intel

Intel® Virtualization
Technology for Directed I/0

Architecture Specification

| April 2021

Revision 3.3

Order Number: D51397-013

intel

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance
varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more
at www.intel.com.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever

for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design

with this information.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or visit: http://www.intel.com/design/literature.htm

Intel® 64 architecture requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the specific
hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.intel.com/info/em64t

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Functionality,
performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all
operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer.
Copyright © 2011-2021, Intel Corporation. All Rights Reserved.

Intel, the Intel logo, Intel Virtualization Technology for Directed I/O, Intel VT, Intel VT-d, Intel 64, and Intel architecture are trademarks of Intel
Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 2

http://www.intel.com/design/literature.htm
http://www.intel.com/info/em64t
http://www.intel.com/go/virtualization

I n t e I Intel® Virtualization Technology for Directed I/O—Contents
®

Contents
1 Introduction
8 R YU T =Y o Vol PP 1-1
3 A €] (o T=1=7- Y P 1-2
8 T U= =T =T o [0l <= PP 1-3
2 Overview
2.1 Intel® Virtualization TEChNOIOGY OVEIVIEW.......u.ieeieereieeeeieeesieseeeesesrieeseeseessnnns 2-1
2.2 VMM and Virtual Machings.....ociieiiiii i e e sn e e rnnennes 2-1
2.3 Hardware Support for Processor Virtualizationccooviiiiiiiiiii e 2-1
2.4 I/0 VirtUalizZation ..o e 2-2
2.5 Intel® Virtualization Technology For Directed I/O OVErviewcocvviiiiiiiiiniinnieinenn, 2-2
2.5.1 Hardware Support for DMA ReMaPPIiNg c.oviiuiiiiiiiiiiiieiiiniintiieiianssneeneeenenns 2-3
2.5.1.1 OS Usages of DMA ReMaPPIiNg .ciovvieiiiiiiiiiniiiiaieiieeanesiseiieeaneanens 2-3
2.5.1.2 VMM Usages of DMA ReMappinNg.....ccceeeiueiiiiiiieieniiniiiennaneineens 2-4
2.5.1.3 DMA Remapping Usages by GUESESceviiiiiiiiiiiiiiiiiiiieieeeees 2-5
2.5.1.4 Interaction with Processor Virtualizationccccvviiiiiiiiinnnnen. 2-5
2.5.2 Hardware Support for Interrupt Remapping......cccoveviiiiiiiiiiine e 2-6
2.5.2.1 Interrupt Isolationccoieiiiiiii 2-6
2.5.2.2 Interrupt Migrationccoiiiiiiiiiii 2-6
2.5.2.3 X2APIC SUPPOIT 1uiitiiiiiie it e e 2-6
2.5.3 Hardware Support for Interrupt POStingcocovviiiiiiiiii e 2-7
2.5.3.1 Interrupt Vector Scalabilityccooiiiiiiii 2-7
2.5.3.2 Interrupt Virtualization EfficienCycccoviiiiiiiiiiiiiii e 2-7
2.5.3.3 Virtual Interrupt Migrationccooiiiiiiii e 2-7
3 DMA Remapping
3.1 Types Of DMA FeQUESES ...uiiiiiii ittt e e e e e ae e 3-1
3.2 Domains and Address Translationcuoevieiiiiiiii i e 3-1
3.3 Remapping Hardware - SOftWware VIEWc.vvviiiiiiiiiie s e eas 3-2
3.4 Mapping Devices t0 DOMaiNScuiiiiiiiiiiii i 3-2
3.4.1 SoUrCe Identifier. . e 3-3
3.4.2 Legacy Mode Address Translation......c.coviiiiiiiiiiii e 3-4
3.4.3 Scalable Mode Address Translationocviiiie i i aeens 3-5
3.4.4 ADOIt DMA MOGE .. uiitiitiii ittt ettt et et e e e e eaas 3-6
3.5 Hierarchical Translation Structuresccoiiiiiiiii e 3-6
3.6 First-Level Translation . ..o e e e e e e a 3-8
3.6.1 ACCESS RIGNES cuiiiiii i 3-11
3.6.2 Accessed, Extended Accessed, and Dirty Flags.........ccvviiiiiiiiiiiiniiiennnns 3-12
3.7 Second-Level Translation ..ouui i e 3-13
3.7.1 ACCESS RIGNES it e 3-17
3.7.2 Accessed and Dirty FIags ..o.oouiiiiiiiniiiii i e e s e ne e nans 3-17
3.8 Nested Translationciiiiiii i e 3-18
3.8.1 ACCESS RIGhES cuiiiii i 3-20
3.9 ONOOP BERAVIOK it 3-21
G I\ 1= o o VA 1Y o PP 3-23
3.10.1 Selecting Memory Type from Page Attribute Table...........ccooviiiiiiiiinnns 3-24
3.10.2 Selecting Memory Type from Memory Type Range Registers...................... 3-24
3.10.3 Selecting Effective MemoOry Ty P . uuiiiiii ittt e e nesaesneaans 3-25
3.10.4 Determining MemOry Ty e couuiiii et ri i s s ar e ae e an e aaneaanneas 3-27
3.10.4.1 Memory Type in Legacy Mode (RTADDR_REG.TTM = 00b)............ 3-27
3.10.4.2 Memory Type in Scalable Mode (RTADDR_REG.TTM = 01b).......... 3-27
3.11 Identifying Origination of DMA REQUESESciuiuiiiiieiiiiiieiie e e e e e 3-29
3.11.1 Devices Behind PCI Express* to PCI/PCI-X Bridges......ccoovvuvieiriiiiieiininnnnnns 3-29
3.11.2 Devices Behind Conventional PCI Bridges......ccoviiiiiiiiiiiiiiiiii i 3-29

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3

Contents—Intel® Virtualization Technology for Directed I/0 I n t e I
®

6

3.11.3 Devices Behind PCI Express ROOt POrt.......c.coiviiiiiiiiiiiiii e 3-29
3.11.4 Root-Complex Integrated DeViCes.......cciiiiiieiiiiiiiiiii e e eae e 3-29
3.11.5 PCI Express* Devices Using Phantom FUNCLiONS..........cocooviiiiiiiniiiinennnnnnes 3-29
3.11.6 Single-Root I/0 Virtualization Capable Devicescovvviiiiiiiiiiiiiiiiiiieinans 3-30
3.11.7 Intel® Scalable I/O Virtualization Capable Devices..........ccoovvviiiiiiiiiiinnnnen. 3-30
3.12 Handling Requests Crossing Page BoUNdari€Sc.vveiiiviiiiiiiiiiiiiiie i ieeinenneeaens 3-30
3.13 Handling of Zero-Length Readsccooiiiiiiiii s 3-30
3.14 Handling Requests to Interrupt Address Range........ccoviiiiiiiiiiiiiiiiiiiinee e 3-31
3.15 Handling Requests to Reserved System MemOryoviiieieiiiiiie e eeeeans 3-31
3.16 Root-Complex Peer to Peer Considerations......c.ccviiiiiiiiiiiiiiiii i i e 3-32
Support For Device-TLBs
4.1 D TSAY ol =l I I O o =T = o o 4-1
4.1.1 Translation ReQUEST......c.iiiiiiiii i 4-2
4.1.2 Translation Completion ... 4-2
4.1.3 Translated REQUEST.o 4-3
4.1.4 Invalidation Request & Completionciiiiiiiiiiiiiiii e 4-3
4.2 Remapping Hardware Handling of Device-TLBSccviiiiiiiiiiiii i ierennanens 4-4
4.2.1 Handling of ATS ProtOCOl ErrOrS ...icuiiiiiiii i iiiaevisae i s eieaasesneeaneannanes 4-4
4.2.2 Root-Port Control of ATS Address TYPESviueiiieiiiiiiiiiii e reeaneaaeeans 4-4
4.2.3 Handling of Translation REQUESES.........cciiiiiiiiiiii s 4-4
4.2.3.1 Accessed, Extended Accessed, and Dirty FlagS.......cocvvvieiniiiennnnnn. 4-8
4.2.3.2 Translation Requests for Multiple Translations........c.cccvveviiiiiinnn 4-8
4.2.4 Handling of Translated ReqQUESES......c.iiiiiiiiiiiiii e 4-9
4.3 Handling of Device-TLB Invalidationsccoiiiiiiiiiiii e 4-9
4.4 Device TLB in System-on-Chip (SoC) integrated devicesccoeviiiiiiiiiiiieinnnnnns. 4-10
4.5 Guidance to software on enabling and disabling ATS ..o 4-11
4.5.1 Recommended software sequence to enable ATScoiviiiiiiiiiiic i, 4-11
4.5.2 Recommended software sequence to disable ATSccoviiiiiiiiiiiiiiiiicieans 4-11
Interrupt Remapping
5.1 Interrupt RE@MaPPINGg «ouveiueiiiiiii i e 5-1
5.1.1 Identifying Origination of Interrupt Requests..........ccoovviiiiiiiiiiiiiiiieen 5-1
5.1.2 Interrupt Request Formats On Intel® 64 Platforms...........coovviiiiiiiiininnnnns. 5-2
5.1.2.1 Interrupt Requests in Compatibility Formatcccooiiiiiiiiinn, 5-2
5.1.2.2 Interrupt Requests in Remappable Format..........ccoooviiiiiiiinnnnn. 5-3
5.1.3 Interrupt Remapping Tableccoiiiiiiii e 5-5
5.1.4 Interrupt-Remapping Hardware Operationccooeiiiiiiiiiiiinee e 5-5
5.1.4.1 Interrupt Remapping Fault Conditions...........cocviiiiiiiiiiiiiiieees 5-7
5.1.5 Programming Interrupt Sources To Generate Remappable Interrupts 5-7
5.1.5.1 I/OXAPIC Programming.....cceeeeeieeisenesereinensaneentsnsnnsnrsnssnsansnneenes 5-8
5.1.5.2 MSI and MSI-X Register Programmingccoeviiiiiiiiieiiiiinnnnennenn. 5-9
5.1.6 Remapping Hardware Events- Interrupt Programmingcocevvieiiennnnens 5-10
5.1.6.1 Programming in Intel® 64 XAPIC MOde.....evviieiiiiiiie e 5-10
5.1.6.2 Programming in Intel® 64 X2APIC MOdE.......uvvvveeeeieieieeeeeerieenene. 5-11
5.1.7 Handling of Platform EVENTS......coiiiiiiiiiii i i e eeae s 5-11
5.2 INEerrupt POSHING . .o 5-12
5.2.1 Interrupt Remapping Table Support for Interrupt Posting...............coceinenets 5-12
5.2.2 Posted Interrupt DeSCriPLOr. . .cou e 5-13
5.2.3 Interrupt-Posting Hardware Operation........ccoiviiiiiiiiiiiiii i eeees 5-13
5.2.4 Ordering Requirements for Interrupt POSting........cccvviviiiiiiiiiiiiiiiinea 5-14
5.2.5 Using Interrupt Posting for Virtual Interrupt Delivery.......cooovviiiiiiiiiinnnnnns 5-14
5.2.6 Interrupt Posting for Level Triggered Interrupts.......c.covviiiiiiiiiiiiiiiininenns 5-16
5.3 Memory Type and Snoop Behavior SUMMaArycoovieiiiiiiiiiiinee e 5-17

Caching Translation Information

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Contents
®

6.1 CaChiNg MOGe. ... 6-1
6.2 Address Translation CaChes......iviriiiii i e 6-1
6.2.1 Tagging of Cached Translationscoovieiiiiiiii e 6-2

6.2.2 CoNteXt-Cathe v e 6-3
6.2.2.1 Context-Entry Programming Considerationscccocvivviniinnnn. 6-4

6.2.3 PASID-CaChE .ttt as 6-4
6.2.3.1 Scalable-Mode PASID-Table Entry Programming Considerations..... 6-5

B.2.4 IO T LB ettt e 6-5
6.2.4.1 Details Of IOTLB USE . .iuiiuiiiiieiiiiiteie vt ree e e neeaeeeees 6-7

6.2.5 Caches for Paging StruCtUres.......ovvviiiiiiiiiii e e e 6-8
6.2.5.1 PML5-CaChE . it e 6-9

6.2.5.2 PMLA-CaChe . .iiiiiii i e e 6-10

6.2.5.3 PDPE-CACNE .ttt e 6-11

6.2.5.4 PDE-CaCh@. it 6-13

6.2.5.5 Details of Paging-Structure Cache Use.........cc.covviviiiiiiiiniininnnns 6-14

6.2.6 Translating Address Using Caches in Legacy Mode.........cocvvviiiiiiiinininnnnens 6-15

6.2.7 Multiple Cached Entries for a Single Paging-Structure Entryc.coetit 6-15

6.3 Translation Caching at ENApoint DeViICe......ciiiiiiiiiiiiii i e 6-16
6.4 InterrUpt ENtry Cacha. .o e e e 6-16
6.5 Invalidation of Translation Caches.......c.coiiiiiiiiii e 6-17
6.5.1 Register-based Invalidation Interfaceccooiiiiiiiiii 6-17
6.5.1.1 Context Command Registerccviiiiiiiiiiiii e 6-18

6.5.1.2 TOTLB REQGISTEIS «uviiiiiiiiiiii i s eeans 6-18

6.5.2 Queued Invalidation INterfaceccoviviiiiiiiiiii e 6-19
6.5.2.1 Context-cache Invalidate Descriptor......c.covviiiiiiiiii i iniaens 6-21

6.5.2.2 PASID-cache Invalidate DescCriptor........covvviiiiiiiiiiiiii e 6-22

6.5.2.3 IOTLB Invalidateovviiiiiiiiii i e e naa e 6-24

6.5.2.4 PASID-based IOTLB Invalidate Descriptor (P_IOTLB)..........ccvvvn... 6-26

6.5.2.5 Device-TLB Invalidate Descriptor.......ccovviviiiiiiiiiiiiieiee e 6-28

6.5.2.6 PASID-based-Device-TLB Invalidate Descriptor.........ccccvviviiiiinnnns 6-29

6.5.2.7 Interrupt Entry Cache Invalidate Descriptorccvvviiiiiiiiieninnnns 6-30

6.5.2.8 Invalidation Wait DeSCriptor......ccviiiiiiiiiiiiii e 6-31

6.5.2.9 Hardware Generation of Invalidation Completion Events 6-33

6.5.2.10 Hardware Handling of Queued Invalidation Interface Errors.......... 6-33

6.5.2.11 Queued Invalidation Ordering Considerationsccvvievieininnnns 6-34

6.5.3 IOTLB Invalidation Considerations........ccviviriiiiiiiiiiiii i e neee e 6-35
6.5.3.1 Implicit Invalidation on Page Requestsc.coviviviiiiiiiniiniiennnnens 6-35

6.5.3.2 Caching Fractured Translations........ccoiviiiiiiiiiiiiii e 6-36

6.5.3.3 Guidance to Software for Invalidationscooviiiiiiiiiiinnns 6-36

6.5.3.4 Optional Invalidation........ccoiiiiiiiiiiii 6-39

6.5.3.5 Delayed Invalidationcciiiiiiiiiii e 6-40

6.5.4 Draining of Requests t0 MemOry ..o e 6-41

6.5.5 INterrupt Draining....ocooeiiiiii i 6-42

6.6 Set Root Table Pointer Operationcouiuiiiiiiiiiiii e e e 6-42
6.7 Set Interrupt Remapping Table Pointer Operation........coooviiiiiiiiiiii s 6-43
6.8 Write Buffer FIUSHINGouiiiiii i e e 6-43
6.9 Hardware Register Programming Considerationscocoviiiiiiiiiiiiiiiic i i e 6-44
6.10 Sharing Remapping Structures Across Hardware UnitSccoviviiviiiiiiniiiinnnneinnnns 6-44

7 Address Translation Faults

7.1 Remapping Hardware Behavior on Faultscooiiiiiiiiii e 7-1
7.1.1 Non-Recoverable Address Translation Faults........ccooeviiiiiiiiiiiiiiiiieee 7-1

7.1.2 Recoverable Address Translation Faultscoeviiiiiiiiiiiiiii e 7-1

7.1.3 Fault conditions and Remapping hardware behavior for various request 7-3

7.2 Non-Recoverable Fault REPOrtingciiiiiiiiii i ae s 7-13
7.2.1 Primary Fault LOGgiNg....c.oouiiiiiiiii e e e e e et e e aeaas 7-13

7.2.2 Advanced Fault LOGGingo.iuiiiiieiiiiiie et e e e e e 7-14

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5

Contents—Intel® Virtualization Technology for Directed I/0 I n t e I
®

10

7.3 Non-Recoverable Fault EVeNnt ..o e 7-15
7.4 Recoverable Fault REPOrtiNg ...couoeiniiiiii e 7-16
7.4.1 Handling of Page ReqUESEScouiiiiiiiiiiii e 7-16
7.4.1.1 Page Request DesCriplor...ccociiiiiiiiiiiii i e e 7-18
7.5 Recoverable Fault EVent ..o 7-20
7.6 Servicing Recoverable Faults......oiiiiiiii i e 7-21
7.6.1 Page Group Response DesCriplor.....c.ouviiiiiiiiiiiie e e e raeees 7-22
7.7 Page Request Ordering and Drainingooevieiiiiiiiiiiiii e naeaeas 7-23
7.8 Page Group Response Ordering and Drainingcovevieieiiiiiiie i seeeaeeanns 7-23
7.9 Pending Page Request Handling on Terminal Conditions........cccvvviiiiiiiiiiiinninennns 7-24
7.10 Software Steps to Drain Page Requests & RESPONSESccvviviiiiiiiiiniieiiiniiinanennens 7-25
7.11 Revoking PASIDs with Pending Page Faultsccoiiviiiiiiiiiic e 7-26
BIOS Considerations
8.1 DMA Remapping Reporting Structurecoiviiiiiiiii e 8-1
8.2 Remapping StrUCLUIE TYPES ..ttt 8-2
8.3 DMA Remapping Hardware Unit Definition Structure..........coooviiiiiiiiiiiiicee 8-3
8.3.1 DeViCe SCOPE StrUCTUNE ..ttt i it r e e e aaees 8-4
8.3.1.1 Reporting Scope for I/OXAPICS ...ciiiiiiiiiiiiii i i aae s 8-6
8.3.1.2 Reporting Scope for MSI Capable HPET Timer Block...................... 8-6
8.3.1.3 Reporting Scope for ACPI Name-space Devicesccvvvvviniiennnn. 8-6
8.3.1.4 Device Scope EXample...ccooiiiiiiiiii e 8-7
8.3.2 Implications fOr ARo e 8-10
8.3.3 Implications fOr SR-IOV.....couiiiiiiiiii e 8-10
8.3.4 Implications for PCI/PCI Express* HOt PlUGcccoiiiiiiiiiiiiii e 8-10
8.3.5 Implications with PCI Resource Rebalancing..........c.cooovviiiiiiiiiiiiiennnn, 8-10
8.3.6 Implications with Provisioning PCI BAR RESOUICESccicvvviiiiiiiniiniieinnnnns, 8-10
8.4 Reserved Memory Region Reporting Structure........ccvvviiiiiiiiiiiiiiiiiic i eaea 8-11
8.5 Root Port ATS Capability Reporting Structureocoieiiiiiiiiiii e 8-12
8.6 Remapping Hardware Static Affinity Structure ... 8-13
8.7 ACPI Name-space Device Declaration StruCture.......cvvvvieiiiiiiiiiiiiiiieieeaeaens 8-14
8.8 SoC Integrated Address Translation Cache reporting Structurecooeevvininnnnn. 8-15
8.9 Remapping Hardware Unit HOt PIUGcciiiiiiiiiii i e e e e 8-15
8.9.1 ACPI Name Space MappPiNg ..cioeeiieeiieiieesaneesaisesaisessanessaneesannssanneeanneens 8-16
8.9.2 ACPI Sample Code. ..cuuiiiiiiiiii et 8-17
8.9.3 Example Remapping Hardware Reporting SeqUENCEeccvvvvviriiierinernnnnnens 8-17
Translation Structure Formats
9.1 o Jo]l =] | of o 9-1
9. Scalable-mode ROOt ENEIY ..t e e aaaeas 9-3
1 G T O(o] o = Sl = 1 o Y 9-5
9.4 Scalable-Mode ConteXt-Entrycoiiiiii 9-8
9.5 Scalable-Mode PASID Directory ENtry....ccoiiiiiiiiiii e 9-10
9.6 Scalable-Mode PASID Table ENtry ..o e e 9-11
9.7 First-Level Paging ENtriescviuiiiiiii i aa e 9-17
9.8 Second-Level Paging ENtries ..ouuvuiieiiiiiiii et a e e anaaneas 9-25
1S TS T o= 10 | = oo o PPN 9-33
9.10 Interrupt Remapping Table Entry (IRTE) for Remapped Interruptsccoevueneen 9-35
9.11 Interrupt Remapping Table Entry (IRTE) for Posted Interrupts...........ccoeevvininnnnens 9-39
9.12 Posted Interrupt Descriptor (PID)ouicieiiiiiie e e e e e e e e e e 9-42
Register Descriptions
L0 TR R 2T 11 o =T ol o = [0 o 10-1
10.2 Software ACCESS t0 REGISTEIS ..uiiiiiiiiii i i e aaaes 10-1
10.3 Register AttriDULES ..iiviiieii i e 10-2
10.4 Register DeSCriPLIONS ...uueii it 10-3

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Contents
®

10.4.1 Version REGISEEI ..t e 10-7
10.4.2 Capability REGISTEr ...cueii i e 10-8
10.4.3 Extended Capability REGIStercouiviie e 10-13
10.4.4 Global Command RegiSter.....cuiiiiriiiiit i aa e aeaaens 10-18
10.4.5 Global Status Register.....cciviiiiiiiiii i e 10-22
10.4.6 Root Table Address REGISTEr.....uiiiiii it e ees 10-24
10.4.7 Context Command Register.......cooiiiiiiiiiii e 10-25
O S (O B I S =T =] =T =P 10-28
10.4.8.1 IOTLB Invalidate Register.......ccoiiiiiiiiiiiiii e 10-29
10.4.8.2 Invalidate Address Registerccovviiiiiiiiiiiiiiiiiii e 10-31
10.4.9 Fault Status Register......cciiiiii i e 10-33
10.4.10Fault Event Control Register......cooviiiiiiiiiii e 10-35
10.4.11Fault Event Data Registeroviuiiiiiiiiiii e 10-37
10.4.12Fault Event Address RegiSter.......oviiiiiiiiiii e 10-38
10.4.13Fault Event Upper Address Register.......coviviiiiiiiiiiiiii e 10-39
10.4.14Fault Recording REGIStEers [N] ..vvviiriieiiiiiiiiiiiiiiii i ieneeae e aeananens 10-40
10.4.15Advanced Fault Log RegGiStarciiiiiiiiiii i s e aee e 10-43
10.4.16Protected Memory Enable Register........cooiiiiiiiiiii e 10-44
10.4.17Protected Low-Memory Base Registercocoviiiiiiiiiiiiiiiiie e 10-46
10.4.18Protected Low-Memory Limit Register........cocoiiiiiiiiiiii e 10-47
10.4.19Protected High-Memory Base Registerccoovviiiiiiiiiiiiiiiiiiii e 10-48
10.4.20Protected High-Memory Limit Register......cocuviiiiiiiiiii i 10-49
10.4.211Invalidation Queue Head RegISTer ...cvviiiiiiiiiii i e 10-50
10.4.221Invalidation Queue Tail Register.......cooviiiiiiiiii e 10-51
10.4.231Invalidation Queue Address Registerccvviiiiiiiiiiiiiii e 10-52
10.4.241Invalidation Completion Status Register.........ccoovviiiiiiiiiiiiiiee 10-53
10.4.251Invalidation Event Control Registercoccviiiiiiiiiiii s 10-54
10.4.261Invalidation Event Data Register......c.ccviviiiiiiiiiiiii i e eas 10-55
10.4.27Invalidation Event Address Registercciiiiiiiiiiiiiii e 10-56
10.4.281Invalidation Event Upper Address Registerc.covviiiiiiiiiiiiiiinieneaens 10-57
10.4.291nvalidation Queue Error Record Register........cocvviviiiiiiiiiiiiiiiiiiieneaees 10-58
10.4.301Interrupt Remapping Table Address Registercccoiviiiiieiiiiiiiiiiiieeans 10-60
10.4.31Page Request Queue Head Register.......c.cviiiiiiiiiiiiiiiii i 10-61
10.4.32Page Request Queue Tail Registercvvviiiiiiiiiiiiiiir e 10-62
10.4.33Page Request Queue Address Register......cooviiiiiiiiiiiiiii i 10-63
10.4.34Page Request Status Register......ccviiiiiiiiiiiiiiii e 10-64
10.4.35Page Request Event Control Register........cooviiiiiiiiiiiiiiiineees 10-65
10.4.36Page Request Event Data Registercoocviiiiiiiiiiiiiie 10-66
10.4.37Page Request Event Address Register.......cocvviiiiiiiiiiiiiiiiieneieees 10-67
10.4.38Page Request Event Upper Address Register......c.cuvviviiiiiiiniiiiiiiiininennnns 10-68
10.4.39MTRR Capability Registercivviiiiiiiii 10-69
10.4.40MTRR Default Type RegiStercciiiiiiiiiiiiii e 10-70
10.4.41Fixed-Range MTRRSciiiiuiiiiitiiiiii it r e 10-71
10.4.42Variable-Range MTRRSiuiiiiiiiiiiiieiiaiie e e e eeeraeaenes 10-73
10.4.43Virtual Command ReGiSteriviiiiiiiiiiii i e 10-75
10.4.44Virtual Command Response Registervvviiiiiiiiiiiiiii i eieaaaeas 10-76
10.4.45Virtual Command Capability Register.......cccocviiiiiiiiii i 10-77
A Snoop and Memory Type for Various Structures................cooiiiiiiiccicic e 1
Figures
1-1 General Platform Topology «.ve it es 1-1
2-2 Example OS Usage of DMA ReMaPPIiNg t.viiriiieiiiiiiie i iieieieaasesieennesneannens 2-3

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7

Contents—Intel® Virtualization Technology for Directed I/0 I n t e I
®

Example Virtualization Usage of DMA Remappingcocvvvviiiniieiniiiiniiiieieanes 2-4
Interaction Between I/O and Processor Virtualization.........c.covvoiiiiiiiiiciinnn, 2-5
DMA Address Translation ... e 3-2
Requester Identifier FOrmatooiiiiiiii i 3-3
Device to Domain Mapping Structures in Legacy Mode.......ccoveviiiiiiiiiiieiiennnn, 3-4
Device to Domain Mapping Structures in Scalable Modecccviiiiiiiiinnne, 3-5
Address Translation to @ 4-KByte Pagecocoviiiiiiiiiiii e 3-7
Address Translation to a 2-MByte Large Pageccoooviiiiiiiiiiiiiinieeeee 3-7
Address Translation to a 1-GByte Large Pagec.cooviiiiiiiiiiii e e 3-8
Nested Translation with 4-KByte pages......ccoiiiiiiiiiiiiiiiii i nenaas 3-19
DeViCe-TLB OpPeration. ..ot i s i i i e e, 4-1
DevTLB in SoC integrated deviCes......oiviiiiiiiiii i e 4-10
Compatibility Format Interrupt Request ..o 5-3
Remappable Format Interrupt Requestcooeiiiiiiiiiii 5-4
I/OXAPIC RTE ProgrammMiNg ...cuceeeuieeesaeeaeananeeaesnsneeaasnansasaeansnsaeaesnansnens 5-8
IS D o oY r=1 o 0 2 11 0T P 5-9
Remapping Hardware Interrupt Programming in Intel® 64 xAPIC Mode 5-10
Remapping Hardware Interrupt Programming in Intel® 64 x2APIC Mode........ 5-11
Context-cache Invalidate Descriptor (128-bit version)cooeviiiiiiiiiieinnnnn. 6-21
PASID-cache Invalidate DesCriptor......ovieiiieiiiiiiii e re e 6-23
IOTLB Invalidate Descriptor (128-bit Version).......cooveiiiieiiiiiiiiiiieieeeee 6-24
PASID-based-IOTLB Invalidate Descriptor....ccviv i aeeas 6-26
Device-TLB Invalidate Descriptor (128-bit version)........cccviviiiiiiiiiiiiiieiinnns 6-28
PASID-based-Device-TLB Invalidate Descriptor.......ccvviviiiiiiiiiiiiiiciie e 6-29
Interrupt Entry Cache Invalidate Descriptor (128-bit version)c.ccvvvuenne. 6-31
Invalidation Wait Descriptor (128-bit Version).....c.ccoevvviiiiiiiiiiiiiiineeaes 6-32
Page Request DeSCriptor....uvui i e 7-18
Page Group RespONSe DeSCHIPLOr 1.uiueiiiiiiiiiiiiiie it s s aereens 7-22
Hypothetical Platform Configurationcoocviiiiiiiiiiiii e 8-7
2o o]k = o) o VA] o 1 = | P 9-1
Scalable-mode Root-Entry FOormat.......cooviviiiiiii 9-3
Context-Entry FOrmat ..o 9-5
Scalable-Mode Context-Entry FOrmatcoviiiiiiii e 9-8
Scalable-Mode PASID Directory Entry Formatccoiviiiiiiiiiiiiiiiiicneee e 9-10
Scalable-Mode PASID Table Entry Formatccoviiiiiiiiiiiiiiicicicne e 9-11
Format for First-Level Paging ENtrieS.....cccviiiiiiiiiiiii i ne e e 9-17
Format for Second-Level Paging Entries........ccooiiiiiiiiiiiiiie e 9-25
(=101 Lol 2= To o] e I o T o = | o P 9-33
Interrupt Remap Table Entry Format for Remapped Interrupts..........c.ccvvnins 9-35
Interrupt Remap Table Entry Format for Posted Interruptsccoevvvniinnnnnn, 9-39
Posted Interrupt Descriptor FOrmatcooiviiiiiiiii i e e 9-42
V2= = To T 2o] o= 10-7
Capability REGISTEI .. ci it 10-8
Extended Capability Register......ccviiiiiiiiiiii i 10-13
Global Command ReGISter e e e e 10-18
Global Status RegiSter .. vttt e e 10-22
Root Table Address ReGISter....cuiiiriiiiii i e e 10-24
Context Command RegiStar......cciiiiiiiiiiii i e e as 10-25
IOTLB Invalidate RegiStercouiieiiiiiiii e 10-29
Invalidate Address RegiSter......ouiiuiiiiiiiii e 10-31
Fault Status ReGISTEr. .. i e 10-33
Fault Event Control REGISter.....ouiuiii i 10-35
Fault Event Data ReGISter ..vuiviiiiii i e 10-37
Fault Event Address Register......coiiviiiiiiiiii i 10-38
Fault Event Upper Address Register......cooviiiiiiiiiiiiii i 10-39

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

10-58
10-59
10-60
10-61
10-62
10-63
10-64
10-65
10-66
10-67
10-68
10-69
10-70
10-71
10-72
10-73
10-74
10-75
10-76
10-77
10-78
10-79
10-80
10-81
10-82
10-83
10-84
10-85
10-86
10-87
10-88
10-89

Intel® Virtualization Technology for Directed I/O—Contents

Fault Recording Registercciuiiiiii e 10-40
Advanced Fault Log REGISTer......ouiuiiiiie i 10-43
Protected Memory Enable Registerccooiuiiiiiiiiii e 10-44
Protected Low-Memory Base Registercocoviiiiiiiiiiiii e 10-46
Protected Low-Memory Limit Registerc.ccoviiiiiiiiiiiiic e 10-47
Protected High-Memory Base Register.......ccviiiiiiiiiiiiiiiic i aeea 10-48
Protected High-Memory Limit Registercoooviiiiiiiii e 10-49
Invalidation Queue Head Register......coviiiiiiiiiiii e 10-50
Invalidation Queue Tail REGISTErcciviiiiiii e 10-51
Invalidation Queue Address RegiSter.....cuuuiiiiiiiiiiiiiiiii e 10-52
Invalidation Completion Status Register.......ccoovviiiiiiiiiiiiii e 10-53
Invalidation Event Control Register.......cooviiiiiiiiiiii e 10-54
Invalidation Event Data Registercccovviiiiiiiiiiii e 10-55
Invalidation Event Address Register......c.ccviiiiiiiiiiiiiii e 10-56
Invalidation Event Upper Address Register.......ccocvviviiiiiiiiiiiiiiieieie e 10-57
Invalidation Queue Error Record Registerccvvvvviiiiiiiiiiiiiii e 10-58
Interrupt Remapping Table Address Registercocvvviiiiiiiiiiii i 10-60
Page Request Queue Head Register....c.coviiiiiiiiiiiiii i e 10-61
Page Request Queue Tail Registerccoiiiiiiiiii e 10-62
Page Request Queue AdAress RegiStercovviiiiiiiiiiiiiiiiii e 10-63
Page Request Status Registerccviviiiiiiiiiii 10-64
Page Request Event Control Registercvoviiiiiiiiiii e eee 10-65
Page Request Event Data Register.......coooviiiiiiiiiiiiiii e 10-66
Page Request Event Address RegiSter ...oviiiiiiiiiiiiii it i eee e 10-67
Page Request Event Upper Address Registercocovviiiiiiiiiiiiiiiiiineens 10-68
MTRR Capability ReGISter . ..o e 10-69
MTRR Default Type ReGIiSTerviiiiiiiiiii e ees 10-70
Fixed-Range MTRR FOIrMatuiuiiiiiiiiitiiiii e rene e e nneeenennes 10-71
Variable-Range MTRR FOrmMatcviiiiiiiiiii i e e neene e 10-73
Virtual Command RegiSter.....cciiuiiiiiiii i e 10-75
Virtual Command Response Register.......coooviiiiiiiiiiiiiii e 10-76
Virtual Command Capability Registercooiiiiiiiii e 10-77

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9

Contents—Intel® Virtualization Technology for Directed I/0 I n t e I
®

Tables

10

OCoONOTUTPRAWNEH

(€ [0 173=] PP 1-2
REfEIENCES 1.vtiiii 1-3
First-level Paging StruCturesccoiiiiiiiii e 3-9
Second-level Paging StrucCturescoooiiiiiiiiii s 3-13
Snoop Behavior for Root/Context/PASID-structures........coovvviiiiiiiiiiiiiiiennens 3-22
Snoop Behavior for FL/SL Paging Structures and Final Page............cccvvvviennnn. 3-23
EffeCtive MEMOIY Ty PO ittt e et aeeaaes 3-25
Memory Type Calculation for various tables and final Pagecccevivvnnne. 3-28
Memory Type Calculation for FL/SL-tables and Page in Scalable Mode.............. 3-28
N bit in Translation Completion ..o s 4-7
Address Fields in Remappable Interrupt Request Format.......c.cooviviiiiiiiiiiinins 5-4
Data Fields in Remappable Interrupt Request Formatccoveiiiiiiiiiiiiiinnnen. 5-4
Interrupt Remapping Fault ConditionsSocvvvviiiiiiiiiie e e 5-7
Memory Type and Snoop Behavior for Interrupt Remap Structures................. 5-17
(©F=Tol o 1< =T« o | o T R PP 6-2
Address Tags for IOTLB . .ouieiiiii it e e e e nees 6-3
Address Tags for paging-structure Cachescoiiiiiiiiiiiii e 6-3
TOTLB INValidation ..ueeiieiieiie it e e s e s e neanans 6-26
PASID-based-IOTLB invalidationccoviuiiiiiiiii i 6-28
Index Mask Programming ..ooeiii oo i e e et s s aae e e e reaanens 6-31
List of Valid Descriptor Types for Each Mode........ccooiiiiiiiiiiiiii e 6-34
Implicit Invalidation on Page Request........c.ccoiiiiiiiiiiiiiii s 6-35
Guidance to Software for Invalidationscccooviiiiiiiii e 6-37
Fault conditions and Remapping hardware behavior for various requests........... 7-3
Page Request Error CoNditioNS......vveviiieiiiiiiiii i e e e 7-17
RESPONSE COUBS .uiiutiitiiiti ittt ettt e e e e e e et e st an e ane e rernannes 7-23
DMAR structure for platform shown in Figure 8-31ccoiiiiiiiiiiiiiiieens 8-8
Format of PML5E that references a PML4 Table ..o 9-18
Format of PML4E that references a Page-Directory-Pointer Table.................... 9-19
Format of PDPE that maps @ 1-GByte Page.......c.coviiiiiiiiiiiiiiiiiine e e, 9-20
Format of PDPE that references a Page-Directory Table............ccooviiiiiinnnnnnn, 9-21
Format of PDE that maps @ 2-MByte Pagec.coviiiiiiiiiiiiiiiii e 9-22
Format of PDE that references a Page Tableccoiiiiiiiiiiiiii e 9-23
Format of PTE that maps a 4-KByte Page........ccoviiiiiiiiiiiiiie e 9-24
Format of SL-PML5E referencing a Second-Level-PML4 Tablecccvvvvennnn. 9-26
Format of SL-PMLA4E referencing a Second-Level-Page-Directory-Pointer Table. 9-27
Format of SL-PDPE that maps a 1-GByte Page........cocovviiiiiiiiiiiiiie e, 9-28
Format of SL-PDPE that references a Second-Level-Page-Directory................. 9-29
Format of SL-PDE that maps to a 2-MByte Page.........cocoviiiiiiiiiiiiii e, 9-30
Format of SL-PDE that references a Second-Level-Page Table........................ 9-31
Format of SL-PTE that maps 4-KByte Page.......cccoiiiiiiiiiiiii e 9-32
Address Mapping for Fixed-Range MTRRScvvuiiiiiiiiiiiiiiieieiiieiaenesneenenens 10-72

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Revision History
®

Revision History

Date Revision | Description
March 2006 Draft e Preliminary Draft Specification
May 2007 1.0 e 1.0 Specification
September 2007 1.1 e Specification update for x2APIC support
September 2008 1.2 . I\pllllus;:ellaneous documentation fixes/clarifications, including BIOS support for NUMA, hot-
February 2011 1.3 e Fixed documentation errors; Added BIOS support to report X2APIC_OPT_OUT
e Updated chapter 8 (BIOS requirements) to comprehend platforms with ACPI devices
January 2012 2.0 capable of generating DMA requests (such as Low Power Subsystem (LPSS) on client

platforms).

e Extended page group request with a stream response requested flag to request stream
responses for page requests except the last request in group.

August 2013 2.1 e Added an Blocked-On-Fault field to page requests requesting stream response as a hint
to indicate the respective fault caused a blocking condition on the endpoint device.

e Clarified hardware behavior on page requests received when page request queue is full.

e Added support for Shared Virtual Memory (SVM) capability.

e Fixed ANDD structure definition in DMAR ACPI table to support 2-byte length field.
e Fixed invalidation granularity encoding for extended IOTLB invalidation descriptor.
e Updated bit positions of fields in PASID-State table entry.

e Added support for Interrupt Posting capability support.

o Clarified specific registers whose read completions are required to drain various types of
interrupt requests generated by the remapping hardware.

e Fixed typo in effective memory-type computation for first-level paging entry accesses
when nested translations are enabled with Extended Memory Type disabled in second-
level translation tables.

* Fixed Page Request Status Register and Page Request Event Control Register
descriptions to clarify that queueing of any page_req_desc in the page request queue
results in hardware setting the Pending Page Request (PPR) field.

e Fixed Supervisor Request Enable (SRE) field location from extended-context-entry to
PASID-table entry, to distinguish privileged versus non-privileged PASIDs of a device.

e Fixed Extended Access Flag Enable (EAFE) field location from PASID-table entry to
extended-context-entry.

e Relaxed context-entry programming considerations to clarify software requirement to
ensure self-consistency when modifying present root, extended-root, context or
extended-context entries.

e Reserved Translation Type (TT) field encoding of 110b and 111b in extended-context-
entries (previously documented incorrectly as PASID-only translation types).

e Fixed location of PASID Support enumeration field in ECAP_REG from bit28 to bit 40.

e Fixed typo in Section 4.2.3 to clarify that for translation-requests-with-PASID with PR=1,
remapping hardware supporting supervisor-requests (SRS=1) return PRIV bit as always
1. Previous versions of the spec. incorrectly specified hardware returning PRIV bit as 1
only if the U/S field is 0 in at least one of the first-level paging-structure entries
controlling the translation.

e Clarified the ordering requirement to be followed by remapping hardware on page
request descriptor writes and recoverable fault reporting event interrupt.

e Updated Chapter 6 to include Device-TLB invalidation throttling support for SR-IOV

June 2016 24 gg\ggezEléeiw Device-TLB Invalidation Throttling (DIT) capability field added to

September 2013 2.2

October 2014 2.3

e Updated Chapter 6 to include a new Page-request Drain (PD) flag in inv_wait_dsc for
page request draining.

e Updated Chapter 7 to include details on page request and page response ordering and
draining, including handling of terminal conditions on device with pending page faults.

e Added ECAP_REG capability fields to report support for Device-TLB invalidation throttling
and page-request draining.

e Clarified Caching Mode (CM=1) behavior to indicate that the reserved Domain-ID of 0 is
used only for context-cache and rest of the caching structures follow same tagging for
cached entries for CM=0 and CM =1(including for cached faulting entries when CM=1).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 11

Revision History—Intel® Virtualization Technology for Directed I/O I n t e I
®

Date

Revision

Description

November 2017

2.5

Updated specification to include support for 5-level paging structures for first-level and
second-level translation. Use of 5-level paging for first-level translation is controlled
through an explicit enable per PASID-table entry. Use of 5-level paging for second-level
translation is controlled through the programming of already existing Address Width
(AW) field in the context/extended-context entry. New capability bit is added to report
support for 5-level paging for first-level translation. Added FL-PML5E and SL-PML5E
documentation.

Clarified the contents of address field in Fault Recording register when hardware
supports multiple paging modes (E.g., 4-level and 5-level paging).
Fixed typo error in Section 4.1.3 from translation-requests to translated-requests.

Fixed error in Table-14 in Section 7.2.1.4 that had incorrectly listed translation-requests
with PASID that fail ERE and SRE checks as returning Unsupported Request in Translation
Completion Status and report Fault Reason of 19h and 1Ah. Instead, these conditions
result in Recoverable Fault conditions for Translation Requests as the Translation
Completion Data Entry returns R=W=U=S=0 (as documented in Table-16 in Section
7.2.2)

Clarified software must wait for the current Protected Memory Enable (PMEN) register
control operation to be completed by hardware and reported in the status register before
updating it again.

Added Fault code 30h in Appendix A to accommodate implementations logging a non-
recoverable fault when a Page (PRS) request is blocked due to Present (P) or Page
Request Enable (PRE) fields Clear in corresponding extended-context-entry.

Clarified that if a request-with-PASID with PR=1 (Privileged Request) is received by a
remapping hardware implementation that reports SRS (Supervisory Requests
Supported) as 0 (not supported), the translation completion entry is forced with PRIV=1
(same value as PR in request) and permissions forced to 0 (R=W=E=0).

Added new DMA_CTRL_PLATFORM_OPT_IN_FLAG in DMAR ACPI table for platform
firmware to report compliance about platform initiated DMA restricted to RMRR ranges
when transferring control to system software such as on ExitBootServices(). System
software may program DMA remapping hardware to block DMA outside of RMRR, except
for memory explicitly registered by device drivers with system software.

June 2018

3.0

Removed all text related to Extended-Mode.

Added support for scalable-mMode translation for DMA Remapping, that enables PASID-
granular first-level, second-level, nested and pass-through translation functions.

Widen invalidation queue descriptors and page request queue descriptors from 128 bits
to 256 bits and redefined page-request and page-response descriptors.

Listed all fault conditions in a unified table and described DMA Remapping hardware
behavior under each condition. Assigned new code for each fault condition in scalable-
mode operation.

Added support for Accessed/Dirty (A/D) bits in second-level translation.

Added support for submitting commands and receiving response from virtual DMA
Remapping hardware.

Added a table on snooping behavior and memory type of hardware access to various
remapping structures as appendix.

Move Page Request Overflow (PRO) fault reporting from Fault Status register
(FSTS_REG) to Page Request Status register (PRS_REG).

12 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Revision History
®

Date Revision | Description

e Updated handling of requests to interrupt address range.

e Clarified how hardware sets value of N field in Translation Completion in Scalable-mode
(Table 10 of section 4.2.3).

e Added support for RID-PASID capability (RPS field in ECAP_REG).

o Clarified that software must use 16-byte aligned atomic operation to update certain
fields in legacy-mode context-entry and scalable-mode PASID-table-entry with Present
(P) bit Set

¢ Clarified that Caching Mode (CM) bit in Capability Register does not apply to first-level
mappings

e Expanded Table 21 (section 6.5.2.10) to include Invalidation Queue descriptor handling
when Translation Table Mode (TTM) field in Root Table Address Register is programmed
with reserved values.

e Added required device-TLB invalidations in guidance to software for Invalidations
(section 6.5.3.3).

e Updated DMA remapping related faults and handling for various requests when they
encounter such faults

e Removed requirement that remapping hardware process page-requests and Device-TLB
invalidation completions and in the order they arrived at ingress of remapping hardware
(section 7.8).

e Specified atomicity requirement on remapping hardware access to various translation

June 2019 3.1 structures

¢ Clarified when some of the fields of PASID-table entry are reserved and ignored.

e Renamed 5LP capability to FL5LP, renamed SMPWC capability to SMPWCS and Clarified
conditions under which hardware implementation must report Nested Translation
Support (NEST) as Clear in Extended Capability Register (ECAP_REG) in section 10.4.3

e Updated how hardware treats upper bits of Fault Info (FI) field in Fault Recording
Register (FRCD_REG) in section 10.4.14.

e Clarified hardware handling of DMA requests accessing protected memory region in
section 10.4.16.

¢ Removed RsvdZ check on Descriptor Width (DW) field in Invalidation Queue Address
Register (IQA_REG) in section 10.4.23.

e Added Invalidation Queue Error Record Register (IQA_REG) as section 10.4.29.

o Clarified that Page Request Overflow (PRO) trigger a Page Request Event in section
10.4.35 (and not Fault Event).

e Updated Error Code definitions in Virtual Command Response Register (VCRSP_REG) in
section 10.4.45.

e Removed redundant table about Interrupt remapping related fault from chapter 7.

e Added software requirement to block DMA from accessing Posted-Interrupt descriptors.

e Added Interrupt remapping fault reason for VT-d hardware to detect and report
inappropriate requests to interrupt range.

e Added definition for SoC Integrated Address Translation Cache (SATC) Reporting
Structure Type and provide an example of DMAR Structure layout in memory
(Section 8.8). Added requirements for device-TLB implementation and validation for SoC
integrated devices (Section 4.4). Provide guidance to software on enabling and disable
Address Translation Service (Section 4.5).

¢ Remove Transient Mapping (TM) field from second-level page-tables and treat the field
as Reserved(0).

e Added Enhanced SRTP and SIRTP capabilities (Section 10.4.2)

e Added new fault conditions under which hardware will block DMA operations (Table 24).

e Improved guidance to software on required/recommended invalidation after page-table
modifications (Section 6.5.3.3).

e Enhance Translation Disable command to invalidate all DMA remapping translation
caches (Section 10.4.4).

e Update PMR definition to call out impact of Compute Express Link (CXL) and clarify that
software must not program PMR region to overlap with MMIO (Section 10.4.16).

e Added recommendation for software to enable ACS on PCI Express Root Ports
(Section 3.11.3).

e Clarified that Trigger Mode and Level are fixed at value of 0 for remapping hardware
generated interrupts.

e Clarified that Invalidation Descriptors with invalid values in Granularity field are treated
as invalid descriptors.

e Improved readability of sections on remapping hardware snoop behavior (Table 6),
handling of requests to interrupt range (Section 3.14), non-snoop access (N) field in
translation completion (Table 10).

October 2020 3.2

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 13

| |
Revision History—Intel® Virtualization Technology for Directed I/O I n t e I
®

Date

Revision

Description

April 2021

3.3

e Added Abort DMA Mode (Section 3.4.4).

e Deprecated Register Based Invalidation (Section 6.5.1).

e Clarified hardware handling of drains for IOTLB Invalidations (Section 6.5.2.3).

e Updated recommendation on usage of Protected Memory Registers (Section 10.4.16).
e Clarified that IOTLB may cache pass-through translations (Section 6.2.4).

e Removed EIMD field from Interrupt Data Registers and treat the field as reserved
(Section 10.4.11, Section 10.4.26, Section 10.4.36).

e Updated Virtual Command Register, Virtual Command Opcode B Register, Virtual
Command Response Register, and Virtual Command Capability Register.
(Section 10.4.43,Section 10.4.44, Section 10.4.45,and Section 10.4.46)

14 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n te I Intel® Virtualization Technology for Directed I/O—Introduction
®

1 Introduction

This document describes the Intel® Virtualization Technology (Intel® VT) for Directed 1/0 (Intel® VT-
d); specificallyé it describes the components supporting I/0 virtualization as it applies to platforms
that use Intel® processors and core logic chipsets complying with Intel® platform specifications.

Figure 1-1 illustrates the general platform topology.

Processor Processor

@System Bus

North Bridge /\~I\
DMA & Interrupt Remapping W DRAM
Devices
PCIl Express South [[PCI, LPC,
Devices Bridge Legacy devices

Figure 1-1. General Platform Topology

The document includes the following topics:
e An overview of I/O subsystem hardware functions for virtualization support.
e A brief overview of expected usages of the generalized hardware functions.
e The theory of operation of hardware, including the programming interface.

The following topics are not covered (or are covered in a limited context):

o Intel® Virtualization Technology for Intel® 64 Architecture. For more information, refer to the
“Intel® 64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide".

1.1 Audience

This document is aimed at hardware designers developing Intel® platforms or core-logic providing
hardware support for virtualization. The document is also expected to be used by Operating System
(0S) and Virtual Machine Monitor (VMM) developers utilizing the I/0 virtualization hardware
functions.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 1-1

Introduction—Intel® Virtualization Technology for Directed I/0

intel.

1.2 Glossary
The document uses the terms listed in the following table.
Table 1. Glossary
Term Definition
Context A hardware representation of state that identifies a device and the domain to which the device is assigned.
Sgghts)(t' Remapping hardware cache that stores device to domain mappings
Device-TLB A translation cache at the endpoint device (as opposed to in the platform).
DMA Direct Memory Access: Address routed in-bound requests from I/O devices
DMA The act of translating the address in a DMA request to a host physical address (HPA)
Remapping '
Domain A collection of physical, logical, or virtual resources that are allocated to work together. Used as a generic term
for virtual machines, partitions, etc.
DMA Address in a DMA request: Depending on the software usage and hardware capabilities, DMA address can be
Address Guest Physical Address (GPA), Guest Virtual Address (GVA), Virtual Address (VA), or I/0 Virtual Address (IOVA).
E'ar;tr;;wd Paging structures used in scalable-mode for first-level of DMA address translation.
First-Level Translation caches used by remapping hardware units to cache intermediate (non-leaf) entries of the first-level
Caches paging structures. These may include PML5 cache, PML4 cache, PDP cache, and PDE cache.
GAW Guest Address Width: Physical addressability limit within a partition (virtual machine)
GPA Guest Physical Address: the view of physical memory from software running in a partition (virtual machine).
Guest Software running within a virtual machine environment (partition).
GVA Guest Virtual Address: Processor virtual address used by software running in a partition (virtual machine).
HAW Host Address Width: the DMA physical addressability limit for a platform.
HPA Host Physical Address: Physical address used by hardware to access memory and memory-mapped resources.
IEC Interrupt Entry Cache: A translation cache in remapping hardware unit that caches frequently used interrupt-
remapping table entries.
10TLB I/0 Translation Lookaside Buffer: an address translation cache in remapping hardware unit that caches effective
translations from DVA (GPA) to HPA.
I/OxAPIC I/0 Advanced Programmable Interrupt Controller
IOVA I/0 Virtual Address: Virtual address created by software for use in I/O requests.
Interrupt . . L .
Remapping The act of translating an interrupt request before it is delivered to the CPU complex.
MGAW Maximum Guest Address Width: the maximum DMA virtual addressability supported by a remapping hardware
implementation.
MSI Message Signaled Interrupts.
Second- Translation caches used by remapping hardware units to cache intermediate (non-leaf) entries of the second-
Level level (SL) paging structures. Depending on the Guest Address Width supported by hardware, these may include
Caches SL-PML5 cache, SL-PML4 cache, SL-PDP cache, and SL-PDE cache.
Process Address Space Identifier that identifies the address space targeted by DMA requests. For requests with
PASID PASID, the PASID value is provided in the PASID TLP prefix of the request. For requests without PASID, the
PASID value is programmed in the scalable-mode context-entry used to process the request.
1-2 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n te I Intel® Virtualization Technology for Directed I/O—Introduction
®

Table 1. Glossary
Term Definition
PASID- Remapping hardware cache that caches frequently accessed PASID-table entries used to translate DMA
cache requests.
Second-
Level Paging structures used for second-level of DMA address translation.
Paging
Source ID A 16-bit identification number to identify the source of a DMA or interrupt request. For PCI family devices this is
the ‘Requester ID’ which consists of PCI Bus number, Device humber, and Function number.
Root- Refers to one or more hardware components that connect processor complexes to the I/O and memory
Complex subsystems. The chipset may include a variety of integrated devices.
VA Virtual Address: Virtual address used by software on a host processor.

VMM Virtual Machine Monitor: a software layer that controls virtualization. Also referred to as hypervisor in this

document.
X2APIC The extension of xAPIC architecture to support 32-bit APIC addressability of processors and associated
enhancements.
1.3 References
Table 2. References

Description

Intel® 64 Architecture Software Developer's Manuals
http://www.intel.com/sdm

PCI Express* Base Specification Revision 4.0, Version 1.0
http://www.pcisig.com/specifications/pciexpress

Intel® Scalable 1/0 Virtualization Architecture Specification, Version 1.0
https://software.intel.com/en-us/articles/intel-sdm#specification

ACPI Specification
http://www.acpi.info/

PCI Express* to PCI/PCI-X Bridge Specification, Revision 1.0
http://www.pcisig.com/specifications/pciexpress/bridge

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 1-3

Introduction—Intel® Virtualization Technology for Directed I/0 I n te I
®

1-4 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Overview
®

2 Overview

This chapter provides a brief overview of Intel® VT, the virtualization software ecosystem it enables,
and hardware support offered for processor and I/0 virtualization.

2.1 Intel® Virtualization Technology Overview

Intel® VT consists of technology components that support virtualization of platforms based on Intel®
processors, thereby enabling the running of multiple operating systems and applications in
independent partitions. Each partition behaves like a virtual machine (VM) and provides isolation and
protection across partitions. This hardware-based virtualization solution, along with virtualization
software, enables multiple usages such as server consolidation, activity partitioning, workload
isolation, embedded management, legacy software migration, and disaster recovery.

2.2 VMM and Virtual Machines

Intel® VT supports virtual machine architectures comprised of two principal classes of software:

¢ Virtual-Machine Monitor (VMM): A VMM acts as a host and has full control of the processor(s)
and other platform hardware. VMM presents guest software (see below) with an abstraction of a
virtual processor and allows it to execute directly on a logical processor. A VMM is able to retain
selective control of processor resources, physical memory, interrupt management, and I/0.

¢ Guest Software: Each virtual machine is a guest software environment that supports a stack
consisting of an operating system (OS) and application software. Each operates independently of
other virtual machines and uses the same interface to processor(s), memory, storage, graphics,
and I/O provided by a physical platform. The software stack acts as if it were running on a
platform with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

The VMM is a key component of the platform infrastructure in virtualization usages. Intel® VT can
improve the reliability and supportability of virtualization infrastructure software with programming
interfaces to virtualize processor hardware. It also provides a foundation for additional virtualization
support for other hardware components in the platform.

2.3 Hardware Support for Processor Virtualization

Hardware support for processor virtualization enables simple, robust and reliable VMM software. VMM
software relies on hardware support on operational details for the handling of events, exceptions, and
resources allocated to virtual machines.

Intel® VT provides hardware support for processor virtualization. For Intel® 64 processors, this

support consists of a set of virtual-machine extensions (VMX) that support virtualization of processor
hardware for multiple software environments by using virtual machines.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 2-1

Overview—Intel® Virtualization Technology for Directed I/O I n te I
®

2.4 I/0 Virtualization

A VMM must support virtualization of I/O requests from guest software. I/O virtualization may be
supported by a VMM through any of the following models:

e Emulation: A VMM may expose a virtual device to guest software by emulating an existing
(legacy) I/O device. VMM emulates the functionality of the I/O device in software over whatever
physical devices are available on the physical platform. I/O virtualization through emulation
provides good compatibility (by allowing existing device drivers to run within a guest), but pose
limitations with performance and functionality.

e New Software Interfaces: This model is similar to I/O emulation, but instead of emulating legacy
devices, VMM software exposes a synthetic device interface to guest software. The synthetic
device interface is defined to be virtualization-friendly to enable efficient virtualization compared
to the overhead associated with I/O emulation. This model provides improved performance over
emulation, but has reduced compatibility (due to the need for specialized guest software or
drivers utilizing the new software interfaces).

e Assignment: A VMM may directly assign the physical I/O devices to VMs. In this model, the driver
for an assigned 1/0 device runs in the VM to which it is assigned and is allowed to interact directly
with the device hardware with minimal or no VMM involvement. Robust I/O assignment requires
additional hardware support to ensure the assigned device accesses are isolated and restricted to
resources owned by the assigned partition. The I/O assignment model may also be used to create
one or more I/0 container partitions that support emulation or software interfaces for virtualizing
I/0 requests from other guests. The I/O-container-based approach removes the need for running
the physical device drivers as part of VMM privileged software.

e [/0O Device Sharing: In this model, which is an extension to the I/O assignment model, an I/O
device supports multiple functional interfaces, each of which may be independently assigned to a
VM. The device hardware itself is capable of accepting multiple I/O requests through any of these
functional interfaces and processing them utilizing the device's hardware resources.

Depending on the usage requirements, a VMM may support any of the above models for I/O
virtualization. For example, I/O emulation may be best suited for virtualizing legacy devices. I/O
assignment may provide the best performance when hosting I/O-intensive workloads in a guest.
Using new software interfaces makes a trade-off between compatibility and performance, and device
I/0 sharing provides more virtual devices than the number of physical devices in the platform.

2.5 Intel® Virtualization Technology For Directed I/0
Overview
A general requirement for all of above I/0 virtualization models is the ability to isolate and restrict

device accesses to the resources owned by the partition managing the device. Intel® VT for Directed
I/0 provides VMM software with the following capabilities:

e I/0 device assignment: for flexibly assigning I/O devices to VMs and extending the protection and
isolation properties of VMs for I/O operations.

e DMA remapping: for supporting address translations for Direct Memory Accesses (DMA) from
devices.

e Interrupt remapping: for supporting isolation and routing of interrupts from devices and external
interrupt controllers to appropriate VMs.

e Interrupt posting: for supporting direct delivery of virtual interrupts from devices and external
interrupt controllers to virtual processors.

e Reliability: for recording and reporting of DMA and interrupt errors to system software that may
otherwise corrupt memory or impact VM isolation.

2-2 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

Intel® Virtualization Technology for Directed I/O—Overview

intel.

2.5.1 Hardware Support for DMA Remapping

To generalize I/0O virtualization and make it applicable to different processor architectures and
operating systems, this document refers to domains as abstract isolated environments in the platform
to which a subset of host physical memory is allocated.

DMA remapping provides hardware support for isolation of device accesses to memory, and enables
each device in the system to be assigned to a specific domain through a distinct set of paging
structures. When the device attempts to access system memory, the DMA-remapping hardware
intercepts the access and utilizes the page tables to determine whether the access can be permitted;
it also determines the actual location to access. Frequently used paging structures can be cached in
hardware. DMA remapping can be configured independently for each device, or collectively across
multiple devices.

2.5.1.1 OS Usages of DMA Remapping

There are several ways in which operating systems can use DMA remapping:

e OS Protection: An OS may define a domain containing its critical code and data structures, and
restrict access to this domain from all I/O devices in the system. This allows the OS to limit
erroneous or unintended corruption of its data and code through incorrect programming of
devices by device drivers, thereby improving OS robustness and reliability.

e Feature Support: An OS may use domains to better manage DMA from legacy devices to high
memory (For example, 32-bit PCI devices accessing memory above 4GB). This is achieved by
programming the I/O page-tables to remap DMA from these devices to high memory. Without
such support, software must resort to data copying through OS “bounce buffers”.

e DMA Isolation: An OS may manage I/O by creating multiple domains and assigning one or more
I/0 devices to each domain. Each device-driver explicitly registers its I/O buffers with the OS, and
the OS assigns these I/0 buffers to specific domains, using hardware to enforce DMA domain
protection. See Figure 2-2.

e Shared Virtual Memory: For devices supporting appropriate PCI Express! capabilities, OS may use
the DMA remapping hardware capabilities to share virtual address space of application processes
with I/O devices. Shared virtual memory along with support for I/O page-faults enable application
programs to freely pass arbitrary data-structures to devices such as graphics processors or
accelerators, without the overheads of pinning and marshalling of data.

System Memory System Memory
Domain 1 Domain 2
0S Code & Driver A Driver B
Data 1/0 Buffers 1/0 Buffers
Py Driver A ; Driver B
I/0 Buffers o = /0 Buffers I/0 Buffers| /0 Buffers
s at S
| DMA-Remapping Hardware |
x A
1/0 Devices Device A Device B

Device DMA without isolation

Device DMA isolated using DMA remapping hardware

Figure 2-2. Example OS Usage of DMA Remapping

1. Refer to Process Address Space ID (PASID) capability in PCI Express” base specification.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 2-3

Overview—Intel® Virtualization Technology for Directed I/O I n te I
®

2.5.1.2 VMM Usages of DMA Remapping

The limitations of software-only methods for I/O virtualization can be improved through direct
assignment of I/0 devices to partitions. With this approach, the driver for an assigned I/0 device runs
only in the partition to which it is assigned and is allowed to interact directly with the device hardware
with minimal or no VMM involvement. The hardware support for DMA remapping enables this direct
device assignment without device-specific knowledge in the VMM. See Figure 2-3.

Virtual Machine (0) Virtual Machine (n) Virtual Machine (0) Virtual Machine (n)
| App | | App | | App | | App | | App | | App | | Ao | | App |
| Guest 0S | | Guest 0S | | Guest 0S | | Guest 0S |

river for Driver for ?ewcef Device B
Virtual Devices Virtual Devices Driver

A

w

VirtuaLMachine Monitor (VMM) or Hosting C
[Virtual Devices Emulation |

& & VirtualiMachine Monitor (VMM) or Hosting OS
Device A Device B
Driver Driver

A

| DMA-Remapping Hardware |

[- - ‘
Device A Device B Device A Device B

Example Software-based
1/0 Virtualization

Direct Assignment of I/0 Devices

Figure 2-3. Example Virtualization Usage of DMA Remapping

In this model, the VMM restricts itself to enabling direct assignment of devices to their partitions.
Rather than invoking the VMM for all I/O requests from a partition, the VMM is invoked only when
guest software accesses protected resources (such as configuration accesses, interrupt management,
etc.) that impact system functionality and isolation.

To support direct assignment of I/O devices, a VMM must enforce isolation of DMA requests. I/0
devices can be assignhed to domains, and the remapping hardware can be used to restrict DMA from
an I/0 device to the physical memory presently owned by its domain. For domains that may be
relocated in physical memory, the remapping hardware can be programmed to perform the necessary
translation.

I/0 device assignment allows other I/0 sharing usages — for example, assigning an I/O device to an
I/0 partition that provides I/0 services to other user partitions. Remapping hardware enables
virtualization software to choose the right combination of device assignment and software-based
methods for I/O virtualization.

DMA-remapping also enables hardware based I/0 virtualization technologies such as Single Root I/0
Virtualization (SR-IOV) and Intel® Scalable I/O Virtualization (Intel® Scalable IOV)!. With SR-IOV
capability, a device Physical Function may be configured to support multiple Virtual Functions (VFs)

1. Refer to PCI Express* specification for SR-IOV architecture details. Refer to Intel® Scalable I/0
Virtualization architecture specification for Intel® Scalable IOV architecture details.

2-4 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Overview
®

that can be assigned to different partitions. Similarly with Intel® Scalable IOV capability, a device
Physical Function may be configured to support multiple light-weight Assignable Device Interfaces
(ADIs) that can similarly be assigned to different partitions as virtual devices.

2.5.1.3 DMA Remapping Usages by Guests

A guest OS running in a VM may benefit from the availability of remapping hardware to support the
usages described in Section 2.5.1.1. To support such usages, the VMM may virtualize the remapping
hardware to its guests. For example, the VMM may intercept guest accesses to the virtual remapping
hardware registers, and manage a shadow copy of the guest remapping structures that is provided to
the physical remapping hardware. On updates to the guest I/O page tables, the guest software
performs appropriate virtual invalidation operations. The virtual invalidation requests may be
intercepted by the VMM, to update the respective shadow page tables and perform invalidations of
remapping hardware. Due to the non-restartability of faulting DMA transactions (unlike CPU memory
management virtualization), a VMM cannot perform lazy updates to its shadow remapping structures.
To keep the shadow structures consistent with the guest structures, the VMM may expose virtual
remapping hardware with eager pre-fetching behavior (including caching of not-present entries) or
use processor memory management mechanisms to write-protect the guest remapping structures.

On hardware implementations supporting two levels of address translations (first-level translation to
remap a virtual address to intermediate (guest) physical address, and second-level translations to
remap a intermediate physical address to machine (host) physical address), a VMM may virtualize
guest OS use of first-level translations without shadowing page-tables, but by configuring hardware to
perform nested translation of first and second-levels.

2.5.1.4 Interaction with Processor Virtualization

Figure 2-4 depicts how system software interacts with hardware support for both processor-level
virtualization and Intel® VT for Directed 1/0.

Virtual Machines

Virtual Machine Monitor (VMM)

Physical Memory

| DMA CPU Accesses |
D I/(.) Logical
evices ~ N Processors
DMA CPU Memory
Remapping Virtualization

Figure 2-4. Interaction Between I/0 and Processor Virtualization

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 2-5

Overview—Intel® Virtualization Technology for Directed I/O I n te I
®

The VMM manages processor requests to access physical memory via the processor’'s memory
management hardware. DMA requests to access physical memory use remapping hardware. Both
processor memory management and DMA memory management are under the control of the VMM.

2.5.2 Hardware Support for Interrupt Remapping

Interrupt remapping provides hardware support for remapping and routing of interrupt requests from
I/0 devices (generated directly or through I/0O interrupt controllers). The indirection achieved through
remapping enables isolation of interrupts across partitions.

The following usages are envisioned for the interrupt-remapping hardware.

2.5.2.1 Interrupt Isolation

On Intel® architecture platforms, interrupt requests are identified by the Root-Complex as write
transactions targeting an architectural address range (OXFEEx_xxxxh). The interrupt requests are
self-describing (i.e., attributes of the interrupt request are encoded in the request address and data),
allowing any DMA initiator to generate interrupt messages with arbitrary attributes.

The interrupt-remapping hardware may be utilized by a Virtual Machine Monitor (VMM) to improve the
isolation of external interrupt requests across domains. For example, the VMM may utilize the
interrupt-remapping hardware to distinguish interrupt requests from specific devices and route them
to the appropriate VMs to which the respective devices are assigned. The VMM may also utilize the
interrupt-remapping hardware to control the attributes of these interrupt requests (such as
destination CPU, interrupt vector, delivery mode etc.).

Another example usage is for the VMM to use the interrupt-remapping hardware to disambiguate
external interrupts from the VMM owned inter-processor interrupts (IPIs). Software may enforce this
by ensuring none of the remapped external interrupts have attributes (such as vector number) that
matches the attributes of the VMM IPIs.

2.5.2.2 Interrupt Migration

The interrupt-remapping architecture may be used to support dynamic re-direction of interrupts when
the target for an interrupt request is migrated from one logical processor to another logical processor.
Without interrupt-remapping hardware support, re-balancing of interrupts require software to re-
program the interrupt sources. However re-programming of these resources are non-atomic (requires
multiple registers to be re-programmed), often complex (may require temporary masking of interrupt
source), and dependent on interrupt source characteristics (e.g. no masking capability for some
interrupt sources; edge interrupts may be lost when masked on some sources, etc.)

Interrupt-remapping enables software to efficiently re-direct interrupts without re-programming the
interrupt configuration at the sources. Interrupt migration may be used by OS software for balancing
load across processors (such as when running I/0 intensive workloads), or by the VMM when it
migrates virtual CPUs of a partition with assigned devices across physical processors to improve CPU
utilization.

2.5.2.3 X2APIC Support

Intel® 64 x2APIC architecture extends the APIC addressability to 32-bits (from 8-bits). Refer to Inte/®
64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide for details.

Interrupt remapping enables x2APICs to support the expanded APIC addressability for external

interrupts without requiring hardware changes to interrupt sources (such as I/OxAPICs and MSI/MSI-
X devices).

2-6 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Overview
®

2.5.3 Hardware Support for Interrupt Posting

Interrupt posting includes hardware support for optimized processing of interrupt requests from I/0
devices (Physical Functions, SR-IOV Virtual Functions, or Intel® Scalable IOV Assignable Device
Interfaces (ADIs)) that are directly assigned to a virtual machine. The following usages are envisioned
for the interrupt-posting hardware.

2.5.3.1 Interrupt Vector Scalability

Devices supporting I/0 virtualization capabilities such as SR-IOV and/or Intel® Scalable 10V, virtually
increases the I/0 fan-out of the platform, by allowing multiple Virtual Functions (VFs) or Assignable
Device Interfaces (ADIs) to be enabled for a Physical Function (PF). Any of these PFs, VFs or ADIs can
be assigned to a virtual machine. Interrupt requests from such assigned devices/resources are
referred to as virtual interrupts as they target virtual processors of the assigned VM.

Each VF or ADI requires its own independent interrupt resources, resulting in more interrupt vectors
needed than otherwise required without such I/O virtualization. Without interrupt-posting hardware
support, all interrupt sources in the platform are mapped to the same physical interrupt vector space
(8-bit vector space per logical CPU on Intel® 64 processors). For virtualization usages, partitioning the
physical vector space across virtual processors is challenging in a dynamic environment when there is
no static affinity between virtual process and logical processors.

Hardware support for interrupt posting addresses this vector scalability problem by allowing interrupt
requests from device functions/resources assigned to virtual machines to operate in virtual vector
space, thereby scaling naturally with the number of virtual machines or virtual processors.

2.5.3.2 Interrupt Virtualization Efficiency

Without hardware support for interrupt posting, interrupts from devices assigned to virtual machines
are processed through the VMM software. Specifically, whenever an external interrupt destined for a
virtual machine is received by the CPU, control is transferred to the VMM, requiring the VMM to
process and inject corresponding virtual interrupt to the virtual machine. The control transfers
associated with such VMM processing of external interrupts incurs both hardware and software
overheads.

With hardware support for interrupt posting, interrupts from devices (PFs, VFs, or ADIs) assigned to
virtual machines are posted (recorded) in memory descriptors specified by the VMM, and processed
based on the running state of the virtual processor targeted by the interrupt.

For example, if the target virtual processor is running on any logical processor, hardware can directly
deliver external interrupts to the virtual processor without any VMM intervention. Interrupts received
while the target virtual processor is preempted (waiting for its turn to run) can be accumulated in
memory by hardware for delivery when the virtual processor is later scheduled. This avoids disrupting
execution of currently running virtual processors on external interrupts for non-running virtual
machines. If the target virtual processor is halted (idle) at the time of interrupt arrival or if the
interrupt is qualified as requiring real-time processing, hardware can transfer control to VMM,
enabling VMM to schedule the virtual processor and have hardware directly deliver pending interrupts
to that virtual processor.

This target virtual processor state based processing of interrupts reduces overall interrupt latency to
virtual machines and reduces overheads otherwise incurred by the VMM for virtualizing interrupts.

2.5.3.3 Virtual Interrupt Migration

To optimize overall platform utilization, VMM software may need to dynamically evaluate the optimal
logical processor to schedule a virtual processor, and in that process, migrate virtual processors
across CPUs. For virtual machines with assigned devices, migrating a virtual processor across logical
processors either incurs the overhead of forwarding interrupts in software (e.g., via VMM generated
IPIs), or complexity to independently migrate each interrupt targeting the virtual processor to the

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 2-7

Overview—Intel® Virtualization Technology for Directed I/O I n te I
®

new logical processor. Hardware support for interrupt posting enables VMM software to atomically co-
migrate all interrupts targeting a virtual processor when the virtual processor is scheduled to another
logical processor.

2-8 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

3 DMA Remapping

This chapter describes the hardware architecture for DMA remapping. The architecture envisions
remapping hardware to be implemented in the Root-Complex integrated into the Processor complex
or in core logic chipset components.

3.1 Types of DMA requests

Remapping hardware treats inbound memory requests from root-complex integrated devices and PCI
Express attached discrete devices into two categories:

e Requests without address-space-identifier: These are the normal memory requests from endpoint
devices. These requests typically specify the type of access (read/write/atomics), targeted DMA
address/size, and source-id of the device originating the request (e.g. Bus/Dev/Function).

e Requests with address-space-identifier: These are memory requests with additional information
identifying the targeted address space from endpoint devices. Beyond attributes in normal
requests, these requests specify the targeted process address space identifier (PASID), and
optional attributes such as Execute-Requested (ER) flag (to indicate reads that are instruction
fetches), and Privileged-mode-Requested (PR) flag (to distinguish user versus supervisor access).
For details, refer to the Process Address Space ID (PASID) Capability in the PCI Express
specification.

For simplicity, this document refers to these categories as Requests-without-PASID, and
Requests-with-PASID. Tagging requests of a DMA stream with a unique PASID enables scalable and
fine-grained sharing of I/O devices, and operation of devices with a host application’s virtual memory.
Root-complexes without IOMMU or with IOMMU where DMA remapping is not enabled must ignore the
PASID TLP Prefix. Later sections describe these usages for Requests-with-PASID. Versions of this
specification prior to revision 2.0 supported only remapping of requests-without-PASID.

3.2 Domains and Address Translation

A domain is abstractly defined as an isolated environment in the platform, to which a subset of the
host physical memory is allocated. I/O devices that are allowed to access physical memory directly
are allocated to a domain and are referred to as the domain’s assigned devices. For virtualization
usages, software may treat each virtual machine as a domain.

The isolation property of a domain is achieved by blocking access to its physical memory from
resources not assigned to it. Multiple isolated domains are supported in a system by ensuring that all
I/0 devices are assigned to some domain (possibly a null domain), and that they can only access the
physical resources allocated to their domain. The DMA remapping architecture facilitates flexible
assignment of I/O devices to an arbitrary number of domains. Each domain has a view of physical
address space that may be different than the host physical address space. Remapping hardware
treats the address in inbound requests as DMA Address. Depending on the software usage model, the
DMA address space of a device (be it a Physical Function, SR-IOV Virtual Function, or Intel® Scalable
I0V Assignable Device Interface (ADI)) may be the Guest-Physical Address (GPA) space of a virtual
machine to which it is assigned, Virtual Address (VA) space of host application on whose behalf it is
performing DMA requests, Guest Virtual Address (GVA) space of a client application executing within a
virtual machine, I/0 virtual address (IOVA) space managed by host software, or Guest I/0 virtual
address (GIOVA) space managed by guest software. In all cases, DMA remapping transforms the
address in a DMA request issued by an I/O device to its corresponding Host-Physical Address (HPA).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-1

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

Figure 3-5 illustrates DMA address translation. I/O devices 1 and 2 are assigned to domains 1 and 2,
respectively. The software responsible for creating and managing the domains allocates system
physical memory for both domains and sets up the DMA address translation function. DMA address in
requests initiated by devices 1 & 2 are translated to appropriate HPAs by the remapping hardware.

10000h
Y
HPA =
4000hg| 6000h HPA =
6000h
cPU Assigned to
e MDMA Domain 1
emory
Management Management
4000h, HPA = HPA =
3000h 3000h
Assigned to
0 - Domain 2
Physical
Memory

Figure 3-5. DMA Address Translation

The host platform may support one or more remapping hardware units. Each hardware unit supports
remapping DMA requests originating within its hardware scope. For example, a desktop platform may
expose a single remapping hardware unit in its processor complex that translates all DMA
transactions. A server platform with one or more core components may support independent
translation hardware units in each component, each translating DMA requests originating within its
I/0 hierarchy (such as a PCI Express root port). The architecture supports configurations in which
these hardware units may either share the same translation data structures (in system memory) or
use independent structures, depending on software programming.

The remapping hardware translates the address in a request to host physical address (HPA) before
further hardware processing (such as address decoding, snooping of processor caches, and/or
forwarding to the memory controllers).

3.3 Remapping Hardware - Software View

The remapping architecture allows hardware implementations supporting a single PCI segment group
to expose (to software) the remapping function either as a single hardware unit covering the entire
PCI segment group, or as multiple hardware units, each supporting a mutually exclusive subset of
devices in the PCI segment group hierarchy. For example, an implementation may expose a
remapping hardware unit that supports one or more integrated devices on the root bus, and
additional remapping hardware units for devices behind one or a set of PCI Express root ports. The
platform firmware (BIOS) reports each remapping hardware unit in the platform to software. Chapter
8 describes the reporting structure through ACPI constructs.

For hardware implementations supporting multiple PCI segment groups, the remapping architecture

requires hardware to expose independent remapping hardware units (at least one per PCI segment
group) for processing requests originating within the I/O hierarchy of each segment group.

3.4 Mapping Devices to Domains

The following sub-sections describe the DMA remapping architecture and data structures used to map
I/O devices to domains.

3-2 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

3.4.1 Source Identifier

Each inbound request appearing at the address-translation hardware is required to identify the device
originating the request. The attribute identifying the originator of an I/O transaction is referred to as
the “source-id” in this document. The remapping hardware may determine the source-id of a
transaction in implementation-specific ways. For example, some I/O bus protocols may provide the
originating device identity as part of each I/O transaction. In other cases (for Root-Complex
integrated devices, for example), the source-id may be derived based on the Root-Complex internal
implementation.

For PCI Express devices, the source-id is the requester identifier in the PCI Express transaction layer
header. The requester identifier of a device, which is composed of its PCI Bus/Device/Function
number, is assigned by configuration software and uniquely identifies the hardware function that
initiated the request. Figure 3-6 illustrates the Requester-id! as defined by the PCI Express
Specification.

-

5 87 32 0

Bus # Device # Function #

Figure 3-6. Requester Identifier Format

The following sections describe the data structures for mapping I/O devices to domains.

1. For PCI Express devices supporting Alternative Routing-ID Interpretation (ARI), bits traditionally
used for the Device Number field in the Requester-id are used instead to expand the Function
Number field.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-3

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

3.4.2 Legacy Mode Address Translation

Figure 3-7 illustrates device to domain mapping in legacy mode.

Dev=31:Func=7

\ 4

Second-Level Page Table
Structures for Domain A

Dev=0:Func=0

»
>
Bus = 255 Context Table for
Bus N
Bus =N

Dev=31:Func=7

Bus =0

Root Table

Dev=0:Func=0

Context Table for —>
Bus 0 Second-Level Page Table
Structures for Domain B

»

Figure 3-7. Device to Domain Mapping Structures in Legacy Mode

The root-table functions as the top level structure to map devices to their respective domains. The
location of the root-table in system memory is programmed through the Root Table Address Register
described in Section 10.4.6. Root Table Address Register (RTADDR_REG) points to a root-table when
Translation Table Mode field in RTADDR_REG register is programmed to legacy mode
(RTADDR_REG.TTM is 00b). The root-table is 4-KByte in size and contains 256 root-entries to cover
the PCI bus number space (0-255). The bus number (upper 8-bits) encoded in a request’s source-id
field is used to index into the root-entry structure.The root-table-entry contains the context-table
pointer which references the context-table for all the devices on the bus identified by the root-entry.

