
Write Combining Memory
Implementation Guidelines

November 1998

Order Number: 244422-001

Write Combining Memory Implementation Guidelines

2

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Pentium® processor with MMX™ technology may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be

obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com

Copyright © Intel Corporation 1998.

* Third-party brands and names are the property of their respective owners.

Write Combining Memory Implementation Guidelines

3

Table of Contents

WHY SHOULD I READ THIS PAPER?..4

INTRODUCTION..4

GRAPHICS PERFORMANCE ON P6 FAMILY PROCESSOR4

WRITE COMBINING ..5

WC PERFORMANCE GAIN EXPECTATIONS ..7

WC DEPLOYMENT STRATEGY ...7

HARDWARE DESIGNING FOR WC..11

Graphics Accelerators(GA).. 11

Intel Recommended Graphics Accelerator Architectures .. 13

2D GA Specific Considerations .. 14

Processor - Graphics Accelerator Synchronization... 15

Future Graphics Accelerators.. 16

WC INITIALIZATION EXAMPLES ...16

TEST SYSTEM CONFIGURATION ...17

Write Combining Memory Implementation Guidelines

4

WHY SHOULD I READ THIS PAPER?
If you are someone who cares about graphics performance in a system based on the P6 family
processor (NOTE: Through out this document, P6 family processor is used to refer to
Pentium® II processor, Pentium Pro processor, Intel® Celeron processor and Pentium II
Xeon processor), then this document is important reading. It is specifically targeted at IHV’s
and OEM’s and articulates key hardware & software considerations needed to obtain graphics
performance in a P6 family processor system. The key focus of this document is on PCI-based
2D and 3D graphics accelerators.

The dynamic execution architecture introduced with the Pentium Pro processor offers
unprecedented performance levels for Intel Architecture (IA) software. However, obtaining
commensurate graphics I/O performance levels requires clear understanding and use of the
processors WC (write-combining) technology. This document will explain WC technology
basics as well as key considerations for how you should implement it in your HW & SW.
Properly implemented, WC technology enables the P6 family processor to achieve graphics I/O
performance unachievable with the Pentium Processor.

As P6 family processors volume
continue to ramp, P6 family processors
graphics performance and benchmarks
will increase in their use and visibility.
Please read this document carefully and
ensure that you are using WC
technology to get optimized graphics
performance - and to ensure that your
graphics systems and subsystems remain
competitive. OEMs are aware of the
performance they can achieve with WC
enabled graphics controllers, and will
demand that level of performance.

INTRODUCTION
This document provides technical and
strategic details to enable graphics
controller vendors to take advantage of
the performance gains provided by the
P6 family processor WC memory type.
The WC memory improves the
processor write performance by
combining the individual writes that a processor may make to a particular memory region (like
a video controllers frame buffer) into a burst write containing many aggregated individual
writes. It is easy to see the performance advantages of WC when for example we change a
processor that writes 32 pixels to a frame buffer via 32 individual bus transactions into a
processor which writes all 32 pixels at the same time with little to no incremental transaction
overhead. However, WC is not naturally compatible with all graphics controller designs
particularly those with FIFO based interfaces. This document also outlines a graphics
controller interface that is WC compatible and is based on a memory mapped register interface,
possibly double buffered for the best performance.

GRAPHICS PERFORMANCE ON P6 FAMILY PROCESSOR
The bus architecture of the P6 family processor is optimized for burst performance. This allows
the processor to achieve a very high memory bandwidth. Since graphics writes from the

Processor/System
Configuration

Typical
Bandwidth(

MB/s)

Processor Writes to UC/PCI
memory

8

Processor Writes to UC/PCI
memory with PCI posting
enabled

20

Processor Writes to WC/PCI
memory without PCI posting
enabled

40

Processor Writes to WC/PCI
memory with PCI posting
enabled

100+

Table 1. UC = UnCachable memory,
WC = Write Combining memory.
See system configuration data at end.

