

Document Number: 337313-001

Managed Runtime Speculative Execution
Side Channel Mitigations
White Paper

Revision 001
June 2018

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
2 Document Number: 337313-001

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document; however,
the information reported herein is available for use in connection with the mitigation of the security vulnerabilities described.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725
or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 3

Contents

1.0 Introduction .. 5
1.1 Document audience ... 5
1.2 Document scope .. 5

2.0 General mitigations .. 7
2.1 Process isolation ... 7

3.0 Managed runtime sandboxes and specific mitigations ... 8
3.1 Short term mitigations ... 10
3.2 Bounds check bypass mitigation ... 10

3.2.1 Bounds check bypass mitigation overview .. 11
3.2.2 Mitigation through ordering instructions ... 11
3.2.3 Runtime/Host mitigation through ordering instructions 12
3.2.4 Mitigation through index or data clipping ... 13

3.3 Branch target injection mitigation .. 15
3.3.1 Indirect branch control mechanisms .. 16
3.3.2 Retpoline .. 17
3.3.3 Mitigation for processors with alternate empty RSB behavior 18
3.3.4 Example retpoline sequences.. 19
3.3.5 Runtime/Host retpoline mitigation overview .. 21
3.3.6 Linux* and GCC retpoline mitigation ... 22
3.3.7 Intel® C Compiler (ICC) retpoline mitigation.. 22
3.3.8 LLVM Clang retpoline mitigation ... 22

3.4 Speculative store bypass mitigation ... 22
3.4.1 Speculative store bypass mitigation .. 23
3.4.2 Software-based mitigations ... 23
3.4.3 Speculative Store Bypass Disable (SSBD) overview 24
3.4.4 Speculative Store Bypass Disable (SSBD) on Linux...................................... 24
3.4.5 Speculative Store Bypass Disable (SSBD) on Windows* 25

4.0 Related Intel security features and technologies ..26
4.1 Execute Disable Bit ... 26
4.2 Control flow Enforcement Technology (CET) .. 26
4.3 Protection keys .. 26
4.4 Trusted execution environments (TEE) .. 27

5.0 References ...28

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
4 Document Number: 337313-001

Revision History

Date Revision Description

Date 1.0 Initial release.

§

Introduction

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 5

1.0 Introduction

Side channel analysis methods are techniques that may allow an attacker to obtain
secret or privileged information through observing the system that they would not
normally be able to access, such as measuring microarchitectural properties about the
system. Software components, like managed runtimes that generate code—either via
Just-in-Time (JIT) or Ahead-of-Time (AOT) compilation—or code payloads that need to
be kept isolated (like applets or programs), should take measures to mitigate these
attack methods. This document focuses on mitigating the speculative execution side
channel methods bounds check bypass, branch target injection, and speculative store
bypass from the perspective of a managed runtime.

1.1 Document audience

The intended audience for this document is developers of managed runtime
environments (for example, JavaScript*, Java*, and C# runtimes). This document
provides guidance regarding the JIT and AOT compiler frameworks that exist in these
runtimes, and details how the runtime itself should be compiled if mitigation is
required. Developers of managed runtime environments should understand the risks of
speculative execution side channel attacks (https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-
Channels.pdf) and the mitigation options
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf) associated with each variant.

Because this document deals with managed runtime internal requirements, it is not
intended to provide guidance for general developers who write managed code that
runs within a managed runtime, nor is it intended for the users of those managed
runtime environments.

1.2 Document scope

The scope of this document includes intraprocess risks and mitigation suggestions for
the bounds check bypass, branch target injection, and speculative store bypass side
channel analysis methods. The key responsibility to mitigate rogue data cache load falls
upon the OS kernel (https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-
Channels.pdf). The examples and context in this document are primarily focused on
user-mode runtimes of languages such as JavaScript, Java, and C#.

The mitigations for bounds check bypass described in this document are focused on
direct mitigations for the exploits described by Google* Project Zero

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
6 Document Number: 337313-001

(https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-
side.html). This set of mitigations may grow over time as the industry response matures
through improved tooling and increased developer awareness.