A context-entry maps a specific I/O device on a bus to the domain to which it is assigned, and, in
turn, to the address translation structures for the domain. Each context-table contains 256 entries,
with each entry corresponding to a PCI device function on the bus. For a PCI device, the device and
function numbers (lower 8-bits) of source-id are used to index into the context-table.

Multiple devices may be assigned to the same domain by programming the context-entries for the
devices to reference the same translation structures, and programming them with the same domain
identifier. Root-entry format is described in Section 9.1 and context-entry format is described in
Section 9.3.

3-4 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

3.4.3 Scalable Mode Address Translation

For implementations supporting Scalable Mode Translation (SMTS=1 in Extended Capability Register),
the Root Table Address Register (RTADDR_REG) points to a scalable-mode root-table when the
Translation Table Mode field in the RTADDR_REG register is programmed to scalable mode
(RTADDR_REG.TTM is 01b). The scalable-mode root-table is similar to the root-table (4KB in size and
containing 256 scalable-mode root-entries to cover the 0-255 PCI bus number space), but has a
different format to reference scalable-mode context-entries. Each scalable-mode root-entry
references a lower scalable-mode context-table and a upper scalable-mode context-table.

The lower scalable-mode context-table is 4-KByte in size and contains 128 scalable-mode context-
entries corresponding to PCI functions in device range 0-15 on the bus. The upper scalable-mode
context-table is also 4-KByte in size and contains 128 scalable-mode context-entries corresponding to
PCI functions in device range 16-31 on the bus. Scalable-mode context-entries support both
requests-without-PASID and requests-with-PASID. However unlike legacy mode, in scalable-mode,
requests-without-PASID obtain a PASID value from the RID_PASID field of the scalable-mode context-
entry and are processed similarly to requests-with-PASID.Implementations not supporting RID_PASID
capability (ECAP_REG.RPS is 0b), use a PASID value of 0 to perform address translation for requests
without PASID.

The scalable-mode context-entry contains a pointer to a scalable-mode PASID directory. The upper 14
bits (bits 19:6) of the request’s PASID value are used to index into the scalable-mode PASID
directory. Each present scalable-mode PASID directory entry contains a pointer to a scalable-mode
PASID-table. The lower 6 bits (bits 5:0) of the request's PASID value are used to index into the
scalable-mode PASID-table. The PASID-table entries contain pointers to both first-level and second-
level translation structures, along with PASID Granular Translation Type (PGTT) field which specifies
whether the request undergoes a first-level, second-level, nested, or pass-through translation
process.

Figure 3-8 illustrates device to domain mapping with scalable-mode context-table.

Dev=31:Func=7

PASID[5:0] = 63
Dev=16:Func=0
»
Bus =255 Scalable Mode PASID[19:6] = 2" - 1)
Upper Context Table First-Level Page Table
Structures
Bus=N —
Dev=15:Func=7 PASID[5:0] = 0
>
— Scalable Mode
Bt PASID Table

Scalable Mode
Root Table

PASID[19:6] = 0

ol Dev=0:Func=0

Scalable Mode
Scalable Mode PASID Directory >
Lower Context Table

Second-Level Page
Table Structures

Figure 3-8. Device to Domain Mapping Structures in Scalable Mode

The scalable-mode root-entry format is described in Section 9.2, the scalable-mode context-entry
format is described in Section 9.4, the scalable-mode PASID-directory-entry format is described in
Section 9.5, and the scalable-mode PASID-table entry format is described in Section 9.6.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-5

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

Note: Prior version of this specification supported a limited form of address translation for
requests-with-PASID, that was referred to as Extended Mode address translation
(enumerated through ECAP_REG bit 24). This mode is no longer supported and
replaced with scalable mode address translation. ECAP_REG bit 24 must be reported as
0 in all future implementations to ensure software backward compatibility.

3.4.4 Abort DMA Mode

For implementations supporting Abort DMA Mode (ADMS=1 in Extended Capability Register), when
the Translation Table Mode (TTM) field in the Root Table Address Register (RTADDR_REG) is
programmed to abort-dma mode the hardware behaves as if a root-table is not present. In this mode,
hardware will abort all DMA operations without the need to set up a root-table with each entry marked
as not-present. This mode is most useful in the process of enabling DMA remapping based memory
protection. In absence of abort-dma mode, system software must find a region in memory that is
protected from DMA accesses to set up translation tables and then enable DMA remapping hardware.
The abort-dma mode removes the need for a DMA protected region in order to enable DMA
remapping.

System software is recommended to program remapping hardware in abort-dma mode using the
SRTP command, enable DMA remapping and then set up necessary translation tables and transition
remapping hardware into the desired operating mode (legacy or scalable) using another SRTP
command.

3.5 Hierarchical Translation Structures

DMA remapping uses hierarchical translation structures for both first-level translation and second-
level translation.

For first-level only translation and second-level only translation, the DMA-address in the request is
used as the input address. For nested translation, any address generated by first-level translation
(both addresses to access first-level translation structures and the output address from first-level
translation) is used as the input address for nesting with second-level translation. Section 3.6,
Section 3.7 and Section 3.8 provides more details on first-level, second-level, and nested translation
respectively.

Every paging structure in the hierarchy is 4-KByte in size, with 512 8-Byte entries. Remapping
hardware uses the upper portion of the input address to identify a series of paging-structure entries.
The last of these entries identifies the physical address of the region to which the input address
translates (called the page frame). The lower portion of the input address (called the page offset)
identifies the specific offset within that region to which the input address translates. Each paging-
structure entry contains a physical address, which is either the address of another paging structure or
the address of a page frame. First-level translation supports a 4-level structure or a 5-level structure.
Second-level translation supports an N-level structure, where the value of N depends on the Guest
Address Width (GAW) supported by an implementation as enumerated in the Capability Register.

The paging structures support a base page-size of 4-KByte. The page-size field in paging entries
enable larger page allocations. When a paging entry with the page-size field Set is encountered by
hardware on a page-table walk, the translated address is formed immediately by combining the page-
base-address in the paging-entry with the unused input address bits. The remapping architecture
defines support for 2-MByte and 1-GByte large-page sizes. Implementations report support for each
large page size through the Capability Register.

3-6 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

Figure 3-9 illustrates the paging structure for translating a 48-bit address to a 4-KByte page.

6 4 33 32 22 11
3 H7 9‘ 8 09 10 2‘1 0‘
9-bits 9-bits 9-bits 9-bits 12-bits

O

4KB Page

<3 4» P§=0
PS=0 a PT=O

‘ » 'Page Directory
Page Directory

Pointer Table
Paging Structure _
Pointer

PML4 Table ,

Page Table

-

Figure 3-9. Address Translation to a 4-KByte Page

Figure 3-10 illustrates the paging structure for translating a 48-bit address to a 2-MByte large page.

6 4 33 32 22
3 H7 938 09 10 0
9-bits 9-bits 9-bits 21-bits
A 4
<<3 Ly
2MB Page
PS=0 PS=0
> Page Directory
Page Directory 9 v
Paging Structure Pointer Table
Pointer -
PML4 Table ,

Figure 3-10. Address Translation to a 2-MByte Large Page

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-7

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

Figure 3-11 illustrates the paging structure for translating a 48-bit address to a 1-GByte large page.

6 4 33 32
3 7 98 09 0
9-bits 9-bits 30-bits

<3 4’
PS=0 PS=1
° 1GB Page

‘ fou

Page Directory

aging Structure Pointer Table
Pointer >

>
PML4 Table ,

Figure 3-11. Address Translation to a 1-GByte Large Page

3.6 First-Level Translation

Scalable-mode context-entries can be configured to translate requests (with or without PASID) using
first-level translation. Requests-without-PASID use the PASID value configured in the RID_PASID field
in the scalable-mode context-entry to process the request.

First-level translation restricts the input-address to a canonical address (i.e., address bits 63:N have
the same value as address bit [N-1], where N is 48-bits with 4-level paging and 57-bits with 5-level
paging). Requests subject to first-level translation by remapping hardware are subject to canonical
address checking as a pre-condition for first-level translation, and a violation is treated as a
translation-fault. Chapter 7 provides details of translation-fault conditions and how they are reported
to software.

First-level translation supports the same paging structures as Intel® 64 processors when operating in
64-bit mode. Table 3 gives the different names of the first-level translation structures, that are given
based on their use in the translation process. It also provides, for each structure, the source of the
physical-address used to locate it, the bits in the input-address used to select an entry from the
structure, and details of whether and how such an entry can map a page. Section 9.7 describes the
format of each of these paging structures in detail. For implementations supporting 5-level paging for
first-level translation, 4-level versus 5-level paging is selected based on the programming of the First
level Paging Mode (FLPM) field in the corresponding scalable-mode PASID-table entry (see

Section 9.5 and Section 9.6).

3-8 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

Table 3. First-level Paging Structures
Sir:’raugcltr:.lgre Iﬁgf\:‘é Physical Address of Structure Bits E:tls;:tmg Page Mapping

Scalable-mode PASID-table entry 56:48 N/A

PMLS5 table PML5E (for 5-level paging)
PML5E (for 5-level paging); 47:39 N/A

PML4 table PML4E scalable-mode PASID-table entry
(for 4-level paging)

Page-directory- PDPE PML4E 38:30 1-GByte page (if Page-Size (PS) field

pointer table is Set)

Page directory PDE PDPE 29:21 iZS-I\S/ISty;te page (if Page-Size (PS) field

Page table PTE PDE 20:12 4-KByte page

First-level translation may map input addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.
Support for 4-KByte pages and 2-Mbyte pages are mandatory for first-level translation.
Implementations supporting 1-GByte pages report it through the FL1GP field in the Capability
Register (see Section 10.4.2). Figure 3-9 illustrates the translation process when it produces a 4-
KByte page; Figure 3-10 covers the case of a 2-MByte page; Figure 3-11 covers the case of a 1-GByte

page.
The following describe the first-level translation in more detail and how the page size is determined:

e When 5-level page-tables are used for first-level translation, a 4-KByte naturally aligned PML5
table is located at the physical address specified in First-level-page-table-pointer (FLPTPTR) field
in the scalable-mode PASID-table entry (see Section 9.5 and Section 9.6). A PMLS5 table
comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical address defined as
follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 56:48 of the input address.

— Bits 12 and higher are from the FLPTPTR field in the scalable-mode PASID-table entry.

Because a PML5E is identified using bits 63:48 of the input address, it controls access to a 256-
TByte region of the input-address space.

e When 5-level page-tables are used for first-level translation, a 4-KByte naturally aligned PML4
table is located at the physical address specified in address (ADDR) field in the PML5E (see
Table 28). If 4-level page-tables are used for first-level translation, the 4-KByte naturally aligned
PML4 table is located at the physical address specified in First-level-page-table-pointer (FLPTPTR)
field in the PASID-table entry (see Section 9.5). A PML4 table comprises 512 64-bit entries
(PML4Es). A PMLA4E is selected using the physical address defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 47:39 of the input address.

— Bits 12 and higher are from the ADDR field in the PML5E (with 5-level page-tables) or from
the FLPTPTR field in the scalable-mode PASID-table entry (with 4-level page-tables).
Because a PMLA4E is identified using bits 63:39 of the input address, it controls access to a 512-
GByte region of the input-address space.

e A 4-KByte naturally aligned page-directory-pointer table is located at the physical address
specified in address (ADDR) field in the PML4E (see Table 29). A page-directory-pointer table
comprises 512 64-bit entries (PDPEs). A PDPE is selected using the physical address defined as
follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 38:30 of the input address.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-9

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

— Bits 12 and higher are from the ADDR field in the PML4E.

Because a PDPE is identified using bits 63:30 of the input address, it controls access to a 1-GByte
region of the input-address space. Use of the PDPE depends on its page-size (PS) field:

If the PDPE’s PS field is 1, the PDPE maps a 1-GByte page (see Table 30). The final physical
address is computed as follows:

— Bits 29:0 are from the input address.
— Bits 30 and higher are from the ADDR field in the PDPE.

If the PDPE’s PS field is 0, a 4-KByte naturally aligned page directory is located at the physical
address specified in the address (ADDR) field in the PDPE (see Table 31). A page directory
comprises 512 64-bit entries (PDEs). A PDE is selected using the physical address defined as
follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 29:21 of the input address.

— Bits 12 and higher are from the ADDR field in the PDPE.

Because a PDE is identified using bits 63:21 of the input address, it controls access to a 2-MByte
region of the input-address space. Use of the PDPE depends on its page-size (PS) field:

If the PDE’s PS field is 1, the PDE maps a 2-MByte page (see Table 32). The final physical address
is computed as follows:

— Bits 20:0 are from the input address.
— Bits 21 and higher are from the ADDR field in the PDE.

If the PDE’s PS field is 0, a 4-KByte naturally aligned page table is located at the physical address
specified in the address (ADDR) field in the PDE (see Table 33). A page table comprises 512 64-bit
entries (PTEs). A PTE is selected using the physical address defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 20:12 of the input address.

— Bits 12 and higher are from the ADDR field in the PDE.

Because a PTE referenced by a PDE is identified using bits 63:12 of the input address, every such
PTE maps a 4-KByte page (Table 34). The final page address is translated as follows:

— Bits 11:0 are from the input address.
— Bits 12 and higher are from the ADDR field in the PTE.

If a paging-structure entry’s Present (P) field (bit 0) is O or if the entry sets any reserved field, the
entry is used neither to reference another paging-structure entry nor to map a page. A reference
using a input address whose translation would use such a paging-structure entry causes a translation
fault (see Chapter 7).

The following bits are reserved with first-level translation:

3-10

If the P field of a paging-structure entry is 1, bits 51:HAW (Host Address Width) are reserved.
If the P field of a PML5E is 1, the PS field is reserved.

If the P field of a PML4E is 1, the PS field is reserved.

If 1-GByte pages are not supported and the P field of a PDPE is 1, the PS field is reserved.

If the P field and PS field of a PDPE are both 1, bits 29:13 are reserved.

If the P field and PS field of a PDE are both 1, bits 20:13 are reserved.

If Extended-Accessed flag is not supported, the EA field in the paging entries are ignored.

If No-Execute-Enable (NXE) field is 0 in the scalable-mode context-entry and the P field of a
paging-structure entry is 1, the Execute-Disable (XD) field is reserved.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

3.6.1 Access Rights

Requests can result in first-level translation faults for either of two reasons: (1) there is no valid
translation for the input address; or (2) there is a valid translation for the input address, but its
access rights do not permit the access. Chapter 7 provides detailed hardware behavior on translation
faults and reporting to software.

The accesses permitted for a request whose input address is successfully translated through first-level
translation is determined by the attributes of the request and the access rights specified by the
paging-structure entries controlling the translation.

Devices report support for requests-with-PASID through the PCI Express PASID Capability structure.
The PASID Capability allows software to query and control if the endpoint can issue requests-with-
PASID that request execute permission (such as for instruction fetches) and requests with supervisor-
privilege. Remapping hardware implementations report support for requests seeking execute
permission and requests seeking supervisor privilege through the Extended Capability Register (see
ERS and SRS fields in Section 10.4.3).

The following describes how first-level translation determines access rights:

e For requests with supervisor privilege (value of 1 in Privilege-mode-Requested (PR) field)
processed through a scalable-mode PASID-table entry with SRE (Supervisor Requests Enable)
field Set:

— Data reads (Read requests with value of 0 in Execute-Requested (ER) field)
e Data reads are allowed from any input address with a valid translation.
— Instruction Fetches (Read requests with value of 1 in Execute-Requested (ER) field)

o If No-Execute-Enable (NXE) field in the scalable-mode PASID-table entry used to translate
the request is 0

— If the Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-
table entry used to translate the request is 0, instructions may be fetched from any
input address with a valid translation.

— If the Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-
table entry used to translate the request is 1, instructions may be fetched from any
input address with a valid translation for which the U/S field (bit 2) is 0 in at least one of
the paging-structure entries controlling the translation.

o If No-Execute-Enable (NXE) field in scalable-mode PASID-table entry used to translate
request is 1

— If Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-table
entry used to translate the request is 0, instructions may be fetched from any input
address with a valid translation for which the XD field (bit 63) is 0 in every paging-
structure entry controlling the translation.

— If Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-table
entry used to translate the request is 1, instructions may be fetched from any input
address with a valid translation for which the U/S field is 0 in at least one of the paging-
structure entries controlling the translation and the XD field is O in every paging-
structure entry controlling the translation.

— Write requests and Atomics requests

e If Write-Protect-Enable (WPE) field in the scalable-mode PASID-table entry used to
translate the request is 0, writes are allowed to any input address with a valid translation.

e If WPE is 1, writes are allowed to any input address with a valid translation for which the
R/W field (bit 1) is 1 in every paging-structure entry controlling the translation.

e For requests with user privilege (value of 0 in Privilege-mode-Requested (PR) field):
— Data reads (Read requests with value of 0 in Execute-Requested (ER) field)

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-11

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

e Data reads are allowed from any input address with a valid translation for which the U/S
field is 1 in every paging-structure entry controlling the translation.

— Instruction fetches (Read requests with value of 1 in Execute-Requested (ER) field)

e If No-Execute-Enable (NXE) field in the scalable-mode PASID-table entry used to translate
the request is 0, instructions may be fetched from any input address with a valid translation
for which the U/S field is 1 in every paging structure entry controlling the translation.

o If No-Execute-Enable (NXE) field in the scalable-mode PASID-table entry used to translate
the request is 1, instructions may be fetched from any input address with a valid translation
for which the U/S field is 1 and XD field is 0 in every paging-structure entry controlling the
translation.

— Write requests and Atomics requests

¢ Writes are allowed to any input address with a valid translation for which the R/W field and
the U/S field are 1 in every paging-structure entry controlling the translation.

Remapping hardware may cache information from the paging-structure entries in translation caches.
These caches may include information about access rights. Remapping hardware may enforce access
rights based on these caches instead of on the paging structures in memory. This fact implies that, if
software modifies a paging-structure entry to change access rights, the hardware might not use that
change for a subsequent access to an affected input address. Refer to Chapter 6 for details on
hardware translation caching and how software can enforce consistency with translation caches when
modifying paging structures in memory.

3.6.2 Accessed, Extended Accessed, and Dirty Flags

For any paging-structure entry that is used during first-level translation, bit 5 is the Accessed (A) flag.
For first-level paging-structure entries referenced through a scalable-mode PASID-table entry with
EAFE=1, bit 10 is the Extended-Accessed flag. For paging-structure entries that map a page (as
opposed to referencing another paging structure), bit 6 is the Dirty (D) flag. These flags are provided
for use by memory-management software to manage the transfer of pages and paging structures into
and out of physical memory.

e Whenever the remapping hardware uses a first-level paging-structure entry as part of input-
address translation, it atomically sets the A field in that entry (if it is not already set).

o If the Extended-Accessed-Flag-Enable (EAFE) is 1 in a scalable-mode PASID-table entry that
references a first-level paging-structure entry used by the remapping hardware, it atomically sets
the EA field in that entry. Whenever EA field is atomically set, the A field is also set in the same
atomic operation. For software usages where the first-level paging structures are shared across
heterogeneous agents (e.g., CPUs and accelerator devices such as GPUs), the EA flag may be
used by software to identify pages accessed by non-CPU agent(s) (as opposed to the A flag which
indicates access by any agent sharing the paging structures).

e Whenever there is a write to a input address, the remapping hardware atomically sets the D field
(if it is not already set) in the paging-structure entry that identifies the final translated address for
the input address (either a PTE or a paging-structure entry in which the PS field is 1). The atomic
operation that sets the D field also sets the A field (and the EA field, if EAFE=1 as described
above).

e Hardware may speculatively set the Accessed (A) flag and the Extended-Accessed (EA) flag in
paging-structure entries for requests that encounter an address translation fault and are aborted.

Memory-management software may clear these flags when a page or a paging structure is initially
loaded into physical memory. These flags are “sticky”, meaning that, once set, the remapping
hardware does not clear them; only software can clear them.

Remapping hardware may cache information from the first-level paging-structure entries in
translation caches (see Chapter 6). These caches may include information about accessed, extended-
accessed, and dirty flags. This fact implies that, if software modifies an accessed flag, extended-
accessed flag, or a dirty flag from 1 to 0, the hardware might not set the corresponding bit in memory

3-12 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

on a subsequent access using an affected input address. Refer to Chapter 6 for details on hardware
translation caching and how software can enforce consistency with translation caches when modifying
paging structures in memory.

3.7 Second-Level Translation

Context entries and scalable-mode PASID-Table entries can be configured to support second-level
translation. With context entries, second-level translation applies only to requests-without-PASID.
With scalable-mode PASID-Table entries, second-level translation can be applied to all requests (with
or without PASID), and can be applied nested with first-level translation for all requests (with or
without PASID). This section describes the use of second-level translation without nesting.

Section 3.8 describes the nested use of second-level translation.

Each context entry contains a pointer to the base of a second-level translation structure. Section 9.3
describe the exact format of the context entry. Scalable-mode context-entries reference a scalable-
mode PASID structure. Each scalable-mode PASID-table entry contains a pointer to the base of a
second-level translation structure. Second-level translation restricts the input-address to an
implementation-specific address-width reported through the Maximum Guest Address Width (MGAW)
field in the Capability Register. The input address is subject to MGAW address checking, and any
violations are treated as a translation fault. Chapter 7 provides details of fault conditions and its
reporting to software.

Second-level translation uses a hierarchical paging structure as described in Section 3.5. To allow
page-table walks with 9-bit stride, the Adjusted Guest Address Width (AGAW) value for a domain is
defined as its Guest Address Width (GAW) value adjusted, such that (AGAW-12) is a multiple of 9.
The AGAW indicates the number of levels of page walk. Hardware implementations report the
supported AGAWSs through the Capability Register. Second-level translation may map input addresses
to 4-KByte pages, 2-MByte pages, or 1-GByte pages. Implementations report support in second-level
translation for 2-MByte and 1-GByte large-pages through the Capability Register. Figure 3-9
illustrates the translation process for a 4-level paging structure when it produces a 4-KByte page;
Figure 3-10 illustrates mapping to a 2-MByte page; Figure 3-11 illustrates mapping to a 1-GByte
page.

Table 4. Second-level Paging Structures
Pagin Entr Bits
Strugctugre Nam‘é Physical Address of Structure SeEIe(t:ting Page Mapping
ntry
Second-level SL-PMLSE Context-entry or scalable-mode PASID-table 56:48 N/A
PMLS5 table entry (with 5-level translation)
Second-level SL-PML5E (with 5-level translation); 47:39 N/A
SL-PML4E Context-entry or scalable-mode PASID-table
PML4 table) h
entry (with 4-level translation)
S d-l | SL-PDPE SL-PML4E (with 4-level or 5-level 38:30 1-GByte page (if Page Size
P:Cg?di;eec\{cir i translation); (PS) field is Set)
poignter table 4 Context-entry or scalable-mode PASID-table
entry (with 3-level translation)
Second-level _ _ 29:21 2-MByte page (if Page-Size
Page directory S1-PDE SL-PDPE (PS) field is Set)
Second-level _ _ 20:12 4-KByte page
Page table SL-PTE SL-PDE

Table 4 gives the different names of the second-level translation structures, that are given based on
their use in the translation process. It also provides, for each structure, the source of the physical-
address used to locate it, the bits in the input-address used to select an entry from the structure, and
details of whether and how such an entry can map a page. Section 9.8 describes format of each of
these paging structures in detail.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-13

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

The following describe the second-level translation in more detail and how the page size is
determined:

e For implementations supporting a 5-level paging structure for second-level paging, a 4-KByte
naturally aligned second-level-PMLS5 table is located at the physical address specified in the
SLPTPTR field in the context-entry or scalable-mode PASID-table entry. A second-level-PML5 table
comprises 512 64-bit entries (SL-PML5Es). A SL-PML5E is selected using the physical address
defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits MGAW:48 of the input address.

— Bits 12 and higher are from the SLPTPTR field in the context-entry or scalable-mode PASID-
table entry.

Because a SL-PML5E is identified using bits MGAW:48 of the input address, it controls access to a
256-TByte region of the input-address space.

e For implementations supporting a 5-level paging structure for second-level translation, a 4-KByte
naturally aligned second-level-PML4 table is located at the physical address specified in the
address (ADDR) field in the SL-PML5E (see Table 35). For implementations supporting a 4-level
paging structure for second-level paging, a 4-KByte naturally aligned second-level-PML4 table is
located at the physical address specified in the SLPTPTR field in the context-entry or scalable-
mode PASID-table entry. A second-level-PML4 table comprises 512 64-bit entries (SL-PML4Es). A
SL-PMLA4E is selected using the physical address defined as follows:

— Bits 2:0 are all 0.

— Bits 11:3 are bits 47:39 (for 5-level translation) or MGAW:39 (for 4-level translation) of the
input address.

— Bits 12 and higher are from the ADDR field in SL-PML5E (for 5-level translation) or from the
SLPTPTR field in the context-entry or scalable-mode PASID-table entry (for 4-level
translation).

Because a SL-PML4E is identified using bits MGAW: 39 of the input address, it controls access to a
512-GByte region of the input-address space.

e For implementations supporting 5-level or 4-level paging structures for second-level translation, a
4-KByte naturally aligned page-directory-pointer table is located at the physical address specified
in the address (ADDR) field in the SL-PMLA4E (see Table 36). For implementations supporting 3-
level paging structures, the 4-KByte naturally aligned page-directory-pointer table is located at
the physical address specified in the SLPTPTR field in the context-entry or scalable-mode PASID-
table entry. A page-directory-pointer table comprises of 512 64-bit entries (SL-PDPEs). A SL-PDPE
is selected using the physical address defined as follows:

— Bits 2:0 are all 0.

— Bits 11:3 are bits 38:30 (for 4-level or 5-level translation) or MGAW:30 (for 3-level
translation) of the input address.

— Bits 12 and higher are from the ADDR field in the SL-PML4E (or from the SLPTPTR field in the
context-entry or scalable-mode PASID-table entry for implementations supporting 3-level
paging structures).

Because a SL-PDPE is identified using bits MGAW:30 of the input address, it controls access to a
1-GByte region of the input-address space. Use of the SL-PDPE depends on its page-size (PS)
field:

e If the SL-PDPE’s PS field is 1, the SL-PDPE maps a 1-GByte page (see Table 37). The final physical
address is computed as follows:

— Bits 29:0 are from the input address.
— Bits 30 and higher are from the ADDR field in the SL-PDPE.

o If the SL-PDPE’s PS field is 0, a 4-KByte naturally aligned second-level page directory is located at
the physical address specified in the address (ADDR) field in the SL-PDPE (see Table 38). A

3-14 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

second-level page directory comprises 512 64-bit entries (SL-PDEs). A PDE is selected using the
physical address defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 29:21 of the input address.

— Bits 12 and higher are from the ADDR field in the SL-PDPE.

Because a SL-PDE is identified using bits MGAW:21 of the input address, it controls access to a 2-
MByte region of the input-address space. Use of the SL-PDPE depends on its page-size (PS) field:

If the SL-PDE’s PS field is 1, the SL-PDE maps a 2-MByte page (see Table 39). The final physical
address is computed as follows:

— Bits 20:0 are from the input address.
— Bits 21 and higher are from the ADDR field in the SL-PDE.

If the SL-PDE’s PS field is 0, a 4-KByte naturally aligned second-level page-table is located at the
physical address specified in the address (ADDR) field in the SL-PDE (see Table 40). Such a
second-level page-table comprises 512 64-bit entries (SL-PTEs). A SL-PTE is selected using the
physical address defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 20:12 of the input address.

— Bits 12 and higher are from the ADDR field in the SL-PDE.

Because a SL-PTE referenced by a SL-PDE is identified using bits MGAW:12 of the input address,
every such SL-PTE maps a 4-KByte page (Table 41). The final page address is translated as
follows:

— Bits 11:0 are from the input address.
— Bits 12 and higher are from the ADDR field in the SL-PTE.

If a second-level paging-structure entry’s Read (R) and Write (W) fields! are both 0 or if the entry
sets any reserved field, the entry is used neither to reference another paging-structure entry nor to
map a page. A reference using an input address whose translation would use such a paging-structure
entry causes a translation error (see Chapter 7).

The following bits are reserved with second-level translation:

If either the R or W field of a paging-structure entry is 1, bits 51: HAW are reserved.
If either the R or W field of a SL-PML5E is 1, the PS field is reserved.
If either the R or W field of a SL-PML4E is 1, the PS field is reserved.

If 1-GByte pages are not supported and the R or W fields of a SL-PDPE is 1, the PS field is
reserved.

If the R or W fields of a SL-PDPE is 1, and PS field in that SL-PDPE is 1, bits 29:12 are reserved.

If 2-MByte pages are not supported and the R or W fields of a SL-PDE is 1, the PS field is
reserved.

If either the R or W field of a SL-PDE is 1, and the PS field in that SL-PDE is 1, bits 20:12 are
reserved.

If either the R or W field of a non-leaf paging-structure entry (i.e. SL-PML5E, SL-PML4E, SL-PDPE,
or SL-PDE with PS=0) is 1, the SNP (Snoop) field is reserved.

If either the R or W field of a SL-PTE is 1, and Snoop Control (SC) is reported as 0 in Extended
Capability Register, the SNP field is reserved.

. Execute (X) field in second-level paging-structure entries is ignored when translating requests-

without-PASID.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-15

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

3.7.1 Access Rights

Requests can result in second-level translation faults for either of two reasons: (1) there is no valid
translation for the input address; or (2) there is a valid translation for the input address, but its
access rights do not permit the access. Chapter 7 provides detailed hardware behavior on translation
faults and reporting to software.

The accesses permitted for a request whose input address is successfully translated through second-
level translation is determined by the attributes of the request and the access rights specified by the
second-level paging-structure entries controlling the translation.

Devices can issue requests for reads, writes, or atomics. The following describes how second-level
translation determines access rights for such requests:

e Data reads: Read requests with value of 0 in Execute-Requested (ER) field

— Reads are allowed from any input address with a valid translation for which the Read (R) field
is 1 in every paging-structure entry controlling the translation.

e Instruction fetches: Read requests with value of 1 in Execute-Requested (ER) field
— If Second-level Execute-Enable (SLEE) field used to translate request is 0

e Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) field is 1 in every second-level paging-entry controlling the translation.

— If Second-level Execute-Enable (SLEE) field used to translate request is 1

e Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) and Execute (X) fields are both 1 in every second-level paging-entry
controlling the translation.

e Write request:

— Writes are allowed to any input address with a valid translation for which the Write (W) field is
1 in every paging-structure entry controlling the translation.

e Atomics request:

— Atomics requests are allowed from any input address with a valid translation for which the
Read (R) and Write (W) fields are both 1 in every paging-structure entry controlling the
translation.

Remapping hardware may cache information from the second-level paging-structure entries in
translation caches. These caches may include information about access rights. Remapping hardware
may enforce access rights based on these caches instead of on the paging structures in memory. This
fact implies that, if software modifies a paging-structure entry to change access rights, the hardware
might not use that change for a subsequent access to an affected input address. Refer to Chapter 6
for details on hardware translation caching and how software can enforce consistency with translation
caches when modifying paging structures in memory.

3.7.2 Accessed and Dirty Flags

Accessed and dirty flags support in first-level paging-structure entries are described in Section 3.6.2.
DMA Remapping hardware implementations can also support accessed and dirty flags in second-level
paging-structure entries. Software should read the ECAP_REG.SLADS field to determine whether the
implementation supports this feature.

When supported, software can enable accessed and dirty flags for second-level translation using the
‘Second Level Accessed Dirty Enable’ (SLADE) field in the PASID-table entry. When enabled, for any
second-level paging-structure entry that is used during address translation, bit 8 is the accessed flag.
For a second-level paging-structure entry that maps a page (as opposed to referencing another
second-level paging structure), bit 9 is the dirty flag.

When enabled, the hardware will set the accessed and dirty flags for second-level translation as
follows:

3-16 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

® Whenever hardware uses a second-level paging-structure entry as part of address translation, it
sets the accessed flag in that entry (if it is not already set).

®* Whenever there is a write to an input address, the hardware sets the dirty flag (if it is not already

set) in the second-level paging-structure entry that identifies the final physical address for the

‘ input address (either an SL-PTE or a second-level paging-structure entry in which bit 7 (PS) is 1).
[]

Hardware may speculatively set the Accessed (A) flag in paging-structure entries for requests that
encounter an address translation fault and are aborted.

These flags are “sticky,” meaning that, once set, hardware does not clear them; only software can
clear them. Hardware may cache information from the second-level paging-structure entries in TLBs
and paging-structure caches. This fact implies that, if software changes an accessed flag or a dirty
flag from 1 to 0, the hardware might not set the corresponding bit in memory on a subsequent access
using an affected second-level input address. Refer to Chapter 6 for details on hardware translation
caching and how software can enforce consistency with translation caches when modifying paging
structures in memory.

3.8 Nested Translation

When PASID Granular Translation Type (PGTT) field is set to 011b in scalable-mode PASID-table-
entry, requests translated through first-level translation are also subjected to nested second-level
translation. Scalable-mode PASID-table entries configured for nested translation contain both the
pointer to the first-level translation structures, and the pointer to the second-level translation
structures. Nested translation can be applied to any request (with or without PASID) as request-
without-PASID obtain the PASID value from RID_PASID field in scalable-mode context-entry.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-17

n
DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

Figure 3-12 illustrates the nested translation for a request mapped to a 4-KByte page through 4-level
first-level translation, and interleaved through 4-KByte mappings in 4-level second-level paging
structures.

Second-level
paging structure
pointer
. . B
First-level paging SLPML4E [SLPDPE |-» SLPDE |M SLPTE |—
structure pointer
T
|
1
v v
4>
PML4E » SL-PMLAE | SL-PDPE P SL-PDE > SL-PTE =
T
|
v v
+
PDPE » SL-PML4E SL-PDPE > SL-PDE e SL-PTE —
T
1
1
Y v
+
PDE » SL-PMLAE SL-PDPE > SL-PDE e SL-PTE]
T
1
1
v v
_>
PTE » SL-PML4E > SL-PDPE > SL-PDE > SL-PTE —‘
T
1
|
T
¥ v
Final Page

Figure 3-12. Nested Translation with 4-KByte pages

With nesting, all memory accesses generated when processing a request through first-level
translation are subjected to second-level translation. This includes access to first-level paging
structure entries (PML5E, PML4E, PDPE, PDE, PTE), and access to the output address from first-level
translation. Just like root-table and context-table in legacy mode address translation are in host
physical address, scalable-mode root/context/PASID-directory/PASID-tables are in host physical
address and not subjected to first or second level translation.

With nested translation, a guest operating system running within a virtual machine may utilize first-

level translation as described in Section 2.5.1.3, while the virtual machine monitor may virtualize
memory by enabling nested second-level translations.

3-18 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

The first-level translation follows the same process as described in Section 3.6 to map input
addresses to 4-KByte, 2-MByte or 1-GByte pages. The second-level translation is interleaved at each
step, and follows the process described in Section 3.7 to map input addresses to 4-KByte, 2-MByte or
1-GByte pages.

3.8.1 Access Rights

Requests subjected to nested translation can result in fault at the first-level translation or any of the
second-level translation stages. Translation faults at a level can result from either of two reasons: (1)
there is no valid translation for the respective input address; or (2) there is a valid translation for the
respective input address, but its access rights do not permit the access. Chapter 7 provides detailed
hardware behavior on translation faults and reporting to software.

For requests subjected to nested translation, access rights are checked at both first and second levels
of translation.

Access rights checking for first-level translation follows the behavior described in Section 3.6.1.

Access rights for second-level translations function as follows:

e Access to paging structures (First-level paging structure pointer, PML5E, PML4E, PDPE, PDE, PTE)
is treated as follows:

— When Second-Level Accessed/Dirty flags are not enabled in PASID-table entry(SLADE=0)
e Reads of paging structures

— Reads of paging structures are allowed from any input address with a valid translation
for which the Read (R) field is 1 in every second-level paging-entry controlling the
translation.

e Accessed (A), Extended-Accessed (EA), Dirty (D) flag update of first-level paging-structure
entries

— Atomic A/EA/D flag update of first-level paging-entries are allowed from any input
address with a valid translation for which the Read (R) and Write (W) fields are 1 in
every second-level paging-entry controlling the translation to the respective first-level
paging-entry.

— When Second-Level Accessed/Dirty flags are enabled in PASID-table entry(SLADE=1)

o All non-leaf first-level paging structure access are treated as if they will need to update
A/EA flags.

— Access to first-level paging structures are allowed from any input address with valid
translation for which the Read (R) and Write (W) fields are 1 in every second-level
paging-entry controlling the translation to the respective first-level paging-entry.

o All leaf first-level paging structure access are treated as if they will need to update A/EA/D
flags.

— Access to first-level paging structures are allowed from any input address with valid
translation for which the Read (R) and Write (W) fields are 1 in every second-level
paging-entry controlling the translation to the respective first-level paging-entry.

e Access to the final page is treated as follows:
— Data reads (Read requests with value of 0 in Execute-Requested (ER) field)

e Data reads are allowed from any input address with a valid translation for which the Read
(R) field is 1 in every second-level paging-structure entry controlling the translation.

— Instruction Fetches (Read requests with value of 1 in Execute-Requested (ER) field)
o If Second-level Execute-Enable (SLEE) field used to translate request is 0

— Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) field is 1 in every second-level paging-entry controlling the translation.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-19

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

e If Second-level Execute-Enable (SLEE) field used to translate request is 1

— Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) and Execute (X) fields are both 1 in every second-level paging-entry
controlling the translation.

— Write requests

e Writes are allowed from any input address with a valid translation for which the Write (W)
field is 1 in every second-level paging-entry controlling the translation.

— Atomics requests

e Atomics requests are allowed from any input address with a valid translation for which both
the Read (R) and Write (W) fields are 1 in every second-level paging-entry controlling the
translation.

With nested translations, remapping hardware may cache information from both first-level and
second-level paging-structure entries in translation caches. These caches may include information
about access rights. Remapping hardware may enforce access rights based on these caches instead of
on the paging structures in memory. This fact implies that, if software modifies a paging-structure
entry to change access rights, the hardware might not use that change for a subsequent access to an
affected input address. Refer to Chapter 6 for details on hardware translation caching and how
software can enforce consistency with translation caches when modifying paging structures in
memory.

3.9 Snoop Behavior

Snoop behavior for a memory access (to a translation structure entry or access to the mapped page)
specifies if the access is coherent (snoops the processor caches) or not. The snoop behavior is
independent of the memory typing described in Section 3.10. The snoop behavior for various
accesses is specified as follows:

e Access to root, scalable-mode root, context, scalable-mode context, scalable-mode PASID-
directory and scalable-mode PASID-table entries are snooped if the Coherency (C) field in
Extended Capability Register (ECAP_REG: see Section 10.4.3) is reported as 1. These accesses
are not required to be snooped if the field is reported as 0.

e Access to paging structures have snoop behavior as follows:
— Remapping hardware is setup in legacy mode (RTADDR_REG.TTM=00b)

e Access to paging structures is snooped if the C field in ECAP_REG is reported as 1. These
accesses are not required to be snooped if the C field is reported as 0.

— Remapping hardware is setup in scalable mode (RTADDR_REG.TTM=01b)

e Remapping hardware encountering the need to atomically update A/EA/D bits in a paging-
structure entry that is not snooped will result in a non-recoverable fault.

e When the Scalable Mode Page-walk Coherency (SMPWC) field in ECAP_REG is reported as
Clear, software must pre-set A/D bits in all first-level paging structures to avoid a non-
recoverable fault.

e When software programs the Page-walk Snoop (PWSNP) field in a PASID-table entry as 0,
software must pre-set certain bits as specified below to avoid non-recoverable fault:

— Pre-set A/D bits in first-level paging structures accessed through the PASID-table entry.

— If the EAFE field is also set in the PASID-table entry, then pre-set the EA bit in first-level
paging structures accessed through the PASID-table entry.

— If the SLADE field is also set in the PASID-table entry, then pre-set A/D bit in second-
level paging structures accessed through the PASID-table entry.

e Access to paging structures are snooped if the Scalable Mode Page-walk Coherency
(SMPWC) field in ECAP_REG is reported as 1 and Page-walk Snoop (PWSNP) field in the
PASID-table entry is 1. Otherwise these accesses are not required to be snooped.

3-20 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

e Access to the final page by untranslated request has snoop behavior as follows:
— If the no-snoop attribute in the request is Clear, the access to the final page is snooped.

— If the remapping hardware is setup in scalable mode (RTADDR_REG.TTM=01b) and the Page
Snoop (PGSNP) field in PASID-table entry is Set, access to the final page is snooped.

— When the remapping hardware reports Snoop Control (SC) field as 1 in the ECAP_REG, if the
translation process used second-level leaf paging structure entry with Snoop (SNP) field Set,
the access to the final page is snooped.

— Otherwise access to the final page is not required to be snooped.
The table below summarizes the snoop behavior for access to translation structures by hardware and
for access to the final page by untranslated request. A value of 1 implies memory access is snooped

and a value of 0 implies memory access is not snooped. For snoop behavior on translation request see
Table 10.

e ECAP.C is Page-walk Coherency field in ECAP_REG.

e ECAP.SC is Snoop Control field in ECAP_REG.

e ECAP.SMPWOC is the Scalable Mode Page-walk Coherency field in ECAP_REG.
e Request.NS is the No-Snoop bit that comes with a DMA transaction.

e SlL.Leaf.SNP is the Snoop field in leaf second level paging structure.

Table 5. Snoop Behavior for Root/Context/PASID-structures
Root Tables/ Context Tables/ :
Mode SM Root Tables SM Context Tables PASID Directory PASID Table
legacy ECAP.C ECAP.C NA NA
scalable ECAP.C ECAP.C ECAP.C ECAP.C

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-21

DMA Remapping—Intel® Virtualization Technology for Directed I/0O

intel.

Table 6. Snoop Behavior for FL/SL Paging Structures and Final Page
Address TT (Legacy) First-level Second-level Page:
Translation or Paging h ge:
Mode PGTT (Scalable) Structures Paging Structures Untranslated Request
I(Request.NS) ||
TT=00b
(second-level with NA ECAP.C (ECAP.SC && SL.leaf.SNP)
ATS blocked)
TT=01b \
I(Request.NS) ||
legacy (second-level with NA ECAP.C
ATS allowed) (ECAP.SC && SL.leaf.SNP)
TT=10b
1
(pass-through) NA NA I(Request.NS)
Tr=11b NA NA NA
(reserved)
ECAP.SMPWC &8 I(Request.NS) ||
PGTT=001b PASID-table- PASID-table-entry.PGSNP
X entry.PWSNP NA '
(first-level)
- ECAP.SMPWC && I(Request.NS) ||
?Si:g;g_llgsel) NA PASID-table- PASID-table-entry.PGSNP ||
entry.PWSNP (ECAP.SC && SL.leaf.SNP)
scalable
_ ECAP.SMPWC && ECAP.SMPWC && !(Request.NS) ||
PGTT=011b
(nested) PASID-table- PASID-table- PASID-table-entry.PGSNP ||
entry.PWSNP entry.PWSNP (ECAP.SC && SL.leaf.SNP)
PGTT=100b NA NA I(Request.NS) ||
(pass-through) PASID-table-entry.PGSNP
PGTT=other NA NA NA
(reserved)
3.10 Memory Type

The memory type of a memory access (to a translation structure entry or access to the mapped page)

refers to the type of caching used for that access. Refer to Intel®

64 processor specifications for

definition and properties of each supported memory-type (UC, UC-, WC, WT, WB, WP). Support for
memory typing in remapping hardware is reported through the Memory-Type-Support (MTS) field in
the Extended Capability Register (see Section 10.4.3). This section describes how memory type is

determined.

e Memory-type has no meaning (and hence is ignored) for memory accesses from devices
operating outside the processor coherency domain.

e Memory-type is applicable to memory accesses throu%h a coherent link from devices operating

inside the processor coherency domain (such as Intel

processor graphics device). Memory-type

is also applicable to DMA Remapping hardware accesses through a coherent link.

The following sub-sections describe details of computing memory-type from PAT, memory type from
MTRR, and how to combine them to form the effective memory type.

3-22 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

3.10.1 Selecting Memory Type from Page Attribute Table

Memory-type selection from Page Attribute Table requires hardware to form a 3-bit index made up of
the PAT, PCD and PWT bits from the respective paging-structure entries. The PAT bit is bit 7 in page-
table entries that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger
pages. The PCD and PWT bits are bits 4 and 3, respectively, in paging-structure entries that point to
pages of any size.

The PAT memory-type comes from entry j of the Page Attribute Table in the scalable-mode PASID-
table entry controlling the request, where i is defined as follows:

e For access to PML5E, /i = 2*PCD+PWT, where the PCD and PWT values come from the scalable-
mode PASID-table entry.

e For access to PML4E with 4-level paging, i = 2*PCD+PWT, where the PCD and PWT values come
from the PASID-table entry.

e For access to a paging-structure entry X whose address is in another paging structure entry Y
(i.e., PTE, PDE, PDPE, PML4E with 5-level paging), i = 2*PCD+PWT, where the PCD and PWT
values come from Y.

e For access to the physical address that is the translation of an input address, i =
4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the relevant PTE (if the
translation uses a 4-KByte page), the relevant PDE (if the translation uses a 2-MByte page), or
the relevant PDPE (if the translation uses a 1-GByte page).

3.10.2 Selecting Memory Type from Memory Type Range Registers

Remapping hardware implementations reporting Memory-Type-Support (MTS) field as Set in the
Extended Capability Register support the Memory Type Range Registers (MTRRs). These include the
MTRR Capability Register (see Section 10.4.39), MTRR Default Type Register (see Section 10.4.40),
fixed-range MTRRs (see Section 10.4.41), and variable-range MTRRs (see Section 10.4.42).

Selection of memory-type from the MTRR registers function as follows:

e If the MTRRs are not enabled (Enable (E) field is 0 in the MTRR Default Type Register), then MTRR
memory-type is uncacheable (UC).

e If the MTRRs are enabled (E=1 in MTRR Default Type Register), then the MTRR memory-type is
determined as follows:

— If the physical address falls within the first 1-MByte and fixed MTRRs are enabled, the MTRR
memory-type is the memory-type stored for the appropriate fixed-range MTRR (see
Section 10.4.41).

— Otherwise, hardware attempts to match the physical address with a memory type set by the
variable-range MTRRs ((see Section 10.4.42):

e If one variable memory range matches, the MTRR memory-type is the memory type stored
in the MTRR_PHYSBASEN_REG Register for that range.

e If two or more variable memory ranges match and the memory-types are identical, then
MTRR memory-type is that memory-type.

e If two or more variable memory ranges match and one of the memory types is UC, then
MTRR memory-type is UC.

e If two or more variable memory ranges match and the memory types are WT and WB, then
MTRR memory-type is WT.

e For overlaps not defined by above rules, hardware behavior is undefined.

e If no fixed or variable memory range matches, then the MTRR memory-type is the default
memory-type from the MTRR Default Type Register (see Section 10.4.40).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-23

DMA Remapping—Intel® Virtualization Technology for Directed I/0O

3.10.3

The effective memory-type for an access is computed from the PAT
memory-type as illustrated in Table 7 below.

Selecting Effective Memory Type

intel.

memory-type and the MTRR

Table 7. Effective Memory Types
PAT ;
MTRR Memory Type Memory Type Effective Memory Type
uc uc
ucC- ucC
WC wC
ucC
WT uc
WB uc
WP ucC
uc uc
ucC- wC
WC wC
WC
WT ucC
WB wcC
WP uc
uc uc
ucC- ucC
WC wC
WT
WT WT
WB WT
WP WP
uc uc
ucC- uc
WC wC
WB
WT WT
WB wB
WP WP
uc ucC
ucC- wC
WC wC
WP
WT WT
WB WP
WP WP
3-24 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

Remapping hardware may cache information from the first-level paging-structure entries in
translation caches (see Chapter 6). These caches may include information about memory typing.
Hardware may use memory-typing information from these caches instead of from the paging
structures in memory. This fact implies that, if software modifies a paging-structure entry to change
the memory-typing bits, hardware might not use that change for a subsequent translation using that
entry or for access to an affected input-address. Refer to Chapter 6 for details on hardware translation
caching and how software can enforce consistency with translation caches when modifying paging
structures in memory.

3.10.4 Determining Memory Type

When processing requests from devices operating in the processor coherency domain, the memory
type for any access is computed as follows.

3.10.4.1 Memory Type in Legacy Mode (RTADDR_REG.TTM = 00b)

¢ Access to root and context entries use memory-type of write-back (WB)

e Access to second-level translation entries (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, SL-PTE) and
the final page use memory-type of write-back (WB).

3.10.4.2 Memory Type in Scalable Mode (RTADDR_REG.TTM = 01b)

e Access to scalable-mode root-table, scalable-mode context-table, scalable-mode PASID-directory
and scalable-mode PASID-table entries use memory-type of write-back (WB).

e If cache-disable (CD) field in scalable-mode PASID-table entry used to process the request is 1,
all accesses to first-level translation structures, second-level translation structures and the final
page use memory-type of uncacheable (UC).

e If cache-disable (CD) is 0 in the scalable-mode PASID-table entry, the memory-type for accesses
is computed as follows:

— Memory-type for access to second-level translation entries (SL-PML5E, SL-PML4E, SL-PDPE,
SL-PDE, SL-PTE) is computed as follows:

o If extended memory-type enable (EMTE) field in the scalable-mode PASID-table entry used
is 0, memory-type of write-back (WB) is used.

e If EMTE field in scalable-mode PASID-table entry used is 1, memory-type specified in the
extended memory-type (EMT) field in the scalable-mode PASID-table entry is used.

— Memory-type for access to first-level translation-structure entries (PML5E, PML4E, PDPE, PDE,
and PTE) is computed as follows:

o First, the first-level memory-type specified by the Page Attribute Table (PAT) is computed as
described in Section 3.10.1.

e Second, the memory-type for the target physical address as specified by the Memory Type
Range Registers (MTRRs) is computed as described in Section 3.10.2.

¢ In the scalable-mode PASID-table entry used to process this request, if PASID Granular
Translation Type (PGTT) field is 001b (first-level-only) or if extended memory-type enable
(EMTE) field is O effective memory-type used is computed by combining the first-level PAT
memory-type with the MTRR memory-type computed above as described in Section 3.10.3.

e If EMTE field in scalable-mode PASID-table entry used is 1, memory-type is computed as
follows:

— During the second-level translation to access the respective first-level paging entry, the
ignore-PAT (IPAT) and extended memory-type (EMT) fields from the last (leaf) second-
level translation-structure entry used is fetched.

— If IPAT field is 1, the PAT memory-type computed from first-level translation is ignored,
and memory-type specified by the EMT field is used as the memory-type for the access.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-25

DMA Remapping—Intel® Virtualization Technology for Directed I/0O

intel.

— If IPAT field is 0, the effective memory-type for the access is computed by combining the
first-level PAT memory-type above with the EMT field. The effective memory-type
computation follows the same rules described in Table 7 in Section 3.10.3, except
memory-type specified by the EMT field is used instead of the MTRR memory-type.

— Memory-type for access to the final page, is computed as follows:

e If PASID Granular Translation Type (PGTT) field in the scalable-mode PASID-table entry has
a value of 001b or 011b, the memory type is computed exactly like the first-level
translation-structure entries described above.

e If PASID Granular Translation Type (PGTT) field in the scalable-mode PASID-table entry has
a value of 010b, the memory type is computed as follows:

— If extended memory-type enable (EMTE) field in the scalable-mode PASID-table entry
used is 0, memory-type of write-back (WB) is used.

— If EMTE field in scalable-mode PASID-table entry used is 1, memory-type specified in the
extended memory-type (EMT) field in the last (leaf) second-level translation-structure
entry is used.

e If PASID Granular Translation Type (PGTT) field in scalable-mode PASID-table entry has a
value of 100b is, memory-type of write-back (WB) is used.

The table below summarizes the memory type calculation for memory access to various translation
structures.

Table 8. Memory Type Calculation for various tables and final Page
Mode Root Table or Context Tables or PASID Directory, First-level Second-level Page
SM Root Table SM Context Tables PASID Table Tables Tables 9
Legacy WB WB NA NA WB wB
Scalable WB WB WB see Table 9 see Table 9 see Table 9
Table 9. Memory Type Calculation for FL/SL-tables and Page in Scalable Mode
Second-
CD PGTT EMTE First-level Tables level Page
Tables
", don’t
1 don’t care care uc uc uc
001b (first- don't Eff_mem_type(MTRR,FL.PAT)
/] level-only) care Eff_mem_type (MTRR,FL.PAT) NA
010b
(1] (second- 1] NA WB WB
level-only)
010b
0 (second- 1 NA P’Zilt?:g?l.lre' SL.leaf.EMT
level-only) Y.
o |011b 0 Eff_mem_type (MTRR,FL.PAT) WB Eff_mem_type (MTRR,FL.PAT)
(nested) - — ik _ _ ,FL.
if(SL.leaf.IPAT) {SL.leaf.EMT if(SL.leaf.IPAT) {SL.leaf.EMT
0 011b 1 1 else { PASID-Table- 1 else {
(nested) entry.EMT
Eff_mem_type(SL.leaf.EMT, FL.PAT)} Eff_mem_type (SL.leaf.EMT, FL.PAT)}
100b (pass- | don’'t
0 through) care NA NA ws
3-26 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

With nesting, remapping hardware may cache information from the first-level and second-level
paging-structure entries in translation caches (see Chapter 6). These caches may include information
about memory typing. Hardware may use memory-typing information from these caches instead of
from the paging structures in memory. flags. This fact implies that, if software modifies a paging-
structure entry to change the memory-typing bits, hardware might not use that change for a
subsequent translation using that entry or for access to an affected input-address. Refer to Chapter 6
for details on hardware translation caching and how software can enforce consistency with translation
caches when modifying paging structures in memory.

3.11 Identifying Origination of DMA Requests

In order to support usages requiring isolation, the platform must be capable of uniquely identifying
the requester (Source-Id) for each DMA request. The DMA sources in a platform and use of source-id
in these requests may be categorized as below.

3.11.1 Devices Behind PCI Express”™ to PCI/PCI-X Bridges

The PCI Express-to-PCI/PCI-X bridges may generate a different requester-id and tag combination in
some instances for transactions forwarded to the bridge’s PCI Express interface. The action of
replacing the original transaction’s requester-id with one assigned by the bridge is generally referred
to as taking ‘ownership’ of the transaction. If the bridge generates a new requester-id for a
transaction forwarded from the secondary interface to the primary interface, the bridge assigns the
PCI Express requester-id using the secondary interface’s bus number, and sets both the device
number and function number fields to zero. Refer to the PCI Express-to-PCI/PCI-X bridge
specifications for more details.

For remapping requests from devices behind PCI Express-to-PCI/PCI-X bridges, software must
consider the possibility of requests arriving with the source-id in the original PCI-X transaction or the
source-id provided by the bridge. Devices behind these bridges can only be collectively assigned to a
single domain. When setting up remapping structures for these devices, software must program
multiple context entries, each corresponding to the possible set of source-ids. Each of these context-
entries must be programmed identically to ensure the DMA requests with any of these source-ids are
processed identically.

3.11.2 Devices Behind Conventional PCI Bridges
For devices behind conventional PCI bridges, the source-id in the DMA requests is the requester-id of
the bridge device. For remapping requests from devices behind conventional PCI bridges, software

must program the context-entry corresponding to the bridge device. Devices behind these bridges
can only be collectively assigned to a single domain.

3.11.3 Devices Behind PCI Express Root Port

It is recommended that software enable ACS capability on PCI Express Root Ports to prevent devices
behind root ports from spoofing requester-id of other devices.

3.11.4 Root-Complex Integrated Devices
Transactions generated by all root-complex integrated devices must be uniquely identifiable through

its source-id (PCI requester-id). This enables any root-complex integrated endpoint device (PCI or PCI
Express) to be independently assigned to a domain.

3.11.5 PCI Express* Devices Using Phantom Functions
To increase the maximum possible number of outstanding requests requiring completion, PCI Express

allows a device to use function numbers not assigned to implemented functions to logically extend the
Tag identifier. Unclaimed function humbers are referred to as Phantom Function Numbers (PhFN). A

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-27

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

device reports its support for phantom functions through the Device Capability configuration register,
and requires software to explicitly enable use of phantom functions through the Device Control
configuration register.

Since the function number is part of the requester-id used to locate the context-entry for processing a
DMA request, when assigning PCI Express devices with phantom functions enabled, software must
program multiple context entries, each corresponding to the PhFN enabled for use by the device
function. Each of these context-entries must be programmed identically to ensure the DMA requests
with any of these requester-ids are processed identically.

3.11.6 Single-Root I/0 Virtualization Capable Devices

Single-Root I/0 Virtualization (SR-IOV) architecture enables an endpoint device Physical Function (PF)
to support multiple Virtual Function (VFs). To support independent assignment of PF and VFs to a
domain, transactions generated by PF and VFs must each have uniquely identifiable source-id (PCI
Express requester-id). Refer to the PCI Express base specification for SR-IOV endpoint architecture
and requirements.

3.11.7 Intel® Scalable I/0 Virtualization Capable Devices

Intel® Scalable I/0 Virtualization (Intel® Scalable IOV) architecture enables fine-grained partitioning
of an endpoint device Physical Function (PF) to support multiple Assignable Device Interface (ADI).
Transactions generated by ADIs share the same source-id (PCI Express requester-id) as the hosting
PF. To support independent assignment of ADIs to a domain, transactions generated by ADIs must
each have a uniquely identifiable PASID (Process Address Space Identifier) so that DMA-remapping
hardware with Scalable Mode Translation Support can be used to apply a unique translation function
per ADI. Refer to the PCI Express base specification for PASID capability and Intel® Scalable I/0
Virtualization specification for Intel® Scalable IOV endpoint device requirements.

3.12 Handling Requests Crossing Page Boundaries

PCI Express memory requests are specified to disallow address/length combinations which cause a
memory space access to cross a page (4KB) boundary. However, the PCI Express Specification defines
checking for violations of this rule at the receivers as optional. If checked, violations are treated as
malformed transaction layer packets and reported as PCI Express errors. Checking for violations from
Root-Complex integrated devices is typically platform-dependent.

Platforms supporting DMA remapping are expected to check for violations of the rule in one of the
following ways:

e The platform hardware checks for violations and explicitly blocks them. For PCI Express memory
requests, this may be implemented by hardware that checks for the condition at the PCI Express
receivers and handles violations as PCI Express errors. DMA requests from other devices (such as
Root-Complex integrated devices) that violate the rule (and hence are blocked by hardware) may
be handled in platform-specific ways. In this model, the remapping hardware units never receive
DMA requests that cross page boundaries.

o If the platform hardware cannot check for violations, the remapping hardware units must perform
these checks and re-map the requests as if they were multiple independent DMA requests.

3.13 Handling of Zero-Length Reads

A memory read request of one double-word with no bytes enabled (“zero-length read”) is typically
used by devices as a type of flush request. For a requester, the semantics of the flush request allow a
device to ensure that previously issued posted writes in the same traffic class have been completed at
its destination.

Zero-length read requests are handled as follows by remapping hardware:

3-28 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—DMA Remapping
®

e Implementations reporting ZLR field as Clear in the Capability Register process zero-length read
requests like any other read requests. Specifically, zero-length read requests are address-
translated based on the programming of the remapping structures. Zero-length reads translated
to memory are completed in the coherency domain with all byte enables off. Unsuccessful
translations result in translation faults. For example, zero-length read requests to write-only
pages in second-level translation are blocked due to read permission violation.

e Implementations reporting ZLR field as Set in the Capability Register handles zero-length read
requests same as above, except if it is to a write-only page. Zero-length read requests to write-
only pages that do not encounter any faulting conditions other than read permission violation are
successfully remapped and completed. Zero-length reads translated to memory complete in the
coherency domain with all byte enables off. Data returned in the read completion is obfuscated.

DMA remapping hardware implementations are recommended to report ZLR field as Set and support
the associated hardware behavior.

3.14 Handling Requests to Interrupt Address Range

On Intel® architecture platforms, physical address range OXFEEx_xxxx is designated as the interrupt
address range. Requests without PASID to this range are not subjected to DMA remapping (even if
translation structures specify a mapping for this range).

Single-DWORD length write requests without PASID to the interrupt address range are treated as
interrupt requests. See Chapter 5 for a description of how such requests are handled.

Zero-length-read requests without PASID to this range bypass remapping hardware and complete
successfully. Data returned in the read completion is obfuscated.

Translation requests without PASID to this range return R=0, W=1, U=1, and S=0.

The following types of requests to this range are illegal requests. They are blocked and reported as
Interrupt Remapping faults.

e Read requests without PASID that are not ZLR.
e Atomics requests without PASID.
e Non-DWORD length write requests without PASID.

Requests-with-PASID with input address in range OXFEEx_xxxx are translated normally like any other
request-with-PASID through DMA-remapping hardware. However, if such a request is processed using
pass-through translation, it will be blocked as described in the paragraph below.

Software must not program paging-structure entries to remap any address to the interrupt address
range. Untranslated requests and translation requests that result in an address in the interrupt range
will be blocked with condition code LGN.4 or SGN.8. Translated requests with an address in the
interrupt address range are treated as Unsupported Request (UR).

3.15 Handling Requests to Reserved System Memory

Reserved system memory regions are typically allocated by BIOS at boot time and reported to OS as
reserved address ranges in the system memory map. Requests to these reserved regions may either
occur as a result of operations performed by the system software driver (for example in the case of
DMA from unified memory access (UMA) graphics controllers to graphics reserved memory), or may
be initiated by non system software (for example in case of DMA performed by a USB controller under
BIOS SMM control for legacy keyboard emulation). For proper functioning of these legacy reserved
memory usages, when system software enables DMA remapping, the second-level translation
structures for the respective devices are expected to be set up to provide identity mapping for the
specified reserved memory regions with read and write permissions.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 3-29

DMA Remapping—Intel® Virtualization Technology for Directed I/0O I n te I
®

Platform implementations supporting reserved memory must carefully consider the system software
and security implications of its usages. These usages are beyond the scope of this specification.
Platform hardware may use implementation-specific methods to distinguish accesses to system
reserved memory. These methods must not depend on simple address-based decoding since DMA
virtual addresses can indeed overlap with the host physical addresses of reserved system memory.

For platforms that cannot distinguish between device accesses to OS-visible system memory and
device accesses to reserved system memory, the architecture defines a standard reporting method to
inform system software about the reserved system memory address ranges and the specific devices
that require device access to these ranges for proper operation. Refer to Section 8.4 for details on the
reporting of reserved memory regions.

For legacy compatibility, system software is expected to setup identity mapping in second-level
translation (with read and write privileges) for these reserved address ranges, for the specified
devices. For these devices, the system software is also responsible for ensuring that any input
addresses used for device accesses to OS-visible memory do not overlap with the reserved system
memory address ranges.

3.16 Root-Complex Peer to Peer Considerations

When DMA remapping is enabled, peer-to-peer requests through the Root-Complex must be handled
as follows:

e The input address in the request is translated (through first-level, second-level or nested
translation) to a host physical address (HPA). The address decoding for peer addresses must be
done only on the translated HPA. Hardware implementations are free to further limit peer-to-peer
accesses to specific host physical address regions (or to completely disallow peer-forwarding of
translated requests).

¢ Since address translation changes the contents (address field) of the PCI Express Transaction
Layer Packet (TLP), for PCI Express peer-to-peer requests with ECRC, the Root-Complex
hardware must use the new ECRC (re-computed with the translated address) if it decides to
forward the TLP as a peer request.

e Root-ports, and multi-function root-complex integrated endpoints, may support additional peer-
to-peer control features by supporting PCI Express Access Control Services (ACS) capability. Refer
to ACS capability in PCI Express specifications for details.

3-30 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs
®

4 Support For Device-TLBs

The DMA remapping architecture described in Chapter 3 supports address translation of DMA requests
received by the Root-Complex. Hardware may accelerate the address-translation process by caching
data from the translation structures. Chapter 6 describes details of these translation caches
supported by remapping hardware. Translation caches at the remapping hardware is a finite resource
that supports requests from multiple endpoint devices. As a result, efficiency of these translation
caches in the platform can depend on number of simultaneously active DMA streams in the platform,
and address locality of DMA accesses.

One approach to scaling translation caches is to enable endpoint devices to participate in the
remapping process with translation caches implemented at the devices. These translation caches on
the device are referred to as Device-TLBs (Device Translation Lookaside Buffers). Device-TLBs
alleviate pressure for translation caches in the Root-Complex, and provide opportunities for devices to
improve performance by pre-fetching address translations before issuing DMA requests. Device-TLBs
can be useful for devices with strict access latency requirements (such as isochronous devices), and
for devices that have large DMA working sets or multiple active DMA streams. Remapping hardware
units report support for Device-TLBs through the Extended Capability Register (see Section 10.4.3).
Additionally, Device-TLBs may be utilized by devices to support recoverable I/O page faults. This
chapter describes the basic operation of Device-TLBs. Chapter 7 covers use of Device-TLBs to support
recoverable I/O page faults.

4.1 Device-TLB Operation

Device-TLB support in endpoint devices requires standardized mechanisms to:
e Request and receive translations from the Root-Complex
e Indicate if a memory request (with or without PASID) has a translated or un-translated address
¢ Invalidate translations cached at Device-TLBs.

Figure 4-13 illustrates the basic interaction between the Device-TLB in an endpoint and remapping

hardware in the Root-Complex, as defined by Address Translation Services (ATS) in PCI Express Base
Specification, Revision 4.0 or later.

Endpoint Translation Request o Root-Complex
Device ld

D | Translation Completion Paging Structures

E TN Remapping ;) & Pages in Memory

v Translated Request

| Hardware
— ith Invalidation

c Invalidation Request wi

£ € g Translation l—)» Requests from

Caches Software
Invalidation Completion

T >

L Page Requests

B Page Request from Device
Page Response

Figure 4-13. Device-TLB Operation

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 4-1

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/0O I n te I
®

ATS defines the ‘Address Type’ (AT) field in the PCI Express transaction header for memory requests.
The AT field indicates if transaction is a memory request with ‘Untranslated’ address (AT=00b),
‘Translation Request’ (AT=01b), or memory request with ‘Translated’ address (AT=10b). ATS also
define Device-TLB invalidation messages. Following sections describe details of these transactions.

4.1.1 Translation Request
Translation-requests-without-PASID specify the following attributes that are used by remapping
hardware to process the request:

e Address Type (AT):

— AT field has value of 01b to identify it as a translation-request.
Address:

— Address field indicates the starting input address for which the translation is requested.
Length:

— Length field indicates how many sequential translations may be returned in response to this
request. Each translation is 8 bytes in length. The length field must always indicate an even
number of DWORDs with a minimum value of 2 (DWs). If the length field has a value greater
than 2, then the additional translations (if returned in the translation response) are for
sequentially increasing equal-sized pages starting at the requested input address. Refer to
ATS specification within PCI Express Base Specification Revision 4.0 or later for more details.

No Write (NW) flag:

— The NW flag, when Set, indicates if the endpoint is requesting read-only access for this
translation.

Translation-requests-with-PASID specify the same attributes as above, and also specify the additional
attributes (PASID value, Execute-Requested (ER) flag, and Privileged-mode-Requested (PR) flag) in
the PASID TLP Prefix.

4.1.2 Translation Completion

If the remapping hardware was not able to successfully process the translation-request (with or
without PASID), a translation-completion without data is returned.

e A status code of UR (Unsupported Request) is returned in the completion if the remapping
hardware is configured to not support translation requests from this endpoint.

e A status code of CA (Completer Abort) is returned if the remapping hardware encountered errors
when processing the translation-request.

If the remapping hardware was able to successfully process a translation-request, a translation-
completion with data is returned.

For successful translation-requests-without-PASID, each translation returned in the translation-
completion data specifies the following attributes:

* Size (S):

— Value of 0Ob in Size field indicates the translation is for a 4-KByte page. If Size field is 1b, the
size of the translation is determined by the lowest bit in the Translated Address field (bits
63:12) with a value of 0. For example, if bit 12 is 0, the translation applies to a 8-KByte page.
If bit 12 is 1 and bit 13 is 0, the translation applies to a 16-KByte page, and so on. Refer to
Address Translation Services (ATS) in PCI Express base specification, Rev 4.0 for details on
translation size encoding.

¢ Non-Snooped access flag (N):

— When Set, the Non-Snooped access field indicates that the translated-requests that use this
translation must clear the No Snoop Attribute in the request.

4-2 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs
®

Untranslated access only flag (U):

— When Set, the input address range for the translation can only be accessed by the endpoint
using untranslated-request.

e Read permission (R):

— If Set, read permission is granted for the input address range of this translation. If Clear, read
permission is not granted for the input address range of this translation.

e Write permission (W):

— If Set, write permission is granted for the input address range of this translation. If Clear,
write permission is not granted for the input address range of this translation.

¢ Translated Address:

— If either the R or W field is Set, and the U field is Clear, the translated address field contains
the result of the translation for the respective input address. Endpoints can access the page
through Translated-requests with this address.

For successful translation-requests-with-PASID, each translation returned in the translation-
completion data specifies the same attributes as above, along with following attributes:
e Execute permission (EXE):

— If EXE=R=1, execute permission is granted for the input address range of this translation.
Else, execute permission is not granted for the input address range of this translation.

¢ Privilege Mode Access (PRIV):

— If Set, R, W and EXE refer to permissions associated with privileged mode access. If Clear, R,
W, and EXE refer to permissions associated with non-privileged access.

¢ Global Mapping (G):

— If Set, the translation is common across all PASIDs at this endpoint. If Clear, the translation is
specific to the PASID value specified in the PASID TLP Prefix in the associated Translation-
request.

— Remapping hardware provides a value of 0 in this field.

4.1.3 Translated Request

Translated-requests are regular memory read/write/atomics requests with Address Type (AT) field
value of 10b. When generating a request to a given input (untranslated) address, the endpoint may
look in the local Device-TLB for a cached translation (result of a previous translation-request) for the
input address. If a cached translation is found with appropriate permissions and privilege, the
endpoint may generate a translated-request (AT=10b) specifying the Translated address obtained
from the Device-TLB lookup. Translated-requests are issued as requests-without-PASID.

4.1.4 Invalidation Request & Completion

Invalidation requests are issued by software through remapping hardware to invalidate translations
cached at endpoint Device-TLBs.
Invalidation-requests-without-PASID specify the following attributes:
e Device ID
— Identity of the device (bus/device/function) whose Device-TLB is the target of invalidation.
e Size (S):

— Value of 0b in Size field indicates the target of invalidation is a 4-KByte input address range. If
Size field is 1b, the input address range to be invalidated is determined by the lowest bit in
the Untranslated Address field (bits 63:12) with a value of 0. Refer to the PCI Express ATS
Specification for details on invalidation address size encoding.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 4-3

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/0O I n te I
®

e Untranslated Address
— Specifies the base of the input (untranslated) address range to be invalidated.
Invalidation-requests-with-PASID specify the same attributes as above, along with a global-invalidate

flag. If the global-invalidate flag is 1, the invalidation affects all PASID values. If the global-invalidate
flag is 0, the invalidation is only required to affect the PASID value specified in the PASID TLP prefix.

Invalidation requests and completions carry additional tags (ITags) managed by hardware to uniquely
identify invalidation requests and completions. Refer to the Address Translation Services in PCI
Express Base Specification Revision 4.0 or later for more details on use of ITags.

4.2 Remapping Hardware Handling of Device-TLBs

Remapping hardware reports support for Device-TLBs through the Extended Capability Register (see
Section 10.4.3). The translation-type (TT) field in the context-entries and Device TLB Enable (DTE)
field in scalable-mode context entries can be programmed to enable or disable processing of
translation-requests and translated-requests from specific endpoints by remapping hardware. The
following sections describe the remapping hardware handling of ATS requests.

4.2.1 Handling of ATS Protocol Errors

The following upstream requests are always handled as Unsupported Request (UR) by hardware:
e Memory read or write request (with or without PASID) with AT field value of ‘Reserved’ (11b).
e Memory write request (with or without PASID) with AT field value of ‘Translation Request’ (01b).
e Requests-with-PASID with AT field value of ‘Translated’ (10b).

The following upstream requests (with or without PASID) are always handled as malformed packets:
e Memory read request with AT field value of ‘Translation Request’ with any of the following:
— Length specifying odd number of DWORDs (i.e. least significant bit of length field is non-zero)

— Length greater than N/4 DWORDs where N is the Read Completion Boundary (RCB) value (in
bytes) supported by the Root-Complex.

— First and last DWORD byte enable (BE) fields not equal to 1111b.
e ‘Invalidation Request’ message.
When remapping hardware is disabled (TES=0 in Global Status Register), following upstream
requests are treated as Unsupported Request (UR).
e Memory requests with non-zero AT field (i.e. AT field is not ‘Untranslated’).
e ATS ‘Invalidation Completion’ messages.

4.2.2 Root-Port Control of ATS Address Types

Root-ports supporting Access Control Services (ACS) capability can support ‘Translation Blocking’
control to block upstream memory requests with non-zero value in the AT field. When enabled, such
requests are reported as ACS violation by the receiving root-port. Refer to the ACS Capability in PCI
Express Specifications for more details. Upstream requests that cause ACS violations are blocked at
the root-port as error and are not presented to remapping hardware.

4.2.3 Handling of Translation Requests

This section describes the handling of translation-requests when remapping hardware is enabled.

e The requester-id in the translation-request is used to parse the respective legacy root/context
entry or scalable-mode root/context entry as described in Section 3.4.

4-4 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs
®

e If hardware detects any of the conditions below that explicitly block translation-requests from this
endpoint, a translation-completion is returned with status code of Unsupported Request (UR), and
hardware treats it as a translation-fault.(See Section 7.1.3 for details of conditions and
translation-fault behavior.)

— Condition codes: LRT.2, LCT.2, LCT.5 SRTA.2, SRT.2, SCT.2, SCT,5, SCT.6, SCT.7.

e For translation-requests (with or without PASID), if hardware detects any of the error conditions
below, a translation-completion is returned with status code of Completer Abort (CA), and
hardware treats it as a translation-fault. (see Section 7.1.3 for details of conditions and
translation-fault behavior.)

— Condition codes: LRT.1, LRT.3, LCT.1, LCT.3, LCT.4.x, LSL.1, LSL.2, SRTA.1.x, SRT.1, SRT.3,
SCT.1, SCT.3, SCT.4.x, SPD.1, SPD.3, SPT.1, SPT.3, SPT.4.x, SFL.1, SFL.3, SFL.4, SSL.1,
SSL.3, SSL.4.

e If none of the error conditions above are detected, hardware handles the translation-request as
follows:

— If the input address in a translation-request-without-PASID is within the interrupt address
range (OxFEEx_xxxx)l, a successful translation-completion is issued with R=0, W=1, U=1,
and S=0 in the Translation-Completion data. This special handling for translation-requests-
without-PASID to the interrupt address range is provided to comprehend potential endpoint
Device-TLB behavior of issuing translation requests to all of its memory transactions including
its message signaled interrupt (MSI) posted writes.

— If remapping hardware encounters any of the conditions below that result in either not finding
a translation for the address specified in the translation-request, or detecting that the
requested translation lacks both read and write permissions, a translation-completion with
status code of Success is returned with R=W=U=S=0 in the translation-completion-data.

¢ Condition code: LGN.1, SPD.2, SPT.2, SPT.5, SPT.6, SFL.2, SFL.5, SSL.2, SGN.1, SGN.2,
SGN.5 (see Section 7.1.3 for definition of conditions).

— If remapping hardware successfully fetches the translation requested, and the translation has
at least one of Read and Write permissions, a translation-completion with status code of
Success is returned with translation-completion-data as follows:

e Read (R) bit: The R bit in the translation-completion data is the effective read permission
for this translation.

— For translation-requests, R bit is 1 if the respective access rights checking (as described
in Section 3.6.1, Section 3.7.1, and Section 3.8.1) allows read access to the page. Else,
R bit is 0.

e Write (W) bit: The W bit in the translation-completion data is the effective write
permission for this translation.

— For translation-requests with NW=1 (i.e., requests indicating translation is for read-only
accesses), remapping hardware reporting no-write-flag support (NWFS=1 in the
Extended Capability Register) returns the W bit as 0. Remapping hardware not
supporting no-write-flag (NWFS=0) ignores value of NW field in translation-requests
and functions as if NW is 0 (see below).

— For translation-requests with NW=0, W bit is 1 if the respective access rights checking
(as described in Section 3.6.1, Section 3.7.1 and Section 3.8.1) allows write access to
the page. Else, W bit is 0.

1. Translation-requests-with-PASID with input address in the range OXFEEx_xxxxx are processed
normally through page-table translation, like any other translation-request-with-PASID.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 4-5

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/0O I n te I
®

4-6

Execute (EXE) bit: The EXE bit in the translation-completion data is the effective execute
permission for this translation.

— For translation-requests-without-PASID, this bit is always 0.

— For translation-requests-with-PASID with ER=0 (i.e., requests indicating translation is
not for instruction fetch), this bit is always 0.

— For translation-requests-with-PASID with ER=1 (i.e., requests indicating translation is
for instruction fetch), remapping hardware reporting Execute-Requests as not
supported (ERS=0 in the Extended Capability Register) returns the EXE bit as always 0.
Remapping hardware supporting Execute-Requests (ERS=1) returns EXE bit as 1 if the
request was subjected to scalable mode translation with pass-through type
(PGTT=100Db) or if the access rights checking (as described in Section 3.6.1,

Section 3.7.1, and Section 3.8.1) allows instruction fetch from the page. Else, EXE bit is
0.

Privilege Mode (PRIV) bit: The PRIV bit in the translation-completion data is the
effective privilege for this translation.

— For translation-request-with-PASID with PR=1, this bit is always 1. For all other
requests, this bit is always 0.

— For translation-request-with-PASID with PR=1, remapping hardware not supporting
supervisor requests (SRS=0 in the Extended Capability Register) forces R=W=E=0 in
addition to setting PRIV=1.

— If the scalable-mode PASID-table entry used to process translation-request-with-PASID
with PR=1 has a value of 0 in the SRE field, the remapping hardware forces R=W=E=0
in addition to setting PRIV=1.

— Note: A translation-request-without-PASID that observes a value of 1 in RID_PRIV field
of scalable-mode context-entry, returns R, W and Exe permissions associated with
Privileged Mode Entities in the translation completion but with Priv field set to a value of

Global Mapping (G) bit: The G bit in the translation-completion data is the effective
privilege for this translation.

— This bit is set to 0.

Non-snooped access (N) bit: The N bit in the translation-completion data indicates the
use of the No-Snoop (NS) flag in accesses that use this translation.

— Remapping hardware setup in legacy mode:

* For requests that use second-level translation with ATS allowed (TT=01b),
remapping hardware supporting Snoop Control (ECAP_REG.SC=1) returns the SNP
bit in the leaf second-level paging structure entry controlling the translation as the
Nh bit. l;Qemapping hardware not supporting Snoop Control returns a value of 0 as
the N bit.

