrance to the TriggerEnable mode. 

Trigger_Stop Event that causes an exit from the TriggerEnable mode, and generally 
disables RTIT functionality. 

Filter_Event Event that enables the Packet Enable region, which starts packet 
generation 

ContextEn In the correct mode to be tracing. E.g. right CPL, CR3 value, SMM, 
VMM, etc. 

TriggerEn RTIT is enabled (not de-featured) and we have seen the start trigger 

condition, but not the stop trigger condition 

PacketEn The context and trigger enables are set and the filter tells us that we 

should be sending out packets.  
Most packets are only sent out when PacketEn is set. 

Packet Stream 
Boundary (PSB) 

RTIT output packet that is used to help a trace reader find packet start 
edge  
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TNT Packet RTIT packet that contains taken/not-taken info for direct, conditional 
branches 

Flow Update 

Packet 

RTIT packet that contains the “from” address for far transfers, as well 

as when entering/leaving packet enable mode 

Target IP Packet RTIT packet that contains the target of a branch, sent out on indirect 
branches 

Change of Flow 
(COFI) 

X86 instruction or event that causes a program flow change, e.g. 
Branches, exceptions, interrupts. 

Direct Transfer 
COFI 

X86 branch whose target is embedded in the instruction bytes. These 
are not traced by RTIT, as only conditional branches are traced. 

Indirect Transfer 

COFI 

X86 branches whose targets are in a register or memory location, 

which requires the trace to contain the branch target to track program 
flow. 

Far Transfer 
COFI 

Far jumps, interrupts, exceptions that use signal_event_jump Uop. 
Both the “from” and “to” address are required to track program flow 
for interrupts/exceptions.  

Big Time 
Counter (BTC) 

[31:0] of BNL_CR_TSC creg (this is not the exact same as the 
IA32_CR_TSC MSR that software observes) 

Mini Time 
Counter (MTC) 

[13:6] of BNL_CR_TSC creg (this is not the exact same as the 
IA32_CR_TSC MSR that software observes) 

Super TC packet Packet with BTC and frequency info sent on Silvermont frequency 
changes 

Mini TC packet Packet with MTC sent based on an MTC mask MSR 

Event resource Hardware resources used to generate events, ex. Address 

comparators. 

Event definition Boolean combinations of Event Resources used to generate events, ex. 

Trigger_Start 

Cycle Accurate 
Mode 

Mode in which the cycle count is appended to RTIT packets. Used for 
performance analysis. 
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4.11 Reference Documents 

Table 22: References 

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic 
Architecture 

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2A/2B: 
Instruction Set Reference 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A/3B: System 

Programming Guide 

All Software Developer Manuals (SDM) are available at: 

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html 

 

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
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Appendix E: Errata 

E1 RTIT Trace May Contain FUP.FAR Packet With Incorrect Address 

Problem: The FUP.FAR (Flow Update Packet for Far Transfer) generated by RTIT (Real 

Time Instruction Trace) on a far transfer instruction should contain the linear 

address of the first byte of the next sequential instruction after the far transfer 

instruction. Due to this erratum, far transfer instructions with more than 3 

prefixes may incorrectly include an address between the first byte of the far 

transfer instruction and the last byte of the far transfer instruction. 

Implication: The RTIT Trace decoder may incorrectly decode the trace due to an incorrect 

address in the FUP packet.  

Workaround: The RTIT trace decoder can identify a FUP.FAR in the middle of a far transfer 

instruction and treat that FUP.FAR as if it was coming from the first byte of the 

following sequential instruction. 

Status: No fix 

E2 Extra RTIT FUP.PGD Packets Can Result From Use Of IP Filtering Or 
TraceStop 

Problem: When this erratum occurs, the RTIT (Real Time Instruction Trace) output will 

contain extra FUP.PGD (Flow Update Packet, Packet Generation Disabled) 

packets.  An instruction execution or event under the following conditions may 

produce an extra FUP.PGD packet: 

1. PacketEn (an internal enable signal computed by ANDing the TriggerEn [bit 

2], ContextEn [bit 1], and FilterEn [bit 0] fields in the RTIT_STATUS MSR 

[769H]) is 0 both before and after the instruction or event, 

2. And either 

a. The instruction or event causes RTIT_STATUS.FilterEn to change from 

1 to 0, or 

b. The instruction or event causes RTIT_CTL.TraceActive (MSR 768H) to 

be cleared by a TraceStop condition. 