Write Combining Memory Implementation Guidelines

5

processor are most often pixel writes and as such tend to be 8-bit, 16-bit or 32-bit quantities
rather than full cache lines, a processor would normally be unable to run burst cycles for
graphics operations. In previous Intel Architecture processors, like the Pentium processor,
graphics-like data writes have been sent to the system bus and have been grouped or combined
into burst writes in the chip set. The uncached transaction performance characteristics of the P6
family processor implementation have made that architectural model less effective. Because of
this, the P6 family processor was designed with a new caching method, or memory type, that
allows internal buffers of the processor to be used to combine smaller (or partial) writes
automatically into larger burstable cache line writes. The table above shows typical bandwidth
results for Pentium Pro processor system with differing configurations varying from 8MB/s
with all tuning options disabled through to sequential WC memory writes which can saturate a
33MHz PCI subsystem. These performance numbers could be contrasted with Pentium
processor, 430 PCIset uncached PCI performance of ~70MB/s. Cache line like bursts to
graphics space then have the potential for being combined into even longer bursts by the chip
set. To further enhance graphics performance, the 82450/82440 PCIsets were designed for the
Pentium Pro processor with features such as Outbound Posting (OBP), Burst Write Assembly
and the ability to run Memory Write Invalidate PCI bus commands.

For applications to harness the maximum performance of the P6 family processor it is essential
that operating system and driver software allow the system bus to be utilized, as the initial
architecture design intended.

WRITE COMBINING
Once a memory region has been defined as having the WC memory type, accesses into the
memory region will be subject to the architectural definition of WC:

WC is a weakly ordered memory type. System memory locations are not
cached and coherency is not enforced by the processor’s bus coherency
protocol. Speculative reads are allowed. Writes may be delayed and
combined in the write combining buffer to reduce memory accesses..

What does this really mean? Writes to WC memory are not cached in the typical sense of the
word cached. They are delayed in an internal buffer that is separate from the internal L1 and
L2 caches. The buffer is not snooped and thus does not provide data coherency. The write
buffering is done to allow software a small window of time to supply more modified data to the
buffer while remaining as non-intrusive to software as possible. The size of the buffer is not
defined in the architectural statement above. The Pentium Pro processor and Pentium II
processor implement a 32 byte buffer. The size of this buffer was chosen by implementation
convenience rather than by performance optimization. The buffer size optimization process
may occur in a future generation of the P6 family processor and so software should not rely
upon the current 32 byte WC buffer size or the existence of just a single concurrent buffer. The
WC buffering of writes has another facet, data is also collapsed e.g. multiple writes to the same
location will leave the last data written in the location and the other writes may be lost.

So if the data is delayed inside the processor how do pixels get to the screen where I want
them? On the current P6 family processors, once software writes to a region of memory that is
addressed outside of the range of the current 32byte buffer the data in the existing buffers will
automatically get forwarded to the system bus and written to memory. Therefore software that
writes more than one 32byte buffers worth of data will ensure that the data from the first
buffers address range is forwarded to memory. The last buffer written in the sequence may be
delayed by the processor a little longer unless deliberately propagated to memory by software.
The main message here is that despite the fact that data is delayed in the processor the natural
software operations of moving data will cause the data in the WC buffers to be written to
memory. A caution at this stage: Software developers should not rely on the fact that there is
only one active WC buffer at a time. If software cares about data being delayed developers
must deliberately empty the WC buffers and not assume the hardware will. The WC buffer is

Write Combining Memory Implementation Guidelines

6

also propagated to memory with the occurrence of a range of external events, a subset of which
is listed below. In the event that pixels are being written to a linear frame buffer it is worth
noting that there may be a small number of them delayed in the last WC buffer, assuming that
the buffer is not deliberately emptied. The maximum delay time for these pixels would be
dictated by arrival time of the next interrupt which typically occur at a higher rate than the
video frame refresh rate. At worst the missing pixels would be presented to the screen at the
next frame refresh.

What does the “buffer is propagated to memory mean”? Once the processor has started to
move the data in the WC buffer it must make a bus transaction style decision based on how
much of the buffer contains valid data. If the buffer is full e.g. all 32 bytes are valid, the
processor will execute a burst write transaction on the bus that will result in all 32 bytes being
transmitted on the data bus in 4 bus clocks. This burst can be repeated without any clocks delay
i.e. sustained data at a rate of 32bytes of data every 4 bus clocks. . If one or more of the WC
buffer’s bytes are invalid e.g. have not been written by software, then the processor will start to
move the data to memory using “partial write” transactions on the system bus. There will be a
maximum of 4 partial write transactions for each WC buffer sent to memory. Each partial write
will take one data bus clock and may contain up to 8 bytes (one chunk) of information, the
validity of each byte in the chunk being indicated by the appropriate byte enable signals for the
transaction.

Will the WC buffer be propagated to memory with the same predictable data order each
time? Generically no. Once the WC buffer contents have started to be propagated to memory
the data is subject to the weak ordering semantics of it’s definition. Ordering is not maintained
between the successive allocation/deallocation of WC buffers e.g. writes to WC buffer 1
followed by writes to WC buffer 2 may appear as buffer 2 followed by buffer 1 on the system
bus. When a WC buffer is propagated to memory as partial writes there is no guaranteed
ordering between successive partial writes e.g. partial write for chunk 2 may appear on the bus
before partial write for chunk 1 or visa-versa.

