
Revision: 1.0
Order Number: D51397-002

Intel® Virtualization Technology for
Directed I/O
Architecture Specification

May 2007

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
2 Order Number: D51397-002

Legal Lines and DisclaimersCopyright © 2007, Intel Corporation. All Rights Reserved.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may
contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

This document contains information on products in the design phase of development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications
enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for
more information.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

http://www.intel.com

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 3

Contents—Intel® Virtualization Technology for Directed I/O

Contents

1 Introduction
1.1 Audience.. 2-9
1.2 Glossary .. 2-10
1.3 References ... 2-10

2 Overview
2.1 Intel® Virtualization Technology Overview .. 3-12
2.2 VMM and Virtual Machines .. 3-12
2.3 Hardware Support for Processor Virtualization ... 3-12
2.4 I/O Virtualization... 3-13
2.5 Intel® Virtualization Technology For Directed I/O Overview................................. 3-13

2.5.1 Hardware Support for DMA Remapping... 3-14
2.5.1.1 OS Usages of DMA Remapping... 3-14
2.5.1.2 VMM Usages of DMA Remapping .. 3-15
2.5.1.3 DMA Remapping Usages by Guests... 3-15
2.5.1.4 Interaction with Processor Virtualization.................................... 3-16

2.5.2 Hardware Support for Interrupt Remapping .. 3-17
2.5.2.1 Interrupt Isolation ... 3-17
2.5.2.2 Interrupt Migration... 3-17

3 DMA Remapping
3.1 Domains and Address Translation .. 4-18
3.2 Remapping Hardware - Software View.. 4-19
3.3 Mapping Devices to Domains .. 4-19

3.3.1 Source Identifier ... 4-20
3.3.2 Root-Entry ... 4-20
3.3.3 Context-Entry ... 4-21

3.3.3.1 Context Caching .. 4-22
3.4 Address Translation ... 4-22

3.4.1 Multi-Level Page Table ... 4-22
3.4.2 Adjusted Guest Address Width (AGAW) .. 4-24
3.4.3 Multi-level Page Table Translation.. 4-24
3.4.4 I/O Translation Lookaside Buffer (IOTLB).. 4-25

3.5 DMA Remapping Fault Conditions .. 4-25
3.5.1 Hardware Handling of Faulting DMA Requests.. 4-25

3.6 DMA Remapping - Usage Considerations... 4-27
3.6.1 Identifying Origination of DMA Requests... 4-27

3.6.1.1 Devices Behind PCI Express to PCI/PCI-X Bridges....................... 4-27
3.6.1.2 Devices Behind Conventional PCI Bridges 4-27
3.6.1.3 Root-Complex Integrated Devices .. 4-27
3.6.1.4 PCI Express Devices Using Phantom Functions 4-27

3.6.2 Handling DMA Requests Crossing Page Boundaries................................... 4-28
3.6.3 Handling of Zero-Length Reads ... 4-28
3.6.4 Handling DMA to Reserved System Memory .. 4-28
3.6.5 Root-Complex Peer to Peer Considerations.. 4-29
3.6.6 Handling of Isochronous DMA ... 4-29

4 Support For Device-IOTLBs
4.1 Hardware Handling of ATS.. 5-31

4.1.1 Handling of ATS Protocol Errors... 5-31
4.1.2 Root Port Handling of ATS .. 5-32
4.1.3 Handling of ATS When Remapping Hardware Disabled 5-32
4.1.4 Handling of Translation Requests... 5-32

Intel® Virtualization Technology for Directed I/O—Contents

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
4 Order Number: D51397-002

4.1.4.1 Translation Requests for Multiple Translations5-34
4.1.5 Handling of Translated Requests ..5-34

4.2 Handling of Device-IOTLB Invalidations... 5-35

5 Interrupt Remapping
5.1 Overview.. 6-37
5.2 Identifying Origination of Interrupt Requests ... 6-37
5.3 Interrupt Processing On Intel®64 Platforms .. 6-39

5.3.1 Interrupt Requests in Intel®64 Compatibility Format................................6-39
5.3.2 Interrupt Requests in Remappable Format ..6-40

5.3.2.1 Interrupt Remapping Table ..6-41
5.3.3 Overview of Interrupt Remapping On Intel®64 Platforms..........................6-41

5.3.3.1 Interrupt Remapping Fault Conditions6-42
5.4 Interrupt Requests on ItaniumTM Platforms... 6-43
5.5 Programming Interrupt Sources To Generate Remappable Interrupts 6-44

5.5.1 I/OxAPIC Programming ..6-44
5.5.2 MSI and MSI-X Register Programming ..6-45

5.6 Remapping Hardware - Interrupt Programming.. 6-46
5.6.1 Programming on Intel®64 Platforms...6-46
5.6.2 Programming on ItaniumTM Platforms...6-47

5.7 Handling of Platform Events .. 6-47

6 Hardware Caching Details
6.1 Caching Mode.. 7-49

6.1.1 Context Caching ..7-49
6.1.2 IOTLB Caching ..7-50
6.1.3 Page Directory Entry (PDE) Caching ...7-50
6.1.4 Interrupt Entry Caching ..7-50

6.2 Cache Invalidations.. 7-51
6.2.1 Register Based Invalidation Interface ...7-51

6.2.1.1 Context Command Register: ..7-51
6.2.1.2 IOTLB Invalidation Registers ..7-51

6.2.2 Queued Invalidation Interface ...7-52
6.2.2.1 Context Cache Invalidate Descriptor ...7-53
6.2.2.2 IOTLB Invalidate Descriptor ...7-54
6.2.2.3 Device-IOTLB Invalidate Descriptor...7-55
6.2.2.4 Interrupt Entry Cache Invalidate Descriptor7-56
6.2.2.5 Invalidation Wait Descriptor...7-57
6.2.2.6 Hardware Generation of Invalidation Completion Events7-57
6.2.2.7 Hardware Handling of Queued Invalidation Interface Errors..........7-58
6.2.2.8 Queued Invalidation Ordering Considerations7-58

6.3 DMA Draining.. 7-59
6.4 Interrupt Draining.. 7-60

7 Hardware Fault Handling Details
7.1 Fault Categories .. 8-61
7.2 Fault Logging .. 8-61

7.2.1 Primary Fault Logging ..8-61
7.2.2 Advanced Fault Logging..8-62

7.3 Fault Reporting.. 8-63

8 BIOS Considerations
8.1 DMA Remapping Reporting Structure.. 9-65
8.2 Remapping Structure Types .. 9-66
8.3 DMA Remapping Hardware Unit Definition Structure ... 9-67

8.3.1 Device Scope Structure ..9-68
8.3.1.1 Reporting Scope for I/OxAPICs...9-70

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 5

Contents—Intel® Virtualization Technology for Directed I/O

8.3.1.2 Reporting Scope for MSI Capable HPET Device........................... 9-70
8.3.1.3 Device Scope Example.. 9-70

8.4 Reserved Memory Region Reporting Structure... 9-72
8.5 Root Port ATS Capability Reporting Structure .. 9-73

9 Translation Structure Formats
9.1 Root-entry ... 10-74
9.2 Context-entry ... 10-76
9.3 Page-Table Entry... 10-79
9.4 Fault Record ... 10-82
9.5 Interrupt Remapping Table Entry (IRTE)... 10-84

10 Register Descriptions
10.1 Register Location .. 11-89
10.2 Software Access to Registers .. 11-89
10.3 Register Attributes .. 11-90
10.4 Register Descriptions ... 11-91

10.4.1 Version Register.. 11-93
10.4.2 Capability Register .. 11-94
10.4.3 Extended Capability Register... 11-98
10.4.4 Global Command Register ...11-100
10.4.5 Global Status Register...11-105
10.4.6 Root-Entry Table Address Register..11-107
10.4.7 Context Command Register ...11-108
10.4.8 IOTLB Invalidation Registers ..11-111

10.4.8.1 IOTLB Invalidate Register ..11-112
10.4.8.2 Invalidate Address Register ..11-115

10.4.9 Fault Status Register ..11-117
10.4.10Fault Event Control Register ..11-119
10.4.11Fault Event Data Register ..11-121
10.4.12Fault Event Address Register ...11-122
10.4.13Fault Event Upper Address Register ..11-123
10.4.14Fault Recording Registers [n] ...11-124
10.4.15Advanced Fault Log Register ..11-126
10.4.16Protected Memory Enable Register..11-127
10.4.17Protected Low-Memory Base Register..11-129
10.4.18Protected Low-Memory Limit Register ...11-130
10.4.19Protected High-Memory Base Register...11-131
10.4.20Protected High-Memory Limit Register...11-132
10.4.21Invalidation Queue Head Register...11-133
10.4.22Invalidation Queue Tail Register ...11-134
10.4.23Invalidation Queue Address Register ...11-135
10.4.24Invalidation Completion Status Register ..11-136
10.4.25Invalidation Event Control Register ...11-137
10.4.26Invalidation Event Data Register ..11-138
10.4.27Invalidation Event Address Register ..11-139
10.4.28Invalidation Event Upper Address Register...11-140
10.4.29Interrupt Remapping Table Address Register..11-141

11 Programming Considerations
11.1 Write Buffer Flushing .. 12-142
11.2 Set Root Table Pointer Operation.. 12-142
11.3 Context-Entry Programming .. 12-142
11.4 Modifying Root and Context Entries .. 12-143
11.5 Caching Mode Considerations... 12-143
11.6 Serialization Requirements .. 12-143

Intel® Virtualization Technology for Directed I/O—Contents

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
6 Order Number: D51397-002

11.7 Invalidation Considerations ... 12-143
11.8 Sharing Remapping Structures Across Hardware Units 12-144
11.9 Set Interrupt Remapping Table Pointer Operation... 12-144

Figures
Figure 1-1. General Platform Topology ... 2-9
Figure 2-2. Example OS Usage of DMA Remapping ...3-14
Figure 2-3. Example Virtualization Usage of DMA Remapping ...3-15
Figure 2-4. Interaction Between I/O and Processor Virtualization3-16
Figure 3-5. DMA Address Translation ..4-19
Figure 3-6. Requester Identifier Format...4-20
Figure 3-7. Device to Domain Mapping Structures...4-21
Figure 3-8. Example Multi-level Page Table ..4-23
Figure 3-9. Example Multi-level Page Table (with 2MB Super Pages)................................4-23
Figure 5-10. Compatibility Format Interrupt Request...6-39
Figure 5-11. Remappable Format Interrupt Request..6-40
Figure 5-12. Interrupt Requests on ItaniumTM Platforms...6-43
Figure 5-13. I/OxAPIC RTE Programming ..6-44
Figure 5-14. MSI-X Programming ...6-45
Figure 5-15. Remapping Hardware Interrupt Programming on Intel®646-46
Figure 5-16. Remapping Hardware Interrupt Programming on ItaniumTM................................... 6-47

Figure 6-17. Context Cache Invalidate Descriptor ...7-53
Figure 6-18. IOTLB Invalidate Descriptor...7-54
Figure 6-19. Device-IOTLB Invalidate Descriptor ..7-55
Figure 6-20. Interrupt Entry Cache Invalidate Descriptor ...7-56
Figure 6-21. Invalidation Wait Descriptor ..7-57
Figure 8-22. Hypothetical Platform Configuration..9-71
Figure 9-23. Root-Entry Format ...10-74
Figure 9-24. Context-Entry Format ...10-76
Figure 9-25. Page-Table-Entry Format ..10-79
Figure 9-26. Fault-Record Format...10-82
Figure 9-27. Interrupt Remapping Table Entry Format...10-84
Figure 10-28. Version Register ..11-93
Figure 10-29. Capability Register ...11-94
Figure 10-30. Extended Capability Register ...11-98
Figure 10-31. Global Command Register ... 11-100
Figure 10-32. Global Status Register .. 11-105
Figure 10-33. Root-Entry Table Address Register ... 11-107
Figure 10-34. Context Command Register ... 11-108
Figure 10-35. IOTLB Invalidate Register.. 11-112
Figure 10-36. Invalidate Address Register ... 11-115
Figure 10-37. Fault Status Register .. 11-117
Figure 10-38. Fault Event Control Register .. 11-119
Figure 10-39. Fault Event Data Register.. 11-121
Figure 10-40. Fault Event Address Register ... 11-122
Figure 10-41. Fault Event Upper Address Register .. 11-123
Figure 10-42. Fault Recording Register ... 11-124
Figure 10-43. Advanced Fault Log Register.. 11-126
Figure 10-44. Protected Memory Enable Register ... 11-127
Figure 10-45. Protected Low-Memory Base Register ... 11-129
Figure 10-46. Protected Low-Memory Limit Register ... 11-130
Figure 10-47. Protected High-Memory Base Register... 11-131
Figure 10-48. Protected High-Memory Limit Register .. 11-132

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 7

Contents—Intel® Virtualization Technology for Directed I/O

Figure 10-49. Invalidation Queue Head Register ...11-133
Figure 10-50. Invalidation Queue Tail Register ...11-134
Figure 10-51. Invalidation Queue Address Register ...11-135
Figure 10-52. Invalidation Completion Status Register...11-136
Figure 10-53. Invalidation Event Control Register ...11-137
Figure 10-54. Invalidation Event Data Register...11-138
Figure 10-55. Invalidation Event Address Register ..11-139
Figure 10-56. Invalidation Event Upper Address Register ...11-140
Figure 10-57. Interrupt Remapping Table Address Register ..11-141

Tables
Table 1. Glossary... 2-10
Table 2. References ... 2-11
Table 3. Unsuccessful DMA requests... 4-26
Table 4. Unsuccessful Translation Requests ... 5-33
Table 5. Successful Translation Requests .. 5-34
Table 6. Unsuccessful Translated Requests.. 5-35
Table 7. Address Fields in Remappable Interrupt Request Format 6-40
Table 8. Data Fields in Remappable Interrupt Request Format 6-41
Table 9. Interrupt Remapping Fault Conditions .. 6-42
Table 10. Index Mask Programming ... 7-56

Intel® Virtualization Technology for Directed I/O—Revision History

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
8 Order Number: D51397-002

Revision History

Date Revision Description

March 2006 Draft Preliminary Specification

May 2007 1.0 1.0 Specification

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 9

Introduction—Intel® Virtualization Technology for Directed I/O

1 Introduction

This document describes the Intel® Virtualization Technology for Directed I/O (“Intel® VT for Directed
I/O”); specifically, it describes the components supporting I/O virtualization as it applies to platforms
that use Intel® processors and core logic chipsets complying with Intel® platform specifications.

Figure 1-1 illustrates the general platform topology.

The document includes the following topics:

• An overview of I/O subsystem hardware functions for virtualization support

• A brief overview of expected usages of the generalized hardware functions

• The theory of operation of hardware, including the programming interface

The following topics are not covered (or are covered in a limited context):

• Intel® Virtualization Technology for Intel®64 Architecture. For more information, refer to the
“Intel® 64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide”.

• Intel® Virtualization Technology for Intel® Itanium® Architecture. For more information, refer to
the “Intel® Itanium® Architecture software developer's manuals”.

1.1 Audience

This document is aimed at hardware designers developing Intel platforms or core-logic providing
hardware support for virtualization. The document is also expected to be used by operating system
and virtual machine monitor (VMM) developers utilizing the I/O virtualization hardware functions.

Figure 1-1. General Platform Topology

P rocessor

S ystem B us

N orth B ridge

S outh
B ridge

D R A M

P rocessor

P C I E xpress
D evices

P C I, LP C ,
Legacy dev ices

In tegra ted
D ev ices

D M A R em apping

Intel® Virtualization Technology for Directed I/O—Introduction

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
10 Order Number: D51397-002

1.2 Glossary

The document uses the terms listed in the following table.

1.3 References

For related information, see the documents listed in the following table.

Table 1. Glossary

Term Definition

Chipset /
Root-
Complex

Refers to one or more hardware components that connect processor complexes to the
I/O and memory subsystems. The chipset may include a variety of integrated devices.

Context A hardware representation of state that identifies a device and the domain to which the
device is assigned.

Context
Cache Remapping hardware cache that stores device to domain mappings

DMA
Remapping The act of translating the address in a DMA request to a host physical address (HPA).

Domain A collection of physical, logical, or virtual resources that are allocated to work together.
Used as a generic term for virtual machines, partitions, etc.

DVA DMA Virtual Address: a virtual address in a DMA request. For certain virtualization
usages of remapping, DVA can be the Guest Physical Address (GPA).

GAW Guest Address Width: the DMA virtual addressability limit for a Guest partition.

GPA Guest Physical Address: the view of physical memory from software running in a
partition. GPA is used in this document as an example of DVA.

Guest Software running within a virtual machine environment (partition).

HAW Host Address Width: the DMA physical addressability limit for a platform.

HPA Host Physical Address.

IEC Interrupt Entry Cache: A translation cache in remapping hardware unit that caches
frequently used interrupt-remapping table entries.

IOTLB I/O Translation Lookaside Buffer: an address translation cache in remapping hardware
unit that caches effective translations from DVA (GPA) to HPA.

I/OxAPIC I/O Advanced Programmable Interrupt Controller

Interrupt
Remapping The act of translating an interrupt request before it is delivered to the CPU complex.

MGAW Maximum Guest Address Width: the maximum DMA virtual addressability supported by a
remapping hardware implementation.

MSI Message Signalled Interrupts.

PDE Cache
Page Directory Entry cache: address translation caches in a remapping hardware unit
that caches page directory entries at the various page-directory levels. Also referred to
as non-leaf caches in this document.

Source ID
A 16-bit identification number to identify the source of a DMA or interrupt request. For
PCI family devices this is the ‘Requester ID’ which consists of PCI Bus number, Device
number, and Function number.

VMM Virtual Machine Monitor: a software layer that controls virtualization. Also referred to as
hypervisor in this document.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 11

Introduction—Intel® Virtualization Technology for Directed I/O

Table 2. References

Description

Intel®64 Architecture Software Developer's Manuals
http://www.intel.com/products/processor/manuals/index.htm

PCI Express* Base Specifications
http://www.pcisig.com/specifications/pciexpress

PCI Express Address Translation Services Specification, Revision 1.0
http://www.pcisig.com/specifications/iov

PCI Express Alternative Routing-ID Interpretation (ARI) ECN
http://www.pcisig.com/specifications/pciexpress

ACPI Specification
http://www.acpi.info/

PCI Express to PCI/PCI-X Bridge Specification, Revision 1.0
http://www.pcisig.com/specifications/pciexpress/bridge

http://www.intel.com/products/processor/manuals/index.htm

Intel® Virtualization Technology for Directed I/O—Overview

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
12 Order Number: D51397-002

2 Overview

This chapter provides a brief overview of Intel® VT, the virtualization software ecosystem it enables,
and hardware support offered for processor and I/O virtualization.

2.1 Intel® Virtualization Technology Overview

Intel® VT consists of technology components that support virtualization of platforms based on Intel
processors, thereby enabling the running of multiple operating systems and applications in
independent partitions. Each partition behaves like a virtual machine (VM) and provides isolation and
protection across partitions. This hardware-based virtualization solution, along with virtualization
software, enables multiple usages such as server consolidation, activity partitioning, workload
isolation, embedded management, legacy software migration, and disaster recovery.

2.2 VMM and Virtual Machines

Intel® VT supports virtual machine architectures comprised of two principal classes of software:

• Virtual-Machine Monitor (VMM): A VMM acts as a host and has full control of the processor(s)
and other platform hardware. VMM presents guest software (see below) with an abstraction of a
virtual processor and allows it to execute directly on a logical processor. A VMM is able to retain
selective control of processor resources, physical memory, interrupt management, and I/O.

• Guest Software: Each virtual machine is a guest software environment that supports a stack
consisting of an operating system (OS) and application software. Each operates independently of
other virtual machines and uses the same interface to processor(s), memory, storage, graphics,
and I/O provided by a physical platform. The software stack acts as if it were running on a
platform with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

The VMM is a key component of the platform infrastructure in virtualization usages. Intel® VT can
improve the reliability and supportability of virtualization infrastructure software with programming
interfaces to virtualize processor hardware. It also provides a foundation for additional virtualization
support for other hardware components in the platform.

2.3 Hardware Support for Processor Virtualization

Hardware support for processor virtualization enables simple, robust and reliable VMM software. VMM
software relies on hardware support on operational details for the handling of events, exceptions, and
resources allocated to virtual machines.

Intel® VT provides hardware support for processor virtualization. For Intel®64 processors, this
support consists of a set of virtual-machine extensions (VMX) that support virtualization of processor
hardware for multiple software environments by using virtual machines. An equivalent architecture is
defined for processor virtualization of the Intel® Itanium® architecture.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 13

Overview—Intel® Virtualization Technology for Directed I/O

2.4 I/O Virtualization

A VMM must support virtualization of I/O requests from guest software. I/O virtualization may be
supported by a VMM through any of the following models:

• Emulation: A VMM may expose a virtual device to guest software by emulating an existing
(legacy) I/O device. VMM emulates the functionality of the I/O device in software over whatever
physical devices are available on the physical platform. I/O virtualization through emulation
provides good compatibility (by allowing existing device drivers to run within a guest), but pose
limitations with performance and functionality.

• New Software Interfaces: This model is similar to I/O emulation, but instead of emulating legacy
devices, VMM software exposes a synthetic device interface to guest software. The synthetic
device interface is defined to be virtualization-friendly to enable efficient virtualization compared
to the overhead associated with I/O emulation. This model provides improved performance over
emulation, but has reduced compatibility (due to the need for specialized guest software or
drivers utilizing the new software interfaces).

• Assignment: A VMM may directly assign the physical I/O devices to VMs. In this model, the driver
for an assigned I/O device runs in the VM to which it is assigned and is allowed to interact directly
with the device hardware with minimal or no VMM involvement. Robust I/O assignment requires
additional hardware support to ensure the assigned device accesses are isolated and restricted to
resources owned by the assigned partition. The I/O assignment model may also be used to create
one or more I/O container partitions that support emulation or software interfaces for virtualizing
I/O requests from other guests. The I/O-container-based approach removes the need for running
the physical device drivers as part of VMM privileged software.

• I/O Device Sharing: In this model, which is an extension to the I/O assignment model, an I/O
device supports multiple functional interfaces, each of which may be independently assigned to a
VM. The device hardware itself is capable of accepting multiple I/O requests through any of these
functional interfaces and processing them utilizing the device's hardware resources.

Depending on the usage requirements, a VMM may support any of the above models for I/O
virtualization. For example, I/O emulation may be best suited for virtualizing legacy devices. I/O
assignment may provide the best performance when hosting I/O-intensive workloads in a guest.
Using new software interfaces makes a trade-off between compatibility and performance, and device
I/O sharing provides more virtual devices than the number of physical devices in the platform.

2.5 Intel® Virtualization Technology For Directed I/O
Overview

A general requirement for all of above I/O virtualization models is the ability to isolate and restrict
device accesses to the resources owned by the partition managing the device. Intel® VT for Directed
I/O provides VMM software with the following capabilities:

• I/O device assignment: for flexibly assigning I/O devices to VMs and extending the protection and
isolation properties of VMs for I/O operations.

• DMA remapping: for supporting independent address translations for Direct Memory Accesses
(DMA) from devices.

• Interrupt remapping: for supporting isolation and routing of interrupts from devices and external
interrupt controllers to appropriate VMs.

• Reliability: for recording and reporting to system software DMA and interrupt errors that may
otherwise corrupt memory or impact VM isolation.

Intel® Virtualization Technology for Directed I/O—Overview

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
14 Order Number: D51397-002

2.5.1 Hardware Support for DMA Remapping

To generalize I/O virtualization and make it applicable to different processor architectures and
operating systems, this document refers to domains as abstract isolated environments in the platform
to which a subset of host physical memory is allocated.

DMA remapping provides hardware support for isolation of device accesses to memory, and enables
each device in the system to be assigned to a specific domain through a distinct set of I/O page
tables. When the device attempts to access system memory, the DMA-remapping hardware intercepts
the access and utilizes the I/O page tables to determine whether the access can be permitted; it also
determines the actual location to access. Frequently used I/O page table structures can be cached in
hardware. The DMA remapping can be configured independently for each device, or collectively across
multiple devices.

2.5.1.1 OS Usages of DMA Remapping

There are several ways in which operating systems can use DMA remapping:

• OS Protection: An OS may define a domain containing its critical code and data structures, and
restrict access to this domain from all I/O devices in the system. This allows the OS to limit
erroneous or unintended corruption of its data and code through incorrect programming of
devices by device drivers, thereby improving OS robustness and reliability.

• Feature Support: An OS may use domains to better manage DMA from legacy devices to high
memory (For example, 32-bit PCI devices accessing memory above 4GB). This is achieved by
programming the I/O page-tables to remap DMA from these devices to high memory. Without
such support, software must resort to data copying through OS “bounce buffers”.

• DMA Isolation: An OS may manage I/O by creating multiple domains and assigning one or more
I/O devices to each domain. Each device-driver explicitly registers its I/O buffers with the OS, and
the OS assigns these I/O buffers to specific domains, using hardware to enforce DMA domain
protection. See Figure 2-2.

Figure 2-2. Example OS Usage of DMA Remapping

Device A

Driver A
I/O Buffers

System Memory

Device B

Driver B
I/O Buffers

Driver B
I/O Buffers

Driver A
I/O Buffers

DMA-Remapping Hardware

System Memory

Device DMA isolated using DMA remapping hardware

Domain 1 Domain 2

I/O Devices
Device DMA without isolation

OS Code &
Data

I/O BuffersI/O Buffers

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 15

Overview—Intel® Virtualization Technology for Directed I/O

2.5.1.2 VMM Usages of DMA Remapping

The limitations of software-only methods for I/O virtualization can be improved through direct
assignment of I/O devices to partitions. With this approach, the driver for an assigned I/O device runs
only in the partition to which it is assigned and is allowed to interact directly with the device hardware
with minimal or no VMM involvement. The hardware support for DMA remapping enables this direct
device assignment without device-specific knowledge in the VMM. See Figure 2-3.

In this model, the VMM restricts itself to enabling direct assignment of devices to their partitions.
Rather than invoking the VMM for all I/O requests from a partition, the VMM is invoked only when
guest software accesses protected resources (such as configuration accesses, interrupt management,
etc.) that impact system functionality and isolation.

To support direct assignment of I/O devices, a VMM must enforce isolation of DMA requests. I/O
devices can be assigned to domains, and the DMA-remapping hardware can be used to restrict DMA
from an I/O device to the physical memory presently owned by its domain. For domains that may be
relocated in physical memory, the DMA-remapping hardware can be programmed to perform the
necessary translation.

I/O device assignment allows other I/O sharing usages — for example, assigning an I/O device to an
I/O partition that provides I/O services to other user partitions. DMA-remapping hardware enables
virtualization software to choose the right combination of device assignment and software-based
methods for I/O virtualization.

2.5.1.3 DMA Remapping Usages by Guests

A guest OS running in a VM may benefit from the availability of DMA-remapping hardware to support
the usages described in Section 2.5.1.1. To support such usages, the VMM may virtualize the DMA-
remapping hardware to its guests. For example, the VMM may intercept guest accesses to the virtual
DMA-remapping hardware registers, and manage a shadow copy of the guest DMA-remapping
structures that is provided to the physical DMA-remapping hardware. On updates to the guest I/O
page tables, the guest software performs appropriate virtual invalidation operations. The virtual
invalidation requests may be intercepted by the VMM, to update the respective shadow page tables

Figure 2-3. Example Virtualization Usage of DMA Remapping

VM

0

App App

Virtual Machine Monitor (VMM) or Hosting OS

Physical Host Hardware

Virtual Machine (0)

Guest OS

App App

Device A

Device A
Driver

Device B
Driver

Virtual Devices Emulation

Driver for
Virtual Devices

Device B

VM

0

App App

Virtual Machine (n)

Guest OS

App App

Driver for
Virtual Devices

VM

0

App App

Virtual Machine Monitor (VMM) or Hosting OS

Virtual Machine (0)

Guest OS

App App

Device A Device B

VM

0

App App

Virtual Machine (n)

Guest OS

App App

Device A
Driver

Device B
Driver

Example Software-based
I/O Virtualization Direct Assignment of I/O Devices

DMA-Remapping Hardware

Intel® Virtualization Technology for Directed I/O—Overview

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
16 Order Number: D51397-002

and perform invalidations of remapping hardware. Due to the non-restartability of faulting DMA
transactions (unlike CPU memory management virtualization), a VMM cannot perform lazy updates to
its shadow DMA-remapping structures. To keep the shadow structures consistent with the guest
structures, the VMM may expose virtual remapping hardware with eager pre-fetching behavior
(including caching of not-present entries) or use processor memory management mechanisms to
write-protect the guest DMA-remapping structures.

2.5.1.4 Interaction with Processor Virtualization

Figure 2-4 depicts how system software interacts with hardware support for both processor-level
virtualization and Intel® VT for Directed I/O.

The VMM manages processor requests to access physical memory via the processor’s memory
management hardware. DMA requests to access physical memory use DMA-remapping hardware.
Both processor memory management and DMA memory management are under the control of the
VMM.

Figure 2-4. Interaction Between I/O and Processor Virtualization

Virtual Machine Monitor (VMM)

Guest
OS

App App

Guest
OS

App App

Guest
OS

App App

Physical Memory

CPU Accesses

Logical
Processors

DMA

I/O
Devices

Virtual Machines

DMA
Remapping

CPU Memory
Virtualization

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 17

Overview—Intel® Virtualization Technology for Directed I/O

2.5.2 Hardware Support for Interrupt Remapping

Interrupt remapping provides hardware support for remapping and routing of interrupt requests from
I/O devices (generated directly or through I/O interrupt controllers). The indirection achieved through
remapping enables isolation of interrupts across partitions.

The following usages are envisioned for the interrupt-remapping hardware.

2.5.2.1 Interrupt Isolation

On Intel architecture platforms, interrupt requests are identified by the Root-Complex as write
transactions targeting an architectural address range (0xFEEx_xxxxh). The interrupt requests are
self-describing (i.e., attributes of the interrupt request are encoded in the request address and data),
allowing any DMA initiator to generate interrupt messages with arbitrary attributes.

The interrupt-remapping hardware may be utilized by a Virtual Machine Monitor (VMM) to improve the
isolation of external interrupt requests across domains. For example, the VMM may utilize the
interrupt-remapping hardware to distinguish interrupt requests from specific devices and route them
to the appropriate VMs to which the respective devices are assigned. The VMM may also utilize the
interrupt-remapping hardware to control the attributes of these interrupt requests (such as
destination CPU, interrupt vector, delivery mode etc.).

Another example usage is for the VMM to use the interrupt-remapping hardware to disambiguate
external interrupts from the VMM owned inter-processor interrupts (IPIs). Software may enforce this
by ensuring none of the remapped external interrupts have attributes (such as vector number) that
matches the attributes of the VMM IPIs.

2.5.2.2 Interrupt Migration

The interrupt-remapping architecture may be used to support dynamic re-direction of interrupts when
the target for an interrupt request is migrated from one logical processor to another logical processor.
Without interrupt-remapping hardware support, re-balancing of interrupts require software to re-
program the interrupt sources. However re-programming of these resources are non-atomic (requires
multiple registers to be re-programmed), often complex (may require temporary masking of interrupt
source), and dependent on interrupt source characteristics (e.g. no masking capability for some
interrupt sources; edge interrupts may be lost when masked on some sources, etc.)