— Remapping hardware setup in scalable mode:

* For requests that use first-level or pass-through translation (PGTT=001b or
PGTT=100b), remapping hardware returns the PGSNP bit in the scalable-mode
PASID-table entry as the N bit.

* For requests that use second-level or nested translation (PGTT=010b or
PGTT=011b), remapping hardware returns a value of 1 as the N bit, if the PGSNP
field in the scalable-mode PASID-table entry is set, or if both ECAP_REG.SC and the
SNP field in the leaf second-level paging structure entry controlling the translation
are set. Otherwise, remapping hardware returns a value of 0 as the N bit.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs

Table 10. N bit in Translation Completion
TT (Legacy) Page:
Mode or Translation Completion.N
PGTT (Scalable) (Non-snooped Access)
TT=00b NA

(second-level with ATS blocked)

(Translation request are treated as UR)

TT=01b
(second-level with ATS allowed)

N=(ECAP.SC && SL.leaf.SNP)

Legacy
TT=10 NA
(pass-through) (Translation request are treated as UR)
TT=11 NA
(reserved) (Translation request are treated as UR)
PGTT=001b N=PASID-table-entry.PGSNP
(first-level)
PGTT=010b
(second-level) N=PASID-table-entry.PGSNP ||
PGTT=011b (ECAP.SC && SL.leaf.SNP)
Scalable
(nested)
PGTT=100b
N=PASID-table- .PGSNP
(pass-through) SID-table-entry.PGS
PGTT=0Other NA
(reserved) (Translation request are treated as UR)

Untranslated access only (U) bit: The U bit in the translation-completion data indicates
the address range for the translation can only be accessed using untranslated-requests.

— For translation requests without PASID but with address in the interrupt address range
(OXFEEx_xxxx) remapping hardware will set this bit to 1

— For all other translation requests remapping hardware will set this bit to 0.
Size (S) bit: The S bit in the translation-completion data indicates the page size for the

translation.

— This bit is 0 if translation returned is for 4-KByte page.

— This bit is 1 if translation returned if for page larger than 4-KByte. In this case, the size
of the translation is determined by the lowest bit in the Translated Address field (bits
63:12) with a value of 0. For example, if bit 12 is 0, the translation applies to a 8-KByte
page. If bit 12 is 1 and bit 13 is 0, the translation applies to a 16-KByte page, and so
on. Refer to Address Translation Services in PCI Express Base Specification Revision 4.0
or later for details on translation size encoding.

— For translation requests that encounter pass-through translation (PGTT=100b) in

scalable mode, hardware is strongly recommended to set this bit to a value of 1 and use
the ADDR field to provide as large a region of translation as possible.

Translated Address (ADDR): If either R or W bit is 1, and U bit is 0, the ADDR field in
the translation-completion data contains the result of the translation.

— For translation-requests that are subject to second-level translation only, this is the

translated address from the second-level translation.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/0O I n te I
®

— For translation-requests that are subject to first-level translation only, this is the output
address from the first-level translation.

— For translation-requests that are subject to nested translation, this is the output
address from the nested translation.

— For translation-requests that are subject to pass-through translation, this is the address
that came in translation-request.

4.2.3.1 Accessed, Extended Accessed, and Dirty Flags

While processing a translation-request through first-level translation, remapping hardware manages
the accessed, extended-accessed, and dirty flags in the first-level paging-structure entries as follows:

Remapping hardware atomically sets the A field (if it is not already set) in each first-level paging-
structure entry used to successfully translate the request.

Remapping hardware atomically sets the EA field (if it is not already set) in each first-level
paging-structure entry used to successfully translate the request, if the scalable-mode PASID-
table entry used to process the request has a value of 1 for the Extended-Accessed-Flag-Enable
(EAFE) field.

For a translation-request with NW=0, remapping hardware reporting No-Write-Flag Support
(NWFS=1 in Extended Capability Register) atomically sets the D field (if it is not already set) in
the first-level paging-structure entry that identifies the final translated address for the input
address (i.e., either a PTE or a paging-structure entry in which the PS field is 1). Remapping
hardware not supporting No-Write-Flag (NWFS=0) atomically sets the D field, ignoring the value
of the NW field in the translation-request.

As described above, the accessed, extended accessed, and dirty flags are set at the time of
processing a translation-request, before the endpoint accesses the page using the translation
returned in the translation-completion.

Setting of Accessed, Extended Accessed, and Dirty flags in the first level paging-structure entries are
subject to the access rights checking described in Section 3.6.1 (or Section 3.8.1, when nested
translations are enabled).

4.2.3.2 Translation Requests for Multiple Translations

Translation-requests for multiple mappings indicate a length field greater than 2 DWORDs. Hardware
implementations may handle these requests in any one of the following ways:

4-8

Always return a single translation

— Hardware performs translation only for the starting address specified in the translation-
request, and a translation-completion is returned depending on the result of this processing.
In this case, the translation-completion has a Length of 2 DWORDs, Byte Count of 8, and the
Lower Address indicates a value of Read Completion Boundary (RCB) minus 8.

Return multiple translations

— Hardware performs translations starting with the address specified in the translation-request,
until a Completer Abort (CA) or Unsupported Request (UR) condition as described in
Section 4.2.3 is detected, or until a translation with different page-size than the previous
translation in this request is detected. Remapping hardware may also limit fetching of
translations to those that are resident within a cache line. When returning multiple
translations (which may be less than the number of translations requested), hardware must
ensure that successive translations must apply to the untranslated address range that abuts
the previous translation in the same completion. Refer to Address Translation Services in PCI
Express Base Specification Revision 4.0 or later for requirements on translation-completions
returning multiple mappings in one or two packets.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs
®

4.2.4 Handling of Translated Requests

This section describes the handling of Translated-requests when remapping hardware is enabled.

If a translated-request has a PASID TLP Prefix, it is blocked by root-complex.

If a translated-request is to the interrupt address range (OXFEEx_xxxx), it is blocked by
remapping hardware and treated as a fault LGN.4/SGN.8. (See Section 7.1.3 for details of
conditions and hardware behavior.)

If hardware detects any error condition that requires remapping hardware to block a translated-
request, it is treated as a fault and the translated-request is handled as UR. (See Section 7.1.3 for
details of error conditions.)

If none of the error conditions above are detected, the translated-request is processed as pass-
through (i.e., bypasses address translation).

4.3 Handling of Device-TLB Invalidations

The Address Translation Services (ATS) support in PCI Express defines the wire protocol for the Root-
Complex to issue Device-TLB invalidation requests to an endpoint and to receive Device-TLB
invalidation completion responses from the endpoint.

For remapping hardware supporting Device-TLBs, software submits the Device-TLB invalidation
requests through the invalidation queue interface of the remapping hardware. Section 6.5.2 describes
the queued invalidation interface details.

Hardware processes a Device-TLB invalidation request as follows:

Hardware allocates a free invalidation tag (ITag). ITags are used to uniquely identify an
invalidation request issued to an endpoint. If there are no free ITags in hardware, the Device-TLB
invalidation request is deferred until a free ITag is available. For each allocated ITag, hardware
stores a counter (InvCmpCnt) to track the number of invalidation completions received with this
ITag.

Hardware starts an invalidation completion timer for this ITag, and issues the invalidation request
message to the specified endpoint. If the invalidation command from software is for a translation
with PASID, the invalidation request message is generated with the appropriate PASID TLP Prefix
to identify the target PASID. The invalidation completion time-out value is recommended to be
sufficiently larger than the PCI Express read completion time-outs.

Hardware processes a Device-TLB invalidation response received as follows:

ITag-vector in the invalidation completion response indicates the ITags corresponding to
completed Device-TLB invalidation requests. The completion count in the invalidation response
indicates the number of invalidation completion messages expected with the same ITag-vector
and completion count.

For each ITag Set in the ITag-vector, hardware checks if it is a valid (currently allocated) ITag for
the source-id in the invalidation completion response. If hardware detects an invalid ITag, the
invalidation completion message is dropped by hardware. The error condition is reported by
setting the Invalidation Completion Error (ICE) field in the Fault Status Register (see

Section 10.4.9), and depending on the programming of the Fault Control Register a fault event
may be generated.

If above checks are completed successfully, for each ITag in the ITag-vector, the corresponding
InvCmpCnt counter is incremented and compared with the ‘completion count’ value in the
invalidation response (‘completion count’ value of 0 indicates 8 invalidation completions). If the
comparison matches, the Device-TLB invalidation request corresponding to the ITag is considered
completed, and the ITag is freed.

If the invalidation completion time-out expires for an ITag before the InvCmpCnt invalidation
responses are received, hardware frees the ITag and reports it through the ITE field in the Fault
Status Register. Depending on the programming of the Fault Control Register a fault event may be
generated. Section 6.5.2.10 describes hardware behavior on invalidation completion time-outs.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 4-9

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/0O I n te I
®

4.4 Device TLB in System-on-Chip (SoC) integrated devices

The Figure 4-14 below shows a typical SoC integrated device that is connected to the Root Complex.
All such devices that support Address Translation Service (ATS) must create an isolation boundary
outside of which Host Physical Address (HPA) are not exposed. The part of the device outside the

isolation boundary is referred to as “"Device Core”.

f

Untranslated or \ Translated request
Translation request ‘

Root Complex Root Complex

A X A X N

/|0|v||v|u; /IOMMU) |
(TA) » (TA) » /

N NS

System
Fabric

1/0
Fabric

Data Cache

ATS
Registers DevTLB
(ATC)

Host Physical Address
Isolation Boundar

ATS
Registers DevTLB
g (ATC)
Host Physical Address
Isolation Boundar

Device Core Device Core

- J G J

SoC Integrated Device attached using

SoC Integrated Device attached using only
1/0 fabric and System fabric

1/0 fabric

Figure 4-14. DevTLB in SoC integrated devices

Depending on the software usage model the Device Core may receive various kinds of address from
software. These addresses are translated by Device TLB (i.e. DevTLB) into HPAs using ATS.

All SoC integrated devices must meet the following requirements:
e The HPA isolation boundary must not expose translated addresses (from DevTLB) to the Device

Core

4-10 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs
®

e The interface(s) that connect the SoC integrated device to the Root Complex must be completely
contained within the HPA isolation boundary.

e The Device Core must not be able to put a transaction on the interface(s) that connects device to
the Root Complex. The Device Core must always request that the HPA isolation partition send
transaction to the Root Complex.

e The HPA isolation partition must host the DevTLB and must faithfully follow the ATS specification.

e The HPA isolation partition must host ATS Configuration registers defined by PCI Express Base
Specification Revision 4.0 or later and listed below:

— ATS Extended Capability

— ATS Extended Capability Header
— ATS Capability Register

— ATS Control Register

e The Device Core can specify that a transaction bypass the DevTLB; in that case, the HPA isolation
partition will put the transaction as an “Untranslated Request” on the I/O fabric.

e The Device Core (including software/firmware running on the device) must not be able to
manipulate (read or modify) the contents of DevTLB or the data cache.

e If a device needs a data cache tagged with translated addresses (from DevTLB), such a cache
must be hosted in the HPA isolation boundary.

SoC-integrated devices connecting to the Root Complex using the System Fabric must meet the
following additional requirements:

e Before sending an ATS Invalidate Completion message to the IOMMU, the HPA isolation partition
must ensure that all transactions using stale information on the System Fabric have reached the
global observation point.

e When DMA remapping is enabled in the IOMMU, any access on the System Fabric from the HPA
isolation partition must use HPA.

e The Root Complex may implement a product specific mechanism to inform the HPA isolation
partition in each SoC integrated device that DMA remapping is enabled.

4.5 Guidance to software on enabling and disabling ATS

Enabling ATS for a device requires software to program two independent bits and hence it can not be
an atomic operation and there will be a window of time where the system is an inconsistent state. It is
strongly recommended that software quiesce DMA operations from the device before programming
the required bits.

4.5.1 Recommended software sequence to enable ATS

1. Software should quiesce all DMA operations from the device.

2. Software should program the scalable-mode context entry (or context entry) associated with the
DevTLB to allow ATS requests.

3. Software should program Enable (E) field, in the ATS Control register of the device with a value of
1.

4.5.2 Recommended software sequence to disable ATS

1. Software should quiesce all DMA operations from the device.

2. Software should program Enable (E) field, in the ATS Control register of the device with a value of
0.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 4-11

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/0O I n te I
®

3. Software should issue global Device-TLB Invalidate descriptor followed by Invalidation Wait
descriptor to invalidate all translations from the DevTLB and also to drain all prior ATS traffic to
the global observation point.

4. Software should program the scalable-mode context entry (or context entry) associated with the
DevTLB to block ATS requests.

4-12 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

5 Interrupt Remapping

This chapter discusses architecture and hardware details for interrupt-remapping and interrupt-
posting. These features collectively are called the interrupt remapping architecture.

5.1 Interrupt Remapping

The interrupt-remapping architecture enables system software to control and censor external
interrupt requests generated by all sources including those from interrupt controllers (I/OxAPICs),
MSI/MSI-X capable devices including endpoints, root-ports and Root-Complex integrated end-points.

Interrupts generated by the remapping hardware itself (Fault Events, Invalidation Completion Events,
and Page Request Events) are not subject to interrupt remapping.

Interrupt requests appear to the Root-Complex as upstream memory write requests to the interrupt-
address-range OXFEEX_XXXXh. Since interrupt requests arrive at the Root-Complex as write requests,
interrupt-remapping is co-located with the remapping hardware units. The interrupt-remapping
capability is reported through the Extended Capability Register.

5.1.1 Identifying Origination of Interrupt Requests

To support domain-isolation usages, the platform hardware must be capable of uniquely identifying
the requester (Source-Id) for each interrupt message. The interrupt sources in a platform and use of
source-id in these requests may be categorized as follows:

¢ Message Signaled Interrupts from PCI Express Devices

— For message-signaled interrupt requests from PCI Express devices, the source-id is the
requester identifier in the PCI Express transaction header. The requester-id of a device is
composed of its PCI Bus/Device/Function number assigned by configuration software and
uniquely identifies the hardware function that initiated the I/0 request. Section 3.4.1
illustrates the requester-id as defined by the PCI Express specification. Section 3.11.5
describes use of source-id field by PCI Express devices using phantom functions.

e Message Signaled Interrupts from Root-Complex Integrated Devices

— For message-signaled interrupt requests from root-complex integrated PCI or PCI Express
devices, the source-id is its PCI requester-id.

e Message Signaled Interrupts from Devices behind PCI Express to PCI/PCI-X Bridges

— For message-signaled interrupt requests from devices behind PCI Express-to-PCI/PCI-X
bridges, the requester identifier in those interrupt requests may be that of the interrupting
device or the requester-id with the bus number field equal to the bridge’s secondary
interface’s bus number and device and function number fields value of zero. Section 3.11.1
describes legacy behavior of these bridges. Due to this aliasing, interrupt-remapping
hardware does not isolate interrupts from individual devices behind such bridges.

e Message Signaled Interrupts from Devices behind Conventional PCI bridges

— For message-signaled interrupt requests from devices behind conventional PCI bridges, the
source-id in those interrupt requests is the requester-id of the legacy bridge device.
Section 3.11.2 describes legacy behavior of these bridges. Due to this, interrupt-remapping

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-1

Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

hardware does not isolate message-signaled interrupt requests from individual devices behind
such bridges.

e Legacy pin interrupts

— For devices that use legacy methods for interrupt routing (such as either through direct wiring

to the I/OxAPIC input pins, or through INTx messages), the I/OxAPIC hardware generates the
interrupt-request transaction. To identify the source of interrupt requests generated by
I/OxAPICs, the interrupt-remapping hardware requires each I/OXAPIC in the platform
(enumerated through the ACPI Multiple APIC Descriptor Tables (MADT)) to include a unique
16-bit source-id in its requests. BIOS reports the source-id for these I/OxAPICs via ACPI
structures to system software. Refer to Section 8.3.1.1 for more details on I/OXAPIC identity
reporting.

e Other Message Signaled Interrupts

5.1.2

— For any other platform devices that are not PCI discoverable and yet capable of generating

message-signaled interrupt requests (such as the integrated High Precision Event Timer -
HPET devices), the platform must assign unique source-ids that do not conflict with any other
source-ids on the platform. BIOS must report the 16-bit source-id for these via ACPI
structures described in Section 8.3.1.2.

Interrupt Request Formats On Intel® 64 Platforms

Interrupt-remapping on Intel® 64 platforms support two interrupt request formats. These are
described in the following sub-sections.

5.1.2.1 Interrupt Requests in Compatibility Format

Figure 5-15 illustrates the interrupt request in Compatibility format. The Interrupt Format field
(Address bit 4) is Clear in Compatibility format requests. Refer to the Intel® 64 Architecture software
developer’s manuals for details on other fields in the Compatibility format interrupt requests.
Platforms without interrupt-remapping capability support only Compatibility format interrupts.

5-2

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

Address
3 21 11
1 09 2 1 54321 0
0 XX
L» Don't Care
—» Destination Mode
P Redirection Hint
» Interrupt Format (Ob)
P Reserved
» Destination ID
Data » FEEh
3 1111 11
1 6543 10 8 7 0

\—> Vector

t———————p Delivery Mode

» Reserved

» Trigger Mode Level
p- Trigger Mode

» Reserved

Figure 5-15. Compatibility Format Interrupt Request

5.1.2.2 Interrupt Requests in Remappable Format

Figure 5-16 illustrates the Remappable interrupt request format. The Interrupt Format field (Address
bit 4) is Set for Remappable format interrupt requests. Remappable interrupt requests are applicable
only on platforms with interrupt-remapping support.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-3

|
Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

Address
21
31 009 543 21 0
1 XX
|
L Don't Care
L » HANDLE[15]
L——» SHV
L———p Interrupt Format
L » HANDLE [14:0]
Data » FEEh
11
31 65 0

Oh

\—VSUBHANDLE (if SHV==1)

» Reserved (0)

Figure 5-16. Remappable Format Interrupt Request

Table 11 describes the various address fields in the Remappable interrupt request format.

Table 11. Address Fields in Remappable Interrupt Request Format

Address

Bits Field Description

DWORD DMA write request with value of FEEh in these bits are decoded as interrupt

31: 20 Interrupt Identifier requests by the Root-Complex.

This field along with bit 2 provides a 16-bit Handle. The Handle is used by interrupt-
19: 5 Handle[14:0] remapping hardware to identify the interrupt request. 16-bit Handle provides 64K unique
interrupt requests per interrupt-remapping hardware unit.

4 Interrupt Format This field must have a value of 1b for Remappable format interrupts.
This field specifies if the interrupt request payload (data) contains a valid Subhandle. Use
3 SubHandle Valid (SHV) | of Subhandle enables MSI constructs that supports only a single address and multiple
data values.
2 Handle[15] This field carries the most significant bit of the 16-bit Handle.
1:0 Don’t Care These bits are ignored by interrupt-remapping hardware.

Table 12 describes the various data fields in the Remappable interrupt request format.

Table 12. Data Fields in Remappable Interrupt Request Format

Data Bits Field Description

When SHV field in the interrupt request address is Set, this field treated as reserved (0) by
31:16 Reserved hardware.
When SHV field in the interrupt request address is Clear, this field is ignored by hardware.

When SHV field in the interrupt request address is Set, this field contains the 16-bit Subhandle.

15:0 Subhandl
ubhandie When SHYV field in the interrupt request address is Clear, this field is ignored by hardware.

5-4 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

5.1.3 Interrupt Remapping Table

Interrupt-remapping hardware utilizes a memory-resident single-level table, called the Interrupt
Remapping Table. The interrupt remapping table is expected to be setup by system software, and its
base address and size is specified through the Interrupt Remap Table Address Register. Each entry in
the table is 128-bits in size and is referred to as Interrupt Remapping Table Entry (IRTE).Section 9.10
illustrates the IRTE format.

For interrupt requests in Remappable format, the interrupt-remapping hardware computes the
‘interrupt_index’ as below. The Handle, SHV and Subhandle are respective fields from the interrupt
address and data per the Remappable interrupt format.

if (address.SHV == 0) {
interrupt_index = address.handle;
} else {
interrupt_index = (address.handle + data.subhandle);

}

The Interrupt Remap Table Address Register is programmed by software to specify the number of
IRTEs in the Interrupt Remapping Table (maximum number of IRTEs in an Interrupt Remapping Table
is 64K). Remapping hardware units in the platform may be configured to share interrupt-remapping
table or use independent tables. The interrupt_index is used to index the appropriate IRTE in the
interrupt-remapping table. If the interrupt_index value computed is equal to or larger than the
number of IRTEs in the remapping table, hardware treats the interrupt request as error.

Unlike the Compatibility interrupt format where all the interrupt attributes are encoded in the
interrupt request address/data, the Remappable interrupt format specifies only the fields needed to
compute the interrupt_index. The attributes of the remapped interrupt request is specified through
the IRTE referenced by the interrupt_index.The interrupt-remapping architecture defines support for
hardware to cache frequently used IRTEs for improved performance. For usages where software may
need to dynamically update the IRTE, architecture defines commands to invalidate the IEC. Chapter 6
describes the caching constructs and associated invalidation commands.

5.1.4 Interrupt-Remapping Hardware Operation

The following provides a functional overview of the interrupt-remapping hardware operation:

e An interrupt request is identified by hardware as a DWORD sized write request to interrupt
address ranges OXFEEX_XXXX.

¢ When interrupt-remapping is not enabled (IRES field Clear in Global Status Register), all interrupt
requests are processed per the Compatibility interrupt request format described in
Section 5.1.2.1.

e When interrupt-remapping is enabled (IRES field Set in Global Status Register), interrupt requests
are processed as follows:

— Interrupt requests in the Compatibility format (i.e requests with Interrupt Format field Clear)
are processed as follows:

e If Extended Interrupt Mode is enabled (EIME field in Interrupt Remapping Table Address
Register is Set), or if the Compatibility format interrupts are disabled (CFIS field in the
Global Status Register is Clear), the Compatibility format interrupts are blocked.

* Else, Compatibility format interrupts are processed as pass-through (bypasses interrupt-
remapping).

— Interrupt requests in the Remappable format (i.e. request with Interrupt Format field Set) are
processed as follows:

* The reserved fields in the Remappable interrupt requests are checked to be zero. If the
reserved field checking fails, the interrupt request is blocked. Else, the Source-id, Handle,
SHV, and Subhandle fields are retrieved from the interrupt request.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-5

Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

Hardware computes the interrupt_index per the algorithm described in Section 5.1.3. The
computed interrupt_index is validated to be less than the interrupt-remapping table size
configured in the Interrupt Remap Table Address Register. If the bounds check fails, the
interrupt request is blocked.

If the above bounds check succeeds, the IRTE corresponding to the interrupt_index value
is either retrieved from the Interrupt Entry Cache, or fetched from the interrupt-
remapping table. If the Coherent (C) field is reported as Clear in the Extended Capability
Register, the IRTE fetch from memory will not snoop the processor caches. Hardware must
read the entire IRTE as a single operation and not use multiple reads to get the contents of
the IRTE as software may change the contents of the IRTE atomically. Hardware imple-
mentations reporting Memory Type Support (MTS=1 in ECAP_REG) must use write-back
(WB) memory type for IRTE fetches. If the Present (P) field in the IRTE is Clear, the
interrupt request is blocked and treated as a fault.

If IRTE is present (P=1), hardware performs verification of the interrupt requester per the
programming of the SVT, SID and SQ fields in the IRTE as described in Section 9.10. If the
source-id checking fails, the interrupt request is blocked.

— If IRTE has Mode field clear (IM=0):1

Hardware interprets the IRTE in remappable format (as described in Section 9.10). If
invalid programming of remappable-format IRTE is detected, the interrupt request is
blocked.

If above checks szucceed, a remapped interrupt request is generated per the programming
of the IRTE fields~.

e Any of the above checks that result in interrupt request to be blocked is treated as a interrupt-

1.
2.

5-6

remapping fault condition. The interrupt-remapping fault conditions are enumerated in the
following section.

If the IM field is 1, hardware interprets the IRTE in posted format (as described in Section 9.11).

Refer to Section 5.2.3 for interrupt-posting hardware operation.

When forwarding the remapped interrupt request to the system bus, the ‘Trigger Mode Level’ field

in the interrupt request on the system bus is always set to “asserted” (1b).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

5.1.4.1 Interrupt Remapping Fault Conditions

The following table enumerates the various conditions resulting in faults when processing interrupt
requests. A fault conditions is treated as ‘qualified’ if the fault is reported to software only when the
Fault Processing Disable (FPD) field is Clear in the IRTE used to process the faulting interrupt request.
Interrupt translation faults are non-recoverable and the faulting interrupt request is treated as an
Unsupported Request by the remapping hardware.

Table 13. Interrupt Remapping Fault Conditions

Fault

Interrupt Remapping Fault Conditions Reason Qualified Behavior
Decoding of the interrupt request per the Remappable request format detected 20h No
one or more reserved fields as Set.
The interrupt_index value computed for the Remappable interrupt request is
greater than the maximum allowed for the interrupt-remapping table size 21h No
configured by software, or hardware attempt to access the IRTE corresponding to
the interrupt_index value referenced an address above Host Address Width (HAW).
The Present (P) field in the IRTE entry corresponding to the interrupt_index of the 22h Yes

interrupt request is Clear.

Hardware attempt to access the interrupt-remapping table through the Interrupt-
Remapping Table Address (IRTA) field in the Interrupt Remap Table Address 23h No
Register resulted in error.

Hardware detected one ore more reserved fields that are not initialized to zero in
an IRTE with Present (P) field Set. This also includes cases where software 24h Yes
programmed various conditional reserved fields wrongly.

Unsupported
On Intel® 64 platforms, hardware blocked an interrupt request in Compatibility Request
format either due to Extended Interrupt Mode Enabled (EIME field Set in Interrupt 25h No
Remapping Table Address Register) or Compatibility format interrupts disabled
(CFIS field Clear in Global Status Register).

Hardware blocked a Remappable interrupt request due to verification failure of the
interrupt requester’s source-id per the programming of SID, SVT and SQ fields in 26h Yes
the corresponding IRTE with Present (P) field Set.

Hardware attempt to access the Posted Interrupt Descriptor (PID) through the

Posted Descriptor Address High/Low fields of an IRTE for posted interrupts resulted 27h Yes
in error.
Hardware detected one ore more reserved fields that are not initialized to zero in 28h Yes

an Posted Interrupt Descriptor (PID).t

Hardware detected an untranslated request without PASID to the interrupt address
range (OXFEEx_xxxx) which does not meet all the requirements to be considered a 29h Yes
valid interrupt.

1. Fault Reasons 27h and 28h are applicable only for interrupt requests processed through IRTEs programmed for Interrupt Posting
as described in Section 9.11. Refer to Section 5.2 for details on Interrupt Posting.

5.1.5 Programming Interrupt Sources To Generate Remappable
Interrupts

Software performs the following general steps to configure an interrupt source to generate
remappable interrupts:

¢ Allocate a free interrupt remap table entry (IRTE) and program the remapped interrupt attributes
per the IRTE format described in Section 9.10.

e Program the interrupt source to generate interrupts in remappable format with appropriate
handle, subhandle and SHYV fields that effectively encodes the index of the allocated IRTE as the
interrupt_index defined in Section 5.1.3. The interrupt_index may be encoded using the handle,
subhandle and SHYV fields in one of the following ways:

— SHV = 0; handle
— SHV = 1; handle

interrupt_index;
interrupt_index; subhandle = 0;

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-7

Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

— SHV = 1; handle = 0; subhandle = interrupt_index;
— SHV = 1; handle = interrupt_index - subhandle;

The following sub-sections describes example programming for I/OXAPIC, MSI and MSI-X interrupt
sources to generate interrupts per the Remappable interrupt request format.

5.1.5.1 I/OxAPIC Programming

Software programs the Redirection Table Entries (RTEs) in I/OXAPICs as illustrated in Figure 5-17.

6 44 4 11111111
3 98 7 76543210 87 0
1 000
L—p» Vector
L p Interrupt_Index [15]
t———— Delivery Status
P Interrupt Polarity
P Remote IRR
P Trigger Mode
P Mask

P Reserved (0)
> Interrupt Format (1b)
> Interrupt_Index [14:0]

Figure 5-17. I/OxAPIC RTE Programming

e The Interrupt_Index[14:0] is programmed in bits 63:49 of the I/OxAPIC RTE. The most
significant bit of the Interrupt_Index (Interrupt_Index[15]) is programmed in bit 11 of the
I/OXAPIC RTE.

e Bit 48 in the I/OXAPIC RTE is Set to indicate the Interrupt is in Remappable format.

e RTE bits 10:8 is programmed to 000b (Fixed) to force the SHV (SubHandle Valid) field as Clear in
the interrupt address generated.

e The Trigger Mode field (bit 15) in the I/OxAPIC RTE must match the Trigger Mode in the IRTE
referenced by the I/OXAPIC RTE. This is required for proper functioning of level-triggered
interrupts.

e For platforms using End-of-Interrupt (EOI) broadcasts, Vector field in the I/OXAPIC RTEs for level-
triggered interrupts (i.e. Trigger Mode field in I/OXAPIC RTE is Set, and Trigger Mode field in the
IRTE referenced by the I/OxAPIC RTE is Set), must match the Vector field programmed in the
referenced IRTE. This is required for proper processing of End-Of-Interrupt (EOI) broadcast by the
I/OxAPIC.

¢ Programing of all other fields in the I/OXAPIC RTE are not impacted by interrupt remapping.

5-8 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

5.1.5.2 MSI and MSI-X Register Programming

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Figure 5-18 illustrates the programming of MSI/MSI-X address and data registers to support

remapping of the message signaled interrupt.

Address

63/
31

OoN

O

54321 0

OFEEh

111 XX
|

Data
31/

L» Don't Care

L— Interrupt_Index [15]
L »SHV (1)
L pInterrupt Format (1)

»Interrupt_index[14:0]
0

Oh

Figure 5-18. MSI-X Programming

Specifically, each address and data registers must be programmed as follows:

e Address register bits 63/31: 20 must be programmed with the interrupt address identifier value of

OFEEh.

e Address register bits 19:5 is programmed with Interrupt_Index[14:0] and address register bit 2
must be programmed with Interrupt_Index[15]. The Interrupt_Index is the index of the Interrupt
Remapping Table Entry (IRTE) that remaps the corresponding interrupt requests.

— Devices supporting MSI allows software to enable multiple vectors (up to 32) in powers of 2.
For such multiple-vector MSI usages, software must allocate N contiguous IRTE entries
(where N is the number of vectors enabled on the MSI device) and the interrupt_index value
programmed to the Handle field must be the index of the first IRTE out of the N contiguous
IRTEs allocated. The device owns the least significant log-N bits of the data register, and
encodes the relative interrupt number (0 to N-1) in these bits of the interrupt request

payload.

e Address register bit 4 must be Set to indicate the interrupt is in Remappable format.
e Address register bit 3 is Set so as to set the SubHandle Valid (SHV) field in the generated

interrupt request.

e Data register is programmed to Oh.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-9

|
Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

5.1.6 Remapping Hardware Event Interrupt Programming

Interrupts generated by remapping hardware events are not subject to interrupt remapping. The
following sections describe the programming of the Fault Event, Invalidation Completion Event, and
Page Request Event data/address registers on Intel®64 platforms. The Trigger Mode and Level values
are fixed at 0 for remapping hardware event interrupts.

5.1.6.1 Programming in Intel® 64 xAPIC Mode

Data Register
3
1 8 7 0

Oh

\—FVector

——— » Delivery Mode
0: Fixed
1: Lowest Priority
»Reserved (0)

Address Register

3
1

(SHN)

1
1 4321 0

o
N

XX
!

L Don’t Care

L Destination Mode

—_ ™ Redirection Hint

—— > Reserved (0)

» Destination ID
(APIC ID 7:0)

» FEEh

Upper Address Register
3
1 0

P Reserved (0)

Figure 5-19. Remapping Hardware Interrupt Programming in Intel® 64 XAPIC Mode

5-10 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

5.1.6.2 Programming in Intel® 64 x2APIC Mode?

Data Register

3
1 8 7 0

0h

\—FVector

———————® Delivery Mode
0: Fixed
1: Lowest Priority
» Reserved (0)

Address Register

3

1
1 1 4 32 1 0

(SEN]
©
N =

XX
I

L Don’t Care

L Destination Mode
—_» Redirection Hint
——» Reserved (0)
»- Destination ID
(APIC ID 7:0)

» FEEh

Upper Address Register
3

1 8 7 0

|
L Reserved (0)

_ Destination ID
»(APIC ID 31:8)

Figure 5-20. Remapping Hardware Interrupt Programming in Intel® 64 x2APIC Mode

5.1.7 Handling of Platform Events

Platforms supporting interrupt remapping are highly recommended to use side-band mechanisms
(such as dedicated pins between chipset/board-logic and CPU), or in-band methods (such as
platform/vendor defined messages) to deliver platforms events such as SMI/PMI/NMI/INIT/MCA. This
is to avoid the dependence on system software to deliver these critical platform events.

Some existing platforms are known to use I/OxAPIC RTEs (Redirection Table Entries) to deliver SMI,
PMI and NMI events. There are at least two existing initialization approaches for such platform events
delivered through I/OxAPIC RTEs.

e Some existing platforms report to system software the I/OxAPIC RTEs connected to platform
event sources through ACPI, enabling system software to explicitly program/enable these RTEs.
Example for this include, the 'NMI Source Reporting' structure in ACPI MADT (for reporting NMI
source).

e Alternatively, some existing platforms program the I/OXAPIC RTEs connected to specific platform
event sources during BIOS initialization, and depend on system software to explicitly preserve

1. Hardware support for x2APIC mode is reported through the EIM field in the Extended Capability
Register. x2APIC mode is enabled through the Interrupt Remapping Table Address Register.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-11

Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

these RTEs in the BIOS initialized state. (For example, some platforms are known to program
specific I/OXAPIC RTE for SMI generation through BIOS before handing control to system
software, and depend on system software preserving the RTEs pre-programmed with SMI delivery
mode).

On platforms supporting interrupt-remapping, delivery of SMI, PMI and NMI events through I/OxAPIC
RTEs require system software programming the respective RTEs to be properly remapped through the
Interrupt Remapping Table. To avoid this management burden on system software, platforms
supporting interrupt remapping are highly recommended to avoid delivering platform events through
I/OxAPIC RTEs, and instead deliver them through dedicated pins (such as the processor’s xAPIC
LINTn input) or through alternative platform-specific messages.

5.2 Interrupt Posting

Interrupt-posting capability is an extension of interrupt-remapping hardware for extended processing
of remappable format interrupt requests. Interrupt-posting enables a remappable format interrupt
request to be posted (recorded) in a coherent main memory resident data-structure, with an optional
notification event to the CPU complex to signal pending posted interrupt.

Interrupt-posting capability (along with the support in Intel® 64 processors for posted-interrupt
processing and APIC Virtualization) enables a Virtual Machine Monitor (VMM) software to efficiently
process interrupts from devices assigned to virtual machines. Section 2.5.3 describes high-level
usages and benefits of interrupt-posting. Refer to ‘Intel® 64 Architecture Software Developer's
Manual, Volume 3B: System Programming’ for details on Intel® 64 processor support for APIC
virtualization and posted-interrupt processing.

Remapping hardware support for interrupt-posting capability is reported through the Posted Interrupt
Support (PI) field in the Capability register (CAP_REG). Section 10.4.2 describes interrupt-posting
capability reporting.

5.2.1 Interrupt Remapping Table Support for Interrupt Posting

All remappable interrupt requests are processed through the Interrupt Remapping Table as described
in Section 5.1.3. The IRTE Mode (IM) field in an Interrupt Remapping Table Entry (IRTE) specifies if
remappable interrupt requests processed through that IRTE is subject to interrupt-remapping or
interrupt-posting.

e If the IM field is 0 in an IRTE, the IRTE is interpreted in remappable format (described in
Section 9.10) to remap interrupt requests processed through it. The interrupt-remapping
hardware operation is described in Section 5.1.4.

e Ifthe IMfield is 1 in an IRTE, the IRTE is interpreted in posted format (described in Section 9.11)
to post interrupt requests processed through it. The interrupt-posting hardware operation is
described in Section 5.2.3.

IRTE entries in posted format support following new fields:

e Address of the Posted Interrupt Descriptor data structure to post (record) the interrupt to.
Section 5.2.2 describes the Posted Interrupt Descriptor.

e Urgent (URG) qualification to indicate if interrupt requests processed through this IRTE require
real-time processing or not. Section 5.2.3 describes the hardware operation with this field.

e Vector field specifies the vector to use when posting interrupts processed through an IRTE. Unlike
remappable-format (where the Vector field is used when generating the remapped interrupt
request), the Vector field for posted-format IRTEs is used to determine which bit to Set when
posting the interrupt to the Posted Interrupt Descriptor referenced by the IRTE.

As with interrupt remapping, interrupts generated by the remapping hardware itself are not subject to
interrupt posting.

5-12 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

5.2.2 Posted Interrupt Descriptor

Posted Interrupt Descriptor is a 64-byte aligned and sized structure in memory used by interrupt-
posting hardware to post (record) interrupt requests subject to posting. Section 9.12 describes the
Posted Interrupt Descriptor Format. System software must allocate the Posted Interrupt Descriptors
in coherent (write-back) main memory.

The Posted Interrupt Descriptor hosts the following fields:

e Posted Interrupt Request (PIR) field provides storage for posting (recording) interrupts (one bit
per vector, for up to 256 vectors).

e Outstanding Notification (ON) field indicates if there is a notification event outstanding (not
processed by processor or software) for this Posted Interrupt Descriptor. When this field is O,
hardware modifies it from O to 1 when generating a notification event, and the entity receiving
the notification event (processor or software) resets it as part of posted interrupt processing.

e Suppress Notification (SN) field indicates if a notification event is to be suppressed (not
generated) for non-urgent interrupt requests (interrupts processed through an IRTE with
URG=0).

¢ Notification Vector (NV) field specifies the vector for notification event (interrupt).

¢ Notification Destination (NDST) field specifies the physical APIC-ID of the destination logical
processor for the notification event.

5.2.3 Interrupt-Posting Hardware Operation

Interrupt requests in remappable format are processed by hardware as described in Section 5.1.4.
When such processing encounters a IRTE entry in posted format (IM=1), the interrupt request is
processed through posting (instead of remapping). The following provides a functional overview of the
interrupt-posting hardware operation:

o If IRTE retrieved has Mode field as set (IM=1)!

— Hardware interprets the IRTE in posted format (as described in Section 9.11). If invalid
programming of posted-format IRTE is detected, the interrupt request is blocked.

— If above checks succeed, the IRTE provides the pointer to the Posted Interrupt Descriptor
(PDA-L/PDA-H), the vector value (Vector) to be posted, and if the interrupt request is
qualified as urgent (URG) or not.

e Hardware performs a coherent atomic read-modify-write operation of the posted-interrupt
descriptor as follows:

— Hardware implementations reporting Memory Type Support (MTS=1 in ECAP_REG) must use
write-back (WB) memory type with the atomic operation that updates posted-interrupt
descriptor.

— This atomic read-modify-write operation will always snoop processor caches irrespective of
the value of Pagewalk Coherency (C) field in Extended Capability Register (ECAP_REG).

— Read contents of the Posted Interrupt Descriptor, claiming exclusive ownership of its hosting
cache-line. If invalid programming (e.g., non-zero reserved fields) of Posted Interrupt
Descriptor is detected, release ownership of the cache-line, and block the interrupt request.

— If above checks succeed, retrieve current values of Posted Interrupt Requests (PIR bits
255:0), Outstanding Notification (ON), Suppress Notification (SN), Notification Vector (NV),
and Notification Destination (NDST) fields in the Posted Interrupt Descriptor.

— Modify the following descriptor field values atomically:
* Set bit in PIR corresponding to the Vector field value from the IRTE
¢ Compute X = ((ON == 0) & (URG | (SN == 0)))

1. If the IM field is 0, hardware interprets the IRTE in remapped format (described in Section 9.10).
Refer to Section 5.1.4 for interrupt-remapping hardware operation.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-13

Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

e If (X == 1), Set ON field.

— Promote the cache-line to be globally observable, so that the modifications are visible to other
caching agents. Hardware may write-back the cache-line anytime after this step.

— If (X == 1) in previous step, generate a notification event (interrupt) with attributes as
follows:

* NSDT field specifies the physical APIC-ID of destination logical CPU. Refer to Section 9.12
on how this field is interpreted for xAPIC and x2APIC modes.

* NV field specifies the vector to be used for the notification interrupt to signal the
destination CPU about pending posted interrupt.

* Delivery mode field for notification interrupt is forced to Fixed (000b)

* Re-direction Hint field for notification interrupt is forced to Clear (Ob)

* Trigger Mode field for notification interrupt is forced to Edge (0Ob)

* Trigger Mode Level field for notification interrupt is forced to Asserted (1b).

¢ Any of the above checks that result in interrupt request to be blocked is treated as a interrupt-
remapping fault condition as enumerated in Section 5.1.4.1.

5.2.4 Ordering Requirements for Interrupt Posting

This section summarizes the ordering requirements to be met by interrupt-posting hardware when
posting interrupts.
e Interrupt requests are posted transactions and follow PCI Express posted ordering rules. This
ensures that an interrupt request will not be observed by software until all prior inbound posted
requests (writes) are committed to their destinations.

— This requirement needs to be maintained even if the interrupt requests are posted. i.e.,

before an interrupt is posted (recorded) in the posted-interrupt descriptor and made visible to
software, all preceding posted requests must be completed.

¢ Since interrupt requests are posted transactions, upstream read completions must push
preceding interrupt requests.

— This requirement needs to be maintained even if one or more of the preceding interrupt
requests are posted. i.e., An upstream read completion must wait until all preceding
interrupts (irrespective of if they are remapped or posted) are completed. In case of an
interrupt that is posted, ‘completion’ of the interrupt means, both the atomic update of the
posted interrupt descriptor and the associated notification event are completed.

¢ In the interrupt-posting operation, hardware must make sure that modifications to a posted-
interrupt descriptor is observable to software before issuing the notification event for that
descriptor.

5.2.5 Using Interrupt Posting for Virtual Interrupt Delivery

This section is informative and intended to illustrate a simplified example! usage of how a Virtual
Machine Monitor (VMM) software may use interrupt-posting hardware to support efficient delivery of
virtual interrupts from assigned devices to virtual machines.

VMM software may enable interrupt-posting for a virtual machine as follows:

e For each virtual processor in the virtual machine, the VMM software may allocate a Posted
Interrupt Descriptor. Each such descriptor is used for posting all interrupts that are to be delivered
to the respective virtual processor.

1. This simplified usage example assumes the VMM software typically runs with interrupts masked,
except perhaps when placing the logical CPUs in low power states. The example illustrated here
may be extended to cover other usage scenarios.

5-14 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

— Software must block devices from accessing the memory where Posted Interrupt Descriptors
are located. One way to achieve this is by setting up remapping tables so that accesses from
devices to Posted Interrupt Descriptors are blocked by the remapping hardware.

— If a device is able to write to the Posted Interrupt Descriptor, atomicity of posted interrupt
operation is not guaranteed.

e The VMM software allocates two physical interrupt vectors (across all logical CPUs in the platform)
for notification events.

— One of this physical vectors may be used as the ‘Active Notification Vector’ (ANV) for posted
interrupt notifications to any virtual processor that is active (executing) at the time of posting
an interrupt to it.

— The other physical vector allocated may be used as the ‘Wake-up Notification Vector’ (WNV)
for posted interrupt notifications to any virtual processor that is blocked (halted) at the time
of posting an interrupt to it.

e For each interrupt source from any assigned device(s) to this virtual machine, the VMM software
may intercept and virtualize the guest software programming of respective interrupt resources
(IOXAPIC entries and/or MSI/MSI-X registers). Through this virtualization, the VMM software
detects the target virtual processor and virtual vector assigned by guest software.

e For each such interrupt source, the VMM software allocates a posted-format IRTE.

— The vector field in each such IRTE is programmed by the VMM software with the respective
virtual vector value assigned for the interrupt source by guest software.

— The posted descriptor address field in each such IRTE is programmed by the VMM software to
reference the posted descriptor allocated for the virtual processor assigned by guest software
for the interrupt source.

— The urgent (URG) field in an IRTE is Set by the VMM software if the respective interrupt
source is designated as requiring immediate (non-deferred) processing.

e The VMM software configures the processor hardware to enable APIC virtualization (including
‘virtual-interrupt delivery’ and ‘process posted interrupts’ capabilities) for the virtual processors.

— The ‘posted-interrupt notification vector’ for the virtual processors are configured with the
‘Active Notification Vector’ (ANV) value described earlier in this section.

— The ‘posted-interrupt descriptor’ for the virtual processors are configured with the address of
the Posted Interrupt Descriptor allocated for respective virtual processors.

e The VMM software scheduler may manage a virtual processor’s scheduling state as follows:

— When a virtual processor is selected for execution, the virtual processor state is designated as
‘active’ before entering/resuming it. This state is specified in its Posted Interrupt Descriptor
by programming its Notification Vector (NV) field with the ANV vector valuel. This allows all
interrupts for this virtual processor that are received while it is active (running) are processed
by the processor hardware without transferring control to the VMM software. The processor
hardware processes these notification events (with ANV vector value) by transferring any
posted interrupts in the Posted Interrupt Descriptor to the Virtual-APIC page of the virtual
processor and directly delivering it (without VMM software intervention) to the virtual
processor. Refer to ‘Intel® 64 Architecture Software Developer's Manual, Volume 3: System
Programming Guide’ for details on Intel® 64 processor support for APIC Virtualization and
Posted-Interrupt Processing.

— When a virtual processor is preempted (e.g., on quantum expiry), the virtual processor state
is designated as ‘ready-to-run’. This state is specified in its Posted Interrupt Descriptor by

1. There may be varying approaches for VMM software to manage notification vectors. For example,
an alternate approach may be for VMM software to allocate unique Activation Notification Vectors
(ANV) for each virtual processor (as opposed to sharing the same ANV for all virtual processors).
This approach may enable such VMM software to avoid switching between active and wake-up
vector values in the Posted Interrupt Descriptor on virtual processor scheduling state changes,
and instead update them only on virtual processor migrations across logical processors.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-15

Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

programming the Suppress Notification (SN) field to 1. This allows all hon-urgent interrupts
for this virtual processor received while it is in preempted state to be posted to its Posted
Interrupts Descriptor without generating a notification interrupt (thereby avoiding disruption
of currently running virtual processors). If there are interrupt sources qualified as urgent for
targeting this virtual processor, the VMM software may also modify the NV field in the Posted
Interrupt Descriptor to WNV vector value. This enables the VMM software to receive
notifications (with WNV vector value) when urgent interrupts are posted when virtual
processor is not running, allowing appropriate software actions (such as preempting the
current running virtual processor and immediately scheduling this virtual processor).

— When a virtual processor halts (e.g., on execution of HLT instruction), the VMM software may
get control, blocks further execution of the virtual processor, and designate the virtual
processor state as ‘halted’. This state is specified in its Posted Interrupt Descriptor by
programming its Notification Vector (NV) field with the WNV vector value. This enables the
VMM software to receive notifications (with WNV vector value) when any interrupt (urgent or
non-urgent) is posted for this virtual processor, allowing appropriate software action (such as
to schedule the virtual processor for future or immediate activation).

e When entering/resuming a virtual processor, the VMM software may process any pending posted
interrupts in its posted descriptor as follows:

— VMM first transitions the virtual CPU to ‘active’ state by programming the notification vector in
the Posted Interrupt Descriptor to ANV vector value.

— VMM may check if there are pending interrupts in the posted descriptor (e.g. by scanning PIR
field for non-zero value).

— If there are pending posted interrupts, VMM may generate a self-IPI! (Inter Processor
Interrupt to the same logical CPU) with vector value of ANV, through the Local XAPIC. This
interrupt is recognized by the processor as soon as interrupts are enabled in the virtual
processor enter/resume path. Since the virtual processor is configured with ANV vector value
as the ‘posted-interrupt notification vector’, this results in processor hardware processing it
same as any notification event it may receive while the virtual processor is active. This
approach enables the VMM software to ‘off-load’ the posted interrupt processing (such as
delivering the interrupt to the virtual processor through the Virtual-APIC) to the processor
hardware, irrespective of the scheduling state of the virtual processor when the interrupt was
posted by remapping hardware to the Posted Interrupt Descriptor.

e The VMM software may also apply the ‘posted-interrupt processing’ capability of the processor to
inject virtual interrupts generated by VMM software to a virtual machine (in addition to interrupts
from direct assigned devices to the virtual machine). This may be done by the VMM software
atomically ‘posting’ a virtual interrupt to the Posted Interrupt Descriptor (using atomic/LOCK
instructions that enforces cache-line update atomicity) and generating a notification event (as
IPI) to the logical processor identified as notify destination in the Posted interrupt Descriptor.

e The VMM software may handle virtual processor migrations across logical processors by
atomically updating the Notification Destination (NDST) field in the respective Posted Interrupt
Descriptor to the physical APIC-ID of the logical processor to which the virtual processor is
migrated to. This enables all new notification events from the posted descriptor of this virtual
processor to be routed to the new logical processor.

5.2.6 Interrupt Posting for Level Triggered Interrupts

Level-triggered interrupts generated through IOxAPICs Redirection Table Entries (illustrated in
Figure 5-17) can be processed through Interrupt Remap Table Entries (IRTE) for Posted Interrupts
(illustrated in Section 9.11). However, unlike with interrupt-remapping, all interrupts (including level
interrupts) processed by the posted interrupt processing hardware are treated as edge-triggered

1. The usage illustrated in this section assumes the VMM software is executing with interrupts
disables, and interrupts are enabled by the processor hardware as part of entering/resuming the
virtual processor. For VMM software implementations that have interrupt enabled in the VMM,
precaution must be taken by the VMM software to disable interrupt on the logical processor before
generating the self-IPI and resuming the virtual processor.

5-16 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Interrupt Remapping
®

interrupts. Thus VMM software enabling posting of Level-triggered interrupts must take special care to
properly virtualize the End of Interrupt (EOI) processing by the virtual processor. For example, the
VMM software may set up the virtual processor execution controls to gain control on EOI operation to
the Virtual APIC controller by guest software, and virtualize the operation by performing a Directed-
EOI to the IOXAPIC that generated the level-triggered interrupt. A Directed-EOI is performed by
software writing directly to the IOXAPIC EOI register. Refer to the IOXAPIC specification for details on
IOXAPIC EOI register.

5.3 Memory Type and Snoop Behavior Summary

The table below summarizes cache snooping behavior for memory accesses during the interrupt
translation process. The table also summarizes the memory type used when accesses are made on a
coherent link. The memory type value provided by hardware is not used by a non-coherent link.

e A value of 1 implies memory access snoops processor caches. A value of 0 implies that the
memory access does not snoop processor caches.

e ECAP.C is the Page-walk Coherency field in Extended Capability Register (ECAP_REG).

e Hardware implementations reporting Memory Type Support (MTS=1 in ECAP_REG) must use
write-back (WB) memory type for IRTE and PID access.

Table 14. Memory Type and Snoop Behavior for Interrupt Remap Structures

Interrupt Structure Access Snoop Memory Type
Read of Interrupt Remap Table Entry ECAP.C WB
Atomic Update of Posted Interrupt Descriptor 1 WB

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 5-17

Interrupt Remapping—Intel® Virtualization Technology for Directed I/0 I n te I
®

5-18 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

6 Caching Translation Information

Remapping hardware may accelerate the address-translation process by caching data from the
memory-resident paging structures. Because the hardware does not ensure that the data that it
caches are always consistent with the structures in memory, it is important for software to
comprehend how and when the hardware may cache such data, what actions can be taken to remove
cached data that may be inconsistent, and when it should do so.

6.1 Caching Mode

The Caching Mode (CM) field in Capability Register indicates if the hardware implementation caches
not-present or erroneous translation-structure entries. When the CM field is reported as Set, any
software updates to remapping structures other than first-level mapping (including updates to not-
present entries or present entries whose programming resulted in translation faults) requires explicit
invalidation of the caches.

Hardware implementations of this architecture must support operation corresponding to CM=0.
Operation corresponding to CM=1 may be supported by software implementations (emulation) of this
architecture for efficient virtualization of remapping hardware. Software managing remapping
hardware should be written to handle both caching modes.

Software implementations virtualizing the remapping architecture (such as a VMM emulating
remapping hardware to an operating system running within a guest partition) may report CM=1 to
efficiently virtualize the hardware. Software virtualization typically requires the guest remapping
structures to be shadowed in the host. Reporting the Caching Mode as Set for the virtual hardware
requires the guest software to explicitly issue invalidation operations on the virtual hardware for
any/all updates to the guest remapping structures. The virtualizing software may trap these guest
invalidation operations to keep the shadow translation structures consistent to guest translation
structure modifications, without resorting to other less efficient techniques (such as write-protecting
the guest translation structures through the processor’s paging facility).

6.2 Address Translation Caches
This section provides architectural behavior of following remapping hardware address translation
caches:

e Context-cache

— Caches context-entry, or scalable-mode context-entry encountered on a address translation
of requests.

e PASID-cache
— Caches scalable-mode PASID-table entries encountered on address translation of requests.
e I/O Translation Look-aside Buffer (IOTLB)

— Caches the effective translation for a request. This can be the result of second-level only
page-walk, first-level only page-walk, or nested page-walk - depending on the type of request
(with or without PASID) that is address translated, and the programming of the DMA
remapping hardware and various translation structures.

e Paging-structure Caches

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-1

Caching Translation Information—Intel® Virtualization Technology for Directed I/0

intel.

— Caches the intermediate paging-structure entries (i.e., entries referencing a paging-structure
entry) encountered on a first-level page-walk or second-level page-walk (including for nested
translation).

6.2.1 Tagging of Cached Translations

Remapping architecture supports tagging of various translation caches as follows. Tags can be used
by remapping hardware for cache lookup during address translation processing, or for selecting cache
entries to be invalidated. For a lookup to be considered a match, all the associated tags must match.
Depending on the type of invalidation, one or more tag matches are sufficient to consider the entry as

a match.

Table 15. Cache Tagging
Tags for Lookup/ Legacy
Caches Invalidation Mode Scalable Mode
Lookup e Source-ID e Source-ID
Context Cache -
Invalidation : gzl;::?nf?[) e Source-ID
e PASID
Look NA
ookup e Source-ID
PASID Cache
I e PASID
Invalidation NA « Domain-ID
e PASID
Lookup NA e Domain-ID
First-level paging structure * Address
cache « PASID
Invalidation NA e Domain-ID
e Address
Lookup e Domain-ID e Domain-ID
Second-level paging structure * Address * Address
cache Invalidation ¢ Domain-ID e Domain-ID
e Address e Address
Reg-without-PASID
e Entry allocated by request-without-PASID
e Source-ID
e Address
-ID
Lookup : ig::zzs Reg-with-PASID
e Entry allocated by request-with-PASID
I0TLB e Source-ID
e PASID
e Address
e Domain-ID
Invalidation * Domain-ID * PGTT
e Address e PASID
e Address

6-2 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

e Address tagging:

— IOTLB entries are tagged by the upper bits of the input-address (called the page number) in
the request that resulted in allocation of the respective cache entry.

Table 16. Address Tags for IOTLB

Type of Mapping 4K pages 2M pages 1G pages
first-level only or nested mapping Addr[N:12] Addr[N:21] Addr[N:30]
second level only mapping Addr[MGAW:12] Addr[MGAW:21] Addr[MGAW:30]
pass-through mapping Addr[HAW:12] Addr[HAW:21] Addr[HAW:30]

N=56 for 5-level paging and N=47 for 4-level paging.

— Paging-structure caches are tagged by the respective bits of the input-address.

Table 17. Address Tags for paging-structure caches

Type of Mapping PML5E PML4E PDPE PDE
FL page-structure cache Addr[56:48] Addr[56:39] Addr[56:30] Addr[56:21]
SL page-structure cache Addr[MGAW:48] Addr[MGAW:39] Addr[MGAW:30] Addr[MGAW:21]

e PASID tagging:

— In scalable mode, requests-without-PASID are treated as requests-with-PASID when looking
up the paging-structure cache, and PASID-cache. Such lookups use the PASID value from the
RID_PASID field in the scalable-mode context-entry used to process the request-without-
PASID. Refer to Section 9.4 for more details on scalable-mode context-entry. Additionally,
after translation process when such requests fill into IOTLB, the entries are tagged with PASID
value obtained from RID_PASID field but are still marked as entries for requests-without-
PASID. Tagging of such entries with PASID value is required so that PASID-selective P_IOTLB
invalidation can correctly remove all stale mappings. Implementation may allow requests-
with-PASID from a given Requester-ID to hit entries brought into IOTLB by requests-without-
PASID from the same Requester-ID to improve performance.

e Interrupt-index tagging:

— Interrupt-remapping cache is architecturally tagged by the interrupt-index of remappable-
format interrupt requests that resulted in allocation of the interrupt-entry-cache entry.

Tagging of cached translations enable remapping hardware to cache information to process requests
from multiple endpoint devices targeting multiple address-spaces. Tagging also enable software to
efficiently invalidate groups of cached translations that are associated with the same tag value.

6.2.2 Context-Cache

Context-cache is used to cache context-entries or scalable-mode context-entries used to address
translate requests. Each cached entry is referenced by the source-id in the request.

For implementations reporting Caching Mode (CM) as 0 in the Capability Register, if any fault
conditions are encountered as part of accessing a context-entry, or scalable-mode context-entry, the
resulting entry is not cached in the context-cache (and hence do not require software to invalidate the
context-cache on modifications to such entries). The conditions that prevent cacheability in Context
Cache are LRT.1, LRT.2, LRT.3, LCT.1, LCT.2, LCT.3, LCT.4.x, SRTA.1.x, SRTA.2, SRT.1, SRT.2, SRT.3,
SCT.1, SCT.2, SCT.3, SCT.4 (see Section 7.1.3 for definition of conditions).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-3

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

For implementations reporting Caching Mode (CM) as 1 in the Capability Register, above conditions
may cause caching of the entry that resulted in the fault, and require explicit invalidation by software
to invalidate such cached entries. When CM=1, if the fault was detected without a present context-
entry the reserved domain-id value of 0 is used to tag the cached entry that caused the fault.

6.2.2.1 Context-Entry Programming Considerations

Software must ensure that, if multiple context-entries are programmed with the same Domain-id
(DID), such entries must be programmed with the same values for the second-level page-table
pointer (SLPTPTR) and Address Width (AW) fields. This is required since hardware implementations
tag the various translation caches with DID (see Section 6.2.1). Context-entries with the same value
in the SLPTPTR field are recommended to use the same DID value for best hardware efficiency.

When modifying root-entries, scalable-mode root-entries, context-entries, or scalable-mode context
entries:

e When modifying fields in present (P=1) entries, software must ensure that at any point of time
during the modification (performed through single or multiple write operations), the before and
after state of the entry being modified is individually self-consistent. For example, software
performing a SLPTPTR or Translation Type (TT) field update must use a 16-Byte aligned atomic
write of Intel® 64 processors to simultaneously update the DID field. This is required as
remapping hardware tags some of the translation caches with DID and may be fetching these
entries at any point of time while they are being modified by software. Software modifying these
present (P=1) entries are also responsible to ensure these does not impact in-flight transactions
from the affected endpoint devices!.

e Software must serially invalidate the context-cache, PASID-cache (if applicable), and the IOTLB.
The serialization is required since hardware may utilize information from the context-caches (e.g.,
Domain-ID) to tag new entries inserted to the PASID-cache and IOTLB for processing in-flight
requests. Section 6.5 describe the invalidation operations.

Software must not use domain-id value of 0 on when programming context-entries on
implementations reporting CM=1 in the Capability register.

6.2.3 PASID-Cache

PASID-cache is used to cache scalable-mode PASID-table entries that are used for address
translations. This cache is only used when hardware is operating in scalable mode
(RTADDR_REG.TTM=01b). Request-without-PASID uses the PASID value from the RID_PASID field in
the scalable-mode context entry to reference the PASID-cache. Hardware implementations should
take care that the same PASID coming from multiple source-ids does not thrash itself in PASID-cache.

For implementations reporting Caching Mode (CM) as 0 in the Capability Register, if any of the
following translation fault conditions are encountered leading up to or as part of accessing a PASID-
table entry, the entry is not cached in the PASID-cache. The fault conditions that prevent cacheability
in PASID Cache are LRT.1, LRT.2, LRT.3, LCT.1, LCT.2, LCT.3, LCT.4.x, LCT.5, SRTA.1.x, SRTA.2, SRT.1,
SRT.2, SRT.3, SCT.1, SCT.2, SCT.3, SCT.4, SCT.5, SCT.6, SCT.7, SPD.1, SPD.2, SPD.3, SPT.1, SPT.2,
SPT.3, SPT.4.x (see Section 7.1.3 for definition of conditions).

For implementations reporting Caching Mode (CM) as 1 in the Capability Register, above conditions
may cause caching of the entry that resulted in the fault, and require explicit invalidation by software
to invalidate such cached entries. The caching of such faulted translations in PASID-cache follows
same tagging as if there was no faults (i.e., PASID value from the request-with-PASID or RID_PASID
from the scalable-mode context-entry processing request-without-PASID, Domain-id from the
scalable-mode PASID-table entry etc.).

1. Example usages for modifying present context entry may include modifying the translation-type (TT) field to
transition between pass-through and non-pass-through modes. Section 9.3 for details on these fields.

6-4 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

Since information from the present entries (e.g., PML5 table pointer with 5-level paging or PML4 table
pointer with 4-level paging) can be utilized to fill other caches (e.g., IOTLB, Paging-structure caches),
to ensure updates to scalable-mode PASID-directory/table entries are visible to hardware, software
must invalidate the PASID-cache followed by invalidation of IOTLB and paging-structure caches, in
that order. Section 6.5 describe the invalidation operations.

6.2.3.1 Scalable-Mode PASID-Table Entry Programming Considerations

Software must ensure that, if multiple scalable-mode PASID-table entries are programmed with the
same Domain-id (DID), such entries must be programmed with the same value for the second-level
page-table pointer (SLPTPTR) field, and the same value for the Address Width (AW) field. This is
required since hardware implementations tag the various translation caches with domain-id (see
Section 6.2.1). Scalable-mode PASID-table entries with the same value in the SLPTPTR field are
recommended to use the same domain-id value for best hardware efficiency.

Software must program a valid value in the DID field of all scalable-mode PASID-table entries,
including entries where the PASID Granular translation type (PGTT) field is set to first-level-only or
pass-through (PGTT equal to 001b or 100b). Scalable-mode PASID table entries programmed for first-
level translation or pass-through (PGTT equal to 001b or 100b) must be programmed with a DID
value that is different from those used in any PASID table entries that are programmed for second-
level or nested translation (PGTT equal to 010b or 011b). This is required since hardware
implementations tag various caches with domain-id as described in Section 6.2.1. Scalable-mode
PASID-table entries with PGTT value of 001b or 100b are recommended to use the same domain-id
value for best hardware efficiency.

When modifying scalable-mode PASID-table entries:

e When modifying fields in present (P=1) entries, software must ensure that at any point of time
during the modification (performed through single or multiple write operations), the before and
after state of the entry being modified is individually self-consistent. For example, software
performing a SLPTPTR or PGTT field update must use a 16-Byte aligned atomic write of Intel® 64
processors to simultaneously update the DID field. This is required as remapping hardware tags
some of the translation caches with DID and may be fetching these entries at any point of time
while they are being modified by software. Software modifying these present (P=1) entries are
also resPonsibIe to ensure these do not impact in-flight transactions from the affected endpoint
devices*®.

e Software must serially invalidate the PASID-cache and the IOTLB. The serialization is required
since hardware may utilize information from the PASID-cache (e.g., Domain-ID) to tag new
entries inserted to the IOTLB for processing in-flight requests. Section 6.5 describes the
invalidation operations.

Software must not use a domain-id value of 0 when programming scalable-mode PASID-table entries
on implementations reporting CM=1 in the capability register.

6.2.4 IOTLB
Remapping hardware caches information about the translation of input-addresses in the IOTLB. IOTLB
may cache information with different functionality as below:

e First-level mappings:

— Each of these is a mapping from a input page number in a request to the physical page frame
to which it translates (derived from first-level translation), along with information about
access privileges and memory typing (if applicable).

1. Example usages for modifying present scalable-mode PASID-table entries may include modifying the PASID
Granular Translation-Type (PGTT) field to transition between pass-through and non-pass-through modes.
Refer to Section 9.6 for details on these fields.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-5

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

e Second-level mappings:

— Each of these is a mapping from a input page number in a request to the physical page frame
to which it translates (derived from second-level translation), along with information about
access privileges and memory typing (if applicable).

¢ Nested mappings:

— Each of these is a mapping from a input page number in a request to the physical page frame
to which it translates (derived from both first-level and second-level translation), along with
information about access privileges and memory typing (if applicable).

e Pass-through Mappings
— Each of these is a mapping from an input page number in a request to the physical page
frame to which it translates (derived as pass-through mapping).
Each entry in an IOTLB is an individual translation. Each translation is referenced by a page number.
Each entry architecturally contains the following information:
e IOTLB entries hosting first-level mappings:
— The physical address corresponding to the page number (the page frame).

— The access rights from the first-level paging-structure entries used to translate input-
addresses with the page number (see Section 3.6.1)

e The logical-AND of the R/W flags.
e The logical-AND of the U/S flags.
e The logical-OR of the XD flags (necessary only if NXE=1).

— Attributes from a first-level paging-structure entry that identifies the final page frame for the
page number (either a PTE or a first-level paging-structure entry with PS=1):

e The dirty flag (see Section 3.6.2).
e The memory type (see Section 3.10).
e IOTLB entries hosting second-level mappings:
— The physical address corresponding to the page number (the page frame).

— The access rights from the second-level paging-structure entries used to translate input-
addresses with the page number (see Section 3.7.1)

e The logical-AND of the R flags.
¢ The logical-AND of the W flags.
e The logical-AND of the X flags (necessary only if SLEE=1)

— Attributes from a second-level paging-structure entry that identifies the final page frame for
the page number (either a SL-PTE or a second-level paging-structure entry with PS=1):

e The memory type (see Section 3.10).
e The snoop (SNP) bit (see Section 3.9 and Section 4.2.3).
e The dirty flag (necessary only if SLADE=1)
e IOTLB entries hosting nested mappings:
— The physical address corresponding to the page number (the page frame).

— The combined access rights from the first-level paging-structure and second-level paging-
structure entries used to translate input-addresses with the page number (see Section 3.8.1)

¢ The logical-AND of the R/W flags (from first-level translation) and W flags (from second-
level translation of the result of first-level translation).

e The logical-AND of the U/S flags (from first-level translation).

6-6 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

e The logical-OR of the XD flags from first-level translation (necessary only if NXE=1) with
the logical-AND of the X flags from second-level translation (necessary only if SLEE=1).

— Attributes from a first-level paging-structure entry that identifies the final page frame for the
page number (either a PTE or a paging-structure entry with PS=1):

e The dirty flag (see Section 3.6.2).

— Combined attributes from first-level and second-level paging-structure entries that identifies
the final page frame for the page number (either a page-table-entry or a paging-structure
entry with PS=1):

¢ The memory type (see Section 3.10).

IOTLB entries may contain other information as well. A remapping hardware may implement multiple
I0TLBs, and some of these may be for special purposes, e.g., only for instruction fetches. Such

special-purpose I0TLBs may not contain some of this information if it is not necessary. For example, a
IOTLB used only for instruction fetches need not contain information about the R/W and dirty flags.)

As noted in Section 6.2.1, any IOTLB entries created by hardware are associated with appropriate
tags (e.g., source-id of request that allocated the entry, PASID value if request is associated to a
PASID, domain-id from the context entry or scalable-mode PASID-table entry that led to the
translation, etc.).

Remapping hardware need not implement any IOTLBs. Remapping hardware that do implement
IOTLBs may evict or invalidate any IOTLB entry at any time. Software should not rely on the existence
of IOTLBs or on the retention of IOTLB entries.

6.2.4.1 Details of IOTLB Use

For implementations reporting Caching Mode (CM) as 0 in the Capability Register, IOTLB caches only
valid mappings (i.e. results of successful page-walks that did not result in a translation fault).
Specifically, if any of the translation fault conditions described in Section 7.1.3 are encountered, the
results are not cached in the IOTLB.

For implementations reporting Caching Mode (CM) as Set in the Capability Register, these translation
fault conditions may cause caching of the faulted translation in the IOTLB. The caching of such faulted
translations in IOTLB follows same tagging as if there was no faults (i.e., source-id of request that
allocated the entry, PASID value if request is associated with a PASID, domain-id from the context
entry or scalable-mode PASID-table entry that led to the translation, etc.). The CM capability does not
apply to first-level mappings. Even when CM is 1, hardware does not cache translations in the IOTLB
that encountered a fault in first-level mapping.

With first-level translation, when CM is 0, before caching a translation, hardware sets the accessed
(A) flag to 1 in each of the first-level paging-structure entries used for the translation, if not already
set. If EAFE = 1 in the scalable-mode PASID-table entry, hardware also sets the extended-accessed
(EA) flag to 1 in each of the paging-structure entries, if not already set.

With second-level translation, when CM is 0 and SLADE in PASID-table entry used to process the
request is 1, before caching a translation, hardware sets the accessed (A) flag to 1 in each of the
second-level paging-structure entries used for the translation, if not already set.

With nested translation, hardware applies these rules for both first- and second-level translation.
Setting of accessed and extended-accessed flags in the first-level paging structure entries is subject
to write permission checks at second-level translation.

When CM is 1, hardware applies the above rules to translations where all paging structures leading to
the translation are present. However the A and EA flags are not set when caching not present entries

If the page number of a input-address corresponds to a IOTLB entry tagged with the right source-id
(and PASID, if applicable), the hardware may use that IOTLB entry to determine the page frame,
access rights, and other attributes for accesses to that input-address. In this case, the hardware may
not actually consult the paging structures in memory. The hardware may retain a IOTLB entry

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-7

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

unmodified even if software subsequently modifies the relevant paging-structure entries in memory.
See Section 6.5 for how software can ensure that the hardware uses the modified paging-structure
entries.

If the paging structures specify a translation using a page larger than 4-KBytes, some hardware
implementations may choose to cache multiple smaller-page IOTLB entries for that translation. Each
such IOTLB entry would be associated with a page number corresponding to the smaller page size
(E.g., bits N:12 of a input-address with first-level translation, where N is 56 bits with 5-level paging or
47 bits with 4-level paging), even though part of that page number (e.g., bits 20:12) is part of the
offset with respect to the page specified by the paging structures. The upper bits of the physical
address in such a IOTLB entry are derived from the physical address in the PDE used to create the
translation, while the lower bits come from the input-address of the access for which the translation is
created.

There is no way for software to be aware that multiple translations for smaller pages have been used
for a large page. If software modifies the paging structures so that the page size used for a 4-KByte
range of input-addresses changes, the IOTLBs may subsequently contain multiple translations for the
address range (one for each page size). A reference to a input- address in the address range may use
any of these translations. Which translation is used may vary from one execution to another, and the
choice may be implementation-specific.

6.2.5 Caches for Paging Structures

Remapping hardware may cache frequently used paging-structure entries that reference other
paging-structure entries (as opposed to page frames). Depending on the type of the paging-structure
entry cached, the paging-structure caches may be classified as PML5-cache, PML4-cache, PDPE-
cache, and PDE-cache. These may cache information with different functionality as below:

e First-level-paging-structure entries:

— Each of these is a mapping from the upper portion of a input-address in a request to the
physical address of the first-level paging structure used to translate the corresponding region
of the input-address space, along with information about access privileges. For example: With
5-level paging, bits 56:48 of the input-address would map to the address of the relevant first-
level PML4 table; With 4-level paging, bits 47:39 of the input-address would map to the
address of the relevant first-level page-directory-pointer table.

e Second-level-paging-structure entries:

— Each of these is a mapping from the upper portion of a input-address to the physical address
of the second-level paging structure used to translate the corresponding region of the input-
address space, along with information about access privileges. For example, bits MGAW:39 of
the input-address would map to the address of the relevant second-level page-directory-
pointer table. When hardware is operating in scalable mode (RTADDR_REG.TTM=01b) and
PASID Granular Translation Type (PGTT) field in scalable-mode PASID-table entry is
programmed as nested, the input-address can be the input-address in a request (with or
without PASID), or can be the second-level address of a first-level paging-structure entry
(accessed as part of a nested translation).

e Combined-paging-structure entries:

— Each of these is a mapping from the upper portion of a input-address in a request to the
physical address of the first-level paging structure (after nesting through second-level
translation) used to translate the corresponding region of the input-address space, along with
information about access privileges.

Hardware implementations may implement none or any of these paging-structure-caches, and may
use separate caches in implementation specific ways to manage different types of cached mappings
(e.g., first-level and nested mappings may be held in one cache and second-level in a different cache,
or any other formations).

6-8 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

6.2.5.1 PML5-cache

When 5-level paging is effective, each entry in a PML5-cache holds the following information:
e PML5-cache entries hosting first-level PML5Es:

— Each PML5-cache entry caching a first-level PML5E is referenced by a 9-bit value and is used
for input-addresses for which bits 56:48 have that value.

— The entry contains information from the PML5E used to translated such input-addresses:
e The physical address from the PML5E (address of first-level PML4 table).
e The value of R/W flag of the PML5E.
e The value of U/S flag of the PML5E.
e The value of XD flag of the PML5E (necessary only if NXE=1).
e The values of PCD and PWT flags of the PML5E.
e PML5-cache entries hosting SL-PML5Es:

— Each PML5-cache entry caching a second-level mapping is referenced by a N-bit value and is
used for input-addresses for which bits MGAW:48 have that value.

— The entry contains information from the SL-PML5E used to translate such input-addresses:
e The physical address from the SL-PML5E (address of second-level PML4 table).
e The value of R flag of the SL-PML5E.
e The value of W flag of the SL-PML5E.
e The value of X flag of the SL-PML5E (necessary only if SLEE=1).
e PML5-cache entries hosting nested PML5Es:

— Each PML5-cache entry caching a nested mapping is referenced by a 9-bit value and is used
for input-addresses for which bits 56:48 have that value.

— The entry contains information from the first-level PML5E used to translate such input-
addresses, combined with information from the nested second-level translation of the physical
address from that PML5E:

e The physical address from the second-level translation of the address in the PML5E
(physical-address of first-level PML4 table).

e The logical-AND of the R/W flag from the PML5E with the W flags from second-level
translation of the address in PML5E.

e The value of U/S flag of the PML5E.

¢ The logical-OR of the XD flag of the PML5E (necessary only if NXE=1) with the logical-AND
of the X flags from second-level translation of the address in PML5E (necessary only if
SLEE=1).

The following describes how a hardware implementation may use the PML5-cache:

e If the hardware has a PML5-cache entry for a input-address, it may use that entry when
translating the input-address (instead of the PML5E in memory).

e For first-level mappings, hardware does not create a PML5-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML5E in memory. For nested mappings, hardware also does not
create a PML5-cache entry unless there is a second-level translation with read permission for the
address in PML5E. For second-level mappings, hardware does not create a PML5E-cache entry
unless at least one of R and W flags is 1 and all reserved bits are 0 in the SL-PML5E in memory-.

1. This behavior applies for implementations reporting Caching Mode (CM) as 0 in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-9

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

e For first-level mappings, before creating a PML5-cache entry, hardware sets the accessed (A) flag
to 1 in the PML5E in memory, if it is not already 1. Hardware also sets the extended-accessed
(EA) flag to 1, if EAFE=1. With nested translation, setting of accessed and extended-accessed
flags are subject to write permission checks at second-level translation.

e The hardware may create a PML5-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced

PML4

table).

If the hardware creates a PML5-cache entry, the hardware may retain it unmodified even if software
subsequently modifies the corresponding PML5E (SL-PML5E) in memory.

6.2.5.2

PML4-cache

Each entry in a PML4-cache holds the following information:

e PML4

-cache entries hosting first-level PML4Es:

— Each PML4-cache entry caching a first-level PMLAE is referenced by a 9-bit (or 18-bit with 5-
level paging) value and is used for input-addresses for which bits N:39 (N=56 with 5-level
paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E and PML4E used to translated such input-
addresses:

The physical address from the PML4E (address of first-level page-directory-pointer table).

The logical-AND of the R/W flags in the PML5E and PML4E (with 5-level paging), or the
value of R/W flag of the PML4E (with 4-level paging).

The logical-AND of the U/S flags in the PML5E and PML4E (with 5-level paging), or the
value of U/S flag of the PML4E (with 4-level paging).

The logical-OR of the XD flags in the PML5E and PML4E (with 5-level paging), or the value
of XD flag of the PML4E (with 4-level paging); This is necessary only if NXE=1.

The values of PCD and PWT flags of the PML4E.

e PML4-cache entries hosting SL-PML4Es:

— Each PML4-cache entry caching a second-level mapping is referenced by a N-bit value and is
used for input-addresses for which bits MGAW:39 have that value.

— The entry contains information from the SL-PML5E and SL-PML4E used to translate such
input-addresses:

e PML4-

The physical address from the SL-PML4E (address of second-level page-directory-pointer
table).

The logical-AND of the R flags in the SL-PML5E and SL-PML4E (with 5-level translation), or
the value of R flag of the SL-PML4E (with 4-level translation).

The logical-AND of the W flags in the SL-PML5E and SL-PML4E with 5-level translation), or
the value of W flag of the SL-PML4E (with 4-level translation).

The logical-AND of the X flag in the SL-PML5E and SL-PML4E (with 5-level translation), or
the value of X flag of the SL-PML4E (with 4-level translation); This is necessary only if
SLEE=1).

cache entries hosting nested PML4Es:

— Each PML4-cache entry caching a nested mapping is referenced by a 9-bit (or 18-bit with 5-
level paging) value and is used for input-addresses for which bits N:39 (where N=56 with 5-
level paging and N=47 with 4-level paging) have that value.

— The entry contains information from the first-level PML5E and PML4E used to translate such
input-addresses, combined with information from the nested second-level translation of the
physical address from that PML4E:

6-10

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

e The physical address from the second-level translation of the address in the PML4E
(physical-address of first-level page-directory-pointer table).

e With 5-level paging: The logical-AND of the R/W flags in the PML5E and PML4E, with the W
flags from second-level translation of the address in the PML4E; With 4-level paging: The
logical-AND of the R/W flag from the PML4E with the W flags from second-level translation
of the address in PML4E.

e With 5-level paging: The logical-AND of the U/S flags in the PML5E and PML4E; With 4-
level paging: The value of U/S flag of the PML4E.

e With 5-level paging: The logical-OR of the XD flags in the PML5E and PML4E (necessary
only if NXE=1) with the logical-AND of the X flags from second-level translation of the
address in PML4E (necessary only if SLEE=1); With 4-level paging: The logical-OR of the
XD flag of the PML4E (necessary only if NXE=1) with the logical-AND of the X flags from
second-level translation of the address in PML4E (necessary only if SLEE=1).

The following items detail how a hardware implementation may use the PML4-cache:

If the hardware has a PML4-cache entry for a input-address, it may use that entry when
translating the input-address (instead of the PML5E and PML4E in memory).

For first-level mappings, hardware does not create a PML4-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML5E and PML4E in memory. For nested mappings, hardware also
does not create a PML4-cache entry unless there is a second-level translation with read
permission for the address in PML5E and PML4E. For second-level mappings, hardware does not
create a PML4E-cache entry unless at least one of R and W flags is 1 and all reserved bits are 0 in
the SL-PML5E and SL-PML4E in memory?!.