What system bus ordering is guaranteed for WC? The only elements of WC propagation to
the system bus that are guaranteed are those provided by transaction atomicity. On the P6
family processor a completely full WC buffer will always be propagated as a single burst
transaction. In a WC buffer propagation where the data will be propagated as partials, all data
contained in the same chunk (0 mod 8 aligned) will be propagated simultaneously.

How do I deliberately propagate the WC buffer to system memory? The architectural
memory model of WC was defined such that a UC load or store would operate as a double-
sided fencing operation. This implies that once a UC store is issued by the processor all
preceding WC activity is complete and no following WC activity has yet started. Many other
events in the processor are architecturally defined such that they cause the WC buffers to be
deallocated internally and propagated to the bus. For a full list refer to chapter 11 of the
Pentium® Pro Processor Developers Guide Volume 3 (242692-001) A subset of the list is:

• A WBINVD instruction is executed.

• The FLUSH pin is activated.

• Whenever the processor detects a hardware context switch, via a write to CR3.

• Before every INPUT/OUTPUT instruction.

• Before every interrupt is serviced.

• Before the IRET instruction.

• Before locked atomic RMW instructions.

• Before any UC memory type load or store.

Write Combining Memory Implementation Guidelines

7

WC PERFORMANCE GAIN EXPECTATIONS
The amount of performance increase derived from a WC implementation will vary from a
lower bound of 0 to an unknown upperbound. Intel has observed an actual performance
increase of over 1000%. The 1000% number will not be typical however. There are a number
of issues that will determine what level of performance increase will be seen. These include,
the graphics controller architecture, the OS, and the mechanism the application uses to place
pixels on the screen. First, today’s graphics controllers must be able to support processor
generated WC transfers directly to the linear frame buffer. Second depending upon the video
requirements of the application there may not exist a bottle neck that is slowing graphics
performance at the interface of the P6 family processor and the PCI graphics device e.g. the
applications compute to video display ratio is very high. Any given graphics controller may
show a wide range of performance variation with various different OS implementations. This is
because in some cases the application is accessing the video subsystem by commands through
the API that are accelerated by the graphics controller. In this case all of the writes would be
occurring to an area of the graphics controller that requires strong memory ordering, and
therefore no performance increase would be given by WC. In the same system, there may exist
another application that is written such that it directly interacts with the framebuffer. In this
case a significant improvement would be observed because the linear frame buffer is an area of
memory that can be mapped as a WC region. Different OS vendors have provided different
graphics architecture strategies over the years that will also demonstrate this differing behavior.

Graphics performance should improve rapidly as graphics controller, and OS vendors take
advantage of the dynamic execution architecture of Intel processors. Industry standard
benchmarks, today, do not reflect one significant attribute that a WC enabled graphics
controller will bring. This attribute is lower processor utilization at potentially the same or
higher graphics performance. Even in systems where there is no bottleneck from the processor
to the graphics controller that directly impacts graphics performance, as in the case where the
CPU can supply data to the GC faster than it can consume the data already, system
performance may still improve. This is because the graphics task is consuming less of the
processor and system bus bandwidth. With multitasking OSs other useful work is possible with
that incremental processor and bus bandwidth. If the graphics controller operates correctly with
WC enabled, there should be no situation where performance would ever deteriorate below that
of the UC performance of the controller.

WC DEPLOYMENT STRATEGY
The fundamental goal in deploying a new feature like WC memory type throughout the PC
industry is the development of a usage architecture that guarantees continuous and successful
operation without user intervention, such as in a Plug & Play like model.

It is NOT possible to simply enable the WC memory type with all graphics controllers. WC is a
“weakly ordered” memory type that removes the guaranteed order of stored data arrival.
Strongly ordered data delivery is a concept upon which the hardware of many of today’s
graphics controllers are reliant. There are memory ranges in some existing graphics controllers
where weakly ordered data has no negative effect on functionality. After the video controller
hardware has been determined to be compatible with the “weakly ordered” WC memory type,
the following steps are required.

1. Determine the base address and size of the linear frame buffer in the memory range
allocated to the graphics subsystem.

2. Search the MTRRs (0 through 5) to determine the first unused one and also to guarantee
that this range has not already been defined WC (although there is no jeopardy in defining
the same range twice, it does waste MTRRs.)