Interrupt-remapping enables software to efficiently re-direct interrupts without re-programming the
interrupt configuration at the sources. Interrupt migration may be used by OS software for balancing
load across processors (such as when running I/O intensive workloads), or by the VMM when it
migrates virtual CPUs of a partition with assigned devices across physical processors to improve CPU
utilization.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
18 Order Number: D51397-002

3 DMA Remapping

This chapter describes the hardware architecture for DMA remapping. The architecture envisions
DMA-remapping hardware to be implemented in Root-Complex components, such as the memory
controller hub (MCH) or I/O hub (IOH).

3.1 Domains and Address Translation

A domain is abstractly defined as an isolated environment in the platform, to which a subset of the
host physical memory is allocated. I/O devices that are allowed to access physical memory directly
are allocated to a domain and are referred to as the domain’s assigned devices.

The isolation property of a domain is achieved by blocking access to its physical memory from
resources not assigned to it. Multiple isolated domains are supported in a system by ensuring that all
I/O devices are assigned to some domain (possibly a null domain), and that they can only access the
physical resources allocated to their domain. The DMA remapping architecture facilitates flexible
assignment of I/O devices to an arbitrary number of domains. Each domain has a view of physical
address space that may be different than the host physical address space. DMA remapping treats the
address specified in a DMA request as a DMA-Virtual Address (DVA). Depending on the software
usage model, the DMA virtual address space may be the same as the Guest-Physical Address (GPA)
space of the domain to which the I/O device is assigned, or a purely virtual address space defined by
software. In either case, DMA remapping transforms the address in a DMA request issued by an I/O
device to its corresponding Host-Physical Address (HPA).

For simplicity, this document refers to an address in a DMA request as a GPA and the translated
address as an HPA.

Figure 3-5 illustrates DMA address translation. I/O devices 1 and 2 are assigned to domains 1 and 2,
respectively. The software responsible for creating and managing the domains allocates system
physical memory for both domains and sets up the DMA address translation function. GPAs in DMA
requests initiated by devices 1 & 2 are translated to appropriate HPAs by the DMA-remapping
hardware.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 19

DMA Remapping—Intel® Virtualization Technology for Directed I/O

The host platform may support one or more remapping hardware units. Each hardware unit supports
remapping DMA requests originating within its hardware scope. For example, a desktop platform may
expose a single remapping hardware unit that translates all DMA transactions at the memory
controller hub (MCH) component. A server platform with one or more core chipset components may
support independent translation hardware units in each component, each translating DMA requests
originating within its I/O hierarchy (such as a PCI Express root port). The architecture supports
configurations in which these hardware units may either share the same translation data structures
(in system memory) or use independent structures, depending on software programming.

The remapping hardware translates the address in a DMA request to host physical address (HPA)
before further hardware processing (such as address decoding, snooping of processor caches, and/or
forwarding to the memory controllers).

3.2 Remapping Hardware - Software View

The remapping architecture allows hardware implementations supporting a single PCI segment group
to expose (to software) the remapping function either as a single hardware unit covering the entire
PCI segment group, or as multiple hardware units, each supporting a mutually exclusive subset of
devices in the PCI segment group hierarchy. For example, an implementation may expose a
remapping hardware unit that supports one or more integrated devices on the root bus, and
additional remapping hardware units for devices behind one or a set of PCI Express root ports. The
platform firmware (BIOS) reports each remapping hardware unit in the platform to software. Chapter
8 describes a proposed reporting structure through ACPI constructs.

For hardware implementations supporting multiple PCI segment groups, the remapping architecture
requires hardware to expose independent remapping hardware units (at least one per PCI segment
group) for processing requests originating within the I/O hierarchy of each segment group.

3.3 Mapping Devices to Domains

The following sub-sections describe the DMA remapping architecture and data structures used to map
I/O devices to domains.

Figure 3-5. DMA Address Translation

HPA =
8000h HPA =

6000h

Assigned to
Domain 1

HPA =
2000h

Domain 2

Domain 1

0h

10000h

Assigned to
Domain 2

DVA/GPA
= 4000h

Physical
Memory

HPA =
3000h

CPU
Memory

Management

Device 2

Device 1

DMA
Memory

Management

1000h

DVA/GPA
= 4000h1000h

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
20 Order Number: D51397-002

3.3.1 Source Identifier

DMA and interrupt requests appearing at the address-translation hardware is required to identify the
device originating the request. The attribute identifying the originator of an I/O transaction is referred
to as the “source-id” in this document. The remapping hardware may determine the source-id of a
transaction in implementation-specific ways. For example, some I/O bus protocols may provide the
originating device identity as part of each I/O transaction. In other cases (for Root-Complex
integrated devices, for example), the source-id may be derived based on the Root-Complex internal
implementation.

For PCI Express devices, the source-id is the requester identifier in the PCI Express transaction layer
header. The requester identifier of a device, which is composed of its PCI Bus/Device/Function
number, is assigned by configuration software and uniquely identifies the hardware function that
initiated the request. Figure 3-6 illustrates the requester-id1 as defined by the PCI Express
Specification.

The following sections describe the data structures for mapping I/O devices to domains.

3.3.2 Root-Entry

The root-entry functions as the top level structure to map devices on a specific PCI bus to their
respective domains. Each root-entry structure contains the following fields:

• Present flag: The present field is used by software to indicate to hardware whether the root-
entry is present and initialized. Software may Clear the present field for root entries
corresponding to bus numbers that are either not present in the platform, or don’t have any
downstream devices attached. If the present field of a root-entry used to process a DMA request
is Clear, the DMA request is blocked, resulting in a translation fault.

• Context-entry table pointer: The context-entry table pointer references the context-entry
table for devices on the bus identified by the root-entry. Section 3.3.3 describes context entries in
further detail.

Section 9.1 illustrates the root-entry format. The root entries are programmed through the root-entry
table. The location of the root-entry table in system memory is programmed through the Root-entry
Table Address register. The root-entry table is 4KB in size and accommodates 256 root entries to
cover the PCI bus number space (0-255). In the case of a PCI device, the bus number (upper 8-bits)
encoded in a DMA transaction’s source-id field is used to index into the root-entry structure.
Figure 3-7 illustrates how these tables are used to map devices to domains.

1. For PCI Express devices supporting Alternative Routing-ID Interpretation (ARI), bits traditionally
used for the Device Number field in the Requester-id are used instead to expand the Function
Number field.

Figure 3-6. Requester Identifier Format

02378
1
5

Bus # Device # Function #

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 21

DMA Remapping—Intel® Virtualization Technology for Directed I/O

3.3.3 Context-Entry

A context-entry maps a specific I/O device on a bus to the domain to which it is assigned, and, in
turn, to the address translation structures for the domain. The context entries are programmed
through the memory-resident context-entry tables. Each root-entry in the root-entry table contains
the pointer to the context-entry table for the corresponding bus number. Each context-entry table
contains 256 entries, with each entry representing a unique PCI device function on the bus. For a PCI
device, the device and function numbers (lower 8-bits) of a source-id are used to index into the
context-entry table.

Each context-entry contains the following attributes:

• Domain Identifier: The domain identifier is a software-assigned field in a context entry that
identifies the domain to which a device with the given source-id is assigned. Hardware may use
this field to tag its caching structures. Context entries programmed with the same domain
identifier must reference the same address translation structure. Context entries referencing the
same address translation structure are recommended to use the same domain identifier for best
hardware efficiency.

• Present Flag: The present field is used by software to indicate to hardware whether the context-
entry is present and initialized. Software may Clear the present field for context entries
corresponding to device functions that are not present in the platform. If the present field of a
context-entry used to process a DMA request is Clear, the DMA request is blocked, resulting in a
translation fault.

• Translation Type: The translation-type field indicates the type of the address translation
structure that must be used to address-translate a DMA request processed through the context-
entry.

• Address Width: The address-width field indicates the address width of the domain to which the
device corresponding to the context-entry is assigned.

Figure 3-7. Device to Domain Mapping Structures

Root-entry Table

Context-entry Table
for Bus N

Context-entry Table
for Bus 0

Root entry 0

Root entry N

Root entry 255
Address Translation

Structures for Domain A

Address Translation
Structures for Domain B

Context entry 0

Context entry 255

(Dev 0, Func 0)

(Dev 31, Func 7)

(Dev 0, Func 1)

Context entry 255

Context entry 0

(Bus 0)

(Bus 255)

(Bus N)

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
22 Order Number: D51397-002

• Address Space Root: The address-space-root field provides the host physical address of the
address translation structure in memory to be used for address-translating DMA requests
processed through the context-entry.

• Fault Processing Disable Flag: The fault-processing-disable field enables software to
selectively disable recording and reporting of remapping faults detected for DMA requests
processed through the context-entry.

Section 9.2 illustrates the exact context-entry format. Multiple devices may be assigned to the same
domain by programming the context entries for the devices to reference the same translation
structures, and programming them with the same domain identifier.

3.3.3.1 Context Caching

The DMA remapping architecture enables hardware to cache root-entries and context-entries in a
context-cache to minimize the overhead incurred for fetching them from memory. Hardware manages
the context-cache and supports context-cache invalidation requests by software.

When modifying device-to-domain mapping structures referenced by multiple remapping hardware
units in a platform, software is responsible for explicitly invalidating the caches at each of the
hardware units. Section 6.1.1 provides more details on the hardware caching behavior.

3.4 Address Translation

DMA remapping uses a multi-level, page-table-based address-translation structure.

3.4.1 Multi-Level Page Table

The multi-level page tables allow software to manage host physical memory at page (4KB) granularity
and set up a hierarchical structure with page directories and page tables. Hardware implements the
page-walk logic and traverses these structures using the address from the DMA request. The
maximum number of page-table levels that need to be traversed is a function of the address width of
the domain (specified in the corresponding context-entry).

The architecture defines the following features for the multi-level page table structure:

• Super Pages

— The super-page field in page-table entries enables larger page allocations. When a page-table
entry with the super-page field set is encountered by hardware on a page-table walk, the
translated address is formed immediately by combining the page base address in the page-
table entry with the unused guest-physical address bits.

— The architecture defines super-pages of size 221, 230, 239 and 248. Implementations indicate
support for specific super-page sizes through the Capability register. Hardware
implementations may optionally support these super-page sizes.

• DMA Access Controls

— DMA access controls make it possible to control DMA accesses to specific regions within a
domain’s address space. These controls are defined through the Read and Write permission
fields.

— If hardware encounters a page-table entry with the Read field Clear as part of address-
translating a DMA read request, the request is blocked1.

— If hardware encounters a page-table entry with the Write field Clear as part of address
translating a DMA write request, the request is blocked.

1. Refer to Section 3.6.3 for handling Zero-Length DMA read requests to present pages without
read-permissions.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 23

DMA Remapping—Intel® Virtualization Technology for Directed I/O

Figure 3-8 shows a multi-level (3-level) page-table structure with 4KB page mappings and 4KB page
tables. Figure 3-9 shows a 2-level page-table structure with 2MB super pages.

Figure 3-8. Example Multi-level Page Table

Figure 3-9. Example Multi-level Page Table (with 2MB Super Pages)

DMA with address bits
63:39 validated to be 0s

3
8

1
2

1
1 0

SP =0

Context
Entry

ASR

3
0

,

+

<< 3 +

+

+

2
0

2
1

2
9

9-
bi

ts

9-
bi

ts

9-
bi

ts

4KB page table
,4KB page table

4KB page table

4KB page

12
-b

its
1
2
7

1
2

6
3 0

<< 3

<< 3

0s

6
3

3
9

SP = 0

SP = 0

3
8

1
2

1
1 0

Context
Entry

ASR

3
0

,

+

<< 3

<< 3

+

+

2
0

2
1

2
9

9-
bi

ts

9-
bi

ts

4KB page table
,4KB page table

2MB page

21
-b

its

1
2
7

1
2

6
3 0

0s

6
3

3
9 DMA with address bits

63:39 validated to be 0s

SP = 0

SP = 1

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
24 Order Number: D51397-002

3.4.2 Adjusted Guest Address Width (AGAW)

To allow page-table walks with 9-bit stride, the Adjusted Guest Address Width (AGAW) value for a
domain is defined as its Guest Address Width (GAW) value adjusted, such that (AGAW-12) is a
multiple of 9. For example, a domain to which 2GB of memory is allocated has a GAW of 31, and an
AGAW of 39. AGAW is calculated as follows:

R = (GAW - 12) MOD 9;
if (R == 0) {

AGAW = GAW;
} else {

AGAW = GAW + 9 - R;
}
if (AGAW > 64)

AGAW = 64;

The AGAW indicates the number of levels of page-walk. Hardware implementations report the
supported AGAWs through the Capability register. Software must ensure that it uses an AGAW
supported by the underlying hardware implementation when setting up page tables for a domain.

3.4.3 Multi-level Page Table Translation

Address translation of DMA requests processed through a context-entry specifying use of multi-level
page tables is handled by remapping hardware as follows:

1. If the GPA in the DMA request is to an address above the maximum guest address width
supported by the remapping hardware (as reported through the MGAW field in the Capability
register), the DMA request is blocked.

2. If the address-width (AW) field programmed in the context-entry is not one of the AGAWs
supported by hardware (as reported through the SGAW field in the Capability register), the DMA
request is blocked.

3. The address of the DMA request is validated to be within the adjusted address width of the
domain to which the device is assigned. DMA requests attempting to access memory locations
above address (2X - 1) are blocked, where X is the AGAW corresponding to the address-width
programmed in the context-entry used to process this DMA request.

4. The adjusted address of the DMA request is translated through the multi-level page table
referenced by the context-entry. Based on the programming of the page-table entries1 (Super-
page, Read, Write attributes), either the adjusted address is successfully translated to a Host
Physical Address (HPA), or the DMA request is blocked.

5. For successful address translations, hardware performs the normal processing (address decoding,
etc.) of the DMA request as if it was targeting the translated HPA.

1. Software must ensure the DMA-remapping page tables are programmed not to remap regular
DMA requests to the interrupt address range (0xFEEx_xxxx). Hardware behavior is undefined for
DMA requests remapped to the interrupt address range.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 25

DMA Remapping—Intel® Virtualization Technology for Directed I/O

3.4.4 I/O Translation Lookaside Buffer (IOTLB)

The DMA remapping architecture defines support for caching effective translations1 for improved
address translation performance. The cache of effective translations is referred to as the I/O
translation look-aside buffer (IOTLB). Similar to the context-cache, hardware manages the IOTLB,
and supports IOTLB invalidation requests by software. Details of the hardware caching and
invalidation behavior are described in Section 6.1.2.

3.5 DMA Remapping Fault Conditions

Table 3 enumerates the various conditions resulting in faults when processing DMA requests with
untranslated2 address. A fault condition is considered ‘qualified’ if its reported to software only when
the Fault Processing Disable (FPD) field in the context-entry used to process the faulting request is
Clear.

3.5.1 Hardware Handling of Faulting DMA Requests

DMA requests that result in remapping faults must be blocked by hardware. The exact method of DMA
blocking is implementation-specific. For example:

• Faulting DMA write requests may be handled in much the same way as hardware handles write
requests to non-existent memory. For example, the DMA request is discarded in a manner
convenient for implementations (such as by dropping the cycle, completing the write request to
memory with all byte enables masked off, re-directed to a dummy memory location, etc.).

• Faulting DMA read requests may be handled in much the same way as hardware handles read
requests to non-existent memory. For example, the request may be redirected to a dummy
memory location, returned as all 0’s or 1’s in a manner convenient to the implementation, or the
request may be completed with an explicit error indication (preferred). For faulting DMA read
requests from PCI Express devices, hardware must indicate “Unsupported Request” (UR) in the
completion status field of the PCI Express read completion.3

1. When inserting a leaf page-table entry into the IOTLB, hardware caches the Read (R) and Write
(W) attributes as the logical AND of all the respective R and W fields encountered in the page walk
reaching up to this leaf entry.

2. For PCI Express, DMA requests with untranslated (default) address are identified by the Address
Type (AT) field value of 00b in the Transaction Layer Packet (TLP) header.

3. For PCI Express, a DMA read completion with an error status may cause hardware to generate a
PCI Express un-correctable, non-fatal (ERR_NONFATAL) error message.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
26 Order Number: D51397-002

Table 3. Unsuccessful DMA requests

Fault Conditions1 Fault
Reason Qualified Behavior

The Present (P) field in the root-entry used to process the DMA
request is Clear. 1h No

Unsupported
Request

The Present (P) field in the context-entry used to process the DMA
request is Clear. 2h

Yes

Hardware detected invalid programming of a context-entry. For
example:
• The Address-Width (AW) field was programmed with an value

not supported by the hardware implementation.
• The Translation-Type (T) field was programmed to indicate a

translation type not supported by the hardware implementation.
• Hardware attempt to access the page-table base through the

Address Space Root (ASR) field of the context-entry resulted in
error.

3h

The DMA request attempted to access an address2 beyond (2X - 1),
where X is the minimum of the MGAW reported in the Capability
register and the value in the address-width (AW) field of the context-
entry used to process the request.

4h

The Write (W) field in a page-table entry used to remap the DMA
write request is Clear. 5h

The Read (R) field in a page-table entry used to remap the DMA read
request is Clear. For implementations reporting ZLR field as set in
the Capability register, this fault condition is not applicable for zero-
length DMA read requests to write-only pages.

6h

Hardware attempt to access the next level page table through the
Address (ADDR) field of the page-table entry resulted in error. 7h

Hardware attempt to access the root-entry table through the root-
table address (RTA) field in the Root-entry Table Address register
resulted in error.

8h

No
Hardware attempt to access context-table through context-entry
table pointer (CTP) field resulted in error. 9h

Hardware detected non-zero reserved fields in a root-entry with
Present (P) field Set. Ah

Hardware detected non-zero reserved fields in a context-entry with
Present (P) field Set. Bh

Yes
Hardware detected non-zero reserved fields in a page-table entry
with at least one of the Read (R) and Write (W) fields Set. Ch

1. Non-recoverable error conditions encountered by the remapping hardware are not treated as DMA-remapping
fault conditions. These are treated as platform hardware errors and reported through existing error reporting
methods such as NMI, MCA etc.

2. DMA requests to addresses beyond the maximum guest address width (MGAW) supported by hardware may be
reported through other means such as through PCI Express Advanced Error Reporting (AER) at a PCI Express
root port.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 27

DMA Remapping—Intel® Virtualization Technology for Directed I/O

3.6 DMA Remapping - Usage Considerations

This section describes the various DMA-remapping hardware usage considerations.

3.6.1 Identifying Origination of DMA Requests

In order to support isolation usages, the platform must be capable of uniquely identifying the
requestor (Source-Id) for each DMA request. The DMA sources in a platform and use of source-id in
these requests may be categorized as below.

3.6.1.1 Devices Behind PCI Express to PCI/PCI-X Bridges

The PCI Express-to-PCI/PCI-X bridges may generate a different requester-id and tag combination in
some instances for transactions forwarded to the bridge’s PCI Express interface. The action of
replacing the original transaction’s requester-id with one assigned by the bridge is generally referred
to as taking ‘ownership’ of the transaction. If the bridge generates a new requester-id for a
transaction forwarded from the secondary interface to the primary interface, the bridge assigns the
PCI Express requester-id using the secondary interface’s bus number, and sets both the device
number and function number fields to zero. Refer to the PCI Express-to-PCI/PCI-X bridge
specifications for more details.

For remapping requests from devices behind PCI Express-to-PCI/PCI-X bridges, software must
consider the possibility of requests arriving with the source-id in the original PCI-X transaction or the
source-id provided by the bridge. Devices behind these bridges can only be collectively assigned to a
single domain. When setting up DMA-remapping structures for these devices, software must program
multiple context entries, each corresponding to the possible set of source-ids. Each of these context-
entries must be programmed identically to ensure the DMA requests with any of these source-ids are
processed identically.

3.6.1.2 Devices Behind Conventional PCI Bridges

For devices behind conventional PCI bridges, the source-id in the DMA requests is the requester-id of
the bridge device. For remapping requests from devices behind conventional PCI bridges, software
must program the context-entry corresponding to the bridge device. Devices behind these bridges
can only be collectively assigned to a single domain.

3.6.1.3 Root-Complex Integrated Devices

Transactions generated by all root-complex integrated devices must be uniquely identifiable through
its source-id (PCI requester-id). This enables any root-complex integrated endpoint device (PCI or
PCI-Express) to be independently assigned to a domain.

3.6.1.4 PCI Express Devices Using Phantom Functions

To increase the maximum possible number of outstanding requests requiring completion, PCI Express
allows a device to use function numbers not assigned to implemented functions to logically extend the
Tag identifier. Unclaimed function numbers are referred to as Phantom Function Numbers (PhFN). A
device reports its support for phantom functions through the Device Capability configuration register,
and requires software to explicitly enable use of phantom functions through the Device Control
configuration register.

Since the function number is part of the requester-id used to locate the context-entry for processing a
DMA request, when assigning PCI Express devices with phantom functions enabled, software must
program multiple context entries, each corresponding to the PhFN enabled for use by the device
function. Each of these context-entries must be programmed identically to ensure the DMA requests
with any of these requester-ids are processed identically.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
28 Order Number: D51397-002

3.6.2 Handling DMA Requests Crossing Page Boundaries

PCI Express memory requests are specified to disallow address/length combinations which cause a
memory space access to cross a page (4KB) boundary. However, the PCI Express Specification defines
checking for violations of this rule at the receivers as optional. If checked, violations are treated as
malformed transaction layer packets and reported as PCI Express errors. Checking for violations from
Root-Complex integrated devices is typically platform-dependent.

Platforms supporting DMA remapping are expected to check for violations of the rule in one of the
following ways:

• The platform hardware checks for violations and explicitly blocks them. For PCI Express memory
requests, this may be implemented by hardware that checks for the condition at the PCI Express
receivers and handles violations as PCI Express errors. DMA requests from other devices (such as
Root-Complex integrated devices) that violate the rule (and hence are blocked by hardware) may
be handled in platform-specific ways. In this model, the remapping hardware units never receive
DMA requests that cross page boundaries.

• If the platform hardware cannot check for violations, the remapping hardware units must perform
these checks and re-map the requests as if they were multiple independent DMA requests.

3.6.3 Handling of Zero-Length Reads

A memory read request of one double-word with no bytes enabled (“zero-length read”) is typically
used by devices as a type of flush request. For a requester, the semantics of the flush request allow a
device to ensure that previously issued posted writes in the same traffic class have been completed at
its destination.

Zero-length read requests are handled as follows by remapping hardware:

• Implementations reporting ZLR field as Clear in the Capability register process zero-length read
requests like any other read requests. Specifically, zero-length read requests are address-
translated based on the programming of the DMA-remapping structures. Zero-length reads
translated to memory are completed in the coherency domain with all byte enables off.
Unsuccessful translations result in DMA-remapping faults. For example, zero-length read requests
to write-only pages are blocked due to read permission violation.

• Implementations reporting ZLR field as Set in the Capability register handles zero-length read
requests same as above, except if it is to a write-only page. Zero-length read requests to write-
only pages that do not encounter any faulting conditions other than read permission violation are
successfully remapped and completed. Zero-length reads translated to memory complete in the
coherency domain with all byte enables off. Data returned in the read completion is obfuscated.

DMA remapping hardware implementations are recommended to report ZLR field as Set and support
the associated hardware behavior.

3.6.4 Handling DMA to Reserved System Memory

Reserved system memory regions are typically allocated by BIOS at boot time and reported to OS as
reserved address ranges in the system memory map. DMA to these reserved regions may either occur
as a result of operations performed by the system software driver (for example in the case of DMA
from UMA graphics controllers to graphics reserved memory), or may be initiated by non system
software (for example in case of DMA performed by a USB controller under BIOS SMM control for
legacy keyboard emulation). For proper functioning of these legacy reserved memory usages, when
system software enables DMA remapping, the DMA-remapping page tables for the respective devices
are expected to be setup to provide identity mapping for the specified reserved memory regions with
DMA read and write permissions.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 29

DMA Remapping—Intel® Virtualization Technology for Directed I/O

Platform implementations supporting reserved memory must carefully consider the system software
and security implications of its usages. These usages are beyond the scope of this specification.
Platform hardware may use implementation-specific methods to distinguish accesses to system
reserved memory. These methods must not depend on simple address-based decoding since DMA
virtual addresses can indeed overlap with the host physical addresses of reserved system memory.

For platforms that cannot distinguish between DMA to OS-visible system memory and DMA to
reserved system memory, the architecture defines a standard reporting method to inform system
software about the reserved system memory address ranges and the specific devices that require
DMA access to these ranges for proper operation. Refer to Section 8.4 for details on the reporting of
reserved memory regions.

For legacy compatibility, system software is expected to setup identity mapping (with read and write
privileges) for these reserved address ranges, for the specified devices1. For these devices, the
system software is also responsible for ensuring that the DMA virtual addresses generated by the
system software do not overlap with the reserved system memory address ranges.

3.6.5 Root-Complex Peer to Peer Considerations

When DMA remapping is enabled, peer-to-peer requests through the Root-Complex must be handled
as follows:

• The address in the DMA request must be treated as a DMA virtual address and address-translated
to an HPA. The address decoding for peer addresses must be done only on the translated HPA.
Hardware implementations are free to further limit peer-to-peer accesses to specific host physical
address regions (or to completely disallow peer-forwarding of translated requests).

• Since address translation changes the contents (address field) of the PCI Express Transaction
Layer Packet (TLP), for PCI Express peer-to-peer requests with ECRC, the Root-Complex
hardware must use the new ECRC (re-computed with the translated address) if it decides to
forward the TLP as a peer request.

• Root-ports may support additional peer-to-peer control features by supporting PCI Express
Access Control Services (ACS) capability. Refer to ACS ECR from PCI-SIG for additional details.

3.6.6 Handling of Isochronous DMA

PC platforms support varying classes of isochronous DMA traffic to support different real-time usages
and devices. Examples of isochronous traffic supported by current PC platforms include:

• Legacy Isochrony: Legacy isochronous traffic refers to the support typically provided to
applications that use legacy audio and USB controllers.

• PCI Express Isochrony: The PCI Express specification defines support for isochronous traffic to
support real-time and Quality of Service (QoS) usages. An example of this class of isochrony is
applications that use high-definition audio controllers.

• Integrated Graphics Isochrony: This applies to traffic generated by integrated graphics
subsystems which typically have multiple real-time DMA streams for display, overlay, cursor, and
legacy VGA usages.

There may be other classes of differentiated DMA streams in the platform to support future usages.
Different classes of isochrony are typically implemented through traffic classification, Virtual Channels
(VC), and priority mechanisms. DMA remapping of critical isochronous traffic may require special
handling since the remapping process potentially adds additional latency to the isochronous paths.

Hardware recommendations and software requirements for efficient remapping of isochronous traffic
are described below. The classes of isochrony that need to be subject to these requirements are
platform-specific.

1. USB controllers and UMA integrated graphics devices are the only legacy device usages identified
that depend on DMA to reserved system memory.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
30 Order Number: D51397-002

• Root-Complex hardware may utilize dedicated resources to support remapping of DMA accesses
from isochronous devices. This may occur through dedicated remapping hardware units for
isochronous devices, or through reservation of hardware resources (such as entries in various
remapping caching structures) for remapping isochronous DMA.

• DMA-remapping units supporting isochronous traffic may pre-fetch and cache valid address
translations. Under normal operation, to maintain isochronous guarantees, software should avoid
invalidating mappings that are in-use by isochronous DMA requests active at the time of
invalidation. The Capability register of each DMA-remapping unit indicates to software if the
remapping unit manages critical isochronous DMA.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 31

Support For Device-IOTLBs—Intel® Virtualization Technology for Directed I/O

4 Support For Device-IOTLBs

The DMA remapping architecture described in previous chapter supports address translation of DMA
requests received by the Root-Complex. Section 3.4.4 described the use of IOTLBs in these core logic
components to cache frequently used I/O page-table entries to improve the DMA address translation
performance. IOTLBs improve DMA remapping performance by avoiding the multiple memory
accesses required to access the I/O page-tables for DMA address translation. However, the efficiency
of IOTLBs in the core logic may depend on the address locality in DMA streams and the number of
simultaneously active DMA streams in the platform.

One approach to scaling IOTLBs is to enable I/O devices to participate in the DMA remapping with
IOTLBs implemented at the devices. The Device-IOTLBs alleviate pressure for IOTLB resources in the
core logic, and provide opportunities for devices to improve performance by pre-fetching address
translations before issuing DMA requests. This may be useful for devices with strict DMA latency
requirements (such as isochronous devices), and for devices that have large DMA working set or
multiple active DMA streams. Additionally, Device-IOTLBs may be utilized by devices to support
device-specific I/O page faults.

Device-IOTLB support requires standardized mechanisms for:

• I/O devices to request and receive translations from the Root-Complex

• I/O devices to indicate if a DMA request has translated or un-translated addresses

• Translations cached at Device-IOTLBs to be invalidated

Refer to the Address Translation Services (ATS) specification from the PCI-SIG for extensions to PCI
Express to support Device-IOTLBs. DMA-remapping implementations report Device-IOTLB support
through the Extended Capability register.

4.1 Hardware Handling of ATS

ATS specification defines an ‘Address Type’ (AT) field in the PCI Express transaction layer header for
memory requests. The AT field indicates if the transaction is a ‘Translation Request’, memory request
with ‘Translated’ address, or memory request with ‘Untranslated’ address. ATS also defines new
messages for Device-IOTLB ‘Invalidation Requests’ and ‘Invalidation Completion’.

4.1.1 Handling of ATS Protocol Errors

The following upstream transactions are always handled as malformed packets:

• Memory read or write request with an AT field value of ‘Reserved’.

• Memory write request with an AT field value of ‘Translation Request’.

• Memory read request with AT field value of ‘Translation Request’ with any of the following:

— Length field specifying odd number of DWORDs (i.e. least significant bit of length field is non-
zero)

— Length field greater than N/4 DWORDs where N is the Read Completion Boundary (RCB) value
(in bytes) supported by the Root-Complex.

— First and last DWORD byte enable (BE) fields not equal to 1111b.

• ATS ‘Invalidation Request’ message.

Intel® Virtualization Technology for Directed I/O—Support For Device-IOTLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
32 Order Number: D51397-002

4.1.2 Root Port Handling of ATS

Root ports supporting Access Control Services (ACS) capability may support ‘Translation Blocking’
ability to block upstream memory requests with non-zero value in AT field. When enabled, such
requests are reported as ACS violation associated with the receiving port. Refer to the ACS ECR from
PCI-SIG for more details. Upstream requests that cause ACS violations are blocked at the root port
and not presented to remapping hardware.

4.1.3 Handling of ATS When Remapping Hardware Disabled

When DMA-remapping hardware is not enabled (TES field Clear in Global Status register), following
upstream transactions are treated as Unsupported Request (UR).

• Memory requests with non-zero AT field (i.e. AT field not ‘Untranslated’).

• ATS ‘Invalidation Completion’ messages.

4.1.4 Handling of Translation Requests

This section describes the handling of translation requests when remapping hardware is enabled.

• Table 4 illustrates the hardware handling of various error conditions leading to an unsuccessful
translation request. These errors are treated as remapping faults. A fault condition is considered
‘qualified’ if its reported to software only when the Fault Processing Disable (FPD) field in the
context-entry used to process the faulting request is Clear.

• When none of the error conditions in Table 4 is detected, hardware handles the successful
translation requests as illustrated in Table 4-2.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 33

Support For Device-IOTLBs—Intel® Virtualization Technology for Directed I/O

Table 4. Unsuccessful Translation Requests

Unsuccessful Translation Request Conditions Fault
Reason Qualified

Translation
Completion

Status

Conditions that explicitly block the translation request:

• Present (P) field in the root-entry used to process the
translation request is Clear. 1h No

Unsupported
Request

• Present (P) field in the context-entry used to the process
translation request is Clear. 2h

Yes
• Present context-entry used to process translation request

specifies blocking of Translation Requests (Translation Type
(T) field value not equal to 01b).