For first-level mappings, before creating a PML4-cache entry, hardware sets the accessed (A) flag
to 1 in the relevant PML5E and PML4E in memory, if it is not already 1. Hardware also sets the
extended-accessed (EA) flag to 1 in these entries, if EAFE=1. With nested translation, setting of
accessed a{wd extended-accessed flags are subject to write permission checks at second-level
translation-.

The hardware may create a PML4-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
page-directory-pointer table).

If the hardware creates a PML4-cache entry, the hardware may retain it unmodified even if
software subsequently modifies the corresponding PML5E (SL-PML5E) or PML4E (SL-PML4E) in
memory.

6.2.5.3 PDPE-cache

Each entry in a PDPE-cache holds the following information:

PDPE-cache entries hosting first-level PDPEs:

— Each PDPE-cache entry caching a first-level PDPE is referenced by an 18-bit (27-bit with 5-
level paging) value and is used for input-addresses for which bits N:30 (where N=56 with 5-
level paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E and PDPE used
to translate such input-addresses:

e The physical address from the PDPE (address of first-level page-directory). (No PDPE-
cache entry is created for a PDPE that maps a page.)

e The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E and PDPE.
e The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E and PDPE.

1. This behavior applies for implementations reporting Caching Mode (CM) as 0 in the Capability

register. See Section 6.1 for caching behavior on implementations reporting CM=1.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-11

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

e The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E and PDPE
(necessary only if NXE=1).

e The values of PCD and PWT flags of the PDPE.
e PDPE-cache entries hosting SL-PDPEs:

— Each PDPE-cache entry caching a SL-PDPE is referenced by a N-bit value and is used for
input-addresses for which bits MGAW:30 have that value.

— The entry contains information from the SL-PML4E and SL-PDPE used to translated such
input-addresses:

e The physical address from the SL-PDPE (address of second-level page-directory). (No
PDPE-cache entry is created for a SL-PDPE that maps a page.)

¢ The logical-AND of the R flags in the SL-PML5E (with 5-level translation), SL-PML4E and
SL-PDPE.

e The logical-AND of the W flags in the SL-PML5E (with 5-level translation), SL-PML4E and
SL-PDPE.

e The logical-AND of the X flag in the SL-PML5E (with 5-level translation), SL-PML4E and SL-
PDPE (necessary only if SLEE=1).

e PDPE-cache entries hosting nested PDPEs:

— Each PDPE-cache entry caching a nested mapping is referenced by a 18-bit (27-bit with 5-
level paging) value and is used for input-addresses for which bits N:30 (where N=56 with 5-
level paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E and PDPE used
to translated such input-addresses, combined with information from the nested second-level
translation of the physical address from that PDPE:

e The physical address from the second-level translation of the address in the PDPE
(physical-address of first-level page-directory). (No PDPE-cache entry is created for a
PDPE that maps a page.)

e The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E and PDPE,
with the W flags from second-level translation of the address in the PDPE.

e The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E and PDPE.

e The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E and PDPE
(necessary only if NXE=1) with the logical-AND of the X flags from second-level translation
of the address in PDPE (necessary only if SLEE=1).

The following items detail how a hardware implementation may use the PDPE-cache:

o If the hardware has a PDPE-cache entry for a input-address, it may use that entry when
translating the input-address (instead of the PML5E, PML4E and PDPE in memory).

e For first-level mappings, hardware does not create a PDPE-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML5E, PML4E and the PDPE in memory. For nested mappings,
hardware also does not create a PDPE-cache entry unless there is a second-level translation with
read permission for the address in the PML5E, PML4E and the PDPE. For second-level mappings,
hardware does not create a PDPE-cache entry unless at least one of R and W flags is 1 and all
reserved bits are 0 in the SL-PML5SE, SL-PML4E and the SL-PDPE in memory?.

e For first-level mappings, before creating a PDPE-cache entry, hardware sets the accessed (A) flag
to 1 in the relevant PML5E, PML4E and PDPE in memory, if it is not already 1. Hardware also sets
the extended-accessed (EA) flag to 1 in these entries, if EAFE=1. With nested translation, setting
of accessed and extended-accessed flags are subject to write permission checks at second-level
translation.

1. This behavior applies for implementations reporting Caching Mode (CM) as 0 in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.

6-12 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

e The hardware may create a PDPE-cache entry even if there are no translations for any input-

address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
page-directory)

o If the hardware creates a PDPE-cache entry, the hardware may retain it unmodified even if

software subsequently modifies the corresponding PML5E (SL-PML5E), PML4E (SL-PML4E) or
PDPE (SL-PDPE) in memory.

6.2.5.4 PDE-cache

Each entry in a PDE-cache holds the following information:
e PDE-cache entries hosting first-level PDEs:

— Each PDE-cache entry caching a first-level PDE is referenced by an 27-bit (36-bit with 5-level
paging) value and is used for input-addresses for which bits N:21 (where N=56 with 5-level
paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E, PDPE and PDE
used to translate such input-addresses:

e The physical address from the PDE (address of first-level page-table). (No PDE-cache entry
is created for a PDE that maps a page.)

e The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE.

e The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE.

¢ The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E, PDPE and PDE
(necessary only if NXE=1).

e The values of PCD and PWT flags of the PDE.
e PDE-cache entries hosting SL-PDEs:

— Each PDE-cache entry caching a SL-PDE is referenced by a N-bit value and is used for input-
addresses for which bits MGAW:21 have that value.

— The entry contains information from the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE used to translated such input-addresses:

e The physical address from the SL-PDE (address of second-level page-table). (No PDE-
cache entry is created for a SL-PDE that maps a page.)

e The logical-AND of the R flags in the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE.

e The logical-AND of the W flags in the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE.

e The logical-AND of the X flag in the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE (necessary only if SLEE=1).

e PDE-cache entries hosting nested PDEs:

— Each PDE-cache entry caching a nested mapping is referenced by a 27-bit (36-bit with 5-level
paging) value and is used for input-addresses for which bits N:21 (where N=56 with 5-level
paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E, PDPE and PDE
used to translated such input-addresses, combined with information from the nested second-
level translation of the physical address from that PDE:

e The physical address from the second-level translation of the address in the PDE (physical-
address of first-level page-table). (No PDE-cache entry is created for a PDE that maps a
page.)

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-13

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

e The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE, with the W flags (from second-level translation of the address in the PDE).

e The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE.

e The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E, PDPE and PDE
(necessary only if NXE=1) with the logical-AND of the X flags from second-level translation
of the address in PDE (necessary only if SLEE=1).

The following items detail how a hardware implementation may use the PDE-cache:

e If the hardware has a PDE-cache entry for a input-address, it may use that entry when translating
the input-address (instead of the PML5E, PML4E, the PDPE, and the PDE in memory).

e For first-level mappings, hardware does not create a PDE-cache entry unless the P flag is 1 and all
reserved bits are 0 in the PML5E, PML4E, the PDPTE, and the PDE in memory. For nested
mappings, hardware also does not create a PDE-cache entry unless there is a second-level
translation with read permission for the address in the PML5E, PML4E, the PDPE, and the PDE. For
second-level mappings, hardware does not create a PDE-cache entry unless at least one of R and
W flags is 1 and all reserved bits are 0 in the SL-PML5E, SL-PML4E, the SL-PDPE, and the SL-PDE
in memory-.

e For first-level mappings, before creating a PDE-cache entry, hardware sets the accessed (A) flag
to 1 in the relevant PML5E, PML4E, PDPE and PDE in memory, if it is not already 1. Hardware also
sets the extended-accessed (EA) flag to 1 in these entries, if EAFE=1. With nested translation,
setting of accessed and extended-accessed flags are subject to write permission checks at
second-level translation.

e The hardware may create a PDE-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
page-table).

e If the hardware creates a PDE-cache entry, the hardware may retain it unmodified even if
software subsequently modifies the corresponding PML5E (SL-PML5E), PML4E (SL-PML4E), PDPE
(SL-PDPE), or PDE (SL-PDE) in memory.

6.2.5.5 Details of Paging-Structure Cache Use

For implementations reporting Caching Mode (CM) as Clear in the Capability Register, paging-
structure-caches host only valid mappings (i.e. results of successful page-walks up to the cached
paging-structure entry that did not result in a translation fault).

For implementations reporting Caching Mode (CM) as Set in the Capability Register, these translation
fault conditions may cause caching of the faulted translation in the paging-structure caches. The
caching of such faulted translations in paging-structure caches follows same tagging as if there was
no faults (i.e. domain-id from the context entry or scalable-mode PASID-table entry that led to the
translation, PASID value attached to the request, etc.). The CM capability does not apply to first-level
mappings. Even when CM is 1, hardware does not cache translations in first-level paging-structure-
caches that encountered a fault in first-level mapping.

Information from a paging-structure entry can be included in entries in the paging-structure-caches
for other paging-structure entries referenced by the original entry. For example, with 4-level paging,
if the R/W flag is 0 in a PML4E, then the R/W flag will be 0 in any PDPTE-cache entry for a PDPTE from
the page-directory-pointer table referenced by that PML4E. This is because the R/W flag of each such
PDPTE-cache entry is the logical-AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that reference
other paging structures (and not those that map pages). For first-level-paging-structure cache
entries, because the G flag is not used in such paging-structure entries, the global-page feature does
not affect the behavior of the paging-structure caches.

1. This behavior applies for implementations reporting Caching Mode (CM) as 0 in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.

6-14 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

As noted in Section 6.2.1, any entries created in paging-structure caches are associated with the
target domain-ID (and PASID when applicable).

A remapping hardware implementation may or may not implement any of the paging-structure
caches. Software should rely on neither their presence nor their absence. The hardware may
invalidate entries in these caches at any time. Because the hardware may create the cache entries at
the time of translation and not update them following subsequent modifications to the paging
structures in memory, software should take care to invalidate the cache entries appropriately when
causing such modifications. The invalidation of IOTLBs and the paging-structure caches is described in
Section 6.5.

6.2.6 Translating Address Using Caches in Legacy Mode

If the hardware finds an IOTLB entry that is for the page number of the input-address and that is
associated with the Source-ID in the request, it may use the physical address, access rights, and
other attributes from that entry.

Hardware may use the source-ID of the request to select a context-cache entry. It can use that entry
to qualify the request based on the attributes in the entry. If the hardware does not find a matching
context-cache entry, it can traverse the root-table and context-table to obtain and cache the context-
entry. Context-cache entry provides hardware with the Domain-ID attached to the Source-ID. If the
context-cache entry indicates pass-through access, the request is processed as if it found a IOTLB
entry with a matching unity translation. Else, it continues the translation process as follows

If the hardware does not find a relevant IOTLB entry, it may use the bits MGAW:21 of the input-
address to select an entry from the PDE-cache that is associated with the Domain-ID. It can then use
that entry to complete the translation process (locating a PTE, etc.) as if it had traversed the PML5E,
PML4E, PDPE and PDE corresponding to the PDE-cache entry.

If the hardware does not find a relevant IOTLB entry and a relevant PDE-cache entry, it may use bits
MGAW:30 of the input-address to select an entry from the PDPE cache that is associated with the
Domain-ID. It can then use that entry to complete the translation process (locating a SL-PDE, etc.) as
if it had traversed the PML5E, PML4E and the PDPE corresponding to the PDPE-cache entry.

If the hardware does not find a relevant IOTLB entry, a relevant PDE-cache entry, or a relevant PDPE-
cache entry, it may use bits MGAW:39 of the input-address to select an entry from the PML4E-cache

that is associated with the Domain-ID. It can then use that entry to complete the translation process
(locating a PDPE, etc.) as if it had traversed the corresponding PML5E and SL-PMLA4E.

With 5-level translation, if the hardware does not find a relevant IOTLB entry, a relevant PDE-cache
entry, a relevant PDPE-cache entry, or a relevant PML4E-cache entry, it may use bits MGAW:48 of the
input-address to select an entry from the PML5E-cache that is associated with the Domain-ID. It can
then use that entry to complete the translation process (locating a PML4E, PDPE, etc.) as if it had
traversed the corresponding PML5E.

6.2.7 Multiple Cached Entries for a Single Paging-Structure Entry

The IOTLBs and paging-structure caches may contain multiple entries associated with a PASID and/or
domain-ID and with information derived from a single paging-structure entry. For illustration,
following are some examples for first-level translation with 4-level paging (similar scenarios are
possible with 5-level paging):

e Suppose that two PML4Es contain the same physical address and thus reference the same page-
directory-pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each
associated with a different set of input-addresses. Specifically, suppose that the n1t" and n2th
entries in the PML4 table contain the same physical address. This implies that the physical
address in the mt" PDPTE in the page-directory-pointer table would appear in the PDPTE-cache
entries associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (pl & 1FFH) =
(p2 & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one resulting
from a reference from the n1t" PML4E and one from the n2t" PML4E.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-15

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

e Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in
PASID-table entry (the physical address of the PML4 table). This implies the following:

— Any PML4-cache entry associated with input-address with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with input-addresses with 0 in bits 47:30 contains address
X. This is because the translation for a input-address for which the value of bits 47:30 is 0
uses the value of bits 47:39 (0) to locate a page-directory-pointer table at address X (the
address of the PML4 table). It then uses the value of bits 38:30 (also 0) to find address X
again and to store that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with input-addresses with 0 in bits 47:21 contains address X
for similar reasons.

— Any IOTLB entry for page number 0 (associated with input-addresses with 0 in bits 47:12)
translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing
nature of the entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

Similar examples can be constructed with other paging structures (e.g., PDPE, PDE) and with PML5E
(with 5-level paging). Multiple cached entries for a single paging-structure entry are also possible with
second-level translation (involving SL-PML5Es (with 5-level translation), SL-PML4Es, SL-PDPEs, SL-
PDEs, and SL-PTEs).

6.3 Translation Caching at Endpoint Device

Chapter 4 described support for endpoint devices to request translations from remapping hardware
and cache on Device-TLBs that are local to the endpoint device. Device-TLBs may be utilized to
improve address-translation performance and/or to support recoverable translation faults (see
Chapter 7). Translation requests from endpoint devices are address translated by the remapping
hardware using its translation caches as described in previous sections, and the resulting translation
is returned to the endpoint device in a Translation Completion. Refer to Section 4.1.2 for attributes
returned in the Translation-Completion. The endpoint device may cache the information returned in
the Translation-Completion locally in its Device-TLBs.

6.4 Interrupt Entry Cache

Remapping hardware supporting interrupt remapping may cache frequently used interrupt remapping
table entries in the interrupt-entry-cache (IEC). Each entry in a interrupt-entry-cache is an individual
interrupt-remap-table-entry. Each cached entry is referenced by the interrupt_index number
computed from attributes in the interrupt request (see Section 5.1.3). Each interrupt-entry-cache
entry architecturally contains the following information (see Section 9.10):

e Attributes of the remapped interrupt from the IRTE:
— Interrupt Vector
— Destination ID
— Delivery Mode
— Trigger Mode
— Redirection Hint
— Interrupt Mode (to determine interrupt is remapped or posted)
— Urgent Flag
— Posted Descriptor Address
e The Fault Processing Disable (FPD) flag from the IRTE
e The interrupt source validation attributes (SID, SQ, SVT fields) from the IRTE.

6-16 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

For implementations reporting Caching Mode (CM) as Clear in the Capability Register, if any of the
interrupt-remapping fault conditions described in Section 5.1.4.1 is encountered, the resulting entry
is not cached in the IEC. For implementations reporting Caching Mode (CM) as Set in the Capability
Register, interrupt-remapping fault conditions may cause caching of the corresponding interrupt
remapping entries.

Remapping hardware utilize the interrupt-entry cache as follows:

e If the hardware finds an IEC entry that is for the interrupt_index number of the request, it may
use the interrupt attributes from the IEC entry (subject to the interrupt-source validation checks
as described in Section 9.10).

e If the hardware does not find a matching IEC entry, it uses the interrupt_index computed for the
request to fetch the interrupt-remap-table-entry from the interrupt-remap-table.

6.5 Invalidation of Translation Caches

As noted in Section 6.2, the remapping hardware may create entries in the various translation caches
when requests are translated, and it may retain these entries even after the translation structures
used to create them have been modified by software. To ensure that address translation uses the
modified translation structures, software should take action to invalidate any cached entries that may
contain information that has since been modified.

For software to invalidate the various caching structures, the architecture supports the following two
types of invalidation interfaces:

e Register-based invalidation interface: A legacy invalidation interface with limited capabilities.
This interface is supported by hardware implementations of this architecture with Major Version 5
or lower (VER_REG). In all other hardware implementations, all requests are treated as invalid
requests and will be ignored (for details see the CAIG field in the Context Command Register and
the IAIG field in the IOTLB Invalidate Register).

e Queued invalidation interface: An expanded invalidation interface with extended capabilities,
supported by later implementations of this architecture. Hardware implementations report
support for queued invalidation interface through the Extended Capability Register (see
Section 10.4.3).

The following sections provides more details on these hardware interfaces.

6.5.1 Register-based Invalidation Interface

The register-based invalidations provides a synchronous hardware interface for invalidations.
Software writes to the invalidation command registers to submit invalidation command and may poll
on these registers to check for invalidation completion.

Hardware implementations must process commands submitted through the invalidation registers
irrespective of the remapping hardware enable status (i.e irrespective of TES and IES status in the
Global Status Register. See Section 10.4.5).
Register-based invalidation has the following limitations:

e Register-based invalidation can be used only when queued-invalidations are not enabled.

e Register-based invalidations are not supported with scalable mode translation. This mode requires
queued-invalidations to be enabled by software for proper operation.

e Register-based invalidation can target only invalidation of second-level translations. Invalidation
of first-level and nested translations are not supported (which are supported only through
queued-invalidations).

¢ Register-based invalidation cannot invalidate Device-TLBs on endpoint devices.
e Register-Based invalidation cannot invalidate the interrupt entry cache.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-17

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

The following sub-sections describe the register-based invalidation command registers.

6.5.1.1 Context Command Register

Context Command Register (see Section 10.4.7) supports invalidating the context-cache. The
architecture defines the following types of context-cache invalidation requests. Hardware
implementations may perform the actual invalidation at a coarser granularity if the requested
invalidation granularity is not supported.

e Global Invalidation: All context-cache entries cached at the remapping hardware are invalidated.

e Domain-Selective Invalidation: Context-cache entries associated with the specified domain-id are
invalidated.

e Device-Selective Invalidation: Context-cache entries associated with the specified device source-
id and domain-id are invalidated.

When modifying root-entries or context-entries referenced by more than one remapping hardware
units in a platform, software is responsible to explicitly invalidate the context-cache at each of these
hardware units.

6.5.1.2 IOTLB Registers

IOTLB invalidation is supported through two 64-bit registers; (a) IOTLB Invalidate Register (see
Section 10.4.8.1) and (b) Invalidation Address Register (see Section 10.4.8.2).

The architecture defines the following types of IOTLB invalidation requests. Hardware
implementations may perform the actual invalidation at a coarser granularity if the requested
invalidation granularity is not supported.

e Global Invalidation:

— AIl IOTLB entries are invalidated.

— All paging-structure-cache entries are invalidated.
e Domain-Selective Invalidation:

— IOTLB entries caching mappings (first-level, second-level, and nested) associated with the
specified domain-id are invalidated.

— Paging-structure-cache entries caching mappings (first-level, second-level and nested)
associated with the specified domain-id are invalidated.

e Page-Selective-within-Domain Invalidation:

— IOTLB entries caching second-level mappings associated with the specified domain-id and the
second-level-input-address range are invalidated.

— IOTLB entries caching first-level and nested mappings associated with the specified domain-id
are invalidated.

— Paging-structure-cache entries caching first-level and nested mappings associated with the
specified domain-id tare invalidated.

— Paging-structure-cache entries caching second-level mappings associated with the specified
domain-id and the second-level-input-address range are invalidated, if the Invalidation Hint
(IH) field is Clear. Else, the paging-structure-cache entries caching second-level mappings are
preserved.

For any of the above operations, hardware may perform coarser invalidation. The actual invalidation
granularity reported by hardware in the IOTLB Invalidate Register is always the granularity at which
the invalidation was performed on the IOTLB.

When modifying page-table entries referenced by more than one remapping hardware units in a
platform, software is responsible to explicitly invalidate the IOTLB at each of these hardware units.

6-18 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

6.5.2 Queued Invalidation Interface

The queued invalidation provides an advanced interface for software to submit invalidation requests
to hardware and to synchronize invalidation completions with hardware. The Invalidation Queue (IQ)
is also used by software to submit Page Group Response descriptors, which are described in

Section 7.6.1. Hardware implementations report queued invalidation support through the Extended
Capability Register.

The queued invalidation interface uses IQ, which is a circular buffer in system memory. Software
submits commands by writing Invalidation Descriptors to the IQ. The following registers are defined
to configure and manage the IQ:

e Invalidation Queue Address Register: Software programs this register to configure the base
physical address and size of the contiguous memory region in the system memory hosting the
Invalidation Queue. Remapping hardware reporting Scalable Mode Translation Support as Set
(ECAP_REG.SMTS=1) or Abort DMA Support as Set (ECAP_REG.ADMS=1), allow software to
additionally program the width of the descriptors (128-bits or 256-bits) that will be written into
the Queue. Software should set up the Invalidation Queue for 256-bit descriptors before
programming remapping hardware for scalable mode translation (RTADDR_REG.TTM=01b) or
abort-dma mode (RTADDR_REG.TTM=11b) as 128-bit descriptors are treated as invalid
descriptors (see Table 21 in Section 6.5.2.10) in scalable mode and abort-dma mode.

e Invalidation Queue Head Register: This register points to the invalidation descriptor in the IQ that
hardware will process next. The Invalidation Queue Head register is incremented by hardware
after fetching a valid descriptor from the IQ.

e Invalidation Queue Tail Register: This register points to the invalidation descriptor in the IQ to be
written next by software. Software increments this register after writing one or more invalidation
descriptors to the IQ. When the descriptor width is set to be 256-bit, hardware will treat bit 4 of
this register as reserved along with bits 3:0.

Hardware interprets the IQ as empty when the head and tail registers are equal. Software interprets
the 1Q as full when the Tail Register is one behind the Head register (i.e., when all entries but one in
the queue are used). This way software will write at most N-1 invalidation descriptors in a N entry IQ.

To enable queued invalidations, software must:

e Ensure all invalidation requests submitted to hardware through the register-based invalidation
registers are completed. (i.e. no pending invalidation requests in hardware).

e Initialize the Invalidation Queue Tail Register (see Section 10.4.22) to zero.

e Setup the IQ address, size and descriptor width through the Invalidation Queue Address Register
(see Section 10.4.23).

e Enable the queued invalidation interface through the Global Command Register (see
Section 10.4.4). When enabled, hardware sets the QIES field in the Global Status Register (see
Section 10.4.5).

When the queued invalidation is enabled, software must submit invalidation commands only through
the IQ (and not through any register-based invalidation command registers).

Hardware fetches descriptors from the IQ in FIFO order starting from the Head Register if all of the
following conditions are true. This is independent of the remapping hardware enable status (state of
TES and IRES fields in the Global Status Register).

e QIES field in the Global Status Register is Set (indicating queued invalidation is enabled)
e IQ is not empty (i.e. Head and Tail pointer Registers are not equal)

e There is no pending Invalidation Queue Error or Invalidation Time-out Error (IQE and ITE fields in
the Fault Status Register are both Clear)

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-19

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

Hardware implementations may fetch one or more descriptors together. However, hardware must
increment the Invalidation Queue Head Register only after verifying the fetched descriptor to be valid.
Hardware handling of invalidation queue errors are described in Section 6.5.2.10.

Once enabled, to disable the queued invalidation interface, software must:

e Quiesce the invalidation queue. The invalidation queue is considered quiesced when the queue is
empty (head and tail registers equal) and the last descriptor completed is an Invalidation Wait
Descriptor (which indicates no invalidation requests are pending in hardware).

e Disable queued invalidation. The queued invalidation interface is disabled through the Global
Command Register. When disabled, hardware resets the Invalidation Queue Head Register to
zero, and clears the QIES field in the Global Status Register.

The following subsections describe the various Invalidation Descriptors. Some of the descriptors are
treated as invalid in certain address translation mode (see Table 21 for list of valid descriptors in each
address translation mode). Type field (bits 11:9 and bits 3:0) of each descriptor identifies the
descriptor type. Software must program the reserved fields in the descriptors as zero.

6.5.2.1 Context-cache Invalidate Descriptor

The Context-cache Invalidate Descriptor (cc_inv_dsc) allows software to invalidate the context-cache,
there by forcing hardware to use the entries from root (scalable-mode root) and context (scalable-
mode context) tables in system memory. The context-cache invalidate descriptor is a 128-bit
descriptor. It must be padded with 128-bits of Os in the upper bytes to create a 256-bit descriptor
when the invalidation queue is configured for 256-bit descriptors (IQA_REG.DW=1). If a 128-bit
version of this descriptor is submitted into an IQ that is setup to provide hardware with 256-bit
descriptors or vice-versa it will result in an invalid descriptor error.

1

2 6

g 2

6 54 44 33 11 11

3 09 87 21 65 21 98 65 43 0
Type Type

M sID DID [6:4] G| [30]

oh 1h

D Rsvdz

Figure 6-21. Context-cache Invalidate Descriptor (128-bit version)

The context-cache invalidate descriptor includes the following parameters:

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 1h in this field
indicates Context-cache Invalidate Descriptor.

e Granularity (G): The G field indicates the requested invalidation granularity. The encoding of the G
field is same as the CIRG field in the Context Command Register (described in Section 10.4.7).
Hardware implementations may perform coarser invalidation than the granularity requested.

— Global Invalidation (01b): All context-cache entries cached at the remapping hardware are
invalidated.

— Domain-Selective Invalidation (10b): Context-cache entries associated with the specified
domain-id are invalidated. Since context-cache is not tagged by domain-id when operating in

6-20 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

scalable mode (refer Section 6.2.1), domain-selective context-cache invalidations are
processed by hardware as global invalidations when RTADDR_REG.TTM=01b.

— Device-Selective Invalidation (11b): Context-cache entries associated with the specified
device source-id and domain-id are invalidated. Since context-cache is not tagged by domain-
id when operating in scalable-mode (refer Section 6.2.1), domain-id field in device-selective
context-cache invalidations are ignored by hardware when RTADDR_REG.TTM=01b.

— Reserved (00b): A descriptor with a reserved value for Granularity is invalid.

e Domain-ID (DID): For domain-selective and device-selective invalidations, the DID field indicates
the target domain-id. This field is ignored by hardware when operating in scalable mode
(RTADDR_REG.TTM=01b).

e Source-ID (SID): For device-selective invalidations, the SID field indicates the device source-id.

e Function Mask (FM): The Function Mask field indicates the bits of the SID field to be masked for
device-selective invalidations. The usage and encoding of the FM field is same as the FM field
encoding in the Context Command Register (see Section 10.4.7).

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the context-cache. Refer
to Section 6.8 for write buffer flushing requirements.

Since information from the context-cache may be used to tag entries in the PASID-cache, IOTLB and
paging-structure caches, software must always follow a context-cache invalidation with a PASID-
cache invalidation (if operating in scalable mode), followed by an IOTLB invalidation. The granularity
of the PASID-cache and IOTLB invalidation must be equal or greater than the preceding context-cache
invalidation (e.g., A global context-cache invalidation must be followed by Domain-selective PASID-
cache invalidation and global IOTLB invalidation; A domain/device selective context-cache invalidation
must be followed by Domain-selective PASID-cache invalidation and domain-selective or global IOTLB
invalidation). Please refer to Section 6.5.3.3 for additional guidance on invalidations.

6.5.2.2 PASID-cache Invalidate Descriptor

The PASID-cache Invalidate Descriptor (pc_inv_dsc) allows software to invalidate the PASID-cache,
forcing hardware to use entries from the scalable-mode PASID-directory/table in system memory for
translating requests. This descriptor is a 256-bit descriptor and will result in an invalid descriptor error
if submitted in an IQ that is setup to provide hardware with 128-bit descriptors (IQA_REG.DW=0).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-21

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

;
5 9
2
1 1
9 2
1 8
2 6
7 4
6 55 33 11 11

3 21 21 65 21 98 65 43 0

Type Type

PASID DID [6:4] G| 30

oh 7h

D RsvdZ

Figure 6-22. PASID-cache Invalidate Descriptor

The PASID-cache invalidate descriptor includes the following parameters:

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 7h in this field
indicates PASID-cache Invalidate Descriptor.

e Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is as follows:

— Domain-Selective (00b): All PASID-cache entries associated with the specified domain-id are
invalidated.

— PASID-Selective-within-Domain Invalidation (01b): PASID-cache entries associated with the
specified PASID value and the domain-id are invalidated.

— Global Invalidation (11b): All PASID-cache entries are invalidated.
— Reserved (10b): A descriptor with a reserved value for Granularity is invalid.

e Domain-ID (DID): The DID field indicates the target domain-id. Hardware ignores bits
31:(16+N), where N is the domain-id width reported in the Capability Register.

e PASID: The PASID value indicates the target process-address-space to be invalidated. This field is
ignored by hardware for Domain-selective invalidation granularity.

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the PASID-cache. Refer to
Section 6.8 for write buffer flushing requirements.

Since information from the PASID-cache may be used to tag the IOTLB and paging-structure caches,

software must always follow a PASID-cache invalidation with an IOTLB invalidation. Domain-Selective
granularity PASID-cache invalidation must be followed by Domain-Selective I0TLB invalidation. A

6-22 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

PASIDs-selective-within-Domain granularity PASID-cache invalidation must be followed by PASID-
selective P_IOTLB invalidation). A Global granularity of PASID-cache invalidation must be followed by
Global 10TLB invalidation. Please refer to Section 6.5.3.3 for additional guidance on invalidations.

6.5.2.3 IOTLB Invalidate

The IOTLB Invalidate Descriptor (iot/b_inv_dsc) allows software to invalidate the IOTLB and paging-
structure-caches. This descriptor is expected to be used when software has changed second-level
tables and wants to invalidate affected cache entries. The IOTLB invalidate descriptor is a 128-bit
descriptor. It must be padded with 128-bits of Os in the upper bytes to create a 256-bit descriptor
when the invalidation queue is configured for 256-bit descriptors (IQA_REG.DW=1). If a 128-bit
version of this descriptor is submitted into an IQ that is setup to provide hardware with 256-bit
descriptors or vice-versa it will result in an invalid descriptor error.

2 77 776 6
7 65 109 4
Address |
[63:12] o AM
6 33 11 11
3 21 65 21 98765 43 o)
Type Type
[6:4](|D[D [3:0]
DID rRW G
Oh 2h

D Rsvdz

Figure 6-23. IOTLB Invalidate Descriptor (128-bit version)

The descriptor includes the following parameters:

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 2h in this field
indicates IOTLB Invalidate Descriptor.

e Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is same as the IIRG field in the IOTLB Invalidate Register (see Section 10.4.8):

— Global Invalidation (01b):
¢ AIll IOTLB entries are invalidated.
¢ All paging-structure-cache entries are invalidated.
— Domain-Selective Invalidation (10b):
e IOTLB entries caching mappings associated with the specified domain-id are invalidated.

e Paging-structure-cache entries caching mappings associated with the specified domain-id
are invalidated.

— Page-Selective-within-Domain Invalidation (11b):

¢ Remapping Hardware not supporting Page Selective Invalidation (CAP_REG.PSI=0) treats
a descriptor with this Granularity as invalid.

e IOTLB entries caching second-level mappings (IOTLB entries tagged with PGTT=010b or
hardware operating in legacy mode, RTADDR_REG.TTM=00b) associated with the specified
domain-id and the second-level-input-address range are invalidated.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-23

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

e IOTLB entries caching mappings other than second-level-mapping (IOTLB entries tagged
with PGTT!=010b) associated with specified domain-id are invalidated.

e Paging-structure-cache entries caching mappings other than second-level-mapping
associated with the specified domain-id are invalidated.

e Paging-structure-cache entries caching second-level mappings associated with the
specified domain-id and the second-level-input-address range are invalidated, if the
Invalidation Hint (IH) field has value of 0. If the IH value is 1, the paging-structure-cache
entries caching second-level mappings are preserved.

— Reserved (00b):
e A descriptor with a reserved value for Granularity invalid.

Drain Reads (DR): Software sets this flag to indicate hardware must drain read requests that are
already processed by the remapping hardware, but queued within the Root-Complex to be
completed. When the value of this flag is 1, hardware must drain the relevant reads before the
next Invalidation Wait Descriptor (see Section 6.5.2.8) is completed. Section 6.5.4 describes
hardware support for draining. Hardware implementations with Major Version 2 or higher
(VER_REG) will ignore this flag and always drain relevant reads before the next Invalidation Wait
Descriptor is completed.

Drain Writes (DW): Software sets this flag to indicate hardware must drain relevant write
requests that are already processed by the remapping hardware, but queued within the Root-
Complex to be completed. When the value of this flag is 1, hardware must drain the relevant
writes before the next Invalidation Wait Descriptor is completed. Section 6.5.4 describes
hardware support for draining. Hardware implementations with Major Version 2 or higher
(VER_REG) will ignore this flag and always drain relevant writes before the next Invalidation Wait
Descriptor is completed.

Domain-ID (DID): For domain-selective and page-selective-within-domain invalidations, the DID
field indicates the target domain-id. Hardware ignores bits 31:(16+N), where N is the domain-id
width reported in the Capability Register. This field is ignored by hardware for global invalidations.
When RTADDR_REG.TTM=01b, domain-id field has a value in relevant scalable-mode PASID-table
entry.

Invalidation Hint (IH): For page-selective-within-domain invalidations, the Invalidation Hint
specifies if the second-level mappings cached in the paging-structure-caches that controls the
specified address/mask range needs to be invalidated or not. For software usages that updates
only the leaf SL-PTEs, the second-level mappings in the paging-structure-caches can be
preserved by specifying the Invalidation Hint field value of 1. This field is ignored by hardware for
global and domain-selective invalidations.

Address (ADDR): For page-selective-within-domain invalidations, the Address field indicates the
starting second-level page address of the mappings that needs to be invalidated. Hardware
ignores bits 127:(64+N), where N is the maximum guest address width (MGAW) supported. This
field is ignored by hardware for global and domain-selective invalidations.

Address Mask (AM): For page-selective-within-domain invalidations, the Address Mask specifies
the number of contiguous second-level pages that needs to be invalidated. The encoding for the
AM field is same as the AM field encoding in the Invalidate Address Register (see

Section 10.4.8.2). When invalidating a large-page translation, software must use the appropriate
Address Mask value (0 for 4KByte page, 9 for 2-MByte page, and 18 for 1-GByte page).

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability

Reg

The
vari

6-24

ister) must implicitly perform a write buffer flushing before invalidating the IOTLB.

table below summarizes what tags are used to find matching entries and invalidate them by
ous granularity of IOTLB invalidation.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

Table 18. IOTLB Invalidation

Scalable Mode:
gnntlr‘i,elsovTvli-t?\ IOTLB Entries FL-paging
. — with PGTT!=010b | Structure Cache _ .
Granularity PGTT=010b (N/A for legacy (N/A for legacy SL-paging Structure Cache
Legacy Mode: All mode) mode)
IOTLB entries

Global (01b) All All All All
Domain-Selective (10) DID DID DID DID
Page-Selective-within- 1 If IH is 0, DID, Address
Domain (11b)* DID, Address DID DID Otherwise NA

1. Page-selective-within-domain IOTLB invalidation is used when second-level page tables are modified by software. In the table
above it may appear that hardware is unnecessarily invalidating IOTLB entries caching mapping from PASID that don't use
second-level table (i.e., mapping from first-level or pass-through PASIDs). Each domain-id is associated with exactly one
second-level table. PASIDs that don’t use second-level table are thought of as having a NULL second-level table and are assigned
a domain-id that can never match a domain-id of a PASID that has a valid second-level table. Since the domain-id used by this
invalidation had a second-level table, the domain-id will never match an IOTLB entry caching mapping from first-level or pass-
though PASID.

6.5.2.4 PASID-based IOTLB Invalidate Descriptor (P_IOTLB)

The PASID-based-IOTLB Invalidate Descriptor (p_iotlb_inv_dsc) allows software to invalidate IOTLB
and the paging-structure-caches. This descriptor is expected to be used when software has changed
first-level tables and wants to invalidate affected cache entries. This descriptor is a 256-bit descriptor
and will result in an invalid descriptor error if submitted in an IQ that is setup to provide hardware
with 128-bit descriptors (IQA_REG.DW=0).

GIGIN]
o=

S0
oo —

AYLNE

77 776 6
65 109 4
Address |
[63:12] A Am
6 55 33 11 11
3 21 21 65 21 98 65 43 0
Type Type
PASID DID [6:4] G| B
oh 6h

Figure 6-24. PASID-based-IOTLB Invalidate Descriptor

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-25

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

The descriptor includes the following parameters:

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 6h in this field
indicates PASID-based-IOTLB Invalidate Descriptor.

e Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is as follows:

— PASID-selective (10b):

e IOTLB entries caching mappings that are associated with the specified PASID and domain-
id are invalidated.

e Paging-structure-cache entries caching mappings that are associated with the specified
PASID and domain-id are invalidated.

— Page-Selective-within-PASID (11b):

e IOTLB entries caching mappings that are associated with the specified PASID, domain-id,
and the first-level-input-address range are invalidated.

e Paging-structure-cache entries caching mappings that are associated with the specified
PASID, domain-id, and the first-level-input-address range are invalidated if the
Invalidation Hint (IH) field has value of 0. If the IH value is 1, the paging-structure-cache
entries are preserved.

— Reserved (00b, 01b):
e A descriptor with a reserved value for Granularity is invalid.

e Domain-ID (DID): The DID field indicates the target domain-id. Hardware ignores bits
31:(16+N), where N is the domain-id width reported in the Capability Register. When
RTADDR_REG.TTM=01b, the domain-id field has a value in the relevant scalable-mode PASID-
table entry.

e PASID: The PASID value indicates the target process-address-space to be invalidated.

e Invalidation Hint (IH): For page-selective-within-PASID invalidations, the Invalidation Hint
specifies if the first-level and nested mappings cached in the paging-structure-caches that
controls the specified address/mask range needs to be invalidated or not. For software usages
that update only the leaf PTEs, the first-level and nested mappings in the paging-structure-caches
can be preserved by specifying the Invalidation Hint field value of 1. This field is ignored by
hardware for other invalidation granularities.

e Address (ADDR): For page-selective-within-PASID invalidations, the Address field indicates the
starting first-level page address of the mappings that need to be invalidated. This field is ignored
by hardware for PASID-selective invalidations.

e Address Mask (AM): For page-selective-within-PASID invalidations, the Address Mask specifies
the number of contiguous first-level 4-KByte pages that need to be invalidated. The encoding for
the AM field is same as the AM field encoding in the Invalidate Address Register (see
Section 10.4.8.2). When invalidating a large-page translation, software must use the appropriate
Address Mask value (0 for 4KByte page, 9 for 2-MByte page, and 18 for 1-GByte page).

PASID-based-IOTLB invalidations are not required by hardware to invalidate PASID-cache entries, and
second-level mappings cached in paging-structure-caches.

PASID-based-IOTLB invalidations must always drain read and write requests that are already
processed by the remapping hardware, but queued within the Root-Complex to be completed.
Hardware must drain such outstanding read and write requests (to make them globally observable)
before the next Invalidation Wait Descriptor (see Section 6.5.2.8) is completed. Section 6.5.4 further
describes hardware support for draining.

The table below summarizes what tags are used to find matching entries and invalidate them by
various granularity of PASID-based-IOTLB invalidation.

6-26 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

Table 19. PASID-based-IOTLB invalidation

Granularity (G) IOTLB FL-paging Structure Cache SL-pagl(l:‘lagc:léructure
PASID-Selective (10) DID, PASID DID, PASID NA
Page-Selective-within-PASID (11b)! | DID, PASID, Addresst | 1 1115 0/ (DID, PASID, Address) NA

Otherwise, NA

1. Page-selective-within-PASID P_IOTLB invalidation is used when first-level page tables are modified by software. In the table above
it may appear that hardware is unnecessarily invalidating IOTLB entries caching mapping from PASIDs that don’t use first-level
tables, i.e., mappings from second-level or pass-through PASIDs. Each domain-id and PASID pair has a unique PASID Granular
Translation Type (first-level, second-level, nested, pass-through). Since the domain-id and PASID pair used by this invalidation
has a first-level table, the PGTT value must either be first-level or nested and can not be second-level or a pass-through. Thus,
invalidation using the desired domain-id and PASID pair will not match any of the IOTLB entries caching mapping from second-
level or pass-through PASIDs and none of them will be invalidated.

6.5.2.5 Device-TLB Invalidate Descriptor

The Device-TLB Invalidate Descriptor (dev_t/b_inv_dsc) allows software to invalidate cached
mappings used by requests-without-PASID from the Device-TLB on a endpoint device. The Device-TLB
invalidate descriptor is a 128-bit descriptor. It must be padded with 128-bits of Os in the upper bytes
to create a 256-bit descriptor when the invalidation queue is configured for 256-bit descriptors
(IQA_REG.DW=1). If a 128-bit version of this descriptor is submitted into an IQ that is setup to
provide hardware with 256-bit descriptors or vice-versa it will result in an invalid descriptor error.

NN —
(RN
(RN
oy
SO

Address s
[63:12]
6 55 44 33 22 11 11
3 21 87 21 10 65 21 98 43 [0]
Type Type
PFSID PFSID | [6:4] [3:0]
[15:4] SIb MIP | 30
Oh 3h

I:‘ RsvdZ

Figure 6-25. Device-TLB Invalidate Descriptor (128-bit version)

The descriptor includes the following parameters:

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 3h in this field
indicates Device-TLB Invalidate Descriptor.

e Source-ID (SID): The SID field indicates the source-id of the endpoint device whose Device-TLB
needs to be invalidated.

e Address (ADDR): The address field indicates the starting input-address for the mappings that
needs to be invalidated. The Address field is qualified by the S field.

e Size (S): The size field indicates the number of consecutive pages targeted by this invalidation
request. If S field is zero, a single page at page address specified by Address [63:12] is requested
to be invalidated. If S field is Set, the least significant bit in the Address field with value Ob
indicates the invalidation address range. For example, if S field is Set and Address[12] is Clear, it
indicates an 8KB invalidation address range with base address in Address [63:13]. If S field and
Address[12] is Set and bit 13 is Clear, it indicates a 16KB invalidation address range with base
address in Address [63:14], etc.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-27

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

Max Invalidations Pending (MIP): This field is a hint to hardware to indicate the maximum number
of pending invalidation requests the specified PCI Express endpoint device (Physical Function) can
handle optimally. Endpoint devices are required to accept up to 32 pending invalidation requests,
but the device may put back pressure on the I/O interconnect (E.g., PCI Express link) for multiple
pending invalidations beyond Max Invalidations Pending. A value of Oh in MIP field indicates the
device is capable of handling maximum (32) pending invalidation requests without throttling the
link. Hardware implementations may utilize this field to throttle the number of pending
invalidation requests issued to the specified device. Remapping hardware implementations
reporting Pending Invalidation Throttling (DIT=1 in ECAP_REG) utilize this field to throttle the
number of pending invalidation requests issued to the physical function specified in PFSID.

Physical Function Source-ID (PFSID): Remapping hardware implementations reporting Device-
TLB Invalidation Throttling as not supported (DIT = 0 in ECAP_REG) treats this field as reserved.
For implementations reporting Device-TLB Invalidation Throttling as supported (DIT=1 in
ECAP_REG), if the Source-ID (SID) field specifies a Physical Function (PF), PFSID field specifies
same value as the SID field; If the Source-ID (SID) field specifies a SR-IOV Virtual Function (VF),
PFSID field specifies the Source-ID of the Physical Function (PF) associated with the Virtual
Function (VF).

Since translation requests-without-PASID from a device may be serviced by hardware from the
IOTLB, software must always request IOTLB invalidation (iot/b_inv_dsc) before requesting
corresponding Device-TLB (dev_t/b_inv_dsc) invalidation.

6.5.2.6 PASID-based-Device-TLB Invalidate Descriptor

The PASID-based-Device-TLB Invalidate Descriptor (p_dev_tlb_inv_dsc) allows software to invalidate
cached mappings used by requests-with-PASID from the Device-TLB on an endpoint device. This
descriptor is a 256-bit descriptor and will result in an invalid descriptor error if submitted in an IQ that
is setup to provide hardware with 128-bit descriptors (IQA_REG.DW=0).

GIGIN]

O =

0=

(con—

1
2 777 66
7 654 54
Address
[63:12] S G
6 55 33 11 11
3 21 21 65 21 98 43 o]
Txpe Max Txpe
PFS.ID PASID sID PF.SID [6:4] Invs [3:0]
[15:4] [3.0] Pend
Oh 8h
I:l RsvdZ

6-28

Figure 6-26. PASID-based-Device-TLB Invalidate Descriptor

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

The descriptor includes the following parameters:

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 8h in this field
indicates PASID-based-Device-TLB Invalidate Descriptor.

e Source-ID (SID): The SID field indicates the source-id of the endpoint device whose Device-TLB
needs to be invalidated.

e Global (G): If the G field value is 1, the PASID-based-device-TLB invalidation request applies
across all PASIDs at the endpoint device-TLB. If G field value is 0, the invalidation is targeted to a
specific PASID specified by the PASID value field.

e PASID: The PASID value indicates the target process-address-space to be invalidated. This field is
ignored by hardware if the value of G field is 1.

e Address (ADDR): The address field indicates the starting input-address for the mappings that
need to be invalidated. The address field is qualified by the S field.

e Size (S): The size field indicates the number of consecutive pages targeted by this invalidation
request. If the S field is zero, a single page at the page address specified by address [63:12] is
requested to be invalidated. If the S field is set, the least significant bit in the address field with
value 0Ob indicates the invalidation address range. For example, if the S field is set and
address[12] is clear, it indicates an 8KB invalidation address range with base address in address
[63:13]. If the S field and address[12] are set and bit 13 is clear, it indicates a 16KB invalidation
address range with base address in address [63:14], etc.

e Max Invalidations Pending (MIP): This field is a hint to hardware to indicate the maximum number
of pending invalidation requests the specified PCI Express endpoint device (Physical Function) can
handle optimally. Endpoint devices are required to accept up to 32 pending invalidation requests,
but the device may put back pressure on the I/O interconnect (e.g., PCI Express link) for multiple
pending invalidations beyond Max Invalidations Pending. A value of Oh in the MIP field indicates
the device is capable of handling maximum (32) pending invalidation requests without throttling
the link. Hardware implementations may utilize this field to throttle the number of pending
invalidation requests issued to the specified device. Remapping hardware implementations
reporting Pending Invalidation Throttling (DIT=1 in ECAP_REG) utilize this field to throttle the
number of pending invalidation requests issued to the physical function specified in PFSID.

e Physical Function Source-ID (PFSID): Remapping hardware implementations reporting Device-
TLB Invalidation Throttling as not supported (DIT = 0 in ECAP_REG) treat this field as reserved.
For implementations reporting Device-TLB Invalidation Throttling as supported (DIT=1 in
ECAP_REG), if the Source-ID (SID) field specifies a Physical Function (PF), PFSID field specifies
same value as the SID field; if the Source-ID (SID) field specifies a SR-IOV Virtual Function (VF),
PFSID field specifies the Source-ID of the Physical Function (PF) associated with the Virtual
Function (VF).

Since translation requests-with-PASID from a device may be serviced by hardware from the IOTLB:

e When operating in scalable mode (RTADDR_REG.TTM=01b), software must always request an
appropriate IOTLB invalidation (p_iot/b_inv_dsc if the corresponding scalable-mode PASID-table
entry is configured for first-level or nested translation, or iot/b_inv_dsc if the corresponding
scalable-mode PASID-table entry is configured for second-level only translation) before
corresponding PASID-based-device-TLB (p_dev_tlb_inv_dsc) invalidation.

6.5.2.7 Interrupt Entry Cache Invalidate Descriptor

The Interrupt Entry Cache Invalidate Descriptor (iec_inv_dsc) allows software to invalidate the
Interrupt Entry Cache. The Interrupt Entry Cache invalidate descriptor is a 128-bit descriptor. It must
be padded with 128-bits of Os in the upper bytes to create a 256-bit descriptor when the invalidation
queue is configured for 256-bit descriptors (IQA_REG.DW=1). If a 128-bit version of this descriptor is
submitted into an IQ that is setup to provide hardware with 256-bit descriptors or vice-versa it will
result in an invalid descriptor error.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-29

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

2 6
7 4
6 44 33 22 11
3 87 21 76 2198 543 0
Type Type
DX M [6:4] g [30]
Oh 4h

I:‘ RsvdZ

Figure 6-27. Interrupt Entry Cache Invalidate Descriptor (128-bit version)

The descriptor includes the following parameters:

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 4h in this field
indicates Interrupt Entry Cache Invalidate Descriptor.

e Granularity (G): This field indicates the granularity of the invalidation request. If Clear, a global
invalidation of the interrupt-remapping cache is requested. If Set, a index-selective invalidation is
requested.

e Interrupt Index (IIDX): This field specifies the index of the interrupt remapping entry that needs
to be invalidated through a index-selective invalidation.

e Index Mask (IM): For index-selective invalidations, the index-mask specifies the number of
contiguous interrupt indexes that needs to be invalidated. The encoding for the IM field is
described below in Table 20).

Table 20. Index Mask Programming

Index Mask Value Index bits Masked Mappings Invalidated
0 None 1
1 0 2
2 1:0 4
3 2:0 8
4 3:0 16

As part of IEC invalidation, hardware must drain interrupt requests that are already processed by the
remapping hardware, but queued within the Root-Complex to be delivered to the processor.
Section 6.5.5 describes hardware support for interrupt draining.

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the Interrupt Entry Cache.

6.5.2.8 Invalidation Wait Descriptor
The Invalidation Wait Descriptor (inv_wait_dsc) descriptor allows software to synchronize with

hardware for the invalidation request descriptors submitted before the wait descriptor. The
invalidation wait descriptor is a 128-bit descriptor. It must be padded with 128-bits of 0s in the upper

6-30 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

bytes to create a 256-bit descriptor when the invalidation queue is configured for 256-bit descriptors

(IQA_REG.DW=1). If a 128-bit version of this descriptor is submitted into an IQ that is setup to
provide hardware with 256-bit descriptors or vice-versa it will result in an invalid descriptor error.

The descriptor includes the following parameters:

2 66 6
7 65 4
Status Address
[63:2]
6 33 11
3 21 21 9876543 o)
25| elels|i| 361
Status Data . pINIWF .
Oh 5h

Figure 6-28. Invalidation Wait Descriptor (128-bit version)

e Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 5h in this field

indicates Invalidation Wait Descriptor.

e Status Write (SW): Indicate the invalidation wait descriptor completion by performing a coherent
DWORD write of the value in the Status Data field to the address specified in the Status Address

field.

e Status Address and Data: Status address and data is used by hardware to perform wait descriptor
completion status write when the SW field is Set. Hardware behavior is undefined if the Status

Address specified is not an address route-able to memory (such as peer address, interrupt
address range of OXFEEX_XXXX etc.). The Status Address and Data fields are ignored by
hardware when the Status Write (SW) field is Clear.

e Interrupt Flag (IF): Indicate the invalidation wait descriptor completion by generating an
invalidation completion event per the programming of the Invalidation Completion Event
Registers. Section 6.5.2.9 describes details on invalidation event generation.

e Fence Flag (FN): When Set, indicates descriptors following the invalidation wait descriptor must

be processed by hardware only after the invalidation wait descriptor completes.

e Page-request Drain (PD): Remapping hardware implementations reporting Page-request draining

as not supported (PDS = 0 in ECAP_REG) treats this field as reserved. For implementations
reporting Page-request draining as supported (PDS=1 in ECAP_REG), value of 1 in this field

specifies the Invalidation wait completion status write (if SW=1) and Invalidation wait completion

interrupt (if IF=1) must be ordered (visible to software) behind page-request descriptor

(page_req_dsc) writes for all page requests received by remapping hardware before invalidation
wait descriptor completion. For optimal performance, software must Set this field only if Page

Request draining is required. Refer to Section 7.7 for remapping hardware behavior for page
request draining.

Section 6.5.2.11 describes queued invalidation ordering considerations. Hardware completes an
invalidation wait command as follows:

o If a status write is specified in the wait descriptor (SW=1), hardware performs a coherent write of

the status data to the status address.
e If an interrupt is requested in the wait descriptor (IF=1), hardware sets the IWC field in the

Invalidation Completion Status Register. An invalidation completion interrupt may be generated as

described in the following section.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

6-31

Caching Translation Information—Intel® Virtualization Technology for Directed I/0

intel.

6.5.2.9 Hardware Generation of Invalidation Completion Events

The invalidation event interrupt generation logic functions as follows:

e At the time hardware sets the IWC field, it checks if the IWC field is already Set to determine if
there is a previously reported invalidation completion interrupt condition that is yet to be serviced
by software. If IWC field is already Set, the invalidation event interrupt is not generated.

o If the IWC field is not already Set, the Interrupt Pending (IP) field in the Invalidation Event
Control Register is Set. The Interrupt Mask (IM) field is then checked and one of the following

conditions is applied:

— If IM field is Clear, invalidation completion event interrupt is generated along with clearing the

IP field.

— If IM field is Set, the invalidation completion event interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:

o If IP field was Set when software clears the IM field, the invalidation completion event interrupt is
generated along with clearing the IP field.

o If IP field was Set when software services the pending interrupt condition (indicated by IWC field
in the Invalidation Completion Status Register being Clear), the IP field is cleared.

At the time an invalidation wait descriptor is completed by remapping hardware, if PD=1 in the wait
descriptor, the invalidation completion status write (and/or invalidation completion event interrupt)
that signal wait descriptor completion to software must push page req_desc writes for all page
requests already received by the remapping hardware. Refer to Section 7.7 for details on page

request draining.

The invalidation completion event interrupt must push any in-flight invalidation completion status
writes, including status writes that may have originated from the same inv_wait_dsc for which the
interrupt was generated. Similarly, read completions due to software reading the Invalidation
Completion Status Register (ICS_REG) or Invalidation Event Control Register (IECTL_REG) must push
(commit) any in-flight invalidation completion event interrupts and status writes generated by the

respective hardware unit.

The invalidation completion event interrupts are never subject to interrupt remapping.

6.5.2.10 Hardware Handling of Queued Invalidation Interface Errors

Hardware handles the various queued invalidation interface error conditions as follows:

e Invalidation Queue Errors: Hardware sets the IQE (Invalidation Queue Error) field in the Fault
Status Register. Hardware provides additional information about the error in the Invalidation
Queue Error Record Register fields if the register is supported. Refer to the description of the IQEI
field in Section 10.4.29 for all possible conditions resulting in a Invalidation Queue Error.

Table 21. List of Valid Descriptor Types for Each Mode

Translation Table Mode
(RTADDR_REG.TTM Value)

Descriptor Width = 0
(128-bit Descriptors)

Descriptor Width = 1
(256-bit Descriptors)

legacy mode (00b) 0x1...0x5 0x1...0x5
scalable mode (01b) none 0x1...0x9
reserved mode (10b) none none
abort-dma mode (11b) none 0x1...0x9

A fault event may be generated based on the programming of the Fault Event Control Register.
The Head pointer Register is not incremented, and references the descriptor associated with the

6-32 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

queue error. No new descriptors are fetched from the Invalidation Queue until software clears the
IQE field in the Fault Status Register. Software is expected to correct any error conditions that
generated the fault event prior to clearing the IQE field. Tail pointer Register updates by software
while the IQE field is Set does not cause descriptor fetches by hardware. Any invalidation
commands ahead of the invalid descriptor that are already fetched and pending in hardware at
the time of detecting the invalid descriptor error are completed by hardware as normal.

Invalid Device-TLB Invalidation Response: If hardware receives an invalid Device-TLB invalidation
response, hardware sets the Invalidation Completion Error (ICE) field in the Fault Status Register.
A fault event may be generated based on the programming of the Fault Event Control Register.
Hardware continues with processing of descriptors from the Invalidation Queue as normal.

Device-TLB Invalidation Response Time-out: If hardware detects a Device-TLB invalidation
response time-out, hardware frees the corresponding ITag and sets the ITE (Invalidation Time-out
Error) field in the Fault Status Register. A fault event may be generated based on the
programming of the Fault Event Control Register. No new descriptors are fetched from the
Invalidation Queue until software clears the ITE field in the Fault Status Register. Tail pointer
Register updates by software while the ITE field is Set does not cause descriptor fetches by
hardware. At the time ITE field is Set, hardware aborts any inv_wait_dsc commands pending in
hardware and does not increment the Invalidation Queue Head register. When software clears the
ITE field in the Fault Status Register, hardware fetches descriptor pointed by the Invalidation
Queue Head register. Any invalidation responses received while ITE field is Set are processed as
normal (as described in Section 4.3). Since the time-out could be for any (one or more) of the
pending dev_tlb_inv_dsc commands, execution of all descriptors including and behind the oldest
pending dev_tlb_inv_dsc is not guaranteed.

6.5.2.11 Queued Invalidation Ordering Considerations

Hardware must support the following ordering considerations when processing descriptors fetched
from the invalidation queue:

Hardware must execute an IOTLB invalidation descriptor (iot/b_inv_dsc) or PASID-based-IOTLB
invalidation descriptor (p_iotlb_inv_dsc) only after all Context-cache invalidation descriptors
(cc_inv_dsc) and PASID-cache invalidation descriptors (pc_inv_dsc) ahead of it in the Invalidation
Queue are completed.

Hardware must execute a PASID-cache invalidation descriptors (pc_inv_dsc) only after all
Context-cache invalidation descriptors (cc_inv_dsc) ahead of it in the Invalidation Queue are
completed.

Hardware must execute a Device-TLB invalidation descriptor (dev_tlb_inv_dsc) only after all
IOTLB invalidation descriptors (iotlb_inv_dsc) and Interrupt Entry Cache invalidation descriptors
(iec_inv_dsc) ahead of it in the Invalidation Queue are completed.

Hardware must execute an PASID-based-Device-TLB Invalidation descriptor (p_dev_tlb_inv_dsc)
only after all IOTLB invalidation descriptors (iot/lb_inv_dsc), PASID-based-IOTLB invalidation
descriptors (p_iotlb_inv_dsc) and Interrupt Entry Cache invalidation descriptors (iec_inv_dsc)
ahead of it in the Invalidation Queue are completed.

Hardware must report completion of an Invalidation Wait Descriptor (inv_wait_dsc) only after at
least all the descriptors ahead of it in the Invalidation Queue and behind the previous
inv_wait_dsc are completed.

If the Fence (FN) flag is 0 in a inv_wait_dsc, hardware may execute descriptors following the
inv_wait_dsc before the wait command is completed. If the Fence (FN) flag is 1 in a inv_wait_dsc,
hardware must execute descriptors following the inv_wait_dsc only after the wait command is
completed.

When a Device-TLB invalidation or PASID-based-Device-TLB invalidation time-out is detected,
hardware must not complete any pending inv_wait_dsc commands.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-33

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

6.5.3 IOTLB Invalidation Considerations

The following subsections describes additional details and considerations on IOTLB invalidations with
use of first-level translations.

6.5.3.1 Implicit Invalidation on Page Requests

In addition to the explicit invalidation through invalidation commands (see Section 6.5.1 and
Section 6.5.2) identified above, page requests from endpoint devices invalidate entries in the IOTLBs
and paging-structure caches.

When operating in scalable mode (RTADDR_REG.TTM=01b), page requests will traverse the
translation tables to obtain the value of the PGTT and DID fields in the scalable-mode PASID-table
entry. Page requests without PASID will additionally obtain the PASID value from the RID_PASID field
of the scalable-mode context-entry. After this, hardware will internally generate appropriate IOTLB
invalidation based on the value of the PGTT field as shown in table below.

Table 22, Implicit Invalidation on Page Request
PGTT Invalidation Operand Values
DID, PASID, A 112
first-level (001b) Page-selective-within-PASID P_IOTLB invalidation » PASID, Address[63:12],
AM=0, IH=0
. s . . — DID, Address[63:12],
second-level (010b) Page-selective-within-Domain IOTLB invalidation AM=0, TH=0, DR=0, DW=0
) . . - DID, Address[63:12],
nested (011b) Domain-selective IOTLB invalidation AM=0, TH=0, DR=0, DW=0
. s . . R DID, Address[63:12],
pass-through (100b) Page-selective-within-Domain IOTLB invalidation AM=0, TH=0, DR=0, DW=0

If a page request is unable to traverse the translation tables and obtain necessary information for
IOTLB invalidation, hardware will not generate any implicit invalidation and will manufacture a Page
Group Response with Status=IR back to the device without writing a page request in the Page
Request Queue.

Software is currently not required to issue invalidations when upgrading page permissions from read-
only to read-write. It is possible a device may encounter a recoverable fault due to read-only
translations in one of the remapping caches. When software services such a recoverable fault, it may
not send invalidation, leaving stale read-only permissions in remapping caches. To remove such stale
mappings, remapping hardware performs a suitable implicit IOTLB invalidation based on the PGTT
field associated with the Page Request. Software issuing an explicit invalidation after a handling Page
Request and before submitting a Page Response does not need to depend on implicit invalidations
described earlier.

6.5.3.2 Caching Fractured Translations

Some implementations may choose to cache multiple smaller-page IOTLB entries (fractured
translations) for a translation specified by the paging structures to use a page larger than 4 KBytes.
There is no way for software to be aware that multiple translations for smaller pages have been used
for a large page. Since software is required to always specify the appropriate Address Mask value to
cover the address range to be invalidated (Address Mask value of 0 for invalidating a 4-KByte page, 9
for invalidating a 2-MByte page, and 18 for invalidating a 1-GByte page) in the IOTLB invalidation
commands, these commands naturally invalidate all IOTLB entries corresponding a large-page
translation.

6-34 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

intel.

6.5.3.3 Guidance to Software for Invalidations

Table 23 below summarizes recommended invalidation for typical software usage model with
additional details in the section.

Table 23. Guidance to Software for Invalidations

with PGTT value of Second-level
or Nested

e SLEE transition from O to 1 in a
scalable-mode PASID-table entry
with PGTT value of Second-level
or Nested

e Present bit transition from 1 to 0
in a scalable-mode PASID-table
entry

Any one of the following changes to a
present scalable-mode PASID-table
entry NOT corresponding to
RID_PASID:

e SLADE transition from O to 1in a
PASID-table entry with PGTT
value of Second-level or Nested

e SLEE transition from O to 1 in a
PASID-table entry with PGTT
value of Second-level or Nested

e Present bit transition from 1 to 0
in a PASID-table entry

Changes to fields other than SLADE,
SLEE and P in a present scalable-
mode PASID-table entry
corresponding to RID_PASID

Legacy Scalable

Global context-cache invalidation
Global PASID-cache invalidation

Changes to a present scalable-mode | | invalidati

root-table entry Global IOTLB invalidation
Global Device-TLB invalidation to all affected
functions
Device-selective context-cache invalidation
Domain-selective PASID-cache invalidation
for all domains using the device (can be

kipped if all PASID entri t-
Changes to a present scalable- ;rclaps%?\t)l @ entries were no
d text-tabl t

modecontext-table entry Domain-selective IOTLB invalidation to
associated domains
Global Device-TLB invalidation to affected
functions.
PASID-selective-within-Domain PASID-cache
invalidation for affected PASIDs

Changes to a present scalable-mode Domain-selective IOTLB invalidation for

PASID directory entry affected Domains
Global Device-TLB invalidation to affected
functions

Any one of the following changes to a

present scalable-mode PASID-table

entry corresponding to RID_PASID:

e SLADE transition fromOto 1ina
scalable-mode PASID-table entry NA PASID-selective-within-Domain PASID-cache

invalidation
Domain-selective IOTLB invalidation

Global Device-TLB invalidation to affected
functions

PASID-selective-within-Domain PASID-cache
invalidation

Domain-selective IOTLB invalidation
PASID-based Device-TLB invalidation (with
S=1 and Addr[63:12]=0x7FFFFFFF_FFFFF)
to affected functions

PASID-selective-within-Domain PASID-cache
invalidation

PASID-selective P_IOTLB invalidation

Global Device-TLB invalidation to affected
functions

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-35

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

Table 23. Guidance to Software for Invalidations

Legacy Scalable
e PASID-selective-within-Domain PASID-cache
Changes to fields other than SLADE, invalidation
SLEE and P in a present scalable- e PASID-selective P_IOTLB invalidation
mode PASID-table entry NOT e PASID-based Device-TLB invalidation (with
corresponding to RID_PASID S=1 and Addr[63:12]=0x7FFFFFFF_FFFFF)

to affected functions

¢ Domain-selective PASID-cache invalidation

Re-use Domain-ID in a present NA e Domain-selective IOTLB invalidation
scalable-mode PASID-table entry ¢ Global Device-TLB invalidation to all
functions within incoming domain
e Page-selective-within-PASID P_IOTLB
Changes to present First-level Page- invalidation
tables e PASID-based Device-TLB invalidation to all

functions running the PASID

e page-selective-within-domain

10TLB invalidation e Page-selective-within-domain IOTLB

Changes to present Second-level e Device-TLB i lidation to all invalidation
page-tables P as'g"f];_ Cronco .y | ¢ Device-TLB invalidation to all affected
domains 9 functions

e Global context-cache
invalidation

Changes to a present root-table entry | e Global IOTLB invalidation

e Global Device-TLB invalidation
to all affected functions.

e Device-selective context-
cache invalidation

Changes to a present context-table e Domain-selective IOTLB

entry invalidation

e Global Device-TLB invalidation
to all affected functions

NA
e Domain-selective context-
cache invalidation

e Domain-selective IOTLB

invalidation
. . e Device-TLB invalidation to all
Re-use Domain-ID in a present functions previously within the
context-table entry domain (It may be more

convenient for software to
issue this invalidation when
the Domain-ID stops being
used rather than when it is re-
used.)

The Table 23 above provides general guidance on various invalidations that software must perform
after certain changes to the DMA remapping structures.

The following recommendations provide details on the invalidation that software should perform when
modifying first-level or second-level paging entries. Software should generally use page-selective-
within-PASID P_IOTLB invalidation when modifying first-level table paging entries, and page-
selective-within-domain I0TLB invalidation when modifying second-level table paging entries.

o If software modifies a paging-structure entry that identifies the final page frame for a page
number (either a PTE or a paging-structure entry in which the PS flag is 1), it should execute the
page-selective type of IOTLB invalidation command for any address with a page number whose
translation uses that paging-structure entry, with an address-mask matching the page frame size.
(Address Mask value of 0 for 4-KByte page, 9 for 2-Mbyte page, and 18 for 1-GByte page). If no
intermediate paging-structures entries with PS=0 are modified, the invalidation command can
specify an Invalidation Hint (IH) as 1.

6-36 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

If the same paging-structure entry may be used in the translation of different page numbers (see
Section 6.2.7), software should perform the page-selective type of IOTLB invalidation for
addresses with each of those page numbers, with an Invalidation Hint (IH) value of 0.
Alternatively, software could use a coarser-grained IOTLB invalidation command (see Invalidation
Granularity description in Section 6.5.2.4).

o If software modifies a paging-structure entry that references another paging structure, it may use
one of the following approaches depending upon the type and number of translations controlled
by the modified entry:

— Execute page-selective type of IOTLB invalidation command for any addresses with each of
the page numbers with translations that will use the entry. These invalidations must specify
an Invalidation Hint (IH) value of 0 (so that it invalidates the paging-structure caches).
However, if no page numbers that will use the entry have translations (e.g., because the P
flags are 0 in all entries in the paging structure referenced by the modified entry), it remains
necessary to execute the page-selective type of IOTLB invalidation command at least once.

— If software modifies many first-level page table entries it may be more performant to execute
a PASID-selective P_IOTLB invalidation command or even a Domain-selective I0TLB
invalidation command.

— If software modifies many second-level page table entries it may be more performant to
execute a Domain-selective IOTLB invalidation command.

e If the nature of the paging structures is such that a single entry may be used for multiple
purposes (see Section 6.2.7), software should perform invalidations for all of these purposes. For
example, if a single entry might serve as both a PDE and PTE, it may be necessary to execute the
page-selective type of IOTLB invalidation command with two (or more) input-addresses; one that
uses the entry as a PDE, and one that uses it as a PTE. Alternatively, software could use a PASID-
selective P_IOTLB invalidation or a Domain-selective IOTLB invalidation.

e As noted in Section 6.2.4, the IOTLB may subsequently contain multiple translations for the
address range if software modifies the paging structures so that the page size used for a 4-KByte
range of input-addresses changes. A reference to an input-address in the address range may use
any of these translations.

Software wishing to prevent this uncertainty should not write to a paging structure entry in a way
that would change, for any input-address, both the page size and either the page frame, access
rights, or other attributes. It can instead use the following algorithm: first clear the P flag in the
relevant paging-structure entry (e.g., PDE); then invalidate any translations for the affected
input-addresses (see above); and lastly, modify the relevant paging-structure entry to set the P
flag and establish modified translation(s) for the new page size.

6.5.3.4 Optional Invalidation

The following items describe cases in which software may choose not to invalidate the IOTLB when
modifying first-level paging entries, and the potential consequences of that choice:

e If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is
necessary. This is because no IOTLB entry or paging-structure cache entry is created with
information from a paging-structure entry in which the P flag is 0L.

e If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is
necessary (assuming that an invalidation was performed the last time the accessed flag was
changed from 1 to 0). This is because no IOTLB entry or paging-structure cache entry is created
with information from a paging-structure entry in which the accessed flag is 0.

e If a paging-structure entry is modified to change the R/W flag from 0 to 1, and the entry is used
only by requests that can tolerate recoverable translation faults (see Section 7.4), failure to
perform an invalidation may result in a recoverable address translation fault detected at the
Device-TLB (e.g., in response to an attempted write access), generating a “spurious” Page

1. If it is also the case that no IOTLB invalidation was performed the last time the P flag was
changed from 1 to 0, hardware may use a IOTLB entry or paging-structure cache entry that was
created when the P flag had earlier been 1.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-37

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

Request (see Section 7.6). If requests that does not support recoverable page-faults (see
Section 7.2) is using such translation, the result is a non-recoverable translation fault (and hence
software cannot consider such paging-structure entry modification for optional IOTLB
invalidation).

e If SMEP=0 in the scalable-mode PASID-table entry, and a paging-structure entry is modified to
change the U/S flag from 0 to 1, and the entry is used only by requests that can tolerate
recoverable translation faults (see Section 7.4), failure to perform an invalidation may result in a
recoverable address translation fault detected at the Device-TLB (e.g., in response to an
attempted user-mode access), generating a “spurious” Page Request (see Section 7.6). If
requests that does not support recoverable page-faults (see Section 7.2) is using such
translation, the result is a non-recoverable translation fault (and hence software cannot consider
such paging-structure entry modification for optional IOTLB invalidation).

e If a paging-structure entry is modified to change the XD flag from 1 to 0, and the entry is used
only by requests that can tolerate recoverable translation faults (see Section 7.4), failure to
perform an invalidation may result in a recoverable address translation fault detected at the
Device-TLB (e.g., in response to an attempted instruction fetch), generating a “spurious” Page
Request (see Section 7.6). If requests that does not support recoverable page-faults (see
Section 7.2) is using such translation, the result is a non-recoverable translation fault (and hence
software cannot consider such paging-structure entry modification for optional IOTLB
invalidation).

e If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform
an invalidation may result in the hardware not setting that bit in response to a subsequent access
to a address whose translation uses the entry. Software cannot interpret the bit being clear as an
indication that such an access has not occurred.

o If software modifies a PTE or a paging-structure entry in which the PS flag is 1, to change the
dirty flag from 1 to 0, failure to perform an invalidation may result in the hardware not setting
that bit in response to a subsequent write to a input-address whose translation uses the entry.
Software cannot interpret the bit being clear as an indication that such a write has not occurred.

6.5.3.5 Delayed Invalidation

Required invalidations may be delayed under some circumstances with first-level paging. Software
developers should understand that, between the modification of a paging-structure entry and
execution of the IOTLB invalidation command, the hardware may use translations based on either the
old value or the new value of the paging-structure entry. The following items describe some of the
potential consequences of delayed invalidation:

e If a paging-structure entry is modified to change the P flag from 1 to 0, an access to an input-
address whose translation is controlled by this entry may or may not cause a translation fault.

o If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

e If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

o If a paging-structure entry is modified to change the XD flag from 1 to O, instruction fetches from
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For
example, when freeing a portion of the process address space (by marking paging-structure entries
“not present”), IOTLB invalidation command may be delayed if software does not re-allocate that
portion of the process address space or the memory that had been associated with it. However,
because of speculative execution by devices (or errant software), there may be accesses to the freed
portion of the process address space before the invalidations occur. In this case, the following can

happen:

6-38 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

e Reads can occur to the freed portion of the process address space. Therefore, invalidation should
not be delayed for an address range that has side effects for reads from devices (e.g., mapped to
MMIO).

e The hardware may retain entries in the IOTLBs and paging-structure caches for an extended
period of time. Software should not assume that the hardware will not use entries associated with
a input-address simply because time has passed.

e As noted in Section 6.2.5, the hardware may create an entry in a paging-structure cache even if
there are no translations for any input-address that might use that entry. Thus, if software has
marked “not present” all entries in the page table, the hardware may subsequently create a PDE-
cache entry for the PDE that references that page table (assuming that the PDE itself is marked
“present”).

e If software attempts to write to the freed portion of the input-address space, the hardware might
not generate a translation fault. (Such an attempt would likely be the result of a software error.)
For that reason, the page frames previously associated with the freed portion of the process
address space should not be reallocated for another purpose until the appropriate invalidations
have been performed.

6.5.4 Draining of Requests to Memory

Requests from devices that are already processed by the remapping hardware, but queued within the
Root-Complex to be completed to memory are referred as non-committed requests. Draining refers to
hardware pushing (committing) these requests to the global ordering point. Hardware
implementations report support for draining through the Capability Registers.

A write request to system memory is considered drained when the effects of the write are visible to
processor accesses to addresses targeted by the write request. A read request to system memory is
considered drained when the Root-Complex has finished fetching all of its read response data from
memory.

Requirements for draining are described below:

e Draining applies only to requests to memory and do not guarantee draining of requests to peer
destinations.

e Draining applies only for untranslated requests (AT=00b), including those processed as pass-
through by the remapping hardware.

¢ Draining of translated requests (AT=10b) requires issuing a Device-TLB invalidation command to
the endpoint device. Endpoint devices supporting Address Translation Services (ATS) are required
to wait for pending translated read responses (or keep track of pending translated read requests
and discard their read responses when they arrive) before issuing the ATS invalidation completion
message. This effectively guarantees draining of translated read requests. The ATS invalidation
completion message is issued on the posted channel and pushes all writes from the device
(including any translated writes) ahead of it. To ensure proper write draining of translated
requests, remapping hardware must process ATS invalidation completion messages after all
preceding writes are considered drained.

e Read and write draining of untranslated requests are required when remapping hardware status
changes from disabled to enabled. The draining must be completed before hardware sets the TES
field in Global Status Register (which indicates remapping hardware is enabled). Hardware
implementations may perform draining of untranslated requests when remapping hardware status
changes from enabled to disabled.

e Read and write draining of untranslated requests are performed on IOTLB invalidation requests
specifying Drain Read (DR) and Drain Write (DW) flags respectively. For IOTLB invalidations
submitted through the IOTLB Invalidate Register (IOTLB_REG), draining must be completed
before hardware clears the IVT field in the register (which indicates invalidation completed). For
IOTLB invalidations submitted through the queued invalidation interface, draining must be
completed before the next Invalidation Wait Descriptor (inv_wait_dsc) is completed by hardware.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-39

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

— For global IOTLB invalidation requests specifying DMA read/write draining, all non-committed
DMA read/write requests queued within the Root-Complex are drained.

— For domain-selective IOTLB invalidation requests specifying read/write draining, hardware
only guarantees draining of non-committed read/write requests to the domain specified in the
invalidation request.

— For page-selective IOTLB invalidation requests specifying read/write draining, hardware only
guarantees draining of non-committed read/write requests with untranslated address
overlapping the address range specified in the invalidation request and to the specified
domain.

e Read and write draining of untranslated requests are performed on all PASID based IOTLB
invalidation requests, where draining is completed before the next Invalidation Wait Descriptor
(inv_wait_dsc) is completed by hardware.

6.5.5 Interrupt Draining

Interrupt requests that are already processed by the remapping hardware, but queued within the
Root-Complex to be completed are referred as non-committed interrupt requests. Interrupt draining
refers to hardware pushing (committing) these interrupt requests to the appropriate processor’s
interrupt controller (Local xAPIC). An interrupt request is considered drained when the interrupt is
accepted by the processor Local xAPIC (for fixed and lowest priority delivery mode interrupts this
means the interrupt is at least recorded in the Local xAPIC Interrupt Request Register (IRR)).

Requirements for interrupt draining are described below:

e Interrupt draining applies to all non-committed interrupt requests, except Compatibility format
interrupt requests processed as pass-through on Intel™ 64 platforms.

e Interrupt draining is required when interrupt-remapping hardware status changes from disabled
to enabled. The draining must be completed before hardware sets the IES field in Global Status
Register (indicating interrupt-remapping hardware is enabled). Hardware implementations may
perform interrupt draining when interrupt-remapping hardware status changes from enabled to
disabled.

e Interrupt draining is performed by remapping hardware after Interrupt Entry Cache (IEC)
invalidation requests. For IEC invalidations submitted through the queued invalidation interface,
interrupt draining must be completed before the next Invalidation Wait Descriptor is completed by
hardware.

— For global IEC invalidation requests, all non-committed interrupt requests queued within the
Root-Complex are drained.

— For index-selective IEC invalidation requests, hardware only guarantees draining of non-
committed interrupt requests referencing interrupt indexes specified in the invalidation
request.

e The Root-Complex considers an interrupt request as drained when it receives acknowledgement
from the processor complex. Interrupt draining requires processor complex to ensure the
interrupt request received is accepted by the Local XAPIC (for fixed interrupts, at least recorded in
the IRR) before acknowledging the request to the Root-Complex.

6.6 Set Root Table Pointer Operation

Software must always perform a Set Root-Table Pointer operation before enabling or re-enabling
(after disabling) remapping hardware.

For implementations reporting the Enhanced Set Root Table Pointer Support (ESRTPS) field as Clear,
on a ‘Set Root Table Pointer’ operation, software must perform a global invalidate of the context-
cache, PASID-cache (if applicable), and IOTLB, in that order. This is required to ensure hardware
references only the remapping structures referenced by the new root table pointer and not stale
cached entries.

6-40 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Caching Translation Information
®

For implementations reporting the Enhanced Set Root Table Pointer Support (ESRTPS) field as Set, as
part of ‘Set Root Table Pointer’ operation, hardware performs global invalidation on all DMA
remapping translation caches and hence software is not required to perform additional invalidations.