Write Combining Memory Implementation Guidelines

8

3. Load the base address of the frame buffer into the Physical Base register of the MTRR and
calculate the Physical Mask and load it into the appropriate register in the MTRR and
enable the MTRR with the WC memory type.

There are eight MTRR registers in the Pentium Pro processor and Pentium II processor. These
registers determine the processor and bus behavior for each address used or accessed by the
processor. These registers are a global resource shared by all elements of software. In the future
an operating system will need to arbitrate access to the registers as they are requested by
different device drivers and if necessary reconfigure the system to maximize resource
coverage. Intel has documented the upper two of the eight total register pairs as being reserved
for operating system usage. The initial 6 register pairs are open to system BIOS configuration.
Refer to the Pentium® Pro Processor Developers Guide Volume 3, Chapter 11 section 11 for
details on the MTRRs and their initialization. This chapter also includes an example memory
mapping on page 11-20. Further MTRR initialization examples are included at the end of this
paper.

√ Note: Any software attempting to directly configure a MTRR pair must start a scan from
MTRRPhysMask[0] through to MTRRPhysMask[5] and select the first entry that has the enable
flag (bit 11) clear on each processor installed in the system. It is not possible to assume that
any given register pair is unused or available without first testing their validity. MTRRs must
remain uniform across all processors installed in a system.

There is a broad range of potential WC platform support and enabling models. The following
list is prioritized in terms of implementation suitability:

1. Operating System & Video Driver Support

2. System BIOS Support

3. Direct Video Driver Support

4. Separately Executed Configuration Utility

5. Video BIOS Support

Operating System & Video Driver Support

 This is the Intel preferred solution. Intel has been working with Operating System vendors to
develop WC based application programming interfaces (APIs) that allow the video driver
developer to have the MTRRs initialized and managed by the OS. This approach removes the
need for multiple WC intelligent video drivers from the IHV, with the WC intelligence being
provided by the OS. Obviously this strategy is only operable for new OS’s or updates to
existing operating systems. The first operating system to deliver a WC capable API was
Windows*NT(4.0).

WindowsNT V4.0

To enable WC memory from the video driver: In the adapter specific miniport driver
the call to IOCTL_VIDEO_MAP_VIDEO_MEMORY should have the InIoSpace
flags set to include at least the following:

VIDEO_MEMORY_SPACE_MEMORY | VIDEO_MEMORY_SPACE_P6CACHE

such that when the calls are made to:

VideoPortMapMemory() and to
VideoPortGetDeviceBase()

the InIoSpace flags are propagated through.

Write Combining Memory Implementation Guidelines

9

Note: For WindowsNT 4.0 the only supported WC, MTRR, initialization method
is via the operating system based API. Direct video driver manipulation of the
MTRR registers is not supported.

Windows*95

Microsoft has defined a set of APIs that will allow drivers to initialize and utilize the
WC memory type. This API set are planned to be made available in a future version of
Windows95.

API Name Routine Description Arguments Return Value

_MTRR_Get_Version Get MTRR support
version.

None STC if no support. CLC if
supported

_MTRRSetPhysicalCach
eTypeRange

This function sets a
physical range to a
particular cache type. If
the system does not
support setting cache
policies based on
physical ranges, no
action is taken.

PhysicalAddress
The starting
address of the
range being set

NumberOfBytes
The length, in
bytes, of the range
being set

CacheType
The caching type
for which the
physical range is to
be set.

STATUS_SUCCESS If success,
the cache attributes of the
physical range have been set (or
feature not supported or not yet
initialized).

STATUS_NO_SUCH_DEVICE
If FrameBuffer type is requested
and is not supported.

STATUS_UNSUCCESSFUL/ST
ATUS_INTERNAL_ERROR
Requested Physical Range is
below 1M or other error.

Other Operating Systems

Other operating systems will be handled in a case by case basis where each have the
opportunity to implement one of the above listed options. System OEMs are strongly
encouraged to engage with their sources for video controllers, boards and drivers with
a goal of acquiring WC capable solutions. As an interim solution OEMs could
implement their own system BIOS based solutions, see system BIOS support section
below.

System BIOS Support

Providing WC support via the System BIOS is a viable process for a restricted number
of video cards i.e. not a general purpose solution. The system OEM would need to
specifically identify the presence of the video card or group of cards for which they
know it is safe to enable WC and set up the MTRRs accordingly. This model suffers

Write Combining Memory Implementation Guidelines

10

from the general LFB relocation and MTRR management issues raised above but still
forms the basis for a solution under direct OEM control. OEMs should be aware that
they must first detect the graphics controller that is in the system before setting any
MTRRs for the frame buffer. If BIOS senses an unknown graphics controller e.g. one
inserted by a user after system shipment, there is little chance that the second graphics
controller would map to the same frame buffer area and WC should not be configured.
See the √ note above.