Dh

Erroneous conditions detected by hardware:

• Hardware detected invalid programming of a context-entry.
For example:

• The address width (AW) field programmed with a value
not supported by the hardware implementation.

• The translation-type (T) field programmed to indicate a
translation type not supported by the hardware imple-
mentation.

• Hardware attempt to access the page table base
through the Address Space Root (ASR) field of the
context-entry resulted in error.

3h

Yes

Completer
Abort1

1. ATS specification requires Completer Abort (CA) to be returned for unsuccessful translation requests due
to remapping hardware error. Errors due to improper programming of remapping structures are treated
similarly and return CA.

• Hardware attempt to access the next level page-table through
the Address (ADDR) field of the page-table entry resulted in
error.

7h

• Hardware attempt to access the root-entry table through the
Root Table Address (RTA) field in the Root-entry Table Address
register resulted in error.

8h

No• Hardware attempt to access context-entry table through
Context Table Pointer (CTP) field resulted in error. 9h

• Hardware detected reserved field(s) not initialized to zero in
root-entry with Present (P) field Set. Ah

• Hardware detected reserved field(s) not initialized to zero in
context-entry with Present (P) field Set. Bh

Yes• Hardware detected reserved field(s) not initialized to zero in a
page-table entry with at least one of Read (R) and Write (W)
field Set.

Ch

Intel® Virtualization Technology for Directed I/O—Support For Device-IOTLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
34 Order Number: D51397-002

4.1.4.1 Translation Requests for Multiple Translations

Translation Requests for multiple mappings indicate a length field greater than 2 DWORDs. Hardware
implementations may handle these requests in any one of the following ways:

• Always return single translation

— Hardware fetches translation only for the starting address specified in the translation request,
and a translation completion is returned depending on the result of this processing. In this
case the translation completion has a Length of 2 DWORDs, Byte Count of 8, and the Lower
Address indicates a value of RCB minus 8.

• Return multiple translations

— Hardware fetches translations starting with the address specified in the translation request,
until a CA or UR condition is detected, or until a translation with different page-size than the
previous translation in this request is detected. Hardware is also allowed to limit fetching of
translations to those that are resident within a cacheline. When returning multiple translations
(which may be less than the number of translation requested), hardware must ensure that
successive translations must apply to the untranslated address range that abuts the previous
translation in the same completion. Refer to the ATS specification for requirements for
translation completions returning multiple mappings in one or two packets.

4.1.5 Handling of Translated Requests

This section describes the handling of Translated requests when remapping hardware is enabled.

Table 5. Successful Translation Requests

Successful Translation Request Conditions Translation
Completion

Hardware detected address in the translation request is to the interrupt address
range (0xFEEx_xxxx). The special handling to interrupt address range is to
comprehend potential endpoint device ATS behavior of issuing translation requests
to all of its memory transactions including its message signalled interrupt (MSI)
posted writes.

Success
(R=0,W=1,U=1,

S=0 in
translation

completion data
entry)

Conditions where hardware could not find a translation for address specified in
translation request, or the requested translation lacked both read and write
permissions.
• The translation request had an address beyond (2X - 1), where X is the

minimum of the maximum guest address width (MGAW) reported through the
Capability register and the value in the address-width (AW) field of the context-
entry used to process the DMA request.

• Hardware found a not-present (R=W=0b) page-directory (non-leaf) entry along
the page-walk for the address specified in the translation request, and hence
could not complete page-walk.

• Hardware found the cumulative R and cumulative W bits to be both Clear along
the page-walk on behalf of the translation request.

Success
(R=W=U=S=0,
in translation

completion data
entry)

Hardware successfully fetched the effective translations requested and it has at least
one of Read and Write permissions.
• The R and W bits in the translation completion data entry are the effective

(cumulative) permissions for this translation.
• The N and U bits are derived from the SNP and TM bits from the leaf page-table

entry for the translation.
• Translations corresponding to 4KB pages indicate S bit in the translation

completion data entry as 0. Translations corresponding to super-pages indicate
S bit as Set with low-order bits of the translated address field encoded to
indicate the appropriate super-page size. See ATS specification for details on
encoding.

• If U field is Clear, the address in the translation completion data entry is the
translated address. If the U field is Set, the address in the translation
completion data entry is not specified. The R and W fields returned in the
translation completion data entry are not affected by the value of U field.

Success
(with translation
completion data
entries per ATS
specification)

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 35

Support For Device-IOTLBs—Intel® Virtualization Technology for Directed I/O

• Translated writes to the interrupt address range (0xFEEx_xxxx) are treated as UR. Translated
(and untranslated) reads to the interrupt address range always return UR.

• Table 6 illustrates the hardware handling of various error conditions leading to a failed Translated
request. In these cases the request is blocked (handled as UR) and treated as remapping fault. A
fault condition is considered ‘qualified’ if its reported to software only when the Fault Processing
Disable (FPD) field in the context-entry used to process the faulting request is Clear.

• When none of the error conditions in Table 6 is detected, the Translated request is processed as
pass-through (i.e. bypasses address translation).

4.2 Handling of Device-IOTLB Invalidations

The Address Translation Services (ATS) extensions to PCI Express defines the needed wire protocol
for the Root-Complex to issue a Device-IOTLB invalidation request to an endpoint and to receive the
Device-IOTLB invalidation completion responses from the endpoint.

For DMA-remapping implementations supporting Device-IOTLBs, software submits the Device-IOTLB
invalidation requests through the invalidation queue interface of the remapping hardware. Section
6.2.2 describes the queued invalidation interface details.

Hardware processes a Device-IOTLB invalidation request as follows:

• Hardware allocates a free invalidation tag (ITag). ITags are used to uniquely identify an
invalidation request issued to an endpoint. If there are no free ITags in hardware, the Device-
IOTLB invalidation request is deferred until a free ITag is available. For each allocated ITag,
hardware stores a counter (InvCmpCnt) to track the number of invalidation completions received
with this ITag.

Table 6. Unsuccessful Translated Requests

Unsuccessful Translated Request Conditions Fault
Reason Qualified Behavior

Present (P) field in the root-entry used to process the translation
request is Clear. 1h No

Unsupported
Request

Present (P) field in the context-entry used to the process
translation request is Clear. 2h

Yes

Hardware detected invalid programming of a context-entry. For
example:
• The address width (AW) field programmed with a value not

supported by the hardware implementation.
• The translation-type (T) field programmed to indicate a

translation type not supported by the hardware
implementation.

3h

Hardware attempt to access the root-entry table through the Root
Table Address (RTA) field in the Root-entry Table Address register
resulted in error.

8h

NoHardware attempt to access context-entry table through Context
Table Pointer (CTP) field resulted in error. 9h

Hardware detected reserved field(s) not initialized to zero in root-
entry with Present (P) field Set. Ah

Hardware detected reserved field(s) not initialized to zero in
context-entry with Present (P) field Set. Bh

YesPresent context-entry used to process translation request
specifies blocking of Translation Requests (Translation Type (T)
field value not equal to 01b).

Dh

Intel® Virtualization Technology for Directed I/O—Support For Device-IOTLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
36 Order Number: D51397-002

• Hardware starts an invalidation completion timer for this ITag, and issues the invalidation request
message to the specified endpoint. The invalidation completion time-out value is recommended to
be sufficiently larger than the PCI Express read completion time-outs.

Hardware processes a Device-IOTLB invalidation response received as follows:

• ITag-vector in the invalidation completion response indicates the ITags corresponding to
completed Device-IOTLB invalidation requests. The completion count in the invalidation response
indicates the number of invalidation completion messages expected with the same ITag-vector
and completion count.

• For each ITag Set in the ITag-vector, hardware checks if it is a valid (currently allocated) ITag for
the source-id in the invalidation completion response. If hardware detects an invalid ITag, the
invalidation completion message is dropped by hardware. The error condition is reported by
setting the Invalidation Completion Error (ICE) field in the Fault Status register, and depending on
the programming of the Fault Control register a fault event may be generated.

• If above checks are completed successfully, for each ITag in the ITag-vector, the corresponding
InvCmpCnt counter is incremented and compared with the ‘completion count’ value in the
invalidation response (‘completion count’ value of 0 indicates 8 invalidation completions). If the
comparison matches, the Device-IOTLB invalidation request corresponding to the ITag is
considered completed, and the ITag is freed.

• If the invalidation completion time-out expires for an ITag before the invalidation response is
received, hardware frees the ITag and reports it through the ITE field in the Fault Status register.
Depending on the programming of the Fault Control register a fault event may be generated.
Section 6.2.2.7 describes hardware behavior on invalidation completion time-outs.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 37

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5 Interrupt Remapping

This chapter discuss architecture and hardware details for interrupt remapping. The interrupt-
remapping architecture defined in this chapter is common for both Intel®64 and ItaniumTM
architectures.

5.1 Overview

The interrupt-remapping architecture enables system software to control and censor external
interrupt requests generated by all sources including those from interrupt controllers (I/OxAPICs),
MSI/MSI-X capable devices including endpoints, root-ports and Root-Complex integrated end-points.

Interrupts generated by the remapping hardware itself (Fault Event and Invalidation Completion
Events) are not subject to interrupt remapping.

Interrupt requests appear to the Root-Complex as upstream memory write requests to the interrupt-
address-range 0xFEEX_XXXXh. Since interrupt requests arrive at the Root-Complex as write requests,
interrupt-remapping is co-located with the DMA-remapping hardware units. The interrupt-remapping
capability is reported through the Extended Capability register.

5.2 Identifying Origination of Interrupt Requests

To support domain-isolation usages, the platform hardware must be capable of uniquely identifying
the requestor (Source-Id) for each interrupt message. The interrupt sources in a platform and use of
source-id in these requests may be categorized as follows:

• Message Signaled Interrupts from PCI Express Devices

— For message-signaled interrupt requests from PCI Express devices, the source-id is the
requester identifier in the PCI Express transaction header. The requester-id of a device is
composed of its PCI Bus/Device/Function number assigned by configuration software and
uniquely identifies the hardware function that initiated the I/O request. Section 3.3.1
illustrates the requester-id as defined by the PCI Express specification. Section 3.6.1.4
describes use of source-id field by PCI Express devices using phantom functions.

• Message Signaled Interrupts from Root Complex Integrated Devices

— For message-signaled interrupt requests from root-complex integrated PCI or PCI Express
devices, the source-id is its PCI requester-id.

• Message Signaled Interrupts from Devices behind PCI Express to PCI/PCI-X Bridges

— For message-signaled interrupt requests from devices behind PCI Express-to-PCI/PCI-X
bridges, the requester identifier in those interrupt requests may be that of the interrupting
device or the requester-id with the bus number field equal to the bridge’s secondary
interface’s bus number and device and function number fields value of zero. Section 3.6.1.1
describes legacy behavior of these bridges. Due to this aliasing, interrupt-remapping
hardware does not isolate interrupts from individual devices behind such bridges.

• Message Signaled Interrupts from Devices behind Conventional PCI bridges

— For message-signaled interrupt requests from devices behind conventional PCI bridges, the
source-id in those interrupt requests is the requestor-id of the legacy bridge device.
Section 3.6.1.2 describes legacy behavior of these bridges. Due to this, interrupt-remapping

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
38 Order Number: D51397-002

hardware does not isolate message-signaled interrupt requests from individual devices behind
such bridges.

• Legacy pin interrupts

— For devices that use legacy methods for interrupt routing (such as either through direct wiring
to the I/OxAPIC input pins, or through INTx messages), the I/OxAPIC hardware generates the
interrupt-request transaction. To identify the source of interrupt requests generated by
I/OxAPICs, the interrupt-remapping hardware requires each I/OxAPIC in the platform
(enumerated through the ACPI Multiple APIC Descriptor Tables (MADT)) to include a unique
16-bit source-id in its requests. BIOS reports the source-id for these I/OxAPICs via ACPI
structures to system software. Refer to Section 8.3.1.1 for more details on I/OxAPIC identity
reporting.

• Other Message Signaled Interrupts

— For any other platform devices that are not PCI discoverable and yet capable of generating
message-signaled interrupt requests (such as the integrated High Precision Event Timer -
HPET devices), the platform must assign unique source-ids that do not conflict with any other
source-ids on the platform. BIOS must report the 16-bit source-id for these via ACPI
structures described in Section 8.3.1.2.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 39

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.3 Interrupt Processing On Intel®64 Platforms

Interrupt-remapping on Intel®64 platforms support two interrupt request formats. These are
described in the following sub-sections.

5.3.1 Interrupt Requests in Intel®64 Compatibility Format

Figure 5-10 illustrates the interrupt request in Compatibility format for Intel®64 platforms. The
Interrupt Format field (Address bit 4) is Clear in Compatibility format requests. Refer to the Intel®64
Architecture software developer’s manuals for details on other fields in the Compatibility format
interrupt requests. Intel®64 platforms without the interrupt-remapping capability support interrupt
requests only in the Compatibility format.

Figure 5-10. Compatibility Format Interrupt Request

012
1
9

2
0

XX

4 3

Redirection Hint
Destination Mode
Don’t Care

Destination ID

0
3

Address

Data

Vector
Delivery Mode

1
1

Reserved

FEEh

1
1

1
2

78
1
0

Reserved
Trigger Mode Level
Trigger Mode

1
3

1
4

1
5

1
6

Reserved

5

0

Interrupt Format (0b)

1

1
3

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
40 Order Number: D51397-002

5.3.2 Interrupt Requests in Remappable Format

Figure 5-11 illustrates the Remappable interrupt request format. The Interrupt Format field (Address
bit 4) is Set for Remappable format interrupt requests. Remappable interrupt requests are applicable
only on platforms with interrupt-remapping support.

Table 7 describes the various address fields in the Remappable interrupt request format.

Table 8 describes the various data fields in the Remappable interrupt request format.

Figure 5-11. Remappable Format Interrupt Request

Table 7. Address Fields in Remappable Interrupt Request Format

Address
Bits Field Description

31: 20 Interrupt
Identifier

DWORD DMA write request with value of FEEh in these bits are
decoded as interrupt requests by the Root-Complex.

19: 5 Handle[14:0]

This field along with bit 2 provides a 16-bit Handle. The Handle is used
by interrupt-remapping hardware to identify the interrupt request. 16-
bit Handle provides 64K unique interrupt requests per interrupt-
remapping hardware unit.

4 Interrupt Format This field must have a value of 1b for Remappable format interrupts.

3 SubHandle Valid
(SHV)

This field specifies if the interrupt request payload (data) contains a
valid Subhandle. Use of Subhandle enables MSI constructs that
supports only a single address and multiple data values.

2 Handle[15] This field carries the most significant bit of the 16-bit Handle.

1:0 Don’t Care These bits are ignored by interrupt-remapping hardware.

012
1
9

2
0

XX

4 3

SHV
HANDLE[15]
Don’t Care

FEEh

31

031

0h

Address

Data

Reserved (0)

1
5

1

HANDLE [14:0]

1
6

SUBHANDLE (if SHV==1)

Interrupt Format

5

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 41

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.3.2.1 Interrupt Remapping Table

Interrupt-remapping hardware utilizes a memory-resident single-level table, called the Interrupt
Remapping Table. The interrupt remapping table is expected to be setup by system software, and its
base address and size is specified through the Interrupt Remap Table Address register. Each entry in
the table is 128-bits in size and is referred to as Interrupt Remapping Table Entry (IRTE).Section 9.5
illustrates the IRTE format.

For interrupt requests in Remappable format, the interrupt-remapping hardware computes the
‘interrupt_index’ as below. The Handle, SHV and Subhandle are respective fields from the interrupt
address and data per the Remappable interrupt format.

if (address.SHV == 0) {
interrupt_index = address.handle;

} else {
interrupt_index = (address.handle + data.subhandle);

}

The Interrupt Remap Table Address register is programmed by software to specify the number of
IRTEs in the Interrupt Remapping Table (maximum number of IRTEs in an Interrupt Remapping Table
is 64K). Remapping hardware units in the platform may be configured to share interrupt-remapping
table or use independent tables. The interrupt_index is used to index the appropriate IRTE in the
interrupt-remapping table. If the interrupt_index value computed is equal to or larger than the
number of IRTEs in the remapping table, hardware treats the interrupt request as error.

Unlike the Compatibility interrupt format where all the interrupt attributes are encoded in the
interrupt request address/data, the Remappable interrupt format specifies only the fields needed to
compute the interrupt_index. The attributes of the remapped interrupt request is specified through
the IRTE referenced by the interrupt_index.The interrupt-remapping architecture defines support for
hardware to cache frequently used IRTEs for improved performance. For usages where software may
need to dynamically update the IRTE, architecture defines commands to invalidate the IEC. Chapter 6
describes the caching constructs and associated invalidation commands.

5.3.3 Overview of Interrupt Remapping On Intel®64 Platforms

The following provides a functional overview of the interrupt-remapping hardware:

• An interrupt request is identified by hardware as a write request to interrupt address ranges
0xFEEx_xxxx.

• When interrupt-remapping is not enabled (IRES field Clear in Global Status register), all interrupt
requests are processed per the Compatibility interrupt request format described in Section 5.3.1.

• When interrupt-remapping is enabled (IRES field Set in Global Status register), interrupt requests
are processed as follows:

— Interrupt requests in the Compatibility format (i.e requests with Interrupt Format field Clear)
are processed as follows:

Table 8. Data Fields in Remappable Interrupt Request Format

Data Bits Field Description

31:16 Reserved

When SHV field in the interrupt request address is Set, this field treated
as reserved (0) by hardware.
When SHV field in the interrupt request address is Clear, this field is
ignored by hardware.

15:0 Subhandle

When SHV field in the interrupt request address is Set, this field contains
the 16-bit Subhandle.
When SHV field in the interrupt request address is Clear, this field is
ignored by hardware.

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
42 Order Number: D51397-002

• If the Compatibility format interrupts are disabled (CFIS field in the Global Status register
is Clear), the Compatibility format interrupts are blocked.

• Else, Compatibility format interrupts are processed as pass-through (bypasses interrupt-
remapping).

— Interrupt requests in the Remappable format (i.e. request with Interrupt Format field Set) are
subject to interrupt-remapping as follows:

• The reserved fields in the Remappable interrupt requests are checked to be zero. If the
reserved field checking fails, the interrupt request is blocked. Else, the Source-id, Handle,
SHV, and Subhandle fields are retrieved from the interrupt request.

• Hardware computes the interrupt_index per the algorithm described in Section 5.3.2.1.
The computed interrupt_index is validated to be less than the interrupt-remapping table
size configured in the Interrupt Remap Table Address register. If the bounds check fails,
the interrupt request is blocked.

• If the above bounds check succeeds, the IRTE corresponding to the interrupt_index value
is either retrieved from the Interrupt Entry Cache, or fetched from the interrupt-
remapping table. If the Coherent (C) field is reported as Clear in the Extended Capability
register, the IRTE fetch from memory will not snoop the processor caches. If the Present
(P) field in the retrieved IRTE is Clear, the interrupt request is blocked and treated as fault.
If the IRTE is present, hardware checks if the IRTE is programmed correctly. If an invalid
programming of IRTE is detected, the interrupt request is blocked.

• If the above checks are successful, hardware performs verification of the interrupt
requester per the programming of the SVT, SID and SQ fields in the IRTE as described in
Section 9.5. If the source-id checking fails, the interrupt request is blocked.

• If all of the above checks succeed, a remapped interrupt request is generated per the
programming of the IRTE fields.

• Any of the above checks that result in interrupt request to be blocked is treated as a interrupt-
remapping fault condition. The interrupt-remapping fault conditions are enumerated in the
following section.

5.3.3.1 Interrupt Remapping Fault Conditions

The following table enumerates the various conditions resulting in faults when processing interrupt
requests. A fault conditions is treated as ‘qualified’ if the fault is reported to software only when the
Fault Processing Disable (FPD) field is Clear in the IRTE used to process the faulting interrupt request.

Table 9. Interrupt Remapping Fault Conditions

Interrupt Remapping Fault Conditions Fault
Reason Qualified Behavior

Decoding of the interrupt request per the Remappable request format
detected one or more reserved fields as Set. 20h No

Unsupported
Request

The interrupt_index value computed for the Remappable interrupt request is
greater than the maximum allowed for the interrupt-remapping table size
configured by software.

21h No

The present (P) field in the IRTE entry corresponding to the interrupt_index
of the interrupt request is Clear. 22h Yes

Hardware attempt to access the interrupt-remapping table through the
interrupt-remapping table address (IRTA) field in the Interrupt Remap Table
Address register resulted in error.

23h No

Hardware detected one ore more reserved field(s) that are not initialized to
zero in an IRTE. This also includes cases where software programmed
various conditional reserved fields wrongly.

24h Yes

On Intel®64 platforms, hardware blocked an interrupt request in
Compatibility format due to CFIS field in Global Status register being Clear. 25h No

Hardware blocked a Remappable interrupt request due to verification failure
of the interrupt requester’s source-id per the programming of SID, SVT and
SQ fields in the corresponding IRTE.

26h Yes

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 43

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.4 Interrupt Requests on ItaniumTM Platforms

On ItaniumTM platforms, interrupt requests are handled as follows:

• When interrupt-remapping hardware is disabled (IRES field Clear in Global Status register), all
interrupt requests are processed per the format illustrated in Figure 5-12. Refer to the ItaniumTM
Architecture software developer’s manuals for details on the fields.

• When interrupt-remapping hardware is enabled (IRES field Set in Global Status register), all
interrupt requests are remapped per the Remappable interrupt request format described in
Section 5.3.2.

Figure 5-12. Interrupt Requests on ItaniumTM Platforms

012
1
9

2
0

XX

4 3

Redirection Hint
Destination Mode
Don’t Care

Destination ID

3
1

0
3
1

Address

Data

Vector
Delivery Mode

1
1

Extended
Destination ID

FEEh

1
1

1
2

78
1
0

Reserved
Trigger Mode Level
Trigger Mode

1
3

1
4

1
5

1
6

Reserved

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
44 Order Number: D51397-002

5.5 Programming Interrupt Sources To Generate Remappable
Interrupts

Software performs the following general steps to configure an interrupt source to generate
remappable interrupts:

• Allocate a free interrupt remap table entry (IRTE) and program the remapped interrupt attributes
per the IRTE format described in Section 9.5.

• Program the interrupt source to generate interrupts in remappable format with appropriate
handle, subhandle and SHV fields that effectively encodes the index of the allocated IRTE as the
interrupt_index defined in Section 5.3.2.1. The interrupt_index may be encoded using the handle,
subhandle and SHV fields in one of the following ways:

— SHV = 0; handle = interrupt_index;

— SHV = 1; handle = interrupt_index; subhandle = 0;

— SHV = 1; handle = 0; subhandle = interrupt_index;

— SHV = 1; handle = interrupt_index - subhandle;

The following sub-sections describes example programming for I/OxAPIC, MSI and MSI-X interrupt
sources to generate interrupts per the Remappable interrupt request format.

5.5.1 I/OxAPIC Programming

Software programs the Redirection Table Entries (RTEs) in I/OxAPICs as illustrated in Figure 5-13.

• The Interrupt_Index[14:0] is programmed in bits 63:49 of the I/OxAPIC RTE. The most
significant bit of the Interrupt_Index (Interrupt_Index[15]) is programmed in bit 11 of the
I/OxAPIC RTE.

• Bit 48 in the I/OxAPIC RTE is Set to indicate the Interrupt is in Remappable format.

• RTE bits 10:8 is programmed to 000b (Fixed) to force the SHV (SubHandle Valid) field as Clear in
the interrupt address generated.

Figure 5-13. I/OxAPIC RTE Programming

Delivery Status

0

Interrupt_Index [15]

Trigger Mode

Vector

Mask

4
8

Remote IRR

6
3

Interrupt Polarity

78
1
6

Reserved (0)

1
7

Interrupt_Index [14:0]

4
7

1
5

1
4

1
3

1
2

000

1
1

1
0

4
9

1

Interrupt Format (1b)

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 45

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

• The Trigger Mode field (bit 15) in the I/OxAPIC RTE must match the Trigger Mode in the IRTE
referenced by the I/OxAPIC RTE. This is required for proper functioning of level-triggered
interrupts.

• For platforms using End-of-Interrupt (EOI) broadcasts, Vector field in the I/OxAPIC RTEs for level-
triggered interrupts (i.e. Trigger Mode field in I/OxAPIC RTE is Set, and Trigger Mode field in the
IRTE referenced by the I/OxAPIC RTE is Set), must match the Vector field programmed in the
referenced IRTE. This is required for proper processing of End-Of-Interrupt (EOI) broadcast by the
I/OxAPIC.

• Programing of all other fields in the I/OxAPIC RTE are not impacted by interrupt remapping.

5.5.2 MSI and MSI-X Register Programming

Figure 5-14 illustrates the programming of MSI/MSI-X address and data registers to support
remapping of the message signalled interrupt.

Specifically, each address and data registers must be programmed as follows:

• Address register bits 63/31: 20 must be programmed with the interrupt address identifier value of
0FEEh.

• Address register bits 19:5 is programmed with Interrupt_Index[14:0] and address register bit 2
must be programmed with Interrupt_Index[15]. The Interrupt_Index is the index of the Interrupt
Remapping Table Entry (IRTE) that remaps the corresponding interrupt requests.

— Devices supporting MSI allows software to enable multiple vectors (up to 32) in powers of 2.
For such multiple-vector MSI usages, software must allocate N contiguous IRTE entries
(where N is the number of vectors enabled on the MSI device) and the interrupt_index value
programmed to the Handle field must be the index of the first IRTE out of the N contiguous
IRTEs allocated. The device owns the least significant log-N bits of the data register, and
encodes the relative interrupt number (0 to N-1) in these bits of the interrupt request
payload.

• Address register bit 4 must be Set to indicate the interrupt is in Remappable format.

• Address register bit 3 is Set so as to set the SubHandle Valid (SHV) field in the generated
interrupt request.

• Data register is programmed to 0h.

Figure 5-14. MSI-X Programming

012
1
9

2
0

XX

4 3

Don’t Care

0FEEh

63 /
31

31/
15

Address

Data

1

Interrupt Format (1)

0h

Interrupt_Index [15]
SHV (1)

0
Interrupt_index[14:0]

1

5

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
46 Order Number: D51397-002

5.6 Remapping Hardware - Interrupt Programming

Interrupts generated by the remapping hardware itself (Fault Event and Invalidation Completion
Events) are not subject to interrupt remapping. The following sections describe the programming of
the Fault Event and Invalidation Completion Event data/address registers on Intel®64 platforms and
on ItaniumTM platforms.

5.6.1 Programming on Intel®64 Platforms

Figure 5-15. Remapping Hardware Interrupt Programming on Intel®64

012
1
9

2
0

XX

4 3

Red irec tion H in t
D estina tion M ode
D on ’t Ca re

D estina tion ID
(AP IC ID 7 :0)

3
1

Reserved (0)

FEEh

1
1

1
2

0
3
1

0 h

Vecto r
D e live ry M ode
0: F ixed
1: Low est P rio rity

78

Reserved (0)

0
3
1

Reserved (0)

D a ta R eg iste r

Add ress R eg iste r

U pper Add ress R eg iste r

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 47

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.6.2 Programming on ItaniumTM Platforms

5.7 Handling of Platform Events

Platforms supporting interrupt remapping are highly recommended to use side-band mechanisms
(such as dedicated pins between chipset/board-logic and CPU), or in-band methods (such as
platform/vendor defined messages) to deliver platforms events such as SMI/PMI/NMI/INIT/MCA. This
is to avoid the dependence on system software to deliver these critical platform events.

Some existing platforms are known to use I/OxAPIC RTEs (Redirection Table Entries) to deliver SMI,
PMI and NMI events. There are at least two existing initialization approaches for such platform events
delivered through I/OxAPIC RTEs.

• Some existing platforms report to system software the I/OxAPIC RTEs connected to platform
event sources through ACPI, enabling system software to explicitly program/enable these RTEs.
Examples for this include, the 'NMI Source Reporting' structure in ACPI MADT (for reporting NMI
source), and 'Platform Interrupt Source' structure in ACPI MADT (for reporting PMI source in
ItaniumTM platforms).

• Alternatively, some existing platforms program the I/OxAPIC RTEs connected to specific platform
event sources during BIOS initialization, and depend on system software to explicitly preserve
these RTEs in the BIOS initialized state. (For example, some platforms are known to program
specific I/OxAPIC RTE for SMI generation through BIOS before handing control to system

Figure 5-16. Remapping Hardware Interrupt Programming on ItaniumTM

012
1
9

2
0

XX

4 3

Red irection H in t
D estina tion M ode
D on ’t Care

D est. ID

3
1

Ext. D est. ID

FEEh

1
1

1
2

0
3
1

0 h

Vecto r
D e live ry M ode

78

Reserved (0)

0
3
1

Reserved (0)

D a ta Reg iste r

Add ress Reg iste r

U pper Address Reg iste r

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
48 Order Number: D51397-002

software, and depend on system software preserving the RTEs pre-programmed with SMI delivery
mode).

On platforms supporting interrupt-remapping, delivery of SMI, PMI and NMI events through I/OxAPIC
RTEs require system software programming the respective RTEs to be properly remapped through the
Interrupt Remapping Table. To avoid this management burden on system software, platforms
supporting interrupt remapping are highly recommended to avoid delivering platform events through
I/OxAPIC RTEs, and instead deliver them through dedicated pins (such as the processor’s xAPIC
LINTn input) or through alternative platform-specific messages.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 49

Hardware Caching Details—Intel® Virtualization Technology for Directed I/O

6 Hardware Caching Details

This chapter describes the architectural behavior associated with the following hardware caches and
the associated invalidation operations:

• Context-cache

• IOTLB and PDE (Page Directory Entry) Cache

• Interrupt Entry Cache (IEC)

• Device-IOTLB

6.1 Caching Mode

The Caching Mode (CM) field in Capability register indicates if the underlying implementation caches
not-present and erroneous entries. When the CM field is reported as Set, any software updates to the
remapping structures (including updates to not-present entries) requires explicit invalidation of the
caches.

Hardware implementations of this architecture must support operation corresponding to CM=0.
Operation corresponding to CM=1 may be supported by software implementations (emulation) of this
architecture for efficient virtualization. DMA-remapping software drivers should be written to handle
both caching modes.

Software implementations virtualizing the remapping architecture (such as a VMM emulating
remapping hardware to an operating system running within a guest partition) may report CM=1 to
efficiently virtualize the hardware. Software virtualization typically requires the remapping structures
to be shadowed in software. Reporting the Caching Mode as Set for the virtual hardware requires the
guest software to explicitly issue invalidation operations on the virtual hardware for any/all updates to
the guest remapping structures. The virtualizing software may trap these virtual invalidation
operations to keep the shadow tables consistent to any guest structure modifications, without
resorting to other less efficient techniques (such as write-protecting the guest structures through
processor page-tables).

6.1.1 Context Caching

For implementations reporting Caching Mode (CM) as Clear in the Capability register, if any of the
following fault conditions are encountered as part of accessing a root-entry or a context-entry, the
resulting entry is not cached in the context-cache.

• Attempt to access the root table through the RTA field in the Root-entry Table Address register
resulted in error.

• Present (P) field of the root-entry is Clear.

• Invalid programming of one or more fields in the present root-entry.

• Attempt to access a context-entry table through the Context Table Pointer (CTP) field in the
present root-entry resulted in error.