Intel is also developing further documentation to describe mitigations for the class of
vulnerabilities known as side channel analysis methods. Application developers should
check https://software.intel.com/en-us/side-channel-security-support for updates on
Intel's latest recommendations for mitigating these exploits.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://software.intel.com/en-us/side-channel-security-support

General mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 7

2.0 General mitigations

Side channel analysis methods take advantage of speculative execution that may occur
within the same process address space to gain access to secrets. Secrets can be
anything that should not be known by other code modules, processes, users, etc. You
could separate secrets into different process address spaces and/or use processor-
provided security features and technologies for isolation, as described in section 4. In
general, we recommend implementing software components that belong to different
security domains in different processes. Code that belongs to different security
domains should preferably be executed in different process address spaces instead of
relying on pointer and code flow control to constrain speculative execution.

2.1 Process isolation

Sandboxed threads in managed runtimes that execute in the same process and rely on
language-based security are more susceptible to speculative execution side channel
attacks. Process isolation is the preferred mitigation for managed runtimes that can
practicably implement it. To implement process isolation, managed runtimes should
convert sandboxed threads to sandboxed processes, move secrets into separate
processes, and rely on separate address spaces for protection. For example, on a web
browser, code from different sites is assumed to belong to different security domains
and therefore needs to be in different address spaces
(https://www.chromium.org/Home/chromium-security/site-isolation).

However, this strategy could be impractical to implement in some cases. For example,
Java Platform*, Enterprise Edition (Java* EE) has a decades-long history of running
multiple threads sharing the same address space. For managed runtimes where
implementing process isolation is not feasible, you can apply the specific mitigations
described in the following sections.

https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
8 Document Number: 337313-001

3.0 Managed runtime sandboxes and specific
mitigations

A managed runtime is a software environment that simultaneously hosts one or more
distinct code payloads (for example, applets, programs, and applications). These
applications are sandboxed (logically isolated from each other) via some combination
of language constructs and runtime services. The strength of the sandbox isolation
varies depending on the particular managed runtime and how that particular managed
runtime is used.

For example, assume a Java* runtime supports Java Native Interface* (JNI), which
allows arbitrary C code to execute within the managed runtime process. This arbitrary C
code can access arbitrary addresses within the managed runtime process, which breaks
the sandbox isolation. A Java runtime might prohibit JNI, or might only allow selected,
signed code payloads that are trusted to maintain sandbox isolation to execute the C
code.

As another example, JavaScript engines should ensure that JavaScript programs from
different origins, or security domains, are isolated from one another through strong
sandbox isolation.

Figure 1: Stereotypical Sandbox Runtime Environment

Figure 1 shows an example of three classes of secret assets (privileged data or code)
that belong to different security domains that managed runtimes should protect with
sandbox isolation:

• Secret assets in a code payload.
• Secret assets in the runtime environment.
• Secret assets in the runtime host process.

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 9

This indicates that several types of attacks must be mitigated to assist with sandbox
isolation, as shown with arrows in Figure 1:

1. Code payload 2 detecting secret assets in code payload 1.
2. Code payload 3 detecting secret assets in the runtime environment
3. Code payload 4 detecting secret assets in the runtime host.

If the managed runtime provides sandbox isolation to protect secret assets within the
managed runtime, the following general conditions apply:

• Managed runtimes and JIT compilers are generally designed to not trust the
code they execute. For example, a browser executing JavaScript from an
untrustworthy origin, or security domain.

• The runtime itself generally executes within a host process (for example, a
browser) and serves one or more code payloads.

• Code payloads do not mutually trust each other.

If a managed runtime provides sandbox isolation, it should implement side-channel
mitigation techniques. Because mitigation involves some overhead, if a given managed
runtime only occasionally runs in sandbox isolation mode, managed runtime vendors
might consider developing both sandbox-capable and non-sandbox-capable release
versions of their runtime, and/or adding options that allow users to choose whether to
enable sandboxing or not. On startup, managed runtimes might automatically
determine whether sandbox isolation is needed and run the appropriate version of the
runtime.

A single application environment, like Node.js*, that only runs trusted sources is an
example of a runtime environment that you might wish to run without side-channel
mitigations. In this case, a sandbox might not be required within the single-process
address space.