 Direct Video Driver Support

 It would be possible for video device drivers, executing at a privilege level of 0, to detect
the presence of the P6 family processor and to enable WC memory type for the video card.
The primary disadvantages of this mechanism are that processor sensitive device drivers
are required and that the operating system has no knowledge that performing a LFB
relocation has other side effects. This option has the advantage that a properly
implemented solution will allow a graphics controller IHV to supply WC enabled driver
solutions for any OS the user has chosen. It will almost certainly be necessary for the
graphics controller IHV to support users of OS that have been superseded by their
manufacturer but are still in use in some environments. See the √ note above.

Windows*3.1/DOS

Intel knows of no plans to update Windows3.1, for this problem, in the future. DOS
does not use a video driver concept that lends itself as a base for WC support. For
Windows3.1 the preferred implementation mechanism would be via a video driver
update (#3 above) with the IHV specific configuration application (#4 above) as a
secondary choice. The IHV specific, configuration application is seemingly the only
choice for DOS users. Intel will work with the video IHVs by providing them access
to a parameterless configuration utility in source and binary form that will be easily
modifiable by the IHV to tailor it to their requirements.

 Separately Executed Configuration Utility

 It would be possible to implement WC support via an, IHV specific, configuration application.
This is a viable alternative when the OS does not have native support for WC. See the
Windows3.1/DOS section above.

 Video BIOS Support

 The controller Video BIOS is technically a potential point of WC support. Practically,
supporting WC in a video BIOS would require an update to all existing hardware in service and
as such has not been seriously considered as a viable alternative.

In all of the above listed solutions, it will be necessary for the OEM and the graphics controller
vendor to work closely together in identifying the graphics controllers that support WC and the
mechanism for positive identification of the correct address range for each physical memory
size and graphics mode.

AD HOC Solutions

There are software utilities available on bulletin boards and the Internet that may or may not
work for a particular graphics controller. Since these software utilities have not been validated
by either Intel or specific system suppliers, Intel is strongly discouraging the use of these
programs, encouraging the users to instead contact their OEM or graphics controller IHV for a
validated solution.

Paged Video Region(A0000h)

There are numerous applications that still access the video subsystem through the 128KB
region mapped at A0000h and use this window to page through a linear frame buffer positioned

Write Combining Memory Implementation Guidelines

11

in high memory. Given that the video controller is normally capable of being used in
conjunction with WC memory types the paged video region could be mapped as a WC memory
type also. This is not supported in any of the operating systems developing WC API support
nor in the application developed by Intel. The intentional lack of WC support for this video
region stems from the complexities of maintaining compatibility with previous generations of
hardware and software e.g. When strict VGA compatibility is required WC memory should
NOT be mapped into this space. VGA compatibility requires in-order completion of writes that
trigger and control side effects within the VGA subsystem. If the video controller is operated
out of VGA compatible mode then WC mapping is a possibility. This complication restricts the
WC implementation model for the paged video region to specific video drivers or a separate
IHV specific configuration application ONLY.

HARDWARE DESIGNING FOR WC

Graphics Accelerators(GA)

This section addresses the design characteristics of Graphics Accelerators without
distinguishing between 2D or 3D architectures. 2D architectures will be addressed specifically
later. The 2D and 3D controllers perform very similar processes and can easily be treated for
the most part as having a common system architecture. The GA is essentially a coprocessor for
performing graphics operations. In either a 2D or 3D environment, the program generates
graphics by supplying geometry that describes the scene to be drawn to some API. For a simple
linear frame buffer based card, the processor does all of the work to turn the geometry into
finished pixels, and writes the finished pixels into the linear frame buffer region or display
memory on a simplistic graphics card. The primary function of the simple graphics card is to
turn the contents of this display memory into video so it can be displayed on a monitor.

For a GA , the processor performs some numerical calculations (FP or Integer) on the geometry
given to the API, then writes the results of these calculations (still a geometric description of
what is to be drawn, but now in a card specific format) to the GA, and it is the GA (not the
processor) which renders the geometry to finished pixels that are then stored into the display
memory. Unlike a simple graphics controller, the processor will rarely interact directly with the
display memory on the GA, all changes to the screen are accomplished via the command
protocol.