• Present (P) field of the context-entry is Clear.

• Invalid programming of one or more fields in the present context-entry.

• One or more non-zero reserved fields in the present root-entry or context-entry.

Intel® Virtualization Technology for Directed I/O—Hardware Caching Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
50 Order Number: D51397-002

For implementations reporting Caching Mode (CM) as Set in the Capability register, above conditions
may cause caching of the entry that resulted in the fault1.

Since information from the present context-entries (such as domain-id) may be utilized to tag the
IOTLB and the page-directory caches, to ensure the updates are visible to hardware, software must
invalidate the IOTLB (domain-selectively or globally) after the context-cache invalidation is
completed.

6.1.2 IOTLB Caching

IOTLB caches effective translations for a given DMA address, including the cumulative Read and Write
permissions from the page-walk leading to this translation.

For implementations reporting Caching Mode (CM) as Clear in the Capability register, IOTLB caches
only valid mappings (i.e. results of successful page-walks with effective translations that has at least
one of the cumulative Read and Write permissions from the page-walk being Set). Specifically, if any
of the following conditions are encountered, the results are not cached in the IOTLB:

• Conditions listed in Section 6.1.1.

• Attempt to access the page directory/table through the ASR field in the context-entry or the
ADDR field of the previous page-directory entry in the page walk resulted in error.

• Read (R) and Write (W) fields of a page directory/table entry encountered in a page-walk is Clear
(not-present entry).

• Invalid programming of one or more fields in the present page directory/table entry.

• One or more non-zero reserved fields in the present page directory/table entry.

• The cumulative read and write permissions from the page-walk was both Clear (effectively not-
present entry).

For implementations reporting Caching Mode (CM) as Set in the Capability register, above conditions
may cause caching of erroneous or not-present mappings in the IOTLB.

6.1.3 Page Directory Entry (PDE) Caching

Support for PDE caching is implementation dependent, and transparent to software (except for the
Invalidation Hint (IH) in IOTLB invalidation command).

• For implementations reporting Caching Mode (CM) as Clear in the Capability register, if any of the
following fault conditions are encountered as part of accessing a page-directory entry, the
resulting entry is not cached in the non-leaf cache.

• Attempt to access the page-directory through either the ASR field of context-entry (in case of root
page directory), or the ADDR field of the previous page directory entry in the page-walk resulted
in error.

• Read (R) and Write (W) fields of the page-directory entry is Clear (not present entry).

• Invalid programming of one ore more fields in the present page directory entry.

• One or more non-zero reserved fields in the present page directory entry.

For implementations reporting Caching Mode (CM) as Set in the Capability register, above conditions
may cause caching of the corresponding page-directory entries.

6.1.4 Interrupt Entry Caching

Implementations supporting interrupt remapping may cache frequently used interrupt remapping
table entries in the Interrupt Entry Cache (IEC).

1. If a fault was detected without a present context-entry, the reserved domain-id value of 0 is used
to tag the cached faulting entry.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 51

Hardware Caching Details—Intel® Virtualization Technology for Directed I/O

For implementations reporting Caching Mode (CM) as Clear in the Capability register, if any of the
interrupt-remapping fault conditions described in Section 5.3.3.1 is encountered, the resulting entry
is not cached in the IEC.

For implementations reporting Caching Mode (CM) as Set in the Capability register, interrupt-
remapping fault conditions may cause caching of the corresponding interrupt remapping entries.

6.2 Cache Invalidations

For software to invalidate the various caching structures, the architecture supports the following two
types of invalidation interfaces:

• Register based invalidation interface

• Queued invalidation interface

All hardware implementations are required to support the register based invalidation interface.
Implementations report the queued invalidation support through the Extended Capability Register.

The following sections provides more details on these hardware interfaces.

6.2.1 Register Based Invalidation Interface

The register based invalidations provides a synchronous hardware interface for invalidations.
Software is expected to write to the invalidation registers to submit invalidation command and may
poll on these registers to check for invalidation completion. For optimal performance, hardware
implementations are recommended to complete an invalidation request with minimal latency.

The following sub-sections describe the invalidation command registers. Hardware implementations
must handle commands through these registers irrespective of remapping hardware enable status (i.e
irrespective of TES and IES status in the Global Status register).

6.2.1.1 Context Command Register:

Context command register supports invalidating the context cache. The architecture defines the
following types of context-cache invalidation requests. Hardware implementations may perform the
actual invalidation at a coarser granularity if the requested invalidation granularity is not supported.

• Global Invalidation: All context-cache entries cached at a remapping hardware unit are
invalidated through a global invalidate.

• Domain-Selective Invalidation: Context-cache entries corresponding to a specific domain
(specified by the domain-id) are invalidated through a domain-selective invalidate.

• Device-Selective Invalidation: Context-cache entries corresponding to a specific device within a
domain are invalidated through a device-selective invalidate.

When modifying root or context entries referenced by more than one remapping hardware units in a
platform, software is responsible to explicitly invalidate the context-cache at each of these hardware
units.

6.2.1.2 IOTLB Invalidation Registers

IOTLB invalidation is supported through two 64-bit registers; (a) IOTLB Invalidation register and (b)
Invalidation Address register. The architecture defines the following types of IOTLB invalidation
requests. Hardware implementations may perform the actual invalidation at a coarser granularity if
the requested invalidation granularity is not supported.

• Global Invalidation: All entries in the IOTLB are invalidated through a global invalidate.

• Domain-Selective Invalidation: Entries in the IOTLB that corresponds to a specific domain
(specified by the domain-id) are invalidated through a domain-selective invalidate.

Intel® Virtualization Technology for Directed I/O—Hardware Caching Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
52 Order Number: D51397-002

• Page-Selective Invalidation: Entries in the IOTLB that corresponds to the specified DMA
address(es) of a domain are invalidated through a page-selective invalidate.

When modifying page-table entries referenced by more than one remapping hardware units in a
platform, software is responsible to explicitly invalidate the IOTLB at each of these hardware units.

Hardware implementations supporting PDE (non-leaf) caching functions as follows:

• Globally invalidate the PDE-caches on IOTLB global invalidations.

• Domain-selective (or global) invalidation of PDE-caches on IOTLB domain-selective invalidations.

• For IOTLB page-selective invalidations with Invalidation Hint (IH) field Set, hardware
implementations are recommended to preserve the cached PDEs.

• For IOTLB page-selective invalidations with IH field Clear, hardware must invalidate the
appropriate PDE-cache entries. This may be achieved by invalidating only the cached PDEs
corresponding to the mappings specified in the Invalidation Address registers, or through a
domain-selective (or global) invalidation of the PDE caches. The actual invalidation granularity
reported by hardware in the IOTLB Invalidation registers is always the granularity at which the
invalidation was performed on the IOTLB.

6.2.2 Queued Invalidation Interface

The queued invalidation provides an advanced interface for software to submit invalidation requests
to hardware and to synchronize invalidation completions with hardware. Hardware implementations
report queued invalidation support through the Extended Capability register.

The queued invalidations is expected to be most beneficial for the following software usages:

• Usages that frequently map and un-map I/O buffers in the remapping page-tables (causing
frequent invalidations).

• Usages where page-selective operation requests frequently span pages that are not virtually
contiguous.

• Usages where software can overlap processing with invalidations. (i.e., Usages where software
does not always block while an invalidation operation is pending in hardware).

• Invalidation operations that are latency prone (such as invalidating Device-IOTLBs on a device
across the PCI Express interconnect).

• Usages of VMM virtualizing remapping hardware, where VMM may improve the virtualization
performance by allowing guests to queue invalidation requests (instead of intercepting guest
MMIO accesses for each invalidation request as required by the register based interface).

The queued invalidation interface uses a Invalidation Queue (IQ) which is a circular buffer in system
memory. Software submits commands by writing Invalidation Descriptors to the IQ. The following
registers are defined to configure and manage the IQ:

• Invalidation Queue Address Register: Software programs this register to configure the base
address and size of the contiguous memory region in system memory hosting the Invalidation
Queue.

• Invalidation Queue Head Register: This register points to the invalidation descriptor in the IQ that
hardware will process next. The Invalidation Queue Head register is incremented by hardware
after fetching a valid descriptor from the IQ. Hardware interprets the IQ as empty when the head
and tail registers are equal.

• Invalidation Queue Tail Register: This register points to the invalidation descriptor in the IQ to be
written next by software. Software increments this register after writing one or more invalidation
descriptors to the IQ.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 53

Hardware Caching Details—Intel® Virtualization Technology for Directed I/O

To enable queued invalidations, software must:

• Ensure all invalidation requests submitted to hardware through the invalidation registers are
completed. (i.e. no pending invalidation requests in hardware).

• Setup the IQ address and size through the Invalidation Queue Address register.

• Enable the queued invalidation interface through the Global Command register. When enabled,
hardware sets the QIES field in the Global Status register.

When the queued invalidation is enabled, software must submit invalidation commands only through
the IQ (and not through any invalidation command registers).

Hardware fetches descriptors from the IQ in FIFO order starting from the Head register whenever all
of the following conditions are true. This is independent of the remap hardware enable status (state of
TES and IES fields in Global Status Register).

• QIES field in the Global Status register is Set (indicating queued invalidation is enabled)

• IQ is not empty (i.e. Head and Tail pointer registers are not equal)

• There is no pending Invalidation Queue Error or Invalidation Time-out Error (IQE and ITE fields in
the Fault Status Register are both Clear)

Hardware implementations may fetch one or more descriptors together. However, hardware must
increment the Invalidation Queue Head register only after verifying the fetched descriptor to be valid.
Hardware handling of invalidation queue errors are described in Section 6.2.2.7.

Once enabled, to disable the queued invalidation interface, software must:

• Quiesce the invalidation queue. The invalidation queue is considered quiesced when the queue is
empty (head and tail registers equal) and the last descriptor completed is an Invalidation Wait
Descriptor (which indicates no invalidation requests are pending in hardware).

• Disable queued invalidation. The queued invalidation interface is disabled through the Global
Command register. When disabled, hardware clears the QIES field in the Global Status Register.

The following subsections describe the various Invalidation Descriptors. All descriptors are 128-bit
sized. Type field (bits 3:0) of each descriptor identifies the descriptor type. Software must program
the reserved fields in the descriptors as zero.

6.2.2.1 Context Cache Invalidate Descriptor

The Context Cache Invalidate Descriptor (cc_inv_dsc) allows software to invalidate the context cache.
The descriptor includes the following parameters:

Figure 6-17. Context Cache Invalidate Descriptor

01hSource-ID Domain-IDF
M

0

G

Rsvd

RsvdRsvd

3
1 456

1
5

1
6

4
7

4
8

4
9

5
0

6
3

3
2

1
2
7

6
4

3

Intel® Virtualization Technology for Directed I/O—Hardware Caching Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
54 Order Number: D51397-002

• Granularity (G): The G field indicates the requested invalidation granularity. The encoding of the
G field is same as the CIRG field in the Context Command register (described in Section 10.4.7).
Hardware implementations may perform coarser invalidation than the granularity requested.

• Domain-ID (DID): For domain-selective and device-selective invalidations, the DID field indicates
the target domain-id.

• Source-ID (SID): For device-selective invalidations, the SID field indicates the target device-id.

• Function Mask (FM): The Function Mask field indicates the bits of the SID field to be masked for
device-selective invalidations. The usage and encoding of the FM field is same as the FM field
encoding in the Context Command register.

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
register) must implicitly perform a write buffer flushing before invalidating the context-cache. Refer to
Section 11.1 for write buffer flushing requirements.

Since information from the context-cache may be used to tag the IOTLB, software must always follow
a context-cache invalidation with an IOTLB invalidation.

6.2.2.2 IOTLB Invalidate Descriptor

The IOTLB Invalidate Descriptor (iotlb_inv_dsc) allows software to invalidate the IOTLB and PDE-
cache. The descriptor includes the following parameters:

• Granularity (G): The G field indicates the requested invalidation granularity (global, domain-
selective or page-selective). The encoding of the G field is same as the IIRG field in the IOTLB
Invalidation registers (described in Section 10.4.8). Hardware implementations may perform
coarser invalidation than the granularity requested.

• Drain Reads (DR): Software sets this flag to indicate hardware must drain DMA read requests that
are already processed by the remapping hardware, but queued within the Root-Complex to be
completed. When this flag is Set, hardware must perform the DMA read drain before the next
Invalidation Wait Descriptor (described in Section 6.2.2.5) is completed. Section 6.3 describes
hardware support for DMA draining.

• Drain Writes (DW): Software sets this flag to indicate hardware must drain relevant DMA write
requests that are already processed by the remapping hardware, but queued within the Root-
Complex to be completed. When this flag is Set, hardware must drain the relevant DMA writes
before the next Invalidation Wait Descriptor is completed. Section 6.3 describes hardware support
for DMA draining.

• Domain-ID (DID): For domain-selective and page-selective invalidations, the DID field indicates
the target domain-id. This field is ignored by hardware for global invalidations.

• Invalidation Hint (IH): For page-selective invalidations, the Invalidation Hint specifies if the
corresponding entries in the PDE-cache needs to be invalidated or not. For software usages that
updates only the leaf PTEs, the PDE-cache can be preserved by specifying the Invalidation Hint.

Figure 6-18. IOTLB Invalidate Descriptor

02hDID

0

GRsvdRsvd

3
1 456

1
5

1
6

6
3

3
2

1
2
7

6
4

3

ADDR [63:12] IH AM

6
9

7
0

7
1

Rsvd

7
5

7
6

78
D
R

D
W

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 55

Hardware Caching Details—Intel® Virtualization Technology for Directed I/O

The encoding for the IH field is same as the IH field encoding in the IOTLB Address register(s).
This field is ignored by hardware for global and domain-selective invalidations.

• Address (ADDR): For page-selective invalidations, the Address field indicates the starting page
address of the mapping(s) that needs to be invalidated. This field is ignored by hardware for
global and domain-selective invalidations.

• Address Mask (AM): For page-selective invalidations, the Address Mask specifies the number of
contiguous pages that needs to be invalidated. The encoding for the AM field is same as the AM
field encoding in the Invalidate Address register (refer Section 10.4.8.2).

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
register) must implicitly perform a write buffer flushing before invalidating the IOTLB.

6.2.2.3 Device-IOTLB Invalidate Descriptor

The Device-IOTLB Invalidate Descriptor (dev_iotlb_inv_dsc) allows software to invalidate the Device-
IOTLB on a PCI Express endpoint device. The descriptor includes the following parameters:

• Source-ID (SID): The SID field indicates the requestor-id of the PCI Express endpoint device
whose Device-IOTLB needs to be invalidated.

• Address (ADDR): The address field indicates the starting untranslated address for the mapping(s)
that needs to be invalidated. The Address field is qualified by the S field.

• Size (S): The size field indicates the number of consecutive pages targeted by this invalidation
request. If S field is zero, a single page at page address specified by Address [63:12] is requested
to be invalidated. If S field is Set, the least significant bit in the Address field with value 0b
indicates the invalidation address range. For example, if S field is Set and Address[12] is Clear, it
indicates an 8KB invalidation address range with base address in Address [63:13]. If S field and
Address[12] is Set and bit 13 is Clear, it indicates a 16KB invalidation address range with base
address in Address [63:14], etc.

• Max Invalidations Pending (MaxInvsPend): This field is a hint to hardware to indicate the
maximum number of pending invalidation requests the specified PCI Express endpoint device can
handle optimally. All devices are required to support up to 32 pending invalidation requests, but
the device may put back pressure on the PCI Express link for multiple pending invalidations
beyond MaxInvsPend. A value of 0h in MaxInvsPend field indicates the device is capable of
handling maximum (32) pending invalidation requests without throttling the link. Hardware
implementations may utilize this field to throttle the number of pending invalidation requests
issued to the specified device.

Since translation requests from a device may be serviced by hardware from the IOTLB, software must
always request IOTLB invalidation before requesting corresponding Device-IOTLB invalidation.

Figure 6-19. Device-IOTLB Invalidate Descriptor

03hSID

0

Rsvd

3
1 4

1
5

1
6

4
7

6
3

3
2

1
2
7

6
4

3

ADDR [63:12] S

6
5

7
5

Rsvd

7
6

MaxInvs
Pend

2
0

Rsvd

2
1

Rsvd

4
8

Intel® Virtualization Technology for Directed I/O—Hardware Caching Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
56 Order Number: D51397-002

6.2.2.4 Interrupt Entry Cache Invalidate Descriptor

The Interrupt Entry Cache Invalidate Descriptor (iec_inv_dsc) allows software to invalidate the
Interrupt Entry Cache. The descriptor includes the following parameters:

• Granularity (G): This field indicates the granularity of the invalidation request. If Clear, a global
invalidation of the interrupt-remapping cache is requested. If Set, a index-selective invalidation is
requested.

• Interrupt Index (IIDX): This field specifies the index of the interrupt remapping entry that needs
to be invalidated through a index-selective invalidation.

• Index Mask (IM): For index-selective invalidations, the index-mask specifies the number of
contiguous interrupt indexes that needs to be invalidated. The encoding for the IM field is
described below in Table 10).

As part of IEC invalidation, hardware must drain interrupt requests that are already processed by the
remapping hardware, but queued within the Root-Complex to be delivered to the processor.
Section 6.4 describes hardware support for interrupt draining.

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
register) must implicitly perform a write buffer flushing before invalidating the Interrupt Entry Cache.

Figure 6-20. Interrupt Entry Cache Invalidate Descriptor

Table 10. Index Mask Programming

Index Mask
Value

Index bits
Masked

Mappings
Invalidated

0 None 1

1 0 2

2 1:0 4

3 2:0 8

4 3:0 16

...

04hIIDX

0

G

Rsvd

RsvdRsvd

3
1 45

6
3

3
2

1
2
7

6
4

3
4
7

4
8

IM

2
7

2
6

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 57

Hardware Caching Details—Intel® Virtualization Technology for Directed I/O

6.2.2.5 Invalidation Wait Descriptor

The Invalidation Wait Descriptor (inv_wait_dsc) descriptor allows software to synchronize with
hardware for the invalidation request descriptors submitted before the wait descriptor. The descriptor
includes the following parameters:

• Status Write (SW): Indicate the invalidation wait descriptor completion by performing a coherent
DWORD write of the value in the Status Data field to the address specified in the Status Address
field.

• Status Address and Data: Status address and data is used by hardware to perform wait descriptor
completion status write when the SW field is Set. Hardware behavior is undefined if the Status
Address specified is not an address route-able to memory (such as peer address, interrupt
address range of 0xFEEX_XXXX etc.). The Status Address and Data fields are ignored by
hardware when the Status Write (SW) field is Clear.

• Interrupt Flag (IF): Indicate the invalidation wait descriptor completion by generating an
invalidation completion event per the programming of the Invalidation Completion Event
registers. Section 6.2.2.6 describes details on invalidation event generation.

• Fence Flag (FN): Indicate descriptors following the invalidation wait descriptor must be processed
by hardware only after the invalidation wait descriptor completes.

Section 6.2.2.8 describes queued invalidation ordering considerations. Hardware completes an
invalidation wait command as follows:

• If a status write is specified in the wait descriptor (SW=1), hardware performs a coherent write of
the status data to the status address.

• If an interrupt is requested in the wait descriptor (IF=1), hardware sets the IWC field in the
Invalidation Completion Status register. An invalidation completion interrupt may be generated as
described in the following section.

6.2.2.6 Hardware Generation of Invalidation Completion Events

The invalidation event interrupt generation logic functions as follows:

• At the time hardware sets the IWC field, it checks if the IWC field is already Set to determine if
there is a previously reported invalidation completion interrupt condition that is yet to be serviced
by software. If IWC field is already Set, the invalidation event interrupt is not generated.

• If the IWC field is not already Set, the Interrupt Pending (IP) field in the Invalidation Event
Control register is Set. The Interrupt Mask (IM) field is then checked and one of the following
conditions is applied:

— If IM field is Clear, the fault event is generated along with clearing the IP field.

Figure 6-21. Invalidation Wait Descriptor

05h

0

Status Address [63:2]

I
F

3
1 45

6
3

3
2

1
2
7

6
4

3

Status Data S
W

6

6
5

6
6

Rsvd

Rsvd

7
F
N

Intel® Virtualization Technology for Directed I/O—Hardware Caching Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
58 Order Number: D51397-002

— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:

• If IP field was Set when software clears the IM field, the fault event interrupt is generated along
with clearing the IP field.

• If IP field was Set when software services the pending interrupt condition (indicated by IWC field
in the Invalidation Completion Status register being Clear), the IP field is cleared.

The invalidation completion event interrupt must push any in-flight invalidation completion status
writes, including status writes that may have originated from the same inv_wait_dsc for which the
interrupt was generated. Similarly, read completions due to software reading any of the remapping
hardware registers must push (commit) any in-flight invalidation completion event interrupts and
status writes generated by the respective hardware unit.

The invalidation completion event interrupts are never subject to interrupt remapping.

6.2.2.7 Hardware Handling of Queued Invalidation Interface Errors

Hardware handles the various queued invalidation interface error conditions as follows:

• Invalidation Queue Errors: If hardware detects an invalid Tail pointer at the time of fetching a
descriptor, or detects an error when fetching a descriptor from the invalidation queue, or detects
that the fetched descriptor fetched is invalid, hardware sets the IQE (Invalidation Queue Error)
field in the Fault Status register. A fault event may be generated based on the programming of the
Fault Event Control register. The Head pointer register is not incremented, and references the
descriptor associated with the queue error. No new descriptors are fetched from the Invalidation
Queue until software clears the IQE field in the Fault Status register. Tail pointer register updates
by software while the IQE field is Set does not cause descriptor fetches by hardware. Any
invalidation commands ahead of the invalid descriptor that are already fetched and pending in
hardware at the time of detecting the invalid descriptor error are completed by hardware as
normal.

• Invalid Device-IOTLB Invalidation Response: If hardware receives an invalid Device-IOTLB
invalidation response, hardware sets the Invalidation Completion Error (ICE) field in the Fault
Status register. A fault event may be generated based on the programming of the Fault Event
Control register. Hardware continues with processing of descriptors from the Invalidation Queue
as normal.

• Device-IOTLB Invalidation Response Time-out: If hardware detects a Device-IOTLB invalidation
response time-out, hardware frees the corresponding ITag and sets the ITE (Invalidation Time-
out Error) field in the Fault Status register. A fault event may be generated based on the
programming of the Fault Event Control register. No new descriptors are fetched from the
Invalidation Queue until software clears the ITE field in the Fault Status register. Tail pointer
register updates by software while the ITE field is Set does not cause descriptor fetches by
hardware. At the time ITE field is Set, hardware aborts any inv_wait_dsc commands pending in
hardware. Any invalidation responses received while ITE field is Set are processed as normal (as
described in Section 4.2). Since the time-out could be for any (one or more) of the pending
dev_iotlb_inv_dsc commands, execution of all descriptors including and behind the oldest
pending dev_iotlb_inv_dsc is not guaranteed.

6.2.2.8 Queued Invalidation Ordering Considerations

Hardware must support the following ordering considerations when processing descriptors fetched
from the invalidation queue:

• Hardware must execute an IOTLB Invalidation Descriptor (iotlb_inv_dsc) only after all Context
Cache Invalidation Descriptors (cc_inv_dsc) ahead of it in the Invalidation Queue are completed.

• Hardware must execute a Device-IOTLB Invalidation Descriptor (dev_iotlb_inv_dsc) only after all
IOTLB Invalidation Descriptors (iotlb_inv_dsc) and Interrupt Entry Cache Invalidation Descriptors
(iec_inv_dsc) ahead of it in the Invalidation Queue are completed.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 59

Hardware Caching Details—Intel® Virtualization Technology for Directed I/O

• Hardware must report completion of an Invalidation Wait Descriptor (inv_wait_dsc) only after at
least all the descriptors ahead of it in the Invalidation Queue and behind the previous
inv_wait_dsc are completed.

• If the Fence (FN) flag is Clear in a inv_wait_dsc, hardware may execute descriptors following the
inv_wait_dsc before the wait command is completed. If the Fence (FN) flag is Set in a
inv_wait_dsc, hardware must execute descriptors following the inv_wait_dsc only after the wait
command is completed.

• When a Device-IOTLB invalidation time-out is detected, hardware must not complete any pending
inv_wait_dsc commands.

6.3 DMA Draining

DMA requests that are already processed by the remapping hardware, but queued within the Root-
Complex to be completed are referred as non-committed DMA requests. DMA draining refers to
hardware pushing (committing) these DMA requests to the global ordering point. Hardware
implementations report support for DMA draining through the Capability registers.

A DMA write request to system memory is considered drained when the effects of the write are visible
to processor accesses to addresses targeted by the DMA write request. A DMA read request to system
memory is considered drained when the Root-Complex has finished fetching all of its read response
data from memory.

Requirements for DMA draining are described below:

• DMA draining applies only to requests to memory and do not guarantee draining of requests to
peer destinations.

• DMA draining applies only for untranslated requests (AT=00b), including those processed as pass-
through (Context-entry specifying Translation Type as 10b) by the remapping hardware.

• Draining of translated DMA requests (AT=10b) requires issuing an Device-IOTLB invalidation
command to the endpoint device. Endpoint devices supporting Address Translation Services (ATS)
are required to wait for pending translated read responses (or keep track of pending translated
read requests and discard their read responses when they arrive) before issuing the ATS
invalidation completion message. This effectively guarantees DMA read draining of translated
requests. The ATS invalidation completion message is issued on the posted channel and pushes all
writes from the device (including any translated writes) ahead of it. To ensure proper write
draining of translated requests, remapping hardware must process ATS invalidation completion
messages per the PCI Express ordering rules (i.e., after processing all posted requests ahead of
it).

• Read and write draining of untranslated DMA requests are required when DMA-remapping
hardware status changes from disabled to enabled. The draining must be completed before
hardware sets the TES field in Global Status register (which indicates DMA remap hardware
enabled). Hardware implementations may perform draining of untranslated DMA requests when
remapping hardware status changes from enabled to disabled.

• Read and write draining of untranslated DMA requests are performed on IOTLB invalidation
requests specifying Drain Read (DR) and Drain Write (DW) flags respectively. For IOTLB
invalidations submitted through the IOTLB Invalidate register (IOTLB_REG), DMA draining must
be completed before hardware clears the IVT field in the register (which indicates invalidation
completed). For IOTLB invalidations submitted through the queued invalidation interface, DMA
draining must be completed before the next Invalidation Wait Descriptor (inv_wait_dsc) is
completed by hardware.

— For global IOTLB invalidation requests specifying DMA read/write draining, all non-committed
DMA read/write requests queued within the Root-Complex are drained.

— For domain-selective IOTLB invalidation requests specifying DMA read/write draining,
hardware only guarantees draining of non-committed DMA read/write requests to the domain
specified in the invalidation request.

Intel® Virtualization Technology for Directed I/O—Hardware Caching Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
60 Order Number: D51397-002

— For page-selective IOTLB invalidation requests specifying DMA read/write draining, hardware
only guarantees draining of non-committed DMA read/write requests with untranslated
address overlapping the address range specified in the invalidation request and to the
specified domain.

6.4 Interrupt Draining

Interrupt requests that are already processed by the remapping hardware, but queued within the
Root-Complex to be completed are referred as non-committed interrupt requests. Interrupt draining
refers to hardware pushing (committing) these interrupt requests to the appropriate processor’s
interrupt controller (Local xAPIC). An interrupt request is considered drained when the interrupt is
accepted by the processor Local xAPIC (for fixed and lowest priority delivery mode interrupts this
means the interrupt is at least recorded in the Local xAPIC Interrupt Request Register (IRR)).

Requirements for interrupt draining are described below:

• Interrupt draining applies to all non-committed interrupt requests, including Compatibility format
interrupt requests processed as pass-through on Intel®64 platforms.

• Interrupt draining is required when interrupt-remapping hardware status changes from disabled
to enabled. The draining must be completed before hardware sets the IES field in Global Status
register (indicating interrupt-remapping hardware is enabled). Hardware implementations may
perform interrupt draining when interrupt-remapping hardware status changes from enabled to
disabled.

• Interrupt draining is performed on Interrupt Entry Cache (IEC) invalidation requests. For IEC
invalidations submitted through the queued invalidation interface, interrupt draining must be
completed before the next Invalidation Wait Descriptor is completed by hardware.

— For global IEC invalidation requests, all non-committed interrupt requests queued within the
Root-Complex are drained.

— For index-selective IEC invalidation requests, hardware only guarantees draining of non-
committed interrupt requests referencing interrupt indexes specified in the invalidation
request.

• The Root-Complex considers an interrupt request as drained when it receives acknowledgement
from the processor complex. Interrupt draining requires processor complex to ensure the
interrupt request received is accepted by the Local xAPIC (for fixed interrupts, at least recorded in
the IRR) before acknowledging the request to the Root-Complex.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 61

Hardware Fault Handling Details—Intel® Virtualization Technology for Directed I/O

7 Hardware Fault Handling Details

This section describes the hardware handling of various fault conditions.

7.1 Fault Categories

The fault conditions are broadly categorized as follows:

• DMA-remapping Faults: Error conditions detected when remapping DMA requests are handled as
DMA-remapping faults. Table 3, Table 4 and Table 6 described the fault conditions related to
untranslated, translation request and translated DMA processing respectively.

• Interrupt-remapping Faults: Error conditions detected when remapping interrupt requests are
handled as interrupt-remapping faults. Table 9 described the fault conditions related to interrupt
remapping.

7.2 Fault Logging

Faults are processed by logging the fault information and reporting the faults to software through a
fault event (interrupt). The architecture defines two types of fault logging facilities: (a) Primary Fault
Logging, and (b) Advanced Fault Logging. The primary fault logging method must be supported by all
implementations of this architecture. Support for advanced fault logging is optional. Software must
not change the fault logging method while hardware is enabled (TES or IRES fields Set in Global
Status register).

7.2.1 Primary Fault Logging

The primary method for logging faults is through Fault Recording registers. The number of Fault
Recording registers supported is reported through the Capability register. Chapter 10 describes the
various Fault registers.

Hardware maintains an internal index to reference the Fault Recording register in which the next fault
can be recorded. The index is reset to zero when both DMA and interrupt remapping is disabled (TES
and IES fields Clear in Global Status register), and increments whenever a fault is recorded in a Fault
Recording register. The index wraps around from N-1 to 0, where N is the number of fault recording
registers supported by the remapping hardware unit.

Hardware maintains the Primary Pending Fault (PPF) field in the Fault Status register as the logical
“OR” of the Fault (F) fields across all the Fault Recording registers. The PPF field is re-computed by
hardware whenever hardware or software updates the F field in any of the Fault Recording registers.

When primary fault recording is active, hardware functions as follows upon detecting a remapping
fault:

• Hardware checks the current value of the Primary Fault Overflow (PFO) field in the Fault Status
register. If it is already Set, the new fault is not recorded.

Intel® Virtualization Technology for Directed I/O—Hardware Fault Handling Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
62 Order Number: D51397-002

• If hardware supports compression1 of multiple faults from the same requester, it compares the
source-id (SID) field of each Fault Recording register with Fault (F) field Set, to the source-id of
the currently faulted request. If the check yields a match, the fault information is not recorded.

• If the above check does not yield a match (or if hardware does not support compression of
faults), hardware checks the Fault (F) field of the Fault Recording register referenced by the
internal index. If that field is already Set, hardware sets the Primary Fault Overflow (PFO) field in
the Fault Status register, and the fault information is not recorded.