Mitigations need to be applied to code executing in the same address space as the
secret data: the runtime execution engine (for example, a fast/optimizing JIT or AOT
compiler, etc.), the runtime environment itself, and the process hosting the runtime.
Note that you may also need to apply the mitigation steps outlined in this document to
any libraries used by the runtime and hosting process.

The runtime execution engine mitigations help protect code payloads from side
channel attacks by other code payloads. We outline some guidelines for how to insert
these mitigations into the runtime execution engine in Section 3.2 for bounds check
bypass and Section 3.3 for branch target injection, and 3.4 for speculative store bypass.

The runtime environment itself should include mitigations whenever sandbox isolation
is required to help protect the internal runtime state from side channel attacks by code
payloads. In general, runtime environments themselves are native applications.
Therefore, you should apply the mitigations identified in Sections 3.2, 3.3, and 3.4 of
this document to the runtime environment as well.

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
10 Document Number: 337313-001

Additionally, if any inline assembly is included in the managed runtime (for example, for
critical lock, allocation, hash, interpreter, etc.), you should analyze the inline assembly
as described in Section 3.2, Section 3.3, and Section 3.4 to determine if you need to
apply mitigations. Some managed runtimes encode these critical sequences as
compiler intermediate representation (IR) and then use the regular JIT/AOT compiler to
emit instruction set architecture (ISA) assembly. In this case, managed runtime
developers should use a high enough IR level to encode these sequences so that the IR
exercises the mitigation insertion path as it is translated into ISA assembly. For
example, if the mitigations are inserted during a mid-level IR to low level IR translation
and custom snippets are pre-encoded in low level IR, those snippets would not have
any mitigations inserted.

To complete sandbox isolation, the process that hosts the managed runtime (for
example, the browser that hosts the web runtime) should include mitigations to help
protect the host process from being attacked by code payloads. In general, these host
applications themselves are native applications. Therefore, you should apply the
mitigations outlined in Sections 3.2, 3.3, and 3.4 to the host application as well.

3.1 Short term mitigations

Developers can reduce the precision of timers available to users of the runtime
(https://www.mozilla.org/en-US/security/advisories/mfsa2018-01) as a short term
mitigation while long term mitigations are being developed. Another short term
mitigation that is worth noting is disabling JITs in cases where doing so is acceptable.
Disabling JITs reduces the freedom that attackers have to generate vulnerable code
sequences, but it is obviously not practical for some environments.

3.2 Bounds check bypass mitigation

Bounds check bypass (https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html) takes advantage of the speculative execution used
in processors to achieve high performance. To avoid the processor having to wait for
data to arrive from memory, or for previous operations to finish, the processor may
speculate as to what will be executed. If it is incorrect, the processor will discard the
wrong values and then go back and redo the computation with the correct values. At
the program level this speculation is invisible, but because instructions were
speculatively executed they might leave hints that a local malicious actor can measure,
such as which memory locations have been brought into cache.

Using the bounds check bypass method, malicious actors can use code gadgets
("confused deputy" code) to infer data values that have been used in speculative
operations. This presents a method to access data in the system cache and/or memory
that the malicious actor should not otherwise be able to read.

https://www.mozilla.org/en-US/security/advisories/mfsa2018-01
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 11

3.2.1 Bounds check bypass mitigation overview

In managed runtime languages (for example, Java, JavaScript, and C#), the runtime
automatically performs data validation, such as array bounds checks, null checks or
type checks. While Spectre variant 1 is known as the bounds check bypass vulnerability,
code sequences can potentially become data exfiltration gadgets even if there is not an
explicit array access or array bounds check. All data validation, including pointer null
checks and dynamic object type checks, using conditional branches may need
mitigation bounds check bypass. You should watch for further research about
recognizing and disrupting gadgets based on this variant. We describe several currently
known mitigation techniques in the following sections. When the managed runtime is
used in sandbox mode, the bounds check bypass mitigations need to be handled in the
interpreter, JIT compiler, and AOT compilers in the language runtime. Developers
should do any optimizations in the runtime compilers carefully to avoid inadvertently
removing the associated mitigations.