If software sets the root-table pointer while remapping hardware is active (TES=1 in Global Status
register), software must ensure the structures referenced by the new root-table pointer provide
identical remapping results as the structures referenced by the previous root-table pointer so that in-
flight requests are properly translated. This is required since hardware may utilize the cached old
paging structure entries or the new paging structure entries in memory to translate in-flight requests,
until the Context-cache, PASID-cache, and IOTLB invalidations are completed. For implementations
reporting the Enhanced Set Root Table Pointer Support (ESRTPS) field as Clear, software must not
modify the Translation Table Mode (TTM) field in the Root-table Address register while remapping
hardware is active (TES=1 in Global Status register). For implementations reporting the Enhanced Set
Root Table Pointer Support (ESRTPS) field as Set, software may modify the Translation Table Mode
(TTM) field in the Root-table Address register while remapping hardware is active (TES=1 in Global
Status register).

6.7 Set Interrupt Remapping Table Pointer Operation

Software must always set the interrupt-remapping table pointer before enabling or re-enabling (after
disabling) interrupt-remapping hardware.

For implementations reporting the Enhanced Set Interrupt Remap Table Pointer Support (ESIRTP)
field as Clear, after a ‘Set Interrupt Remap Table Pointer’ operation, software must globally invalidate
the interrupt entry cache. This is required to ensure hardware uses only the interrupt-remapping
entries referenced by the new interrupt remap table pointer, and not stale cached entries.

For implementations reporting the Enhanced Set Interrupt Table Pointer Support (ESIRTP) field as
Set, as part of ‘Set Interrupt Remap Table Pointer’ operation, hardware performs global invalidation
on all interrupt remapping translation caches and hence software is not required to perform additional
invalidations.

If software updates the interrupt-remapping table pointer while interrupt-remap hardware is active,
software must ensure the structures referenced by the new interrupt-remapping table pointer provide
identical remapping results as the structures referenced by the previous interrupt-remapping table
pointer to ensure any valid in-flight interrupt requests are properly remapped. This is required since
hardware may utilize the old structures or the new structures to remap in-flight interrupt requests,
until the IEC invalidation is completed.

6.8 Write Buffer Flushing

On remapping hardware page-table walk, earlier implementations of this architecture did not flush or
snoop the write buffers at the memory controller that buffers writes to DRAM, and required explicit
software flushing of these write buffers on paging structure modifications. These earlier hardware
implementations reported this restriction to software by reporting the Required Write Buffer Flushing
(RWBF) field in the Capability Register to 1.

For such hardware implementations requiring write buffer flushing (RWBF=1 in the Capability
register), software updates to memory-resident remapping structures may be held in Root-Complex
internal hardware write-buffers, and not implicitly visible to remapping hardware. For such
implementations, software must explicitly make these updates visible to hardware through one of two
methods below:

e For updates to remapping hardware structures that require context-cache, PASID-cache, IOTLB or
IEC invalidation operations to flush stale entries from the hardware caches, no additional action is
required to make the modifications visible to hardware. This is because, hardware performs an
implicit write-buffer-flushing as a pre-condition to context-cache, PASID-cache, IOTLB and IEC
invalidation operations.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 6-41

Caching Translation Information—Intel® Virtualization Technology for Directed I/0 I n te I
®

e For updates to remapping hardware structures (such as modifying a currently not-present entry)
that do not require context-cache, PASID-cache, IOTLB or IEC invalidations, software must
explicitly perform write-buffer-flushing to ensure the updated structures are visible to hardware.

Newer hardware implementations are expected to NOT require explicit software flushing of write
buffers and report RWBF=0 in the Capability register.

6.9 Hardware Register Programming Considerations

A register used to submit a command to a remapping unit is owned by hardware while the command
is pending in hardware. Software must not update the associated register until hardware indicates the
command processing is complete through appropriate status registers.

For each remapping hardware unit, software may submit a command through the Global Command
register, Context Command register, IOTLB registers or Protected Memory Enable register. After
submitting each command, software must wait for remapping hardware to confirm completion of the
command (via appropriate status bit) before submitting another command.

For platforms supporting more than one remapping hardware unit, there are no hardware serialization
requirements for operations across remapping hardware units.

6.10 Sharing Remapping Structures Across Hardware Units

Software may share! (fully or partially) the various remapping structures across multiple remapping
hardware units. When the remapping structures are shared across hardware units, software must
explicitly perform the invalidation operations on each remapping hardware unit sharing the modified
entries. The software requirements described in this chapter must be individually applied for each
such invalidation operation.

1. Sharing of scalable-mode root tables and scalable-mode context tables across remapping
hardware units are possible only across remapping hardware units that report Scalable Mode
Translation Support (SMTS) field as Set in the Extended Capability register.

6-42 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

7 Address Translation Faults

Address translation faults are classified as follows:

e Non-recoverable Faults: Requests that encounter non-recoverable address translation faults
are aborted by the remapping hardware, and typically require a reset of the device (such as
through a function-level-reset) to recover and re-initialize the device to put it back into service.

e Recoverable Faults: Requests that encounter recoverable address translation faults can be
retried by the requesting device after the condition causing the recoverable fault is handled by
software. Recoverable translation faults are detected at the Device-TLB on the device and require
the device to support Address Translation Services (ATS) capability. Refer to Address Translation
Services in PCI Express Base Specification Revision 4.0 or later for details.

7.1 Remapping Hardware Behavior on Faults

7.1.1 Non-Recoverable Address Translation Faults

Non-recoverable address translation faults can be detected by remapping hardware for many different
kinds of requests as shown by Table 24. A non-recoverable fault condition is considered “qualified” if
software can suppress reporting of the fault by setting one of the Fault Processing Disable (FPD) bits
available in one or more of the address translation structures (i.e., the context-entry, scalable-mode
context-entry, scalable-mode PASID-directory entry, scalable-mode PASID-table entry). For a request
that encounters a “qualified” non-recoverable fault condition, if the remapping hardware encountered
any translation structure entry with an FPD field value of 1, the remapping hardware must not report
the fault to software. For example, when processing a request that encounters an FPD field with a value
of 1 in the scalable-mode context-entry and encounters any “qualified” fault such as SCT.*, SPD.*, SPT.*,
SFL.*, SSL.*, or SGN.*, the remapping hardware will not report the fault to software. Memory requests
that result in non-recoverable address translation faults are blocked by hardware. The exact method
for blocking such requests are implementation-specific. For example:

e Faulting write requests may be handled in much the same way as hardware handles write
requests to non-existent memory. For example, the write request is discarded in a manner
convenient for implementations (such as by dropping the cycle, completing the write request to
memory with all byte enables masked off, re-directing to a catch-all memory location, etc.).

e Faulting read requests may be handled in much the same way as hardware handles read requests
to non-existent memory. For example, the request may be redirected to a catch-all memory
location, returned as all 0’s or 1’s in a manner convenient to the implementation, or the request
may be completed with an explicit error indication (recommended). For faulting read requests
from PCI Express devices, hardware indicates “Unsupported Request” (UR) or "Completer Abort”
(CA) in the completion status field of the PCI Express read completion.

7.1.2 Recoverable Address Translation Faults

When remapping hardware detects a recoverable fault on a translation-request from Device-TLB, it is
not reported to software as a fault. Instead, remapping hardware sends a successful translation
completion with limited or no permission/privileges. When such a translation completion is received
by the Device-TLB, a translation fault is detected at the Device-TLB, and handled as recoverable fault
if the Device supports recoverable address translation faults. What device accesses can tolerate and
recover from Device-TLB detected faults and what device accesses cannot tolerate Device-TLB
detected faults is specific to the device. Device-specific software (e.g., driver) is expected to make

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-1

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

sure translations with appropriate permissions and privileges are present before initiating device
accesses that cannot tolerate faults. Device operations that can recover from such Device-TLB faults
typically involves two steps:

e Report the recoverable fault to host software; This may be done in a device-specific manner (e.g.,
through the device-specific driver), or if the device supports PCI Express Page Request Services
(PRS) Capability, by issuing a page-request message to the remapping hardware. Section 7.4
describe the page-request interface through the remapping hardware.

o After the recoverable fault is serviced by software, the device operation that originally resulted in
the recoverable fault may be replayed, in a device-specific manner.

Device-TLB implementations must ensure that a device request, that led to detection of a translation
fault in the Device-TLB and reporting of the fault to system software, does not reuse the same faulty
translation on retry of the device request after software has informed the device that the reported
fault has been handled. However, other device requests may use the same translation in Device-TLB
and may succeed or report another fault to system software. One way devices can meet this
requirement is by removing the faulty translations from the Device-TLB after receiving confirmation
from system software that the fault has been serviced, however there may other device specific
methods to achieve this goal. If a recoverable page fault is reported to software in a device-specific
manner, rather than using Page Request Services, then software should ensure that stale IOTLB
entries in the remapping hardware in root-complex are invalidated.

7-2 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O — Address Translation Faults

7.1.3 Fault conditions and Remapping hardware behavior for various request
Table 24. Fault conditions and Remapping hardware behavior for various requests
£ oL ° & w9 wy
o c c [} <]
5 88| 3 | 83,] £5,| 83 S&£ |3 | S| %20
Condition S0 st 2 LeQl B2a) 50 =¥X0 s 52| curg
Eg o k= wsHl a3l 8SsR 835 29 9ol 9950
T o [“3-Y = €39 379 G359 w32 w9l xoal O ga
€0 - 0 ud 63<| s&g<| £3< c o< c X o TQn
H 29 3 =il =gl g§lo FRY © QL0 Yupypo
S | 3| @ |E5|E2| Eg | E2 | & | gEe| gE%e
£e S | o - = af | as
Legacy Root-Table Faults
A hardware attempt to access a root-entry referenced through the Root-Table
Address (RTA) field in the Root-entry Table Address Register resulted in an error. LRT.1 gh No UR NA CA NA UR NA NA
The Present (P) field in root-entry used to process a request is 0. LRT.2 1h No UR NA UR NA UR NA NA
Non-zero reserved field in a root-entry with Present (P) field set. LRT.3 Ah No UR NA CA NA UR NA NA
Legacy Context-Table Faults
A hardware attempt to access a context-entry referenced through the CTP field in
a root-entry resulted in an error. LCT-1 oh No UR NA CA NA UR NA NA
The Present (P) field in context-entry used to process a request is 0. LCT.2 2h Yes UR NA UR NA UR NA NA
Non-zero reserved field in a context-entry with Present (P) field set. LCT.3 Bh Yes UR NA CA NA UR NA NA
Invalid programming of a context-entry used to process a request. LCT.4.0 3h
. 'r:he Address-Width (AW) field is programmed with a value not supported by LCT.4.1 3h Yes UR NA CA NA UR NA NA
ardware.
e The Translation-Type (TT) field is programmed to indicate a translation type
not supported by the hardware implementation. Loz 2 e U e e A U b b
e A hardware attempt to access the second-level paging entry referenced
through the SLPTPTR field of the context-entry resulted in an error. LCT.4.3 3h Yes UR NA CA NA UR NA NA
Translation Type (TT) field in present context-entry, specifies blocking of
translation request (without PASID) and translated request. LEThS = VEE hba hba = e <R - i
Legacy Second-Level Table Faults
When legacy mode (RTADDR_REG.TTM=00b) is enabled, a hardware attempt to
access a second-level paging entry (SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE)
referenced through the address (ADDR) field in a preceding second-level paging el 7h Yes UR NA e NA NA NA NA
entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE) resulted in an error.
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-011 7-3

Intel® Virtualization Technology for Directed I/0 — Address Translation Faults

intel.

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
L L
c 63 | o |85 | B. | =% £, 5 | §8,| 88
iti] 28] ®° k= 209 25 9 S=Zw| 300
Condition 9 0T = feQl B0 50 =0 s o3c| ocukcec
g 9o £ wsBl a3l SsH ssa 2% 90| 9950
T O -1 = csV c?V F3TU w74 wdl ool O Ta
€0 o0 [63| sgI| £3< c od c & n Tgwn
° L 1A Loga Y oo [[] wumd’
o 25| © | €9 | Ex =g = o = | 98| 9R%x
- =02 =] = -9 = as o s
When legacy mode (RTADDR_REG.TTM=00b) is enabled, a non-zero reserved field
in a second-level paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE)
with at least one of the Read (R), or Write (W) fields set. LSL.2 Ch Yes UR NA CA NA NA NA NA
Legacy General Faults
Address overflow in second-level translation. For example: LGN.1.0 4h
e When legacy mode (RTADDR_REG.TTM=00b) i?(enabled, the address in an Success
Untranslated or Translation request is above (2% - 1), where X is the minimum with
of MGAW reported in the capability register and the value in the Address- e A = bl i R=W=U b bl bl bl
Width (AW) field of the context-entry used to process a request. =S=0
e When legacy mode (RTADDR_REG.TTM=00b) is enabled, the address in a
Translated request is above the Host Address width (HAW) supported by the LGN.1.2 4h Yes NA NA NA NA UR NA NA
DMA remapping hardware.
e When legacy mode (RTADDR_REG.TTM=00b) is enabled, the address in an
Untranslated request using pass-through translation type (TT=10) is above LGN.1.3 4h Yes UR NA NA NA NA NA NA
the Host Address Width (HAW) supported by the DMA remapping hardware.
When legacy mode (RTADDR_REG.TTM=00b) is enabled, a Write or AtomicOp Sucees
_ . = ’ with
request encountered lack of write permission. LGN.2 5h Yes UR NA effective NA NA NA NA
permission
When legacy mode (RTADDR_REG.TTM=00b) is enabled, a Read or AtomicOp
request encountered lack of read permission. Success
For implementations reporting the ZLR field as 1 in the capability register, this fault LGN.3 6h Yes UR NA . NA NA NA NA
condition is not applicable for zero-length read requests to write-only mapped permission
pages in second-level translation.
When legacy mode (RTADDR_REG.TTM=00b) is enabled, hardware detected an
output address (i.e. address after remapping) in the interrupt address range
(OXFEEx_xxxx). For Translated requests and requests with pass-through LGN.4 Eh Yes UR NA CA NA UR NA NA
translation type (TT=10), the output address is the same as the address in the
request.
Root-Table Address Register Faults
Invalid plrogrammmg of Root Table Address (RTADDR_REG) registers. For RTA.1.0 30h
example:
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-012 7-4

intel.

Intel® Virtualization Technology for Directed I/O — Address Translation Faults

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
e T) k-] ! I 0=
g ST | o | 23 | 2+ | 83 | 5: |3 | 8Lyl s2,9
e o] @ 8 %a| ®Ea| 5%n S5 3 350 3,00
COI‘IdItIOn :ﬂ) g" U= _'=|-| TS = lM'=|-| ®'s [} U’=C gcuc-c
=3 o £ @ B 93 o o2q <9 @880 @¥350
T o X g = c3¥ c70 39 w74 wdl ool O Ta
] o @ [63<| sgl| €3« c od c [Ton
S Sk o s5f 508 652 Qo © u0| Swpd
o o] (=] c ':] |: o [gl (-4 H [
i) S | 5 [oS as
e The TTM field is programmed to value of 11b on Hardware Implementations
not supporting Abort DMA Mode (ADMS=0 in Extended Capability Register). RSl <A RE I I . Ce el 1 dlice
e The TTM field is programmed to value of 10b. RTA.1.2 30h No UR UR CA CA UR IR drop
e The TTM field is programmed to value of 01b for hardware implementation not
supporting Scalable Translation Mode (SMTS=0 in Extended Capability RTA.1.3 30h No UR UR CA CA UR IR drop
Register).
Translation Table Mode (TTM) field with value 00b in Root-table Address register
(RTADDR_REG) used to process untranslated/translation request-with-PASID. RTA.2 31h No NA UR NA UR NA NA NA
Translation Table Mode (TTM) field with value 00b in Root-table Address register
(RTADDR_REG) used to process a page request (with or without PASID). I I (L (L NA NA LN e
For hardware implementations supporting Abort DMA Mode (ADMS=1 in Extended
Capability Register), Translation Table Mode (TTM) field with value 11b in Root-
table Address register (RTADDR_REG) used to process RTA.4 33h No UR UR UR UR UR IR drop
Untranslated/Translation/Translated request or a page request.
Scalable-Mode Root-Table Faults
A hardware attempt to access a scalable-mode root-entry referenced through the
Root-Table Address (RTA) field in the Root-entry Table Address Register resulted in SRT.1 38h No UR UR CA CA UR IR drop
an error.
The Pres_ent (P) field in UP/LP fields in scalable-mode root-entry used to process a SRT.2 39h No UR UR UR UR UR IR drop
request is 0.
Non-zero reserved field in lower 64-bits of the scalable-mode root-entry with LP
field set, or non-zero reserved fields in the upper 64-bits of the scalable-mode SRT.3 3Ah No UR UR CA CA UR IR drop
root-entry with UP field set.
Scalable-Mode Context-Table Faults
A hardware attempt to access a scalable-mode context-entry referenced through
UCTP/LCTP field in the scalable-mode root-entry resulted in an error. SCT.1 40h No UR UR CA CA UR IR drop
;I;hg Present (P) field in the scalable-mode context-entry used to process a request SCT.2 41h Vs UR UR UR UR UR IR drop
Non-zero reserved field in a scalable-mode context-entry with Present (P) field set. SCT.3 42h Yes UR UR CA CA UR IR drop
Invalid programming of a scalable-mode context-entry used to process a request. SCT.4.0 43h
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-011 7-5

Intel® Virtualization Technology for Directed I/0 — Address Translation Faults

intel.

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
L L
c 63 | o |85 | B. | =% £, 5 | §8,| 88
iti] 28] ®° k= 209 25 9 S=Zw| 300
Condition 5 St | & | 3sB| °58| 58 | 558 | &gl T3c| goLc
Eg 9o k= weH a3 8s s3q 29 9gool 9950
T o g = csV c?V F3TU w74 wdl xoal O ga
€0 o0 [63| sgI| £3< c od c [Tgn
° L 1A Loga Y oo [[] wumd’
(] B o ts Tt = =y = One| 5w
- =" =) = -9 = as o s
e For scalable-mode context-entry, the Device-TLB Enable (DTE) field and Page
Request Enable (PRE) field are inconsistently programmed. (DTE=0 and SCT.4.1 43h Yes UR UR CA CA UR IR drop
PRE=1 is an illegal combination.)
e The value in the RID_PASID field of a scalable-mode context-entry (with P=1)
used to process a request without PASID is larger than the maximum PASID- SCT.4.2 43h Yes UR NA CA NA UR IR drop
value supported by PDTS field in the scalable-mode context-entry.
The Device-TLB Enable (DTE) field in a scalable-mode context-entry used to
process the translation request (with or without PASID) or translated request is 0. SCT.5 44h Yes NA NA UR UR UR NA NA
The PASID Enable (PASIDE) field in a present scalable-mode context-entry used to
process the untranslated request with PASID, translation request with PASID or SCT.6 45h Yes NA UR NA UR NA IR drop
page request with PASID is 0.
The PASID value in the untranslated/translation request with PASID or page
request with PASID is larger than the maximum PASID-value supported by the SCT.7 46h Yes NA UR NA UR NA IR drop
PDTS field in the scalable-mode context-entry used to process the request.
The Page Request Enable (PRE) field in a present scalable-mode context-entry
used to process a page request is 0. SCT.8 47h Yes NA NA NA NA NA IR drop
The PASID value in an untranslated request with PASID, a translation request with
PASID or a page request with PASID matches the RID_PASID value in the scalable- SCT.9 48h Yes NA UR NA UR NA IR drop
mode context entry used to process the request.
Scalable-Mode PASID-Directory Faults
A hardware attempt to access the scalable-mode PASID-directory entry referenced
through the PASIDDIRPTR field in scalable-mode context-entry resulted in an SPD.1 50h No UR UR CA CA NA IR drop
error.
Success | Success
The Present (P) field in the scalable-mode PASID-directory entry used to process with with
the untranslated/translation request (with or without PASID) is 0. SPD.2 | S5th | Yes | UR UR | p—w=u |R=w=yu | VA | IR drop
=S=0 =S=0
Non-zero reserved field in a present scalable-mode PASID-directory entry used to
process the untranslated/translation request (with or without PASID). SPD.3 52h Yes UR UR CA CA NA R drop
Scalable-Mode PASID-Table Faults
A hardware attempt to access a scalable-mode PASID-table entry referenced
through the SMPTPTR field in a scalable-mode PASID-directory entry resulted in an SPT.1 58h No UR UR CA CA NA IR drop
error.
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-012 7-6

intel.

Intel® Virtualization Technology for Directed I/O — Address Translation Faults

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
el el
e | §%| o |35 |3: | 5% | 5. |3 |88s 8E,0
. 5 w9 S %%al REn .C_’c:>D .Efo 9 S=u|l 300w
Condition 59 st e S8 38| %8 B£0 Bg| T3E| TYEC
58 | 2| £ | 259 23| G50 | 534 | 92 2ga| o932
co - O © N;< Ng-< c;< =°-< c [To0
° E— 3 =il =gl glo RS © Q.0 Qupypo
o a7y =4 t9 | Ex o = = ogx| 9%y
g <) Se | 5 F e = 85| &%
Success | Success
The Present (P) field in the scalable-mode PASID-table entry used to process the with with
untranslated/translation request (with or without PASID) or a page request is 0. S =l = bl bl R=W=U | R=W=U bl 1 el
=S=0 =S=0
Non-zero reserved field in a present scalable-mode PASID-table entry used to
process the untranslated/translation request (with or without PASID) or a page SPT.3 5Ah Yes UR UR CA CA NA IR drop
request.
Invalid programming of the scalable-mode PASID-table entry used to process a SPT.4.0 5Bh
request. For example: U
e The Address-Width (AW) field is programmed with a value not supported by SPT.4.1 5Bh Yes UR UR CA CA NA IR drop
hardware.
e The PASID Granular Translation-Type (PGTT) field is programmed to indicate a
translation type not supported by the hardware implementation.
e PGTT= 000b, 101b, 110b, 111b
e PGTT=001b, when ECAP_REG.FLTS is Clear SPT.4.2 5Bh Yes UR UR CA CA NA IR drop
e PGTT=010b, when ECAP_REG.SLTS is Clear
e PGTT=011b, when ECAP_REG.NEST is Clear
e PGTT=100b, when ECAP_REG.PT is Clear
e The First Level Paging Mode (FLPM) field is programmed with a value not
supported by hardware. SPT.4.3 5Bh Yes UR UR CA CA NA NA NA
e The Extended Memory Type (EMT) field is programmed with a value not
supported by hardware. SPT.4.4 5Bh Yes UR UR CA CA NA NA NA
] . . Success
The Execute Requests Enable (ERE) field is 0 in the present scalable-mode PASID- with
table entry used to process an untranslated/translation request (with PASID) with SPT.5 5Ch Yes NA UR NA R=W=U NA NA NA
Execute-Requested (ER) field set. =_S=_O
The Supervisor Requests Enable (SRE) field is 0 in the present scalable-mode Success | Success
PASID-table entry used to process an untranslated/translation request (with or with with
without PASID) with Privileged-mode-Requested (PR) field Set. (PR value may SIS Sl VEE = = R=W=U | R=W=U - - i
come from RID_PRIV field in scalable-mode context entry.) =S=0 =5=0
Scalable-Mode First-Level Table Faults
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-011 7-7

Intel® Virtualization Technology for Directed I/0 — Address Translation Faults

intel.

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
el el
c 63 | o |85 | B. | =% £, o | 88,0 98
iti] 28] ®2%n| BSal 224 25,4 9 S=Zw| 300
Condition 59 S5 = ZSH| TER| ®BS S © o3c| oot c
£ o £ 0 5 a3 sSs0 830 | 29 @96 a¥50
T o X = c3¥ 79 G359 w3 wll x0al xS ga
co - O © N;< Ng—< =;< =°-< c [To0
S Sk 5 s5f 508 652 Qo © 9,0 Qupyo
o s | © | Ed | Ex | £ e F | SE%| B8
L - =N =} o as o
A hardware attempt to access a first-level paging entry (FL-PML4E with 5-level
paging, FL-PDPE, FL-PDE, or FL-PTE) referenced through the Address (ADDR) field S S
in a preceding first-level paging entry (FL-PML5E with 5-level paging, FL-PML4E, uc_ciss ucpﬁss
FL-PDPE, or FL-PDE) resulted in an error. SFL1 | 70n | Yes | UR UR RLN\;\S—U RLN\}&_U NA | NA NA
(For nested translations, second-level nested translation faults encountered when =5=0 =5=0
accessing first-level paging entries are treated as fault conditions SSL.1-SSL.5,
SGN.5, SGN.6 or SGN.7. See description of these fault conditions in Table 24.)
Success | Success
The Present (P) field in first-level paging entry (FL-PML5E, FL-PML4E, FL-PDPE, FL- with with
PDE, or FL-PTE) is 0. SFL.2 | 71h | Yes | UR UR | plweu | Rewey | NA | NA NA
=S=0 =S=0
Success | Success
Non-zero reserved field in first-level paging entry (FL-PML5E, FL-PML4E, FL-PDPE, with with
FL-PDE, or FL-PTE) with Present (P) field set. SFL3 | 72h | Yes | UR | UR I p_w=u | R=w=u | VA | NA NA
=S=0 =S=0
A hardware attempt to access the FL-PML4 (FL-PML5 with 5-level paging) entry Sl\fi‘;ﬁss S‘:NCI‘;‘?\SS
referenced through the FLPTPTR field in the scalable-mode PASID-table entry SFL.4 73h Yes UR UR R=W=U | R=W=U NA NA NA
resulted in an error. e e
=S=0 =S=0
For nested translation, the intermediate-address of a first-level paging entry (FL- Success | Success
PML5E, FL-PML4E, FL-PDPE, FL-PDE, or FL-PTE), or intermediate-address of the with with
page frame is above (2X - 1), where X is the minimum of MGAW reported in the SFL.5 74h Yes UR UR R=W=U | R=W=U NA NA NA
capability register and value in the Address-Width (AW) field of a scalable-mode —_S—_O —_S—_O
PASID-table entry used to process a request. T o
For nested translation, read of the FL-PML4 (FL-PML5 with 5-level paging) entry success | Success
referenced through FLPTPTR field in the scalable-mode PASID-table entry was SFL.6 75h Yes UR UR R=W=U | R=W=U NA NA NA
blocked due to lack of read permissions in the nested second-level translation. =_S=_0 =_S=_0
For nested translations, read of first-level paging entry (FL-PML4E with 5-level Slﬁﬁﬁss S%&ﬁss
paging, FL-PDPE, FL-PDE, or FL-PTE) was blocked due to lack of read permissions SFL.7 76h Yes UR UR R=W=U | R=W=U NA NA NA
in the nested second-level translation. PP PP
=S=0 =S=0
For nested translations, Access/Dirty/Extended-Access flag update to first-level Sl'xiiﬁss Sl‘x&ﬁss
paging entry (FL-PML5E, FL-PML4E, FL-PDPE, FL-PDE, or FL-PTE) was blocked due SFL.8 77h Yes UR UR R=W=U | R=W=U NA NA NA
to lack of write permissions in the nested second-level translation. =_S=_0 =_S=_0
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-012 7-8

intel.

Intel® Virtualization Technology for Directed I/O — Address Translation Faults

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
L L
c 63 | o |85 | B. | =% £, o | 88,0 98
iti] 28] ®2%n| BSal 224 25,4 9 S=Zw| 300
Condition 59 05| € | wSH| wSH| &S S © g3c| To=c
g) & k=] w3 Loi=Nr] s3q 2O gUo|l 0950
T o g = csV c?V F3TU w74 wdl xoal O ga
€0 o0 [63| sgI| £3< c od c [Tgn
° L 1A Loga Y oo [[] wumd’
o 3w o ts Tt = = oy = Ocx| P8
el =¥ =) Fe = as as
When remapping hardware is setup to not snoop processor caches on access to Success | Success
first-level paging structure (ECAP_REG.SMPWC=0 or PWSNP field in PASID-table with with
entry is 0), hardware encountered a need to update the A/D bit in a first-level SFL.9 90h Yes UR UR R=W=U | R=W=U NA NA NA
paging structure entry. =S=0 =S=0
Success | Success
with with
R=W=U | R=W=U
’ . . =5=0. =S=0.
Remapping hardware failed to update Access/Dirty/Extended-Access flag in first-
level paging structure entry SFL.10 91h Yes UR UR N NA NA NA
so Also
reported reported
as non- as non-
recovera recovera
ble fault ble fault
Scalable-Mode Second-Level Table Faults
When operating in scalable mode (RTADDR_REG.TTM=01b), a hardware attempt
to access a second-level paging entry (SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE)
referenced through the address (ADDR) field in a preceding second-level paging L 3 e U U e G b b b
entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE) resulted in an error.
When operating in scalable mode (RTADDR_REG.TTM=01b), hardware Success | Success
encountered a second-level paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, with with
or SL-PTE) with R=W=0 or hardware detected that the logical-AND of the Read (R) SSL.2 79h Yes UR UR R=W=U | R=W=U NA NA NA
permission bits and logical-AND of Write (W) permission bits from the result of the =_S=_0 =_S=_0
second-level page-walk to be both 0.
When operating in scalable mode (RTADDR_REG.TTM=01b), a non-zero reserved
field in a second-level paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, or SSL.3 7Ah Yes UR UR CA CA NA NA NA
SL-PTE) with at least one of the Read (R), or Write (W) fields set.
When operating in scalable mode (RTADDR_REG.TTM=01b), a hardware attempt
to access the second-level paging entry referenced through the SLPTPTR field in
scalable-mode PASID-table entry resulted in an error. SsL.4 7Bh Yes UR UR CA CA NA NA NA
When remapping hardware is setup to not snoop processor caches on access to
second-level paging structure (ECAP_REG.SMPWC=0 or PWSNP field in PASID-
table entry is 0), hardware encountered a need to update the A/D bit (SLADE field SSL.5 7Ch Yes UR UR CA CA NA NA NA
in PASID-table entry is 1 and A/D bit in a second-level paging structure entry is 0)
in a second-level paging structure entry.
Remapping hardware failed to update Access/Dirty bit in second-level tables. SSL.6 7Dh Yes UR UR CA CA NA NA NA
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-011 7-9

Intel® Virtualization Technology for Directed I/0 — Address Translation Faults

intel.

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
£ oL ° & w9 wy
5 83 | 3 | 83, ££,| 53, | 84, | B | 9Ll Y203
Conditi 2o © T 9 Kscaol Bl 50 =0 - o3c| Tukce
ondition s oo = weHl BSH [= 'S = Sol 9goTo 09350
T o €a | = cfw cfal GEU | 530 | 5o 2338 #8aa
£0) © 0 S< ng-< =;< :Ig-< ce X on 'Ugln
° E— 3 =il =gl glo RS © Q.0 Qupypo
F] =N =} -3 i 4
o g5 | © | £E8 | Ex | £Q s £ | P8l 9%
i) S | D [oS a5
Scalable-Mode General Faults
Input-address in the request subjected to first-level translation is not canonical Suvsictc;ss Sl:;ictﬁss
(i.e., address bits 63:N are not same value as address bits [N-1], where N is 48 SGN.1 80h Yes UR UR R=W=U | R=W=U NA NA NA
bits with 4-level paging and 57 bits with 5-level paging). =_S=_0 =_S=_O
When performing first-level translation for request with user privilege (value of 0 Success | Success
in the Privilege-mode-requested (PR) field), hardware encountered a present first- with with
level-paging-entry with U/S field value of O (supervisor), causing a privilege sz 81h e U U R=W=U | R=W=U e e e
violation. =S=0 =S=0
An untranslated request-with-PASID or translation request-with-PASID with
Execute-Requested (ER) field set encountered lack of execute permission.
Pass-through translations do not encounter this condition. For nested translations, va‘t’ﬁcfi%
the lack of execute permission can be at first-level translation, or at the second- and
level translation for the final page. SGN.3 82h Yes NA UR NA e’{fevcvti\ﬁe NA NA NA
Refer to Section 3.6.1 for access rights checking with first-level translation, and’s
Section 3.7.1 for access rights checking with second-level translation, and
Section 3.8.1 for access rights checking with nested translation
The input-address in the request is a Host Address and is greater than the Host SGN.4.0 83h
Address Width (HAW) supported by DMA remapping hardware. For example: T
e When operating in scalable mode (RTADDR_REG.TTM=01b), the address in a
Translated request is above the Host Address Width (HAW) supported by the SGN.4.1 83h Yes NA NA NA NA UR NA NA
DMA remapping hardware.
e When operating in scalable mode (RTADDR_REG.TTM=01b), the address in an Success | Success
Untranslated/Translation request (with or without PASID) using pass-through with with
translation type (PGTT=100) is above the Host Address Width (HAW) DA | e ek UR | pow=u | R=w=yu | NA | NA b
supported by the DMA remapping hardware. =S=0 =S=0
When operating in scalable mode (RTADDR_REG.TTM=01b), the address in a
untranslated or translation request (witp(or without PASID) using second-level Success | Success
only translation(PGTT=010) is above (2% - 1), where X is the minimum of MGAW with with
reported in the capability register and the value in the Address-Width (AW) field of | SCGN-5 | 84h | Yes | UR UR 1 R=w=U | R=w=u | NA | NA NA
the context-entry or scalable-mode PASID-table entry used to process the =S=0 =S=0
request.
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-012 7-10

intel.

Table 24.

Intel® Virtualization Technology for Directed I/O — Address Translation Faults

Fault conditions and Remapping hardware behavior for various requests (Contd.)

Condition

Condition
Code

Fault Reason
(If reported)

Qualified

Untranslated
Req-without-

PASID

Untranslated
Req-with-

PASID

Translation
Req-without-
PASID

Translation
Req-with-
PASID

Translated
Req

Page Request
that Requires

Response

Page Request
Require

that does not

Response

When operating in scalable mode (RTADDR_REG.TTM=01b), a Write or AtomicOp
request encountered lack of write permission.

Pass-through translations do not encounter this condition. For nested translations,
the lack of write permission can be at first-level translation or at the nested
second-level translation.

Refer to Section 3.6.1 for access rights checking with first-level translation,
Section 3.7.1 for access rights checking with second-level translation, and
Section 3.8.1 for access rights checking with nested translation.

SGN.6

85h

Yes

UR

UR

Success
with
effective
permission

Success
with
effective
permission

NA

NA

NA

When operating in scalable mode (RTADDR_REG.TTM=01b), a Read or AtomicOp
request encountered lack of read permission. First-level or pass-through
translations do not encounter this condition. Nested-translation can encounter this
condition only when translating leaf entry (FL-PTE for 4K, FL-PDE for 2M, FL-PDPE
for 1G) through second-level mappings. Refer to Section 3.6.1 for access rights
checking with first-level translation, Section 3.7.1 for access rights checking with
second-level translation, and Section 3.8.1 for access rights checking with nested
translation

For implementations reporting the ZLR field as 1 in the capability register, this fault
condition is not applicable for zero-length read requests to write-only mapped
pages in second-level translation.

SGN.7

86h

Yes

UR

UR

Success
with
effective
permission

Success
with
effective
permission

NA

NA

NA

When operating in scalable mode (RTADDR_REG.TTM=01b), hardware detected an
output address (i.e. address after remapping) in the interrupt address range
(OXFEEx_xxxx). For Translated requests and requests with pass-through
translation type (PGTT=100b), the output address is the same as the address in
the request.

Translation request without PASID that use PASID Table entry with PGTT field

programmed to a value of 100b (pass-through) does not encounter this condition
as it is handled by condition S.1 in this table.

SGN.8

87h

Yes

UR

UR

CA

CA

UR

NA

NA

An untranslated/translation request-with-PASID with Execute-Requested (ER) field
Set and Privileged-mode Requested (PR) field Set, that used a present scalable-

mode PASID-table entry with SMEP field with value of 1, encountered a user page.

Pass-through and second-level translations do not encounter this condition.

SGN.9

88h

Yes

NA

UR

NA

Success
with X=0
and
effective
R, W, U
and S

NA

NA

NA

The PASID value in an untranslated/translation request-with-PASID is greater than
the value reported by PASID Size Supported (PSS) field in the extended capability
register.

SGN.10

89h

Yes

NA

UR

NA

UR

NA

NA

NA

Special Conditions

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-011

Intel® Virtualization Technology for Directed I/0 — Address Translation Faults

intel.

Table 24. Fault conditions and Remapping hardware behavior for various requests (Contd.)
e o) ° ! w9 RS
£ 8% | - | 23 | 8L | §3 5: T | 880 82 9
Condition -gw [2 ‘_‘_EQ m=0 '5_80 520 = 3-52 g-lnhg
g 95 £ wuHl W3H| mBLSH m3H 8ol goo| 0950
T o a | = c3¥ 79 G359 w3 wl xgxoal xS ga
co - O © N;< Ng—< =;< =°-< c [To0
S i 5 558 508 &850 Qo © 9,0 QupypQ
(] ‘:'“ = (o4 c g c = g 4 .: g’ o g‘ [
- =N =] = -9 = as o s
Hardware detected an address in a translation request without PASID in the Success
interrupt address range (OXFEEx_xxxx). The special handling to interrupt address Not with
range is to comprehend potential endpoint device behavior of issuing translation S.1 a NA NA NA R=5=0 NA NA NA NA
requests to all of its memory transactions including its message signaled interrupt fault W_—U_—ll
(MSI) posted writes. B
Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-012 7-12

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

Note: Effective permission for Translation requests (with or without PASID) in the table above
is defined as output of DMA remapping unit after combining information from DMA
remapping tables and requirements from Address Translation Service chapter from PCI
Express Base specification.

Note: Translation requests that are blocked by valid page tables (e.g., no reserved violation)
get a response of ‘Unsupported Requested’ (UR) which results in disabling of ATS at the
function. This is reasonable because for an SRIOV device, each PF/VF can
independently enable/disable ATS, and disabling of ATS on a VF does not affect other
VF/PF.

Note: Page requests that are blocked by valid or invalid page tables get a response of ‘Invalid
Request’ (IR). Such page requests report a non-recoverable fault and don’t get a
‘Response Failure’ (RF) because a response of RF will result in a device disabling the
Page Request Interface (PRI) for the entire device. For an SR-IOV device, PRI cannot be
enabled independently for PF/VF and an RF response on a page request from a VF will
result in disabling PRI for all VF/PF. For details on IR and RF please refer to the PCI
Express Base specification.

Note: Page Requests that do not require a response and encounter a fault condition will result
in a ‘drop’ by remapping hardware and the Page Request Queue will remain unaffected.
Such page requests will report the event as a non-recoverable fault.

7.2 Non-Recoverable Fault Reporting

Processing of non-recoverable address translation faults (and interrupt translation faults) involves
logging the fault information and reporting to software through a fault event (interrupt). The
remapping architecture defines two types of fault logging facilities: (a) Primary Fault Logging; and (b)
Advanced Fault Logging. The primary fault logging method must be supported by all implementations
of this architecture. Support for advanced fault logging is optional. Software must not change the
fault logging method while hardware is enabled (i.e., when TES or IRES fields are Set in the Global
Status Register).

7.2.1 Primary Fault Logging

The primary method for logging non-recoverable faults is through Fault Recording Registers. The
number of Fault Recording Registers supported is reported through the Capability Register (see
Section 10.4.2). Section 10.4.14 describes the Fault Recording Registers.

Hardware maintains an internal index to reference the Fault Recording Register in which the next non-
recoverable fault can be recorded. The index is reset to zero when both address and interrupt
translations are disabled (i.e., TES and IES fields Clear in Global Status Register), and increments
whenever a fault is recorded in a Fault Recording Register. The index wraps around from N-1 to O,
where N is the number of fault recording registers supported by the remapping hardware unit.

Hardware maintains the Primary Pending Fault (PPF) field in the Fault Status Register as the logical
“OR” of the Fault (F) fields across all the Fault Recording Registers. The PPF field is re-computed by
hardware whenever hardware or software updates the F field in any of the Fault Recording Registers.

When primary fault recording is active, hardware functions as follows upon detecting a non-
recoverable address translation or interrupt translation fault:

e Hardware checks the current value of the Primary Fault Overflow (PFO) field in the Fault Status
Register. If it is already Set, the new fault is not recorded.

e If hardware supports compression! of multiple faults from the same requester, it compares the
source-id (SID) field of each Fault Recording Register with Fault (F) field Set, to the source-id of
the currently faulted request. If the check yields a match, the fault information is not recorded.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-13

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

e If the above check does not yield a match (or if hardware does not support compression of
faults), hardware checks the Fault (F) field of the Fault Recording Register referenced by the
internal index. If that field is already Set, hardware sets the Primary Fault Overflow (PFO) field in
the Fault Status Register, and the fault information is not recorded.

e If the above check indicates there is no overflow condition, hardware records the current fault
information in the Fault Recording Register referenced by the internal index. Depending on the
current value of the PPF field in the Fault Status Register, hardware performs one of the following
steps:

— If the PPF field is currently Set (implying there are one or more pending faults), hardware sets
the F field of the current Fault Recording Register and increments the internal index.

— Else, hardware records the internal index in the Fault Register Index (FRI) field of the Fault
Status Register and sets the F field of the current Fault Recording Register (causing the PPF
field also to be Set). Hardware increments the internal index, and an interrupt may be
generated based on the hardware interrupt generation logic described in Section 7.3.

Software is expected to process the non-recoverable faults reported through the Fault Recording
Registers in a circular FIFO fashion starting from the Fault Recording Register referenced by the Fault
Recording Index (FRI) field, until it finds a Fault Recording Register with no faults (F field Clear).

To recover from a primary fault overflow condition, software must first process the pending faults in
each of the Fault Recording Registers, Clear the Fault (F) field in all those registers, and Clear the
overflow status by writing a 1 to the Primary Fault Overflow (PFO) field. Once the PFO field is cleared
by software, hardware continues to record new faults starting from the Fault Recording Register
referenced by the current internal index.

7.2.2 Advanced Fault Logging

Advanced fault logging is an optional hardware feature. Hardware implementations supporting
advanced fault logging report the feature through the Capability Register (see Section 10.4.2).

Advanced fault logging uses a memory-resident fault log to record non-recoverable fault information.
The base and size of the memory-resident fault log region is programmed by software through the
Advanced Fault Log Register. Advanced fault logging must be enabled by software through the Global
Command Register before enabling the remapping hardware. Section 9.9 illustrates the format of the
fault record.

When advanced fault recording is active, hardware maintains an internal index into the memory-
resident fault log where the next non-recoverable fault can be recorded. The index is reset to zero
whenever software programs hardware with a new fault log region through the Global Command
Register, and increments whenever a non-recoverable fault is logged in the fault log. Whenever the
internal index increments, hardware checks for internal index wrap-around condition based on the
size of the current fault log. Any internal state used to track the index wrap condition is reset
whenever software programs hardware with a new fault log region.

Hardware may compress multiple back-to-back faults from the same requester by maintaining
internally the source-id of the last fault record written to the fault log. This internal “source-id from
previous fault” state is reset whenever software programs hardware with a new fault log region.

Read completions due to software reading the remapping hardware registers must push (commit) any
in-flight fault record writes to the fault log by the respective remapping hardware unit.
When a non-recoverable fault is detected, advanced fault logging functions in hardware as follows:

e Hardware checks the current value of the Advanced Fault Overflow (AFO) field in the Fault Status
Register. If it is already Set, the new fault is not recorded.

1. Hardware implementations supporting only a limited number of fault recording registers are
recommended to collapse multiple pending faults from the same requester.

7-14 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

If hardware supports compressing multiple back-to-back faults from same requester, it compares
the source-id of the currently faulted request to the internally maintained “source-id from
previous fault”. If a match is detected, the fault information is not recorded.

Otherwise, if the internal index wrap-around condition is Set (implying the fault log is full),
hardware sets the AFO field in the Advanced Fault Log Register, and the fault information is not
recorded.

If the above step indicates no overflow condition, hardware records the current fault information
to the fault record referenced by the internal index. Depending on the current value of the
Advanced Pending Fault (APF) field in the Fault Status Register and the value of the internal index,
hardware performs one of the following steps:

— If APF field is currently Set, or if the current internal index value is not zero (implying there
are one or more pending faults in the current fault log), hardware simply increments the
internal index (along with the wrap-around condition check).

— Otherwise, hardware sets the APF field and increments the internal index. An interrupt may
be generated based on the hardware interrupt generation logic described in Section 7.3.

7.3 Non-Recoverable Fault Event

Non-recoverable faults are reported to software using a message-signaled interrupt controlled
through the Fault Event Control Register. The non-recoverable fault event information (such as
interrupt vector, delivery mode, address, etc.) is programmed through the Fault Event Data and Fault
Event Address Registers.

A Fault Event may be generated under the following conditions:

When primary fault logging is active, recording a non-recoverable fault to a Fault Recording
Register causing the Primary Pending Fault (PPF) field in Fault Status Register to be Set.

When advanced fault logging is active, logging a non-recoverable fault in the advanced fault log
that causes the Advanced Pending Fault (APF) field in the Fault Status Register to be Set.

When queued invalidation interface is active, an invalidation queue error causing the Invalidation
Queue Error (IQE) field in the Fault Status Register to be Set.

Invalid Device-TLB invalidation completion response received causing the Invalidation Completion
Error (ICE) field in the Fault Status Register to be Set.

Device-TLB invalidation completion time-out detected causing the Invalidation Time-out Error
(ITE) field in the Fault Status Register to be Set.

For these conditions, the Fault Event interrupt generation hardware logic functions as follows:

Hardware checks if there are any previously reported interrupt conditions that are y{et to be
serviced by software. Hardware performs this check by evaluating if any of the PPF*, PFO, (APF,
AFO if advanced fault logging is active), IQE, ICE and ITE fields in the Fault Status Register is Set.
If hardware detects any interrupt condition yet to be serviced by software, the Fault Event
interrupt is not generated.

If the above check indicates no interrupt condition yet to be serviced by software, the Interrupt
Pending (IP) field in the Fault Event Control Register is Set. The Interrupt Mask (IM) field is then
checked and one of the following conditions is applied:

— If IM field is Clear, the fault event is generated along with clearing the IP field.
— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:

1. The PPF field is computed by hardware as the logical OR of Fault (F) fields across all the Fault

Recording Registers of a hardware unit.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-15

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

o If IP field was Set when software clears the IM field, the fault event interrupt is generated along
with clearing the IP field.

o If IP field was Set when software services all the pending interrupt conditions (indicated by all
status fields in the Fault Status Register being Clear), the IP field is cleared.

Read completions due to software reading the Fault Status Register (FSTS_REG) or Fault Event
Control Register (FECTL_REG) must push (commit) any in-flight Fault Event interrupt messages
generated by the respective hardware unit.

The fault event interrupts are never subject to interrupt remapping.

7.4 Recoverable Fault Reporting

Recoverable faults are detected at the Device-TLB on the endpoint device. Devices supporting Page
Request Services (PRS) Capability report the recoverable faults as Page Request messages to
software through the remapping hardware. Page requests are supported only when DMA remapping
hardware is in scalable mode. A page request received by DMA remapping hardware in legacy mode
results in a non-recoverable fault (see condition RTA.3). Software informs the servicing of the page
requests by sending Page Group Response messages to the device through the remapping hardware.
Refer to Address Translation Services (ATS) in PCI Express Base Specification Revision 4.0 or later for
details on the Page Request and Page Group Response messages.

This specification defines an additional feature for Page Request Service (PRS) that is outside the PCI
Express specification and available only to Root-Complex-integrated devices.

e Page Request message with data: Root-Complex integrated devices may send 128-bits of data
along with a Page Request message. Software is expected to return this data unmodified back to
device along with the Page Group Response message.

The following sections describe the remapping hardware processing of page requests from endpoint
devices and page group response from software. Remapping hardware indicates support for page
requests through the Extended Capability Register (see Section 10.4.3).

7.4.1 Handling of Page Requests

When PRS Capability is enabled at an endpoint device, recoverable faults detected at its Device-TLB
cause the device to issue page-request messages to the remapping hardware.

Remapping hardware supports a Page Request Queue, as a circular buffer in system memory to
record Page Request messages received. The following registers are defined to configure and manage
the Page Request Queue (PRQ):

e Page Request Queue Address Register: Software programs this register to configure the base
physical address and size of the contiguous memory region in system memory hosting the Page
Request Queue.

e Page Request Queue Head Register: This register points to the Page Request Descriptor in the
Page Request Queue that software will process next. Software increments this register after
processing one or more Page Request Descriptors in the PRQ.

e Page Request Queue Tail Register: This register points to the Page Request Descriptor in the Page
Request Queue to be written next by hardware. This register is incremented by hardware after it
gets confirmation that write of the Page Request Queue Descriptor to PRQ is visible to software.

Hardware interprets the PRQ as empty when the Head and Tail Registers are equal. Hardware
interprets the PRQ as full when the Tail Register is one behind the Head Register (i.e., when all entries
but one in the queue are used). This way, hardware will write at most N-1 page requests in a N entry
Page Request Queue.

To enable page requests from an endpoint device, software must:

7-16 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

¢ Initialize the Page Request Queue Head and Tail Registers (see Section 10.4.31 and
Section 10.4.32) to zero.

e Set up the PRQ address and size through the Page Request Queue Address Register (see
Section 10.4.33).

e Configure the scalable-mode context-entry used to process requests from the device, such that
the Present (P), Device-TLB Enable (DTE), and Page Request Enable (PRE) fields are Set.

e Configure and enable page requests at the device through the PRS Capability Registers. (Refer to
Address Translation Services (ATS) in PCI Express Base Specification Revision 4.0 or later for PRS
Capability Register details).

A page request may encounter one of the three error conditions:

e Remapping Table Error: A remapping table error that prevents a page request from successfully
processing the scalable-mode PASID-table entry. This includes conditions such as the Page
Request Enable (PRE) field in the scalable-mode context-entry used to process the request is 0.
For a complete list of conditions that affect page requests, see Table 24. For each of the
conditions affecting page requests, hardware will report a non-recoverable fault with an
associated fault code (see Table 24) and if needed, provide a response as described in Table 24.

e Page Request Queue Overflow (PRQ Overflow): The Page Request Overflow (PRO) field in the
Page Request Status Register is 1. No action is taken by hardware to report a fault or generate an
event.

e Page Request Queue Full (PRQ full): The Page Request Queue is full (i.e., the current value of the
Tail Register is one behind the value of the Head Register), causing hardware to set the Page
Request Overflow (PRO) field in the Page Request Status Register (see Section 10.4.34). Setting
the PRO field can cause a fault event to be generated depending on the programming of the Page
Request Event Registers (see Section 7.5).

When a page request encounters one of the error conditions described above, it is not written into
Page Request Queue. Additionally, hardware will generate a page group response for page requests
that have the Last Page In Group (LPIG) field set, or the Private Data Present (PDP) field set, as
described by Table 25 below.

Table 25. Page Request Error Conditions

LPIG PDP Remapping Table Fault PRQ Overflow PRQ Full
0 0 Hardware does not generate any Page Group Response for the dropped Page Request.
0 1 Hardware generates Page Group Hardware generates Page Group | Hardware generates Page Group

Response with code of Invalid Request! | Response with code of Success Response with code of Success

Hardware generates Page Group Hardware generates Page Groug Hardware generates Page Group

1 Ignored Response with code of Invalid Request! | Response with code of Success Response with code of Success?

1. For page requests that detect a remapping table fault, hardware generates a response of ‘Invalid Request’ instead of ‘Response
Failure’ to prevent a bad PASID or VF from disabling a page request service for the entire device.

2. Hardware generating a successful Page Group Response message for the last page request in a group that encounters a PRQ
full/overflow condition can result in a page group response for one of the older page requests in this group to be generated later
(by software). Receiving a non-LPIG Page Group Response message at the endpoint, after the LPIG Page Group Response
message of the same group is received, must not affect functioning of the endpoint device.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-17

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

If a page request does not encounter any of the error conditions described above, the remapping
hardware:

e Performs an implicit invalidation (see Section 6.5.3.1) to invalidate any translations cached in the
IOTLB and paging structure caches that control the address specified in the page request.

e Writes a Page Request Descriptor to the Page Request Queue entry at the offset specified by the
Tail Register, and increments the value in the Tail Register. Depending on the type of the Page
Request Descriptor written to the Page Request Queue and programming of the Page Request
Event Registers, a recoverable fault event may be generated (see Section 7.5).

The following sections describe the Page Request Descriptor types written by hardware to the Page

Request Queue. All descriptors are 256-bit in size. The Type field (bits 7:0) of each Page Request
Descriptor identifies the descriptor type.

7.4.1.1 Page Request Descriptor

o
N©O—

Private Data
[127:64]

VT
0N —

Private Data

[63:0]
1
2 77 6666
7 65 7654
Address IISWR
. PRGI R|D
[63:12] L[rIR
G
6 5555 33 11 1
3 4321 21 65 0987 0
P|E Plp Type
M| X PASID RID Dp
R[R P 01h

|:| Rsvdz

Figure 7-29. Page Request Descriptor

A Page Request Descriptor (page_req_dsc) is used to report page request messages received by the
remapping hardware.

Page Request Messages: Page request messages1 are sent by endpoint devices to report one or more
page requests that are part of a page group (i.e., with same value in Page Request Group Index field).
A page group is composed of one or more individual page request. Page requests with a PASID
Present field value of 1 are considered to be page-requests-with-PASID. Page requests with a PASID
Present field value of 0 are considered to be page-requests-without-PASID. Page Request messages
from Root-Complex integrated devices may additionally have 128 bits of data attached to it. A Page
Requests message with data device is expecting a Page Group Response message with data.

1. Refer to the PCI Express Address Translation Services (ATS) specification for details on page
request and response messages.

7-18 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

The Page Request Descriptor (page_req_dsc) includes the following fields:

Type: A value of 01h in this field indicates Page Request Descriptor.

Requester-ID (RID): The Requester-ID field identifies the endpoint device function targeted by
the Page Request Group Response. The upper 8 bits of the Requester-ID field specify the bus
number and the lower 8 bits specify the device number and function number. Software copies the
bus number, device number, and function number fields from the respective Page Request
Descriptor to form the Requester-ID field in the Page Group Response Descriptor. Refer to
Section 3.4.1 for the format of this field.

PASID Present (PP): If the PASID Present field is 1, the page request is due to a recoverable fault
by a request-with-PASID. If the PASID Present field is 0, the page request is due to a recoverable
fault by a request-without-PASID.

PASID: If the PASID Present field is 1, this field provides the PASID value of the request-with-
PASID that encountered the recoverable fault that resulted in this page request. If the PASID
Present field is 0, this field is undefined.

Address (ADDR): If both the Read Requested and Write Requested fields are 0, this field is
reserved. Else, this field indicates the faulted page address.

Page Request Group Index (PRGI): The 9-bit Page Request Group Index field identifies the page
group to which this request is part of. Software is expected to return the Page Request Group
Index in the respective page group response. This field is undefined if both the Read Requested
and Write Requested fields are 0.

— Multiple page-requests-with-PASID (PASID Present field value of 1) from a device with the
same PASID value can contain any Page Request Group Index value (0-511). However, for a
given PASID value, there can at most be one page-request-with-PASID outstanding from a
device, with the Last Page in Group (LPIG) field set and the same Page Request Group Index
value.

— Multiple page-requests-without-PASID (PASID Present field value of 0) from a device can
contain any Page Request Group Index value (0-511). However, there can at most be one
page-request-without-PASID outstanding from a device, with the Last Page in Group field set
and the same Page Request Group Index value.

Last Page in Group (LPIG): If the Last Page in Group field is 1, this is the last request in the page
group identified by the value in the Page Request Group Index field.

Read Requested (RDR): If the Read Requested field is 1, the request that encountered the
recoverable fault (that resulted in this page request), requires read access to the page.

Write Requested (WRR): If the Write Requested field is 1, the request that encountered the
recoverable fault (that resulted in this page request), requires write access to the page.

Execute Requested (EXR): If the PASID Present, Read Requested and Execute Requested fields
are all 1, the request-with-PASID that encountered the recoverable fault that resulted in this page
request requires execute access to the page.

Privilege Mode Requested (PMR): If the PASID Present field is 1, and at least one of the Read
Requested or the Write Requested field is 1, the Privilege Mode Requested field indicates the
privilege of the request-with-PASID that encountered the recoverable fault (that resulted in this
page request). A value of 1 for this field indicates supervisor privilege, and a value of 0 indicates
user privilege.

Private Data Present (PDP): If the Private Data Present field is 1, the page request has 128 bits of
data attached to it. When processing a page request with data, the remapping hardware will set
this field to 1. When processing a page request without data, the remapping hardware will set this
field to 0.

Private Data: The Private Data field can be used by Root-Complex integrated endpoints to
uniquely identify device-specific private information associated with an individual page request.
Software is expected to return the Private Data (if present) in the respective page group
response. When processing a page request without data, the remapping hardware will ignore this
field.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-19

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

See Section 7.6 for how software is expected to service page requests and respond with page group
responses which are described in Section 7.6.1.

7.5 Recoverable Fault Event

Remapping hardware supports notifying pending recoverable faults to software through a Page
Request Event interrupt.

e When a Page Request Descriptor (page_req_dsc) is written to the Page Request Queue, hardware
Sets the Pending Page Request (PPR) field in the Page Request Status Register (see
Section 10.4.34).

¢ When attempting to write a page request into the Page Request Queue, hardware encounters PRQ
full condition, causing hardware to Set the Page Request Overflow (PRO) field in the Page Request
Status Register

The Page Request Event generation hardware logic functions as follows:

e Hardware evaluates PPR and PRO fields in the Page Request Status Register and if any of them is
set, Page Request Event is not generated.

o If above evaluation indicates that none of the bits are set, the Interrupt Pending (IP) field in the
Page Request Event Control Register (see Section 10.4.35) is Set. The Interrupt Mask (IM) field in
this register is then checked and one of the following conditions is applied:

— If IM field is Clear, the fault event is generated along with clearing the IP field.
— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field in the Page Request
Event Control Register:

o If IP field was 1 when software clears the IM field, the Page Request Event interrupt is generated
along with clearing the IP field.

o If IP field was 1 when software services all the pending interrupt conditions (indicated by PPR and
PRO fields being Clear) in the Page Request Status Register, the IP field is cleared

A page request from an endpoint is considered ‘received’ by remapping hardware when it arrives at
the remapping hardware ingress. A received page request is considered ‘accepted’ to the page
request queue by remapping hardware when the corresponding page request descriptor write
(page_req_dsc) is issued. An ‘accepted’ page request is considered ‘delivered’ by remapping
hardware when the respective Page Request Descriptor write (page_req_dsc) to Page Request Queue
becomes visible to software followed by increment of the Page Request Queue Tail register.

For producer consumer ordering of page request processing, the following ordering requirements
must be met by remapping hardware:

e A Page Request Event interrupt must ensure all ‘accepted’ page requests (including the accepted
page request that led to generation of this interrupt) are ‘delivered’ (become software visible),
before the Page Request Event interrupt is delivered to software.

e Read completions due to software reading Page Request Queue Tail Register (PQT_REG) must
ensure all ‘accepted’ page requests are ‘delivered”.

e Read completions due to software reading Page Request Status Register (PRS_REG), Page
Request Queue Tail Register (PQT_REG) or Page Request Event Control Register (PECTL_REG)
must push (commit) any in-flight Page Request Event interrupt generated by the respective
remapping hardware unit.

The Page Request Event interrupts are never subject to interrupt remapping.

7-20 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

7.6 Servicing Recoverable Faults

Software processes Page Request Descriptors written to the Page Request Queue by remapping
hardware. Processing the descriptor involves resolving the page-fault condition, creating the
translation with appropriate permission and privilege (if the page requested is legitimate), and issuing
a response back to the device through the remapping hardware when required.

For a page request with data (PDP=1), software must respond with a page group response with data
(PDP=1). For a page request (with or without data) indicating last request in group (LPIG = 1),
software must respond with a page group response (with or without data) after servicing all page
requests that are part of that page group. For a page request with data not indicating last request in
group (LPIG = 0), software should respond with a page group response with data after servicing the
page request (with data). For a page request without data not indicating last request in group (LPIG =
0), software must not send any page group response. The response is sent by software to the
remapping hardware by submitting Page Group Response Descriptor through the Invalidation Queue
(IQ). The remapping hardware processes each Page Group Response Descriptor by formatting and
sending an appropriate Page Request Group Response message to the endpoint device. Refer to
Section 6.5.2 for details on Invalidation Queue operation.

While servicing of a page request software may determine that the request is spurious. i.e., the page
reported in the page request already has a translation with the requested permissions and privilege in
the page tables. Spurious page requests can result if software upgraded a paging entry (e.g., not
present to present, read-only to read-write, etc.), and the faulting request used the translation before
the upgrade that was cached in the IOTLB or Device-TLB. Irrespective of how a page request was
serviced by software (i.e., successfully processed by creating the translation, identified as a spurious
page request that did not require any update to translation, identified as invalid request due to invalid
page/permission/privilege requested), software must send a page group response with appropriate
Response Code if a response is required for the page request.

The following sections describe the Page Group Response Descriptor written by software to the
Invalidation Queue. The Type field (bits 11:9 and bits 3:0) of each page group response descriptor
identifies the descriptor type (similar to other invalidation descriptors submitted through the
Invalidation Queue). This descriptor is a 256-bit descriptor and will result in an invalid descriptor error
if submitted in an IQ that is setup to provide hardware with 128-bit descriptors (IQA_REG.DW=0).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-21

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

7.6.1 Page Group Response Descriptor

GIGIN]

N =

Private Data
[127:64]
1 1
9 2
1 8
Private Data
[63:0]
1
2 77 666 6
7 65 765 4
L
PRGI it
G
6 55 33 11 1
3 21 21 65 21 98 6543 0
Txpe P Txpe
PASID RID rc | [6:4] olP| (301
oh Pl on

[l

RsvdZ

Figure 7-30. Page Group Response Descriptor

A Page Group Response Descriptor is issued by software in response to a page request with data or a
page request (with or without data) that indicated that it was the last request in a group. The page
group response for last request in a group must be issued after servicing all page requests with the
same Page Request Group Index value.

The

7-22

Page Group Response Descriptor (page_grp_resp_dsc) includes the following fields:

Type: The concatenation of bits[11:9] and bits[3:0] form this 7-bit field. A value of 9h in this field
indicates Page Group Response Descriptor.

Requester-ID (RID): The Requester-ID field identifies the endpoint device function targeted by
the Page Group Response message. The upper 8 bits of the Requester-ID field specify the bus
number and the lower 8 bits specify the device number and function number. Software copies the
bus number, device number, and function number fields from the respective Page Request
Descriptor to form the Requester-ID field in the Page Group Response Descriptor. Refer to
Section 3.4.1 for the format of this field.

PASID Present (PP): If the PASID Present field is 1, the page group response carries a PASID. The
value in this field must match the value in the PASID Present field of the respective Page Request
Descriptor.

PASID: If the PASID Present field is 1, this field provides the PASID value for the page group
response. The value in this field must match the value in the PASID field of the respective Page
Request Descriptor. If the PASID Present field is 0, this field is ignored by hardware.

Page Request Group Index (PRGI): The Page Request Group Index identifies the page group of
this page group response. The value in this field must match the value in the Page Request Group
Index field of the respective Page Request Descriptor.

Response Code (RC): The Response Code indicates the page group response status. The field
follows the Response Code (see Table 26) in the Page Group Response message as specified in

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

Address Translation Services (ATS) in the PCI Express Base Specification, Revision 4.0 or later.
Refer to the PCI Express specification for endpoint device behavior with these Response Codes. If
all page requests that are part of a Page Group were serviced successfully, a Response Status
code of ‘Success’ is returned.

e Private Data Present (PDP): If the Private Data Present field is 1, the page group response carries
Private Data. The value in this field must match the value in the PDP field of the respective Page
Request Descriptor.

e Private Data: The Private Data field is used to convey device-specific private information
associated with the page request and response for a Root-Complex integrated endpoint. The
value in this field must match the value in the Private Data field of the respective Page Request
Descriptor. When processing page group responses without private data (PDP=0), the remapping
hardware will ignore this field.

Table 26. Response Codes

Value Status Description
Oh Success All Page Requests in the Page Request Group were successfully serviced.
1h Invalid Request One ore more Page Requests within the Page Request Group was not successfully
serviced.
2h - Eh Reserved Not used.
Fh Response Failure Servicing of one or more Page Requests within the Page Request Group encountered
a non-recoverable error.

7.7 Page Request Ordering and Draining

This section describes the expected endpoint device behavior and remapping hardware behavior on
ordering and draining of page-requests.

e A recoverable fault encountered by an endpoint device is considered ‘dispatched’ when the
corresponding Page Request message is posted to its egress to the interconnect. On a Device-TLB
invalidation, the endpoint device must ensure the respective Device-TLB invalidation completion
message is posted to its egress to the interconnect, ordered behind ‘dispatched’ page requests.

e Page requests and Device-TLB invalidation completion messages follow strict posted ordering on
the interconnect fabric and arrive at the ingress of remapping hardware in strict posted ordering.

e A Page request is considered ‘received’ by remapping hardware when it arrives at the remapping
hardware ingress. A ‘received’ page request is considered ‘accepted’ to the Page Request Queue
by remapping hardware when the corresponding Page Request Descriptor write (page_req_dsc) is
issued. An ‘accepted’ page request is considered ‘delivered’ by remapping hardware when the
respective Page Request Descriptor write (page_req_dsc) to Page Request Queue becomes visible
to software followed by increment of the Page Request Queue Tail register.

e If remapping hardware processing of a Device-TLB invalidation completion message results in a
pending Invalidation Wait Descriptor (inv_wait_dsc) to complete, and if the Page-request Drain
(PD=1) flag is Set in the inv_wait_dsc, the respective invalidation wait completion status write (if
SW=1) and invalidation wait completion interrupt (if IF=1) must be ordered (made visible to
software) behind page-request descriptor (page_req_dsc) writes for all page requests ‘received’
ahead of the Device-TLB invalidation completion message.

With above ordering, to drain in-flight page requests from an endpoint device, software can issue a

dev_tlb_inv_dsc (or p_dev_tlb_inv_dsc) of any invalidation granularity targeting the device, followed
by an inv_wait_dsc with PD flag Set and SW/IF flag Set, and wait for the inv_wait_dsc to complete.

7.8 Page Group Response Ordering and Draining

This section describes the remapping hardware behavior and expected endpoint device behavior on
ordering and draining of page-request responses.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-23

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

e Remapping hardware must ensure that page group responses (page_grp_resp_dsc) and Device-
TLB invalidation requests (dev_tlb_inv_dsc or p_dev_tlb_inv_dsc) submitted by software through
the Invalidation Queue are processed in order and respective messages are posted in order to the
interconnect.

e Page Group Response messages and Device-TLB invalidation requests follow strict posted
ordering on the interconnect fabric.

¢ An endpoint device is expected to ‘accept’ valid page group responses and Device-TLB invalidation
requests in the order they are received. This implies that, before a valid Device-TLB invalidation
request is acted on by the endpoint device (leading to posting an invalidation response message),
the endpoint device has ‘accepted’ all valid page group responses received ahead of the Device-
TLB invalidation request.

With above ordering, to drain in-flight page group responses issued by software to an endpoint
device, software can issue a dev_tlb_inv_dsc (or p_dev_tlb_inv_dsc) of any invalidation granularity
targeting the device, followed by an inv_wait_dsc with SW/IF flag Set, and wait for the inv_wait_dsc
to complete.

7.9 Pending Page Request Handling on Terminal Conditions

This section describes the expected endpoint device behavior for handling pending page requests on
terminal conditions. A page request is considered pending at an endpoint device, if the devices has
issued the page request and have not yet received the respective page group response.

Terminal conditions are defined as software initiated conditions that can result in an endpoint device
resetting its internal state used to match page group responses to pending page requests. Examples
of terminal conditions encountered by a device while it has pending page requests may include:

¢ Device specific software stack/driver detecting a unresponsive device and performing any form of
partial device reset (E.g., GPU Engine Reset) leading to termination of one or more work-items
(that may have pending page requests).

¢ Device specific software stack detecting a unresponsive device and performing a full device reset
(E.g., GPU Timeout Detection and Recovery Reset) leading to termination of all work-items (some
or all with pending page requests) active on that device.

e System software performing®Function Level Reset (FLR) of a Physical Function or SR-IOV Virtual
Function (or reset of a Intel™ Scalable IOV Assignable Device Interface (ADI)), leading to
termination of all work-items (some or all with pending page requests) submitted through
respective function/interface.

On above terminal conditions?!, the endpoint device is expected to handle pending page requests as
follows:

e Ensure that recoverable faults encountered by the device before the terminal event are
‘dispatched’ (i.e., corresponding page requests are posted to device egress to the interconnect),
so that any subsequent Device-TLB invalidation request completions from the device are ordered
behind such page requests (i.e., follow same ordering described in Section 7.7 as with normal
operation if there was no terminal condition).

e Cancel tracking of pending page requests affected by the terminal condition and replenish page
request credits consumed by such page requests.

e Continue normal behavior of discarding any page group responses (without adverse side effects)
received that has no matching pending page request.

1. For devices that may be subject to device specific software stack/driver initiated terminal
conditions while in operation, such devices are expected to normally receive, process and respond
to Device-TLB invalidation requests during such terminal conditions. This is required as these
device specific terminal conditions may be initiated transparent to system software operation that
can be issuing Device-TLB invalidations as part of TLB shootdown operations.

7-24 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Address Translation Faults
®

To handle in-flight page requests affected by terminal conditions, software initiating the terminal
condition must follow below steps:

e After completing the terminal condition and before putting the device function back in service,
request system software to drain (and discard) in-flight page requests/responses from the
endpoint device (as described in Section 7.10), and only after completion of such page
request/response draining resume normal operation of the device. For terminal conditions (such
as partial device reset) where only a subset of PASIDs active on the device are affected, the drain
and discard request may specify the affected PASID(s), in which case, only page requests from
the device with specified PASID(s) are discarded after draining (and page requests from other
PASIDs are handled normally with page group responses).

The following section describes the steps system software may follow to drain all in-flight and pending
page requests and page group responses from/to an endpoint device.

7.10

Software Steps to Drain Page Requests & Responses

System Software may follow below steps to drain in-flight page requests and page group responses
between remapping hardware queues (Page Request Queue for page requests and Invalidation Queue
for page group responses) and an endpoint device.

a.

Submit Invalidation Wait Descriptor (inv_wait_dsc) with Fence flag (FN=1) Set to Invalidation
Queue. This ensures that all requests submitted to the Invalidation Queue ahead of this wait
descriptor are processed and completed by remapping hardware before processing requests
after the Invalidation Wait Descriptor. It is not required to specify SW flag (or IF flag) in this
descriptor or for software to wait on its completion, as its function is to only act as a barrier.

Submit an IOTLB invalidate descriptor (iotlb_inv_dsc or p_iotlb_inv_dsc) followed by Device-
TLB invalidation descriptor (dev_tlb_inv_dsc or p_dev_tlb_inv_dsc) targeting the endpoint
device. These invalidation requests can be of any granularity. Per the ordering requirements
described in Section 7.8, older page group responses issued by software to the endpoint
device before step (a) are guaranteed to be received by the endpoint before the endpoint
receives this Device-TLB invalidation request.

Submit Invalidation Wait Descriptor (inv_wait_dsc) with Page-request Drain (PD=1) flag Set,
along with Invalidation Wait Completion status write flag (SW=1), and wait on Invalidation
Wait Descriptor completion. Per the ordering requirements described in Section 7.7, the
Device-TLB invalidation completion from the device is guaranteed to be ordered behind
already issued page requests from the device. Also, per the ordering requirements in Section
7.7, the remapping hardware ensures that the Invalidation Wait Descriptor status write (that
signals completion of invalidation descriptors submitted in step (b)) is ordered (with respect to
software visibility) behind the Page Request Descriptor (page req_dsc) writes for page
requests received before the Device-TLB invalidation completion.

If there are no Page Request Queue overflow condition encountered by remapping hardware
during above steps, software can be guaranteed that all page requests and page group
responses are drained between the remapping hardware and the target endpoint device.
However, if a page-request queue full condition was detected by remapping hardware when
processing a page request with Last Page In Group (LPIG) field Set or with Private Data
Present (PDP) field Set during steps (a) through (c) above, the remapping hardware generates
a successful auto page group response (see Section 7.4.1 for remapping hardware auto page
group response behavior). To drain such potential auto page group responses generated by
remapping hardware, software must repeat steps (b) and (c).

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 7-25

Address Translation Faults—Intel® Virtualization Technology for Directed I/0 I n te I
®

7.11 Revoking PASIDs with Pending Page Faults

At any time of operation, system software resource management actions (E.g., on host application
process termination) can result in system software requesting the endpoint device specific driver to
revoke the PASID that it has previously allocated and is actively being used by the endpoint device. To
service such system software request, it is the responsibility of the endpoint device and the driver to
revoke use of this PASID by the device and ensure all outstanding page-requests for this PASID are
serviced by system software and page-request responses received, before returning success to
system software for the PASID revocation request.

After de-allocating a PASID, system software may follow the same steps for in-flight page

request/response draining described in Section 7.10 to ensure any in-flight page requests/responses
for the de-allocated PASID are drained before re-allocating that PASID to a new client.

7-26 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—BIOS Considerations
®

8 BIOS Considerations

The system BIOS is responsible for detecting the remapping hardware functions in the platform and
for locating the memory-mapped remapping hardware registers in the host system address space.
The BIOS reports the remapping hardware units in a platform to system software through the DMA
Remapping Reporting (DMAR) ACPI table described below!?.

8.1 DMA Remapping Reporting Structure

Field Byte Byte

Length Offset Description

Signature 4 0 “"DMAR”". Signature for the DMA Remapping Description table.

Length 4 4 Length, in bytes, o_f the description table including the length of the
associated remapping structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For DMAR description table, the Table ID is the manufacturer model ID.

OEM Revision 4 24 OEM Revision of DMAR Table for OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

This field indicates the maximum DMA physical addressability supported by
this platform. The system address map reported by the BIOS indicates what
portions of this addresses are populated.

Host Address Width 1 36 . .
The Host Address Width (HAW) of the platform is computed as (N+1), where

N is the value reported in this field. For example, for a platform supporting
40 bits of physical addressability, the value of 100111b is reported in this
field.

1. All Reserved fields in DMAR remapping structures must be initialized to 0.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-1

BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

Byte Byte

Fleld Length Offset

Description

e Bit 0: INTR_REMAP - If Clear, the platform does not support interrupt
remapping. If Set, the platform supports interrupt remapping.

e Bit 1: X2APIC_OPT_OUT - For firmware compatibility reasons, platform
firmware may Set this field to request system software to opt out of
enabling Extended xAPIC (X2APIC) mode. This field is valid only when
the INTR_REMAP field (bit 0) is Set. Since firmware is permitted to hand
off platform to system software in legacy xAPIC mode, system software
is required to check this field as Clear as part of detecting X2APIC mode

Flags 1 37 support in the platform.

e Bit 2: DMA_CTRL_PLATFORM_OPT_IN_FLAG: Platform firmware is
recommended to Set this field to report any platform initiated DMA is
restricted to only reserved memory regions (reported in RMRR
structures) when transferring control to system software such as on
ExitBootServices(). System software may program DMA remapping
hardware to block DMA outside of RMRR, except for memory explicitly
registered by device drivers with system software.

e Bits 3-7: Reserved (0).

Reserved 10 38 Reserved (0).

A list of structures. The list will contain one or more DMA Remapping
Hardware Unit Definition (DRHD) structures, and zero or more Reserved

Remapping Structures] B 48 Memory Region Reporting (RMRR) and Root Port ATS Capability Reporting
(ATSR) structures. These structures are described below.
8.2 Remapping Structure Types

The following types of remapping structures are defined. All remapping structures start with a ‘Type’
field (two bytes) followed by a ‘Length’ field (two bytes) indicating the size in bytes of the structure
(including sub-structures).

Value Description
0 DMA Remapping Hardware Unit Definition (DRHD) Structure
1 Reserved Memory Region Reporting (RMRR) Structure
2 Root Port ATS Capability Reporting (ATSR) Structure
3 Remapping Hardware Static Affinity (RHSA) Structure
4 ACPI Name-space Device Declaration (ANDD) Structure
5 SoC Integrated Address Translation Cache (SATC) reporting structure
>5 Reservgd for future use. For forvyard compatibility, sowaare skips structures it does not comprehend by skipping the
appropriate number of bytes indicated by the Length field.

BIOS implementations must report these remapping structure types in numerical order. i.e., All
remapping structures of type 0 (DRHD) enumerated before remapping structures of type 1 (RMRR),
and so forth.

8-2 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—BIOS Considerations
®

8.3 DMA Remapping Hardware Unit Definition Structure

A DMA-remapping hardware unit definition (DRHD) structure uniquely represents a remapping
hardware unit present in the platform. There must be at least one instance of this structure for each
PCI segment in the platform.

. Byte Byte .
Field Length Offset Description
Type 2 0 0 - DMA Remapping Hardware Unit Definition (DRHD) structure
Length 2 2 Varies (16 + size of Device Scope Structure)

Bit 0: INCLUDE_PCI_ALL

e If Clear, this remapping hardware unit has under its scope only
devices in the specified Segment that are explicitly identified through
the ‘Device Scope’ field. The device can be of any type as described by
the ‘Type’ field in the Device Scope Structure including (but not limited
to) I/OxAPIC and HPET.

e If Set, this remapping hardware unit has under its scope all PCI
Flags 1 4 compatible devices in the specified Segment, except devices reported
under the scope of other remapping hardware units for the same
Segment. If a DRHD structure with INCLUDE_PCI_ALL flag Set is
reported for a Segment, it must be enumerated by BIOS after all
other DRHD structures for the same Segment!. A DRHD structure with
INCLUDE_PCI_ALL flag Set may use the ‘Device Scope’ field to
enumerate I/OxAPIC and HPET devices under its scope.

Bits 1-7: Reserved.

Reserved 1 5 Reserved (0).
Segment Number 2 6 The PCI Segment associated with this unit.
Register Base Address 8 8 Base address of remapping hardware register-set for this unit.

The Device Scope structure contains zero or more Device Scope Entries
that identify devices in the specified segment and under the scope of this

Device Scope [] - 16 remapping hardware unit.

The Device Scope structure is described below.

1. On platforms with multiple PCI segments, any of the segments can have a DRHD structure with INCLUDE_PCI_ALL flag Set.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-3

BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

8.3.1 Device Scope Structure

The Device Scope Structure is made up of Device Scope Entries. Each Device Scope Entry may be
used to indicate a PCI endpoint device, a PCI sub-hierarchy, or devices such as I/OxAPICs or HPET
(High Precision Event Timer).

In this section, the generic term ‘PCI’ is used to describe conventional PCI, PCI-X, and PCI Express
devices. Similarly, the term ‘*PCI-PCI bridge’ is used to refer to conventional PCI bridges, PCI-X
bridges, PCI Express root ports, or downstream ports of a PCI Express switch.

A PCI sub-hierarchy is defined as the collection of PCI controllers that are downstream to a specific
PCI-PCI bridge. To identify a PCI sub-hierarchy, the Device Scope Entry needs to identify only the
parent PCI-PCI bridge of the sub-hierarchy.

Byte Byte

Field Length Offset Description

The following values are defined for this field.

e 0x01: PCI Endpoint Device - The device identified by the ‘Path’ field is
a PCI endpoint device. This type must not be used in Device Scope of
DRHD structures with INCLUDE_PCI_ALL flag Set.

e 0x02: PCI Sub-hierarchy - The device identified by the ‘Path’ field is a
PCI-PCI bridge. In this case, the specified bridge device and all its
downstream devices are included in the scope. This type must not be
in Device Scope of DRHD structures with INCLUDE_PCI_ALL flag Set.

e 0x03: IOAPIC - The device identified by the ‘Path’ field is an I/O APIC
(or I/0O SAPIC) device, enumerated through the ACPI MADT I/0 APIC
(or I/O SAPIC) structure.

e 0x04: MSI_CAPABLE_HPET! - The device identified by the ‘Path’ field
is an HPET Timer Block capable of generating MSI (Message Signaled
interrupts). HPET hardware is reported through ACPI HPET structure.

e 0x05: ACPI_NAMESPACE_DEVICE - The device identified by the ‘Path’
field is an ACPI name-space enumerated device capable of generating
DMA and/or MSI requests.