• If the above check indicates there is no overflow condition, hardware records the current fault
information in the Fault Recording register referenced by the internal index. Depending on the
current value of the PPF field in the Fault Status register, hardware performs one of the following
steps:

— If the PPF field is currently Set (implying there are one or more pending faults), hardware sets
the F field of the current Fault Recording register and increments the internal index.

— Else, hardware records the internal index in the Fault Register Index (FRI) field of the Fault
Status register and sets the F field of the current Fault Recording register (causing the PPF
field also to be Set). Hardware increments the internal index, and an interrupt may be
generated based on the hardware interrupt generation logic described in Section 7.3.

Software is expected to process the faults reported through the fault recording registers in a circular
FIFO fashion starting from the Fault Recording register referenced by the Fault Recording Index (FRI)
field, until it finds a fault recording register with no faults (F field Clear).

To recover from a primary fault overflow condition, software must first process the pending faults in
each of the Fault Recording registers, Clear the Fault (F) field in all those registers, and Clear the
overflow status by writing a 1 to the Primary Fault Overflow (PFO) field. Once the PFO field is cleared
by software, hardware continues to record new faults starting from the Fault Recording register
referenced by the current internal index.

7.2.2 Advanced Fault Logging

Advanced fault logging is an optional hardware feature. Hardware implementations supporting
advanced fault logging report the feature through the Capability register.

Advanced fault logging uses a memory-resident fault log to record fault information. The base and
size of the memory-resident fault log region are programmed by software through the Advanced Fault
Log register. Advanced fault logging must be enabled by software through the Global Command
register before enabling the remapping hardware. Section 9.4 illustrates the format of the fault
record.

When advanced fault recording is active, hardware maintains an internal index into the memory-
resident fault log where the next fault can be recorded. The index is reset to zero whenever software
programs hardware with a new fault log region through the Global Command register, and increments
whenever a fault is logged in the fault log. Whenever the internal index increments, hardware checks
for internal index wrap-around condition based on the size of the current fault log. Any internal state
used to track the index wrap condition is reset whenever software programs hardware with a new
fault log region.

Hardware may compress multiple back-to-back faults from the same DMA requester by maintaining
internally the source-id of the last fault record written to the fault log. This internal “source-id from
previous fault” state is reset whenever software programs hardware with a new fault log region.

Read completions due to software reading the remapping hardware registers must push (commit) any
in-flight fault record writes to the fault log by the respective remapping hardware unit.

1. It is recommended that hardware implementations supporting only a limited number of fault
recording registers per remapping hardware unit collapse multiple pending faults from the same
requester.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 63

Hardware Fault Handling Details—Intel® Virtualization Technology for Directed I/O

When a DMA-remapping fault is detected, hardware advanced fault logging functions as follows:

• Hardware checks the current value of the Advanced Fault Overflow (AFO) field in the Fault Status
register. If it is already Set, the new fault is not recorded.

• If hardware supports compressing multiple back-to-back faults from same requester, it compares
the source-id of the currently faulted DMA request to the internally maintained “source-id from
previous fault”. If a match is detected, the fault information is not recorded.

• Otherwise, if the internal index wrap-around condition is Set (implying the fault log is full),
hardware sets the AFO field in the Advanced Fault Log register, and the fault information is not
recorded.

• If the above step indicates no overflow condition, hardware records the current fault information
to the fault record referenced by the internal index. Depending on the current value of the
Advanced Pending Fault (APF) field in the Fault Status register and the value of the internal index,
hardware performs one of the following steps:

— If APF field is currently Set, or if the current internal index value is not zero (implying there
are one or more pending faults in the current fault log), hardware simply increments the
internal index (along with the wrap-around condition check).

— Otherwise, hardware sets the APF field and increments the internal index. An interrupt may
be generated based on the hardware interrupt generation logic described in Section 7.3.

7.3 Fault Reporting

Fault events are reported to software using a message-signalled interrupt controlled through the Fault
Event Control register. The fault event information (such as interrupt vector, delivery mode, address,
etc.) is programmed through the Fault Event Data and Fault Event Address registers.

A Fault Event may be generated under the following conditions:

• When primary fault logging is active, recording a fault to a fault recording register causing the
Primary Pending Fault (PPF) field in Fault Status register to be Set.

• When advanced fault logging is active, logging a fault in the advanced fault log that causes the
Advanced Pending Fault (APF) field in the Fault Status register to be Set.

• When queued invalidation interface is active, an invalidation queue error causing the Invalidation
Queue Error (IQE) field in the Fault Status register to be Set.

• Invalid Device-IOTLB invalidation completion response received causing the Invalidation
Completion Error (ICE) field in the Fault Status register to be Set.

• Device-IOTLB invalidation completion time-out detected causing the Invalidation Time-out Error
(ITE) field in the Fault Status register to be Set.

For these conditions, the Fault Event interrupt generation hardware logic functions as follows:

• Hardware checks if there are any previously reported interrupt conditions that are yet to be
serviced by software. Hardware performs this check by evaluating if any of the PPF1, PFO, (APF,
AFO if advanced fault logging is active), IQE, ICE and ITE fields in the Fault Status register is Set.
If hardware detects any interrupt condition yet to be serviced by software, the Fault Event
interrupt is not generated.

• If the above check indicates no interrupt condition yet to be serviced by software, the Interrupt
Pending (IP) field in the Fault Event Control register is Set. The Interrupt Mask (IM) field is then
checked and one of the following conditions is applied:

— If IM field is Clear, the fault event is generated along with clearing the IP field.

1. The PPF field is computed by hardware as the logical OR of Fault (F) fields across all the Fault
Recording Registers of a hardware unit.

Intel® Virtualization Technology for Directed I/O—Hardware Fault Handling Details

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
64 Order Number: D51397-002

— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:

• If IP field was Set when software clears the IM field, the fault event interrupt is generated along
with clearing the IP field.

• If IP field was Set when software services all the pending interrupt conditions (indicated by all
status fields in the Fault Status register being Clear), the IP field is cleared.

Read completions due to software reading any of the remapping hardware registers must push
(commit) any in-flight interrupt messages generated by the respective hardware unit.

The fault event interrupts are never subject to interrupt remapping.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 65

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

8 BIOS Considerations

The system BIOS is responsible for detecting the remapping hardware functions in the platform and
for locating the memory-mapped remapping hardware registers in the host system address space.
The BIOS reports the remapping hardware units in a platform to system software through the DMA
Remapping Reporting (DMAR) ACPI table described below.

8.1 DMA Remapping Reporting Structure

Field Byte
Length

Byte
Offset Description

Signature 4 0 “DMAR”. Signature for the DMA Remapping
Description table.

Length 4 4
Length, in bytes, of the description table
including the length of the associated DMA-
remapping structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For DMAR description table, the Table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM Revision of DMAR Table for OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Host Address Width 1 36

This field indicates the maximum DMA physical
addressability supported by this platform. The
system address map reported by the BIOS
indicates what portions of this addresses are
populated.

The Host Address Width (HAW) of the platform is
computed as (N+1), where N is the value
reported in this field. For example, for a platform
supporting 40 bits of physical addressability, the
value of 100111b is reported in this field.

Flags 1 37

• Bit 0: INTR_REMAP - If Clear, the platform
does not support interrupt remapping. If Set,
the platform supports interrupt remapping.

• Bits 1-7: Reserved.

Reserved 10 38 Reserved (0).

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
66 Order Number: D51397-002

8.2 Remapping Structure Types

The following types of DMA-remapping structures are defined. All remapping structures start with a
‘Type’ field followed by a ‘Length’ field indicating the size in bytes of the structure.

BIOS implementations must report these remapping structure types in numerical order. i.e., All
remapping structures of type 0 (DRHD) enumerated before remapping structures of type 1 (RMRR),
and so forth.

Remapping Structures[] - 48

A list of structures. The list will contain one or
more DMA Remapping Hardware Unit Definition
(DRHD) structures, and zero or more Reserved
Memory Region Reporting (RMRR) and Root Port
ATS Capability Reporting (ATSR) structures.
These structures are described below.

Value Description

0 DMA Remapping Hardware Unit Definition (DRHD) Structure

1 Reserved Memory Region Reporting (RMRR) Structure

2 Root Port ATS Capability Reporting (ATSR) Structure

>2 Reserved for future use. For forward compatibility, software skips structures it does not
comprehend by skipping the appropriate number of bytes indicated by the Length field.

Field Byte
Length

Byte
Offset Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 67

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

8.3 DMA Remapping Hardware Unit Definition Structure

A DMA-remapping hardware unit definition (DRHD) structure uniquely represents a remapping
hardware unit present in the platform. There must be at least one instance of this structure for each
PCI segment in the platform.

Field Byte
Length

Byte
Offset Description

Type 2 0 0 - DMA Remapping Hardware Unit Definition
(DRHD) structure

Length 2 2 Varies (16 + size of Device Scope Structure)

Flags 1 4

Bit 0: INCLUDE_PCI_ALL
• If Set, this remapping hardware unit has under

its scope all PCI compatible devices in the
specified Segment, except devices reported
under the scope of other remapping hardware
units for the same Segment. If a DRHD structure
with INCLUDE_PCI_ALL flag Set is reported for a
Segment, it must be enumerated by BIOS after
all other DRHD structures for the same
Segment. A DRHD structure with
INCLUDE_PCI_ALL flag Set may use the ‘Device
Scope’ field to enumerate I/OxAPIC and HPET
devices under its scope.

• If Clear, this remapping hardware unit has under
its scope only devices in the specified Segment
that are explicitly identified through the ‘Device
Scope’ field.

Bits 1-7: Reserved.

Reserved 1 5 Reserved (0).

Segment Number 2 6 The PCI Segment associated with this unit.

Register Base Address 8 8 Base address of remapping hardware register-set for
this unit.

Device Scope [] - 16

The Device Scope structure contains one or more
Device Scope Entries that identify devices in the
specified segment and under the scope of this
remapping hardware unit.

The Device Scope structure is described below.

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
68 Order Number: D51397-002

8.3.1 Device Scope Structure

The Device Scope Structure is made up of one or more Device Scope Entries. Each Device Scope
Entry may be used to indicate a PCI endpoint device, a PCI sub-hierarchy, or devices such as
I/OxAPICs or HPET (High Precision Event Timer).

In this section, the generic term ‘PCI’ is used to describe conventional PCI, PCI-X, and PCI-Express
devices. Similarly, the term ‘PCI-PCI bridge’ is used to refer to conventional PCI bridges, PCI-X
bridges, PCI Express root ports, or downstream ports of a PCI Express switch.

A PCI sub-hierarchy is defined as the collection of PCI controllers that are downstream to a specific
PCI-PCI bridge. To identify a PCI sub-hierarchy, the Device Scope Entry needs to identify only the
parent PCI-PCI bridge of the sub-hierarchy.

Field Byte
Length

Byte
Offset Description

Type 1 0

The following values are defined for this field.
• 0x01: PCI Endpoint Device - The device

identified by the ‘Path’ field is a PCI endpoint
device. This type must not be used in Device
Scope of DRHD structures with
INCLUDE_PCI_ALL flag Set.

• 0x02: PCI Sub-hierarchy - The device identified
by the ‘Path’ field is a PCI-PCI bridge. In this
case, the specified bridge device and all its
downstream devices are included in the scope.
This type must not be in Device Scope of DRHD
structures with INCLUDE_PCI_ALL flag Set.

• 0x03: IOAPIC - The device identified by the
‘Path’ field is an I/O APIC (or I/O SAPIC) device,
enumerated through the ACPI MADT I/O APIC
(or I/O SAPIC) structure.

• 0x04: MSI_CAPABLE_HPET1 - The device
identified by the ‘Path’ field is an HPET device
capable of generating MSI (Message Signaled
interrupts). HPET hardware is reported through
ACPI HPET structure.

Other values for this field are reserved for future
use.

Length 1 1 Length of this Entry in Bytes. (6 + X), where X is the
size in bytes of the “Path” field.

Reserved 2 2 Reserved (0).

Enumeration ID 1 4

When the ‘Type’ field indicates ‘IOAPIC’, this field
provides the I/O APICID as provided in the I/O APIC
(or I/O SAPIC) structure in the ACPI MADT (Multiple
APIC Descriptor Table).

This field is treated reserved (0) for all other ‘Type’
fields.

Start Bus Number 1 5

This field describes the bus number (bus number of
the first PCI Bus produced by the PCI Host Bridge)
under which the device identified by this Device
Scope resides.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 69

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

The following pseudocode describes how to identify the device specified through a Device Scope
structure:

n = (DevScope.Length - 6) / 2; // number of entries in the ‘Path’ field
type = DevScope.Type; // type of device
bus = DevScope.StartBusNum; // starting bus number
dev = DevScope.Path[0].Device; // starting device number
func = DevScope.Path[0].Function; // starting function number
i = 1;
while (--n) {

bus = read_secondary_bus_reg(bus, dev, func);// secondary bus# from config reg.
dev = DevScope.Path[i].Device; // read next device number
func = DevScope.Path[i].Function; // read next function number
i++;

}
source_id = {bus, dev, func};
target_device = {type, source_id}; // if ‘type’ indicates ‘IOAPIC’, DevScope.EnumID

// provides the I/O APICID as reported in the ACPI MADT

Path 2 * N 6

Describes the hierarchical path from the Host Bridge
to the device specified by the Device Scope Entry.

For example, a device in a N-deep hierarchy is
identified by N {PCI Device Number, PCI Function
Number} pairs, where N is a positive integer. Even
offsets contain the Device numbers, and odd offsets
contain the Function numbers.

The first {Device, Function} pair resides on the bus
identified by the ‘Start Bus Number’ field. Each
subsequent pair resides on the bus directly behind
the bus of the device identified by the previous pair.
The identity (Bus, Device, Function) of the target
device is obtained by recursively walking down these
N {Device, Function} pairs.

If the ‘Path’ field length is 2 bytes (N=1), the Device
Scope Entry identifies a ‘Root-Complex Integrated
Device’. The requester-id of ‘Root-Complex
Integrated Devices’ are static and not impacted by
system software bus rebalancing actions.

If the ‘Path’ field length is more than 2 bytes (N >
1), the Device Scope Entry identifies a device behind
one or more system software visible PCI-PCI
bridges. Bus rebalancing actions by system software
modifying bus assignments of the device’s parent
bridge impacts the bus number portion of device’s
requester-id.

1. HPET devices not capable of MSI interrupt generation (and instead have their interrupts routed through
I/OxAPIC) are not reported in the Device Scope.

Field Byte
Length

Byte
Offset Description

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
70 Order Number: D51397-002

8.3.1.1 Reporting Scope for I/OxAPICs

Interrupts from devices that only support (or are only enabled for) legacy interrupts are routed
through the I/OxAPICs in the platform. Each I/OxAPIC in the platform is reported to system software
through ACPI MADT (Multiple APIC Descriptor Tables). Some platforms may also expose I/OxAPICs as
PCI-discoverable devices.

For platforms reporting interrupt remapping capability (INTR_REMAP flag Set in the DMAR structure),
each I/OxAPIC in the platform reported through ACPI MADT must be explicitly enumerated under the
Device Scope of the appropriate remapping hardware units.

• For I/OxAPICs that are PCI-discoverable, the source-id for such I/OxAPICs (computed using the
above pseudocode from its Device Scope structure) must match its PCI requester-id effective at
the time of boot.

• For I/OxAPICs that are not PCI-discoverable:

— If the ‘Path’ field in Device Scope has a size of 2 bytes, the corresponding I/OxAPIC is a Root-
Complex integrated device. The ‘Start Bus Number’ and ‘Path’ field in the Device Scope
structure together provides the unique 16-bit source-id allocated by the platform for the
I/OxAPIC. Examples are I/OxAPICs integrated to the IOH and south bridge (ICH)
components.

— If the ‘Path’ field in Device Scope has a size greater than 2 bytes, the corresponding I/OxAPIC
is behind some software visible PCI-PCI bridge. In this case, the ‘Start Bus Number’ and ‘Path’
field in the Device Scope structure together identifies the PCI-path to the I/OxAPIC device.
Bus rebalancing actions by system software modifying bus assignments of the device’s parent
bridge impacts the bus number portion of device’s source-id. Examples are I/OxAPICs in PCI-
Express-to-PCI-X bridge components in the platform.

8.3.1.2 Reporting Scope for MSI Capable HPET Device

High Precision Event Timer (HPET) device supporting Message Signaled Interrupt (MSI) interrupts
may generate interrupt requests directly to the Root-Complex (instead of routing through I/OxAPIC).
Platforms supporting interrupt remapping must explicitly enumerate any MSI-capable HPET device in
the platform through the Device Scope of the appropriate remapping hardware unit. In this case, the
‘Start Bus Number’ and ‘Path’ field in the Device Scope structure together provides the unique 16-bit
source-id allocated by the platform for the MSI-capable HPET device.

8.3.1.3 Device Scope Example

This section provides an example platform configuration with multiple remapping hardware units. The
configurations described are hypothetical examples, only intended to illustrate the Device Scope
structures.

Figure 8-22 illustrates a platform configuration with a single PCI segment and host bridge (with a
starting bus number of 0), and supporting four remapping hardware units as follows:

1. Remapping hardware unit #1 has under its scope all devices downstream to the PCI Express root
port located at (dev:func) of (14:0).

2. Remapping hardware unit #2 has under its scope all devices downstream to the PCI Express root
port located at (dev:func) of (14:1).

3. Remapping hardware unit #3 has under its scope a Root-Complex integrated endpoint device
located at (dev:func) of (29:0).

4. Remapping hardware unit #4 has under its scope all other PCI compatible devices in the platform
not explicitly under the scope of the other remapping hardware units. In this example, this
includes the integrated device at (dev:func) at (30:0), and all the devices attached to the south
bridge component. The I/OxAPIC in the platform (I/O APICID = 0) is under the scope of this
remapping hardware unit, and has a BIOS assigned bus/dev/function number of (0,12,0).

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 71

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

This platform requires 4 DRHD structures. The Device Scope fields in each DRHD structure are
described as below.

• Device Scope for remapping hardware unit #1 contains only one Device Scope Entry, identified as
[2, 8, 0, 0, 0, 14, 0].

— System Software uses the Entry Type field value of 0x02 to conclude that all devices
downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 14, and Function 0
are within the scope of this remapping hardware unit.

• Device Scope for remapping hardware unit #2 contains only one Device Scope Entry, identified as
[2, 8, 0, 0, 0, 14, 1].

— System Software uses the Entry Type field value of 0x02 to conclude that all devices
downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 14, and Function 1
are within the scope of this remapping hardware unit.

• Device Scope for remapping hardware unit #3 contains only one Device Scope Entry, identified as
[1, 8, 0, 0, 0, 29, 0].

— System software uses the Type field value of 0x1 to conclude that the scope of remapping
hardware unit #3 includes only the endpoint device at PCI Segment 0, Bus 0, Device 29 and
Function 0.

• Device Scope for remapping hardware unit #4 contains only one Device Scope Entry, identified as
[3, 8, 0, 1, 0, 12, 0]. Also, the DHRD structure for remapping hardware unit #4 indicates the
INCLUDE_PCI_ALL flag. This hardware unit must be the last in the list of hardware unit definition
structures reported.

— System software uses the INCLUDE_PCI_ALL flag to conclude that all PCI compatible devices
that are not explicitly enumerated under other remapping hardware units are in the scope of
remapping unit #4. Also, the Device Scope Entry with Type field value of 0x3 is used to

Figure 8-22. Hypothetical Platform Configuration

Processor

System Bus

South
Bridge

DRAM

Processor

PCI Express Devices

DMA
Remapping

Unit #1
Integrated

Device
Dev [30:0]

PCIe Root
Port

Dev [14:0]

PCI, LPC,
Legacy devices

DMA
Remapping

Unit #2
PCIe Root

Port
Dev [14:1]

DMA
Remapping

Unit #3
Integrated

Device
Dev [29:0]

DMA Remapping
Unit #4

Host Bridge [Bus #0]

I/OxAPIC

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
72 Order Number: D51397-002

conclude that the I/OxAPIC (with I/O APICID=0 and source-id of [0,12,0]) is under the scope
of remapping hardware unit #4.

8.4 Reserved Memory Region Reporting Structure

Section 3.6.4 described the details of BIOS allocated reserved memory ranges that may be DMA
targets. BIOS may report each such reserved memory region through the RMRR structures, along
with the devices that requires access to the specified reserved memory region. Reserved memory
ranges that are either not DMA targets, or memory ranges that may be target of BIOS initiated DMA
only during pre-boot phase (such as from a boot disk drive) must not be included in the reserved
memory region reporting. The base address of each RMRR region must be 4KB aligned and the size
must be an integer multiple of 4KB. BIOS must report the RMRR reported memory addresses as
reserved in the system memory map returned through methods such as INT15, EFI GetMemoryMap
etc. The reserved memory region reporting structures are optional. If there are no RMRR structures,
the system software concludes that the platform does not have any reserved memory ranges that are
DMA targets.

The RMRR regions are expected to be used only for USB and UMA Graphics legacy usages for reserved
memory. Platform designers must avoid or limit reserved memory regions since these require system
software to create holes in the DMA virtual address range available to system software and its drivers.

Field Byte
Length

Byte
Offset Description

Type 2 0 1 - Reserved Memory Region Reporting Structure

Length 2 2 Varies (24 + size of Device Scope structure)

Reserved 2 4 Reserved.

Segment Number 2 6 PCI Segment Number associated with devices
identified through the Device Scope field.

Reserved Memory
Region Base Address 8 8 Base address of 4KB-aligned reserved memory region.

Reserved Memory
Region Limit Address 8 16

Last address of the reserved memory region.
The reserved memory region size (Limit - Base + 1)
must be an integer multiple of 4KB.

Device Scope[] - 24

The Device Scope structure contains one or more
Device Scope entries that identify devices requiring
access to the specified reserved memory region. The
devices identified in this structure must be devices
under the scope of one of the remapping hardware
units reported in DRHD.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 73

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

8.5 Root Port ATS Capability Reporting Structure

This structure is applicable only for platforms supporting Device-IOTLBs as reported through the
Extended Capability register. For each PCI Segment in the platform that supports Device-IOTLBs,
BIOS provides an ATSR structure. The ATSR structures identifies PCI Express Root-Ports supporting
Address Translation Services (ATS) transactions. Software must enable ATS on endpoint devices
behind a Root Port only if the Root Port is reported as supporting ATS transactions.

Field Byte
Length

Byte
Offset Description

Type 2 0 2 - Root Port ATS Capability Reporting Structure

Length 2 2 Varies (8 + size of Device Scope Structure)

Flags 1 4

• Bit 0: ALL_PORTS: If Set, indicates all PCI
Express Root Ports in the specified PCI
Segment supports ATS transactions. If Clear,
indicates ATS transactions are supported only
on Root Ports identified through the Device
Scope field.

• Bits 1-7: Reserved.

Reserved 1 5 Reserved (0).

Segment Number 2 6 The PCI Segment associated with this ATSR
structure.

Device Scope [] - 8

If the ALL_PORTS flag is Set, the Device Scope
structure is omitted.
If ALL_PORTS flag is Clear, the Device Scope
structure contains Device Scope Entries that
identifies Root Ports supporting ATS transactions.
The Device Scope structure is described in
Section 8.3.1. All Device Scope Entries in this
structure must have a Device Scope Entry Type of
02h.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
74 Order Number: D51397-002

9 Translation Structure Formats

This chapter describes the memory-resident structures for DMA and interrupt remapping.

9.1 Root-entry

The following figure and table describe the root-entry.

Figure 9-23. Root-Entry Format

2
7

Reserved (0)

6
4

1

01
6
3

1
2

1
1

Reserved (0)

CTP

P

HAW HAW -1

Reserved (0)

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 75

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Bits Field Description

127:64 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only
when the Present (P) field is Set.

63:12 CTP: Context-entry Table
Pointer

Pointer to context-entry table for this bus. The context-entry
table is 4KB in size and size-aligned.

This field is evaluated by hardware only when the Present (P)
field is Set. When evaluated, hardware treats bits 63:HAW as
reserved (0), where HAW is the host address width of the
platform.

11:1 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only
when the Present (P) field is Set.

0 P: Present

This field indicates whether the root-entry is present.
• 0: Indicates the root-entry is not present. Hardware blocks

DMA requests processed through root entries with the
present field cleared.

• 1: Indicates the root-entry is present. Hardware processes
DMA requests per the context-entries referenced by the CTP
field.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
76 Order Number: D51397-002

9.2 Context-entry

The following figure and table describe the context-entry.

Figure 9-24. Context-Entry Format

2
7

8
8

A W

R e se rv e d (0)

D ID

E H

6
7

6
4

1
8
7

7
0

6
6

R e se rv e d (0)

1
7

A V A IL

2
7

0123
6
3

1
2

1
1

F P D
T

A S R

P

4H A W H A W -1

R e se rv e d (0)

R e se rv e d (0)

56

A LH

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 77

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Bits Field Description

127:88 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only when
the Present (P) field is Set.

87:72 DID: Domain
Identifier

Identifier for the domain to which this context-entry maps. Hardware
may use the domain identifier to tag its internal caches.

The Capability register reports the domain-id width supported by
hardware. For implementations supporting less than 16-bit domain-
ids, unused bits of this field are treated as reserved by hardware. For
example, for an implementation supporting 8-bit domain-ids, bits
87:80 of this field are treated as reserved.

Context-entries programmed with the same domain identifier must
always reference the same address translation structure (through the
ASR field). Similarly, context-entries referencing the same address
translation structure must be programmed with the same domain id.

This field is evaluated by hardware only when the Present (P) field is
Set.

When Caching Mode (CM) field is reported as Set, the domain-id value
of zero is architecturally reserved. Software must not use domain-id
value of zero when CM is Set.

71 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only when
the Present (P) field is Set.

70:67 AVAIL: Available This field is available to software. Hardware always ignores the
programming of this field.

66:64 AW: Address
Width

When the translation-type (T) field indicates multi-level page tables,
this field indicates the adjusted guest-address-width (AGAW) to be
used by hardware for the page-table walk. The following encodings are
defined for this field:
• 000b: 30-bit AGAW (2-level page table)
• 001b: 39-bit AGAW (3-level page table)
• 010b: 48-bit AGAW (4-level page table)
• 011b: 57-bit AGAW (5-level page table)
• 100b: 64-bit AGAW (6-level page table)
• 101b-111b: Reserved

The value specified in this field must match an AGAW value supported
by hardware (as reported in the SAGAW field in the Capability
register).

DMA requests processed through this context-entry and accessing
DMA virtual addresses above 2X-1 (where X is the AGAW value
indicated by this field) are blocked1.

This field is evaluated by hardware only when the Present (P) field is
Set.

63:12 ASR: Address
Space Root

When the translation-type (T) field indicates multi-level page tables,
this field points to the base of the page-table root.

This field is evaluated by hardware only when the Present (P) field is
Set. When evaluated, hardware treats bits 63:HAW as reserved, where
HAW is the host address width of the platform.

11:6 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only when
the Present (P) field is Set.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
78 Order Number: D51397-002

 5 ALH: Address
Locality Hint

This field may be Set by software if DMA requests processed through
this context-entry are expected to demonstrate spatial address
locality. For usages where DMA address locality can be controlled by
software, setting this field is most beneficial and recommended for
high-throughput devices with small payload requests (such as NIC
devices). Hardware implementations may utilize this hint field to pre-
fetch and cache adjacent present mappings for improved
performance. Any fault conditions detected on pre-fetched mappings
must be ignored by hardware and not reported to software.

This field is treated as reserved by hardware implementations
reporting CH (Caching Hints) field as Clear in the Extended Capability
register.
When supported, this field is evaluated by hardware only when
Present (P) field is Set.

 4 EH: Eviction Hint

This field may be Set by software to change the IOTLB default eviction
policy in hardware.
• 0: The default eviction policy of hardware is in effect for IOTLB

entries corresponding to DMA requests processed through this
context-entry.

• 1: Hardware may eagerly evict IOTLB entries hosting effective
translations with TM field Set. Refer to Page-table Entry format in
Section 9.3 for details on TM field. Software may Set the EH field
if device commonly uses transient DMA buffers.

This field is treated as reserved by hardware implementations
reporting CH (Caching Hints) field as Clear in the Extended Capability
register.
When supported, this field is evaluated by hardware only when
Present (P) field is Set.

3:2 T: Translation Type

• 00b: Indicates ASR field points to a multi-level page-table, and
only Untranslated DMA requests are translated through this page-
table. Translated DMA requests and Translation Requests are
blocked.

• 01b: Indicates ASR field points to a multi-level page-table, and
Untranslated, Translated and Translation Requests are supported.
This encoding is treated as reserved by hardware implementations
not supporting Device- IOTLBs (DI field Clear in Extended
Capability register).

• 10b: Indicates DMA requests with Untranslated addresses are
processed as pass-through. In this case, the AW and ASR fields
are ignored by hardware. Translated and Translation Requests are
blocked. This encoding is treated by hardware as reserved for
hardware implementations reporting PT (Pass Through) field as
Clear in the Extended Capability register.

• 11b: Reserved.
This field is evaluated by hardware only when Present (P) field is Set.

1
FPD: Fault
Processing
Disable

Enables or disables recording/reporting of faults caused by DMA
requests processed through this context-entry:
• 0: Indicates fault recording/reporting is enabled for DMA requests

processed through this context-entry.
• 1: Indicates fault recording/reporting is disabled for DMA requests

processed through this context-entry.
This field is evaluated by hardware irrespective of the setting of the
present (P) field.

0 P: Present
• 0: Block DMA processed through this context-entry.
• 1: Process DMA through this context-entry based on the

programming of other fields.

1. Untranslated DMA and DMA Translation requests to addresses beyond the Maximum Guest Address Width
(MGAW) supported by hardware may be blocked and reported through other means such as PCI Express
Advanced Error Reporting (AER). Such errors (referred to as platform errors) may not be reported as
DMA-remapping faults and are outside the scope of this specification.

Bits Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 79

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

9.3 Page-Table Entry

The following figure and table describe the page-table entry.

Figure 9-25. Page-Table-Entry Format

0126
6
3

1
2

1
1

R
W

SP

ADDR

SNP

78HAW HAW -1

AVAIL

AVAIL

2
6

1
6

TM
RSVD

1
0

AVAIL

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
80 Order Number: D51397-002

Bits Field Description

63 AVAIL:
Available

This field is available to software. Hardware always ignores the programming of this
field.

 62
TM:
Transient
Mapping1

For implementations supporting Device-IOTLBs (DI field reported as Set in
Extended Capability register), hardware returns this field as the U-field in the
translation completion entry in the response returned for translation requests for
this page.

For implementations supporting Caching Hints (CH field reported as Set in Extended
Capability register), hardware may eagerly evict mappings with this field Set in the
IOTLB, if the corresponding context-entry has EH (Eviction Hint) field Set.

TM field is treated as reserved:
• Always in non-leaf entries
• In leaf entries, for hardware implementations reporting CH (Caching Hints) and

Device-IOTLB (DI) fields as Clear in Extended Capability register.

61:12 ADDR:
Address

Host physical address of the page frame if this is a leaf node. Otherwise a pointer to
the next level page table.

This field is evaluated by hardware only when at least one of the Read (R) and Write
(W) fields is Set. When evaluated, hardware treats bits 61:HAW as reserved, where
HAW is the host address width of the platform.

 11
SNP:
Snoop
Behavior

This field indicates the snoop behavior of Untranslated DMA requests remapped
through this page-table entry.
• 0: Snoop behavior of Untranslated DMA requests processed through this page-

table entry is defined by the Root-Complex handling of NS (Non-Snoop)
attribute in the DMA request.