Current high performance GA use one of three I/O models:

1. FIFO (Figure 1)

2. Memory mapped control
registers (Figure 2)

3. Bus Mastering model
(Figure 3)

1. FIFO based models were
once very common for high
performance GA because the
coding efficiency of the inner
loops in a FIFO based I/O
model, coupled with data only
moving once across the
system bus (compared to twice in a Bus Master Model) gives what designers feel is the highest
performing most scaleable implementation. The byte stream from the processor is written to a
single memory address. With this type of GA subsystem software synchronization between the
processor and the GA is an area that has always required careful attention. Optimum

Figure 1. FIFO based, Accelerator

High Performance GA

 Single Memory Address FIFO

Frame
Buffer

3D
Drawin
Engine

Single
DWORD

wide FIFO

PCI set
Memory

Processor

System
Memory

Write Combining Memory Implementation Guidelines

12

synchronization is required so that the execution performance of both processor and GA is
maintained and not wasted through inefficient polling techniques or hardware retries. Pure
FIFO based models require strict in order memory semantics which are only possible on a P6
family processor when using the UnCached (UC) memory type. I/O to a FIFO requires a UC
memory type and as such will not allow effective use of the P6 family processor bus bandwidth
nor will it yield the best compute capability. Intel recommends that IHV’s who have FIFO
based GAs either redesign them to be bus masters or ensure that they are not integrated
in P6 family processor based systems.

2. The memory mapped
control register I/O model is
similar to the FIFO based
model, however, instead of
writing a byte stream to a
single memory address,
different registers are mapped
to different memory locations.
The device driver writer
modifies the contents of
specific registers to program
the card for the graphics
operation desired and then
writes a value to a specific
register to initiate the
command. In this
programming model data can
be sent to the accelerator in
any order as long as all
registers are set to the correct
values before the start command is sent to the accelerator. This architectural model may be
able to utilize and gain the performance advantage of WC memory. If accelerator registers are
contiguous in memory WC should be implemented and there should be a significant,
throughput, performance gain. It is important for the video driver to ensure WC buffer
serialization is complete before signaling the card that drawing should commence. As with the
FIFO model careful attention to GA/processor synchronization is required.

3. Bus Mastering model: The
application creates a high level
command execute buffer,
resident in main system
memory, that the video driver
converts into a graphics
controller specific
command/data stream. When
the buffers are either full or
reach some high water mark, a
command is sent to the
accelerator instructing its
DMA engine to transfer the
buffer to the GA card and
execute its contents. While this
transfer and execution is taking
place, the processor is free to
concurrently build another
execute buffer in main system
memory overlapping the
construction of one set of

Figure 2. Memory mapped control registers based, Accelerator

Figure 3. Bus Mastering based, Accelerator

PCI set
Memory

Controller

PCI set
Memory

Controller

Processor

Processor

System
Memory

System
Memory

Engine
Registers

DMA
Engine

Drawing
Engine

Drawing
Engine

Frame
Buffer

Frame
Buffer

Write Combining Memory Implementation Guidelines

13

commands with the delivery and execution of another. Synchronization between processor and
GA is again important however given the ability to increase the relative buffer sizes can be
reduced in significance. Bus mastering in this way ensures that data is streamed to the GA in
sequential order. It should be noted that adding bus mastering capabilities to a GA with a FIFO
interface would be an effective way of ensuring an in order data flow as is required for the
FIFO design. Bus mastering GAs are currently the highest performing of the I/O models noted
above, this is possibly due to the lack of WC support in today’s controllers.

Bus mastering across the P6 family processor bus increases the bandwidth requirements of the
system bus and the memory system. If the system memory buffers are mapped as Write
Back(WB) memory type, data has the potential to flow across the system bus many times:

• From the application buffer to the processor when the GA specific execute buffer is first
written.

• From the processor cache to memory as the GA specific execute buffer is eventually
evicted

• From the memory system to the accelerator during the bus mastering transfer.

It is possible the data will only flow twice if it is still modified or exclusive in the processor
cache during the bus mastering transfer, but studies show this case to occur infrequently. As
triangle rates increase this increased burden on the memory system and system bus will limit
the data access rates and therefore execution capabilities of the processors, preventing them
from accessing the instructions and data they require to perform non-graphics related work. In
FIFO and control register models data only flows once across the system bus in all cases,
easing the burden on the system bus and memory system.

Intel Recommended Graphics Accelerator Architectures
As system technology develops the architectural design of add-in modules will need to change
to provide a high performance, correctly balanced system. This section provides a high level
roadmap, identified by system technologies, for add-in module design.