Other values for this field are reserved for future use.

Type 1 0

Length of this Entry in Bytes. (6 + X), where X is the size in bytes of the

Length 1 1 “path” field.

Reserved 2 2 Reserved (0).

When the ‘Type’ field indicates ‘IOAPIC’, this field provides the I/O APICID
as provided in the I/O APIC (or I/O SAPIC) structure in the ACPI MADT
(Multiple APIC Descriptor Table).

When the ‘Type’ field indicates ‘MSI_CAPABLE_HPET’, this field provides
the *HPET Number’ as provided in the ACPI HPET structure for the
corresponding Timer Block.

When the ‘Type’ field indicates ‘ACPI_NAMESPACE_DEVICE', this field
provides the “"ACPI Device Number” as provided in the ACPI Name-space
Device Declaration (ANDD) structure for the corresponding ACPI device.

This field is treated reserved (0) for all other ‘Type’ fields.

Enumeration ID 1 4

8-4 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O0—BIOS Considerations

Field

Byte
Length

Byte
Offset

Description

Start Bus Number

This field describes the bus number (bus number of the first PCI Bus
produced by the PCI Host Bridge) under which the device identified by this
Device Scope resides.

For Device Scope Entries with Type value of 0x4 (HPET) this field describes
the upper 8 bits (Bus) of the unique 16-bit source-id allocated by the
platform for the MSI-capable HPET Timer Block.

For Device Scope Entries with Type value of 0x5
(ACPI_NAMESPACE_DEVICE) this field describes the upper 8 bits (Bus) of
the unique 16-bit source-id allocated by the platform for the ACPI name-
space device.

Path

2*N

For Device Scope Entries with Type value of 0x1, 0x2 or 0x3 this field

describes the hierarchical path from the Host Bridge to the device
specified by the Device Scope Entry.

For example, a device in a N-deep hierarchy is identified by N {PCI Device
Number, PCI Function Number} pairs, where N is a positive integer. Even
offsets contain the Device numbers, and odd offsets contain the Function
numbers.

The first {Device, Function} pair resides on the bus identified by the ‘Start
Bus Number’ field. Each subsequent pair resides on the bus directly
behind the bus of the device identified by the previous pair. The identity
(Bus, Device, Function) of the target device is obtained by recursively
walking down these N {Device, Function} pairs.

If the *Path’ field length is 2 bytes (N=1), the Device Scope Entry identifies
a ‘Root-Complex Integrated Device’. The requester-id of ‘Root-Complex
Integrated Devices’ are static and not impacted by system software bus
rebalancing actions.

If the ‘Path’ field length is more than 2 bytes (N > 1), the Device Scope
Entry identifies a device behind one or more system software visible PCI-
PCI bridges. Bus rebalancing actions by system software modifying bus
assignments of the device’s parent bridge impacts the bus number portion
of device’s requester-id.

For Device Scope Entries with Type value of 0x4 (HPET) this field describes
the lower 8 bits {Device, Function} of the unique 16-bit source-id
allocated by the platform for the MSI-capable HPET Timer Block.

For Device Scope Entries with Type value of 0x5
(ACPI_NAMESPACE_DEVICE) this field describes the lower 8 bits {Device,
Function} of the unique 16-bit source-id allocated by the platform for the
ACPI name-space device.

1. An HPTE Timer Block

is capable of MSI
FSB_INTERRUPT_DELIVERY capability in the Timer Configuration and Capability Registers. HPET Timer Blocks not capable of
MSI interrupt generation (and instead have their interrupts routed through I/OxAPIC) are not reported in the Device Scope.

interrupt generation if any of the Timers in the Timer Block reports

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-5

BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

The following pseudocode describes how to identify the device specified through a Device Scope
structure:

n = (DevScope.Length - 6) / 2; // number of entries in the ‘Path’ field
type = DevScope.Type; // type of device
bus = DevScope.StartBusNum; // starting bus number
dev = DevScope.Path[0].Device; // starting device number
func = DevScope.Path[0].Function; // starting function number
i=1;
while (--n) {
bus = read_secondary_bus_reg(bus, dev, func);// secondary bus# from config reg.
dev = DevScope.Path[i].Device; // read next device number
func = DevScope.Path[i].Function; // read next function number

i++;
}
source_id = {bus, dev, func};
target_device = {type, source_id}; // if ‘type’ indicates ‘TOAPIC’, DevScope.EnumID
// provides the I/O APICID as reported in the ACPI MADT

8.3.1.1 Reporting Scope for I/OxAPICs

Interrupts from devices that only support (or are only enabled for) legacy interrupts are routed
through the I/OXAPICs in the platform. Each I/OXAPIC in the platform is reported to system software
through ACPI MADT (Multiple APIC Descriptor Tables). Some platforms may also expose I/OxAPICs as
PCI-discoverable devices.

For platforms reporting interrupt remapping capability (INTR_REMAP flag Set in the DMAR structure),
each I/OxAPIC in the platform reported through ACPI MADT must be explicitly enumerated under the
Device Scope of the appropriate remapping hardware units (even for remapping hardware unit
reported with INCLUDE_PCI_ALL flag Set in DRHD structure).

e For I/OxXAPICs that are PCI-discoverable, the source-id for such I/OXAPICs (computed using the
above pseudocode from its Device Scope structure) must match its PCI requester-id effective at
the time of boot.

e For I/OXAPICs that are not PCI-discoverable:

— If the 'Path’ field in Device Scope has a size of 2 bytes, the corresponding I/OxAPIC is a Root-
Complex integrated device. The ‘Start Bus Number’ and ‘Path’ field in the Device Scope
structure together provides the unique 16-bit source-id allocated by the platform for the
I/OxAPIC. Examples are I/OxAPICs integrated to the IOH and south bridge (ICH)
components.

— If the ‘Path’ field in Device Scope has a size greater than 2 bytes, the corresponding I/OxAPIC
is behind some software visible PCI-PCI bridge. In this case, the ‘Start Bus Number’ and ‘Path’
field in the Device Scope structure together identifies the PCI-path to the I/OXAPIC device.
Bus rebalancing actions by system software modifying bus assignments of the device’s parent
bridge impacts the bus number portion of device’s source-id. Examples are I/OxAPICs in PCI
Express-to-PCI-X bridge components in the platform.

8.3.1.2 Reporting Scope for MSI Capable HPET Timer Block

High Precision Event Timer (HPET) Timer Block supporting Message Signaled Interrupt (MSI)
interrupts may generate interrupt requests directly to the Root-Complex (instead of routing through
I/OxAPIC). Platforms supporting interrupt remapping must explicitly enumerate any MSI-capable
HPET Timer Block in the platform through the Device Scope of the appropriate remapping hardware
unit. In this case, the ‘Start Bus Number’ and ‘Path’ field in the Device Scope structure together
provides the unique 16-bit source-id allocated by the platform for the MSI-capable HPET Timer Block.

8-6 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—BIOS Considerations
®

8.3.1.3 Reporting Scope for ACPI Name-space Devices

Some platforms may support ACPI name-space enumerated devices that are capable of generating
DMA and/or MSI requests. Platforms supporting DMA and/or interrupt remapping must explicitly
declare any such ACPI name-space devices in the platform through ACPI Name-space Device
Declaration (ANDD) structure and enumerate them through the Device Scope of the appropriate
remapping hardware unit. In this case, the ‘Start Bus Number’ and ‘Path’ field in the Device Scope
structure together provides the unique 16-bit source-id allocated by the platform for the ACPI name-
space device. Multiple ACPI name-space devices that share common bus-mastering hardware
resources may share a common source-id. For example, some Intel® SoC platforms supports a Low
Power Sub System (LPSS) in the south-bridge, that shares a common DMA resource across multiple
ACPI name-space devices such as I12C, SPI, UART, and SDIO.

8.3.1.4 Device Scope Example

This section provides an example platform configuration with multiple remapping hardware units. The
configurations described are hypothetical examples, only intended to illustrate the Device Scope
structures.

Figure 8-31 illustrates a platform configuration with a single PCI segment and host bridge (with a
starting bus number of 0), and supporting four remapping hardware units as follows:

1. Remapping hardware unit #1 has under its scope an integrated device at (dev:func) of (4:0)
which does not support ATS and an integrated device at (dev:func) at (5:0) which does support
ATS.

2. Remapping hardware unit #2 has under its scope all devices downstream to the PCI Express root
port located at (dev:func) of (7:0).

3. Remapping hardware unit #3 has under its scope all other PCI compatible devices in the platform
not explicitly under the scope of the other remapping hardware units. In this example, this
includes the integrated device at (dev:func) of (30:0), and all the devices attached to the south
bridge component. The I/OXAPIC in the platform (I/O APICID = x) is under the scope of this
remapping hardware unit, and has a BIOS assigned bus/dev/function number of (0,31,7). The
HPET in the platform is under the scope of this remapping hardware unit, and has a BIOS
assigned bus/dev/function number of (0,31,6)

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-7

BIOS Considerations—Intel® Virtualization Technology for Directed I/0

Processor

Processor

System Bus

Host Bridge [Bus #0]

<):\,> DRAM

intel.

DMA _
DMA Remapping Unit #1 Remapping DMAJT?”;%DD'”Q
Unit #2 nit
Integr_ated Integr_ated PCle Root Integrated
Device Device Port Device
w/o ATS with ATS . i
Dev [4:0] Dev [5:0] Dev [7:0] Dev [30:0]
PCI
Express [yoapic] [HPET |
Devices

South Bridge

——
——

PCI, LPC,
Legacy devices

Figure 8-31. Hypothetical Platform Configuration

To describe the platform configuration in Figure 8-31, BIOS creates DMAR structures in memory as

shown in the Table 27.

Table 27. DMAR structure for platform shown in Figure 8-31

omet | o | 1 | 2 | 3 | s | s | s | 7 |
|| DMA Remapping Reporting Structure ”
. Length
0 Signature (152)
Revision Check-
8 1 sum OEMID
16 OEM Table ID
24 OEM Revision Creator ID
32 Creator Revision HAW Fl(alg)s Reserved
40 Reserved

8-8 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O0—BIOS Considerations

Table 27. DMAR structure for platform shown in Figure 8-31
oeet | o | 1 | s | 4 | s | s |
H DMA Remapping Hardware Unit Definition (DRHD) Structure #1 ||
48 Type Length Flags Reserved Segment Number
(0) (32) (0) (0) (0)
56 Register Base Address
“ Device Scope Structure (Dev4) ||
Enumera- | StartBus- DRHD #1
64 Type Length Reserved tionID Num Path.Dev | Path.Func
(1) (8) (0) 0) 0) (4 (0)
“ Device Scope Structure (Dev5) ||
Enumera- | StartBus-
72 Type Length Reserved tionID Num Path.Dev | Path.Func
(1) (8) (0) 0) 0) (5) (0)
H DMA Remapping Hardware Unit Definition (DRHD) Structure #2 ||
80 Type Length Flags Reserved Segment Number
(0) (24) (0) (0) (0)
88 Register Base Address DRHD #2
“ Device Scope Structure (Dev7) ||
Enumera- | StartBus-
9% Type Length Reserved tionID Num Path.Dev | Path.Func
) (8) (0) 0) 0)) (0)
“ DMA Remapping Hardware Unit Definition (DRHD) Structure #3 ||
104 Type Length Flags Reserved Segment Number
(0) (32) (1) (0) (0)
112 Register Base Address
H Device Scope Structure (I0 APIC) ||
Enumera- | StartBus- DRHD #3
120 Type Length Reserved tionID Num Path.Dev | Path.Func
€) (8) (0)) 0) (31) (7)
H Device Scope Structure (HPET) ||
Enumera- | StartBus-
128 Ty;)e Ler;gth Reseorved tionID Num Patg.lDev Path.6Func
) (8) (0) v) 0) (31) (6)
“ SoC Integrated Address Translation Cache (SATC) reporting Structure ||
136 Type Length Flags Reserved Segment Number
(5) (16) (1) (0) (9) SATC
“ Device Scope Structure (Dev5) || Dev#5
Enumera- | StartBus-
144 Tylpe Ler;gth Reseorved tionID Num Path5.Dev Path(.JFunc
(1) (8) (0) 0) 0) (5) 0)
152

This platform requires 3 DRHD structures. The Device Scope fields in each DRHD structure are
described as below.

¢ Device Scope for remapping hardware unit #1 contains two Device Scope Entries.

— Device Scope Entry at offset 64 [1, 8, 0, 0, 0, 4, 0] with type field value of 0x1 is used to
conclude that remapping unit #1 includes an endpoint device at PCI Segment 0, Bus O,

Device 4 and function 0.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

— Device Scope Entry at offset 72 [1, 8, 0, 0, 0, 5, 0] with type field value of 0x1 is used to
conclude that remapping unit #1 includes an endpoint device at PCI Segment 0, Bus 0,
Device 5 and function 0.

e Device Scope for remapping hardware unit #2 contains only one Device Scope Entry, identified as
[2,8,0,0,0, 7, 0] (at offset 96).

— System Software uses the Entry Type field value of 0x02 to conclude that all devices
downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 7, and Function 0
are within the scope of this remapping hardware unit.

¢ Device Scope for remapping hardware unit #3 contains two Device Scope Entries.— Also, the
DHRD structure for remapping hardware unit #3 indicates the INCLUDE_PCI_ALL flag. This
hardware unit must be the last in the list of hardware unit definition structures reported.

— System software uses the INCLUDE_PCI_ALL flag to conclude that all PCI compatible devices
that are not explicitly enumerated under other remapping hardware units are in the scope of
remapping unit #3.

— Device Scope Entry at offset 120 [3, 8, 0, x, 0, 31, 7] with Type field value of 0x3 is used to
conclude that the I/OxXAPIC (with I/O APICID=x and source-id of [0, 31, 7]) is under the
scope of remapping hardware unit #3.

— Device Scope Entry at offset 128 [4, 8, 0, y, 0, 31, 6] with Type field value of 0x4 is used to
conclude that the HPET (with HPET_ID =y and source-id of [0, 31, 6]) is under the scope of
remapping hardware unit #3.

8.3.2 Implications for ARI

The PCI Express Alternate Routing-ID Interpretation (ARI) Extended Capability enables endpoint
devices behind ARI-capable PCI Express Root/Switch ports to support ‘Extended Functions’, beyond
the limit of 8 ‘Traditional Functions’. When ARI is enabled, ‘Extended Functions’ on an endpoint are
under the scope of the same remapping unit as the ‘Traditional Functions’ on the endpoint.

8.3.3 Implications for SR-IOV

The PCI Express Single-Root I/0 Virtualization (SR-IOV) Capability enables a ‘Physical Function’ on an
endpoint device to support multiple ‘Virtual Functions’ (VFs). A ‘Physical Function’ can be a ‘Traditional
Function’ or an ARI ‘Extended Function’. When SR-IOV is enabled, ‘Virtual Functions’ of a ‘Physical
Function’ are under the scope of the same remapping unit as the ‘Physical Function’.

8.3.4 Implications for PCI/PCI Express* Hot Plug

Conventional PCI and PCI Express defines support for hot plug. Devices hot plugged behind a parent
device (PCI* bridge or PCI Express root/switch port) are under the scope of the same remapping unit
as the parent device.

8.3.5 Implications with PCI Resource Rebalancing

System software may perform PCI resource rebalancing to dynamically reconfigure the PCI sub-
system (such as on PCI or PCI Express hot-plug). Resource rebalancing can result in system software
changing the bus number allocated for a device. Such rebalancing only changes the device’s identity
(Source-ID). The device will continue to be under the scope of the same remapping unit as it was
before rebalancing. System software is responsible for tracking device identity changes and resultant
impact to Device Scope.

8.3.6 Implications with Provisioning PCI BAR Resources
System BIOS typically provisions the initial PCI BAR resources for devices present at time of boot. To

conserve physical address space (especially below 4GB) consumed by PCI BAR resources, BIOS
implementations traditionally use compact allocation policies resulting in BARs of multiple

8-10 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—BIOS Considerations
®

devices/functions residing within the same system-base-page-sized region (4KB for Intel® 64
platforms). However, allocating BARs of multiple devices in the same system-page-size region
imposes challenges to system software using remapping hardware to assign these devices to isolated
domains.

For platforms supporting remapping hardware, BIOS implementations should avoid allocating BARs of
otherwise independent devices/functions in the same system-base-page-sized region.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-11

BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

8.4 Reserved Memory Region Reporting Structure

Section described the details of BIOS allocated reserved memory ranges that may be DMA targets.
BIOS may report each such reserved memory region through the RMRR structures, along with the
devices that requires access to the specified reserved memory region. Reserved memory ranges that
are either not DMA targets, or memory ranges that may be target of BIOS initiated DMA only during
pre-boot phase (such as from a boot disk drive) must not be included in the reserved memory region
reporting. The base address of each RMRR region must be 4KB aligned and the size must be an
integer multiple of 4KB.

BIOS must report the RMRR reported memory addresses as reserved (or as EFI runtime) in the
system memory map returned through methods such as INT15, EFI GetMemoryMap etc. The reserved
memory region reporting structures are optional. If there are no RMRR structures, the system
software concludes that the platform does not have any reserved memory ranges that are DMA
targets.

The RMRR regions are expected to be used for legacy usages (such as USB, UMA Graphics, etc.)
requiring reserved memory. Platform designers should avoid or limit use of reserved memory regions
since these require system software to create holes in the DMA virtual address range available to
system software and its drivers.

. Byte Byte .

Field Length Offset Description
Type 2 0 1 - Reserved Memory Region Reporting Structure
Length 2 2 Varies (24 + size of Device Scope structure)
Reserved 2 4 Reserved (0).
Segment Number > 6 PCI Seg_ment Number associated with devices identified through the Device

Scope field.

Reserved Memory 8 8 Base address of 4KB-aligned reserved memory region.

Region Base Address

Last address of the reserved memory region.
Reserved Memory o " \ézgjee,&g;:‘;gliilglén%t be greater than the value in Reserved Memory Region
Region Limit Address ’)) .)

The reserved memory region size (Limit - Base + 1) must be an integer
multiple of 4KB.

The Device Scope structure contains one or more Device Scope entries that
identify devices requiring access to the specified reserved memory region.
The devices identified in this structure must be devices under the scope of
one of the remapping hardware units reported in DRHD.

Device Scope[] - 24

8-12 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O0—BIOS Considerations

8.5 Root Port ATS Capability Reporting Structure

This structure is applicable only for platforms supporting Device-TLBs as reported through the
Extended Capability Register. For each PCI Segment in the platform that supports Device-TLBs, BIOS
provides an ATSR structure. The ATSR structures identifies PCI Express Root-Ports supporting Address
Translation Services (ATS) transactions. Software must enable ATS on endpoint devices behind a Root
Port only if the Root Port is reported as supporting ATS transactions.

. Byte Byte I
Field Length Offset Description
Type 2 0 2 - Root Port ATS Capability Reporting Structure
Length 2 2 Varies (8 + size of Device Scope Structure)
e Bit 0: ALL_PORTS: If Set, indicates all PCI Express Root Ports in the
specified PCI Segment supports ATS transactions. If Clear, indicates
Flags 1 4 ATS transactions are supported only on Root Ports identified through
the Device Scope field.
e Bits 1-7: Reserved.
Reserved 1 5 Reserved (0).
Segment Number 2 6 The PCI Segment associated with this ATSR structure.
If the ALL_PORTS flag is Set, the Device Scope structure is omitted.
If ALL_PORTS flag is Clear, the Device Scope structure contains Device
Device Scope [] - 8 Scope Entries that identifies Root Ports supporting ATS transactions.

The Device Scope structure is described in Section 8.3.1. All Device Scope
Entries in this structure must have a Device Scope Entry Type of 02h.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-13

|
BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

8.6 Remapping Hardware Static Affinity Structure

Remapping Hardware Status Affinity (RHSA) structure is applicable for platforms supporting non-
uniform memory (NUMA), where Remapping hardware units spans across nodes. This optional
structure provides the association between each Remapping hardware unit (identified by its
respective Base Address) and the proximity domain to which that hardware unit belongs. Such
platforms, report the proximity of processor and memory resources using ACPI Static Resource
Affinity (SRAT) structure. To optimize remapping hardware performance, software may allocate
translation structures referenced by a remapping hardware unit from memory in the same proximity
domain. Similar to SRAT, the information in the RHSA structure is expected to be used by system
software during early initialization, when evaluation of objects in the ACPI name-space is not yet
possible.

. Byte Byte .
Field Length Offset Description
3 - Remapping Hardware Static Affinity Structure.
This is an optional structure and intended to be used only on NUMA
Type > 0 platforms with Remapping hardware units and memory spanned across
YP multiple nodes.
When used, there must be a Remapping Hardware Static Affinity structure
for each Remapping hardware unit reported through DRHD structure.
Length 2 2 Length is 20 bytes
Reserved 4 4 Reserved (0).
. Register Base Address of this Remap hardware unit reported in the
Register Base Address 8 8 corresponding DRHD structure.
oo . . Proximity Domain to which the Remap hardware unit identified by the
Proximity Domain [31:0] 4 16 Register Base Address field belongs.

8-14 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—BIOS Considerations
®

8.7 ACPI Name-space Device Declaration Structure

An ACPI Name-space Device Declaration (ANDD) structure uniquely represents an ACPI name-space
enumerated device capable of issuing DMA requests in the platform. ANDD structures are used in
conjunction with Device-Scope entries of type ‘ACPI_NAMESPACE_DEVICE'. Refer to Section 8.3.1 for
details on Device-Scope entries.

Field Lzr‘llgt;h OBf¥;:t Description
Type 2 0 4 - ACPI Name-space Device Declaration (ANDD) structure
Length 5 5 ‘I‘_ength of'this Entry”ir! Bytes. (8 + N), where N is the size in bytes of the
ACPI Object Name” field.
Reserved 3 4 Reserved (0).

Each ACPI device enumerated through an ANDD structure must have a

unique value for this field.

To report an ACPI device with ‘ACPI Device Number’ value of X, under the
; scope of a DRHD unit, a Device-Scope entry of type

ACPI Device Number ! 7 ‘ACPI_NAMESPACE_DEVICE' is used with value of X in the Enumeration ID

field. The ‘Start Bus Number’ and ‘Path’ fields in the Device-Scope

together provides the 16-bit source-id allocated by the platform for the

ACPI device.

ASCII, null terminated, string that contains a fully qualified reference to
the ACPI name-space object that is this device. (For example,
"_SB.I2C0" represents the ACPI object name for an embedded I12C
controller in southbridge; Quotes are omitted in the data field). Refer to
ACPI specification for fully qualified references for ACPI name-space
objects.

ACPI Object Name N 8

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-15

BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

8.8 SoC Integrated Address Translation Cache reporting
Structure

Field

Byte
Length

Byte
Offset

Description

Type

5 - SoC Integrated Address Translation Cache (SATC) reporting structure

Length

Varies (8 + size of Device Scope Structure)

Flags

e Bit 0: ATC_REQUIRED: If Set, indicates that every SoC integrated
device enumerated in this table has a functional requirement to
enable its ATC (via the ATS capability) for device operation. If Clear,
any device enumerated in this table can operate when its respective
ATC is not enabled (albeit with reduced performance or functionality).

e Bits 1-7: Reserved.

Reserved

Reserved (0).

Segment Number

The PCI Segment associated with this SATC structure. All SoC integrated
devices within a PCI segment with same value for Flags field must be
enumerated in the same SATC structure.

Device Scope []

The Device Scope structure contains Device Scope Entries that identifies
SoC integrated devices (in the specified PCI segment) with address
translation caches (ATC). Such ATCs are validated per requirements
described in Section 4.4 in this specification. The Device Scope structure is
described in Section 8.3.1 of this specification.

All Device Scope Entries in this structure must have a Device Scope Entry
Type of 01h (PCI Endpoint Device) with path field length of 2 bytes
(indicating it is an RCIEP). Such devices must also enumerate PCISIG
defined ATS capability. For SoC integrated SR-IOV RCIEPs with ATC, only
the SR-IOV Physical Function (PF) is enumerated in this table (VFs are not
enumerated).

An example of the SATC structure for platform configuration in Figure 8-31 is shown in Table 27. The
SATC structure is at offset 128 and identified by type field value of 0x5.

e System software uses the SATC structure to conclude that the devices listed underneath are
validated per the requirements described in Section 4.4 and that software is recommended to

enable ATC on such devices.

e Because there is only one SoC integrated device with address translation cache in our example
platform configuration, the SATC structure has only one Device Scope Entry identified by [1, 8, O,

o, 0,5, 0].

e System software uses the ATC_REQUIRED flag to conclude that it must enable ATC on the device
via the ATS capability for the device to be functional.

8.9 Remapping Hardware Unit Hot Plug

Remapping hardware units are implemented in Root-Complex components such as the I/O Hub (IOH).
Such Root-Complex components may support hot-plug capabilities within the context of the
interconnect technology supported by the platform. These hot-pluggable entities consist of an I/O
subsystem rooted in a ACPI host bridge. The I/O subsystem may include Remapping hardware units,
in addition to I/0 devices directly attached to the host bridge, PCI/PCI Express sub-hierarchies, and

I/OxAPICs.

8-16 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—BIOS Considerations
®

The ACPI DMAR static tables and sub-tables defined in previous sections enumerate the remapping
hardware units present at platform boot-time. Following sections illustrates the ACPI methods for
dynamic updates to remapping hardware resources, such as on I/O hub hot-plug. Following sections
assume familiarity with ACPI 3.0 specification and system software support for host-bridge hot-plug.

8.9.1 ACPI Name Space Mapping

ACPI defines Device Specific Method (_DSM) as a method that enables ACPI devices to provide device
specific functions without name-space conflicts. A Device Specific Method (_DSM) with the following
GUID is used for dynamic enumeration of remapping hardware units.

GUID

D8C1A3A6-BE9B-4C9B-91BF-C3CB81FC5DAF

The _DSM method would be located under the ACPI device scope where the platform wants to expose
the remapping hardware units. For example, ACPI name-space includes representation for hot-
pluggable I/O hubs in the system as a ACPI host bridges. For Remapping hardware units implemented
in I/O hub component, the _DSM method would be under the respective ACPI host bridge device.

The _DSM method supports the following function indexes.

Fg::::iteg(:n Description
0 Query function as specified in ACPI 3.0 specification.
Returns which of the below function indexes are supported.
1 Return DMA Remapping Hardware Definition (DRHD) Structures!
2 Return Root Port ATS Capability Reporting (ATSR) Structure
3 Return Remapping Hardware Static Affinity (RHSA) Structure

1. Reserved Memory Region Reporting (RMRR) structures are not reported via _DSM, since use of reserved memory regions are
limited to legacy devices (USB, iGFX etc.) that are not applicable for hot-plug.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 8-17

BIOS Considerations—Intel® Virtualization Technology for Directed I/0 I n te I
®

8.9.2 ACPI Sample Code

This section illustrates sample ASL code for enumerating remapping resources in an I/O hub.
Scope _SB {

Device (IOHn) { // host bridge representation for I/O Hub n
Name (_HID, EISAID(“PNP0A0S"))
Name (_CID, EISAID(“PNPOA03"))

Method (_DSM, 0, NotSerialized) { // Device specific method
Switch(Arg0) {
case (ToUUID(“D8C1A3A6-BE9B-4C9B-91BF-C3CB81FC5DAF”)) {

Switch (Arg2) { // No switch for Argl, since only one version of this method is supported
case(0): {Return (Buffer() {0x1F})} // function indexes 1-4 supported
case(1): {Return DRHDT} // DRHDT is a buffer containing relavent DRHD structures for I/O Hub n
case(2): {Return ATSRT} //ATSRT is a buffer containing relavent ATSR structure for I/O Hub n
case(3): {Return RHSAT} // RHSAT is a buffer containing relavent RHSAT structure for I/O Hub n

}
}// end of Scope SB

8.9.3 Example Remapping Hardware Reporting Sequence
The following sequence may be practiced for enumerating remapping hardware resources at boot
time.

e Platform prepares name space and populates the ACPI DMAR static reporting tables to be
reported to system software. These DMAR static tables report only the remapping hardware units
that are present at time of boot, and accessible by system software.

The following sequence may be practiced on I/O hub hot-add:
e Platform notifies system software via ACPI the presence of new resources.

e System software evaluates the handle to identify the object of the notify as ACPI host bridge (I/O
hub)

o If System software is able to support the hot-add of host bridge, it calls _OST to indicate success.

e System software evaluates _DSM method to obtain the remapping hardware resources associated
with this host bridge (I/0 hub)®.

e System software initializes and prepares the remapping hardware for use.

e System software continues with host-bridge hot-add processing, including discovery and
configuration of I/0O hierarchy below the hot-added host-bridge.

1. Invoking the _DSM method does not modify the static DMAR tables. System software must
maintain the effective DMAR information comprehending the initial DMAR table reported by the
platform, and any remapping hardware units added or removed via _DSM upon host bridge hot-
add or hot-remove.

8-18 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

) Translation Structure Formats

This chapter describes the memory-resident structures for DMA and interrupt remapping. Hardware
must access structure entries that are 64-bit or 128-bit atomically. Hardware must update a 512-bit
Posted Interrupt Descriptor (see Section 9.12 for details) atomically. Other than the Posted Interrupt
Descriptor (PID), hardware is allowed to break access to larger than 128-bit entries into multiple
aligned 128-bit accesses.

9.1 Root Entry

The following figure and table describe the root-entry. The Root Table Address Register points to a
table of root-entries, when the Translation Table Mode (TTM) field in the register is 00b.

1
2 6
7 4
P Reserved (0)
6 11
3 HAW HAW-1 21 10

Lo
L Reserved (0)
» CTP

» Reserved (0)

Figure 9-32. Root-Entry Format

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-1

n
Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

Bits Field Description
127:64 R: Reserved Reserved. Must be 0.
Pointer to Context-table for this bus. The Context-table is 4KB in size and size-
63:12 CTP: Context-table aligned.
’ Pointer Hardware treats bits 63:HAW as reserved (0), where HAW is the host address width
of the platform.
11:1 R: Reserved Reserved. Must be 0.
This field indicates whether the root-entry is present.
. e 0: Indicates the root-entry is not present. All other fields are ignored by
0 P: Present hardware.
e 1: Indicates the root-entry is present.
9-2 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.2 Scalable-mode Root Entry

The following figure and table describe the scalable-mode root-entry. The Root Table Address Register
points to a table of scalable-mode root-entries, when the Translation Table Mode (TTM) field in the
register is programmed with a value of 01b.

[N
~
~

(6
)}

HAW+64 HAW+63 6 &

|
I—»up

— > Reserved (0)
> UCTP
P Reserved (0)

g HAW HAW-1 % % 10
H
[
]
H
— | P
——® Reserved (0)
- | CTP
- Reserved (0)
Figure 9-33. Scalable-mode Root-Entry Format
Bits Field Description
This field specifies pointer to upper scalable-mode context-table for this bus.
127:76 UCTP: U_pper Context The upper scalable-mode context-table is 4KB in size and size-aligned.
' Table Pointer Hardware treats bits 127:(HAW+64) as reserved (0), where HAW is the host address
width of the platform.
75:65 R: Reserved Reserved. Must be 0.

This field indicates whether the upper-half of the scalable-mode-root-entry is present.

. e 0: Indicates upper half of the scalable-mode root-entry is not present. Bits
64 UP: Upper Present 127:65 are ignored by hardware.

e 1: Indicates the upper-half of the scalable-mode root-entry is present.

This field specifies pointer to lower scalable-mode context-table for this bus.
63:12 LCTP: Lower Context The lower scalable-mode context-table is 4KB in size and size-aligned.

Table Pointer Hardware treats bits 63:HAW as reserved (0), where HAW is the host address width of
the platform.

11:1 R: Reserved Reserved. Must be 0.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-3

n
Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

Bits Field Description

This field indicates whether the lower-half of the scalable-mode root-entry is present.

e 0: Indicates lower half of the scalable-mode root-entry is not present. Bits 63:1
are ignored by hardware.

e 1: Indicates the lower-half of the scalable-mode root-entry is present.

0 LP: Lower Present

9-4 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.3 Context Entry

The following figure and table describe the context-entry. Context-entries support translation of
requests-without-PASID. Context-entries are referenced through root-entries described in Section
9.1.

1
2 8 8 777 66 6
7 87 210 76 4
— AW
— Ignored
—» Reserved (0)
» DID
P Reserved (0)
6 11
3 HAW HAW-1 21 43210

Ls

3 FPD
L »TT

P Reserved (0)
» SLPTPTR
P Reserved (0)

Figure 9-34. Context-Entry Format

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-5

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

Bits Field Description

127:88 R: Reserved Reserved. Must be 0.

Identifier for the domain to which this context-entry maps. Hardware may use the domain
identifier to tag its internal caches.

The Capability Register reports the domain-id width supported by hardware. For
implementations supporting less than 16-bit domain-ids, unused bits of this field are treated
as reserved by hardware. For example, for implementation supporting 8-bit domain-ids, bits

. 87:80 of this field are treated as reserved.
DID: Domain

87:72 Identifier

Context-entries programmed with the same domain identifier must always reference same
address translation (SLPTPTR field). Context-entries referencing same address translation are
recommended to be programmed with same domain id for hardware efficiency.

When Caching Mode (CM) field in Capability Register is reported as Set, the domain-id value
of zero is architecturally reserved. Software must not use domain-id value of zero when CM is
Set.

71 R: Reserved Reserved. Must be 0.

70:67 IGN: Ignored Hardware ignores the programming of this field.

When the Translation-type (TT) field is 00b or 01b, this field indicates the adjusted guest-
address-width (AGAW) to be used by hardware for the second-level page-table walk. The
following encodings are defined for this field:

e 000b: Reserved

e 001b: 39-bit AGAW (3-level page table)
e 010b: 48-bit AGAW (4-level page table)
e 011b: 57-bit AGAW (5-level page table)
AW: Address e 100b-111b: Reserved

Width The value specified in this field must match an AGAW value supported by hardware (as
reported in the SAGAW field in the Capability Register).

66:64

When the Translation-type (TT) field indicates pass-through processing (10b), this field must
be programmed to indicate the largest AGAW value supported by hardware.

Untranslated requests-without-PASID processed through this context-entry and accessing
addresses above 2X-1 (where X is the AGAW value indicated by this field) are blocked and
treated as translation faults.

When the Translation-Type (TT) field is 00b or O1b, this field points to the base of second-
level paging entries (described in Section 9.8).

SLPTPTR: Second
63:12 Level Page Hardware treats bits 63:HAW as reserved (0), where HAW is the host address width of the
Translation Pointer | platform.

This field is ignored by hardware when Translation-Type (TT) field is 10b (pass-through).

11:4 R: Reserved Reserved. Must be 0.

This field is applicable only for requests-without-PASID, as hardware blocks all requests-with-
PASID in legacy mode before they can use context table.
e 00b: Untranslated requests are translated using second-level paging structures
referenced through SLPTPTR field. Translated requests and Translation Requests are

blocked.
e 01b: Untranslated, Translated and Translation Requests are supported. This encoding is
2 TT: Translation treated as reserved by hardware implementations not supporting Device-TLBs (DT=0 in
3: Type Extended Capability Register).

e 10b: Untranslated requests are processed as pass-through. SLPTPTR field is ignored by
hardware. Translated and Translation Requests are blocked. This encoding is treated by
hardware as reserved for hardware implementations not supporting Pass Through (PT=0
in Extended Capability Register).

e 11b: Reserved.

9-6 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

Bits Field Description

Enables or disables recording/reporting of qualified non-recoverable faults.

FPD: Fault ¢ 0: Qualified non-recoverable faults are recorded/reported for requests processed through
1 Proc.essing this context-entry.
Disable e 1: Qualified non-recoverable faults are not recorded/reported for requests processed

through this context-entry.
This field is evaluated by hardware irrespective of the setting of the present (P) field.

¢ 0: Indicates the context-entry is not present. All other fields except Fault Processing
0 P: Present Disable (FPD) field are ignored by hardware.

e 1: Indicates the context-entry is present.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-7

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

9.4 Scalable-Mode Context-Entry

The following figure and table describe the scalable-mode context-entry. Scalable-mode context-
entries are referenced through scalable-mode root-entries described in Section 9.2.

Scalable-mode context-entries support translation of both requests-without-PASID and requests-
with-PASID, through a two-level scalable-mode PASID-table structure referenced by the
PASIDDIRPTR (PASID Directory Pointer) field. Requests-without-PASID are processed as if they are
Requests-with-PASID with PASID value as specified by the RID_PASID field of the relevant scalable-
mode context-entry, PrivilegeModeRequested value as specified by RID_PRIV field of the relevant
scalable-mode context-entry, and ExecuteRequested value of 0.

[}
©
©
)

|—> Reserved(0) |—> Reserved(0)

888 6 6 111
7 543 4 3 HAW (HAW-1) 2109876543210

N

|—> RID_PASID k P

RID_PRIV FPD
Reserved(0) L—» DTE

——» PASIDE

L——» PRE

L———» Reserved (0)

‘————» PDTS

PASIDDIRPTR

Figure 9-35. Scalable-Mode Context-Entry Format

9-8 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Bits Field Description
255:85 R: Reserved Reserved. Must be 0.
This field is treated as Reserved(0) for implementations not supporting RID_PRIV (RPRIVS=0
in Extended Capability Register).
Requests-without-PASID processed through this scalable-mode context entry use the value
RID_PRIV: specified in this field as their PrivilegeModeRequested value to determine R, W and Exe
Requester ID to permissions for translation requests without PASID. Hence, completion for translation
84 PrivilegeModeReq request-without-PASID may carry R, W and Exe permissions associated with Privileged Mode
uested Entities. Thus, it is possible for DevTLB to have an entry that is without PASID but has R, W
Assignment and Exe permissions for Privileged Entity.
Implementations reporting the RPRIVS field in the Extended Capability Register as Clear use a
PrivilegeModeRequested value of 0 to perform address translation for requests-without-
PASID.
This field is treated as Reserved(0) for implementations not supporting RID_PASID (RPS=0 in
Extended Capability Register).
RID_PASID: Requests-without-PASID processed through this scalable-mode context entry are treated as
83:64 Requester ID to Requests-with-PASID with PASID value specified in this field. ExecuteRequested fields is
PASID Assignment | treated as O for such requests.
Implementations reporting RPS field in Extended Capability Register as Clear use a PASID
value of 0 to perform address translation for requests without PASID.
PASIDDIRPTR: This field points to the base of the scalable-mode PASID-directory. Hardware treats bits
. S]) 63:(HAW) bits in this field as reserved (0), where HAW is the host address width of the
63:12 Eﬁisnlt[e)rDlreCtory platform. This field is always treated as Host Physical Address (HPA).
Section 9.5 describes the format of entries in the scalable-mode PASID-directory.
. PDTS: PASID : P " i (X+7) .
11:9 Directory Size Value of X in this field indicates that the PASID-directory has 2 entries.
8:5 R: Reserved Reserved. Must be 0.
This field is treated as Reserved(0) for implementations not supporting Page Requests (PRS=0
PRE: Page in Extended Capability Register).
4 Request Enable e 0: Page Requests to report recoverable address translation faults are blocked.
e 1: Page Requests to report recoverable address translation faults are allowed.
This field is treated as Reserved(0) for implementations not supporting PASID (PASID=0 in
Extended Capability Register).
e 0: Requests-with-PASID received and processed through this scalable-mode context-
. entry are blocked.

3 Eﬁ:éﬁf' PASID e 1: Requests-with-PASID received and processed through this scalable-mode context-
entry are processed per the programming of the scalable-mode PASID structures
referenced via PASIDDIRPTR.

Programming of this field is not applicable for processing of Requests-without-PASID.
This field is treated as Reserved(0) for implementations not supporting Device-TLBs (DT=0 in
Extended Capability Register).

e 0: Translation Requests (with or without PASID) and Translated Requests received and

> DTE: Device-TLB processed through this scalable-mode context-entry are blocked.

Enable e 1: Translation Requests (with or without PASID) received and processed through this
scalable-mode context-entry are processed per the programming of the scalable-mode
PASID structures referenced via PASIDDIRPTR. Translated Requests bypass address
translation.
Enables or disables recording/reporting of qualified non-recoverable faults.
FPD: Fault e 0: Qualified non-recoverable faults are recorded/reported for requests processed through
1 Proc.essing this scalable-mode context-entry.
Disable e 1: Qualified non-recoverable faults are not recorded/reported for requests processed
through this scalable-mode context-entry.
This field is evaluated by hardware irrespective of the setting of the present (P) field.
e 0: Indicates the scalable-mode context-entry is not present. All other fields except Fault
0 P: Present Processing Disable (FPD) field are ignored by hardware.
e 1: Indicates the scalable-mode context-entry is present.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-9

n
Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

9.5 Scalable-Mode PASID Directory Entry

The following figure and table describe the scalable-mode PASID-directory entry used in scalable-
mode to translate requests-with-PASID and requests-without-PASID (using the implied PASID value
programmed in RID_PASID field in the scalable-mode context-entry).

e

3 HAW HAW-1 2 210

Ly »
L FPD
—— - Reserved (0)

» SMPTBLPTR

Figure 9-36. Scalable-Mode PASID Directory Entry Format

Bits Field Description

SMPTBLPTR: This field points to the base of a 4KB sized scalable-mode PASID-Table. Hardware
.) treats bits 63:HAW in this field as Reserved(0), where HAW is the host address
63:12 | Scalable-Mode PASID Table width of the platform. This field is always treated as Host Physical Address (HPA).

Pointer Section 9.6 describes format of entries in scalable-mode PASID Table Entry.
11: 2 R: Reserved Reserved (0).
Enables or disables recording/reporting of qualified non-recoverable faults.
If this scalable-mode PASID directory entry is referenced through a scalable-mode
context entry with the FPD field value set to 1, then this field has no effect.
1 FPD: Fault Processing Disable | o 0: Qualified non-recoverable faults are recorded/reported for requests

processed through this scalable-mode PASID-directory entry.

e 1: Qualified non-recoverable faults are not recorded/reported for requests
processed through this scalable-mode PASID-directory entry.

This field is evaluated by hardware irrespective of the setting of the present (P)
field.

e 0: Indicates the scalable-mode PASID-directory entry is not present. All other
0 P: Present fields except Fault Processing Disable (FPD) field are ignored by hardware.

e 1: Indicates the scalable-mode PASID-directory entry is present.

9-10 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.6 Scalable-Mode PASID Table Entry

The following figure and table describe scalable-mode PASID-Table entry used in scalable-mode to
translate requests-with-PASID and requests-without-PASID (using the implied PASID value
programmed in RID_PASID field in the scalable-mode context-entry).

5 4 4 3
1 4 4 8
1 8 7 4
l———— » Reserved(0) l————— » Reserved(0)
3 3 3 2
8 2 1 5
3 0 9 6
L—————————» Reserved(0) L————————» Reserved(0)
2 1 1 11 111111111
5 9 9 (HAW (HAW 43 333333322
5 2 1 +128) +127) 09 654321098
U]

l————— » Reserved(0) |—> SRE

ERE
L——» FLPM
L——————» WPE
L——— » NXE
L——» SMEP
‘———» EAFE

l——— > Reserved(0)
FLPTR
» Reserved(0)

9999998888 87 6 6 111
7 6543109876 09 4 3 HAW (HAW-1) 21098 654 210

[N}

| 11
|—> DID \I_—: P
L——— » Reserved(0) FPD
» PWSNP L———» AW
PGSNP L——» SLEE
Ccb —————» PGTT
EMTE ——— > SLADE
» EMT L » Reserved(0)
PWT SLPTR
PCD Reserved(0)
PAT

Figure 9-37. Scalable-Mode PASID Table Entry Format

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-11

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Bits Field Description
511:192 R: Reserved Reserved. Must be 0.
191: R: Reserved Reserved. Must be 0
HAW+128 ' ' '
This field is treated as Reserved(0) for implementations not supporting First-level
Translation (FLTS=0 in Extended Capability Register).
Pointer to root of first-level paging structures (base of FL-PML4 table if FLPM=00b; base
FLPTPTR: First Level of FL-PMLS5 table if FLPM=01b). Refer to Section 9.7 for first-level paging structure
HAW+127: Page Translation details.
140 Pointer
Hardware ignores this field for second-level-only (PGTT=010b) and pass-through
(PGTT=100b) translations.
The field is treated as Guest Physical Address (GPA), when nested translation are
enabled (PGTT=011b)
139:136 R: Reserved Reserved. Must be 0.
This field is treated as Reserved(0) for implementations not supporting Extended
Accessed flag (EAFS=0 in the Extended Capability Register).
EAFE: Extended
135 Accessed Flag Enable If Set, Extended-Accessed (EA) flag is atomically Set in First-level paging-entries
referenced by remapping hardware through this scalable-mode PASID Table Entry.
When not treated as Reserved(0), hardware ignores this field for second-level-only
(PGTT=010b) and pass-through (PGTT=100b) translations.
This field is treated as Reserved(0) for implementations not supporting First-level
Translation (FLTS=0 in Extended Capability Register).
SMEP: Supervisor . .
134 Mode Execute If Set, supervisor-level execute requests from a user-mode page (a page for which
Prevention every first-level translation entry leading up to the page has the U/S flag Set) are
blocked and treated as DMA remapping faults. When not treated as Reserved(0),
hardware ignores this field for second-level-only (PGTT=010b) and pass-through
(PGTT=100b) translations.
This field is treated as Reserved(0) for implementations not supporting First-level
Translation (FLTS=0 in Extended Capability Register).
NXE: No Execute e 0: Instruction fetches are allowed from any linear address with read permissions.
133 Enable e 1: Instruction fetches can be prevented from specified linear addresses by setting
the XD flag, bit 63, in first-level paging entries (even if data reads from such
addresses are allowed).
When not treated as Reserved(0), hardware ignores this field for second-level-only
(PGTT=010b) and pass-through (PGTT=100b) translations.
This field is treated as Reserved(0) for implementations not supporting First-level
Translation (FLTS=0 in Extended Capability Register). Hardware ignores this field for
requests with user-level privilege (request-with-PASID with PR=0 or request-without-
PASID with RID_PRIV=0)
WPE: Write Protect
132 Enable
e 0: Allows supervisor-level accesses to write into read-only pages.
e 1: Inhibits supervisor-level accesses from writing into read-only pages.
When not treated as Reserved(0), hardware ignores this field for second-level-only
(PGTT=010b) and pass-through (PGTT=100b) translations.
This field is treated as Reserved(0) for implementations not supporting First-level
Translations (FLTS=0 in Extended Capability Register).
. | This field specifies the paging mode for first-level translation.
131:130 E'a-gméﬁ\',lrgg:e"e « 00: 4-level paging (FLPTPR is base of FL-PML4)
e 01: 5-level paging (FLPTPR is base of FL-PML5)
e 10-11: Reserved
For implementations reporting 5-level Paging as not supported (FL5LP = 0) in
Capability Register, this field must be programmed as 00b.
9-12 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

Bits Field Description

This field is treated as Reserved(0) for implementations not supporting Execute
Requests (ERS=0 in the Extended Capability Register).

ERE: Execute Requests
129 Enable
If Clear, requests-with-PASID requesting execute permission are blocked and treated
as DMA remapping faults.
This field is treated as Reserved(0) for implementations not supporting Supervisor
. Request Support (SRS=0 in the Extended Capability Register).
128 SRE: Supervisor

Request Enable -
If Clear, requests (with and without PASID) requesting supervisor level privilege level

are blocked and treated as DMA remapping faults.

This field is treated as Reserved(0) for implementations not supporting Memory Type
(MTS=0 in Extended Capability Register).

This field is used to compute memory-type for requests from devices that operate in
processor coherency domain. Refer to Section 3.10, for hardware handling of memory-
type.

The format of this field is specified below.

3130 B2726 24282 01918 161514 121110 876 432 0

PA7 PAG PAS PA4 PA3 PA2 PA1 PAD

Following encodings are specified for the value programmed in sub-fields PAO through

) PA7.
127:96 _FI’_:\;)I'I:ePage Attribute
Encoding Mnemonic
00h Uncacheable (UC)
01h Write Combining (WC)
02h Reserved
03h Reserved
04h Write Through (WT)
05h Write Protected (WP)
06h Write Back (WB)
07h Uncached (UC-)
08h-0Fh Reserved
This field is treated as Reserved(0) for implementations reporting Memory Type
Support (MTS) as Clear in Extended Capability Register.
95 PCD

This field is used along with PWT field to determine the memory-type for accessing
PML4 (if FLPM=00b) or PMLS5 (if FLPM=01b) entries of first-level paging structures,
when processing requests from devices operating in the processor coherency domain.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-13

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

Bits Field Description

This field is treated as Reserved(0) for implementations reporting Memory Type
Support (MTS) as Clear in Extended Capability Register.

94 PWT
This field is used along with PCD field to determine the memory-type for accessing

PML4 (if FLPM=00b) or PMLS5 (if FLPM=01b) entries of first-level paging structures,
when processing requests from devices operating in the processor coherency domain.

The encodings defined for this field are 0h for Uncacheable (UC), and 6h for Write Back
(WB). All other values are Reserved.

93:91 EMT: Extended . . L .)
. Memory Type When EMTE field is Set, this field is used to compute effective memory-type for second-

level-only and nested translations (PGTT=010b or 011b) from devices operating in the
processor coherency domain. Refer to Section 3.10.4 for hardware handling of
memory-type.

This field is treated as Reserved(0) for implementations not supporting Memory Type
(MTS=0 in Extended Capability Register).

e 0: Extended Memory Type (EMT) field in this scalable-mode PASID table entry and
EMT field in second-level leaf paging-entries referenced through SLPTPTR are
90 EMTE: Extended ignored. o
Memory Type Enable e 1: Extended Memory Type (EMT) field in this scalable-mode PASID table entry and
EMT field in second-level leaf paging-entries referenced through SLPTPTR are used
for memory type determination for requests from devices operating in processor
coherency domain.
Refer to Section 3.10.4 for hardware handling of memory-type. When not treated as
Reserved(0), hardware ignores this field for first-level-only (PGTT=001b) and pass-
through (PGTT=100b) translations.

This field is treated as Reserved(0) for implementations not supporting Memory Type
(MTS=0 in Extended Capability Register).

This field is only applicable for requests from devices that operate in processor
coherency domain.

e 0: Normal Cache Mode.

e Read hits access cache; Read misses may cause replacement.
89 CD: Cache Disable e Write hits update cache; Write misses cause cache line fill.
e Writes to shared lines and write misses update system memory.

e Write hits can change shared lines to modified under control of MTRR
registers or EMT field, with associated read invalidation cycle.

e 1: Cache is disabled.

e Effective memory-type forced to Un-cacheable (UC), irrespective of
programming of MTRR registers and PAT/EMT fields.

e Cache continues to respond to snoop traffic.

e 0: Requests snoop processor caches based on other attributes in the request or
other fields in paging structure entries used to translate the request.

e 1: Requests snoop processor caches irrespective of, other attributes in the request
or other fields in paging structure entries used to translate the request.

88 PGSNP: Page Snoop

This field is treated as Reserved(0) for implementations not supporting Scalable-mode
Page-walk Coherency (SMPWC=0 in Extended Capability Register).

PWSNP: Page-walk

87 Shoop e 0: Hardware accesses to paging structures (such as scalable-mode FL/SL tables)
don’t snoop processor caches.
e 1: Hardware accesses to paging structures (such as scalable-mode FL/SL tables)
snoop processor caches.
86:80 R: Reserved Reserved. Must be 0.

9-14 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Bits

Field

Description

79:64

DID: Domain Identifier

Identifier for the domain to which this scalable-mode PASID Table Entry maps.
Hardware uses the domain identifier to tag the internal caches. Refer to Section 6.2.1
for cache tagging details.

The Capability Register reports the domain-id width supported by hardware. For
implementations supporting less than 16-bit domain-ids, unused bits of this field are
treated as reserved by hardware. For example, for an implementation supporting 8-bit
domain-ids, bits 79:72 of this field are treated as reserved.

Scalable-mode PASID table entries programmed with the same domain identifier must
always reference the same second-level paging structures (SLPTPTR field). See
Section 6.2.3.1 for details on programming this field.

When Caching Mode (CM) field in Capability Register is reported as Set, the domain-id
value of zero is architecturally reserved. Software must not use domain-id value of zero
when CM is Set.

63:HAW

R: Reserved

Reserved. Must be 0

HAW-1:12

SLPTPTR: Second
Level Page Table
Pointer

This field is treated as Reserved(0) for implementations not supporting Second-level
Translation (SLTS=0 in Extended Capability Register).

This field points to the base of the second-level page-tables (described in Section 9.8).

Hardware ignores this field for first-level-only (PGTT=001b) and pass-through
(PGTT=100b) translations.

11:10

R: Reserved

Reserved. Must be 0.

SLADE: Second Level
Access/Dirty bit Enable

This field is treated as Reserved(0) for implementations not supporting Second-level
Translation (SLTS=0 in Extended Capability Register) or not supporting Second Level
Accessed/Dirty bits (SLADS=0 in Extended Capability Register).

e 0: disable Accessed/Dirty Flags in second-level paging entries
e 1: enable Accessed/Dirty Flags in second-level paging entries.

Refer to Section 3.7.2 for details on Accessed/Dirty Flag support in second-level paging
entries. When not treated as Reserved(0), hardware ignores this field for first-level-
only (PGTT=001b) and pass-through (PGTT=100b) translations.

8:6

PGTT: PASID Granular
Translation Type

e 000b: Reserved
e 001b: First-level Translation only

e This value is treated as reserved for implementations not supporting First-
level Translation (FLTS=0 in Extended Capability Register).

e Untranslated/Translation requests (with or without PASID) processed through
this scalable-mode PASID table entry are translated using the first-level
paging structures referenced through the FLPTPTR field.

e 010b: Second-level Translation only

e This value is treated as reserved for implementations not supporting Second-
level Translation (SLTS=0 in Extended Capability Register).

e Untranslated/Translation requests (with or without PASID) processed through

this scalable-mode PASID table entry are translated using the second-level

paging structures referenced through the SLPTPTR field.

Nested Translation

e This value is treated as reserved for implementations not supporting Nested
Translation (NEST=0 in Extended Capability Register).

e Untranslated/Translation requests (with or without PASID) processed through
this scalable-mode PASID table entry are translated using nested first-level
paging structures (referenced through the FLPTPTR field) and second-level
paging structures (reference through the SLPTPTR field).

e 100b: Pass-through
e This value is treated as reserved for implementations not supporting Pass
Through (PT=0 in Extended Capability Register).

e Untranslated/Translation Requests (with or without PASID) referencing this
scalable-mode PASID Table Entry bypass address translation and are
processed as pass-through.

e 101-111b: Reserved

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-15

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

Bits Field Description

This field is treated as Reserved(0) for implementations not supporting Second-level
Translation (SLTS=0 in Extended Capability Register).

e 0: Instruction fetch allowed from any guest-physical-address with read

SLEE: Second-Level permissions.

Execute Enable e 1: Instruction fetch can be prevented from specified guest physical-addresses
through the X flag, bit 2, in second-level paging entries (even if data reads from
such addresses are allowed).

When not treated as Reserved(0), hardware ignores this field for first-level-only

(PGTT=001b) and pass-through (PGTT=100b) translations.

This field indicates the adjusted guest-address-width (AGAW) to be used by hardware
for second-level translation through paging structures referenced through SLPTPTR
field.

The following encodings are defined for this field:

e 000b: Reserved if ECAP_REG.SLTS=1

e 001b: 39-bit AGAW (3-level page table)

e 010b: 48-bit AGAW (4-level page table)
4:2 AW: Address Width e 011b: 57-bit AGAW (5-level page table)

e 100b-111b: Reserved
Hardware ignores this field for first-level-only (PGTT=001b) and pass-through
(PGTT=100b) translations.
The value specified in this field must match an AGAW value supported by hardware (as
reported in the SAGAW field in the Capability Register).
Requests to addresses above 2%X-1 (where X is the AGAW value indicated by this field)
that are subject to second-level translation are blocked and treated as translation
faults.

Enables or disables recording/reporting of qualified non-recoverable faults.

If this scalable-mode PASID entry is referenced through a scalable-mode context entry

or a scalable-mode PASID directory entry with the FPD field value set to 1, then this

FPD: Fault Processing | field has no effect.

Disable e 0: Qualified non-recoverable faults are recorded/reported for requests (with or
without PASID) processed through this scalable-mode PASID table entry-

e 1: Qualified non-recoverable faults are not recorded/reported for requests (with or

without PASID) processed through this scalable-mode PASID table entry.

This field is evaluated by hardware irrespective of the setting of the present (P) field.

e 0: Indicates the scalable-mode PASID table entry is not present. All other fields
0 P: Present except Fault Processing Disable (FPD) field are ignored by hardware.

e 1: Indicates the scalable-mode PASID table entry is present.

9-16 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.7 First-Level Paging Entries

The foIIowin%figure and table describe the first-level paging structures. First-level paging entries
follows Intel®™ 64 processor’s 64-bit paging entry format, with the following additions:

e Extended-Accessed flag: First-level translation supports an Extended-Accessed (EA) flag in the
paging entries. The EA flag works similar to the Accessed (A) flag in the paging entries. EA flags
can be enabled through the Extended-Accessed-Flag-Enable (EAFE) field in the scalable-mode
PASID-table entry (see Section 9.6). When enabled, bit 10 in the first-level paging entries are
treated by hardware as the EA flag, and are atomically set whenever a paging-entry is accessed
by hardware. For software usages where the first-level paging structures are shared across
heterogeneous agents (e.g., CPUs and GPUs), EA flag may be used by software to identify pages
accessed by non-CPU agent(s) (as opposed to the A flag which indicates access by any agent
sharing the paging structures).

616(6|6(5|5|5|5|5(5|5(5|5 HA [HA 333222222222211111111119876543210
3|2|1|0(9(8|7|6|5]|4|3|2|1 W |W-1 211|0|9|8|7|6|5|4|3]|2|1|0{9(8|7|6|5|4|3|2|1|0
" 1t |®(1 |plPlulR| p
D Ignored Rsvd. Address of PML4 table g|E v!9 A[CW|/|/ PML5E
n|afan|¥inl |o[T|s|W1)
" el 121 [PlPlulR| 5
D Ignored Rsvd. Address of page-directory-pointer table 9a v!9 A[CW|/|/ (1) PML4E
n*|19n % |n| |D[T|S|W
% Address of P|I E I P[P|UIR p PDPE:
D Ignored Rsvd. 1GB page Reserved Alg Al9 G|1|D|A|CW|/|/ (1) 1GB
frame Tin|"'|n D|T|S|W| page?
X I E I| |P|P|UIR p| PDPE:
D Ignored Rsvd. Address of page directory 9a Ign|0|(g|A|CW|/|/ (1) page
n n| |D|T|SW| directory
PITI|-|1I P|P|UR PDE:
X Ignored Rsvd. pidress of Reserved |Alg|5(a|G|1|D[A|CM]/ |/ (i’) 2MB
pag Tin|"'|n D|T|S|W| page
I
X ale I| [P[P|UR p PDE:
D Ignored Rsvd. Address of page table nlA Ign|O|(g|A|CW|/|/ (1) page
n| |D|T|SW table
% I E I| [P P|P|UR p PTE:
D Ignored Rsvd. Address of 4KB page frame 9|9 G|AD|A|ICW|/|/ (1) 4KB
nl"|n| |T D|T|S|W| page

1. EA field is ignored by hardware if EAFS is reported as Clear in the Extended Capability Register of if EAFE=0 in the scalable-
mode PASID-table entry referencing the first-level paging entries.
2. 1-GByte page support is reported through First-level 1-GByte Page Support (FL1GPS) field in the Capability Register.

Figure 9-38. Format for First-Level Paging Entries

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-17

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Table 28. Format of PML5E that references a PML4 Table
Bits Field Description
63 XD: Execute If NXE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
Disable granted for requests to the 256-TByte region controlled by this entry when XD=1.
62:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
Physical address of 4-KByte aligned PML4 table referenced by this entry.
(HAW-1):12 | ADDR: Address This field is treated as Guest Physical Address (GPA) when PGTT field in the relevant
scalable-mode PASID-table entry is programmed as nested (011b).
11 IGN: Ignored Ignored by hardware.
If EAFE=1 in the relevant scalable-mode PASID-table entry, this bit indicates whether this
0 EA: Extended entry has been used for address translation. Refer to Section 3.6.2 for extended-accessed
1 Accessed bit handling.
If EAFE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored.
9:8 IGN: Ignored Ignored by hardware.
7 R: Reserved Reserved (0).
6 IGN: Ignored Ignored by hardware.
. Indicates whether this entry has been used for address translation. Refer to Section 3.6.2
5 A: Accessed for accessed bit handling.
PCD: Page-level For devices operating in the processor coherency domain, this field indirectly determines
4 CacHe D?sable the memory type used to access the PML4 table referenced by this entry. For other devices,
this field is ignored. Refer to Section 3.10.1 for memory-type handling.
PWT: Page-level For devices operating in the processor coherency domain, this field indirectly determines
3 Writé Th?'ou h the memory type used to access the PML4 table referenced by this entry. For other devices,
9 this field is ignored. Refer to Section 3.10.1 for memory-type handling.
> U/S: If 0, requests with user-level privilege are not allowed to the 256-TByte region controlled
User/Supervisor by this entry. Refer to Section 3.6.1 for access rights.
If 0, write permission not granted for requests with user-level privilege (and requests with
1 R/W: Read/Write supervisor-level privilege, if WPE=1 in the relevant scalable-mode PASID-table entry) to
the 256-TByte region controlled by this entry. Refer to Section 3.6.1 for access rights.
0 P: Present Must be 1 to reference a PML4 table.
9-18 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Table 29. Format of PML4E that references a Page-Directory-Pointer Table
Bits Field Description
63 XD: Execute If NXE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
Disable granted for requests to the 512-GByte region controlled by this entry when XD=1.
62:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry.
(HAW-1):12 | ADDR: Address This field is treated as Guest Physical Address (GPA) when PGTT field in the relevant
scalable-mode PASID-table entry is programmed as nested (011b).
11 IGN: Ignored Ignored by hardware.
If EAFE=1 in the relevant scalable-mode PASID-table entry, this bit indicates whether this
EA: Extended entry has been used for address translation. Refer to Section 3.6.2 for extended-accessed
10 Accessed bit handling.
If EAFE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored.
9:8 IGN: Ignored Ignored by hardware.
7 R: Reserved Reserved (0).
6 IGN: Ignored Ignored by hardware.
. Indicates whether this entry has been used for address translation. Refer to Section 3.6.2
5 A: Accessed for accessed bit handling.
PCD: Page-level For devices operating in the processor coherency domain, this field indirectly determines
4 CacHe D?sable the memory type used to access the page-directory-pointer table referenced by this entry.
For other devices, this field is ignored. Refer to Section 3.10.1 for memory-type handling.
PWT: Page-level For devices operating in the processor coherency domain, this field indirectly determines
3 Writé Th?’ou h the memory type used to access the page-directory-pointer table referenced by this entry.
9 For other devices, this field is ignored. Refer to Section 3.10.1 for memory-type handling.
5 u/s: If 0, requests with user-level privilege are not allowed to the 512-GByte region controlled
User/Supervisor by this entry. Refer to Section 3.6.1 for access rights.
If 0, write permission not granted for requests with user-level privilege (and requests with
1 R/W: Read/Write supervisor-level privilege, if WPE=1 in the relevant scalable-mode PASID-table entry) to
the 512-GByte region controlled by this entry. Refer to Section 3.6.1 for access rights.
0 P: Present Must be 1 to reference a page-directory-pointer table.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-19

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Table 30. Format of PDPE that maps a 1-GByte Page
Bits Field Description
63 XD: Execute If NXE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
Disable granted for requests to the 1-GByte page referenced by this entry when XD=1.
62:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
Physical address of 1-GByte page referenced by this entry.
(HAW-1):30 | ADDR: Address This field is treated as Guest Physical Address (GPA) when PGTT field in the relevant
scalable-mode PASID-table entry is programmed as nested (011b).
29:13 R: Reserved Reserved (0).
PAT: Page For devices operating in the processor coherency domain, this field indirectly determines the
12 Attrlibutge memory type used to access the 1-GByte page referenced by this entry. For other devices,
this field is ignored. Refer to Section 3.10.1 for memory-type handling.
11 IGN: Ignored Ignored by hardware.
If EAFE=1 in the relevant scalable-mode PASID-table entry, this bit indicates whether this
1 EA: Extended entry has been used for address translation. Refer to Section 3.6.2 for extended-accessed
0 Accessed bit handling.
If EAFE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored.
9 IGN: Ignored Ignored by hardware.
8 G: Global Hardware ignores this bit and functions as if G bit was Clear.
Must be 1 (otherwise this entry references a page directory. Refer to Table 31).
7 PS: Page Size This field is treated as Reserved (0) for implementations not supporting First Level 1-GByte
Pages (FL1GP=0 in Capability Register)
6 D: Dirt If 1, indicates one or more requests seeking write permission was successfully translated to
' Y the 1-GByte page referenced by this entry.
. Indicates whether this entry has been used for address translation. Refer to Section 3.6.2 for
> A: Accessed accessed bit handling.
For devices operating in the processor coherency domain, this field indirectly determines the
4 PCD: Page-level memory type used to access the 1-GByte page referenced by this entry. For other devices,
Cache Disable this field is ignored.
Refer to Section 3.10.1 for memory-type handling.
PWT: Page-level For devices operating in the processor coherency domain, this field indirectly determines the
3 Writé Th?'ou h memory type used to access the 1-GByte page referenced by this entry. For other devices,
9 this field is ignored. Refer to Section 3.10.1 for memory-type handling.
> U/S: If 0, requests with user-level privilege are not allowed to the 1-GByte page referenced by
User/Supervisor this entry. Refer to Section 3.10.4 for access rights.
If 0, write permission not granted for requests with user-level privilege (and requests with
1 R/W: Read/Write supervisor-level privilege, if WPE=1 in the relevant scalable-mode PASID-table entry) to the
1-GByte page referenced by this entry. Refer to Section 3.6.1 for access rights.
0 P: Present Must be 1 to map a 1-GByte page.
9-20 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Table 31. Format of PDPE that references a Page-Directory Table
Bits Field Description
63 XD: Execute If NXE=1 in the relevant scalable-mode PASID-table entry, execute permission is not granted
Disable for requests to the 1-GByte region controlled by this entry when XD=1.
62:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
Physical address of 4-KByte aligned page directory referenced by this entry.
(HAW-1):12 | ADDR: Address This field is treated as Guest Physical Address (GPA) when PGTT field in the relevant scalable-
mode PASID-table entry is programmed as nested (011b).
11 IGN: Ignored Ignored by hardware.
If EAFE=1 in the relevant scalable-mode PASID-table entry, this bit indicates whether this
10 EA: Extended entry has been used for address translation. Refer to Section 3.6.2 for extended-accessed bit
Accessed handling.
If EAFE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored.
9:8 IGN: Ignored Ignored by hardware.
7 PS: Page Size Must be 0 (otherwise this entry maps to a 1-GByte page. Refer to Table 30).
6 IGN: Ignored Ignored by hardware.
. Indicates whether this entry has been used for address translation. Refer to Section 3.6.2 for
> A: Accessed accessed bit handling.
PCD: Page-level For devices operating in the processor coherency domain, this field indirectly determines the
4 CacHe D?sable memory type used to access the page directory referenced by this entry. For other devices,
this field is ignored. Refer to Section 3.10.1 for memory-type handling.
PWT: Page-level For devices operating in the processor coherency domain, this field indirectly determines the
3 Writé Th?'ou h memory type used to access the page directory referenced by this entry. For other devices,
9 this field is ignored. Refer to Section 3.10.1 for memory-type handling.
> uU/S: If 0, requests with user-level privilege are not allowed to the 1-GByte region controlled by
User/Supervisor this entry. Refer to Section 3.6.1 for access rights.
If 0, write permission not granted for requests with user-level privilege (and requests with
1 R/W: Read/Write supervisor-level privilege, if WPE=1 in the relevant scalable-mode PASID-table entry) to the
: 1-GByte region controlled by this entry. Refer to Section 3.6.1 for access rights. for access
rights.
0 P: Present Must be 1 to reference a page directory.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-21

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Table 32. Format of PDE that maps a 2-MByte Page
Bits Field Description
63 XD: Execute If NXE=1 in the relevant scalable-mode PASID-table entry, execute permission is not granted
Disable for requests to the 2-MByte page referenced by this entry when XD=1.
62:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
Physical address of 2-MByte page referenced by this entry.
(HAW-1):21 | ADDR: Address This field is treated as Guest Physical Address (GPA) when PGTT field in scalable-mode
PASID-table entry is programmed as nested (011b).
20:13 R: Reserved Reserved (0).
PAT: Page For devices operating in the processor coherency domain, this field indirectly determines the
12 Attrlibutge memory type used to access the 2-MByte page referenced by this entry. For other devices,
this field is ignored. Refer to Section 3.10.1 for access rights. for memory-type handling.
11 IGN: Ignored Ignored by hardware.
If EAFE=1 in the relevant scalable-mode PASID-table entry, this bit indicates whether this
1 EA: Extended entry has been used for address translation. Refer to Section 3.6.2 for access rights. for
0 Accessed extended-accessed bit handling.
If EAFE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored.
IGN: Ignored Ignored by hardware.
8 G: Global Hardware ignores this bit and functions as if G bit was Clear.
7 PS: Page Size Must be 1 (otherwise this entry references a page table. Refer to Table 33).
6 D: Dirt If 1, indicates one or more requests seeking write permission was successfully translated to
’ Y the 2-MByte page referenced by this entry. Refer to Section 3.6.2 for dirty bit handling.
. Indicates whether this entry has been used for address translation. Refer to Section 3.6.2 for
5 A: Accessed accessed bit handling.
For devices operating in the processor coherency domain, this field indirectly determines the
4 PCD: Page-level memory type used to access the 2-MByte page referenced by this entry. For other devices,
Cache Disable this field is ignored.
Refer to Section 3.10.1 for memory-type handling.
PWT: Page-level For devices operating in the processor coherency domain, this field indirectly determines the
3 Writé Th?'ou h memory type used to access the 2-MByte page referenced by this entry. For other devices,
9 this field is ignored. Refer to Section 3.10.1 for memory-type handling.
2 U/S: If 0, requests with user-level privilege are not allowed to the 2-MByte page referenced by
User/Supervisor this entry. Refer to Section 3.6.1 for access rights.
If 0, write permission not granted for requests with user-level privilege (and requests with
1 R/W: Read/Write supervisor-level privilege, if WPE=1 in the relevant scalable-mode PASID-table entry) to the
2-MByte page referenced by this entry. Refer to Section 3.6.1 for access rights.
0 P: Present Must be 1 to map a 2-MByte page.

9-22

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Table 33. Format of PDE that references a Page Table
Bits Field Description
63 XD: Execute If NXE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
Disable granted for requests to the 2-MByte region controlled by this entry when XD=1.
62:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
Physical address of 4-KByte aligned page table referenced by this entry.
(HAW-1):12 | ADDR: Address This field is treated as Guest Physical Address (GPA) when PGTT field in the relevant
scalable-mode PASID-table entry is programmed as nested (011b).
11 IGN: Ignored Ignored by hardware.
If EAFE=1 in the relevant scalable-mode PASID-table entry, this bit indicates whether this
0 EA: Extended entry has been used for address translation. Refer to Section 3.6.2 for extended-accessed
! Accessed bit handling.
If EAFE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored.
9:8 IGN: Ignored Ignored by hardware.
7 PS: Page Size Must be 0 (otherwise this entry maps to a 2-MByte page. Refer to Table 32).
6 IGN: Ignored Ignored by hardware.
. Indicates whether this entry has been used for address translation. Refer to Section 3.6.2
s A: Accessed for accessed bit handling.
PCD: Page-level For devices operating in the processor coherency domain, this field indirectly determines the
4 CacHe D?sable memory type used to access the page table referenced by this entry. For other devices, this
field is ignored. Refer to Section 3.10.1 for memory-type handling.
PWT: Page-level For devices operating in the processor coherency domain, this field indirectly determines the
3 Writé Th?'ou h memory type used to access the page table referenced by this entry. For other devices, this
9 field is ignored. Refer to Section 3.10.1 for memory-type handling.
> uU/S: If 0, requests with user-level privilege are not allowed to the 2-MByte region controlled by
User/Supervisor this entry. Refer to Section 3.6.1 for access rights.
If 0, write permission not granted for requests with user-level privilege (and requests with
1 R/W: Read/Write supervisor-level privilege, if WPE=1 in the relevant scalable-mode PASID-table entry) to the
2-MByte region controlled by this entry. Refer to Section 3.6.1 for access rights.
0 P: Present Must be 1 to reference a page table.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-23

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Table 34. Format of PTE that maps a 4-KByte Page
Bits Field Description
63 XD: Execute If NXE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
Disable granted for requests to the 4-KByte page referenced by this entry when XD=1.
62:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
Physical address of 4-KByte page referenced by this entry.
(HAW-1):12 | ADDR: Address This field is treated as Guest Physical Address (GPA) when PGTT field in the relevant
scalable-mode PASID-table entry is programmed as nested (011b).
11 IGN: Ignored Ignored by hardware.
If EAFE=1 in the relevant scalable-mode PASID-table entry, this bit indicates whether this
0 EA: Extended entry has been used for address translation. Refer to Section 3.6.2 for extended-accessed
1 Accessed bit handling.
If EAFE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored.
9 IGN: Ignored Ignored by hardware.
8 G: Global Hardware ignores this bit and functions as if G bit was Clear.
PAT: Page For devices operating in the processor coherency domain, this field indirectly determines the
7 Attr}but?e memory type used to access the 4-KByte page referenced by this entry. For other devices,
this field is ignored. Refer to Section 3.10.1 for memory-type handling.
6 D: Dirt If 1, indicates one or more requests seeking write permission was successfully translated to
’ Y the 4-KByte page referenced by this entry. Refer to Section 3.6.2 for dirty bit handling
. Indicates whether this entry has been used for address translation. Refer to Section 3.6.2
> A: Accessed for accessed bit handling.
For devices operating in the processor coherency domain, this field indirectly determines the
PCD: Page-level memory type used to access the 4-KByte page referenced by this entry. For other devices,
4 Cache Disable this field is ignored.
Refer to Section 3.10.1 for memory-type handling.
PWT: Page-level For devices operating in the processor coherency domain, this field indirectly determines the
3 Writé Th?'ou h memory type used to access the 4-KByte page referenced by this entry. For other devices,
9 this field is ignored. Refer to Section 3.10.1 for memory-type handling.
> U/S: If 0, requests with user-level privilege are not allowed to the 4-KByte page referenced by
User/Supervisor this entry. Refer to Section 3.6.1 for access rights.
If 0, write permission not granted for requests with user-level privilege (and requests with
1 R/W: Read/Write supervisor-level privilege, if WPE=1 in the relevant scalable-mode PASID-table entry) to the
4-KByte page referenced by this entry. Refer to Section 3.6.1 for access rights.
0 P: Present Must be 1 to map a 4-KByte page.

9-24

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.8 Second-Level Paging Entries

The following figure and table describe the page-table entry.

6(6(6(6|5|5|5(5(5|5|5|5|5 HAW, 313(3|2|2|2{2|2|2|2|2|2|2|1|1|1|1|1|1|1{1|1f1
3]2|1|olo|8|7[s|5|4(3]2[1| AWM -1 2|1|olo|8|7|s|5|4|3|2|1|0]9|8|7|s|5|4|3|2[t|o]®|8] 7| © [°[*3| % |*|°
IR R| R
g \S/ Ignored Rsvd. Address of Second-level-PML4 table \s/ Ign|A \s/ Ign [XYW|R]SL-PML5E
n d d d
(R R R
g \s/ Ignored Rsvd. Address of Second-le\t/;!’-lzage-d|rectory-po|nter \s/Ign A \S/ 1gn |x|w[r]sL-PML4E
n d d d
1
I z Address of S| L p SL-PDPE:
gly Ignored Rsvd. 1GB page Reserved Nig|D|A[1 A EMT2|X|W|R] 1GB
nlq frame Pln A page3
I z : SL-PDPE:
aly Ignored Rsvd. Address of second-level-page-directory table Ign|A{O| Ign |X|W|R}] page
nlg ; directory
R 1
I S| 1 SL-PDE:
s Address of P '
aly Ignored Rsvd. 2MB page frame Reserved N|g[D|A|1 A EMT | X |W|R 2MB3
Nd PIn T page
I ': : SL-PDE:
Ignored Rsvd. Address of second-level-page table Ign|A|O| Ign |X|W|R] page
9lv \
nlq g table
T
1 l; S|1 P SL-PTE:
Ignored Rsvd. Address of 4KB page frame N|g|D|A|g EMT | X |W|R| 4KB
9y 9 A
niqg p|n n T page

1. X field is ignored by hardware if Execute Request Support (ERS) is reported as Clear in the Extended Capability Register or
if SLEE=0 in the scalable-mode PASID-table entry referencing the second-level paging entries.

2. EMT and IPAT fields are ignored by hardware if Memory Type Support (MTS) is reported as Clear in the Extended Capability
Register or if EMTE=0 in the scalable-mode PASID-table entry referencing the second-level paging entries.

3. 1-GByte page and 2-MByte page support is reported through Second-level Large Page Support (SLLPS) in the Capability
Register.

Figure 9-39. Format for Second-Level Paging Entries

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-25

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Table 35. Format of SL-PML5E referencing a Second-Level-PML4 Table
Bits Field Description
63 IGN: Ignored Ignored by hardware.
62 R: Reserved Reserved (0).
61:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
(HAW-1):12 | ADDR: Address Host physical address of 4-KByte aligned second-level-PML4 table referenced by this entry.
11 R: Reserved Reserved (0).
10:9 IGN: Ignored Ignored by hardware.
Indicates whether this entry has been used for address translation. Refer to Section 3.7.2
8 A: Accessed for accessed bit handling.
’ If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by
hardware.
7 R: Reserved Reserved (0).
6:3 IGN: Ignored Ignored by hardware.
5 X: Execute If SLEE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
: granted for requests to the 256-TByte region referenced by this entry, when X=0.
1 W: Write If 0, write permission not granted for requests to the 256-TByte region controlled by this
) entry.
If 0, read permission not granted for requests to the 256-TByte region controlled by this
entry.
0 R: Read For implementations reporting Zero-Length-Read (ZLR) field as Set in the Capability
Register, read permission is not applicable to zero-length read requests if Execute (X) or
Write (W) permission fields are 1.
9-26 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Table 36. Format of SL-PMLA4E referencing a Second-Level-Page-Directory-Pointer Table
Bits Field Description
63 IGN: Ignored Ignored by hardware.
62 R: Reserved Reserved (0).
61:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
13, . Host physical address of 4-KByte aligned second-level-page-directory-pointer table
(HAW-1):12 | ADDR: Address referenced by this entry.
11 R: Reserved Reserved (0).
10:9 IGN: Ignored Ignored by hardware.
Indicates whether this entry has been used for address translation. Refer to Section 3.7.2 for
8 A: Accessed accessed bit handling.
If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.
7 R: Reserved Reserved (0).
6:3 IGN: Ignored Ignored by hardware.
5 X: Execute If SLEE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
) granted for requests to the 512-GByte region referenced by this entry, when X=0.
i . If 0, write permission not granted for requests to the 512-GByte region controlled by this
1 W: Write entry.
If 0, read permission not granted for requests to the 512-GByte region controlled by this
entry.
0 R: Read For implementations reporting Zero-Length-Read (ZLR) field as Set in the Capability
Register, read permission is not applicable to zero-length read requests if Execute (X) or
Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-27

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

Table 37.

intel.