• 1: Untranslated DMA requests processed through this page-table entry are
treated as snooped, irrespective of the NS (Non-Snoop) attribute in the DMA
request.

For implementations supporting Device-IOTLBs, hardware returns this field as the
‘N’ field in Translation Requests completions.
SNP field is treated as reserved:
• Always in non-leaf entries
• In leaf entries, for hardware implementations reporting SC (Snoop Control)

field as Clear in Extended Capability register.
This field is evaluated by hardware when at least one of Read (R) and Write (W)
fields is Set.

10:8 AVAIL:
Available This field is available to software. Hardware ignores the programming of this field.

7 SP: Super
Page

This field tells hardware whether to stop the page-walk before reaching a leaf node
mapping to a 4KB page:
• 0: Continue with the page-walk and use the next level table.
• 1: Stop the page-walk and form the host physical address using the unused bits

in the input address for the page-walk (N-1):0 along with bits (HAW-1):N of the
page base address provided in the address (ADDR) field.

Hardware treats the SP field as reserved in:
• Page-directory entries corresponding to super-page sizes not defined in the

architecture.
• Page-directory entries corresponding to super-page sizes not supported by

hardware implementation. (Hardware reports the supported super-page sizes
through the Capability register.)

This field is evaluated by hardware only when at least one of Read (R) and Write
(W) fields is Set.
Hardware always ignores the programming of this field in leaf page-table entries
corresponding to 4KB pages.

6:2 AVAIL:
Available

This field is available to software. Hardware always ignores the programming of this
field.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 81

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

1 W: Write

Indicates whether the page is writable for DMA:
• 0: Indicates the page is not accessible to DMA write requests.DMA write

requests processed through this page-table entry are blocked.
• 1: Indicates the page is accessible to DMA write requests.

0 R: Read

Indicates whether the page is readable for DMA:
• 0: Indicates the page is not accessible to DMA read requests. DMA read

requests processed through this page-table entry are blocked. For
implementations reporting ZLR field as Set in the Capability register, Read
permission is not applicable to zero-length DMA read requests to write-only
pages.

• 1: Indicates the page is accessible to DMA read requests.

1. Setting the TM field in a page-table entry does not change software requirements for invalidating the IOTLB
when modifying the page-table entry.

Bits Field Description

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
82 Order Number: D51397-002

9.4 Fault Record

The following figure and table describe the fault record format for advanced fault logging.

Figure 9-26. Fault-Record Format

2
7

F I

6
4

1

0
6
3

FR

S ID

T

R ese rved (0)

7
9

8
0

1
1

1
2

9
5

9
6

0
3

0
4

1
2
5

1
2
6

1

R ese rved (0)

R e se rved (0)

R e se rved (0)

1
2
4

1
2
3

1

A T

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 83

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Bits Field Description

127 R: Reserved Reserved (0).

126 T: Type

Memory access type of faulted DMA request. This field is valid
only when the Fault Reason (FR) indicates one of the DMA-
remapping fault conditions.
• 0: DMA Write
• 1: DMA Read request

 125:124 AT: Address Type
AT field in the faulted DMA request. This field is valid only when
the Fault Reason (FR) indicates one of the DMA-remapping fault
conditions.

 123:104 R: Reserved Reserved (0).

103:96 FR: Fault Reason Reason for DMA-remapping fault.

95:80 R: Reserved Reserved (0).

79:64 SID: Source Identifier Requester-id associated with the fault condition.

 63:12 FI: Fault Information

When the Fault Reason (FR) field indicates one of the DMA-
remapping fault conditions, bits 63:12 of this field contains the
page address in the faulted DMA request.
When the Fault Reason (FR) field indicates one of the interrupt-
remapping fault conditions, bits 63:48 of this field contains the
interrupt_index computed for the faulted interrupt request, and
bits 48:12 are cleared.

11:0 R: Reserved Reserved (0).

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
84 Order Number: D51397-002

9.5 Interrupt Remapping Table Entry (IRTE)

The following figure and table describe the interrupt remapping table entry.

Figure 9-27. Interrupt Remapping Table Entry Format

2
7

Redirection Hint

6
4

1

01 23

FPD

Destination Mode

AVAIL

P

Vector

4
3
1

3
2

Delivery Mode

6
3

Trigger Mode

578
1
1

Reserved (0)

SID

SVT
Reserved (0)

SQ

1
6

1
5

2
3

Destination ID

7
9

8
0

8
1

8
2

8
3

8
4

2
4

1
2

Reserved (0)

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 85

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Bits Field Description

 127:84 R: Reserved Reserved. Software must program these bits to 0. This field is evaluated
by hardware only when the Present (P) field is Set.

 83:82
SVT: Source
Validation
Type

This field specifies the type of validation that must be performed by the
interrupt-remapping hardware on the source-id of the interrupt requests
referencing this IRTE.
• 00b: No requester-id verification is required.
• 01b: Verify requester-id in interrupt request using SID and SQ fields

in the IRTE.
• 10b: Verify the most significant 8-bits of the requester-id (Bus#) in

the interrupt request is equal to or within the Startbus# and
EndBus# specified through the upper and lower 8-bits of the SID
field respectively. This encoding may be used to verify interrupts
originated behind PCI-Express-to-PCI/PCI-X bridges. Refer
Section 5.2 for more details.

• 11b: Reserved.
This field is evaluated by hardware only when the Present (P) field is
Set.

 81:80 SQ: Source-id
Qualifier

The SVT field may be used to verify origination of interrupt requests
generated by devices supporting phantom functions. If the SVT field is
01b, the following encodings are defined for the SQ field.
• 00b: Verify the interrupt request by comparing all 16-bits of SID

field with the 16-bit requester-id of the interrupt request.
• 01b: Verify the interrupt request by comparing most significant 13

bits of the SID and requester-id of interrupt request, and comparing
least significant two bits of the SID field and requester-id of
interrupt request. (i.e., ignore the third least significant field of the
SID field and requestor-id).

• 10b: Verify the interrupt request by comparing most significant 13
bits of the SID and requester-id of interrupt request, and comparing
least significant bit of the SID field and requester-id of interrupt
request. (i.e., ignore the second and third least significant fields of
the SID field and requestor-id).

• 11b: Verify the interrupt request by comparing most significant 13
bits of the SID and requester-id of interrupt request. (i.e., ignore
the least three significant fields of the SID field and requestor-id).

This field is evaluated by hardware only when the Present (P) field is Set
and SVT field is 01b.

 79:64 SID: Source
Identifier

This field specifies the originator (source) of the interrupt request that
references this IRTE. The format of the SID field is determined by the
programming of the SVT field.
If the SVT field is:
• 01b: The SID field contains the 16-bit requestor-id (Bus/Dev/Func

#) of the device that is allowed to originate interrupt requests
referencing this IRTE. The SQ field is used by hardware to
determine which bits of the SID field must be considered for the
interrupt request verification.

• 10b: The most significant 8-bits of the SID field contains the
startbus#, and the least significant 8-bits of the SID field contains
the endbus#. Interrupt requests that reference this IRTE must have
a requester-id whose bus# (most significant 8-bits of requester-id)
has a value equal to or within the startbus# to endbus# range.

This field is evaluated by hardware only when the Present (P) field is Set
and SVT field is 01b or 10b.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
86 Order Number: D51397-002

 63:32 DST:
Destination ID

This field identifies the remapped interrupt request’s target
processor(s). It is evaluated by hardware only when the Present (P) field
is Set.

The format of this field in various processor and platform modes is as
follows:
• Intel®64 Legacy APIC Mode (Cluster):

• 63:48 - Reserved (0)
• 47:44 - APIC DestinationID[7:4]
• 43:40 - APIC DestinationID[3:0]
• 39:32 - Reserved (0)

• Intel®64 Legacy APIC Mode (Flat):

• 63:48 - Reserved (0)
• 47:40 - APIC DestinationID[7:0]
• 39:32 - Reserved (0)

• Intel®64 Legacy APIC Mode (Physical):

• 63:48 - Reserved (0)
• 47:40 - APIC DestinationID[7:0]
• 39:32 - Reserved (0)

• ItaniumTM Processor Family:

• 63:48 - Reserved (0)
• 47:40 - APIC DestinationID[15:8]
• 39:32 - APIC DestinationID[7:0] (EDID[7:0])

 31:24 R: Reserved Reserved. Software must program these bits to 0. This field is evaluated
by hardware only when the Present (P) field is Set.

 23:16 V: Vector
This 8-bit field contains the interrupt vector associated with the
remapped interrupt request. This field is evaluated by hardware only
when the Present (P) field is Set.

 15:12 R: Reserved Reserved. Software must program these bits to 0. This field is evaluated
by hardware only when the Present (P) field is Set.

11:8 AVAIL:
Available

This field is available to software. Hardware always ignores the
programming of this field.

Bits Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 87

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

 7:5 DLM: Delivery
Mode

This 3-bit field specifies how the remapped interrupt is handled. Delivery
Modes operate only in conjunction with specified Trigger Modes (TM).
Correct Trigger Modes must be guaranteed by software. Restrictions are
indicated below:
• 000b (Fixed Mode) – Deliver the interrupt to all the agents indicated

by the Destination ID field. The Trigger Mode for fixed delivery
mode can be edge or level.

• 001b (Lowest Priority) – Deliver the interrupt to one (and only one)
of the agents indicated by the Destination ID field (the algorithm to
pick the target agent is component specific and could include
priority based algorithm). The Trigger Mode can be edge or level.

• 010b (System Management Interrupt or SMI): SMI is an edge
triggered interrupt regardless of the setting of the Trigger Mode
(TM) field. For systems that rely on SMI semantics, the vector field
is ignored, but must be programmed to all zeroes for future
compatibility. (Support for this delivery mode is implementation
specific. Platforms supporting interrupt remapping are expected to
generate SMI through dedicated pin or platform-specific special
messages)1

• 100b (NMI) – Deliver the signal to all the agents listed in the
destination field. The vector information is ignored. NMI is an edge
triggered interrupt regardless of the Trigger Mode (TM) setting.
(Platforms supporting interrupt remapping are recommended to
generate NMI through dedicated pin or platform-specific special
messages)2

• 101b (INIT) – Deliver this signal to all the agents indicated by the
Destination ID field. The vector information is ignored. INIT is an
edge triggered interrupt regardless of the Trigger Mode (TM)
setting. (Support for this delivery mode is implementation specific.
Platforms supporting interrupt remapping are expected to generate
INIT through dedicated pin or platform-specific special messages)2

• 111b (ExtINT) – Deliver the signal to the INTR signal of all agents
indicated by the Destination ID field (as an interrupt that originated
from an 8259A compatible interrupt controller). The vector is
supplied by the INTA cycle issued by the activation of the ExtINT.
ExtINT is an edge triggered interrupt regardless of the Trigger Mode
(TM) setting.

This field is evaluated by hardware only when the Present (P) field is
Set.

 4 TM: Trigger
Mode

This field indicates the signal type of the interrupt that uses the IRTE.
• 0: Indicates edge sensitive.
• 1: Indicates level sensitive.

This field is evaluated by hardware only when the Present (P) field is
Set.

 3
RH:
Redirection
Hint

This bit indicates whether the remapped interrupt request should be
directed to one among N processors specified in Destination ID field,
under hardware control.
• 0: When RH is 0, the remapped interrupt is directed to the

processor listed in the Destination ID field.
• 1: When RH is 1, the remapped interrupt is directed to 1 of N

processors specified in the Destination ID field.
This field is evaluated by hardware only when the present (P) field is
Set.

 2
DM:
Destination
Mode

This field indicates whether the Destination ID field in an IRTE should be
interpreted as logical or physical APIC ID.
• 0: Physical
• 1: Logical

This field is evaluated by hardware only when the present (P) field is
Set.

Bits Field Description

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
88 Order Number: D51397-002

 1
FPD: Fault
Processing
Disable

Enables or disables recording/reporting of faults caused by interrupt
messages requests processed through this entry.
• 0: Indicates fault recording/reporting is enabled for interrupt

requests processed through this entry.
• 1: Indicates fault recording/reporting is disabled for interrupt

requests processed through this entry.
This field is evaluated by hardware irrespective of the setting of the
Present (P) field.

 0 P: Present

The P field is used by software to indicate to hardware if the
corresponding IRTE is present and initialized.
• 0: Indicates the IRTE is not currently allocated to any interrupt

sources. Block interrupt requests referencing this IRTE.
• 1: Process interrupt requests referencing this IRTE per the

programming of other fields in this IRTE.

1. Refer Section 5.7 for hardware considerations for handling platform events.

Bits Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 89

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10 Register Descriptions

This chapter describes the structure and use of the remapping registers.

10.1 Register Location

The register set for each remapping hardware unit in the platform is placed at a 4KB-aligned memory-
mapped location. The exact location of the register region is implementation-dependent, and is
communicated to system software by BIOS through the ACPI DMA-remapping hardware reporting
structures (described in Chapter 8).

10.2 Software Access to Registers

Software interacts with the remapping hardware by reading and writing its memory-mapped
registers. The following requirements are defined for software access to these registers.

• Software is expected to access 32-bit registers as aligned doublewords. For example, to modify a
field (e.g., bit or byte) in a 32-bit register, the entire doubleword is read, the appropriate field(s)
are modified, and the entire doubleword is written back.

• Software must access 64-bit and 128-bit registers as either aligned quadwords or aligned
doublewords. Hardware may disassemble a quadword register access as two double-word
accesses. In such cases, hardware is required to complete the quad-word read or write request in
a single clock in order (lower doubleword first, upper double-word second).

• When updating registers through multiple accesses (whether in software or due to hardware
disassembly), certain registers may have specific requirements on how the accesses must be
ordered for proper behavior. These are documented as part of the respective register descriptions.

• For compatibility with future extensions or enhancements, software must assign the last read
value to all “Reserved and Preserved” (RsvdP) fields when written. In other words, any updates to
a register must be read so that the appropriate merge between the RsvdP and updated fields will
occur. Also, software must assign a value of zero for “Reserved and Zero” (RsvdZ) fields when
written.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
90 Order Number: D51397-002

10.3 Register Attributes

The following table defines the attributes used in the remapping Registers. The registers are
discussed in Section 10.4.

Attribute Description

RW Read-Write field that may be either set or cleared by software to the desired state.

RW1C
“Read-only status, Write-1-to-clear status” field. A read of the field indicates status. A
set bit indicating a status may be cleared by writing a 1. Writing a 0 to an RW1C field
has no effect.

RW1CS

“Sticky Read-only status, Write-1-to-clear status” field. A read of the field indicates
status. A set bit indicating a status may be cleared by writing a 1. Writing a 0 to an
RW1CS field has no effect. Not initialized or modified by hardware except on
powergood reset.

RO Read-only field that cannot be directly altered by software.

ROS “Sticky Read-only” field that cannot be directly altered by software, and is not
initialized or modified by hardware except on powergood reset.

WO Write-only field. The value returned by hardware on read is undefined.

RsvdP
“Reserved and Preserved” field that is reserved for future RW implementations.
Registers are read-only and must return 0 when read. Software must preserve the
value read for writes.

RsvdZ “Reserved and Zero” field that is reserved for future RW1C implementations. Registers
are read-only and must return 0 when read. Software must use 0 for writes.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 91

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4 Register Descriptions

The following table summarizes the remapping hardware memory-mapped registers.

Offset Register Name Size Description

000h Version Register 32 Architecture version supported by the
implementation.

004h Reserved 32 Reserved

008h Capability Register 64 Hardware reporting of capabilities.

010h Extended Capability Register 64 Hardware reporting of extended capabilities.

018h Global Command Register 32 Register controlling general functions.

01Ch Global Status Register 32 Register reporting general status.

020h Root-Entry Table Address Register 64 Register to set up location of root-entry table.

028h Context Command Register 64 Register to manage context-entry cache.

030h Reserved 32 Reserved

 034h Fault Status Register 32 Register to report Fault/Error status

038h Fault Event Control Register 32 Interrupt control register for fault events.

03Ch Fault Event Data Register 32 Interrupt message data register for fault
events.

040h Fault Event Address Register 32 Interrupt message address register for fault
event messages.

044h
Fault Event Upper Address
Register

32 Interrupt message upper address register for
fault event messages.

048h Reserved 64 Reserved

050h Reserved 64 Reserved

058h
Advanced Fault Log
Register

64 Register to configure and manage advanced
fault logging.

060h Reserved 32 Reserved

064h Protected Memory Enable Register 32 Register to enable DMA-protected memory
region(s).

068h Protected Low Memory Base
Register 32 Register pointing to base of DMA-protected low

memory region.

06Ch Protected Low Memory Limit
Register 32 Register pointing to last address (limit) of the

DMA-protected low memory region.

070h Protected High Memory Base
Register 64 Register pointing to base of DMA-protected high

memory region.

078h Protected High Memory Limit
Register 64 Register pointing to last address (limit) of the

DMA-protected high memory region.

080h Invalidation Queue Head 64 Offset to the invalidation queue entry that will
be read next by hardware.

088h Invalidation Queue Tail 64 Offset to the invalidation queue entry that will
be written next by software.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
92 Order Number: D51397-002

090h Invalidation Queue Address
Register 64 Base address of memory-resident invalidation

queue.

098h Reserved 32 Reserved

09Ch Invalidation Completion Status
Register 32 Register to indicate the completion of an

Invalidation Wait Descriptor with IF=1.

0A0h Invalidation Completion Event
Control Register 32 Register to control Invalidation Queue Events

0A4h Invalidation Completion Event Data
Register 32 Invalidation Queue Event message data register

for Invalidation Queue Events

0A8h Invalidation Completion Event
Address Register 32 Invalidation Queue Event message address

register for Invalidation Queue events

0ACh Invalidation Completion Event
Upper Address Register 32 Invalidation Queue Event message upper

address register for Invalidation Queue events

0B0h Reserved 64 Reserved

0B8h Interrupt Remapping Table Address
Register 64 Register indicating Base Address of Interrupt

Remapping Table.

XXXh IOTLB Invalidation Registers1 64
IOTLB invalidation registers consists of two
64-bit registers. Section 10.4.8 describes the
format of the registers.

YYYh Fault Recording Registers [n]1 128
Registers to record the translation faults. The
starting offset of the fault recording registers is
reported through the Capability register.

1. Hardware implementations may place IOTLB invalidation and fault recording registers in any reserved
addresses in the 4KB register space, or place them in adjoined 4KB regions. If one or more adjunct 4KB
regions are used, unused addresses in those pages must be treated as reserved by hardware. Location of
these registers is implementation dependent, and software must read the Capability register to determine
their offset location.

Offset Register Name Size Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 93

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.1 Version Register

Figure 10-28. Version Register

Abbreviation VER_REG

General
Description

Register to report the architecture version supported. Backward compatibility for
the architecture is maintained with new revision numbers, allowing software to load
remapping hardware drivers written for prior architecture versions.

Register Offset 000h

Bits Access Default Field Description

31:8 RsvdZ 0h R: Reserved Reserved.

7:4 RO 1h MAX: Major Version
number Indicates supported architecture version.

3:0 RO 0h MIN: Minor Version
number

Indicates supported architecture minor
version.

M inM a xR svd

1 8 7 4 3 0
3

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
94 Order Number: D51397-002

10.4.2 Capability Register

Figure 10-29. Capability Register

Abbreviation CAP_REG

General
Description Register to report general remapping hardware capabilities

Register Offset 008h

Bits Access Default Field Description

63:56 RsvdZ 0h R: Reserved Reserved.

55 RO X DRD: DMA Read
Draining

• 0: Hardware does not support draining of
DMA read requests.

• 1: Hardware supports draining of DMA read
requests.

Refer Section 6.3 for description of DMA read
draining.

54 RO X DWD: DMA Write
Draining

• 0: Hardware does not support draining of
DMA write requests.

• 1: Hardware supports draining of DMA write
requests.

Refer Section 6.3 for description of DMA write
draining.

53:48 RO X MAMV: Maximum
Address Mask Value

The value in this field indicates the maximum
supported value for the Address Mask (AM) field
in the Invalidation Address register (IVA_REG)
and IOTLB Invalidation Descriptor
(iotlb_inv_dsc).

This field is valid only when the PSI field in
Capability register is reported as Set.

47:40 RO X
NFR: Number of
Fault- recording
Registers

Number of fault recording registers is computed
as N+1, where N is the value reported in this
field.

Implementations must support at least one fault
recording register (NFR = 0) for each remapping
hardware unit in the platform.

The maximum number of fault recording
registers per remapping hardware unit is 256.

3 6 5 4 3 8 7 0 9 8 7 4 3 4 3 2 1 6 5 3 2 8 7 6 5 4 3 2 0
6 5 5 5 5 4 4 4 3 3 3 3 3 2 2 2 2 1 1 1 1

ND
A
F
L

R
W
B
F

P
M
L
R

P
M
H
R

C
MSAGAWRsvdMGAW

Z
L
R

I
S
O
C
H

FROSPS
R
s
v
d

P
S
I

NFRMAMV
D
W
D

D
R
D

Rsvd

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 95

Register Descriptions—Intel® Virtualization Technology for Directed I/O

39 RO X PSI: Page Selective
Invalidation

• 0: Hardware supports only global and
domain-selective invalidates for IOTLB.

• 1: Hardware supports page-selective,
domain-selective, and global invalidates for
IOTLB.

Hardware implementations reporting this field
as Set are recommended to support a Maximum
Address Mask Value (MAMV) value of at least 9.

38 RsvdZ 0h R: Reserved Reserved.

37:34 RO X SPS: Super-Page
support

This field indicates the super page sizes
supported by hardware.

A value of 1 in any of these bits indicates the
corresponding super-page size is supported. The
super-page sizes corresponding to various bit
positions within this field are:
• 0: 21-bit offset to page frame (2MB)
• 1: 30-bit offset to page frame (1GB)
• 2: 39-bit offset to page frame (512GB)
• 3: 48-bit offset to page frame (1TB)

Hardware implementations supporting a specific
super-page size must support all smaller super-
page sizes. i.e., only valid values for this field
are 0001b, 0011b, 0111b, 1111b.

33:24 RO X FRO: Fault-recording
Register offset

This field specifies the offset of the first fault
recording register relative to the register base
address of this remapping hardware unit.

If the register base address is X, and the value
reported in this field is Y, the address for the
first fault recording register is calculated as
X+(16*Y).

23 RO X ISOCH: Isochrony

• 0: Indicates the remapping hardware unit
has no critical isochronous requesters in its
scope.

• 1: Indicates the remapping hardware unit
has one or more critical isochronous
requesters in its scope. To guarantee
isochronous performance, software must
ensure invalidation operations do not
impact active DMA streams from such
requesters. For example, when isochronous
DMA is active, software performs page-
selective invalidations (and not coarser
invalidations).

22 RO X ZLR: Zero Length
Read

• 0: Indicates the remapping hardware unit
blocks (and treats as fault) zero length DMA
read requests to write-only pages.

• 1: Indicates the remapping hardware unit
supports zero length DMA read requests to
write-only pages.

DMA remapping hardware implementations are
recommended to report ZLR field as Set.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
96 Order Number: D51397-002

21:16 RO X MGAW: Maximum
Guest Address Width

This field indicates the maximum DMA virtual
addressability supported by remapping
hardware. The Maximum Guest Address Width
(MGAW) is computed as (N+1), where N is the
valued reported in this field. For example, a
hardware implementation supporting 48-bit
MGAW reports a value of 47 (101111b) in this
field.

If the value in this field is X, untranslated and
translated DMA requests to addresses above
2(X+1)-1 are always blocked by hardware.
Device-IOTLB translation requests to address
above 2(X+1)-1 from allowed devices return a
null Translation Completion Data Entry with
R=W=0.

Guest addressability for a given DMA request is
limited to the minimum of the value reported
through this field and the adjusted guest
address width of the corresponding page-table
structure. (Adjusted guest address widths
supported by hardware are reported through
the SAGAW field).

Implementations are recommended to support
MGAW at least equal to the physical
addressability (host address width) of the
platform.

15:13 RsvdZ 0h R: Reserved Reserved.

12:8 RO X
SAGAW: Supported
Adjusted Guest
Address Widths

This 5-bit field indicates the supported adjusted
guest address widths (which in turn represents
the levels of page-table walks for the 4KB base
page size) supported by the hardware
implementation.

A value of 1 in any of these bits indicates the
corresponding adjusted guest address width is
supported. The adjusted guest address widths
corresponding to various bit positions within this
field are:
• 0: 30-bit AGAW (2-level page-table)
• 1: 39-bit AGAW (3-level page-table)
• 2: 48-bit AGAW (4-level page-table)
• 3: 57-bit AGAW (5-level page-table)
• 4: 64-bit AGAW (6-level page-table)

Software must ensure that the adjusted guest
address width used to set up the page tables is
one of the supported guest address widths
reported in this field.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 97

Register Descriptions—Intel® Virtualization Technology for Directed I/O

7 RO X CM: Caching Mode

• 0: Not-present and erroneous entries are
not cached in any of the remapping caches.
Invalidations are not required for
modifications to individual not present or
invalid entries. However, any modifications
that result in decreasing the effective
permissions or partial permission increases
require invalidations for them to be
effective.

• 1: Not-present and erroneous mappings
may be cached in the remapping caches.
Any software updates to the remapping
structures (including updates to “not-
present” or erroneous entries) require
explicit invalidation.

Hardware implementations of this architecture
must support a value of 0 in this field. Refer to
Section 6.1 for more details on Caching Mode.

6 RO X PHMR: Protected
High-Memory Region

• 0: Indicates protected high-memory region
is not supported.

• 1: Indicates protected high-memory region
is supported.

5 RO X
PLMR: Protected
Low-Memory
Region

• 0: Indicates protected low-memory region
is not supported.

• 1: Indicates protected low-memory region
is supported.

4 RO X RWBF: Required
Write-Buffer Flushing

• 0: Indicates no write-buffer flushing is
needed to ensure changes to memory-
resident structures are visible to hardware.

• 1: Indicates software must explicitly flush
the write buffers to ensure updates made to
memory-resident remapping structures are
visible to hardware. Refer to Section 11.1
for more details on write buffer flushing
requirements.

3 RO X AFL: Advanced Fault
Logging

• 0: Indicates advanced fault logging is not
supported. Only primary fault logging is
supported.

• 1: Indicates advanced fault logging is
supported.

2:0 RO X ND: Number of
domains supported1

• 000b: Hardware supports 4-bit domain-ids
with support for up to 16 domains.

• 001b: Hardware supports 6-bit domain-ids
with support for up to 64 domains.

• 010b: Hardware supports 8-bit domain-ids
with support for up to 256 domains.

• 011b: Hardware supports 10-bit domain-ids
with support for up to 1024 domains.

• 100b: Hardware supports 12-bit domain-ids
with support for up to 4K domains.

• 100b: Hardware supports 14-bit domain-ids
with support for up to 16K domains.

• 110b: Hardware supports 16-bit domain-ids
with support for up to 64K domains.

• 111b: Reserved.

1. Each remapping unit in the platform should support as many number of domains as the maximum number
of independently DMA-remappable devices expected to be attached behind it.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
98 Order Number: D51397-002

10.4.3 Extended Capability Register

Figure 10-30. Extended Capability Register

Abbreviation ECAP_REG

General
Description Register to report remapping hardware extended capabilities

Register Offset 010h

Bits Access Default Field Description

63:24 RsvdZ 0h R: Reserved Reserved.

23:20 RO X MHMV: Maximum Handle
Mask Value

The value in this field indicates the
maximum supported value for the Handle
Mask (HM) field in the Interrupt Entry Cache
Invalidation Descriptor (iec_inv_dsc).
This field is valid only when the IR field in
Extended Capability register is reported as
Set.

19:18 RsvdZ 0h R: Reserved Reserved.

17:8 RO X IVO: IOTLB Invalidation
Register Offset

This field specifies the offset to the IOTLB
invalidation register relative to the register
base address of this remapping hardware
unit.

If the register base address is X, and the
value reported in this field is Y, the address
for the IOTLB invalidation register is
calculated as X+(16*Y).

7 R0 X SC: Snoop Control

• 0: Hardware does not support 1-setting
of the SNP field in the page-table
entries.

• 1: Hardware supports the 1-setting of
the SNP field in the page-table entries.

6 R0 X PT: Pass Through

• 0: Hardware does not support pass-
through translation type in context
entries.

• 1: Hardware supports pass-through
translation type in context entries.

5 R0 X CH: Caching Hints

• 0: Hardware does not support IOTLB
caching hints (ALH and EH fields in
context-entries are treated as
reserved).

• 1: Hardware supports IOLTB caching
hints through the ALH and EH fields in
context-entries.

4 RsvdZ 0 R: Reserved Reserved.

012345678
1
7

1
8

6
3

1
9

2
0

2
3

2
4

CQIEIMCHIVORsvd DIIRPTSCRsvdMHMV

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 99

Register Descriptions—Intel® Virtualization Technology for Directed I/O

3 RO X IR: Interrupt Remapping
support

• 0: Hardware does not support interrupt
remapping.

• 1: Hardware supports interrupt
remapping.

Implementations reporting this field as Set
must also support Queued Invalidation (QI)

2 RO X DI: Device IOTLB support

• 0: Hardware does not support
deviceIOTLBs.

• 1: Hardware supports Device-IOTLBs.
Implementations reporting this field as Set
must also support Queued Invalidation (QI)

1 RO X QI: Queued Invalidation
support

• 0: Hardware does not support queued
invalidations.

• 1: Hardware supports queued
invalidations.

0 RO X C: Coherency

This field indicates if hardware access to the
root, context, page-table and interrupt-
remap structures are coherent (snooped) or
not.
• 0:Indicates hardware accesses to

remapping structures are non-coherent.
• 1:Indicates hardware accesses to

remapping structures are coherent.
Hardware access to advanced fault log and
invalidation queue are always coherent.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
100 Order Number: D51397-002

10.4.4 Global Command Register

Figure 10-31. Global Command Register

Abbreviation GCMD_REG

General
Description

Register to control remapping hardware. If multiple control fields in this register
need to be modified, software must serialize the modifications through multiple
writes to this register.

Register Offset 018h

Bits Access Default Field Description

31 WO 0 TE: Translation
Enable

Software writes to this field to request hardware to
enable/disable DMA remapping:
• 0: Disable DMA remapping
• 1: Enable DMA remapping

Hardware reports the status of the translation
enable operation through the TES field in the Global
Status register.

There may be active DMA requests in the platform
when software updates this field. Hardware must
enable or disable remapping logic only at
deterministic transaction boundaries, so that any in-
flight transaction is either subject to remapping or
not at all.

Hardware implementations supporting DMA draining
must drain any in-flight DMA read/write requests
queued within the Root-Complex before completing
the translation enable command and reflecting the
status of the command through the TES field in the
Global Status register.

The value returned on a read of this field is
undefined.

Rsvd

0
2
3

SIRTPIREQIEWBFEAFLSFLSRTPTE

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 101

Register Descriptions—Intel® Virtualization Technology for Directed I/O

30 WO 0 SRTP: Set Root
Table Pointer

Software sets this field to set/update the root-entry
table pointer used by hardware. The root-entry table
pointer is specified through the Root-entry Table
Address (RTA_REG) register.

Hardware reports the status of the ‘Set Root Table
Pointer’ operation through the RTPS field in the
Global Status register.

The ‘Set Root Table Pointer’ operation must be
performed before enabling or re-enabling (after
disabling) DMA remapping through the TE field.

After a ‘Set Root Table Pointer’ operation, software
must globally invalidate the context-cache and then
globally invalidate the IOTLB. This is required to
ensure hardware uses only the remapping
structures referenced by the new root-table pointer,
and not stale cached entries.