3.2.2 Mitigation through ordering instructions

You can mitigate bounds check bypass attacks by modifying software to constrain
speculation in confused deputy code. Specifically, software can insert a barrier that
stops speculation between a bounds check and a later operation that could be
exploited. The LFENCE instruction can serve as such a barrier. An LFENCE instruction or
a serializing instruction will ensure that no later instructions execute, even
speculatively, until all prior instructions complete locally. Developers might prefer
LFENCE over a serializing instruction because LFENCE may have lower latency.
Inserting an LFENCE instruction after a bounds check prevents later operations from
executing before the bound check completes. Developers should be judicious when
inserting LFENCE instructions. Overapplication of LFENCE can compromise
performance.

// r10 has the base, r8d has index, r11d is the limit loaded
from memory

// Bounds check

mov r11d, dword ptr [rsi+0xc]

cmp r8d, r11d

jae array_out_of_bounds_error

// Mitigation with speculation stopping barrier

lfence

// Array access

movsx r13d, byte [r10 + r8 + 0x10]

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
12 Document Number: 337313-001

Alternatively you could use an LFENCE instruction after the validated load but before
the loaded value can be used in a way that creates a side channel (for example, to
compute a code or data address), thereby preventing attackers from exfiltrating stolen
data.

3.2.3 Runtime/Host mitigation through ordering instructions

Managed runtimes and host application are usually implemented in C/C++. When the
managed runtime is used in sandbox environment, to mitigate bounds check bypass
through ordering instructions, you should also consider applying the mitigations to the
runtime itself, the hosting process, and the libraries used by the runtime.

The _mm_lfence() compiler intrinsic can be used for this purpose. It issues an
LFENCE instruction and also tells the compiler that memory references may not be
moved across that boundary. For example:

 #include <emmintrin.h>

 ...

 if (user_value >= LIMIT)

 return ERROR;

 _mm_lfence(); /* manually inserted by developer */

 x = table[user_value];

 node = entry[x]

In this example, the LFENCE helps ensure that the loads do not occur until the bounds
check condition has actually been completed. The memory barrier prevents the
compiler from reordering references around the LFENCE, which would break the
protection. GCC, Intel® C/C++ Compiler, LLVM, and the Microsoft* Visual* C++ (MSVC)
compiler all support generating LFENCE instructions for 32- and 64-bit targets when
you manually use the _mm_lfence() intrinsic in the required places.

A comprehensive mitigation approach to bounds check bypass
(https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html) is proposed on
the LLVM mailing list describing compiler assisted mitigation technique for LLVM.

Runtimes/hosts compiled using MSVC compiler could also use compiler assisted
mitigation for bounds check bypass. We provide a few observations below:

• All versions of MSVC v15.5 and all previews of MSVC v15.61 provide the
/Qspectre switch, which automatically inserts LFENCE barriers when the

1 Refer to Microsoft’s public documentation for other options:

• https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/

https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 13

compiler detects code that is vulnerable to bounds check bypass. This switch is
effective only on optimized code (for example, /O1 or /O2, but not /Od). MSVC
v15.7 compiler from preview 3 onwards support the /Qspectre switch in /Od
mode as well.

• For performance-critical blocks of code where you know that mitigation is not
needed, you can use (__declspec(spectre(nomitigation)) to
selectively disable the mitigation while compiling with the /Qspectre flag.

• It is important to note that the automatic analysis performed by MSVC and
other compilers does not guarantee that the compiler will detect and mitigate
all possible instances of bounds check bypass by inserting LFENCE barriers2.
To ensure that bounds check bypass is fully mitigated, manually insert LFENCE
barriers by using _mm_lfence() intrinsic in the appropriate places.

3.2.4 Mitigation through index or data clipping

Other instructions (such as CMOVcc, AND, ADC, SBB and SETcc) can also be used to
mitigate bounds check bypass attacks by constraining speculative execution on current
family 6 processors (Intel® Core™, Intel Atom®, Intel® Xeon® and Intel® Xeon Phi™
processors). Intel will release further guidance on the usage of instructions to constrain
speculation if future processors with different behavior are released.