Pentium Pro processor/440FX PCIset time period

This is basically a recommendation for today’s technology. Current graphics accelerators do
not uniformly support the WC memory type due to their FIFO architecture. The
recommendation for this time period is for graphics controller architectures to make the move
to the bus mastering model with both application and driver specific execute buffers resident in
normal system memory.

Pentium II Processor card/440LX PCIset time period

The 440LX introduces AGP as a new technology which will provide a mechanism for the bus
mastering model to operate with a slightly lower bandwidth requirement from main system
bus. AGP will allow the mapping of a portion of main system memory as WC memory type
and provide the GA access to this memory space via the GART. The GART/WC element of
system memory will be used for texture data but could be used to host the GA specific execute
buffers required in the bus mastering model. In this environment the data flow would then be:

1. Application creates command buffer, in WB system memory, and hands the
buffer off to the graphics driver

2. Graphics driver translates the system memory resident command buffer into the
GART/WC resident GA specific execute buffer and initiates the DMA process.

Write Combining Memory Implementation Guidelines

14

• Once the data is resident in GART/WC space the snoop traffic that would be
associated with a DMA read of the graphics specific execute buffer resident in
WB memory space is eliminated

• Cache efficieny reduction associated with multiple buffers resident in WB
memory are reduced.

• Bus mastering scatter gather functionality that would normally be required may
be provided by the GART interface thus reducing GA complexity.

Future Processor card/Future chipset time period

Once the next generation of both processor and chipset are available increases in bus
bandwidth and the processors computational capabilities will show benefits from a true read
once write once mechanism for buffer conversion. At this stage migration of the controller
specific execute buffer from GART/WC memory to the GA’s own memory space should be
completed. This will allow the graphics driver to read the application buffer in WB system
memory and write the controller specific buffer in WC memory on the GA itself. This would
require the minimum of system and I/O bus bandwidth and allow for scaleable graphics
architectures. See the Processor - Graphics Accelerator Synchronization section below for
implementation guidelines.

2D GA Specific Considerations
The primary, system
visible, difference between
2D and 3D GA’s is the
amount of data that must
pass between the processor
and the GA per drawing
command. The 2D
commands require
approximately 8 DWORDS
to sent from the processor
to the GA. The 3D
commands may require
more than three times that
number. The implication
here is that in a bus
mastering architecture the
initialization overhead of 2D is >3X that of 3D. Based on this data and the fact that a WC
buffer is 8 DWORDS in length, Intel believes that a 2D GA would be best implemented with a
WC capable front end. This front end would look like an 8 DWORD communication buffer in
a WC mapped memory space. Once all 8 DWORDs of the buffer have been written they could
be passed sequentially through the existing FIFO design. The driver should be written to ensure
that the WC buffer is written without pre-emption and therefore would maintain the ordering
required.

Figure 4. WC Capable, 2D Accelerator

Frame
Buffer

2D GA Single
DWORD
wide
FIFO

Processor

PCI set
Memory
Controller

System
Memory

Write Combining Memory Implementation Guidelines

15

Processor - Graphics Accelerator Synchronization
 Processor to GA synchronization
is a critical area for attention
during the design phase for both
the hardware and driver software
of a graphics subsystem. It is
clear that the smaller the
communication buffers used to
communicate with the GA the
more often software
synchronization will need to
occur and therefore the more
opportunity for improving
performance with the correct
synchronization algorithm. The
days when simple polling were
sufficient are gone as is the
luxury of having an interrupt deliver an appropriate message. Interrupts can be a very dramatic
performance loss to a processor when delivered with a high frequency, as would be required
from a small buffer based graphics subsystem. Any attempt to allow the I/O bus to handle
“excess data” with the bus retry mechanism is a good way to reduce overall system throughput
and is a poor substitute for efficient design. It is clear that what is required is a synchronization
mechanism that not only indicates that the I/O device is busy but also how busy it is e.g. how
much buffer space is left for processor communication. Intel believes that the best interface for
a graphics controller would be based on a circular communication buffer structure with a
producer/consumer pointer protocol for synchronization without locking. This requires:

1. A reasonable size circular command/data buffer that is memory mapped and eventually,
(for future designs would be in the graphics controller memory domain) useable with the
WC memory type. The initial implementation of this recommendation would use a system
memory resident buffer structure. The processor stores a combination of sequential
graphics controller commands and data into this buffer.

2. A pointer (actually a displacement) into the command/data buffer. Pointer NEXT_GC is
the next data/command to be handled by graphics controller. The graphics controller
advances this as it processes data/commands. NEXT_GC can be read by the device driver,
executing on the processor, but not written.