While DMA remapping is active, software may
update the root table pointer through this field.
However, to ensure valid in-flight DMA requests are
deterministically remapped, software must ensure
that the structures referenced by the new root table
pointer are programmed to provide the same
remapping results as the structures referenced by
the previous root-table pointer.

Clearing this bit has no effect. The value returned on
a read of this field is undefined.

29 WO 0 SFL: Set Fault
Log

This field is valid only for implementations
supporting advanced fault logging.

Software sets this field to request hardware to
set/update the fault-log pointer used by hardware.
The fault-log pointer is specified through Advanced
Fault Log register.

Hardware reports the status of the ‘Set Fault Log’
operation through the FLS field in the Global Status
register.

The fault log pointer must be set before enabling
advanced fault logging (through EAFL field). Once
advanced fault logging is enabled, the fault log
pointer may be updated through this field while DMA
remapping is active.

Clearing this bit has no effect. The value returned on
read of this field is undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
102 Order Number: D51397-002

28 WO 0
EAFL: Enable
Advanced Fault
Logging

This field is valid only for implementations
supporting advanced fault logging.

Software writes to this field to request hardware to
enable or disable advanced fault logging:
• 0: Disable advanced fault logging. In this case,

translation faults are reported through the Fault
Recording registers.

• 1: Enable use of memory-resident fault log.
When enabled, translation faults are recorded in
the memory-resident log. The fault log pointer
must be set in hardware (through the SFL field)
before enabling advanced fault logging.
Hardware reports the status of the advanced
fault logging enable operation through the AFLS
field in the Global Status register.

The value returned on read of this field is undefined.

27 WO 0 WBF: Write
Buffer Flush1

This bit is valid only for implementations requiring
write buffer flushing.
Software sets this field to request that hardware
flush the Root-Complex internal write buffers. This is
done to ensure any updates to the memory-resident
remapping structures are not held in any internal
write posting buffers.
Refer to Section 11.1 for details on write-buffer
flushing requirements.
Hardware reports the status of the write buffer
flushing operation through the WBFS field in the
Global Status register.
Clearing this bit has no effect. The value returned on
a read of this field is undefined.

 26 WO 0
QIE: Queued
Invalidation
Enable

This field is valid only for implementations
supporting queued invalidations.
Software writes to this field to enable or disable
queued invalidations.
• 0: Disable queued invalidations.
• 1: Enable use of queued invalidations.

Hardware reports the status of queued invalidation
enable operation through QIES field in the Global
Status register.
Refer to Section 6.2.2 for software requirements for
enabling/disabling queued invalidations.
The value returned on a read of this field is
undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 103

Register Descriptions—Intel® Virtualization Technology for Directed I/O

 25 WO 0h
IRE: Interrupt
Remapping
Enable

This field is valid only for implementations
supporting interrupt remapping.
• 0: Disable interrupt-remapping hardware
• 1: Enable interrupt-remapping hardware

Hardware reports the status of the interrupt
remapping enable operation through the IRES field
in the Global Status register.
There may be active interrupt requests in the
platform when software updates this field. Hardware
must enable or disable interrupt-remapping logic
only at deterministic transaction boundaries, so that
any in-flight interrupts are either subject to
remapping or not at all.
Hardware implementations must drain any in-flight
interrupts requests queued in the Root-Complex
before completing the interrupt-remapping enable
command and reflecting the status of the command
through the IRES field in the Global Status register.
The value returned on a read of this field is
undefined.

24 WO 0
SIRTP: Set
Interrupt Remap
Table Pointer

This field is valid only for implementations
supporting interrupt-remapping.

Software sets this field to set/update the interrupt
remapping table pointer used by hardware. The
interrupt remapping table pointer is specified
through the Interrupt Remapping Table Address
(IRTA_REG) register.

Hardware reports the status of the ‘Set Interrupt
Remap Table Pointer’ operation through the IRTPS
field in the Global Status register.

The ‘Set Interrupt Remap Table Pointer’ operation
must be performed before enabling or re-enabling
(after disabling) interrupt-remapping hardware
through the IRE field.

After an ‘Set Interrupt Remap Table Pointer’
operation, software must globally invalidate the
interrupt entry cache. This is required to ensure
hardware uses only the interrupt-remapping entries
referenced by the new interrupt remap table pointer,
and not stale cached entries.

While interrupt remapping is active, software may
update the interrupt remapping table pointer
through this field. However, to ensure valid in-flight
interrupt requests are deterministically remapped,
software must ensure that the structures referenced
by the new interrupt remap table pointer are
programmed to provide the same remapping results
as the structures referenced by the previous
interrupt remap table pointer.

Clearing this bit has no effect. The value returned on
a read of this field is undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
104 Order Number: D51397-002

 23 WO 0
CFI:
Compatibility
Format Interrupt

This field is valid only for Intel®64 implementations
supporting interrupt-remapping.

Software writes to this field to enable or disable
Compatibility Format interrupts on Intel®64
platforms. The value in this field is effective only
when interrupt-remapping is enabled and Legacy
Interrupt Mode is active.
• 0: Block Compatibility format interrupts.
• 1: Process Compatibility format interrupts as

pass-through (bypass interrupt remapping).

Hardware reports the status of updating this field
through the CFIS field in the Global Status register.

Refer to Section 5.3.1 for details on Compatibility
Format interrupt requests.

The value returned on a read of this field is
undefined.

This field is not implemented on ItaniumTM
implementations.

 22:0 RsvdZ 0h R: Reserved Reserved.

1. Implementations reporting write-buffer flushing as required in Capability register must perform implicit
write buffer flushing as a pre-condition to all context-cache and IOTLB invalidation operations.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 105

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.5 Global Status Register

Figure 10-32. Global Status Register

Abbreviation GSTS_REG

General
Description Register to report general remapping hardware status.

Register Offset 01Ch

Bits Access Default Field Description

31 RO 0 TES: Translation
Enable Status

This field indicates the status of DMA-remapping
hardware.
• 0: DMA remapping is not enabled
• 1: DMA remapping is enabled

30 RO 0 RTPS: Root Table
Pointer Status

This field indicates the status of the root-table
pointer in hardware.

This field is cleared by hardware when software sets
the SRTP field in the Global Command register. This
field is set by hardware when hardware completes
the ‘Set Root Table Pointer’ operation using the value
provided in the Root-Entry Table Address register.

29 RO 0 FLS: Fault Log
Status

This field:
• Is cleared by hardware when software Sets the

SFL field in the Global Command register.
• Is Set by hardware when hardware completes

the ‘Set Fault Log Pointer’ operation using the
value provided in the Advanced Fault Log
register.

28 RO 0
AFLS: Advanced
Fault Logging
Status

This field is valid only for implementations
supporting advanced fault logging. It indicates the
advanced fault logging status:
• 0: Advanced Fault Logging is not enabled
• 1: Advanced Fault Logging is enabled

27 RO 0
WBFS: Write
Buffer Flush
Status

This field is valid only for implementations requiring
write buffer flushing. This field indicates the status of
the write buffer flush command. It is
• Set by hardware when software sets the WBF

field in the Global Command register.
• Cleared by hardware when hardware completes

the write buffer flushing operation.

 26 RO 0
QIES: Queued
Invalidation
Enable Status

This field indicates queued invalidation enable
status.
• 0: queued invalidation is not enabled
• 1: queued invalidation is enabled

Rsvd

0
2
3

IRTPSIRESQIESWBFSAFLSFLSRTPSTES

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
106 Order Number: D51397-002

 25 RO 0
IRES: Interrupt
Remapping
Enable Status

This field indicates the status of Interrupt-remapping
hardware.
• 0: Interrupt-remapping hardware is not enabled
• 1:Interrupt-remapping hardware is enabled

24
RO

0
IRTPS: Interrupt
Remapping Table
Pointer Status

This field indicates the status of the interrupt
remapping table pointer in hardware.

This field is cleared by hardware when software sets
the SIRTP field in the Global Command register. This
field is Set by hardware when hardware completes
the ‘Set Interrupt Remap Table Pointer’ operation
using the value provided in the Interrupt Remapping
Table Address register.

 23 RO 0

CFIS:
Compatibility
Format Interrupt
Status

This field indicates the status of Compatibility format
interrupts on Intel®64 implementations supporting
interrupt-remapping. The value reported in this field
is applicable only when interrupt-remapping is
enabled and Legacy interrupt mode is active.
• 0: Compatibility format interrupts are blocked.
• 1: Compatibility format interrupts are processed

as pass-through (bypassing interrupt
remapping).

22:0 RsvdZ 0h R: Reserved Reserved.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 107

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.6 Root-Entry Table Address Register

Figure 10-33. Root-Entry Table Address Register

Abbreviation RTADDR_REG

General
Description Register providing the base address of root-entry table.

Register Offset 020h

Bits Access Default Field Description

63:12 RW 0h RTA: Root Table
Address

This register points to the base of the page-aligned,
4KB-sized root-entry table in system memory.
Hardware ignores and not implement bits 63:HAW,
where HAW is the host address width.

Software specifies the base address of the root-entry
table through this register, and programs it in
hardware through the SRTP field in the Global
Command register.

Reads of this register return the value that was last
programmed to it.

11:0 RsvdZ 0h R: Reserved Reserved.

RTA

0
6
3

1
2

1
1

Rsvd

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
108 Order Number: D51397-002

10.4.7 Context Command Register

Figure 10-34. Context Command Register

Abbreviation CCMD_REG

General
Description

Register to manage context cache.The act of writing the uppermost byte of the
CCMD_REG with the ICC field Set causes the hardware to perform the context-cache
invalidation.

Register Offset 028h

Bits Access Default Field Description

63 RW 0
ICC: Invalidate
Context-Cache

Software requests invalidation of context-cache by
setting this field. Software must also set the
requested invalidation granularity by programming
the CIRG field. Software must read back and check
the ICC field is Clear to confirm the invalidation is
complete. Software must not update this register
when this field is Set.

Hardware clears the ICC field to indicate the
invalidation request is complete.Hardware also
indicates the granularity at which the invalidation
operation was performed through the CAIG field.

Software must submit a context-cache invalidation
request through this field only when there are no
invalidation requests pending at this remapping
hardware unit. Refer to Chapter 11 for software
programming requirements.

Since information from the context-cache may be
used by hardware to tag IOTLB entries, software must
perform domain-selective (or global) invalidation of
IOTLB after the context cache invalidation has
completed.

Hardware implementations reporting a write-buffer
flushing requirement (RWBF=1 in the Capability
register) must implicitly perform a write buffer flush
before invalidating the context-cache. Refer to
Section 11.1 for write buffer flushing requirements.

0

FM DID

1
6

1
5

SIDRsvdCAIGCIRGICC

3
1

3
2

3
3

3
4

6
3

6
2

6
1

6
0

5
9

5
8

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 109

Register Descriptions—Intel® Virtualization Technology for Directed I/O

62:61 RW 0h

CIRG: Context
Invalidation
Request
Granularity

Software provides the requested invalidation
granularity through this field when setting the ICC
field:
• 00: Reserved.
• 01: Global Invalidation request.
• 10: Domain-selective invalidation request. The

target domain-id must be specified in the DID
field.

• 11: Device-selective invalidation request. The
target source-id(s) must be specified through the
SID and FM fields, and the domain-id [that was
programmed in the context-entry for these
device(s)] must be provided in the DID field.

Hardware implementations may process an
invalidation request by performing invalidation at a
coarser granularity than requested. Hardware
indicates completion of the invalidation request by
clearing the ICC field. At this time, hardware also
indicates the granularity at which the actual
invalidation was performed through the CAIG field.

60:59 RO Xh

CAIG: Context
Actual
Invalidation
Granularity

Hardware reports the granularity at which an
invalidation request was processed through the CAIG
field at the time of reporting invalidation completion
(by clearing the ICC field).

The following are the encodings for this field:
• 00: Reserved.
• 01: Global Invalidation performed. This could be

in response to a global, domain-selective, or
device-selective invalidation request.

• 10: Domain-selective invalidation performed
using the domain-id specified by software in the
DID field. This could be in response to a domain-
selective or device-selective invalidation request.

• 11: Device-selective invalidation performed using
the source-id and domain-id specified by software
in the SID and FM fields. This can only be in
response to a device-selective invalidation
request.

58:34 RsvdZ 0h R: Reserved Reserved.

33:32 WO 0h FM: Function
Mask

Software may use the Function Mask to perform
device-selective invalidations on behalf of devices
supporting PCI Express Phantom Functions.
This field specifies which bits of the function number
portion (least significant three bits) of the SID field to
mask when performing device-selective
invalidations.The following encodings are defined for
this field:
• 00: No bits in the SID field masked
• 01: Mask bit 2 in the SID field
• 10: Mask bits 2:1 in the SID field
• 11: Mask bits 2:0 in the SID field

The context-entries corresponding to the source-ids
specified through the SID and FM fields must have the
domain-id specified in the DID field.

The value returned on a read of this field is undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
110 Order Number: D51397-002

31:16 WO 0h SID: Source-ID

Indicates the source-id of the device whose
corresponding context-entry needs to be selectively
invalidated.This field along with the FM field must be
programmed by software for device-selective
invalidation requests.

The value returned on a read of this field is undefined.

15:0 RW 0h DID: Domain-ID

Indicates the id of the domain whose context-entries
need to be selectively invalidated. This field must be
programmed by software for both domain-selective
and device-selective invalidation requests.

The Capability register reports the domain-id width
supported by hardware. Software must ensure that
the value written to this field is within this limit.
Hardware ignores (and may not implement) bits 15:N,
where N is the supported domain-id width reported in
the Capability register.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 111

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.8 IOTLB Invalidation Registers

IOTLB invalidation registers consists of two adjacently placed 64-bit registers:

• IOTLB Invalidate Register (IOTLB_REG)

• Invalidate Address Register (IVA_REG)

These registers are described in the following sub-sections.

Offset Register Name Size Description

XXXh Invalidate Address Register 64

Register to provide the target address for
page-selective IOTLB invalidation. The
offset of this register is reported through
the IVO field in Extended Capability
register.

XXXh + 008h IOTLB Invalidate Register 64 Register for IOTLB invalidation command

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
112 Order Number: D51397-002

10.4.8.1 IOTLB Invalidate Register

Figure 10-35. IOTLB Invalidate Register

Abbreviation IOTLB_REG

General
Description

Register to invalidate IOTLB. The act of writing the upper byte of the IOTLB_REG
with the IVT field Set causes the hardware to perform the IOTLB invalidation.

Register Offset XXXh + 0008h (where XXXh is the location of the IVA_REG)

Bits Access Default Field Description

63 RW 0 IVT: Invalidate
IOTLB

Software requests IOTLB invalidation by setting this
field. Software must also set the requested
invalidation granularity by programming the IIRG
field.

Hardware clears the IVT field to indicate the
invalidation request is complete. Hardware also
indicates the granularity at which the invalidation
operation was performed through the IAIG field.
Software must not submit another invalidation
request through this register while the IVT field is
Set, nor update the associated Invalidate Address
register.

Software must not submit IOTLB invalidation
requests when there is a context-cache invalidation
request pending at this remapping hardware unit.
Refer to Chapter 11 for software programming
requirements.

Hardware implementations reporting a write-buffer
flushing requirement (RWBF=1 in Capability register)
must implicitly perform a write buffer flushing before
invalidating the IOTLB. Refer to Section 11.1 for write
buffer flushing requirements.

0

DR Rsvd

3
1

DIDRsvdIAIGIIRGIVT

3
2

4
7

4
8

4
9

6
3

6
2

6
0

5
9

5
7

5
6

DW

5
0

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 113

Register Descriptions—Intel® Virtualization Technology for Directed I/O

62:60 RW 0h

IIRG: IOTLB
Invalidation
Request
Granularity

When requesting hardware to invalidate the IOTLB
(by setting the IVT field), software writes the
requested invalidation granularity through this field.
The following are the encodings for the field.
• 000: Reserved.
• 001: Global invalidation request.
• 010: Domain-selective invalidation request. The

target domain-id must be specified in the DID
field.

• 011: Page-selective invalidation request. The
target address, mask, and invalidation hint must
be specified in the Invalidate Address register,
and the domain-id must be provided in the DID
field.

• 101 - 111: Reserved.

Hardware implementations may process an
invalidation request by performing invalidation at a
coarser granularity than requested. Hardware
indicates completion of the invalidation request by
clearing the IVT field. At that time, the granularity at
which actual invalidation was performed is reported
through the IAIG field.

59:57 RO Xh

IAIG: IOTLB
Actual
Invalidation
Granularity

Hardware reports the granularity at which an
invalidation request was processed through this field
when reporting invalidation completion (by clearing
the IVT field).

The following are the encodings for this field.
• 000: Reserved. This indicates hardware detected

an incorrect invalidation request and ignored the
request. Examples of incorrect invalidation
requests include detecting an unsupported
address mask value in Invalidate Address
register for page-selective invalidation requests.

• 001: Global Invalidation performed. This could be
in response to a global, domain-selective, or
page-selective invalidation request.

• 010: Domain-selective invalidation performed
using the domain-id specified by software in the
DID field. This could be in response to a domain-
selective or a page-selective invalidation request.

• 011: Domain-page-selective invalidation
performed using the address, mask and hint
specified by software in the Invalidate Address
register and domain-id specified in DID field. This
can be in response to a page-selective
invalidation request.

• 100 - 111: Reserved.

56:50 RsvdZ 0h R: Reserved Reserved.

49 RW 0h DR: Drain Reads

This field is ignored by hardware if the DRD field is
reported as Clear in the Capability register. When the
DRD field is reported as Set in the Capability register,
the following encodings are supported for this field:
• 0: Hardware may complete the IOTLB

invalidation without draining DMA read requests.
• 1: Hardware must drain DMA read requests.

Refer Section 6.3 for description of DMA draining.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
114 Order Number: D51397-002

48 RW 0h DW: Drain Writes

This field is ignored by hardware if the DWD field is
reported as Clear in the Capability register. When the
DWD field is reported as Set in the Capability register,
the following encodings are supported for this field:
• 0: Hardware may complete the IOTLB

invalidation without draining DMA write requests.
• 1: Hardware must drain relevant translated DMA

write requests.
Refer Section 6.3 for description of DMA draining.

47:32 RW 0h DID: Domain-ID

Indicates the ID of the domain whose IOTLB entries
need to be selectively invalidated. This field must be
programmed by software for domain-selective and
page-selective invalidation requests.
The Capability register reports the domain-id width
supported by hardware. Software must ensure that
the value written to this field is within this limit.
Hardware ignores and not implement bits 47:(32+N),
where N is the supported domain-id width reported in
the Capability register.

31:0 RsvdP Xh R: Reserved Reserved.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 115

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.8.2 Invalidate Address Register

Figure 10-36. Invalidate Address Register

Abbreviation IVA_REG

General
Description

Register to provide the DMA address whose corresponding IOTLB entry needs to be
invalidated through the corresponding IOTLB Invalidate register. This register is a
write-only register. A value returned on a read of this register is undefined.

Register Offset XXXh (XXXh is QWORD aligned and reported through the IVO field in the Extended
Capability register)

Bits Access Default Field Description

63:12 WO 0h ADDR: Address

Software provides the DMA address that needs to be
page-selectively invalidated. To make a page-
selective invalidation request to hardware, software
must first write the appropriate fields in this register,
and then issue the appropriate page-selective
invalidate command through the IOTLB_REG.
Hardware ignores bits 63:N, where N is the maximum
guest address width (MGAW) supported.

A value returned on a read of this field is undefined.

11:7 RsvdZ 0 R: Reserved Reserved.

6 WO 0 IH: Invalidation
Hint

The field provides hints to hardware about preserving
or flushing the non-leaf (page-directory) entries that
may be cached in hardware:
• 0: Software may have modified both leaf and

non-leaf page-table entries corresponding to
mappings specified in the ADDR and AM fields.
On a page-selective invalidation request,
hardware must flush both the cached leaf and
non-leaf page-table entries corresponding to the
mappings specified by ADDR and AM fields.

• 1: Software has not modified any non-leaf page-
table entries corresponding to mappings
specified in the ADDR and AM fields. On a page-
selective invalidation request, hardware may
preserve the cached non-leaf page-table entries
corresponding to the mappings specified by the
ADDR and AM fields.

A value returned on a read of this field is undefined.

0

ADDR Rsvd

6
3

1
2

1
1

IH AM

567

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
116 Order Number: D51397-002

5:0 WO 0 AM: Address
Mask

The value in this field specifies the number of low
order bits of the ADDR field that must be masked for
the invalidation operation. This field enables software
to request invalidation of contiguous mappings for
size-aligned regions. For example:

Hardware implementations report the maximum
supported address mask value through the Capability
register.

A value returned on a read of this field is undefined.

Bits Access Default Field Description

Mask
Value

ADDR
bits

masked

Pages
invalidated

0 None 1

1 12 2

2 13:12 4

3 14:12 8

4 15:12 16

...

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 117

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.9 Fault Status Register

Figure 10-37. Fault Status Register

Abbreviation FSTS_REG

General
Description Register indicating the various error status.

Register Offset 034h

Bits Access Default Field Description

31:16 RsvdZ 0h R: Reserved Reserved.

15:8 ROS 0 FRI: Fault Record
Index

This field is valid only when the PPF field is Set.

The FRI field indicates the index (from base) of the
fault recording register to which the first pending
fault was recorded when the PPF field was Set by
hardware.

The value read from this field is undefined when the
PPF field is Clear.

7 RsvdZ 0h R: Reserved Reserved.

6 RW1CS 0h ITE: Invalidation
Time-out Error

Hardware detected a Device-IOTLB invalidation
completion time-out. At this time, a fault event may
be generated based on the programming of the Fault
Event Control register.

Hardware implementations not supporting Device-
IOTLBs implement this bit as RsvdZ.

5 RW1CS 0h ICE: Invalidation
Completion Error

Hardware received an unexpected or invalid Device-
IOTLB invalidation completion. This could be due to
either an invalid ITag or invalid source-id in an
invalidation completion response. At this time, a fault
event may be generated based on the programming
of the Fault Event Control register.

Hardware implementations not supporting Device-
IOTLBs implement this bit as RsvdZ.

 4 RW1CS 0 IQE: Invalidation
Queue Error

Hardware detected an error associated with the
invalidation queue. This could be due to either a
hardware error while fetching a descriptor from the
invalidation queue, or hardware detecting an
erroneous or invalid descriptor in the invalidation
queue. At this time, a fault event may be generated
based on the programming of the Fault Event Control
register.

Hardware implementations not supporting queued
invalidations implement this bit as RsvdZ.

012347 6 5

PFOPPFAFOAPFIQEICEITEFRIRsvd Rsvd

8
1
5

1
6

3
1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
118 Order Number: D51397-002

 3 RW1CS 0 APF: Advanced
Pending Fault

When this field is Clear, hardware sets this field when
the first fault record (at index 0) is written to a fault
log. At this time, a fault event is generated based on
the programming of the Fault Event Control register.

Software writing 1 to this field clears it. Hardware
implementations not supporting advanced fault
logging implement this bit as RsvdZ.

 2 RW1CS 0 AFO: Advanced
Fault Overflow

Hardware sets this field to indicate advanced fault log
overflow condition. At this time, a fault event is
generated based on the programming of the Fault
Event Control register.

Software writing 1 to this field clears it.
Hardware implementations not supporting advanced
fault logging implement this bit as RsvdZ.

1 ROS 0 PPF: Primary
Pending Fault

This field indicates if there are one or more pending
faults logged in the fault recording
registers. Hardware computes this field as the logical
OR of Fault (F) fields across all the fault recording
registers of this remapping hardware unit.
• 0: No pending faults in any of the fault recording

registers
• 1: One or more fault recording registers has

pending faults. The FRI field is updated by
hardware whenever the PPF field is Set by
hardware. Also, depending on the programming
of Fault Event Control register, a fault event is
generated when hardware sets this field.

0 RW1CS 0 PFO: Fault
Overflow

Hardware sets this field to indicate overflow of the
fault recording registers. Software writing 1 clears
this field. When this field is Set, hardware does not
record any new faults until software clears this field.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 119

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.10 Fault Event Control Register

Figure 10-38. Fault Event Control Register

Abbreviation FECTL_REG

General
Description

Register specifying the fault event interrupt message control bits. Section 7.3
describes hardware handling of fault events.

Register Offset 038h

Bits Access Default Field Description

31 RW 1 IM: Interrupt
Mask

• 0: No masking of interrupts. When a interrupt
condition is detected, hardware issues an
interrupt message (using the Fault Event Data
and Fault Event Address register values).

• 1: This is the value on reset. Software may mask
interrupt message generation by setting this
field.Hardware is prohibited from sending the
interrupt message when this field is Set.

IM

0

IP Rsvd

3
1

3
0

2
9

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
120 Order Number: D51397-002

30 RO 0 IP: Interrupt
Pending

Hardware sets the IP field whenever it detects an
interrupt condition, which is defined as:
• When primary fault logging is active, an

interrupt condition occurs when hardware
records a fault through one of the Fault
Recording registers and sets the PPF field in the
Fault Status register.

• When advanced fault logging is active, an
interrupt condition occurs when hardware
records a fault in the first fault record (at index
0) of the current fault log and sets the APF field
in the Fault Status register.

• Hardware detected error associated with the
Invalidation Queue, setting the IQE field in the
Fault Status register.

• Hardware detected invalid Device-IOTLB
invalidation completion, setting the ICE field in
the Fault Status register.

• Hardware detected Device-IOTLB invalidation
completion time-out, setting the ITE field in the
Fault Status register.

If any of the status fields in the Fault Status register
was already Set at the time of setting any of these
fields, it is not treated as a new interrupt condition.

The IP field is kept Set by hardware while the
interrupt message is held pending. The interrupt
message could be held pending due to the interrupt
mask (IM field) being Set or other transient
hardware conditions.

The IP field is cleared by hardware as soon as the
interrupt message pending condition is serviced. This
could be due to either:
• Hardware issuing the interrupt message due to

either a change in the transient hardware
condition that caused the interrupt message to
be held pending, or due to software clearing the
IM field.

• Software servicing all the pending interrupt
status fields in the Fault Status register as
follows.
• When primary fault logging is active,

software clearing the Fault (F) field in all the
Fault Recording registers with faults,
causing the PPF field in the Fault Status
register to be evaluated as Clear.

• Software clearing other status fields in the
Fault Status register by writing back the
value read from the respective fields.

29:0 RsvdP Xh R: Reserved Reserved.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 121

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.11 Fault Event Data Register

Figure 10-39. Fault Event Data Register

Abbreviation FEDATA_REG

General
Description Register specifying the interrupt message data.

Register Offset 03Ch

Bits Access Default Field Description

31:16 RW 0h
EIMD: Extended
Interrupt
Message Data

This field is valid only for implementations supporting
32-bit interrupt data fields.

Hardware implementations supporting only 16-bit
interrupt data treat this field as RsvdZ.

15:0 RW 0h IMD: Interrupt
Message data

Data value in the interrupt request. Software
requirements for programming this register are
described in Section 5.6.

EIMD

0

IMD

3
1

1
6

1
5

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
122 Order Number: D51397-002

10.4.12 Fault Event Address Register

Figure 10-40. Fault Event Address Register

Abbreviation FEADDR_REG

General
Description Register specifying the interrupt message address.

Register Offset 040h

Bits Access Default Field Description

31:2 RW 0h MA: Message
address

When fault events are enabled, the contents of this
register specify the DWORD-aligned address (bits
31:2) for the interrupt request.

Software requirements for programming this register
are described in Section 5.6.

1:0 RsvdZ 0h R: Reserved Reserved.

0

RsvdMA

3
1 12

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 123

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.13 Fault Event Upper Address Register

Figure 10-41. Fault Event Upper Address Register

Abbreviation FEUADDR_REG

General
Description

Register specifying the interrupt message upper address. This register is treated as
RsvdZ by implementations restricted to 32-bit interrupt address.

Register Offset 044h

Bits Access Default Field Description

31:0 RW 0h MUA: Message
upper address

Software requirements for programming this register
are described in Section 5.6.

0

MUA

3
1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
124 Order Number: D51397-002

10.4.14 Fault Recording Registers [n]

Figure 10-42. Fault Recording Register

Abbreviation FRCD_REG [n]

General
Description

Registers to record fault information when primary fault logging is active.Hardware
reports the number and location of fault recording registers through the Capability
register. This register is relevant only for primary fault logging.

These registers are sticky and can be cleared only through power good reset or by
software clearing the RW1C fields by writing a 1.

Register Offset YYYh (YYYh must be 128-bit aligned)

Bits Access Default Field Description

127 RW1CS 0 F: Fault1

Hardware sets this field to indicate a fault is
logged in this Fault Recording register. The F
field is Set by hardware after the details of the
fault is recorded in other fields.

When this field is Set, hardware may collapse
additional faults from the same source-id
(SID).

Software writes the value read from this field to
Clear it.

Refer to Section 7.2.1 for hardware details of
primary fault logging.

126 ROS X T: Type

Type of the faulted request:
• 0: Write request
• 1: Read request

This field is relevant only when the F field is
Set, and when the fault reason (FR) indicates
one of the DMA-remapping fault conditions.

0

Rsvd

FR SID

FI

RsvdRsvdATTF

6
3

1
2
7

6
4

1
2
4

1
2
6

1
2
5

1
2
3

1
0
4

1
0
3

9
6

9
5

8
0

7
9

1
1

1
2

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 125

Register Descriptions—Intel® Virtualization Technology for Directed I/O

125:124 ROS Xh AT: Address Type

This field captures the AT field from the faulted
DMA request.

Hardware implementations not supporting
Device-IOTLBs (DI field Clear in Extended
Capability register) treat this field as RsvdZ.

When supported, this field is valid only when
the F field is Set, and when the fault reason
(FR) indicates one of the DMA-remapping fault
conditions.

 123:104 RsvdZ 0h R: Reserved Reserved.

103:96 ROS Xh FR: Fault Reason

Reason for the fault. Appendix A enumerates
the various translation fault reason encodings.

This field is relevant only when the F field is
Set.

95:80 RsvdZ 0h R: Reserved Reserved.

79:64 ROS Xh SID: Source Identifier

Requester-id associated with the fault
condition.
This field is relevant only when the F field is
Set.

63:12 ROS Xh FI: Fault Info

When the Fault Reason (FR) field indicates one
of the DMA-remapping fault conditions, bits
63:12 of this field contains the page address in
the faulted DMA request. Hardware treat bits
63:N as reserved (0), where N is the maximum
guest address width (MGAW) supported.

When the Fault Reason (FR) field indicates one
of the interrupt-remapping fault conditions, bits
63:48 of this field indicate the interrupt_index
computed for the faulted interrupt request, and
bits 47:12 are cleared.

This field is relevant only when the F field is
Set.

11:0 RsvdZ 0h R: Reserved Reserved.

1. Hardware updates to this register may be disassembled as multiple doubleword writes. To ensure consistent
data is read from this register, software must first check the Primary Pending Fault (PPF) field in the
FSTS_REG is Set before reading the fault reporting register at offset as indicated in the FRI field of
FSTS_REG. Alternatively, software may read the highest doubleword in a fault recording register and check
if the Fault (F) field is Set before reading the rest of the data fields in that register.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
126 Order Number: D51397-002

10.4.15 Advanced Fault Log Register

Figure 10-43. Advanced Fault Log Register

Abbreviation AFLOG_REG

General
Description

Register to specify the base address of the memory-resident fault-log region. This
register is treated as RsvdZ for implementations not supporting advanced
translation fault logging (AFL field reported as 0 in the Capability register).