Format of SL-PDPE that maps a 1-GByte Page

Bits

Field

Description

63

IGN: Ignored

Ignored by hardware.

62

R: Reserved

Reserved (0).

61:52

IGN: Ignored

Ignored by hardware.

51:HAW

R: Reserved

Reserved (0).

(HAW-1):30

ADDR: Address

Host physical address of 1-GByte page referenced by this entry.

29:12

R: Reserved

Reserved (0).

11

SNP: Snhoop

This field indicates whether accesses to this page must snoop processor caches.

This field is treated as reserved(0) by hardware implementations not supporting Snoop Control
(SC=0 in Extended Capability Register).

Refer to Table 6 to see how this bit is used for Untranslated and to Table 10 for Translation
requests.

10

IGN: Ignored

Ignored by hardware.

D: Dirty

If 1, indicates one or more requests seeking write permission was successfully translated to the
1-GByte page referenced by this entry. Refer to Section 3.7.2 for dirty bit handling.

If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.

A: Accessed

Indicates whether this entry has been used for address translation. Refer to Section 3.7.2 for
accessed bit handling.

If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.

PS: Page Size

Must be 1 (Otherwise this entry references a second-level-page-directory. Refer to Table 38).

This field is treated as Reserved (0) for implementations not supporting 1-GB page in Second
Level Large Page Support (SLLPS) field of the Capability Register.

IPAT: Ignore PAT

This field is ignored by hardware when the Extended Memory Type Enable (EMTE) field is Clear
in the relevant scalable-mode PASID-table entry or when Translation Table Mode is set to
legacy mode (TTM=00b).
This field is applicable only for nested translation of requests from devices operating in the
processor coherency domain.
e 0: The Page Attribute Table (PAT) in the scalable-mode PASID-table entry is used for
effective memory-type determination.
e 1: The Page Attribute Table (PAT) in the scalable-mode PASID-table entry is not used for
effective memory-type determination.
Refer to Section 3.10.4 for memory type handling.

5:3

EMT: Extended
Memory Type

This field is ignored by hardware when the Extended Memory Type Enable (EMTE) field is Clear
in the relevant scalable-mode PASID-table entry or when Translation Table Mode is set to
legacy mode (TTM=00b).

When the EMTE field is Set, this field is used to compute effective memory-type for second-
level-only and nested translations (PGTT=010b or 011b) from devices operating in the
processor coherency domain.

The encodings defined for this field are Oh for Uncacheable (UC), 1h for Write Combining (WC),
4h for Write Through (WT), 5h for Write Protected (WP), and 6h for Write Back (WB). All other
values are Reserved.

Refer to Section 3.10.4 for memory type handling.

X: Execute

If SLEE=1 in the relevant scalable-mode PASID-table entry, execute permission is not granted
for requests to the 1-GByte page referenced by this entry, when X=0.

W: Write

If 0, write permission not granted for requests to the 1-GByte page referenced by this entry.

R: Read

If 0, read permission not granted for requests to the 1-GByte page referenced by this entry.
For implementations reporting Zero-Length-Read (ZLR) field as Set in the Capability Register,
read permission is not applicable to zero-length read requests if Execute (X) or Write (W)
permission fields are 1.

9-28

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Table 38. Format of SL-PDPE that references a Second-Level-Page-Directory
Bits Field Description
63 IGN: Ignored Ignored by hardware.
62 R: Reserved Reserved (0).
61:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
(HAW-1):12 | ADDR: Address :r?ts:yphysical address of 4-KByte aligned second-level-page-directory referenced by this
11 R: Reserved Reserved (0).
10:9 IGN: Ignored Ignored by hardware.
Indicates whether this entry has been used for address translation. Refer to Section 3.7.2 for
8 A: Accessed accessed bit handling.
If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.
7 PS: Page Size Must be 0 (Otherwise this entry references a 1-GByte page. Refer to Table 37).
6:3 IGN: Ignored Ignored by hardware.
> X: Execute If SLEE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
. granted for requests to the 1-GByte region referenced by this entry, when X=0.
1 W: Write If 0, write permission not granted for requests to the 1-GByte region controlled by this entry.
If 0, read permission not granted for requests to the 1-GByte region controlled by this entry.
0 R: Read For implementations reporting Zero-Length-Read (ZLR) field as Set in the Capability Register,
’ read permission is not applicable to zero-length read requests if Execute (X) or Write (W)
permission fields are 1.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-29

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Table 39. Format of SL-PDE that maps to a 2-MByte Page
Bits Field Description
63 IGN: Ignored Ignored by hardware.
62
R: Reserved Reserved (0).
61:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
(HAW-1):21 | ADDR: Address | Host physical address of 2-MByte page referenced by this entry.
20:12 R: Reserved Reserved (0).
This field indicates whether accesses to this page must snoop processor caches.
This field is treated as reserved(0) by hardware implementations not supporting Snoop Control
11 SNP: Snoop (SC=0 in Extended Capability Register).
Refer to Table 6 to see how this bit is used for Untranslated and to Table 10 for Translation
requests.
10 IGN: Ignored Ignored by hardware.
If 1, indicates one or more requests seeking write permission was successfully translated to the
9 D: Dirty 2-MByte page referenced by this entry. Refer to Section 3.7.2 for dirty bit handling
If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.
Indicates whether this entry has been used for address translation. Refer to Section 3.7.2 for
8 A: Accessed accessed bit handling.
If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.
Must be 1 (Otherwise this entry references a second-level-page table. Refer to Table 40).
7 PS: Page Size This field is treated as Reserved (0) for implementations not supporting 2-MB page in Second
Level Large Page Support (SLLPS) field of the Capability Register.
This field is ignored by hardware when Extended Memory Type Enable (EMTE) field is Clear in
the relevant scalable-mode PASID-table entry or when Translation Table Mode is set to legacy
mode (TTM=00b).
This field is applicable only for nested translation of requests-with-PASID from devices operating
6 IPAT: Ignore in the processor coherency domain.
PAT e 0: Page Attribute Table (PAT) in scalable-mode PASID-table entry is used for effective
memory-type determination
e 1: Page Attribute Table (PAT) in scalable-mode PASID-table entry is not used for effective
memory-type determination.
Refer to Section 3.10.4 for memory type handling.
This field is ignored by hardware when Extended Memory Type Enable (EMTE) field is Clear in
the relevant scalable-mode PASID-table entry or when Translation Table Mode is set to legacy
mode (TTM=00b).
When EMTE, field is Set, this field is used to compute effective memory-type for second-level-
. EMT: Extended | only and nested translations (PGTT=010b or 011b) from devices operating in the processor
5:3 Memory Type coherency domain.
The encodings defined for this field are Oh for Uncacheable (UC), 1h for Write Combining (WC),
4h for Write Through (WT), 5h for Write Protected (WP), and 6h for Write Back (WB). All other
values are Reserved.
Refer to Section 3.10.4 for memory type handling.
2 X: Execute If SLEE=1 in the relevant scalable-mode PASID-table entry, execute permission is not granted
) for requests to the 2-MByte page referenced by this entry, when X=0.
1 W: Write If 0, write permission not granted for requests to the 2-MByte page referenced by this entry.
If 0, read permission not granted for requests to the 2-MByte page referenced by this entry.
0 R: Read For implementations reporting Zero-Length-Read (ZLR) field as Set in the Capability Register,
read permission is not applicable to zero-length read requests if Execute (X) or Write (W)
permission fields are 1.
9-30 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Table 40. Format of SL-PDE that references a Second-Level-Page Table
Bits Field Description
63 IGN: Ignored Ignored by hardware.
62 R: Reserved Reserved (0).
61:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
(HAW-1):12 | ADDR: Address Host physical address of 4-KByte aligned second-level-page-table referenced by this entry.
11 R: Reserved Reserved (0).
10:9 IGN: Ignored Ignored by hardware.
Indicates whether this entry has been used for address translation. Refer to Section 3.7.2
8 A: Accessed for accessed bit handling.
If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.
7 PS: Page Size Must be 0 (Otherwise this entry references a 2-MByte page. Refer to Table 39).
6:3 IGN: Ignored Ignored by hardware.
> X: Execute If SLEE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
’ granted for requests to the 2-MByte region referenced by this entry, when X=0.
1 W: Write If 0, write permission not granted for requests to the 2-MByte region controlled by this
' entry.
If 0, read permission not granted for requests to the 2-MByte region controlled by this entry.
0 R: Read For implementations reporting Zero-Length-Read (ZLR) field as Set in the Capability
’ Register, read permission is not applicable to zero-length read requests if Execute (X) or
Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-31

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Table 41. Format of SL-PTE that maps 4-KByte Page
Bits Field Description
63 IGN: Ignored Ignored by hardware.
62
R: Reserved Reserved (0).
61:52 IGN: Ignored Ignored by hardware.
51:HAW R: Reserved Reserved (0).
(HAW-1):12 | ADDR: Address Host physical address of 4-KByte page referenced by this entry.
This field indicates whether accesses to this page must snoop processor caches.
This field is treated as reserved(0) by hardware implementations not supporting Snoop
11 SNP: Snoop Control (SC=0 in Extended Capability Register).
Refer to Table 6 to see how this bit is used for Untranslated and to Table 10 for Translation
requests.
10 IGN: Ignored Ignored by hardware.
If 1, indicates one or more requests seeking write permission was successfully translated to
9 D: Dirty the 4-KByte page referenced by this entry. Refer to Section 3.7.2 for dirty bit handling
If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.
Indicates whether this entry has been used for address translation. Refer to Section 3.7.2 for
8 A: Accessed accessed bit handling.
If SLADE=0 in the relevant scalable-mode PASID-table entry, this bit is ignored by hardware.
7 IGN: Ignored Ignored by hardware.
This field is ignored by hardware when Extended Memory Type Enable (EMTE) field is Clear in
the relevant scalable-mode PASID-table entry or when Translation Table Mode is set to
legacy mode (TTM=00b).
This field is applicable only when scalable-mode PASID-table entry used to process the
request was setup as nested-translation (PGTT=011b) and the request is from devices
6 IPAT: Ignore PAT operating in the processor coherency domain.
e 0: Page Attribute Table (PAT) in scalable-mode PASID-table entry is used for effective
memory-type determination
e 1: Page Attribute Table (PAT) in scalable-mode PASID-table entry is not used for
effective memory-type determination.
Refer to Section 3.10.4 for memory type handling.
This field is ignored by hardware when Extended Memory Type Enable (EMTE) field is Clear in
the relevant scalable-mode PASID-table entry or when Translation Table Mode is set to
legacy mode (TTM=00b).
When EMTE, field is Set, this field is used to compute effective memory-type for second-
. EMT: Extended level-only and nested translations (PGTT=010b or 011b) from devices operating in the
5:3 Memory Type processor coherency domain.
The encodings defined for this field are Oh for Uncacheable (UC), 1h for Write Combining
(WC), 4h for Write Through (WT), 5h for Write Protected (WP), and 6h for Write Back (WB).
All other values are Reserved.
Refer to Section 3.10.4 for memory type handling.
> X: Execute If SLEE=1 in the relevant scalable-mode PASID-table entry, execute permission is not
' granted for requests to the 4-KByte page referenced by this entry, when X=0.
1 W: Write If 0, write permission not granted for requests to the 4-KByte page referenced by this entry.
If 0, read permission not granted for requests to the 4-KByte page referenced by this entry.
0 R: Read For implementations reporting Zero-Length-Read (ZLR) field as Set in the Capability
Register, read permission is not applicable to zero-length read requests if Execute (X) or
Write (W) permission fields are 1.
9-32 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.9 Fault Record

The following figure and table describe the fault record format for advanced fault logging.

NN
[NTIN
[GENTN
FNYNTIN
WNE-

pOR
wo R
[S1%)
(6,10}

HO
o0
o
N

—> 3D
- Rad (0)
B PRIV
> EXE

PP
» FR
» PV
AT

-

»- Rsvd(0)

woan
N
(SN

————— Rsvd (0)

> Fl

Figure 9-40. Fault-Record Format

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-33

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

Bits Field Description

127 R: Reserved Reserved (0).

Memory access type of faulted request. This field is valid only when the Fault Reason
(FR) indicates one of the non-recoverable address translation fault conditions.

e 0: Write request
e 1: Read request or AtomicOp request

This field is valid only when Fault Reason (FR) indicates one of the non-recoverable
address translation fault conditions.

126 T: Type

Address Type (AT) field in the faulted DMA request.

This field is valid only when Fault Reason (FR) indicates one of the non-recoverable
125:124 AT: Address Type address translation fault conditions.

Hardware implementations not supporting Device-TLBs (DT=0 in Extended Capability
Register) treat this field as Reserved (0).

PASID Value used by the faulted request.
For requests with PASID, this field reports the PASID value that came with the request.

For requests without PASID, this field reports the value as follows:
e Legacy mode (TTM=00b): O
e Scalable mode (TTM=01b): Value of the RID_PASID field in the scalable-mode
context-entry used to translate the request. If the request was blocked before it
was able to access RID_PASID field from scalable-mode context-entry, this field will
report a value of 0.

123:104 PV: PASID Value

Hardware implementations not supporting PASID (PASID=0 in Extended Capability
Register) treat this field as Reserved (0).

103:96 FR: Fault Reason Reason for the non-recoverable fault.

When Set, indicates faulted request has a PASID. The value of the PASID is reported in
the PASID Value (PV) field.

This field is relevant only when Fault Reason (FR) indicates one of the non-recoverable
address translation fault conditions.

Hardware implementations not supporting PASID (PASID=0 in Extended Capability
Register) treat this field as Reserved (0).

95 PP: PASID Present

When Set, indicates Execute permission was requested by the faulted read request.
EXE: Execute This field is relevant only when the PASID Present (PP) and Type (T) fields are both Set.

94 o
Permission Requested Hardware implementations not supporting PASID (PASID=0 in Extended Capability
Register) treat this field as Reserved (0).
When Set, indicates Supervisory privilege was requested by the faulted request.
93 PRIV: Privilege Mode This field is relevant only when the PASID Present (PP) field is Set.
Requested Hardware implementations not supporting PASID (PASID=0 in Extended Capability
Register) treat this field as Reserved (0).
92:80 R: Reserved Reserved (0).
79:64 SID: Source Identifier Requester-id associated with the fault condition.

When the Fault Reason (FR) field indicates one of the non-recoverable address
translation fault conditions, bits 63:12 of this field contains the page address in the
faulted DMA request.

When the Fault Reason (FR) field indicates one of the interrupt-remapping fault
conditions, bits 63:48 of this field contains the interrupt_index computed for the faulted
interrupt request, and bits 48:12 are cleared.

63:12 FI: Fault Information

11:0 R: Reserved Reserved (0).

9-34 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.10 Interrupt Remapping Table Entry (IRTE) for Remapped
Interrupts

The following figure and table describe the interrupt remapping table entry for interrupt requests that
are subject to remapping.

1
2 88 8887 6
7 43 21009 4
SID

- SQ

» SVT

P> Reserved (0)
6 33 22 11111
3 21 43 6542187543210

[

_> P
\—> FPD

Destination Mode

— P Redirection Hint
- Trigger Mode
-———————P Delivery Mode
P AVALL
L——— P Reserved (0)
» 0
P Vector
P Reserved (0)
P> Destination ID

Figure 9-41. Interrupt Remap Table Entry Format for Remapped Interrupts

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-35

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Bits Field Description
. i Reserved. Software must program these bits to 0. This field is evaluated by hardware only when

127:84 R: Reserved the Present (P) field is Set.

This field specifies the type of validation that must be performed by the interrupt-remapping
hardware on the source-id of the interrupt requests referencing this IRTE.

e 00b: No requester-id verification is required.

SVT: Source e 01b: Verify requester-id in interrupt request using SID and SQ fields in the IRTE.
83:82 Valiélation e 10b: Verify the most significant 8-bits of the requester-id (Bus#) in the interrupt request is
’ Type equal to or within the Startbus# and EndBus# specified through the upper and lower 8-bits
of the SID field respectively. This encoding may be used to verify interrupts originated
behind PCI Express-to-PCI/PCI-X bridges. Refer Section 5.1.1 for more details.

e 11b: Reserved.

This field is evaluated by hardware only when the Present (P) field is Set.

The SVT field may be used to verify origination of interrupt requests generated by devices
supporting phantom functions. If the SVT field is 01b, the following encodings are defined for
the SQ field.

e 00b: Verify the interrupt request by comparing all 16-bits of SID field with the 16-bit
requester-id of the interrupt request.

e 01b: Verify the interrupt request by comparing most significant 13 bits of the SID and
requester-id of interrupt request, and comparing least significant two bits of the SID field
and requester-id of interrupt request. (i.e., ignore the third least significant field of the SID

y SQ: Source-id field and requester-id).

81:80 Qualifier e 10b: Verify the interrupt request by comparing most significant 13 bits of the SID and
requester-id of interrupt request, and comparing least significant bit of the SID field and
requester-id of interrupt request. (i.e., ignore the second and third least significant fields of
the SID field and requester-id).

e 11b: Verify the interrupt request by comparing most significant 13 bits of the SID and
requester-id of interrupt request. (i.e., ignore the least three significant fields of the SID
field and requester-id).

This field is evaluated by hardware only when the Present (P) field is Set and SVT field is 01b.
This field specifies the originator (source) of the interrupt request that references this IRTE. The
format of the SID field is determined by the programming of the SVT field.

If the SVT field is:

e 01b: The SID field contains the 16-bit requester-id (Bus/Dev/Func #) of the device that is
allowed to originate interrupt requests referencing this IRTE. The SQ field is used by

SID: Source hardware to determine which bits of the SID field must be considered for the interrupt

79:64 Ider;tiﬁer request verification.

e 10b: The most significant 8-bits of the SID field contains the Startbus#, and the least
significant 8-bits of the SID field contains the Endbus#. Interrupt requests that reference
this IRTE must have a requester-id whose bus# (most significant 8-bits of requester-id) has
a value equal to or within the Startbus# to Endbus# range.

This field is evaluated by hardware only when the Present (P) field is Set and SVT field is 01b or
10b.
This field identifies the remapped interrupt request’s target processor(s). It is evaluated by
hardware only when the Present (P) field is Set.
The format of this field in various Interrupt Remapping modes is as follows:
DST: Intel” 64 XAPIC Mode (IRTA_REG.EIME=0):
63:32 | pestination ID « 63:48 - Reserved (0)
e 47:40 - APIC DestinationID[7:0]
. ®39:32 - Reserved (0)
e Intel” 64 x2APIC Mode (IRTA_REG.EIME=1):
e 63:32 - APIC DestinationID[31:0]
i . Reserved. Software must program these bits to 0. This field is evaluated by hardware only when
31:24 | R:Reserved | o precent (P) field is Set.
23:16 V: Vector This 8-bit field contains the interrupt vector associated with the remapped interrupt request.
: ’ This field is evaluated by hardware only when the Present (P) field is Set.

9-36

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Bits

Field

Description

15

IM: IRTE
Mode

Value of 0 in this field indicate interrupt requests processed through this IRTE are remapped.

Value of 1 in this field indicate interrupt requests processed through this IRTE are posted. Refer
to Section 9.11 for IRTE format for posted interrupts.

14:12

R: Reserved

Reserved. Software must program these bits to 0. This field is evaluated by hardware only when
the Present (P) field is Set.

AVAIL:
Available

This field is available to software. Hardware always ignores the programming of this field.

7:5

DLM: Delivery
Mode

This 3-bit field specifies how the remapped interrupt is handled. Delivery Modes operate only in
conjunction with specified Trigger Modes (TM). Correct Trigger Modes must be guaranteed by
software. Restrictions are indicated below:

e 000b (Fixed Mode) - Deliver the interrupt to all the agents indicated by the Destination ID
field. The Trigger Mode for fixed delivery mode can be edge or level.

e (001b (Lowest Priority) — Deliver the interrupt to one (and only one) of the agents indicated
by the Destination ID field (the algorithm to pick the target agent is component specific and
could include priority based algorithm). The Trigger Mode can be edge or level.

e (010b (System Management Interrupt or SMI): SMI is an edge triggered interrupt regardless
of the setting of the Trigger Mode (TM) field. For systems that rely on SMI semantics, the
vector field is ignored, but must be programmed to all zeros for future compatibility.
(Support for this delivery mode is implementation specific. Platforms supporting interrupt
remapping are expected to generate SMI through dedicated pin or platform-specific special
messages)

e 100b (NMI) - Deliver the signal to all the agents listed in the destination field. The vector
information is ignored. NMI is an edge triggered interrupt regardless of the Trigger Mode
(TM) setting. (Platforms supporting interrupt remapping are recommended to generate NMI
through dedicated pin or platform-specific special messages)

e 101b (INIT) - Deliver this signal to all the agents indicated by the Destination ID field. The
vector information is ignored. INIT is an edge triggered interrupt regardless of the Trigger
Mode (TM) setting. (Support for this delivery mode is implementation specific. Platforms
supporting interrupt remapping are expected to generate INIT through dedicated pin or
platform-specific special messages)

e 111b (ExtINT) - Deliver the signal to the INTR signal of all agents indicated by the
Destination ID field (as an interrupt that originated from an 8259A compatible interrupt
controller). The vector is supplied by the INTA cycle issued by the activation of the ExtINT.
ExtINT is an edge triggered interrupt regardless of the Trigger Mode (TM) setting.

This field is evaluated by hardware only when the Present (P) field is Set.

TM: Trigger
Mode

This field indicates the signal type of the interrupt that uses the IRTE.
e 0: Indicates edge sensitive.
e 1: Indicates level sensitive.
This field is evaluated by hardware only when the Present (P) field is Set.

RH:
Redirection
Hint

This bit indicates whether the remapped interrupt request should be directed to one among N
processors specified in Destination ID field, under hardware control.

e 0: When RH is 0, the remapped interrupt is directed to the processor listed in the
Destination ID field.

e 1: When RH is 1, the remapped interrupt is directed to 1 of N processors specified in the
Destination ID field.

This field is evaluated by hardware only when the present (P) field is Set.

DM:
Destination
Mode

This field indicates whether the Destination ID field in an IRTE should be interpreted as logical or
physical APIC ID.

e 0: Physical
e 1: Logical
This field is evaluated by hardware only when the present (P) field is Set.

FPD: Fault
Processing
Disable

Enables or disables recording/reporting of faults caused by interrupt messages requests
processed through this entry.

e 0: Indicates fault recording/reporting is enabled for interrupt requests processed through
this entry.

e 1: Indicates fault recording/reporting is disabled for interrupt requests processed through
this entry.

This field is evaluated by hardware irrespective of the setting of the Present (P) field.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

9-37

n
Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

Bits Field Description

The P field is used by software to indicate to hardware if the corresponding IRTE is present and
initialized.
e 0: Indicates the IRTE is not currently allocated to any interrupt sources. Block interrupt
requests referencing this IRTE.
e 1: Process interrupt requests referencing this IRTE per the programming of other fields in
this IRTE.

0 P: Present

1. Refer Section 5.1.7 for hardware considerations for handling platform events.

9-38 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

|
I n t e I Intel® Virtualization Technology for Directed I/O—Translation Structure Formats
®

9.11 Interrupt Remapping Table Entry (IRTE) for Posted
Interrupts

The following figure and table describe the interrupt remapping table entry for interrupt requests that
are processed as posted.

NN =
-0
1%, o]
el
w o
N o
=
o
(ol N|
Ao

» SID
» SQ
P SVT
P> Reserved (0)
P Posted Descriptor
Address High

w o
0 w
N W
AN
w N
[e W
Ul =
QN
W =
N =
=

87 210

—® FpD

L———P» Reserved (0)
L———————P Available

P Reserved (0)
P Urgent

P 1

P Vector

P Reserved (0)
p Posted Descriptor
Address Low

Figure 9-42. Interrupt Remap Table Entry Format for Posted Interrupts

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-39

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0

intel.

Bits

Field

Description

127:96

PDAH: Posted
Descriptor
Address High

This field specifies address bits 63:32 of the 64-byte aligned Posted Interrupt Descriptor in
memory used by hardware to post interrupt requests processed through this IRTE. Refer to
Section 9.12 for Posted Interrupt Descriptor description.

This field is evaluated by hardware only when the Present (P) field is

Set. When evaluated, hardware treats upper address bits 63:HAW in this field as Reserved(0),
where HAW is the Host Address Width of the platform.

95:84

R: Reserved

Reserved. Software must program these bits to 0. This field is evaluated by hardware only when
the Present (P) field is Set.

83:82

SVT: Source
Validation
Type

This field specifies the type of validation that must be performed by the interrupt-remapping
hardware on the source-id of the interrupt requests referencing this IRTE.

e 00b: No requester-id verification is required.
e 01b: Verify requester-id in interrupt request using SID and SQ fields in the IRTE.

e 10b: Verify the most significant 8-bits of the requester-id (Bus#) in the interrupt request is
equal to or within the Startbus# and EndBus# specified through the upper and lower 8-bits
of the SID field respectively. This encoding may be used to verify interrupts originated
behind PCI Express-to-PCI/PCI-X bridges. Refer Section 5.1.1 for more details.

e 11b: Reserved.

This field is evaluated by hardware only when the Present (P) field is Set.

81:80

SQ: Source-id
Qualifier

The SVT field may be used to verify origination of interrupt requests generated by devices
supporting phantom functions. If the SVT field is 01b, the following encodings are defined for the
SQ field.
e 00b: Verify the interrupt request by comparing all 16-bits of SID field with the 16-bit
requester-id of the interrupt request.

e 01b: Verify the interrupt request by comparing most significant 13 bits of the SID and
requester-id of interrupt request, and comparing least significant two bits of the SID field
and requester-id of interrupt request. (i.e., ignore the third least significant field of the SID
field and requester-id).

e 10b: Verify the interrupt request by comparing most significant 13 bits of the SID and
requester-id of interrupt request, and comparing least significant bit of the SID field and
requester-id of interrupt request. (i.e., ignore the second and third least significant fields of
the SID field and requester-id).

e 11b: Verify the interrupt request by comparing most significant 13 bits of the SID and
requester-id of interrupt request. (i.e., ignore the least three significant fields of the SID field
and requester-id).

This field is evaluated by hardware only when the Present (P) field is Set and SVT field is 01b.

79:64

SID: Source
Identifier

This field specifies the originator (source) of the interrupt request that references this IRTE. The
format of the SID field is determined by the programming of the SVT field.
If the SVT field is:

e 01b: The SID field contains the 16-bit requester-id (Bus/Dev/Func #) of the device that is
allowed to originate interrupt requests referencing this IRTE. The SQ field is used by
hardware to determine which bits of the SID field must be considered for the interrupt
request verification.

e 10b: The most significant 8-bits of the SID field contains the Startbus#, and the least
significant 8-bits of the SID field contains the Endbus#. Interrupt requests that reference
this IRTE must have a requester-id whose bus# (most significant 8-bits of requester-id) has
a value equal to or within the Startbus# to Endbus# range.

This field is evaluated by hardware only when the Present (P) field is Set and SVT field is 01b or
10b.

63:38

PDAL: Posted
Descriptor
Address Low

This field specifies address bits 31:6 of the 64-byte aligned Posted Interrupt Descriptor in
memory used by hardware to post interrupt requests processed through this IRTE.

For optimal performance, software is recommended to reserve a full cacheline to host a Posted
Interrupt Descriptor. Refer to Section 9.12 for Posted Interrupt Descriptor description.

This field is evaluated by hardware only when the Present (P) field is
Set.

37:24

R: Reserved

Reserved. Software must program these bits to 0. This field is evaluated by hardware only when
the Present (P) field is Set.

9-40

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Bits

Field

Description

23:16

VV: Virtual
Vector

This 8-bit field contains the vector associated with the interrupt requests posted through this
IRTE. This field is evaluated by hardware only when the Present (P) field is Set.

15

IM: IRTE
Mode

Value of 1 in this field indicate interrupt requests processed through this IRTE are posted.
Hardware implementations not supporting Posted Interrupts (PI=0 in Capability Register) treat
this field as Reserved(0).

Value of 0 in this field indicate interrupt requests processed through this IRTE are remapped.
Refer to Section 9.10 for IRTE format for remapped interrupts.

14

URG: Urgent

This field indicates if the interrupt posted through this IRTE has latency sensitive processing
requirements.

e 0: Interrupt is not treated as urgent.

e 1: Interrupt is treated as urgent.
This field is evaluated by hardware only when the Present (P) field and IRTE Mode (IM) fields are
both Set.
Hardware implementations not supporting Posted Interrupts (PI=0 in Capability Register) treat
this field as Reserved(0).

13:12

R: Reserved

Reserved. Software must program these bits to 0. This field is evaluated by hardware only when
the Present (P) field is Set.

AVAIL:
Available

This field is available to software. Hardware always ignores the programming of this field.

7:2

R: Reserved

Reserved. Software must program these bits to 0. This field is evaluated by hardware only when
the Present (P) field is Set.

FPD: Fault
Processing
Disable

Enables or disables recording/reporting of faults caused by interrupt messages requests
processed through this entry.

e 0: Indicates fault recording/reporting is enabled for interrupt requests processed through
this entry.

e 1: Indicates fault recording/reporting is disabled for interrupt requests processed through
this entry.

This field is evaluated by hardware irrespective of the setting of the Present (P) field.

P: Present

The P field is used by software to indicate to hardware if the corresponding IRTE is present and
initialized.
e 0: Indicates the IRTE is not currently allocated to any interrupt sources. Block interrupt
requests referencing this IRTE.

e 1: Process interrupt requests referencing this IRTE per the programming of other fields in
this IRTE.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-41

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

9.12 Posted Interrupt Descriptor (PID)

The following figure and table describe the 64-byte aligned Posted Interrupt Descriptor. Software
must allocate Posted Interrupt Descriptors is coherent (write-back) memory.

5 33 22 22 22 2 2
1 21 88 87 77 555
1 09 87 09 21 8 6
|
|_> ON
L—p» SN
L Reserved (0)
—— P NV
P Reserved (0)
P NDST
P Reserved (0)
2
5
5 0
P PR

Figure 9-43. Posted Interrupt Descriptor Format

9-42 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Bits Field Description
511:320 R: Reserved Reserved. Software must program these bits to 0.
This field specifies the Destination (Physical APIC-ID of the logical CPU) for the notification
event. The format of this field is as follows:
o Intel®64 xAPIC Mode (Physical):
319:288 Ngﬁfﬁ on e 319:304 - Reserved (0)
: ificati -
Destination e 303:296 - APIC DestinationID[7:0]
e 295:288 - Reserved (0)
o Intel®64 x2APIC Mode (Physical):
e 319:288 - APIC DestinationID[31:0]
287:280 R: Reserved Reserved. Software must program these bits to 0.
NV: This field specifies the physical vector used for the notification event.
279:272 Notification Notification events are issued as physical interrupts with trigger mode as Edge, and trigger
Vector mode level as Asserted.
271:258 R: Reserved Reserved. Software must program these bits to 0.
This field indicates if notification events must be suppressed when posting non-urgent interrupts
to this descriptor.
e 0: Do not suppress notification event.
e 1: Suppress notification event.
SN: Suppress | Non-urgent interrupts are interrupt requests processed through IRTE entries with IM field Set
257 Notification and URG field Clear. Refer to Section 9.11 for description of URG field in IRTE format for posted
interrupts.
If the value in this field is 1b at the time of hardware posting a non-urgent interrupt to PIR field,
hardware functions as if the Outstanding Notification (ON) field value is 1b (i.e., hardware does
not generate notification event nor modify the ON field). Refer to Section 5.2.3 on hardware
operation for posting non-urgent interrupts.
This field indicates if a notification event is outstanding (pending processing by CPU or software)
for this posted interrupt descriptor.
ON: e 0: No notification event outstanding for this descriptor.
256 Oufstanding e 1: A notification event is outstanding for this descriptor.
Notification
If this field is Clear at the time of hardware posting an interrupt to PIR field, hardware Sets it
and generates a notification event. If this field is already Set at the time of hardware posting an
interrupt to PIR field, notification event is not generated.
This 256-bit field (one bit for each vector) provide storage for posted interrupts destined for a
PIR: Posted specific virtual processor.
255:0 Interrupt An interrupt request remapped through an IRTE for posted interrupt (IRTE with IM field Set) is
Requests considered posted by hardware when the bit corresponding to vector value in the IRTE is Set in
this field. Refer to Section 5.2.3 on hardware operation for interrupt-posting.

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 9-43

Translation Structure Formats—Intel® Virtualization Technology for Directed I/0 I n te I
®

9-44 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10 Register Descriptions

This chapter describes the structure and use of the remapping registers.

10.1 Register Location

The register set for each remapping hardware unit in the platform is placed at a 4KB-aligned memory-
mapped location. The exact location of the register region is implementation-dependent, and is
communicated to system software by BIOS through the ACPI DMA-remapping hardware reporting
structures (described in Chapter 8). For security, hardware implementations that support relocating
these registers in the system address map must provide ability to lock its location by hardware
specific secure initialization software.

10.2 Software Access to Registers

Software interacts with the remapping hardware by reading and writing its memory-mapped
registers. The following requirements are defined for software access to these registers.

e Software is expected to access 32-bit registers as aligned doublewords. For example, to modify a
field (e.g., bit or byte) in a 32-bit register, the entire doubleword is read, the appropriate field(s)
are modified, and the entire doubleword is written back.

e Software must access 64-bit and 128-bit registers as either aligned quadwords or aligned
doublewords. Hardware may disassemble a quadword register access as two double-word
accesses. In such cases, hardware is required to complete the quad-word read or write request in
order (lower doubleword first, upper double-word second).

¢ When updating registers through multiple accesses (whether in software or due to hardware
disassembly), certain registers may have specific requirements on how the accesses must be
ordered for proper behavior. These are documented as part of the respective register descriptions.

e For compatibility with future extensions or enhancements, software must assign the last read
value to all “Reserved and Preserved” (RsvdP) fields when written. In other words, any updates to
a register must be read so that the appropriate merge between the RsvdP and updated fields will
occur. Also, software must assign a value of zero for “"Reserved and Zero” (RsvdZ) fields when
written.

¢ Locked operations to remapping hardware registers are not supported. Software must not issue
locked operations to access remapping hardware registers.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-1

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.3 Register Attributes

The following table defines the attributes used in the remapping Registers. The registers are
discussed in Section 10.4.

Attribute Description

RW Read-Write field that may be either set or cleared by software to the desired state.

“Read-only status, Write-1-to-clear status” field. A read of the field indicates status. A set bit indicating a

Rwi1C status may be cleared by writing a 1. Writing a 0 to an RW1C field has no effect.

“Sticky Read-only status, Write-1-to-clear status” field. A read of the field indicates status. A set bit
RW1CS indicating a status may be cleared by writing a 1. Writing a 0 to an RW1CS field has no effect. This bits are
only re-initialized to their default value by a “Power Good Reset”.

RO Read-only field that cannot be directly altered by software.

ROS “Sticky Read-only” field that cannot be directly altered by software. These bits are only re-initialized to their
default value by a “Power Good Reset”.

WO Write-only field. The value returned by hardware on read is undefined.

RsvdP “Reserved and Preserved” field that is reserved for future RW implementations. Registers are read-only and
must return 0 when read. Software must preserve the value read for writes.

RsvdZ “Reserved and Zero” field that is reserved for future RW1C implementations. Registers are read-only and

must return 0 when read. Software must use 0 for writes.

10-2 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

10.4

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Register Descriptions

The following table summarizes the remapping hardware memory-mapped registers.

Offset Register Name Size Description

000h Version Register 32 Architecture version supported by the implementation.

004h Reserved 32 Reserved

008h Capability Register 64 Hardware reporting of capabilities.

010h Extended Capability Register 64 Hardware reporting of extended capabilities.

018h Global Command Register 32 Register controlling general functions.

01Ch Global Status Register 32 Register reporting general status.

020h Root Table Address Register 64 Register to set up location of root table.

028h Context Command Register 64 Register to manage context-entry cache.

030h Reserved 32 Reserved

034h Fault Status Register 32 Register to report Fault/Error status

038h Fault Event Control Register 32 Interrupt control register for fault events.

03Ch Fault Event Data Register 32 Interrupt message data register for fault events.

040h Fault Event Address Register 32 Interrupt message address register for fault event messages.

044h Fault Event Upper Address 32 Interrupt message upper address register for fault event
Register messages.

048h Reserved 64 Reserved

050h Reserved 64 Reserved

058h Adv.anced Fault Log 64 Register to configure and manage advanced fault logging.
Register

060h Reserved 32 Reserved

064h Protected Memory Enable Register 32 Register to enable DMA-protected memory region(s).

068h Prot_ected Low Memory Base 32 Reg_ister pointing to base of DMA-protected low memory
Register region.

06Ch Prot_ected Low Memory Limit 32 Register pointing to last address (limit) of the DMA-protected
Register low memory region.

070h Prot_ected High Memory Base 64 Reg_ister pointing to base of DMA-protected high memory
Register region.

078h Prot_ected High Memory Limit 64 R_egister pointing to last address (limit) of the DMA-protected
Register high memory region.

080h Invalidation Queue Head 64 ﬁ);f-sdisat?e?he invalidation queue entry that will be read next by

088h Invalidation Queue Tail 64 g;fzgtftwatrt: invalidation queue entry that will be written next

090h lIJ\r;\gailISiSeartion Queue Address 64 Base address of memory-resident invalidation queue.

098h Reserved 32 Reserved

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

10-3

Register Descriptions—Intel® Virtualization Technology for Directed I/O

intel.

Offset Register Name Size Description
09ch Invalidation Completion Status 32 Register to indicate the completion of an Invalidation Wait
Register Descriptor with IF=1.
Invalidation Completion Event . -
0AOh Control Register 32 Register to control Invalidation Queue Events
Invalidation Completion Event Data Invalidation Queue Event message data register for
0A4h . 32 .
Register Invalidation Queue events.
0A8h Invalidation Completion Event 32 Invalidation Queue Event message address register for
Address Register Invalidation Queue events.
0ACh Invalidation Completion Event 32 Invalidation Queue Event message upper address register for
Upper Address Register Invalidation Queue events.
0BOh él‘;lsigeition Queue Error Record 64 Register to record various errors related to Invalidation Queue.
0B8h g;tgei;rtléet Remapping Table Address 64 Register indicating Base Address of Interrupt Remapping Table.
. Offset to the page request queue entry that will be processed
0COh Page Request Queue Head Register 64 next by software.
. . Offset to the page request queue entry that will be written next
0C8h Page Request Queue Tail Register 64 by hardware.
0DO0Oh E‘Zg?sti?queﬁ Queue Address 64 Base address of memory-resident page request queue.
0D8h Reserved 32 Reserved
- Register to indicate one or more pending page requests in page
0DCh Page Request Status Register 32 request queue.
0EOh Page Request Event Control 32 Register to control page request events.
Register
OE4h Page Request Event Data Register 32 Page request event message data register.
0E8h Page Request Event Address 32 Page request event message address register
Register
0ECh Eaeg?s&?quest Event Upper Address 32 Page request event message upper address register.
100h MTRR Capability Register 64 Register for MTRR capability reporting.
108h MTRR Default Type Register 64 Register to configure MTRR default type.
120h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 64K range starting
64K_00000 at 00000h.
128h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 16K range starting
16K_80000 at 80000h.
130h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 16K range starting
16K_A0000 at A00OOh.
138h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting
4K_C0000 at C0000h.
140h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting
4K_C8000 at C8000h.
148h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting

4K_D0000

at DO0OOh.

10-4

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Offset Register Name Size Description

150h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting
4K_D8000 at D8000h.

158h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting
4K_E0000 at EO000h.

160h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting
4K_E8000 at ES000h.

168h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting
4K_F0000 at FOOOOh.

170h Fixed-range MTRR Register for 64 Fixed-range memory type range register for 4K range starting
4K_F8000 at F8000h.

180h Variable-range MTRR Base0 64 Variable-range memory type range0 base register.

188h Variable-range MTRR MaskO 64 Variable-range memory type range0 mask register.

190h Variable-range MTRR Basel 64 Variable-range memory type rangel base register.

198h Variable-range MTRR Mask1 64 Variable-range memory type rangel mask register.

1A0h Variable-range MTRR Base2 64 Variable-range memory type range2 base register.

1A8h Variable-range MTRR Mask?2 64 Variable-range memory type range2 mask register.

1BOh Variable-range MTRR Base3 64 Variable-range memory type range3 base register.

1B8h Variable-range MTRR Mask3 64 Variable-range memory type range3 mask register.

1COh Variable-range MTRR Base4 64 Variable-range memory type range4 base register.

1C8h Variable-range MTRR Mask4 64 Variable-range memory type range4 mask register.

1D0Oh Variable-range MTRR Base5 64 Variable-range memory type range5 base register.

1D8h Variable-range MTRR Mask5 64 Variable-range memory type range5 mask register.

1EOh Variable-range MTRR Base6 64 Variable-range memory type range6 base register.

1E8h Variable-range MTRR Mask6 64 Variable-range memory type range6 mask register.

1FOh Variable-range MTRR Base7 64 Variable-range memory type range? base register.

1F8h Variable-range MTRR Mask?7 64 Variable-range memory type range7 mask register.

200h Variable-range MTRR Base8 64 Variable-range memory type range8 base register.

208h Variable-range MTRR Mask8 64 Variable-range memory type range8 mask register.

210h Variable-range MTRR Base9 64 Variable-range memory type range9 base register.

218h Variable-range MTRR Mask9 64 Variable-range memory type range9 mask register.

EOOh Virtual Command Register 64 Eggjlsat;;i:\% shuabr:jnvivtaiglmmand and operand to virtual DMA

E08h Virtual Comm_and Extended 64 Register_to submit additional operands to virtual DMA
Operand Register Remapping hardware.

E10h VirtL_JaI Command Response 64 Register to receive responses from virtual DMA Remapping
Register hardware.

E18h-E2Fh Reserved 64 Ezzgg\fsi fgggfil_;tt:;e expansion of the Virtual Command

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-5

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Offset Register Name Size Description

Virtual Command Capability 64 Hardware reporting of commands supported by virtual-DMA

E30h Register Remapping hardware.

Reserved for future expansion of the Virtual Command

E38h-E4Fh Reserved 64 Capability Register.
; 1 IOTLB registers consists of two 64-bit registers. Section 10.4.8
XXXh IOTLB Registers 64 describes the format of the registers.
Registers to record the translation faults. The starting offset of
YYYh Fault Recording Registers [n]? 128 the fault recording registers is reported through the Capability

Register.

1. Hardware implementations may place IOTLB registers and fault recording registers in any unused or reserved addresses in the
4KB register space, or place them in adjoined 4KB regions. If one or more adjunct 4KB regions are used, unused addresses in
those pages must be treated as reserved by hardware. Location of these registers is implementation dependent, and software
must read the Capability Register to determine their offset location.

10-6 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Register Descriptions

10.4.1 Version Register

-

87 43 0

Rsvd Max Min

Figure 10-44. Version Register

Abbreviation VER_REG
General Register to report the implementation version. Backward compatibility for the architecture is maintained
Description with_new revision numbers, allowing software to load remapping hardware drivers written for prior
versions.
Register Offset 000h
Bits Access Default Field Description
31:8 RsvdZ Oh R: Reserved Reserved.
7:4 RO Xh MAX: Major Version number | Indicates Major Version of Implementation.
3:0 RO Yh MIN: Minor Version number Indicates Minor Version of Implementation.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-7

Register Descriptions—Intel® Virtualization Technology for Directed I/O

intel.

10.4.2 Capability Register
66665555555 44 4333 33 2222 11 11
321098 76543 87 0987 43 4321 65 32 8765432 0
E
E
S|R|F R |F R S R S
2[Tls|Lp| s [L|D " Pls| L pz M s A IRPRAl
TRVSI v |[1IRW M NFR S|v L FRO EL A \ G HHHBF D
l:,TdL d |G|IDD Vi Iid P PR w d A "'R"R'FL
S 2 ZIP| | Z |P Z| S z w
Figure 10-45. Capability Register
Abbreviation CAP_REG
gggce;a[‘)ltion Register to report general remapping hardware capabilities
Register Offset 008h
Bits Access Default Field Description
. e 0: Hardware does not invalidate all DMA remapping hardware

63 RO X gi'ﬂgit 'IEantr)]Iched translation caches as part of SRTP flow.

Pointer Support e 1: Hardware invalidates all DMA remapping hardware translation
caches as part of SRTP flow.
. e 0: Hardware does not invalidate all Interrupt remapping

62 RO X gzﬁﬁf‘i‘rfnthgggfg hardware translation caches as part of SIRTP flow.

Table Pointgr Suppo’:l)'t e 1: Hardware invalidates all Interrupt remapping hardware
translation caches as part of SIRTP flow.

61 RsvdZ Oh R: Reserved Reserved.

e 0: Hardware does not support 5-level paging for first-level
. translation.

60 RO X IFeLvSeLIPl;aZIirr?; IéeuvpepIOSr-t e 1: Hardware supports 5-level paging for first-level translation.
Hardware implementation reporting First-level Translation Support
(FLTS) as Clear also report this field as Clear.

e 0: Hardware does not support Posting of Interrupts.
PI: Posted Interrupts e 1: Hardware supports Posting of Interrupts.

59 RO X Support Hardware implementation reporting Interrupt Remapping support
(IR) field in Extended Capability Register as Clear also report this
field as Clear.

58:57 Rsvdz Oh R: Reserved Reserved.
e A value of 1 in this field indicates 1-GByte page size is supported for

56 RO X T‘lgp' F:’st Level first-level translation.

S_uG gtf age Hardware implementation reporting First-level Translation Support
PP (FLTS) as Clear also report this field as Clear.
10-8 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Bits Access

Default

Field

Description

55 RO

DRD: Read Draining

e 0: Hardware does not support draining of read requests on
IOTLB Invalidation.

e 1: Hardware supports draining of read requests on IOTLB
Invalidation.

Refer to Section 6.5.4 for description of DMA read draining.

Hardware implementation with Major Version 2 or higher (VER_REG),
always performs required drain without software explicitly requesting
a drain in IOTLB invalidation. This field is deprecated and hardware
will always report it as 1 to maintain backward compatibility with
software.

54 RO

DWD: Write Draining

e 0: Hardware does not support draining of write requests on
IOTLB Invalidation.
e 1: Hardware supports draining of write requests on IOTLB
Invalidation.
Refer Section 6.5.4 for description of DMA write draining.
Hardware implementation with Major Version 2 or higher (VER_REG),
always performs required drain without software explicitly requesting
a drain in IOTLB invalidation. This field is deprecated and hardware
will always report it as 1 to maintain backward compatibility with
software.

53:48 RO

MAMV: Maximum
Address Mask Value

The value in this field indicates the maximum supported value for the
Address Mask (AM) field in the Invalidation Address register
(IVA_REG), and IOTLB Invalidation Descriptor (iot/b_inv_dsc) used
for invalidations of second-level translation.

This field is valid when the PSI field in Capability register is reported
as Set.

Independent of value reported in this field, implementations
supporting SMTS must support address-selective PASID-based IOTLB
invalidations (p_iotlb_inv_dsc) with any defined address mask.

47:40 RO

NFR: Number of
Fault-recording
Registers

Number of fault recording registers is computed as N+1, where N is
the value reported in this field.

Implementations must support at least one fault recording register
(NFR = 0) for each remapping hardware unit in the platform.

The maximum number of fault recording registers per remapping
hardware unit is 256.

39 RO

PSI: Page Selective
Invalidation

e 0: Hardware supports only global and domain-selective
invalidates for IOTLB.
e 1: Hardware supports page-selective, domain-selective, and
global invalidates for IOTLB.
Hardware implementations reporting this field as Set are
recommended to support a Maximum Address Mask Value (MAMV)
value of at least 9 (or 18 if supporting 1GB pages with second level
translation).

This field is applicable only for IOTLB invalidations for second-level
translation. Irrespective of value reported in this field,
implementations supporting SMTS must support page/address
selective IOTLB invalidation for first-level translation.

38 Rsvdz

Oh

R: Reserved

Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

10-9

Register Descriptions—Intel® Virtualization Technology for Directed I/O

intel.

Bits

Access

Default

Field

Description

37:34

RO

SLLPS: Second Level
Large Page Support

This field indicates the large page sizes supported by hardware.

A value of 1 in any of these bits indicates the corresponding large-
page size is supported. The large-page sizes corresponding to
various bit positions within this field are:

e 0: 21-bit offset to page frame (2MB)

e 1: 30-bit offset to page frame (1GB)

e 2: Reserved

e 3: Reserved

Hardware implementations supporting a specific large-page size
must support all smaller large-page sizes. i.e., only valid values for
this field are 0000b, 0001b, 0011b.

33:24

RO

FRO: Fault-recording
Register offset

This field specifies the offset of the first fault recording register
relative to the register base address of this remapping hardware unit.

If the register base address is X, and the value reported in this field
is Y, the address for the first fault recording register is calculated as
X+(16*Y).

23

RO

DEP: Deprecated

Deprecated. This field must be reported as 0 to ensure backward
compatibility with older software.

22

RO

ZLR: Zero Length
Read

e 0: Indicates the remapping hardware unit blocks (and treats as
fault) zero length DMA read requests to write-only pages.
e 1: Indicates the remapping hardware unit supports zero length
DMA read requests to write-only pages.
DMA remapping hardware implementations are recommended to
report ZLR field as Set.

21:16

RO

MGAW: Maximum
Guest Address Width

This field indicates the maximum guest physical address width
supported by second-level translation in remapping hardware. The
Maximum Guest Address Width (MGAW) is computed as (N+1),
where N is the valued reported in this field. For example, a hardware
implementation supporting 48-bit MGAW reports a value of 47
(101111b) in this field.

If the value in this field is X, untranslated DMA requests with
addresses above 2(X*1)-1 that are subjected to second-level
translation are blocked bY hardware. Device-TLB translation requests
to addresses above 2(X*1)-1 that are subjected to second-level
translation from allowed devices return a null Translation-Completion
Data with R=W=0.

Guest addressability for a given DMA request is limited to the
minimum of the value reported through this field and the adjusted
guest address width of the corresponding page-table structure.
(Adjusted guest address widths supported by hardware are reported
through the SAGAW field).

Implementations must support MGAW at least equal to the physical
addressability (host address width) of the platform.

15:13

Rsvdz

Oh

R: Reserved

Reserved.

10-10

Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Bits Access

Default

Field

Description

12:8 RO

SAGAW: Supported
Adjusted Guest
Address Widths

This 5-bit field indicates the supported adjusted guest address widths
(which in turn represents the levels of page-table walks for the 4KB
base page size) supported by the hardware implementation.

A value of 1 in any of these bits indicates the corresponding adjusted
guest address width is supported. The adjusted guest address widths
corresponding to various bit positions within this field are:

e 0: Reserved
e 1: 39-bit AGAW (3-level page-table)
e 2: 48-bit AGAW (4-level page-table)
e 3: 57-bit AGAW (5-level page-table)
e 4: Reserved

Software must ensure that the adjusted guest address width used to
set up the page tables is one of the supported guest address widths
reported in this field.

Hardware implementations reporting second-level translation support
(SLTS) field as Clear also report this field as 0.

CM: Caching Mode

This field applies to all DMA and Interrupt remap tables except FL-
tables. Hardware will not cache faulting FL-only translations in IOTLB
or FL-paging-structure caches.

e 0: Not-present and erroneous entries are not cached in any of
the remapping caches. Invalidations are not required for
modifications to individual not present or invalid entries.
However, any modifications that result in decreasing the effective
permissions or partial permission increases require invalidations
for them to be effective.

e 1: Not-present and erroneous mappings may be cached in the
remapping caches. Any software updates to the remapping
structures (including updates to “not-present” or erroneous
entries) require explicit invalidation.

Hardware implementations of this architecture must support a value
of 0 in this field. Refer to Section 6.1 for more details on Caching
Mode.

PHMR: Protected
High-Memory Region

e 0: Indicates protected high-memory region is not supported.
e 1: Indicates protected high-memory region is supported.

PLMR: Protected
Low-Memory

Region

e 0: Indicates protected low-memory region is not supported.
e 1: Indicates protected low-memory region is supported.

RWBF: Required
Write-Buffer Flushing

e 0: Indicates no write-buffer flushing is needed to ensure changes
to memory-resident structures are visible to hardware.

e 1: Indicates software must explicitly flush the write buffers to
ensure updates made to memory-resident remapping structures
are visible to hardware. Refer to Section 6.8 for more details on
write buffer flushing requirements.

AFL: Advanced Fault
Logging

e 0: Indicates advanced fault logging is not supported. Only
primary fault logging is supported.

e 1: Indicates advanced fault logging is supported.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

10-11

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Bits Access Default Field Description

e 000b: Hardware supports 4-bit domain-ids with support for up to
16 domains.

e 001b: Hardware supports 6-bit domain-ids with support for up to
64 domains.

e 010b: Hardware supports 8-bit domain-ids with support for up to
256 domains.

. ND: Number of e 011b: Hardwa_re supports 10-bit domain-ids with support for up

2:0 RO X domains supported? to 1024 domains.

e 100b: Hardware supports 12-bit domain-ids with support for up

to 4K domains.

e 101b: Hardware supports 14-bit domain-ids with support for up
to 16K domains.

e 110b: Hardware supports 16-bit domain-ids with support for up
to 64K domains.

e 111b: Reserved.

1. Each remapping unit in the platform should support as many humber of domains as the maximum number of independently DMA-
remappable devices expected to be attached behind it.

10-12 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.3 Extended Capability Register

6 5555 544444444443 3333332222222 21 11
3 4321 098765432109 5432109876543 09 87 876543210
R S
R S P R Rlyl IR R
PRl s REFIPICvigrlal P [ENsIsElpp|sRmis) M |s slpPEl i bl
RsvdZ v |P A|C|D|1|S S VIRIRIRIE|v|c|T|v v IRO Ell C
1M WT|T T F|F S M Cc|T R|T|I
d|S D|S|c|S|T|I S d|S[S|S|P|d|Z|S|d d PM
Vis| 7 IPI€[s|s|g|”|s D SISz z[TPzl Vv Z
S S
Figure 10-46. Extended Capability Register
Abbreviation ECAP_REG
gg;‘gl!}?:ltion Register to report remapping hardware extended capabilities
Register Offset 010h
Bits Access Default Field Description
63:54 Rsvdz Oh R: Reserved Reserved.
e 0: Hardware does not support the RID_PRIV field in the
scalable-mode context-entry. It uses the value of 0 for
RID_PRIV.
R X RPRIVS: RID_PRIV e 1: Hardware supports the RID_PRIV field in the scalable-
>3 © Support mode context-entry.
Hardware implementations reporting Supervisor Request Support
(SRS) as Clear also report this field as Clear.
52 RO X ADMS: Abort DMA Mode e 0: Hardware does not support Abort DMA Mode.
Support e 1: Hardware supports Abort DMA Mode.
51:50 Rsvdz Oh R: Reserved Reserved.
e 0: Hardware does not support RID_PASID field in scalable-
mode context-entry. It uses the value of 0 for RID_PASID.
X ~ e 1: Hardware supports the RID_PASID field in scalable-mode
49 RO X RPS: RID-PASID Support context-entry.
Hardware implementations reporting Scalable Mode Translation
Support (SMTS) as Clear also report this field as Clear.
e 0: Hardware access to paging structures accessed through
PASID-table entry are not snooped.
e 1: Hardware access to paging structures accessed through
. PASID-table entry are snooped if PWSNP field in PASID-table
4 R X EMPWCSIIkScaAabIe-Mode entry is Set. Paging-structures accessed through PASID-table
8 0 age-walk Coherency entry are not snooped if PWSNP field in PASID-table entry is
Support Clear.
Hardware implementations reporting Scalable Mode Translation
Support (SMTS) as Clear also report this field as Clear.
see Section 3.9 for additional details.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-13

Register Descriptions—Intel® Virtualization Technology for Directed I/O

intel.

Bits

Access

Default

Field

Description

47

RO

FLTS: First-level
Translation Support

e 0: Hardware does not support PASID Granular Translation
Type of first-level (PGTT=001b) in scalable-mode PASID-
Table entry.

e 1: Hardware supports PASID Granular Translation Type of
first-level (PGTT=001b) in scalable-mode PASID-Table entry.

Hardware implementations reporting Scalable Mode Translation
Support (SMTS) as Clear also report this field as Clear.

46

RO

SLTS: Second-level
Translation Support

e 0: Hardware does not support PASID Granular Translation
Type of second-level (PGTT=010b) in scalable-mode PASID-
Table entry.

e 1: Hardware supports PASID Granular Translation Type of
second-level (PGTT=010b) in scalable-mode PASID-Table
entry.

45

RO

SLADS: Second-Level
Accessed/Dirty Support

e 0: Hardware does not support Accessed/Dirty bits in Second-
Level translation.
e 1: Hardware supports Accessed/Dirty bits in Second-Level
translation.
Hardware implementations reporting Scalable-Mode Page-walk
Coherency Support (SMPWCS) as Clear also report this field as
Clear.

44

RO

VCS: Virtual Command
Support

e 0: Hardware does not support command submission to
virtual-DMA Remapping hardware.
e 1: Hardware does support command submission to virtual-
DMA Remapping hardware.
Hardware implementations of this architecture report a value of 0
in this field. Software implementations (emulation) of this
architecture may report VCS=1.
Software managing remapping hardware should be written to
handle both values of VCS.
Refer to Section 10.4.44 for more details on Virtual Commands.

43

RO

SMTS: Scalable Mode
Translation Support

e 0: Hardware does not support Scalable Mode DMA
Remapping.

e 1: Hardware supports Scalable Mode DMA Remapping
through scalable-mode context-table and PASID-table
structures.

Hardware implementation reporting Queued Invalidation (QI)
field as Clear also report this field as Clear.

Hardware implementation reporting First-Level Translation
Support (FLTS), Second-level Translation Support (SLTS) and
Pass-through Support (PT) as Clear also report this field as Clear.

42

RO

PDS: Page-request Drain
Support

e 0: Hardware does not support Page-request Drain (PD) flag
in inv_wait_dsc.
e 1: Hardware supports Page-request Drain (PD) flag in
inv_wait_dsc.
Hardware implementations reporting Device-TLB support (DT) as
Clear also report this field as Clear.

41

RO

DIT: Device-TLB
Invalidation Throttle

e 0: Hardware does not support Device-TLB Invalidation
Throttling.
e 1: Hardware supports Device-TLB Invalidation Throttling.

Hardware implementations reporting Device-TLB support (DT) as
Clear also report this field as Clear.

40

RO

PASID: Process Address
Space ID Support

e 0: Hardware does not support requests tagged with Process
Address Space IDs.
e 1: Hardware supports requests tagged with Process Address
Space IDs.
Hardware implementations reporting Scalable Mode Translation
Support (SMTS) field as Clear also report this field as Clear.

10-14

Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Bits

Access

Default

Field

Description

39:35

RO

PSS: PASID Size
Supported

This field reports the PASID size supported by the remapping
hardware for requests-with-PASID. A value of N in this field
indicates hardware supports PASID field of N+1 bits (For
example, value of 7 in this field, indicates 8-bit PASIDs are
supported).

Requests-with-PASID with PASID value beyond the limit specified
by this field are treated as error by the remapping hardware.
This field is unused and reported as 0 if Scalable Mode Translation
Support (SMTS) field is Clear.

34

RO

EAFS: Extended Accessed
Flag Support

e 0: Hardware does not support the extended-accessed (EA)
bit in first-level paging-structure entries.
e 1: Hardware supports the extended-accessed (EA) bit in
first-level paging-structure entries.
Hardware implementations reporting Scalable-Mode Page-walk
Coherency Support (SWPWCS) as Clear also report this field as
Clear.

33

RO

NWFS: No Write Flag
Support

e 0: Hardware ignores the ‘No Write’ (NW) flag in Device-TLB
translation-requests, and behaves as if NW is always 0.
e 1: Hardware supports the ‘No Write’ (NW) flag in Device-TLB
translation-requests.
Hardware implementations reporting Device-TLB support (DT)
field as Clear also report this field as Clear.

32

Rsvdz

Oh

R: Reserved

Reserved.

31

RO

SRS: Supervisor Request
Support

e 0: Hardware does not support requests (with or without
PASID) seeking supervisor privilege.
e 1: Hardware supports requests (with or without PASID)
seeking supervisor privilege.
Hardware implementations reporting Scalable Mode Translation
Support (SMTS) field as Clear also report this field as Clear.

30

RO

ERS: Execute Request
Support

e 0: Hardware does not support requests-with-PASID seeking
execute permission.
e 1: Hardware supports requests-with-PASID seeking execute
permission.
Hardware implementations reporting Process Address Space ID
support (PASID) field as Clear must report this field as Clear.

29

RO

PRS: Page Request
Support

e 0: Hardware does not support page requests.
e 1: Hardware supports page requests.

Hardware implementation reporting Device-TLB support (DT) field
as Clear or Scalable Mode Translation Support (SMTS) field as
Clear also report this field as Clear.

28

Rsvdz

Oh

DEP: Deprecated

Deprecated. This field must be reported as 0 to ensure backward
compatibility with older software.

27

Rsvdz

Oh

R: Reserved

Reserved.

26

RO

NEST: Nested Translation
Support

e 0: Hardware does not support nested translations.

e 1: Hardware supports nested translations.
Hardware implementations reporting Scalable Mode Translation
Support (SMTS) field as Clear or First-level Translation Support
(FLTS) field as Clear or Second-level Translation Support (SLTS)
field as Clear also report this field as Clear.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

10-15

Register Descriptions—Intel® Virtualization Technology for Directed I/O

intel.

Bits

Access

Default

Field

Description

25

RO

MTS: Memory Type
Support

e 0: Hardware does not support Memory Type in first-level
translation and Extended Memory type in second-level
translation.

e 1: Hardware supports Memory Type in first-level translation
and Extended Memory type in second-level translation.
Hardware implementations reporting Scalable Mode Translation

Support (SMTS) field as Clear also report this field as Clear.
Remapping hardware units with, one or more devices that
operate in processor coherency domain, under its scope must
report this field as Set.

24

Rsvdz

Oh

DEP: Deprecated

In prior versions of this specification this bit was used to
enumerate “Extended mode address translation” which is now
deprecated. This field must be reported as 0 to ensure backward
compatibility with any software that enables extended mode
address translation.

23:20

RO

MHMV: Maximum Handle
Mask Value

The value in this field indicates the maximum supported value for
the Interrupt Mask (IM) field in the Interrupt Entry Cache
Invalidation Descriptor (iec_inv_dsc).

This field is unused and is reported as 0 if Interrupt Remapping
support (IR) field is Clear.

19:18

Rsvdz

Oh

R: Reserved

Reserved.

17:8

RO

IRO: IOTLB Register
Offset

This field specifies the offset to the IOTLB registers relative to the
register base address of this remapping hardware unit.

If the register base address is X, and the value reported in this
field is Y, the address for the IOTLB registers is calculated as
X+(16%*Y).

RO

SC: Snoop Control

e 0: Hardware does not support 1-setting of the SNP field in
the page-table entries.

e 1: Hardware supports the 1-setting of the SNP field in the
page-table entries.

Implementations are recommended to support Snoop Control to
support software usages that require Snoop Control for
assignment of devices behind a remapping hardware unit.

RO

PT: Pass Through

e 0: Hardware does not support pass-through translation type
in context-entries and scalable-mode-pasid-table-entries.

e 1: Hardware supports pass-through translation type in
context and scalable-mode-pasid-table-entries.

RO

Oh

DEP: Deprecated

Deprecated. This field must be reported as 0 to ensure backward
compatibility with older software.

RO

EIM: Extended Interrupt
Mode

e 0: On Intel® 64 platforms, hardware supports only 8-bit
APIC-IDs (xAPIC Mode).
e 1: 0On Intel® 64 platforms, hardware supports 32-bit APIC-
IDs (x2APIC mode).
Hardware implementation reporting Interrupt Remapping support
(IR) field as Clear also report this field as Clear.

RO

IR: Interrupt Remapping
support

e 0: Hardware does not support interrupt remapping.
e 1: Hardware supports interrupt remapping.

Hardware implementation reporting Queued Invalidation support
(QI) field as Clear also report this field as Clear.

RO

DT: Device-TLB support

e 0: Hardware does not support Device-TLBs.
e 1: Hardware supports Device-TLBs.

Hardware implementation reporting Queued Invalidation support
(QI) field as Clear also report this field as Clear.

10-16

Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access Default Field Description
1 RO X QI: Queued Invalidation e 0: Hardware does not support queued invalidations.
support e 1: Hardware supports queued invalidations.

This field indicates if hardware access to the root, scalable-mode

root, context, scalable-mode-context, scalable-mode PASID-

directory, scalable-mode PASID-table, and interrupt-remap

tables, and legacy-mode second-level paging structures are

coherent (snooped) or not.

e 0:Indicates hardware accesses to remapping structures are

non-coherent.

0 RO X C: Page-walk Coherency e 1:Indicates hardware accesses to remapping structures are
coherent.

Hardware access to advanced fault log, invalidation queue,

invalidation semaphore, page-request queue are always snooped.

See Scalable-Mode Page-walk Coherency (SMPWC) field for
hardware behavior on paging structures accessed through
scalable-mode PASID-table entry.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-17

Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I

10.4.4

Global Command Register

3 3 2 2 2 2 2 2 2 2
0 9 8 7 6 5 4 3 2 0
TE | SRTP | SFL | EAFL | WBF | QIE | IRE | SIRTP | CFI RSVD
Figure 10-47. Global Command Register
Abbreviation GCMD_REG
General Register to control remapping hardware. If multiple control fields in this register need to be modified,
Description software must serialize the modifications through multiple writes to this register.
For example, to update a bit field in this register at offset X with value of Y, software must follow below
steps:
1. Tmp = Read GSTS_REG
2 Status = (Tmp & 96FFFFFFh) /I Reset the one-shot bits
3. if (Y) {Command = (Status | (1 << X))} else {Command = (Status & ~(1 << X))}
4. Write Command to GCMD_REG
5. Wait until GSTS_REG[X] indicates command is serviced.
Register Offset 018h
Bits Access Default Field Description
Software writes to this field to request hardware to enable/disable DMA
remapping:
e 0: Disable DMA remapping
e 1: Enable DMA remapping
Hardware reports the status of the translation enable operation through
the TES field in the Global Status register.
There may be active DMA requests in the platform when software
updates this field. Hardware must enable or disable remapping logic only
TE: Translation at deterministic transaction boundaries, so that any in-flight transaction
31 e} 0 : is either subject to remapping or not at all.
Enable
Hardware implementations supporting DMA draining must drain any in-
flight DMA read/write requests queued within the Root-Complex before
completing the translation enable command and reflecting the status of
the command through the TES field in the Global Status register.
For implementations reporting Scalable Mode Translation Support (SMTS)
field as Set, hardware performs global invalidation on all DMA remapping
translation caches as part of Translation Disable operation.
The value returned on a read of this field is undefined.
10-18 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access Default Field Description

Software sets this field to set/update the root-table pointer (and
translation table mode) used by hardware. The root-table pointer (and
translation table mode) is specified through the Root Table Address
(RTADDR_REG) register.

Hardware reports the status of the ‘Set Root Table Pointer’ operation
through the RTPS field in the Global Status register.

SRTP: Set Root
Table Pointer The ‘Set Root Table Pointer’ operation must be performed before enabling
or re-enabling (after disabling) DMA remapping through the TE field.

30 \\[e} 0
For details on invalidation that software may have to perform after the
'Set Root Table Pointer' operation refer to Section 6.6.

Clearing this bit has no effect. The value returned on a read of this field is
undefined.

This field is valid only for implementations supporting advanced fault
logging.

Software sets this field to request hardware to set/update the fault-log
pointer used by hardware. The fault-log pointer is specified through
Advanced Fault Log register.

SFL: Set Fault Hardware reports the status of the ‘Set Fault Log’ operation through the

29 wo 0 Log FLS field in the Global Status register.

The fault log pointer must be set before enabling advanced fault logging
(through EAFL field). Once advanced fault logging is enabled, the fault
log pointer may be updated through this field while DMA remapping is
active.

Clearing this bit has no effect. The value returned on read of this field is
undefined.

This field is valid only for implementations supporting advanced fault
logging.

Software writes to this field to request hardware to enable or disable
advanced fault logging:

e 0: Disable advanced fault logging. In this case, translation faults are
EAFL: Enable reported through the Fault Recording registers.
28 wo 0 Advanced Fault e 1: Enable use of memory-resident fault log. When enabled,
Logging translation faults are recorded in the memory-resident log. The fault
log pointer must be set in hardware (through the SFL field) before
enabling advanced fault logging. Hardware reports the status of the
advanced fault logging enable operation through the AFLS field in the
Global Status register.

The value returned on read of this field is undefined.

This bit is valid only for implementations requiring write buffer flushing.
Software sets this field to request that hardware flush the Root-Complex
internal write buffers. This is done to ensure any updates to the memory-
resident remapping structures are not held in any internal write posting
WBF: Write buffers.

Buffer Flush! Refer to Section 6.8 for details on write-buffer flushing requirements.
Hardware reports the status of the write buffer flushing operation
through the WBFS field in the Global Status register.

Clearing this bit has no effect. The value returned on a read of this field is
undefined.

27 WO 0

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-19

Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Bits Access Default Field Description

This field is valid only for implementations supporting queued
invalidations.

Software writes to this field to enable or disable queued invalidations.
QIE: Q d e 0: Disable queued invalidations.

: Queue . . N
26 WO 0 Invalidation e 1: Enable use of queued invalidations.

Enable Hardware reports the status of queued invalidation enable operation
through QIES field in the Global Status register.

Refer to Section 6.5.2 for software requirements for enabling/disabling
queued invalidations.

The value returned on a read of this field is undefined.

This field is valid only for implementations supporting interrupt
remapping.

e 0: Disable interrupt-remapping hardware

e 1: Enable interrupt-remapping hardware

Hardware reports the status of the interrupt remapping enable operation
through the IRES field in the Global Status register.

There may be active interrupt requests in the platform when software
updates this field. Hardware must enable or disable interrupt-remapping
logic only at deterministic transaction boundaries, so that any in-flight

interrupts are either subject to remapping or not at all.
IRE: Interrupt

25 WO Oh Remapping i . .
Enable For implementations reporting the Enhanced Set Interrupt Remap Table

Pointer Support (ESIRTPS) field as Set, hardware performs global
invalidation on all Interrupt remapping caches as part of Interrupt
Remapping Disable operation.

Hardware implementations must drain any in-flight interrupts requests

queued in the Root-Complex before completing the interrupt-remapping
enable command and reflecting the status of the command through the
IRES field in the Global Status register.

The value returned on a read of this field is undefined.

This field is valid only for implementations supporting interrupt-
remapping.

Software sets this field to set/update the interrupt remapping table
pointer used by hardware. The interrupt remapping table pointer is
specified through the Interrupt Remapping Table Address (IRTA_REG)
register.

Hardware reports the status of the ‘Set Interrupt Remap Table Pointer’

SIRTP: Set operation through the IRTPS field in the Global Status register.
24 e} 0 Interrupt Remap

Table Pointer . .
The 'Set Interrupt Remap Table Pointer’ operation must be performed

before enabling or re-enabling (after disabling) interrupt-remapping
hardware through the IRE field.

For details on invalidation that software may have to perform after the
'Set Interrupt Remap Table Pointer' operation, refer to Section 6.7.

Clearing this bit has no effect. The value returned on a read of this field is
undefined.

10-20 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access Default Field Description

This field is valid only for In'cel® 64 implementations supporting interrupt-
remapping.

Software writes to@his field to enable or disable Compatibility Format
interrupts on Intel™ 64 platforms. The value in this field is effective only
when interrupt-remapping is enabled and Extended Interrupt Mode
(x2APIC mode) is not enabled.

e 0: Block Compatibility format interrupts.

CFI: o e 1: Process Compatibility format interrupts as pass-through (bypass
23 WO 0 Compatibility interrupt remapping).
Format Interrupt

Hardware reports the status of updating this field through the CFIS field
in the Global Status register.

Refer to Section 5.1.2.1 for details on Compatibility Format interrupt
requests.

The value returned on a read of this field is undefined.

22:0 Rsvdz Oh R: Reserved Reserved.

1. Implementations reporting write-buffer flushing as required in Capability register must perform implicit write buffer flushing as
a pre-condition to all context-cache and IOTLB invalidation operations.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-21

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.5

intel.

Global Status Register

3 3 2 2 2 2 2 2 2 2
1 0 9 8 7 6 5 4 3 2 0
TES | RTPS | FLS | AFLS | WBFS | QIES | IRES | IRTPS | CFIS RSVD
Figure 10-48. Global Status Register
Abbreviation GSTS_REG

General
Description

Register to report general remapping hardware status.

Register Offset 01Ch
Bits Access Default Field Description
TES: T lati This field indicates the status of DMA-remapping hardware.
: Translation . L
31 RO 0 Enable Status e 0: DMA remapp!ng !s not enabled
e 1: DMA remapping is enabled
This field indicates the status of the root-table pointer in hardware.
30 RO 0 RTPS: Root Table | Thjs field is cleared by hardware when software sets the SRTP field in the
Pointer Status Global Command register. This field is set by hardware when hardware
completes the ‘Set Root Table Pointer’ operation using the value provided
in the Root Table Address register.
This field:
e Is cleared by hardware when software Sets the SFL field in the Global
29 RO 0 FLS: Fault Log Command register.
Status e Is Set by hardware when hardware completes the ‘Set Fault Log
Pointer’ operation using the value provided in the Advanced Fault Log
register.
This field is valid only for implementations supporting advanced fault
-8 o o AF'—|S: Advanced | |ogging. It indicates the advanced fault logging status:
R gat;ttlls_oggmg e 0: Advanced Fault Logging is not enabled
e 1: Advanced Fault Logging is enabled
This field is valid only for implementations requiring write buffer flushing.
WBES: Wri This field indicates the status of the write buffer flush command. It is
27 RO 0 Buffesr. FIuZIt'le e Set by hardware when software sets the WBF field in the Global
Status Command register.
e Cleared by hardware when hardware completes the write buffer
flushing operation.
QIES: Queued This field indicates queued invalidation enable status.
26 RO 0 Invalidation e 0: queued invalidation is not enabled
Enable Status e 1: queued invalidation is enabled
IRES: Interrupt This field indicates the status of Interrupt-remapping hardware.
25 RO 0 Remapping e 0: Interrupt-remapping hardware is not enabled
Enable Status e 1: Interrupt-remapping hardware is enabled
10-22 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access Default Field Description
This field indicates the status of the interrupt remapping table pointer in
hardware.
IRTPS: Interrupt
RO ;
24 0 Remapping Table | Thjs field is cleared by hardware when software sets the SIRTP field in the
Pointer Status Global Command register. This field is Set by hardware when hardware
completes the ‘Set Interrupt Remap Table Pointer’ operation using the
value provided in the Interrupt Remapping Table Address register.
This field indicates the status of Compatibility format interrupts on Intel®
64 implementations supporting interrupt-remapping. The value reported
CFIS: o in this field is applicable only when interrupt-remapping is enabled and
23 RO 0 Compatibility extended interrupt mode (x2APIC mode) is not enabled.
g(t’;?:]ast Interrupt e 0: Compatibility format interrupts are blocked.
e 1: Compatibility format interrupts are processed as pass-through
(bypassing interrupt remapping).
22:0 Rsvdz Oh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-23

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.6

wo

Root Table Address Register

N=
aa
o—
©
o

RTA

RsvdZ

24

Figure 10-49. Root Table Address Register

Abbreviation RTADDR_REG
General Register providing the base address of root-table and the translation table mode. Software programs the
Description desired values in this register but these values take effect only after software executes Set Root Table
Pointer command through the SRTP field in the Global Command Register (GCMD_REG).
Register Offset 020h
Bits Access Default Field Description
This field points to the base of the page-aligned, 4KB-sized root-table in
system memory. Hardware may ignore and not implement bits 63:HAW,
where HAW is the host address width.
63:12 | RW oh R oot Table
The value of this field takes effect only after software executes Set Root
Table Pointer command.
This field specifies the translation mode used for DMA remapping.
e 00: legacy mode - uses root tables and context tables.
e 01: scalable mode - uses scalable-mode root tables and scalable-
mode context tables.
e 10: reserved - in prior version of this specification, this encoding was
used to enable extended mode which is no longer supported.
. TTM: Translation e 11: abort-dma mode.
11:10 RW 0 Table Mode
For implementations reporting Enhanced SRTP Support (ESRTPS) field as
Clear in the Capability register, software must not modify this field while
DMA remapping is active (TES=1 in Global Status register).
The value of this field takes effect only after software executes Set Root
Table Pointer command.
9:0 Rsvdz Oh R: Reserved Reserved.
10-24 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.7 Context Command Register

6 6 66 55 33 33 11
3 2 10 98 43 21 65 0
ICC | CIRG | CAIG Rsvd FM SID DID
Figure 10-50. Context Command Register

Abbreviation CCMD_REG
General Register to manage context-cache.The act of writing the uppermost byte of the CCMD_REG with the ICC
Description field Set causes the hardware to perform the context-cache invalidation.
Register Offset 028h

Bits Access | Default Field Description

Software requests invalidation of context-cache by setting this field.
Software must also set the requested invalidation granularity by
programming the CIRG field. Software must read back and check the ICC
field is Clear to confirm the invalidation is complete. Software must not
update this register when this field is Set.

Hardware clears the ICC field to indicate the invalidation request is
complete.Hardware also indicates the granularity at which the invalidation
operation was performed through the CAIG field.

Software must submit a context-cache invalidation request through this
field only when there are no invalidation requests pending at this

ICC: Invalidate remapping hardware unit.

63 RW 0 Context-Cache

Since information from the context-cache may be used by hardware to tag
IOTLB entries, software must perform domain-selective (or global)
invalidation of IOTLB after the context-cache invalidation has completed.

Hardware implementations reporting a write-buffer flushing requirement
(RWBF=1 in the Capability register) must implicitly perform a write buffer
flush before invalidating the context-cache. Refer to Section 6.8 for write
buffer flushing requirements.

When Translation Table Mode field in Root Table Address register is not
setup as legacy mode (RTADDR_REG.TTM!=00b), hardware will ignore the
value provided by software in this register, treat it as an incorrect
invalidation request, and report a value of 00b in CAIG field.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-25

Register Descriptions—Intel® Virtualization Technology for Directed I/O

intel.

Bits

Access

Default

Field

Description

62:61

RW

Oh

CIRG: Context

Invalidation
Request

Granularity

Software provides the requested invalidation granularity through this field
when setting the ICC field:

e 00: Reserved.
e 01: Global Invalidation request.

e 10: Domain-selective invalidation request. The target domain-id must
be specified in the DID field.

e 11: Device-selective invalidation request. The target source-id(s) must
be specified through the SID and FM fields, and the domain-id [that
was programmed in the context-entry for these device(s)] must be
provided in the DID field.