3. A second pointer LAST_ENTRY is the address+1 of last byte of data/command written to
the buffer for the graphics controller to process. This is pointer is updated by the device
driver after writing a sequence of commands and data into the buffer. This pointer resides
in a UC memory space.

This mechanism is detailed in figure 5. The operating sequence is: The device driver reads
control registers (LAST_ENTRY and NEXT_GC). If there is enough room, between these two
pointers, for the pending command/data sequence that requires to be processed the device
driver writes the command/data to the buffer. The device driver then updates the
LAST_ENTRY pointer (this is done as a UC STORE). The latter flushes the on-chip USWC
buffer before doing the UC-store ensuring that the WC based command/data buffer is updated
and the processor based WC buffer is emptied. Copies of LAST_ENTRY and NEXT_GC are
also kept by the device driver in regular memory to avoid unnecessary reads to the control
register.

Figure 5. GC Synchronization Buffer

LAST ENTRY

NEXT_GC

Yet to be
completed GC
command/Data

Empty buffer
space or

completed
Command/Data

Write Combining Memory Implementation Guidelines

16

Future Graphics Accelerators
The primary considerations for the design of a
WC capable graphics accelerators are:

1. Design a GC interface that can accept full
speed I/O bus transactions without stalling.

Have the Linear Frame Buffer and any
graphics controller specific command/execute
buffers located in separately decoded regions
as in Figure 6.

2. Have each of the separately addressable
regions individually assigned memory
space allocations at boot time by the
video/system BIOS. Do not decode a
single block of memory that contains both
frame buffer and controller registers/buffers.

1. Design the graphics controller
buffers to be accessible with no

ordering requirements.
Implementing a separately
addressable trigger register (as in
Figure 7.) will remove the need
for video drivers to explicitly
flush the WC buffers.

2. Ensure that the graphics controller
command/execute buffers are
sufficiently large or the GA needs
to process data as fast as the bus
can send it so that concurrency is
maintained between the processor and the graphics subsystem.

3. Support bus mastering to and from all of the different memory spaces, system memory,
linear frame buffer, GART etc.

NOTE: Hardware should support a minimum granularity and separation for differing memory
types of 4Mbytes for maximum flexibility given the presence of 4MB pages.

By following these guidelines the different memory type requirements of the linear frame
buffer and the graphics controller registers can be recognized by the video drivers and each
assigned the correct memory type in the P6 family processor. This will result in the highest
possible graphics accelerator foundation for the P6 family processor architecture.

WC INITIALIZATION EXAMPLES
This section only provides example values for MTTR initialization. Driver writers should
reference the Pentium® Pro Processor Developers Guide Volume 3 for the full details on how
to detect the presence of, availability and initialization of MTRRs in a potentially
multiprocessor based system.

A LFB located at A0000000h, 4MBytes in length and mapped WC:

MTRRPhysBasen = 0A0000001h

Figure 6. Separate LFB and Accelerator
Registers

Figure 7. Separate LFB, Accelerator Registers and Trigger
register

Accelerator
Control

command/data
Buffers

Address Y-WC

Linear Frame
Buffer

Address X-WC

PCI Bus

Trigger
Register
Address
Z-UC

Accelerator
Control

command/data
Buffers

Address Y

Linear
Frame
Buffer

Address X
WC

PCI Bus

Write Combining Memory Implementation Guidelines

17

MTRRPhysMaskn = FFFC00800h

A LFB located at FD000000h, 8MBytes in length and mapped WC:

MTRRPhysBasen = 0FD000001h
MTRRPhysMaskn = FFF800800h

A LFB located at 80000000h, 32MBytes in length and mapped WC:

MTRRPhysBasen = 080000001h
MTRRPhysMaskn = FFE000800h

A LFB located at FD000000h, 8Kbytes in length and mapped WC:
Note This mapping should not be requested for processor steppings prior to a CPUID return
value greater than 617h.

MTRRPhysBasen = 0FD000001h
MTRRPhysMaskn = FFFFFE800h

TEST SYSTEM CONFIGURATION
The performance measurements noted in table 1 above were measured on the following system
configuration

Intel Alder systemboard, 200MHz Pentium Pro processor with 256Kbyte L2 cache.

64Mbytes main system memory
Adaptec 7880 SCSI subsystem
Seagate Barracuda 1G HDD
Matrox Millennium MGA graphics controller
3DFx Obsidian 2200 3D accelerator
WindowsNT 3.51

The video bandwidth measurement software, developed by Intel, BW32L.EXE is supplied in
the attached package. The test software was run with a block size of 4Kbytes