Register Offset 058h

Bits Access Default Field Description

63:12 RW 0h FLA: Fault Log
Address

This field specifies the base of 4KB aligned fault-log
region in system memory. Hardware ignores and not
implement bits 63:HAW, where HAW is the host
address width.

Software specifies the base address and size of the
fault log region through this register, and programs it
in hardware through the SFL field in the Global
Command register. When implemented, reads of this
field return the value that was last programmed to it.

11:9 RW 0h FLS: Fault Log
Size

This field specifies the size of the fault log region
pointed by the FLA field. The size of the fault log
region is 2X * 4KB, where X is the value programmed
in this register.

When implemented, reads of this field return the
value that was last programmed to it.

 8:0 RsvdZ 0h R: Reserved Reserved.

0

FLA Rsvd

6
3

1
2 8

FLS

9
1
1

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 127

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.16 Protected Memory Enable Register

Figure 10-44. Protected Memory Enable Register

Abbreviation PMEN_REG

General
Description

Register to enable the DMA-protected memory regions set up through the PLMBASE,
PLMLIMT, PHMBASE, PHMLIMIT registers. This register is always treated as RO (0)
for implementations not supporting protected memory regions (PLMR and PHMR
fields reported as 0 in the Capability register).

Protected memory regions may be used by software to securely initialize remapping
structures in memory. Refer to Chapter 12.0 for security considerations.

Register Offset 064h

Rsvd

0

PRSEPM

3
1

3
0 1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
128 Order Number: D51397-002

Bits Access Default Field Description

31 RW 0h
EPM: Enable
Protected
Memory

This field controls DMA accesses to the protected
low-memory and protected high-memory
regions.
• 0: DMA accesses to protected memory

regions are handled as follows:
• If DMA remapping is not enabled, DMA

requests (including those to protected
regions) are not blocked.

• If DMA remapping is enabled, DMA
requests are translated per the
programming of the DMA remapping
structures. Software may program the
DMA-remapping structures to allow or
block DMA to the protected memory
regions.

• 1: DMA accesses to protected memory
regions are handled as follows:
• If DMA remapping is not enabled, DMA

requests to protected memory regions
are blocked. These DMA requests are not
recorded or reported as DMA-remapping
faults.

• If DMA remapping is enabled, hardware
may or may not block DMA to the
protected memory region(s). Software
must not depend on hardware protection
of the protected memory regions, and
must ensure the DMA-remapping
structures are properly programmed to
not allow DMA to the protected memory
regions.

Hardware reports the status of the protected
memory enable/disable operation through the
PRS field in this register. Hardware
implementations supporting DMA draining must
drain any in-flight translated DMA requests
queued within the Root-Complex before
indicating the protected memory region as
enabled through the PRS field.

30:1 RsvdP Xh R: Reserved Reserved.

0 RO 0h PRS: Protected
Region Status

This field indicates the status of protected
memory region(s):
• 0: Protected memory region(s) disabled.
• 1: Protected memory region(s) enabled.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 129

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.17 Protected Low-Memory Base Register

Figure 10-45. Protected Low-Memory Base Register

Abbreviation PLMBASE_REG

General
Description

Register to set up the base address of DMA-protected low-memory region below
4GB. This register must be set up before enabling protected memory through
PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
low memory region (PLMR field reported as 0 in the Capability register).

The alignment of the protected low memory region base depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1s to
this register, and finding the most significant bit position with 0 in the value read
back from the register. Bits N:0 of this register are decoded by hardware as all 0s.

Software must setup the protected low memory region below 4GB. Section 10.4.18
describes the Protected Low-Memory Limit register and hardware decoding of these
registers.

Register Offset 068h

Bits Access Default Field Description

31:(N+1) RW 0h
PLMB: Protected
Low-Memory
Base

This register specifies the base of protected low-
memory region in system memory.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

3
1 N

PLMB

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
130 Order Number: D51397-002

10.4.18 Protected Low-Memory Limit Register

Figure 10-46. Protected Low-Memory Limit Register

Abbreviation PLMLIMIT_REG

General
Description

Register to set up the limit address of DMA-protected low-memory region below
4GB. This register must be set up before enabling protected memory through
PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
low memory region (PLMR field reported as 0 in the Capability register).

The alignment of the protected low memory region limit depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1’s to
this register, and finding most significant zero bit position with 0 in the value read
back from the register. Bits N:0 of the limit register are decoded by hardware as all
1s.

The Protected low-memory base and limit registers function as follows:
• Programming the protected low-memory base and limit registers the same

value in bits 31:(N+1) specifies a protected low-memory region of size 2(N+1)
bytes.

• Programming the protected low-memory limit register with a value less than the
protected low-memory base register disables the protected low-memory region.

Register Offset 06Ch

Bits Access Default Field Description

31:(N+1) RW 0h
PLML: Protected
Low-Memory
Limit

This register specifies the last host physical
address of the DMA-protected low-memory
region in system memory.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

3
1 N

PLML

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 131

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.19 Protected High-Memory Base Register

Figure 10-47. Protected High-Memory Base Register

Abbreviation PHMBASE_REG

General
Description

Register to set up the base address of DMA-protected high-memory region. This
register must be set up before enabling protected memory through PMEN_REG, and
must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
high memory region (PHMR field reported as 0 in the Capability register).

The alignment of the protected high memory region base depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1’s to
this register, and finding most significant zero bit position below host address width
(HAW) in the value read back from the register. Bits N:0 of this register are decoded
by hardware as all 0s.

Software may setup the protected high memory region either above or below 4GB.
Section 10.4.20 describes the Protected High-Memory Limit register and hardware
decoding of these registers.

Register Offset 070h

Bits Access Default Field Description

63:(N+1) RW 0h
PHMB: Protected
High-Memory
Base

This register specifies the base of protected
(high) memory region in system memory.

Hardware ignore, and not implement, bits
63:HAW, where HAW is the host address width.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

6
3 N

PHMB

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
132 Order Number: D51397-002

10.4.20 Protected High-Memory Limit Register

Figure 10-48. Protected High-Memory Limit Register

Abbreviation PHMLIMIT_REG

General
Description

Register to set up the limit address of DMA-protected high-memory region. This
register must be set up before enabling protected memory through PMEN_REG, and
must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
high memory region (PHMR field reported as 0 in the Capability register).

The alignment of the protected high memory region limit depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1’s to
this register, and finding most significant zero bit position below host address width
(HAW) in the value read back from the register. Bits N:0 of the limit register are
decoded by hardware as all 1s.

The protected high-memory base & limit registers function as follows.
• Programming the protected low-memory base and limit registers with the same

value in bits HAW:(N+1) specifies a protected low-memory region of size 2(N+1)
bytes.

• Programming the protected high-memory limit register with a value less than
the protected high-memory base register disables the protected high-memory
region.

Register Offset 078h

Bits Access Default Field Description

63:(N+1) RW 0h
PHML: Protected
High-Memory
Limit

This register specifies the last host physical
address of the DMA-protected high-memory
region in system memory.

Hardware ignores and not implement bits
63:HAW, where HAW is the host address width.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

6
3 N

PHML

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 133

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.21 Invalidation Queue Head Register

Figure 10-49. Invalidation Queue Head Register

Abbreviation IQH_REG

General
Description

Register indicating the invalidation queue head. This register is treated as RsvdZ by
implementations reporting Queued Invalidation (QI) as not supported in the
Extended Capability register.

Register Offset 080h

Bits Access Default Field Description

 63:19 RsvdZ 0h R: Reserved Reserved.

 18:4 RO 0h QH: Queue Head

Specifies the offset (128-bit aligned) to the
invalidation queue for the command that will be
fetched next by hardware.
Hardware resets this field to 0 whenever the
queued invalidation is disabled (QIES field Clear
in the Global Status register).

 3:0 RsvdZ 0h R: Reserved Reserved.

Rsvd

0

RsvdQH

6
3 34

1
8

1
9

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
134 Order Number: D51397-002

10.4.22 Invalidation Queue Tail Register

Figure 10-50. Invalidation Queue Tail Register

Abbreviation IQT_REG

General
Description

Register indicating the invalidation tail head. This register is treated as RsvdZ by
implementations reporting Queued Invalidation (QI) as not supported in the
Extended Capability register.

Register Offset 088h

Bits Access Default Field Description

 63:19 RsvdZ 0h R: Reserved Reserved.

 18:4 RW 0h QT: Queue Tail
Specifies the offset (128-bit aligned) to the
invalidation queue for the command that will be
written next by software.

 3:0 RsvdZ 0h R: Reserved Reserved.

Rsvd

0

RsvdQT

6
3 34

1
8

1
9

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 135

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.23 Invalidation Queue Address Register

Figure 10-51. Invalidation Queue Address Register

Abbreviation IQA_REG

General
Description

Register to configure the base address and size of the invalidation queue. This
register is treated as RsvdZ by implementations reporting Queued Invalidation (QI)
as not supported in the Extended Capability register.

When supported, writing to this register causes the Invalidation Queue Head and
Invalidation Queue Tail registers to be reset to 0h.

Register Offset 090h

Bits Access Default Field Description

 63:12 RW 0h
IQA: Invalidation
Queue Base
Address

This field points to the base of 4KB aligned
invalidation request queue. Hardware ignores
and not implement bits 63:HAW, where HAW is
the host address width.

Reads of this field return the value that was last
programmed to it.

 11:3 RsvdZ 0h R: Reserved Reserved.

 2:0 RW 0h QS: Queue Size

This field specifies the size of the invalidation
request queue. A value of X in this field indicates
an invalidation request queue of (X+1) 4KB
pages. The number of entries in the invalidation
queue is 2(X + 8).

0

IQA Rsvd

6
3

1
2 2

QS

3
1
1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
136 Order Number: D51397-002

10.4.24 Invalidation Completion Status Register

Figure 10-52. Invalidation Completion Status Register

Abbreviation ICS_REG

General
Description

Register to report completion status of invalidation wait descriptor with Interrupt
Flag (IF) Set. This register is treated as RsvdZ by implementations reporting
Queued Invalidation (QI) as not supported in the Extended Capability register.

Register Offset 09Ch

Bits Access Default Field Description

 31:1 RsvdZ 0h R: Reserved Reserved.

 0 RW1CS 0
IWC: Invalidation
Wait Descriptor
Complete

Indicates completion of Invalidation Wait
Descriptor with Interrupt Flag (IF) field Set.
Hardware implementations not supporting
queued invalidations implement this field as
RsvdZ.

IWC

0

Rsvd

3
1 1

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 137

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.25 Invalidation Event Control Register

Figure 10-53. Invalidation Event Control Register

Abbreviation IECTL_REG

General
Description

Register specifying the invalidation event interrupt control bits. This register is
treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not
supported in the Extended Capability register.

Register Offset 0A0h

Bits Access Default Field Description

 31 RW 1 IM: Interrupt
Mask

• 0: No masking of interrupt. When a
invalidation event condition is detected,
hardware issues an interrupt message
(using the Invalidation Event Data &
Invalidation Event Address register values).

• 1: This is the value on reset. Software may
mask interrupt message generation by
setting this field. Hardware is prohibited
from sending the interrupt message when
this field is Set.

 30 RO 0 IP: Interrupt
Pending

Hardware sets the IP field whenever it detects
an interrupt condition. Interrupt condition is
defined as:
• An Invalidation Wait Descriptor with

Interrupt Flag (IF) field Set completed,
setting the IWC field in the Invalidation
Completion Status register.

• If the IWC field in the Invalidation
Completion Status register was already Set
at the time of setting this field, it is not
treated as a new interrupt condition.

The IP field is kept Set by hardware while the
interrupt message is held pending. The interrupt
message could be held pending due to interrupt
mask (IM field) being Set, or due to other
transient hardware conditions. The IP field is
cleared by hardware as soon as the interrupt
message pending condition is serviced. This
could be due to either:
• Hardware issuing the interrupt message due

to either change in the transient hardware
condition that caused interrupt message to
be held pending or due to software clearing
the IM field.

• Software servicing the IWC field in the
Invalidation Completion Status register.

 29:0 RsvdP Xh R: Reserved Reserved.

IM

0

IP Rsvd

3
1

3
0

2
9

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
138 Order Number: D51397-002

10.4.26 Invalidation Event Data Register

Figure 10-54. Invalidation Event Data Register

Abbreviation IEDATA_REG

General
Description

Register specifying the Invalidation Event interrupt message data. This register is
treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not
supported in the Extended Capability register.

Register Offset 0A4h

Bits Access Default Field Description

31:16 RW 0h
EIMD: Extended
Interrupt
Message Data

This field is valid only for implementations
supporting 32-bit interrupt data fields.

Hardware implementations supporting only 16-
bit interrupt data treat this field as RsvdZ.

15:0 RW 0h IMD: Interrupt
Message data

Data value in the interrupt request. Software
requirements for programming this register are
described in Section 5.6.

EIMD

0

IMD

3
1

1
6

1
5

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 139

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.27 Invalidation Event Address Register

Figure 10-55. Invalidation Event Address Register

Abbreviation IEADDR_REG

General
Description

Register specifying the Invalidation Event Interrupt message address.This register is
treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not
supported in the Extended Capability register.

Register Offset 0A8h

Bits Access Default Field Description

31:2 RW 0h MA: Message
address

When fault events are enabled, the contents of
this register specify the DWORD-aligned address
(bits 31:2) for the interrupt request.

Software requirements for programming this
register are described in Section 5.6.

1:0 RsvdZ 0h R: Reserved Reserved.

0

RsvdMA

3
1 12

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
140 Order Number: D51397-002

10.4.28 Invalidation Event Upper Address Register

Figure 10-56. Invalidation Event Upper Address Register

Abbreviation IEUADDR_REG

General
Description

Register specifying the Invalidation Event interrupt message upper address. This
register is treated as RsvdZ by implementations restricted to 32-bit interrupt
address.

Register Offset 0ACh

Bits Access Default Field Description

31:0 RW 0h MUA: Message
upper address

Software requirements for programming this
register are described in Section 5.6.

0

MUA

3
1

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 141

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.29 Interrupt Remapping Table Address Register

Figure 10-57. Interrupt Remapping Table Address Register

Abbreviation IRTA_REG

General
Description

Register providing the base address of Interrupt remapping table. This register is
treated as RsvdZ by implementations reporting Interrupt Remapping (IR) as not
supported in the Extended Capability register.

Register Offset 0B8h

Bits Access Default Field Description

63:12 RW 0h
IRTA: Interrupt
Remapping Table
Address

This field points to the base of 4KB aligned
interrupt remapping table.

Hardware ignores and not implement bits
63:HAW, where HAW is the host address width.

Reads of this field returns value that was last
programmed to it.

 11:4 RsvdZ 0h R: Reserved Reserved.

 3:0 RW 0h S: Size

This field specifies the size of the interrupt
remapping table. The number of entries in the
interrupt remapping table is 2X+1, where X is the
value programmed in this field.

0

IRTA Rsvd

6
3

1
2 3

S

4
1
1

Intel® Virtualization Technology for Directed I/O—Programming Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
142 Order Number: D51397-002

11 Programming Considerations

This section summarizes the remapping hardware programming requirements.

11.1 Write Buffer Flushing

For hardware implementations requiring write buffer flushing (RWBF=1 in the Capability register),
software updates to memory-resident remapping structures may be held in Root-Complex internal
hardware write-buffers, and not implicitly visible to remapping hardware. For such implementations,
software must explicitly make these updates visible to hardware through one of two methods below:

• For updates to remapping hardware structures that require context-cache, IOTLB or IEC
invalidation operations to flush stale entries from the hardware caches, no additional action is
required to make the modifications visible to hardware. This is because, hardware performs an
implicit write-buffer-flushing as a pre-condition to context-cache, IOTLB and IEC invalidation
operations.

• For updates to remapping hardware structures (such as modifying a currently not-present entry)
that do not require context-cache, IOTLB or IEC invalidations, software must explicitly perform
write-buffer-flushing to ensure the updated structures are visible to hardware.

11.2 Set Root Table Pointer Operation

Software must always perform a set root table pointer operation before enabling or re-enabling (after
disabling) DMA-remapping hardware.

On a root table pointer set operation, software must globally invalidate the context-cache, and after
its completion globally invalidate the IOTLB to ensure hardware references only the new structures for
further remapping.

If software sets the root table pointer while DMA-remapping hardware is active, software must ensure
the structures referenced by the new root table pointer provide identical remapping results as the
structures referenced by the previous root table pointer to ensure any valid in-flight DMA requests are
properly remapped. This is required since hardware may utilize the old structures or the new
structures to remap in-flight DMA requests, until the context-cache and IOTLB invalidations are
completed.

11.3 Context-Entry Programming

Software must ensure that, for a given DMA-remapping hardware unit, context-entries programmed
with the same domain-id (DID) must be programmed with the same value for the Address Space Root
(ASR) field. This is required since hardware implementations are allowed to tag the various DMA-
remapping caches with DID. Context entries with the same value in the ASR field are recommended
to use the same DID value for best hardware efficiency

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 143

Programming Considerations—Intel® Virtualization Technology for Directed I/O

11.4 Modifying Root and Context Entries

When DMA-remapping hardware is active:

• Software must serially invalidate the context-cache and the IOTLB when updating root-entries or
context-entries. The serialization is required since hardware may utilize information from the
context-caches to tag new entries inserted to the IOTLB while processing in-flight DMA requests.

• Software must not modify fields other than the Present (P) field of currently present root-entries
or context-entries. If modifications to other fields are required, software must first make these
entries not-present (P=0), which requires serial invalidation of context-cache and IOTLB, and
then transition them to present (P=1) state along with the modifications.

11.5 Caching Mode Considerations

For implementations reporting Caching Mode (CM) as Clear in the Capability register:

• Software is not required to perform context-cache and IOTLB invalidations for modifications to
not-present or erroneous root or context-entries for them to be effective.

• Software is not required to perform IOTLB invalidations for modifications to any individual not-
present (R and W fields Clear) or erroneous page-directory or page-table entries for them to be
effective. Any modifications that result in decreasing the effective permissions (read-write to not-
present, read-only to write-only, write-only to read-only, read-only to not-present, write-only to
not-present, read-write to read-only, read-write to write only) or partial permission increases
(read-only to read-write, write-only to read-write) require software to invalidate the IOTLB for
them to be effective.

For implementations reporting Caching Mode (CM) as Set in the Capability register:

• Software is required to invalidate the context-cache for any/all modifications to root or context
entries for them to be effective.

• Software is required to invalidate the IOTLB (after the context-cache invalidation completion) for
any modifications to present root or context entries for them to be effective.

• Software is required to invalidate the IOTLB for any/all modifications to any active page
directory/table entries for them to be effective.

• Software must not use domain-id value of zero as it is reserved on implementations reporting
Caching Mode (CM) as Set.

11.6 Serialization Requirements

A register used to submit a command to a remapping unit is owned by hardware while the command
is pending in hardware. Software must not update the associated register until hardware indicates the
command processing is complete through appropriate status registers.

For each remapping hardware unit, software must serialize commands submitted through the Global
Command register, Context Command register, IOTLB Invalidation registers and Protected Memory
Enable register.

For platforms supporting more than one remapping hardware unit, there are no hardware serialization
requirements for operations across remapping hardware units.

11.7 Invalidation Considerations

For page-table updates that do not modify PDEs (or if Caching Mode (CM) is Clear, modify only not-
present PDEs), software may specify the Invalidation Hint (IH = 1) on page-selective IOTLB
invalidations. Hardware may preserve the non-leaf (page-directory) caches on invalidation requests
specifying IH=1. Preserving non-leaf caches may improve performance by avoiding the full-length
page-walks for in-flight DMA requests.

Intel® Virtualization Technology for Directed I/O—Programming Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
144 Order Number: D51397-002

11.8 Sharing Remapping Structures Across Hardware Units

Software may share (fully or partially) the various remapping structures across multiple hardware
units. When the remapping structures are shared across hardware units, software must explicitly
perform the invalidation operations on each remapping hardware unit sharing the modified entries.
The software requirements described in this section must be individually applied for each such
invalidation operation.

11.9 Set Interrupt Remapping Table Pointer Operation

Software must always set the interrupt-remapping table pointer before enabling or re-enabling (after
disabling) interrupt-remapping hardware.

Software must always follow the interrupt-remapping table pointer set operation with a global
invalidate of the IEC to ensure hardware references the new structures before enabling interrupt
remapping.

If software updates the interrupt-remapping table pointer while interrupt-remap hardware is active,
software must ensure the structures referenced by the new interrupt-remapping table pointer provide
identical remapping results as the structures referenced by the previous interrupt-remapping table
pointer to ensure any valid in-flight interrupt requests are properly remapped. This is required since
hardware may utilize the old structures or the new structures to remap in-flight interrupt requests,
until the IEC invalidation is completed.

Intel® Virtualization Technology for Directed I/O
May 2007 Architecture Specification - Rev 1.0
Order Number: D51397-002 145

Fault Reason Encodings—Intel® Virtualization Technology for Directed I/O

Appendix A Fault Reason Encodings

The following table describes the meaning of the codes assigned to various faults.

Encoding Fault Reason Description

0h Reserved. Used by software when initializing fault records (for advanced fault logging)

DMA Remapping Fault Conditions

1h The present (P) field in the root-entry used to process the DMA request is Clear.

2h The present (P) field in the context-entry used to process the DMA request is Clear.

3h

Hardware detected invalid programming of a context-entry. For example:
• The address width (AW) field programmed with a value not supported by the

hardware implementation.
• The translation-type (T) field programmed to indicate a translation type not

supported by the hardware implementation.
• Hardware attempt to access the page table base through the Address Space Root

(ASR) field of the context-entry resulted in error.

4h

The DMA request attempted to access an address beyond (2X - 1), where X is the
minimum of the maximum guest address width (MGAW) reported through the
Capability register and the value in the address-width (AW) field of the context-entry
used to process the DMA request.

5h The Write (W) field in a page-table entry used for address translation of the DMA write
request is Clear.

6h

The Read (R) field in a page-table entry used for address translation of the DMA read
request is Clear. For implementations reporting ZLR field as set in the Capability
register, this fault condition is not applicable for zero-length DMA read requests to
write-only pages.

7h Hardware attempt to access the next level page table through the Address (ADDR)
field of the page-table entry resulted in error.

8h Hardware attempt to access the root-entry table through the root-table address (RTA)
field in the Root-entry Table Address register resulted in error.

9h Hardware attempt to access context-entry table through context-entry table pointer
(CTP) field resulted in error.

Ah Hardware detected reserved field(s) that are not initialized to zero in a root-entry with
present (P) field Set.

Bh Hardware detected reserved field(s) that are not initialized to zero in a context-entry
with present (P) field Set.

Ch Hardware detected reserved field(s) that are not initialized to zero in a page-table
entry with at least one of read (R) and write (W) field Set.

Dh Translation request or translated DMA explicitly blocked due to the programming of the
Translation Type (T) field in the corresponding present context-entry.

Intel® Virtualization Technology for Directed I/O—Fault Reason Encodings

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.0 May 2007
146 Order Number: D51397-002

Interrupt Remapping Fault Conditions

 20h Decoding of the interrupt request per the Remappable request format detected one or
more reserved fields as Set.

 21h The interrupt_index value computed for the interrupt request is greater than the
maximum allowed for the interrupt Remapping table-size configured by software.

 22h The present (P) field in the IRTE entry corresponding to the interrupt_index of the
interrupt request is Clear.

 23h Hardware attempt to access the interrupt Remapping table through the interrupt
remapping table address (IRTA) field in the IRTA_REG register resulted in error.

 24h
Hardware detected one ore more reserved field(s) that are not initialized to zero in an
IRTE. This includes the case where software programmed various conditional reserved
fields wrongly.

 25h On Intel®64 platforms, hardware blocked an interrupt request in Compatibility format
due to CFIS field in Global Status register being Clear.

 26h
Hardware blocked a Remappable interrupt request due to verification failure of the
interrupt requester’s source-id per the programming of SID, SVT and SQ fields in the
corresponding IRTE.

Eh - 1Fh Reserved.

27h - FFh Reserved.

Encoding Fault Reason Description

	Intel® Virtualization Technology for Directed I/O
	1 Introduction
	1.1 Audience
	1.2 Glossary
	1.3 References

	2 Overview
	2.1 Intel® Virtualization Technology Overview
	2.2 VMM and Virtual Machines
	2.3 Hardware Support for Processor Virtualization
	2.4 I/O Virtualization
	2.5 Intel® Virtualization Technology For Directed I/O Overview
	2.5.1 Hardware Support for DMA Remapping
	2.5.1.1 OS Usages of DMA Remapping
	2.5.1.2 VMM Usages of DMA Remapping
	2.5.1.3 DMA Remapping Usages by Guests
	2.5.1.4 Interaction with Processor Virtualization

	2.5.2 Hardware Support for Interrupt Remapping
	2.5.2.1 Interrupt Isolation
	2.5.2.2 Interrupt Migration

	3 DMA Remapping
	3.1 Domains and Address Translation
	3.2 Remapping Hardware - Software View
	3.3 Mapping Devices to Domains
	3.3.1 Source Identifier
	3.3.2 Root-Entry
	3.3.3 Context-Entry
	3.3.3.1 Context Caching

	3.4 Address Translation
	3.4.1 Multi-Level Page Table
	3.4.2 Adjusted Guest Address Width (AGAW)
	3.4.3 Multi-level Page Table Translation
	3.4.4 I/O Translation Lookaside Buffer (IOTLB)

	3.5 DMA Remapping Fault Conditions
	3.5.1 Hardware Handling of Faulting DMA Requests

	3.6 DMA Remapping - Usage Considerations
	3.6.1 Identifying Origination of DMA Requests
	3.6.1.1 Devices Behind PCI Express to PCI/PCI-X Bridges
	3.6.1.2 Devices Behind Conventional PCI Bridges
	3.6.1.3 Root-Complex Integrated Devices
	3.6.1.4 PCI Express Devices Using Phantom Functions

	3.6.2 Handling DMA Requests Crossing Page Boundaries
	3.6.3 Handling of Zero-Length Reads
	3.6.4 Handling DMA to Reserved System Memory
	3.6.5 Root-Complex Peer to Peer Considerations
	3.6.6 Handling of Isochronous DMA

	4 Support For Device-IOTLBs
	4.1 Hardware Handling of ATS
	4.1.1 Handling of ATS Protocol Errors
	4.1.2 Root Port Handling of ATS
	4.1.3 Handling of ATS When Remapping Hardware Disabled
	4.1.4 Handling of Translation Requests
	4.1.4.1 Translation Requests for Multiple Translations

	4.1.5 Handling of Translated Requests

	4.2 Handling of Device-IOTLB Invalidations

	5 Interrupt Remapping
	5.1 Overview
	5.2 Identifying Origination of Interrupt Requests
	5.3 Interrupt Processing On Intel®64 Platforms
	5.3.1 Interrupt Requests in Intel®64 Compatibility Format
	5.3.2 Interrupt Requests in Remappable Format
	5.3.2.1 Interrupt Remapping Table

	5.3.3 Overview of Interrupt Remapping On Intel®64 Platforms
	5.3.3.1 Interrupt Remapping Fault Conditions

	5.4 Interrupt Requests on ItaniumTM Platforms
	5.5 Programming Interrupt Sources To Generate Remappable Interrupts
	5.5.1 I/OxAPIC Programming
	5.5.2 MSI and MSI-X Register Programming

	5.6 Remapping Hardware - Interrupt Programming
	5.6.1 Programming on Intel®64 Platforms
	5.6.2 Programming on ItaniumTM Platforms

	5.7 Handling of Platform Events

	6 Hardware Caching Details
	6.1 Caching Mode
	6.1.1 Context Caching
	6.1.2 IOTLB Caching
	6.1.3 Page Directory Entry (PDE) Caching
	6.1.4 Interrupt Entry Caching

	6.2 Cache Invalidations
	6.2.1 Register Based Invalidation Interface
	6.2.1.1 Context Command Register:
	6.2.1.2 IOTLB Invalidation Registers

	6.2.2 Queued Invalidation Interface
	6.2.2.1 Context Cache Invalidate Descriptor
	6.2.2.2 IOTLB Invalidate Descriptor
	6.2.2.3 Device-IOTLB Invalidate Descriptor
	6.2.2.4 Interrupt Entry Cache Invalidate Descriptor
	6.2.2.5 Invalidation Wait Descriptor
	6.2.2.6 Hardware Generation of Invalidation Completion Events
	6.2.2.7 Hardware Handling of Queued Invalidation Interface Errors
	6.2.2.8 Queued Invalidation Ordering Considerations

	6.3 DMA Draining
	6.4 Interrupt Draining

	7 Hardware Fault Handling Details
	7.1 Fault Categories
	7.2 Fault Logging
	7.2.1 Primary Fault Logging
	7.2.2 Advanced Fault Logging

	7.3 Fault Reporting

	8 BIOS Considerations
	8.1 DMA Remapping Reporting Structure
	8.2 Remapping Structure Types
	8.3 DMA Remapping Hardware Unit Definition Structure
	8.3.1 Device Scope Structure
	8.3.1.1 Reporting Scope for I/OxAPICs
	8.3.1.2 Reporting Scope for MSI Capable HPET Device
	8.3.1.3 Device Scope Example

	8.4 Reserved Memory Region Reporting Structure
	8.5 Root Port ATS Capability Reporting Structure

	9 Translation Structure Formats
	9.1 Root-entry
	9.2 Context-entry
	9.3 Page-Table Entry
	9.4 Fault Record
	9.5 Interrupt Remapping Table Entry (IRTE)

	10 Register Descriptions
	10.1 Register Location
	10.2 Software Access to Registers
	10.3 Register Attributes
	10.4 Register Descriptions
	10.4.1 Version Register
	10.4.2 Capability Register
	10.4.3 Extended Capability Register
	10.4.4 Global Command Register
	10.4.5 Global Status Register
	10.4.6 Root-Entry Table Address Register
	10.4.7 Context Command Register
	10.4.8 IOTLB Invalidation Registers
	10.4.8.1 IOTLB Invalidate Register
	10.4.8.2 Invalidate Address Register

	10.4.9 Fault Status Register
	10.4.10 Fault Event Control Register
	10.4.11 Fault Event Data Register
	10.4.12 Fault Event Address Register
	10.4.13 Fault Event Upper Address Register
	10.4.14 Fault Recording Registers [n]
	10.4.15 Advanced Fault Log Register
	10.4.16 Protected Memory Enable Register
	10.4.17 Protected Low-Memory Base Register
	10.4.18 Protected Low-Memory Limit Register
	10.4.19 Protected High-Memory Base Register
	10.4.20 Protected High-Memory Limit Register
	10.4.21 Invalidation Queue Head Register
	10.4.22 Invalidation Queue Tail Register
	10.4.23 Invalidation Queue Address Register
	10.4.24 Invalidation Completion Status Register
	10.4.25 Invalidation Event Control Register
	10.4.26 Invalidation Event Data Register
	10.4.27 Invalidation Event Address Register
	10.4.28 Invalidation Event Upper Address Register
	10.4.29 Interrupt Remapping Table Address Register

	11 Programming Considerations
	11.1 Write Buffer Flushing
	11.2 Set Root Table Pointer Operation
	11.3 Context-Entry Programming
	11.4 Modifying Root and Context Entries
	11.5 Caching Mode Considerations
	11.6 Serialization Requirements
	11.7 Invalidation Considerations
	11.8 Sharing Remapping Structures Across Hardware Units
	11.9 Set Interrupt Remapping Table Pointer Operation

	Appendix A Fault Reason Encodings