Hardware implementations may process an invalidation request by
performing invalidation at a coarser granularity than requested. Hardware
indicates completion of the invalidation request by clearing the ICC field. At
this time, hardware also indicates the granularity at which the actual
invalidation was performed through the CAIG field.

60:59

RO

Xh

CAIG: Context
Actual

Invalidation
Granularity

Hardware reports the granularity at which an invalidation request was
processed through the CAIG field at the time of reporting invalidation
completion (by clearing the ICC field).

The following are the encodings for this field:

e 00: Error. This indicates hardware detected an incorrect invalidation
request and ignored the request, e.g., register based invalidation when
Translation Table Mode (TTM) in Root Table Address Register is not
programmed to legacy mode (RTADDR_REG.TTM!=00b).

On hardware implementations with Major Version 6 or higher
(VER_REG), all invalidation requests through this register are treated
as incorrect invalidation requests. Software should use the Queued
Invalidation interface to perform context-cache invalidations for such
hardware implementations. Refer to Section 6.5 for more details.

e 01: Global Invalidation performed. This could be in response to a
global, domain-selective, or device-selective invalidation request.

e 10: Domain-selective invalidation performed using the domain-id
specified by software in the DID field. This could be in response to a
domain-selective or device-selective invalidation request.

e 11: Device-selective invalidation performed using the source-id and
domain-id specified by software in the SID and FM fields. This can only
be in response to a device-selective invalidation request.

58:34

Rsvdz

Oh

R: Reserved

Reserved.

33:32

WO

Oh

FM: Function
Mask

Software may use the Function Mask to perform device-selective
invalidations on behalf of devices supporting PCI Express Phantom
Functions.

This field specifies which bits of the function number portion (least
significant three bits) of the SID field to mask when performing device-
selective invalidations.The following encodings are defined for this field:

e 00: No bits in the SID field masked
e 01: Mask bit 2 in the SID field

e 10: Mask bits 2:1 in the SID field

e 11: Mask bits 2:0 in the SID field

The context-entries corresponding to the source-ids specified through the
SID and FM fields must have the domain-id specified in the DID field.

The value returned on a read of this field is undefined.

31:16

WO

Oh

SID: Source-ID

Indicates the source-id of the device whose corresponding context-entry
needs to be selectively invalidated.This field along with the FM field must
be programmed by software for device-selective invalidation requests.

The value returned on a read of this field is undefined.

10-26

Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access | Default Field Description

Indicates the id of the domain whose context-entries need to be selectively
invalidated. This field must be programmed by software for both domain-
selective and device-selective invalidation requests.

15:0 RW Oh DID: Domain-ID o . o
The Capability register reports the domain-id width supported by hardware.

Software must ensure that the value written to this field is within this limit.
Hardware ignores (and may not implement) bits 15:N, where N is the
supported domain-id width reported in the Capability register.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-27

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.8 IOTLB Registers

IOTLB registers consists of two adjacently placed 64-bit registers:
* IOTLB Invalidate Register (IOTLB_REG)
®* Invalidate Address Register (IVA_REG)

Offset Register Name Size Description

Register to provide the target address for page-selective IOTLB
XXXh Invalidate Address Register 64 invalidation. The offset of this register is reported through the
IRO field in Extended Capability register.

XXXh + 008h IOTLB Invalidate Register 64 Register for IOTLB invalidation command

These registers are described in the following sub-sections.

10-28 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.8.1 IOTLB Invalidate Register

6 66 6 55 55 5 4 4 4 33
3 21 0 98 76 0 9 8 7 21 0
R R
IVT | 3] IRG | 3| IAIG | Rsvd | DR | DW DID Rsvd
d d
Figure 10-51. IOTLB Invalidate Register
Abbreviation IOTLB_REG
General Register to invalidate IOTLB. The act of writing the upper byte of the IOTLB_REG with the IVT field Set
Description causes the hardware to perform the IOTLB invalidation.
Register Offset XXXh + 008h (where XXXh is the location of the IVA_REG)

Bits Access Default Field Description

Software requests IOTLB invalidation by setting this field. Software must
also set the requested invalidation granularity by programming the IIRG
field.

Hardware clears the IVT field to indicate the invalidation request is
complete. Hardware also indicates the granularity at which the invalidation
operation was performed through the IAIG field. Software must not submit
another invalidation request through this register while the IVT field is Set,
nor update the associated Invalidate Address register.

IVT: Invalidate Software must not submit IOTLB invalidation requests when there is a

63 RW 0 10TLB context-cache invalidation request pending at this remapping hardware
unit.

Hardware implementations reporting a write-buffer flushing requirement
(RWBF=1 in Capability register) must implicitly perform a write buffer
flushing before invalidating the IOTLB. Refer to Section 6.8 for write buffer
flushing requirements.

When Translation Table Mode field in Root Table Address registers is not
setup as legacy mode (RTADDR_REG.TTM!=00b), hardware will ignore the
value provided by software in this register, treat it as an incorrect
invalidation request, and report a value of 00b in IAIG field.

62 RsvdZ 0 R: Reserved Reserved.

When requesting hardware to invalidate the IOTLB (by setting the IVT
field), software writes the requested invalidation granularity through this
field. The following are the encodings for the field.

e 00: Reserved.
e 01: Global invalidation request.
e 10: Domain-selective invalidation request. The target domain-id must

IIRG: IOTLB be specified in the DID field.

61:60 RW oh Invalidation * 11: Page-selective-within-domain invalidation request. The target
Request address, mask, and invalidation hint must be specified in the Invalidate
Granularity Address register, and the domain-id must be provided in the DID field.

Hardware implementations may process an invalidation request by
performing invalidation at a coarser granularity than requested. Hardware
indicates completion of the invalidation request by clearing the IVT field. At
that time, the granularity at which actual invalidation was performed is
reported through the IAIG field.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-29

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Bits Access Default Field Description

59 Rsvdz 0 R: Reserved Reserved.

Hardware reports the granularity at which an invalidation request was
processed through this field when reporting invalidation completion (by
clearing the IVT field).

The following are the encodings for this field.

e 00: Error. This indicates hardware detected an incorrect invalidation
request and ignored the request, e.g., register based invalidation when
Translation Table Mode (TTM) in Root Table Address Register is not
programmed to legacy mode (RTADDR_REG.TTM!=00b), detected an
unsupported address mask value in Invalidate Address register for
page-selective invalidation requests.

IAIG: IOTLB
Actual
Invalidation
Granularity

On hardware implementations with Major Version 6 or higher
(VER_REG), all invalidation requests through this register are treated
as incorrect invalidation requests. Software should use the Queued
Invalidation interface to perform IOTLB invalidations for such hardware
implementations. Refer to Section 6.5 for more details.

58:57 RO Xh

e 01: Global Invalidation performed. This could be in response to a
global, domain-selective, or page-selective invalidation request.

e 10: Domain-selective invalidation performed using the domain-id
specified by software in the DID field. This could be in response to a
domain-selective or a page-selective invalidation request.

e 11: Page-selective-within-domain invalidation performed using the
address, mask and hint specified by software in the Invalidate Address
register and domain-id specified in DID field. This can be in response to
a page-selective-within-domain invalidation request.

56:50 Rsvdz Oh R: Reserved Reserved.

This field is ignored by hardware if the DRD field is reported as Clear in the
Capability register. When the DRD field is reported as Set in the Capability
register, the following encodings are supported for this field:

49 RW Oh DR: Drain Reads e 0: Hardware may complete the IOTLB invalidation without draining
DMA read requests.

e 1: Hardware must drain DMA read requests.
Refer Section 6.5.4 for description of DMA draining.

This field is ignored by hardware if the DWD field is reported as Clear in the
Capability register. When the DWD field is reported as Set in the Capability
register, the following encodings are supported for this field:

48 RW Oh DW: Drain Writes e 0: Hardware may complete the IOTLB invalidation without draining
DMA write requests.

e 1: Hardware must drain relevant translated DMA write requests.
Refer Section 6.5.4 for description of DMA draining.

Indicates the ID of the domain whose IOTLB entries need to be selectively
invalidated. This field must be programmed by software for domain-
selective and page-selective invalidation requests.

47:32 RW Oh DID: Domain-ID The Capability register reports the domain-id width supported by hardware.
Software must ensure that the value written to this field is within this limit.
Hardware may ignore and not implement bits 47:(32+N), where N is the
supported domain-id width reported in the Capability register.

31:0 RsvdP Xh R: Reserved Reserved.

10-30 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.8.2 Invalidate Address Register

w o
N =
aa
~
o
(4]
o

ADDR Rsvd IH AM

Figure 10-52. Invalidate Address Register

Abbreviation IVA_REG
General Register to provide the DMA address whose corresponding IOTLB entry needs to be invalidated through
Description the corresponding IOTLB Invalidate register. This register is a write-only register. A value returned on a

read of this register is undefined.

Register Offset XXXh (XXXh is QWORD aligned and reported through the IRO field in the Extended Capability register)

Bits Access Default Field Description

Software provides the second-level-input-address that needs to be page-
selectively invalidated. To make a page-selective-within-domain
invalidation request to hardware, software must first write the appropriate
fields in this register, and then issue the page-selective-within-domain
63:12 WO Oh ADDR: Address invalidate command through the IOTLB_REG. Hardware ignores bits 63:N,
where N is the maximum guest address width (MGAW) supported.

A value returned on a read of this field is undefined.

11:7 Rsvdz 0 R: Reserved Reserved.

The field provides hints to hardware about preserving or flushing the non-
leaf (context-entry) entries that may be cached in hardware:

e 0: Software may have modified both leaf and non-leaf second-level
paging-structure entries corresponding to mappings specified in the
ADDR and AM fields. On a page-selective-within-domain invalidation
request, hardware must invalidate the cached entries associated with
the mappings specified by DID, ADDR and AM fields, in both IOTLB

o and paging-structure caches. Refer to Section 6.5.1.2 for exact

6 WO 0 IH: Invalidation invalidation requirements when IH=0.

Hint e 1: Software has not modified any second-level non-leaf paging entries

associated with the mappings specified by the ADDR and AM fields. On

a page-selective-within-domain invalidation request, hardware may

preserve the cached second-level mappings in paging-structure-

caches. Refer to Section 6.5.1.2 for exact invalidation requirements
when IH=1.

A value returned on a read of this field is undefined.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-31

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Bits Access Default Field Description

The value in this field specifies the number of low order bits of the ADDR
field that must be masked for the invalidation operation. This field enables
software to request invalidation of contiguous mappings for size-aligned
regions. For example:

Mask AD.DR Pages
Value bits invalidated
masked
0 None 1
1 12 2
2 13:12 4
. AM: Address
>:0 wo 0 Mask 3 14:12 8
4 15:12 16

When invalidating mappings for large-pages, software must specify the
appropriate mask value. For example, when invalidating mapping for a
2MB page, software must specify an address mask value of at least 9.

Hardware implementations report the maximum supported address mask
value through the Capability register.

A value returned on a read of this field is undefined.

10-32 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.9 Fault Status Register

3 11
1 65 8 7 6 5 4 3 2 1 O
D{I|I|IT|A]A|P]|P
Rsvd FRI |E|T|C|Q|P|F|P|F
PIEIE|E|F|O|F|O
Figure 10-53. Fault Status Register
Abbreviation FSTS_REG
g:rs‘g:i?tion Register indicating the various error status.
Register Offset 034h
Bits Access Default Field Description

31:16 Rsvdz Oh R: Reserved Reserved.

This field is valid only when the PPF field is Set.

The FRI field indicates the index (from base) of the fault recording register
to which the first pending fault was recorded when the PPF field was Set
by hardware.

FRI: Fault Record

15:8 ROS 0 Index

The value read from this field is undefined when the PPF field is Clear.

This bit has been deprecated and is treated as RsvdZ. Previous versions of
7 Rsvdz 0 DEP: Deprecated this specification had PRO in this location which has been moved to Page
Request Status register.

Hardware detected a Device-TLB invalidation completion time-out. At this
time, a fault event may be generated based on the programming of the
ITE: Invalidation Fault Event Control register.

6 RwW1CS Oh Time-out Error

Hardware implementations not supporting Device-TLBs implement this bit
as RsvdZ.

Hardware received an unexpected or invalid Device-TLB invalidation
completion. This could be due to either an invalid ITag or invalid source-id
in an invalidation completion response. At this time, a fault event may be

ICE: Invalidation enerated based on the programming of the Fault Event Control register.
& SAEE oh Completion Error K prog g g

Hardware implementations not supporting Device-TLBs implement this bit
as RsvdZ.

Hardware detected an error associated with the invalidation queue. Refer
to the description of the IQEI field in Section 10.4.29 for all possible
conditions resulting in an Invalidation Queue Error. At this time, a fault
IQE: Invalidation | e€vent may be generated based on the programming of the Fault Event

4 RW1CS 0 Queue Error Control register.

Hardware implementations not supporting queued invalidations implement
this bit as RsvdZ.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-33

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Bits Access Default Field Description
When this field is Clear, hardware sets this field when the first fault record
(at index 0) is written to a fault log. At this time, a fault event is generated
APF: Advanced based on the programming of the Fault Event Control register.
3 RW1CS 0 Pending Fault
Software writing 1 to this field clears it. Hardware implementations not
supporting advanced fault logging implement this bit as RsvdZ.
Hardware sets this field to indicate advanced fault log overflow condition.
At this time, a fault event is generated based on the programming of the
Fault Event Control register.
2 | mwics | o | pG: Advence
Software writing 1 to this field clears it.
Hardware implementations not supporting advanced fault logging
implement this bit as RsvdZ.
This field indicates if there are one or more pending faults logged in the
fault recording registers. Hardware computes this field as the logical OR of
Fault (F) fields across all the fault recording registers of this remapping
. hardware unit.
1 ROS 0 Ezgdlzgn;:mt e 0: No pending faults in any of the fault recording registers
e 1: One or more fault recording registers has pending faults. The FRI
field is updated by hardware whenever the PPF field is Set by
hardware. Also, depending on the programming of Fault Event Control
register, a fault event is generated when hardware sets this field.
PFO: Primar Hardware sets this field to indicate overflow of the fault recording
0 RW1CS 0 Fauli Overfloyw registers. Software writing 1 clears this field. When this field is Set,
hardware does not record any new faults until software clears this field.
10-34 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Register Descriptions

10.4.10 Fault Event Control Register
i3s3 ©
I\I/I FI, RsvdP

Figure 10-54. Fault Event Control Register

Abbreviation

FECTL_REG

General
Description

Register specifying the fault event interrupt message control bits. Section 7.3 describes hardware
handling of fault events.

Register Offset 038h
Bits Access Default Field Description
e 0: No masking of interrupts. When a interrupt condition is detected,
hardware issues an interrupt message (using the Fault Event Data and
31 RW 1 IM: Interrupt Fault Event Address register values).
Mask e 1: This is the value on reset. Software may mask interrupt message
generation by setting this field.Hardware is prohibited from sending
the interrupt message when this field is Set.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-35

Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Bits

Access

Default

Field

Description

30

RO

IP: Interrupt
Pending

Hardware sets the IP field whenever it detects an interrupt condition,
which is defined as:

e When primary fault logging is active, an interrupt condition occurs
when hardware records a fault through one of the Fault Recording
registers and sets the PPF field in the Fault Status register.

e When advanced fault logging is active, an interrupt condition occurs
when hardware records a fault in the first fault record (at index 0) of
the current fault log and sets the APF field in the Fault Status register.

e Hardware detected error associated with the Invalidation Queue,
setting the IQE field in the Fault Status register.

e Hardware detected invalid Device-TLB invalidation completion, setting
the ICE field in the Fault Status register.

e Hardware detected Device-TLB invalidation completion time-out,
setting the ITE field in the Fault Status register.

If any of the status fields in the Fault Status register was already Set at
the time of setting any of these fields, it is not treated as a new interrupt
condition.

The IP field is kept Set by hardware while the interrupt message is held
pending. The interrupt message could be held pending due to the interrupt
mask (IM field) being Set or other transient hardware conditions.

The IP field is cleared by hardware as soon as the interrupt message
pending condition is serviced. This could be due to either:

e Hardware issuing the interrupt message due to either a change in the
transient hardware condition that caused the interrupt message to be
held pending, or due to software clearing the IM field.

e Software servicing all the pending interrupt status fields in the Fault
Status register as follows.

e When primary fault logging is active, software clearing the Fault
(F) field in all the Fault Recording registers with faults, causing
the PPF field in the Fault Status register to be evaluated as Clear.

e Software clearing other status fields in the Fault Status register
by writing back the value read from the respective fields.

29:0

RsvdP

Xh

R: Reserved

Reserved.

10-36

Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.11 Fault Event Data Register

—w
o=
.

RsvdZ IMD

Figure 10-55. Fault Event Data Register

Abbreviation FEDATA_REG
gg's‘cerria;xltion Register specifying the interrupt message data.

Register Offset 03Ch

Bits Access Default Field Description

31:16 RsvdZ Oh R: Reserved Reserved

15:0 RW oh IMD: Interrupt Data value in the interrupt request. Software requirements for
' Message data programming this register are described in Section 5.1.6.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-37

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.12

—w

Fault Event Address Register

21 (0]

MA

Na<wx

Figure 10-56. Fault Event Address Register

Abbreviation

FEADDR_REG

General
Description

Register specifying the interrupt message address.

Register Offset 040h

Bits Access Default Field Description
When fault events are enabled, the contents of this register specify the
DWORD-aligned address (bits 31:2) for the interrupt request.

31:2 RW oh MA: Message

address

Software requirements for programming this register are described in
Section 5.1.6.

1:0 Rsvdz Oh R: Reserved Reserved.

10-38 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.13 Fault Event Upper Address Register

—w

MUA

Figure 10-57. Fault Event Upper Address Register

Abbreviation FEUADDR_REG

General

Description Register specifying the interrupt message upper address.

Register Offset 044h

Bits Access Default Field Description

Hardware implementations supporting Extended Interrupt Mode are
required to implement this register.

31:0 RW oh MUA: Message Software requirements for programming this register are described in
' upper address Section 5.1.6.

Hardware implementations not supporting Extended Interrupt Mode may
treat this field as RsvdZ.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-39

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.14 Fault Recording Registers [n]

1 1 1 11 11

2 2 2 22 00 9 9 9 9 99 87 6

7 6 5 43 43 6 5 4 3 21 09 4

E
FIT] AT PV FR | 2| x| PRIV || Rsvd SID
1 P E 2
6 11
3 21 0
FI Rsvd
Figure 10-58. Fault Recording Register

Abbreviation FRCD_REG [n]
General Registers to record fault information when primary fault logging is active.Hardware reports the number
Description and location of fault recording registers through the Capability register. This register is relevant only for

primary fault logging.

These registers are sticky and can be cleared only through power good reset or by software clearing the
RW1C fields by writing a 1.

Register Offset YYYh (YYYh must be 128-bit aligned)

Bits Access | Default Field Description

Hardware sets this field to indicate a fault is logged in this Fault
Recording register. The F field is Set by hardware after the details of
the fault is recorded in other fields.

1 When this field is Set, hardware may collapse additional faults from
127 RW1CS 0 F: Fault the same source-id (SID).

Software writes the value read from this field to Clear it.

Refer to Section 7.2.1 for hardware details of primary fault logging.

Type of the faulted request:
e 0: Write request or Page Request
126 ROS X T1: Type bitl e 1: Read request or AtomicOp request

This field is relevant only when the F field is Set, and when the fault
reason (FR) indicates one of the address translation fault conditions.

10-40 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access | Default Field Description

This field captures the AT field from the faulted request.

Hardware implementations not supporting Device-TLBs (DT field

125:124 ROS xh AT: Address Type Clear in Extended Capability register) treat this field as RsvdZ.

When supported, this field is valid only when the F field is Set, and
when the fault reason (FR) indicates one of the non-recoverable
address translation fault conditions.

PASID value used by the faulted request.

For requests with PASID, this field reports the PASID value that
came with the request.

For requests without PASID, this field reports the value as follows:
e Legacy mode (TTM=00b): 0
e Scalable mode (TTM=01b): Value of the RID_PASID field in the
123:104 ROS Xh PV: PASID Value scalable-mode context-entry used to translate the request. If
the request was blocked before it was able to access RID_PASID
field from scalable-mode context-entry, this field will report a
value of 0.

Hardware implementations not supporting PASID (PASID field Clear
in Extended Capability register) and not supporting RID_PASID (RPS
field Clear in Extended Capability Register) implement this field as
RsvdZ.

Reason for the fault. The enumerations for the various fault reason
encodings are presented in Table 24 in Section 7.1.3 for DMA

remapping faults, and Table 13 in Section 5.1.4.1 for interrupt
103:96 ROS Xh FR: Fault Reason remapping faults.

This field is relevant only when the F field is Set.

When Set, indicates the faulted request has a PASID TLP Prefix. The
value of the PASID field is reported in the PASID Value (PV) field.

This field is relevant only when the F field is Set, and when the fault
95 ROS X PP: PASID Present reason (FR) indicates one of the non-recoverable address translation
fault conditions.

Hardware implementations not supporting PASID (PASID field Clear
in Extended Capability register) implement this field as RsvdZ.

When Set, indicates Execute permission was requested by the
faulted read request.

EXE: Execute This field is relevant only when the PP field is Set, T1=1, and T2=0
Permission Requested | (Read Request).

Hardware implementations not supporting PASID (PASID field Clear
in Extended Capability register) implement this field as RsvdZ.

94 ROS X

When Set, indicates Supervisor privilege was requested by the
faulted request.

93 ROS X PRIV: Privilege Mode Hardware implementations not supporting PASID (PASID field Clear
Requested in Extended Capability register) and not supporting RID_PASID (RPS
field Clear in Extended Capability Register) implement this field as
RsvdZ.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-41

Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

Bits Access | Default Field Description

This field expands the Type field from 1-bit to 2-bit. It should be
used in conjunction with field T1.

T1 | T2 Description

Write Request

92 ROS X T2: Type bit2 Page Request

Read Request

= |=|O| o
= |lO |+~ |O

AtomicOp Request

This field is relevant only when the F field is Set, and when the fault
reason (FR) indicates one of the address translation fault conditions.

91:80 Rsvdz Oh R: Reserved Reserved.

Requester-id associated with the fault condition.

79:64 ROS Xh SID: Source Identifier This field is relevant only when the F field is Set.

When the Fault Reason (FR) field indicates one of the address
translation fault conditions, this field contains bits 63:12 of the page
address in the faulted request. Hardware treats bits 63:N as
reserved (0), where N corresponds to the largest AGAW value
supported by hardware.

When the Fault Reason (FR) field indicates interrupt-remapping fault
conditions other than Fault Reason 25h, bits 63:48 of this field
indicate the interrupt_index computed for the faulted interrupt
request, and bits 47:12 are cleared. When the Fault Reason (FR)
field indicates interrupt-remapping fault condition of blocked
Compatibility mode interrupt (Fault Reason 25h), contents of this
field is undefined.

63:12 ROS Xh FI: Fault Info

This field is relevant only when the F field is Set.

11:0 Rsvdz Oh R: Reserved Reserved.

1. Hardware updates to this register may be disassembled as multiple doubleword writes. To ensure consistent data is read from
this register, software must first check the Primary Pending Fault (PPF) field in the FSTS_REG is Set before reading the fault
reporting register at offset as indicated in the FRI field of FSTS_REG. Alternatively, software may read the highest doubleword
in a fault recording register and check if the Fault (F) field is Set before reading the rest of the data fields in that register.

10-42 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.15 Advanced Fault Log Register

w o
[N

98 0

FLA FLS Rsvd

Figure 10-59. Advanced Fault Log Register

Abbreviation AFLOG_REG
General Register to specify the base address of the memory-resident fault-log region. This register is treated as
Description RsvdZ for implementations not supporting advanced translation-fault logging (AFL field reported as 0 in

the Capability register).

Register Offset 058h

Bits Access Default Field Description

This field specifies the base of 4KB aligned fault-log region in system
memory. Hardware may ignore and not implement bits 63:HAW, where
HAW is the host address width.

FLA: Fault Log
Address Software specifies the base address and size of the fault log region
through this register, and programs it in hardware through the SFL field in
the Global Command register. When implemented, reads of this field
return the value that was last programmed to it.

63:12 RW Oh

This field specifies the size of the fg&]lt log region pointed by the FLA field.
The size of the fault log region is 2°* * 4KB, where X is the value

FLS: Fault Log programmed in this register.

Size
When implemented, reads of this field return the value that was last
programmed to it.

8:0 Rsvdz Oh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-43

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.16 Protected Memory Enable Register

o w

EPM Rsvd PRS

Figure 10-60. Protected Memory Enable Register

Abbreviation PMEN_REG
General Register to enable the DMA-protected memory regions set up through the PLMBASE, PLMLIMT, PHMBASE,
Description PHMLIMIT registers. This register is always treated as RO for implementations not supporting protected

memory regions (PLMR and PHMR fields reported as Clear in the Capability register).

Protected memory regions may be used by software to securely initialize remapping structures in memory.
Software must not program protected memory regions to overlap with a region designated as MMIO.
Software must set up DMA-protected memory regions consistently across all the remapping hardware
units supported by host platform for the protection to be effective. To avoid impact to legacy BIOS usage
of memory, software is recommended to not overlap protected memory regions with any reserved
memory regions of the platform reported through the Reserved Memory Region Reporting (RMRR)
structures described in Chapter 8.

New software development should not use Protected Memory Registers as they are planned for
deprecation in a future generation. Abort-dma mode can be used to protect memory during DMA
Remapping initialization. See Section 3.4.4 for more details.

Register Offset 064h

10-44 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access Default Field Description

This field controls DMA accesses to the protected low-memory and
protected high-memory regions.

e 0: Protected memory regions are disabled.

e 1: Protected memory regions are enabled. DMA requests
accessing protected memory regions are handled as follows:

e PCI and CXL.io links

e Hardware implementations with Major Version 2 or higher
(VER_REG) block all DMA requests accessing protected
memory regions whether or not DMA remapping is
enabled.

. Hard&lare implementations starting with 6th Generatjon
Intel®™ Core™ (codename: Skylake) and Intel® Xeon
Scalable Processors (codename: Skylake) block all DMA
requests accessing protected memory regions whether or
not DMA remapping is enabled.

e Some earlier hardware implementations (earlier than those
referred above) do not block DMA requests that are subject
to address remapping (i.e. requests other than pass-
through and translated) from accessing the protected
memory when DMA remapping is enabled. On such old
hardware, software must ensure that there are no
mappings programmed in the remapping structures that

EPM: Enable map to the protected memory region.
31 RW Oh Protected e CXL.cache links
Memory

e PMR ranges do not protect accesses through CXL.cache.
Software enabling CXL.cache must protect desired memory
region via DMA remapping page-tables and not depend on
PMR

Remapping hardware access to the remapping structures are not
subject to protected memory region checks.

DMA requests blocked due to protected memory region violation are
not recorded or reported as remapping faults.

Hardware reports the status of the protected memory enable/disable
operation through the PRS field in this register. Hardware
implementations supporting DMA draining must drain any in-flight
translated DMA requests queued within the Root-Complex before
indicating the protected memory region as enabled through the PRS
field.

After writing to this field software must wait for the operation to be
completed and reflected in the PRS status field (bit 0) before
changing the value of this field again.

30:1 RsvdP Xh R: Reserved Reserved.

PRS: Protected This field indicates the status of protected memory region(s):
: Protecte . .]
0 RO Oh Region Status e 0: Protected memory reg!on(s) disabled.

e 1: Protected memory region(s) enabled.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-45

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.17 Protected Low-Memory Base Register

PLMB Rsvd

Figure 10-61. Protected Low-Memory Base Register

Abbreviation PLMBASE_REG
General Register to set up the base address of DMA-protected low-memory region below 4GB. This register must
Description be set up before enabling protected memory through PMEN_REG, and must not be updated when

protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected low memory region
(PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region base depends on the number of reserved bits (N:0) of
this register. Software may determine N by writing all 1s to this register, and finding the most significant
bit position with 0 in the value read back from the register. Bits N:0 of this register are decoded by
hardware as all Os.

Software must setup the protected low memory region below 4GB. Section 10.4.18 describes the
Protected Low-Memory Limit register and hardware decoding of these registers.

Software must not modify this register when protected memory regions are enabled (PRS field Set in
PMEN_REG)

Register Offset 068h

Bits Access Default Field Description

. PLMB: Protected Low- | This register specifies the base of protected low-memory region in
31:(N+1) RW Oh Memory Base system memory.

N:0 RsvdZ Oh R: Reserved Reserved.

10-46 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.18 Protected Low-Memory Limit Register

PLML Rsvd

Figure 10-62. Protected Low-Memory Limit Register

Abbreviation PLMLIMIT_REG
General Register to set up the limit address of DMA-protected low-memory region below 4GB. This register must
Description be set up before enabling protected memory through PMEN_REG, and must not be updated when

protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected low memory region
(PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region limit depends on the number of reserved bits (N:0) of
this register. Software may determine N by writing all 1’s to this register, and finding most significant zero
bit position with 0 in the value read back from the register. Bits N:0 of the limit register are decoded by
hardware as all 1s.

The Protected low-memory base and limit registers function as follows:
e Programming the protected low-memory base and limit registers the same value in bits 31:(N+1)
specifies a protected low-memory region of size 2(N+1) pytes.
e Programming the protected low-memory limit register with a value less than the protected low-
memory base register disables the protected low-memory region.

Software must not modify this register when protected memory regions are enabled (PRS field Set in
PMEN_REG)

Register Offset 06Ch

Bits Access Default Field Description
. PLML: Protected Low- | This register specifies the last host physical address of the DMA-
31:(N+1) RW Oh S oo
Memory Limit protected low-memory region in system memory.
N:0 Rsvdz 0Oh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-47

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.19 Protected High-Memory Base Register

w o

PHMB Rsvd

Figure 10-63. Protected High-Memory Base Register

Abbreviation PHMBASE_REG
General Register to set up the base address of DMA-protected high-memory region. This register must be set up
Description before enabling protected memory through PMEN_REG, and must not be updated when protected

memory regions are enabled.

This register is always treated as RO for implementations not supporting protected high memory region
(PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region base depends on the number of reserved bits (N:0)
of this register. Software may determine N by writing all 1’s to this register, and finding most significant
zero bit position below host address width (HAW) in the value read back from the register. Bits N:0 of this
register are decoded by hardware as all Os.

Software may setup the protected high memory region either above or below 4GB. Section 10.4.20
describes the Protected High-Memory Limit register and hardware decoding of these registers.

Software must not modify this register when protected memory regions are enabled (PRS field Set in
PMEN_REG)

Register Offset 070h

Bits Access Default Field Description

This register specifies the base of protected (high) memory region

in system memory.
PHMB: Protected

63:(N+1) RW Oh High-Memory Base . . .
Hardware may ignore and not implement bits 63:HAW, where HAW
is the host address width.
N:0 Rsvdz Oh R: Reserved Reserved.

10-48 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.20 Protected High-Memory Limit Register

w O

PHML Rsvd

Figure 10-64. Protected High-Memory Limit Register

Abbreviation PHMLIMIT_REG
General Register to set up the limit address of DMA-protected high-memory region. This register must be set up
Description before enabling protected memory through PMEN_REG, and must not be updated when protected

memory regions are enabled.

This register is always treated as RO for implementations not supporting protected high memory region
(PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region limit depends on the number of reserved bits (N:0)
of this register. Software may determine N by writing all 1's to this register, and finding most significant
zero bit position below host address width (HAW) in the value read back from the register. Bits N:0 of the
limit register are decoded by hardware as all 1s.

The protected high-memory base & limit registers function as follows.
e Programming the protected low-memory base and limit registers with the same value in bits
HAW:(N+1) specifies a protected low-memory region of size 2(N*1) pytes.
e Programming the protected high-memory limit register with a value less than the protected high-
memory base register disables the protected high-memory region.

Software must not modify this register when protected memory regions are enabled (PRS field Set in
PMEN_REG)

Register Offset 078h

Bits Access Default Field Description

This register specifies the last host physical address of the DMA-

rotected high-memory region in system memory.
PHML: Protected P d v red Y Y

63:(N+1) RW oh High-Memory Limit
Hardware may ignore and not implement bits 63:HAW, where HAW is
the host address width.
N:0 Rsvdz 0Oh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-49

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.21 Invalidation Queue Head Register

w o
© —~
0 =

43 0

Rsvd QH Rsvd

Figure 10-65. Invalidation Queue Head Register

Abbreviation IQH_REG
General Register indicating the invalidation queue head. This register is treated as RsvdZ by implementations
Description reporting Queued Invalidation (QI) as not supported in the Extended Capability register.
Register Offset 080h
Bits Access Default Field Description
63:19 RsvdZ Oh R: Reserved Reserved.

Specifies the offset (128-bit or 256-bit aligned) to the invalidation
queue for the command that will be processed next by hardware.
When Descriptor Width (DW) field in Invalidation Queue Address
18:4 RO Oh QH: Queue Head Register (IQA_REG) is Set (256-bit descriptors), hardware treats bit-
4 as reserved and will always write a value of 0 in the bit.

Hardware resets this field to 0 whenever the queued invalidation is
disabled (QIES field Clear in the Global Status register).

3:0 Rsvdz Oh R: Reserved Reserved.

10-50 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.22 Invalidation Queue Tail Register

w o
© =
0 —

43 0

Rsvd QT Rsvd

Figure 10-66. Invalidation Queue Tail Register

Abbreviation IQT_REG
General Register indicating the invalidation tail. This register is treated as RsvdZ by implementations reporting
Description Queued Invalidation (QI) as not supported in the Extended Capability register.
Register Offset 088h
Bits Access Default Field Description
63:19 RsvdZ Oh R: Reserved Reserved.

Specifies the offset (128-bit or 256-bit aligned) to the invalidation
queue for the command that will be written next by software.
. . : When Descriptor Width (DW) field in Invalidation Queue Address
18:4 RW Oh T: Tail
QT: Queue Tai Register (IQA_REG) is Set (256-bit descriptors), hardware treats bit-
4 as reserved and a value of 1 in the bit will result in invalidation
queue error.

3:0 Rsvdz Oh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-51

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.23 Invalidation Queue Address Register

6 1 11
3 2 10 32 0
I0A DI Rewvd | QS
W

Figure 10-67. Invalidation Queue Address Register

Abbreviation IQA_REG
General Register to configure the base address and size of the invalidation queue. This register is treated as
Description RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended
Capability register.
Register Offset 090h
Bits Access Default Field Description
This field points to the base of 4KB aligned invalidation request
queue. Hardware may ignore and not implement bits 63:HAW,
) IQA: Invalidation where HAW is the host address width.
63:12 RW Oh Queue Base Address
Reads of this field return the value that was last programmed to
it.
This field specifies the size of the descriptors submitted into
invalidation request queue.
e 0: 128-bit descriptors
e 1: 256-bit descriptors
11 RW Oh DW: Descriptor Width
When both scalable mode translation and abort-dma mode are
not supported (ECAP_REG.SMTS=0 and ECAP_REG.ADMS=0),
hardware treats a value of 1 in this field as an Invalidation
Queue Error (see Invalidation Queue Error Info field in
Section 10.4.29 for details).
10:3 Rsvdz Oh R: Reserved Reserved.
This field specifies the size of the invalidation request queue. A
value of X in this field indicates an invalidation request queue of
2:0 RW Oh QS: Queue Size (2%) 4KB pages. The number of entries in the invalidation queue
is 2(X+ 8)if Descriptor Width is 0 and 2 * 7)if Descriptor Width
is 1.

10-52 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.24 Invalidation Completion Status Register

Rsvd IWC

Figure 10-68. Invalidation Completion Status Register

Abbreviation ICS_REG
General Register to report completion status of invalidation wait descriptor with Interrupt Flag (IF) Set. This
Description register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in
the Extended Capability register.
Register Offset 09Ch
Bits Access Default Field Description
31:1 Rsvdz Oh R: Reserved Reserved.
IWC: Invalidation | Indicates completion of Invalidation Wait Descriptor with Interrupt
0 RW1CS 0 Wait Descriptor Flag (IF) field Set. Hardware implementations not supporting queued
Complete invalidations implement this field as RsvdZ.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-53

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.25 Invalidation Event Control Register

—w
ow
©on

o

M| P RsvdP

Figure 10-69. Invalidation Event Control Register

Abbreviation IECTL_REG

General Register specifying the invalidation event interrupt control bits. This register is treated as RsvdZ by
Description implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

Register Offset 0AOh

Bits Access Default Field Description

e 0: No masking of interrupt. When a invalidation event condition
is detected, hardware issues an interrupt message (using the
Invalidation Event Data & Invalidation Event Address register
values).

e 1: This is the value on reset. Software may mask interrupt
message generation by setting this field. Hardware is prohibited
from sending the interrupt message when this field is Set.

IM: Interrupt
31 RW 1 Mask

Hardware sets the IP field whenever it detects an interrupt condition.
Interrupt condition is defined as:

e An Invalidation Wait Descriptor with Interrupt Flag (IF) field Set
completed, setting the IWC field in the Invalidation Completion
Status register.

e If the IWC field in the Invalidation Completion Status register
was already Set at the time of setting this field, it is not treated
as a new interrupt condition.

IP: Interrupt The IP field is kept Set by hardware while the interrupt message is
30 RO 0 Pe.nding held pending. The interrupt message could be held pending due to

interrupt mask (IM field) being Set, or due to other transient
hardware conditions. The IP field is cleared by hardware as soon as
the interrupt message pending condition is serviced. This could be
due to either:

e Hardware issuing the interrupt message due to either change in
the transient hardware condition that caused interrupt message
to be held pending or due to software clearing the IM field.

e Software servicing the IWC field in the Invalidation Completion
Status register.

29:0 RsvdP Xh R: Reserved Reserved.

10-54 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.26 Invalidation Event Data Register

3 11
1 65 0
Rsvdz IMD
Figure 10-70. Invalidation Event Data Register
Abbreviation IEDATA_REG
General Register specifying the Invalidation Event interrupt message data. This register is treated as RsvdZ by
Description implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.
Register Offset 0A4h
Bits Access Default Field Description
31:16 RsvdZ Oh R: Reserved Reserved
15:0 RW oh IMD: Interrupt Data value in the interrupt request. Software requirements for
' Message data programming this register are described in Section 5.1.6.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-55

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.27 Invalidation Event Address Register

3
1 21 0
R
S
MA \%
d
4
Figure 10-71. Invalidation Event Address Register
Abbreviation IEADDR_REG
General Register specifying the Invalidation Event Interrupt message address.This register is treated as RsvdZ by
Description implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.
Register Offset 0A8h
Bits Access Default Field Description
When fault events are enabled, the contents of this register specify
the DWORD-aligned address (bits 31:2) for the interrupt request.
31:2 RW oh MA: Message
address
Software requirements for programming this register are described in
Section 5.1.6.
1:0 RsvdZ Oh R: Reserved Reserved.

10-56 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.28 Invalidation Event Upper Address Register

3
1 0
MUA
Figure 10-72. Invalidation Event Upper Address Register
Abbreviation IEUADDR_REG
gggcer!-i:ltion Register specifying the Invalidation Event interrupt message upper address.
Register Offset 0ACh
Bits Access Default Field Description
Hardware implementations supporting Queued Invalidations and
Extended Interrupt Mode are required to implement this register.
31:0 RW oh MUA: Message Software requirements for programming this register are described in
' upper address Section 5.1.6.
Hardware implementations not supporting Queued Invalidations or
Extended Interrupt Mode may treat this field as RsvdZ.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-57

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.29 Invalidation Queue Error Record Register

3 87 21 43 0

ICESID ITESID Rsvd IQEI

Figure 10-73. Invalidation Queue Error Record Register

Abbreviation IQERCD_REG

General

Description Register providing information about Invalidation Queue Error

Register Offset 0BOh
Bits Access Default Field Description
Requester-id associated with Device-TLB invalidation completion that
causes an Invalidation Completion Error.
A value of 0 in this field indicates that this is an older version of DMA
ICESID: remapping hardware which does not provide additional details about
63:48 ROS oh Invalidation the Invalidation Completion Error.

Completion Error | If the ICE field is Clear at the time of the Invalidation Completion
Source Identifier | Error detection, hardware copies the Requester-id in the Invalidation
Completion Message that resulted in the error into this field.

This field is valid only when the ICE field is Set in FSTS_REG. The
value read from this field is undefined when the ICE field is Clear.

Requester-id associated with Invalidation Time-out Error.
A value of 0 in this field indicates that this is an older version of DMA
remapping hardware which does not provide additional details about
SID: the Invalidation Time-out Error.

{r:\lfalli(?étion If the ITE field is Clear at the time of the Invalidation Time-out error
47:32 ROS Oh Time-out Error detection, hardware copies the Requester-id associated with error into
Source Identifier this f'e!d' o .

If multiple Invalidation Time-out errors are detected at the same
time, hardware chooses one of them to be reported.
This field is valid only when the ITE field is Set in FSTS_REG. The
value read from this field is undefined when the ITE field is Clear.

31:4 Rsvdz Oh R: Reserved Reserved

10-58 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

Bits Access Default Field Description

This field is valid only when the IQE field is Set in FSTS_REG. The
value read from this field is undefined when the IQE field is Clear.

This field provides additional details about the what caused IQE field
to be Set.

e 0: info not available. (This is an older version of DMA Remapping
hardware which does not provide additional details about I1Q
errors.)

e 1: hardware detected an invalid Tail Pointer.
e 2: hardware attempt to fetch descriptor resulted in error.
e 3: hardware detected an invalid descriptor type. (See Table 21 for

details.)
3:0 ROS oh IQEI: Invalidation e 4: hardware detected a reserved field violation for a valid
' Queue Error Info descriptor type

e 5: hardware detected an invalid descriptor width programmed in
the Invalidation Queue Address Register (IQA_REG)

e Descriptor width of 128-bit (IQA_REG.DW=0) when
operating in scalable mode (RTADDR_REG.TTM=01b).

e Descriptor width of 256-bit (IQA_REG.DW=1) when both
Scalable Mode Translation Support and Abort-DMA Mode
Support are reported as Clear (ECAP_REG.SMTS=0 and
ECAP_REG.ADMS=0)
e 6: hardware detected that Queue Tail is not aligned to the
descriptor width (i.e. IQA_REG.DW=1 and IQT.b[4]#0).

e 7: hardware detected an invalid value in the TTM field of the Root
Table Address (RTADDR_REG) register.

e 8-15: undefined.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-59

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.30 Interrupt Remapping Table Address Register

6 1 1 1
3 2 1 0 43 0
IRTA EIME Rsvd S

Figure 10-74. Interrupt Remapping Table Address Register

Abbreviation IRTA_REG
General Register providing the base address of Interrupt remapping table. This register is treated as RsvdZ by
Description implementations reporting Interrupt Remapping (IR) as not supported in the Extended Capability register.

Register Offset 0B8h

Bits Access Default Field Description

This field points to the base of 4KB aligned interrupt remapping table.

Hardware may ignore and not implement bits 63:HAW, where HAW is

IRTA: Interrupt f
63:12 RW Oh | Remapping Table | the host address width.

Address
The value of this field takes effect only after software executes Set
Interrupt Remap Table Pointer command.

This field is used by hardware on Intel® 64 platforms as follows:

e 0: XAPIC mode is active. Hardware interprets only 8-bits ([15:8])
of Destination-ID field in the IRTEs. The high 16-bits and low 8-
bits of the Destination-ID field are treated as reserved.

e 1: x2APIC mode is active. Hardware interprets all 32-bits of
Destination-ID field in the IRTEs.

EIME: Extended This field is implemented as RsvdZ on implementations reporting
11 RW 0 Interrupt Mode Extended Interrupt Mode (EIM) field as Clear in Extended Capability
Enable register.

Software must not modify this field while Interrupt remapping is
active (IRES=1 in Global Status register).

The value of this field takes effect only after software executes Set
Interrupt Remap Table Pointer command.

10:4 Rsvdz Oh R: Reserved Reserved.

This field specifies the size of the interrupt remapping table. The
number of entries in the interrupt remapping table is 2X*1, where X is

. the value programmed in this field.
3:0 RW Oh S: Size

The value of this field takes effect only after software executes Set
Interrupt Remap Table Pointer command.

10-60 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Register Descriptions

10.4.31 Page Request Queue Head Register

3 98 54 0

Rsvd PQH Rsvd

Figure 10-75. Page Request Queue Head Register

Abbreviation

PQH_REG

General
Description

Register indicating the page request queue head. This register is treated as RsvdZ by implementations
reporting Page Request Support (PRS) as not supported in the Extended Capability register.

Register Offset 0COh
Bits Access Default Field Description
63:19 Rsvdz Oh R: Reserved Reserved.
18:5 RW oh PQH: Page Queue | Specifies the offset' (32-bytes aligned) to the page request queue for
Head the request that will be processed next by software.
4:0 Rsvdz Oh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-61

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.32 Page Request Queue Tail Register

3 98 54 0

Rsvd PQT Rsvd

Figure 10-76. Page Request Queue Tail Register

Abbreviation PQT_REG
General Register indicating the page request queue tail. This register is treated as RsvdZ by implementations
Description reporting Page Request Support (PRS) as not supported in the Extended Capability register.
Register Offset 0C8h

Bits Access Default Field Description

63:19 RsvdZ Oh R: Reserved Reserved.

18:5 RW oh PQ_T: Page Queue | Specifies the offset_ (32—by_tes aligned) to the page request queue for

Tail the request that will be written next by hardware.
4:0 RsvdZ Oh R: Reserved Reserved.

10-62 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.33 Page Request Queue Address Register

3 21 32 0

PQA Rsvd PQS

Figure 10-77. Page Request Queue Address Register

Abbreviation PQA_REG
General Register to configure the base address and size of the page request queue. This register is treated as
Description RsvdZ by implementations reporting Page Request Support (PRS) as not supported in the Extended

Capability register.

Register Offset 0DOh
Bits Access Default Field Description
This field points to the base of 4KB aligned page request queue.
PQA: Page Hardware may ignore and not implement bits 63:HAW, where HAW is
63:12 RW oh Request Queue the host address width.
Base Address Software must configure this register to point to host memory before
enabling page requests in any scalable-mode context-entries.
11:3 RsvdZ Oh R: Reserved Reserved.
. This field specifies the size of the page request queue. A value of X in
2:0 RW oh PQS: Page Queue | this field indicates an invalidation request queue of (2%) 4KB pages.
The number of entries in the page request queue is 20X+ 7),

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-63

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.34 Page Request Status Register

Rsvd

peinvine)

R
0]

Figure 10-78. Page Request Status Register

Abbreviation PRS_REG
General Register to report pending page request in page request queue. This register is treated as RsvdZ by
Description implementations reporting Page Request Support (PRS) as not supported in the Extended Capability
register.
Register Offset 0DCh
Bits Access Default Field Description
31:2 Rsvdz Oh R: Reserved Reserved.
Hardware sets this field to indicate Page Request Queue overflow
condition. Page Request event is generated based on programming of
. the Page Request Event Control register. Page request message that
1 RW1CS 0 PRO: Page] led to setting this bit and subsequent messages received while this
Request Overflow | fo|q is already Set are discarded or responded by hardware as
described in Section 7.4.1.
Software writing a 1 to this field clears it.
Indicates pending page requests to be serviced by software in the
PPR: Pendi page request queue.
0 RW1CS 0 Pa é R:n ulgsgt This field is Set by hardware when a page request entry
9 a (page_reqg_dsc) is added to the page request queue.
Software writing a 1 to this field clears it.

10-64 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.35 Page Request Event Control Register

-
ow
N
=]

! ! RsvdP

Figure 10-79. Page Request Event Control Register

Abbreviation PECTL_REG

General Register specifying the page request event interrupt control bits. This register is treated as RsvdZ by
Description implementations reporting Page Request Support (PRS) as not supported in the Extended Capability
register.

Register Offset 0EOh

Bits Access Default Field Description

e 0: No masking of interrupt. When a page request event condition
is detected, hardware issues an interrupt message (using the

Page Request Event Data & Page Request Event Addre egiste
IM: Interrupt vglgues)_qu St kv ata & Page Request Ev ress register

31 RW 1 Mask

e 1: This is the value on reset. Software may mask interrupt
message generation by setting this field. Hardware is prohibited
from sending the interrupt message when this field is Set.

Hardware sets the IP field whenever it detects an interrupt condition.
An Interrupt condition is defined as:

e A page request entry (page_req_dsc) was added to page request
queue, resulting in hardware setting the Pending Page Request
(PPR) field in Page Request Status register.

e Hardware detected Page Request Queue overflow condition,
setting the PRO field in the Page Request Status register.

If any of the status fields in the Page Request Event Status register
was already Set at the time of setting any of these fields, it is not

IP: Interrupt treated as a new interrupt condition.

30 RO 0 Pending
The IP field is kept Set by hardware while the interrupt message is
held pending. The interrupt message could be held pending due to
interrupt mask (IM field) being Set, or due to other transient
hardware conditions. The IP field is cleared by hardware as soon as
the interrupt message pending condition is serviced. This could be
due to either:

e Hardware issuing the interrupt message due to either change in
the transient hardware condition that caused interrupt message
to be held pending or due to software clearing the IM field.

e Software servicing the PPR field in the Page Request Event Status
register.

29:0 RsvdP Xh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-65

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.36 Page Request Event Data Register

3 11
1 65 0
Rsvdz IMD
Figure 10-80. Page Request Event Data Register
Abbreviation PEDATA_REG
General Register specifying the Page Request Event interrupt message data. This register is treated as RsvdZ by
Description implementations reporting Page Request Support (PRS) as not supported in the Extended Capability
register.
Register Offset OE4h
Bits Access Default Field Description
31:16 Rsvdz Oh R: Reserved Reserved
15:0 RW oh IMD: Interrupt Data value in the interrupt request. Software requirements for
: Message data programming this register are described in Section 5.1.6.

10-66 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.37 Page Request Event Address Register

3
1 21 o
R
S
MA \
d
z
Figure 10-81. Page Request Event Address Register
Abbreviation PEADDR_REG
General Register specifying the Page Request Event Interrupt message address.This register is treated as RsvdZ
Description by implementations reporting Page Request Support (PRS) as not supported in the Extended Capability
register.
Register Offset O0E8h
Bits Access Default Field Description
When fault events are enabled, the contents of this register specify
the DWORD-aligned address (bits 31:2) for the interrupt request.
MA: Message
31:2 RW Oh
address X i
Software requirements for programming this register are described in
Section 5.1.6.
1:0 Rsvdz Oh R: Reserved Reserved.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-67

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.38 Page Request Event Upper Address Register

—w

MUA

Figure 10-82. Page Request Event Upper Address Register

Abbreviation PEUADDR_REG
ggggri:ltion Register specifying the Page Request Event interrupt message upper address.
Register Offset 0ECh
Bits Access Default Field Description
This field specifies the upper address (bits 63:32) for the page
request event interrupt.
31:0 RW oh MUA: Message Software requirements for programming this register are described in
) upper address Section 5.1.6.
Hardware implementations not supporting Extended Interrupt Mode
may treat this field as RsvdZ.

10-68 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Register Descriptions

10.4.39 MTRR Capability Register

6 1 1
3 1 0 9 8 7 0
Rsvd WC |Rsvd|Fix VCNT
Figure 10-83. MTRR Capability Register
Abbreviation MTRRCAP_REG
General Register reporting the Memory Type Range Register Capability. This register is treated as RsvdZ by
Description implementations reporting Memory Type Support (MTS) as not supported in the Extended Capability
register.
When implemented, value reported in this register must match IA32_MTRRCAP Model Specific Register
(MSR) value reported by the host IA-32 processor(s).
Register Offset 100h
Bits Access Default Field Description
63:11 RsvdZ Oh R: Reserved Reserved
10 RO X WC: Write 0: Write-combining (WC) memory type is not supported
Combining 1: Write-combining (WC) memory type is supported
9 Rsvdz X R: Reserved Reserved
: e 0: No fixed range MTRRs are supported
FIX: Fixed R
8 RO X MTRRS Supported | * L: Fixed range MTRRS (MTRR_FIX64K_00000 through
MTRR_FIX4K_0F8000) are supported
. VCNT: Variable . .
7:0 RO X MTRR Count Indicates number of variable range MTRRs supported

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-69

|
Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10.4.40 MTRR Default Type Register

6
1 1
3 i o 9 8 7 0
Rsvd E FE Rsvd TYPE
Figure 10-84. MTRR Default Type Register
Abbreviation MTRRDEF_REG
General Register for enabling/configuring Memory Type Range Registers. This register is treated as RsvdZ by
Description implementations reporting Memory Type Support (MTS) as not supported in the Extended Capability

register.

Register Offset 108h

Bits Access Default Field Description
63:12 Rsvdz Oh R: Reserved Reserved.
e 0: Disable MTRRs; UC memory type is applied. FE field has no
effect.
11 RW 0 E: MTRR Enable e 1: Enable MTRRs. FE field can disable the fixed-range MTRRs.

Type specified in the default memory type field is used for areas
of memory not already mapped by either fixed or variable MTRR.

e 0: Disable fixed range MTRRs.

e 1: Enable fixed range MTRRs.

10 RW 0 FE: Fixed Range | when fixed range MTRRs are enabled, they take priority over the
MTRR Enable variable range MTRRs when overlaps in ranges occur. If the fixed-
range MTRRs are disabled, the variable range MTRRs can still be used
and can map the range ordinarily covered by the fixed range MTRRs.

9:8 Rsvdz Oh R: Reserved Reserved.
TYPE: Default Indicates default memory type used for physical memory address
7:0 RW Oh i ranges that do not have a memory type specified for them by an

Memory Type

MTRR. Legal values for this field are 0,1,4, 5 and 6.

10-70 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

10.4.41

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Fixed-Range MTRRs

@ o
(SN

SN
NES

o &
o w

N w

s o

AN

w N

o =

o =

R7

R6

R5

R4

R3

R2

R1

RO

Figure 10-85. Fixed-Range MTRR Format

Abbreviation

MTRR_FIX64_00000_REG
MTRR_FIX16K_80000_REG
MTRR_FIX16K_A0000_REG
MTRR_FIX4K_C0000_REG
MTRR_FIX4K_C8000_REG
MTRR_FIX4K_D0000_REG
MTRR_FIX4K_D8000_REG
MTRR_FIX_4K_EO000_REG
MTRR_FIX_4K_E8000REG
MTRR_FIX4K_F0000_REG
MTRR_FIX_4K_F8000_REG

General
Description

Fixed-range Memory Type Range Registers. These include 11 registers as illustrated in Table 42.

These registers are treated as RsvdZ by implementations reporting Memory Type Support (MTS) as not
supported in the Extended Capability register.

Register Offsets

120h, 128h, 130h, 138h, 140h, 148h, 150h, 158h, 160h, 168h, 170h

Bits Access Default Field Description
63:56 RW Oh R7 Register Field 7
55:48 RW Oh R6 Register Field 6
47:40 RW Oh R5 Register Field 5
39:32 RW Oh R4 Register Field 4
31:24 RW Oh R3 Register Field 3
23:16 RW Oh R2 Register Field 2

15:8 RW Oh R1 Register Field 1

7:0 RW Oh RO Register Field 0

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

10-71

Register Descriptions—Intel® Virtualization Technology for Directed I/O

intel.

Table 42. Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal)
MTRR
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
70000 - 60000 - 50000 - 40000 - 30000 - 20000 - 10000 - 00000 - MTRR_FIX64K_
7FFFF 6FFFF SFFFF AFFFF 3FFFF 2FFFF 1FFFF OFFFF 00000_REG
9C000- 98000- 94000- 90000- 8C000- 88000- 84000- 80000- MTRR_FIX16K_
9FFFF 98FFF 97FFF 93FFF 8FFFF 8BFFF 87FFF 83FFF 80000_REG
BCO000- B8000- B4000- B0000- AC000- A8000- A4000- A0000- MTRR_FIX16K_
BFFFF BSFFF B7FFF B3FFF AFFFF ABFFF A7FFF A3FFF AO000_REG
C7000- C6000- C5000- C4000- C3000- C2000- C1000- C0000- MTRR_FIX4K_
C7FFF C6FFF CSFFF CAFFF C3FFF C2FFF C1FFF COFFF C0000_REG
CF000- CEO000- CDO000- CC000- CB000- CA000- C9000- C8000- MTRR_FIX4K_
CFFFF CEFFF CDFFF CCFFF CBFFF CAFFF COFFF C8FFF C8000_REG
D7000- D6000- D5000- D4000- D3000- D2000- D1000- D0000- MTRR_FIX4K_
D7FFF D6FFF DSFFF D4FFF D3FFF D2FFF D1FFF DOFFF DO000_REG
DFO000- DEO0O0O- DDO000- DC000- DB000- DA000- D9000- D8000- MTRR_FIX4K_
DFFFF DEFFF DDFFF DCFFF DBFFF DAFFF D9FFF DSFFF D8000_REG
E7000- E6000- E5000- E4000- E3000- E2000- E1000- E0000- MTRR_FIX4K_
E7FFF EGFFF ESFFF E4FFF E3FFF E2FFF E1FFF EOFFF E0000_REG
EF000- EE000- EDO00O- EC000- EB00O- EA000- E9000- E8000- MTRR_FIX4K_
EFFFF EEFFF EDFFF ECFFF EBFFF EAFFF E9FFF ESFFF E8000_REG
F7000- F6000- F5000- F4000- F3000- F2000- F1000- F0000- MTRR_FIX4K_
F7FFF F6FFF FSFFF F4FFF F3FFF F2FFF F1FFF FOFFF FOO00_REG
FF0O00- FE0OO- FD00O0- FC000- FBOOO- FA000- F9000- F8000- MTRR_FIX4K_
FFFFF FEFFF FDFFF FCFFF FBFFF FAFFF FOFFF F8FFF F8000_REG
10-72 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

10.4.42 Variable-Range MTRRs
6 1711
3 HAW HAW-1 210
RSVD PHYSMASK \% RSVD
6 11
3 HAW HAW-1 2 1 8 7
RSVD PHYSBASE RSVD TYPE

Figure 10-86.

Variable-Range MTRR Format

Abbreviation

MTRR_PHYSBASEO_REG,
MTRR_PHYSBASE1_REG,
MTRR_PHYSBASE2_REG,
MTRR_PHYSBASE3_REG,
MTRR_PHYSBASE4_REG,
MTRR_PHYSBASES_REG,
MTRR_PHYSBASE6_REG,
MTRR_PHYSBASE7_REG,

MTRR_PHYSMASKO_REG
MTRR_PHYSMASK1_REG
MTRR_PHYSMASK2_REG
MTRR_PHYSMASK3_REG
MTRR_PHYSMASK4_REG
MTRR_PHYSMASKS5_REG
MTRR_PHYSMASK6_REG
MTRR_PHYSMASK7_REG

MTRR_PHYSBASE8_REG, MTRR_PHYSMASK8_REG
MTRR_PHYSBASE9_REG, MTRR_PHYSMASK9_REG

General
Description

Variable-range Memory Type Range Registers. Each Variable-range MTRR register includes a low 64-bit
Base register and a high 64-bit Mask register. VCNT field in MTRRCAP_REG reports number of Variable-
range MTRRs supported by hardware.

These registers are treated as RsvdZ by implementations reporting Memory Type Support (MTS) as not
supported in the Extended Capability register.

Register Offsets

180h, 188h, 190h, 198h, AOh, 1A8h, 1BOh, 1B8h, 1COh, 1C8h, 1DOh, 1D8h, 1EOh, 1E8h, 1FOh, 1F8h,

200h, 208h, 210h, 218h

Bits Access Default Field Description
63:HAW Rsvdz Oh R: Reserved Reserved
. PHYSMASK:
HAW-1:12 RW Oh Physical Mask Mask for range
. e 0: Not Valid
11 RW 0 V: Valid e 1: Valid
10:0 Rsvdz Oh R: Reserved Reserved
Bits Access Default Field Description
63:HAW Rsvdz Oh R: Reserved Reserved
. PHYSBASE:
HAW-1:12 RW Oh Physical Base Base address of range
11:8 Rsvdz Oh R: Reserved Reserved
7:0 RW Oh TYPE: Type Memory type for range

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

10-73

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.43

(8o}

intel.

Virtual Command Register

o=
(S

87 [o]

OA RsvdZ CMD

Figure 10-87. Virtual Command Register

Abbreviation

VCMD_REG

General
Description

Register to submit command and operand to virtual DMA Remapping hardware. This register is treated as
RsvdZ by implementations reporting Virtual Command Support (VCS) as not supported in the Extended
Capability register.

Register Offset EOOh

Bits Access Default Field Description
Operand specification is command-specific.

63:16 RW X OA: Operand A Se(.=.' Table 4'3 b.elow for details. . . .
Writes to this field are dropped while the In Progress field in the
Virtual Command Response Register (VCRSP_REG) is Set.

15:8 RsvdZ Oh R: Reserved Reserved
See Table 43 for details.
Writes to this field are dropped while the In Progress field in the

7:0 RW X CMD: Command Virtual Command Response Register (VCRSP_REG) is Set.
Write to this field clear the Virtual Command Response Register
(VCRSP_REG) and set the In Progress field of the VCRSP_REG.

Table 43. Virtual Command Descriptions

Command Name

Command
(VCMD_REG[7:0])

Operand A
VCMD_REG[63:16]

Operand B
VCMD_EO_REG[63:0]

Null Command

0 Unused Unused

Allocate PASID

1 Unused Unused

63:36 - Unused

Free PASID 2 35:16 - PASID Unused
Reserved 3-255 Reserved Reserved
10-74 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

intel

Intel® Virtualization Technology for Directed I/O—Register Descriptions

10.4.44 Virtual Command Extended Operand Register

(W o

OB

Figure 10-88. Virtual Command Register

Abbreviation

VCMD_EO_REG

General
Description

Register to submit additional operands to virtual DMA Remapping hardware. This register is treated as
RsvdZ by implementations reporting Virtual Command Support (VCS) as not supported in the Extended
Capability register.

Register Offset EO8h
Bits Access Default Field Description
Operand specification is command-specific.
63:0 RW X OB: Operand B See Table 43 for details.
Writes to this field are dropped while the In Progress field in the
Virtual Command Response Register (VCRSP_REG) is Set.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-75

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.45

(WO

Virtual Command Response Register

o=
o

intel.

10

RSLT

RsvdZ

sC

Figure 10-89. Virtual Command Response Register

Abbreviation

VCRSP_REG

General
Description

Register to report status and results for commands submitted to virtual-DMA Remapping hardware. This
register is treated as RsvdZ by implementations reporting Virtual Command Support (VCS) as not
supported in the Extended Capability register.

Register Offset E10h
Bits Access Default Field Description
.) Result specification is command-specific.
63:16 RO Oh RSLT: Result See Table 44 for details.
15:8 RsvdZ Oh R: Reserved Reserved.
e 0: Command successful without any error.
e 1: Undefined command.
e 2-15: Reserved.
7:1 RO Oh SC: Status Code e 16-127: All other Status Codes are command-specific. See Table
44 below for details.
e Usage of any command that is reported as unsupported by the
Virtual Command Capability Register will return Undefined
Command.
0 RO oh IP: In Progress e 0: Command !1a.s been completed.
e 1: Command is in progress.
Table 44. Virtual Command Response Descriptions
Command Command Command Specific Status B
Name (VCMD_REG[7:0]) Code (VCRSP_REG[7:1]) Result (VCRSP_REG[63:16])
Null e L
Command 0 N/A e 63:16 - Rsvdz
Allocate 1 16: No PASID available e 63:36 - RsvdZ
PASID e 35:16 - PASID
Free PASID 2 16: Invalid PASID *+ 63:16 - RsvdZ
Reserved 3-255 N/A e 63:16 - RsvdZ
10-76 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Register Descriptions
®

10.4.46 Virtual Command Capability Register

(WO

3210
P
Rsvdz plAlN
S|S
Figure 10-90. Virtual Command Capability Register
Abbreviation VCCAP_REG
General Register specifying the commands supported by virtual DMA Remapping hardware. This register is
Description treated as RsvdZ by implementations reporting Virtual Command Support (VCS) as not supported in the
Extended Capability register.
Register Offset E30h
Bits Access Default Field Description
63:3 RsvdZ Oh R: Reserved Reserved.
e 0: Free PASID commands are not supported.
e 1: Free PASID commands are supported.
. If Set, software must use the Virtual Command Register interface to
2 RO X ;Ei'pg;fe PASID | fce PASIDS.
Hardware implementations reporting Process Address Space ID
Support (PASID) field in the Extended Capability Register as Clear
also report this field as Clear.
e 0: PASID allocate commands are not supported.
e 1: PASID allocate commands are supported.
PAS: PASID If Set, software must use the Virtual Command Register interface to
1 RO X Allocation allocate PASIDs.
Support Hardware implementations reporting Process Address Space ID
Support (PASID) field in the Extended Capability Register as Clear
also report this field as Clear.
NS: Null .
0 RO X Command . 0: Nu:: commands are not supported.
Support e 1: Null commands are supported.

Intel® virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 10-77

Register Descriptions—Intel® Virtualization Technology for Directed I/O I n te I
®

10-78 Intel® Virtualization Technology for Directed 1/O Architecture Specification, Rev. 3.3, Order Number: D51397-013

u
I n t e I Intel® Virtualization Technology for Directed I/O—Snoop and Memory Type for Various Structures
®

Appendix A Snoop and Memory Type for Various

Structures
Translation Structure Operation Snoop Memory Type
DMA Remapping Structures
Read of Root-table/ scalable-mode
Root-table ECAP.C we
Read of Context-table/ scalable-mode ECAP.C WB

Context-table

Read of scalable-mode PASID-

directory ECAP.C w8
Read of scalable-mode PASID-table ECAP.C WB
Read of first-level table ECAP.SMPWC && PASID-table-entry.PWSNP Table 9
Atomic update of first-level table 1 Table 9

e Legacy mode: ECAP.C
Read of second-level table e Scalable mode: ECAP.SMPWC && PASID-table-
entry.PWSNP

e Legacy mode: WB
e Scalable mode:Table 9

Atomic update of second-level table 1 Table 9

Read of page-frame Table 6 Table 9

Interrupt Remapping Structures

Read of Interrupt Remap Table ECAP.C WB
Atomic update of Posted Interrupt 1 WB
Descriptor

Command Queues

Read of Invalidation Queue 1 WB
Write of Page Request Queue 1 WB
Status Write from Invalidation Wait 1 WB

Descriptor (inv_wait_dsc)

Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 3.3, Order Number: D51397-013 A-1

	1 Introduction
	1.1 Audience
	1.2 Glossary
	1.3 References

	2 Overview
	2.1 Intel® Virtualization Technology Overview
	2.2 VMM and Virtual Machines
	2.3 Hardware Support for Processor Virtualization
	2.4 I/O Virtualization
	2.5 Intel® Virtualization Technology For Directed I/O Overview
	2.5.1 Hardware Support for DMA Remapping
	2.5.1.1 OS Usages of DMA Remapping
	2.5.1.2 VMM Usages of DMA Remapping
	2.5.1.3 DMA Remapping Usages by Guests
	2.5.1.4 Interaction with Processor Virtualization

	2.5.2 Hardware Support for Interrupt Remapping
	2.5.2.1 Interrupt Isolation
	2.5.2.2 Interrupt Migration
	2.5.2.3 x2APIC Support

	2.5.3 Hardware Support for Interrupt Posting
	2.5.3.1 Interrupt Vector Scalability
	2.5.3.2 Interrupt Virtualization Efficiency
	2.5.3.3 Virtual Interrupt Migration

	3 DMA Remapping
	3.1 Types of DMA requests
	3.2 Domains and Address Translation
	3.3 Remapping Hardware - Software View
	3.4 Mapping Devices to Domains
	3.4.1 Source Identifier
	3.4.2 Legacy Mode Address Translation
	3.4.3 Scalable Mode Address Translation
	3.4.4 Abort DMA Mode

	3.5 Hierarchical Translation Structures
	3.6 First-Level Translation
	3.6.1 Access Rights
	3.6.2 Accessed, Extended Accessed, and Dirty Flags

	3.7 Second-Level Translation
	3.7.1 Access Rights
	3.7.2 Accessed and Dirty Flags

	3.8 Nested Translation
	3.8.1 Access Rights

	3.9 Snoop Behavior
	3.10 Memory Type
	3.10.1 Selecting Memory Type from Page Attribute Table
	3.10.2 Selecting Memory Type from Memory Type Range Registers
	3.10.3 Selecting Effective Memory Type
	3.10.4 Determining Memory Type
	3.10.4.1 Memory Type in Legacy Mode (RTADDR_REG.TTM = 00b)
	3.10.4.2 Memory Type in Scalable Mode (RTADDR_REG.TTM = 01b)

	3.11 Identifying Origination of DMA Requests
	3.11.1 Devices Behind PCI Express* to PCI/PCI-X Bridges
	3.11.2 Devices Behind Conventional PCI Bridges
	3.11.3 Devices Behind PCI Express Root Port
	3.11.4 Root-Complex Integrated Devices
	3.11.5 PCI Express* Devices Using Phantom Functions
	3.11.6 Single-Root I/O Virtualization Capable Devices
	3.11.7 Intel® Scalable I/O Virtualization Capable Devices

	3.12 Handling Requests Crossing Page Boundaries
	3.13 Handling of Zero-Length Reads
	3.14 Handling Requests to Interrupt Address Range
	3.15 Handling Requests to Reserved System Memory
	3.16 Root-Complex Peer to Peer Considerations

	4 Support For Device-TLBs
	4.1 Device-TLB Operation
	4.1.1 Translation Request
	4.1.2 Translation Completion
	4.1.3 Translated Request
	4.1.4 Invalidation Request & Completion

	4.2 Remapping Hardware Handling of Device-TLBs
	4.2.1 Handling of ATS Protocol Errors
	4.2.2 Root-Port Control of ATS Address Types
	4.2.3 Handling of Translation Requests
	4.2.3.1 Accessed, Extended Accessed, and Dirty Flags
	4.2.3.2 Translation Requests for Multiple Translations

	4.2.4 Handling of Translated Requests

	4.3 Handling of Device-TLB Invalidations
	4.4 Device TLB in System-on-Chip (SoC) integrated devices
	4.5 Guidance to software on enabling and disabling ATS
	4.5.1 Recommended software sequence to enable ATS
	4.5.2 Recommended software sequence to disable ATS

	5 Interrupt Remapping
	5.1 Interrupt Remapping
	5.1.1 Identifying Origination of Interrupt Requests
	5.1.2 Interrupt Request Formats On Intel® 64 Platforms
	5.1.2.1 Interrupt Requests in Compatibility Format
	5.1.2.2 Interrupt Requests in Remappable Format

	5.1.3 Interrupt Remapping Table
	5.1.4 Interrupt-Remapping Hardware Operation
	5.1.4.1 Interrupt Remapping Fault Conditions

	5.1.5 Programming Interrupt Sources To Generate Remappable Interrupts
	5.1.5.1 I/OxAPIC Programming
	5.1.5.2 MSI and MSI-X Register Programming

	5.1.6 Remapping Hardware Event Interrupt Programming
	5.1.6.1 Programming in Intel® 64 xAPIC Mode
	5.1.6.2 Programming in Intel® 64 x2APIC Mode

	5.1.7 Handling of Platform Events

	5.2 Interrupt Posting
	5.2.1 Interrupt Remapping Table Support for Interrupt Posting
	5.2.2 Posted Interrupt Descriptor
	5.2.3 Interrupt-Posting Hardware Operation
	5.2.4 Ordering Requirements for Interrupt Posting
	5.2.5 Using Interrupt Posting for Virtual Interrupt Delivery
	5.2.6 Interrupt Posting for Level Triggered Interrupts

	5.3 Memory Type and Snoop Behavior Summary

	6 Caching Translation Information
	6.1 Caching Mode
	6.2 Address Translation Caches
	6.2.1 Tagging of Cached Translations
	6.2.2 Context-Cache
	6.2.2.1 Context-Entry Programming Considerations

	6.2.3 PASID-Cache
	6.2.3.1 Scalable-Mode PASID-Table Entry Programming Considerations

	6.2.4 IOTLB
	6.2.4.1 Details of IOTLB Use

	6.2.5 Caches for Paging Structures
	6.2.5.1 PML5-cache
	6.2.5.2 PML4-cache
	6.2.5.3 PDPE-cache
	6.2.5.4 PDE-cache
	6.2.5.5 Details of Paging-Structure Cache Use

	6.2.6 Translating Address Using Caches in Legacy Mode
	6.2.7 Multiple Cached Entries for a Single Paging-Structure Entry

	6.3 Translation Caching at Endpoint Device
	6.4 Interrupt Entry Cache
	6.5 Invalidation of Translation Caches
	6.5.1 Register-based Invalidation Interface
	6.5.1.1 Context Command Register
	6.5.1.2 IOTLB Registers

	6.5.2 Queued Invalidation Interface
	6.5.2.1 Context-cache Invalidate Descriptor
	6.5.2.2 PASID-cache Invalidate Descriptor
	6.5.2.3 IOTLB Invalidate
	6.5.2.4 PASID-based IOTLB Invalidate Descriptor (P_IOTLB)
	6.5.2.5 Device-TLB Invalidate Descriptor
	6.5.2.6 PASID-based-Device-TLB Invalidate Descriptor
	6.5.2.7 Interrupt Entry Cache Invalidate Descriptor
	6.5.2.8 Invalidation Wait Descriptor
	6.5.2.9 Hardware Generation of Invalidation Completion Events
	6.5.2.10 Hardware Handling of Queued Invalidation Interface Errors
	6.5.2.11 Queued Invalidation Ordering Considerations

	6.5.3 IOTLB Invalidation Considerations
	6.5.3.1 Implicit Invalidation on Page Requests
	6.5.3.2 Caching Fractured Translations
	6.5.3.3 Guidance to Software for Invalidations
	6.5.3.4 Optional Invalidation
	6.5.3.5 Delayed Invalidation

	6.5.4 Draining of Requests to Memory
	6.5.5 Interrupt Draining

	6.6 Set Root Table Pointer Operation
	6.7 Set Interrupt Remapping Table Pointer Operation
	6.8 Write Buffer Flushing
	6.9 Hardware Register Programming Considerations
	6.10 Sharing Remapping Structures Across Hardware Units

	7 Address Translation Faults
	7.1 Remapping Hardware Behavior on Faults
	7.1.1 Non-Recoverable Address Translation Faults
	7.1.2 Recoverable Address Translation Faults
	7.1.3 Fault conditions and Remapping hardware behavior for various request

	7.2 Non-Recoverable Fault Reporting
	7.2.1 Primary Fault Logging
	7.2.2 Advanced Fault Logging

	7.3 Non-Recoverable Fault Event
	7.4 Recoverable Fault Reporting
	7.4.1 Handling of Page Requests
	7.4.1.1 Page Request Descriptor

	7.5 Recoverable Fault Event
	7.6 Servicing Recoverable Faults
	7.6.1 Page Group Response Descriptor

	7.7 Page Request Ordering and Draining
	7.8 Page Group Response Ordering and Draining
	7.9 Pending Page Request Handling on Terminal Conditions
	7.10 Software Steps to Drain Page Requests & Responses
	7.11 Revoking PASIDs with Pending Page Faults

	8 BIOS Considerations
	8.1 DMA Remapping Reporting Structure
	8.2 Remapping Structure Types
	8.3 DMA Remapping Hardware Unit Definition Structure
	8.3.1 Device Scope Structure
	8.3.1.1 Reporting Scope for I/OxAPICs
	8.3.1.2 Reporting Scope for MSI Capable HPET Timer Block
	8.3.1.3 Reporting Scope for ACPI Name-space Devices
	8.3.1.4 Device Scope Example

	8.3.2 Implications for ARI
	8.3.3 Implications for SR-IOV
	8.3.4 Implications for PCI/PCI Express* Hot Plug
	8.3.5 Implications with PCI Resource Rebalancing
	8.3.6 Implications with Provisioning PCI BAR Resources

	8.4 Reserved Memory Region Reporting Structure
	8.5 Root Port ATS Capability Reporting Structure
	8.6 Remapping Hardware Static Affinity Structure
	8.7 ACPI Name-space Device Declaration Structure
	8.8 SoC Integrated Address Translation Cache reporting Structure
	8.9 Remapping Hardware Unit Hot Plug
	8.9.1 ACPI Name Space Mapping
	8.9.2 ACPI Sample Code
	8.9.3 Example Remapping Hardware Reporting Sequence

	9 Translation Structure Formats
	9.1 Root Entry
	9.2 Scalable-mode Root Entry
	9.3 Context Entry
	9.4 Scalable-Mode Context-Entry
	9.5 Scalable-Mode PASID Directory Entry
	9.6 Scalable-Mode PASID Table Entry
	9.7 First-Level Paging Entries
	9.8 Second-Level Paging Entries
	9.9 Fault Record
	9.10 Interrupt Remapping Table Entry (IRTE) for Remapped Interrupts
	9.11 Interrupt Remapping Table Entry (IRTE) for Posted Interrupts
	9.12 Posted Interrupt Descriptor (PID)

	10 Register Descriptions
	10.1 Register Location
	10.2 Software Access to Registers
	10.3 Register Attributes
	10.4 Register Descriptions
	10.4.1 Version Register
	10.4.2 Capability Register
	10.4.3 Extended Capability Register
	10.4.4 Global Command Register
	10.4.5 Global Status Register
	10.4.6 Root Table Address Register
	10.4.7 Context Command Register
	10.4.8 IOTLB Registers
	10.4.8.1 IOTLB Invalidate Register
	10.4.8.2 Invalidate Address Register

	10.4.9 Fault Status Register
	10.4.10 Fault Event Control Register
	10.4.11 Fault Event Data Register
	10.4.12 Fault Event Address Register
	10.4.13 Fault Event Upper Address Register
	10.4.14 Fault Recording Registers [n]
	10.4.15 Advanced Fault Log Register
	10.4.16 Protected Memory Enable Register
	10.4.17 Protected Low-Memory Base Register
	10.4.18 Protected Low-Memory Limit Register
	10.4.19 Protected High-Memory Base Register
	10.4.20 Protected High-Memory Limit Register
	10.4.21 Invalidation Queue Head Register
	10.4.22 Invalidation Queue Tail Register
	10.4.23 Invalidation Queue Address Register
	10.4.24 Invalidation Completion Status Register
	10.4.25 Invalidation Event Control Register
	10.4.26 Invalidation Event Data Register
	10.4.27 Invalidation Event Address Register
	10.4.28 Invalidation Event Upper Address Register
	10.4.29 Invalidation Queue Error Record Register
	10.4.30 Interrupt Remapping Table Address Register
	10.4.31 Page Request Queue Head Register
	10.4.32 Page Request Queue Tail Register
	10.4.33 Page Request Queue Address Register
	10.4.34 Page Request Status Register
	10.4.35 Page Request Event Control Register
	10.4.36 Page Request Event Data Register
	10.4.37 Page Request Event Address Register
	10.4.38 Page Request Event Upper Address Register
	10.4.39 MTRR Capability Register
	10.4.40 MTRR Default Type Register
	10.4.41 Fixed-Range MTRRs
	10.4.42 Variable-Range MTRRs
	10.4.43 Virtual Command Register
	10.4.44 Virtual Command Extended Operand Register
	10.4.45 Virtual Command Response Register
	10.4.46 Virtual Command Capability Register

	Appendix A Snoop and Memory Type for Various Structures