3. And either 

a. The instruction or event causes RTIT_STATUS.ContextEn to change 

from 0 to 1, or 

b. The instruction is a WRMSR that sets both RTIT_CTL.Trace_En and 

the RTIT_CTL.TraceActive to 1, with one or both of those bits having 

been 0 before the WRMSR instruction. 

Implication: The RTIT Trace decoder may incorrectly decode the trace due to an 

unexpected FUP.PGD packet.  

Workaround: The RTIT trace decoder can identify and ignore extra FUP.PGD packets by 

ignoring any FUP.PGD that follows another FUP.PGD, without an intervening 

FUP.PGE (Flow Update Packet, Packet Generation Enabled). 
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Status: No fix 

 

E3 RTIT May Delay The PSB By One Packet 

Problem: After an RTIT (Real Time Instruction Trace) packet that exceeds the limit 

specified by Pkt_Mask in RTIT_PKT_CNT (MSR 77Ch) bits [17:16], the PSB 

(Packet Stream Boundary) packet should be sent immediately. Due to this 

erratum, the PSB packet may be delayed by one packet. 

Implication: The PSB packet may be delayed by one packet.  

Workaround:    None identified. 

Status: No fix 

 

E4 RTIT TraceStop Condition Detected During Buffer Overflow May Not Clear 
TraceActive 

Problem: If an RTIT (Real Time Instruction Trace) TraceStop condition is detected while 

RTIT_STATUS.Buffer_Overflow MSR (769H) bit 3 is set, the processor may not 

clear RTIT_CTL.TraceActive MSR (768H) bit 13, and tracing will continue after 

the overflow resolves. Such a case will be evident if the TraceStop packet is 

inserted before overflow is resolved, as indicated by the FUP.BuffOvf (Flow 

Update Packet for Buffer Overflow) packet. 

Implication: The RTIT trace will continue tracing beyond the intended stop point.  

Workaround:    None identified. 

Status: No fix 

 

E5 RTIT FUP.BuffOvf Packet May Be Incorrectly Followed By A TIP Packet 

Problem: When RTIT (Real Time Instruction Trace) suffers an internal buffer overflow, 

packet generation stops temporarily, after which a FUP.BuffOvf (Flow Update 

Packet for Buffer Overflow) is sent to indicate the LIP that follows the 

instruction upon which tracing resumes. In some cases, however, this packet 

will be immediately followed by a FUP.TIP (Flow Update Packet for Target IP) 

which was generated by a branch instruction that executed during the 

overflow. The IP payload of this FUP.TIP will be the LIP of the instruction upon 

which tracing resumes. 

Implication: The spurious FUP.TIP packet may cause the RTIT trace decoder to fail.  

Workaround:    The RTIT trace decoder should ignore any FUP.TIP packet that immediately 

follows a FUP.BuffOvf whose IP matches the IP payload of the FUP.BuffOvf. 
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Status: No fix 

 

E6 RTIT CYC Packet Payload Values May Be Off By 1 Cycle 

Problem: When RTIT (Real Time Instruction Trace) is enabled with RTIT_CTL.Cyc_Acc 

MSR (768H) bit 1 set to 1, all CYC (Cycle Count) packets have a payload value 

that is one less than the number of cycles that have actually passed. Note that 

for CYC packets with a payload value of 0, the correct value may be 0 or 1. 

Implication: The trace decoder will produce inaccurate performance data when using CYC 

packets to track software performance.  

Workaround:    As a partial workaround, the trace decoder should add 1 to the payload 

value of any CYC packet with a non-zero payload. 

Status: No fix 

 

E7 First MTC Packet After RTIT Enable May Be Incorrect 

Problem: When RTIT (Real Time Instruction Trace) is enabled, indicated by TriggerEn in 

bit 2 of the RTIT_STATUS MSR (769H) transitioning from 0 to 1, the first MTC 

(Mini Time Counter) packet may be sent at the wrong time. 

Implication: The RTIT trace decoder will make incorrect assumptions about the TSC value 

based on an asynchronous MTC packet.  

Workaround:    The RTIT trace decoder should ignore the first MTC that follows trace 

enabling. 

Status: No fix 

 