Example for JIT/AOT with CMOVcc to sanitize index:

// r10 has the base, r8d has user index, the limit is in
memory at rsi+0xC, r9d will have sanitized index before array
access

// set final index to 0

xor r9, r9

// Bounds check

cmp r8d, dword ptr [rsi+0xc]

jae array_out_of_bounds_error

// Mitigation with Cmovcc: use input index if bounds check
succeeds, otherwise use 0

cmovb r9d, r8d

// Array access

• https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
• https://docs.microsoft.com/en-us/cpp/cpp/spectre

2 Spectre Mitigations in Microsoft's C/C++ Compiler
• https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
https://docs.microsoft.com/en-us/cpp/cpp/spectre
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
14 Document Number: 337313-001

movsx r13d, byte [r10 + r9 + 0x10] ; r9 would have been
sanitized to zero for out of bounds index

Example for JIT/AOT with CMOVcc to sanitize data:

// r10 has the base, r8d has user index, the limit is in
memory at rsi+0xC, r9d will have sanitized data

// set final data to 0

xor r9, r9

// Bounds check

cmp r8d, dword ptr [rsi+0xc]

jae array_out_of_bounds_error

// Array access and get data into r13d

movsx r13d, byte [r10 + r8 + 0x10]

// Mitigation with Cmovcc: use data read from array if bounds
check succeeds, otherwise use 0

cmovb r9d, r13d ; data in r9d would have been sanitized to
zero for out of bounds index

Example for JIT/AOT with SBB:

// r10 has the base, r8d has user index, the limit is in
memory at rsi+0xC, r9 will have sanitized index before array
access

// Bounds check

cmp r8d, dword ptr [rsi+0xc]

jae array_out_of_bounds_error

// Mitigation with SBB: use input index if bounds check
succeeds, otherwise use 0

sbb r9, r9 ; set r9 to 0 if out of bounds, else
0xffffffffffffffff

and r9d, r8d

// Array access

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 15

movsx r13d, byte [r10 + r9 + 0x10] ; r9 would have been
sanitized to zero for out of bounds index

Example for Runtime/Host with AND:

For current family 6 processors (Intel® Core™, Intel Atom®, Intel® Xeon® and Intel® Xeon
Phi™ processors), the Runtime/Host could use instructions that mask or range check
without branching. Refer to the simple example below:

unsigned int user_value;

if (user_value > 255)

return ERROR;

x = table[user_value];

You can make this sample code safe as shown below:

volatile unsigned int user_value;

If (user_value > 255)

 return ERROR;

x = table[user_value & 255];

This works for powers of two array lengths or bounds only. In the example above the
table array length is 256 (2^8), and the valid index should be <= 255. Take care so that
the compiler used doesn’t optimize away the & 255 operation.

Example for Runtime/Host with CMOVcc:

A comprehensive mitigation approach to bounds check bypass
(https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html) is proposed on
the LLVM lists describing compiler assisted mitigation technique for LLVM using
CMOVcc.

3.3 Branch target injection mitigation

Intel processors use indirect branch predictors to determine which operations are
speculatively executed after a near indirect branch instruction, as shown in Table 3-1.
Branch target injection (https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html), is a side channel method that takes advantage of
the indirect branch predictors. By controlling the operation (“training”) of the indirect

https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
16 Document Number: 337313-001

branch predictors, attackers can cause certain instructions to be speculatively executed
and then use the effects of this speculative execution for side channel analysis.

The processor uses indirect branch predictors to control only the operation of the
branch instructions listed in the table below.

Table 3-1: Instructions that use Indirect Branch Predictors

Branch type Instruction Opcode
Near Call
Indirect

CALL r/m16,

CALL r/m32,

CALL r/m64

FF /2

Near Jump
Indirect

JMP r/m16,

JMP r/m32,

JMP r/m64

FF /4

Near Return RET,

RET Imm16

C3,

C2 Iw

In this document, references to indirect branches refer only to near call indirect, near
jump indirect, and near return instructions. We first cover the two general mitigation
techniques available for the branch target injection method, and then discuss the
runtime JIT mitigation in detail. The two general mitigation techniques enable software
ecosystems to select the approach that works for their security, performance, and
compatibility goals.

The Speculative Execution Side Channel Mitigations white paper
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf) describes alternate mitigations that are not
discussed here. These alternate mitigations use various methods to control the indirect
branch predictor to mitigate branch target injection and bounds check bypass attacks.

Developers of managed runtimes might also consider converting near calls/jumps into
far calls/jumps as a mitigation technique for branch target injection.

Section 4 lists several related security features and technologies, which are either
present in existing Intel processors or are planned for future processors, and can
reduce the effectiveness of the side channel methods described in this and the
previous section.

3.3.1 Indirect branch control mechanisms

The first general mitigation technique for branch target injection introduces a new
interface between the processor and system software. This interface provides
mechanisms that allow software to mitigate exploits that attempt to influence the

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 17

victim’s indirect branch predictions, such as flushing the indirect branch predictors at
the appropriate time to mitigate such attacks. This mitigation strategy requires both
updated system software as well as a microcode update to be loaded to support the
new interface for many existing processors. We describe three new capabilities that will
now be supported for this mitigation strategy in the Speculative Execution Side
Channel Mitigations white paper
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf). These capabilities are available both on
existing modern Intel processors when the appropriate microcode update is applied,
and on future Intel processors, which will improve the performance cost of these
mitigations. In particular, the capabilities are:

• Indirect Branch Restricted Speculation (IBRS): Restricts speculation of indirect
branches.

• Single Thread Indirect Branch Predictors (STIBP): Prevents indirect branch
predictions from being controlled by the sibling Hyperthread.

• Indirect Branch Predictor Barrier (IBPB): Ensures that earlier code’s behavior
does not control later indirect branch predictions.

3.3.2 Retpoline

The second general mitigation technique for branch target injection introduces the
concept of a “return trampoline”, also known as retpoline
(https://support.google.com/faqs/answer/7625886). Essentially, software replaces
indirect near jump and call instructions with a code sequence that includes pushing the
target of the branch in question onto the stack and then executing a return (RET)
instruction to jump to that location.

Intel has worked with various open source compiler developers to ensure compiler
support for retpoline, and with the OS vendors to ensure support for these mitigation
techniques. For Intel® Core™ 5th generation processors (code name Broadwell) and
later, this retpoline mitigation strategy also requires a microcode update for the
mitigation to be fully effective.

You can find a detailed explanation of branch target injection and the mitigations
available in Retpoline: A Branch Target Injection Mitigation
(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf). As stated in section 3.0 of that document:

Mitigations for speculation-based, side-channel security issues fall into two
categories: directly manipulating speculation hardware, or indirectly controlling
speculation behavior. Direct manipulation of the hardware is generally performed
by microcode updates or manipulation of hardware registers. Indirect control is
accomplished via software constructs that limit or constrain speculation. Retpoline
is a hybrid approach since it requires updated microcode to make the speculation

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
18 Document Number: 337313-001

hardware behavior more predictable on some processor models. However, retpoline
is primarily a software construct that leverages specific knowledge of the underlying
hardware to mitigate branch target injection. The retpoline is a method to bypass
the indirect branch predictor.

Retpoline is a mitigation for branch target injection on Intel processors belonging to
family 6 (as enumerated by the CPUID instruction) that do not have support for
enhanced IBRS. Combined with updated microcode support, retpoline
(https://support.google.com/faqs/answer/7625886) can help ensure that a given
indirect branch is resistant to branch target injection exploits. Retpoline sequences
deliberately steer the processor’s branch prediction logic to a trusted location, thereby
helping to mitigate a potential exploit from steering the branch prediction logic
elsewhere.

The managed runtime JIT and AOT compilers may also generate indirect branches.
Therefore when the managed runtime is used in sandbox environments or where
isolation is required, for microprocessors listed in the security advisory
(https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-
00088&languageid=en-fr), the managed runtime JIT and AOT compilers can
automatically generate retpoline sequences for “near call indirect” and “near jump
indirect” instead of vulnerable indirect branches.

The community is using several retpoline sequences. Generally, these sequences are
functionally equivalent to each other, but differ with respect to their power impact on
different microarchitectures. Inserting PAUSE and/or LFENCE instructions may reduce
the power cost of the speculative spin construct in retpoline on some architectures
(https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html).

3.3.3 Mitigation for processors with alternate empty RSB behavior

As stated in section 5.2 of Retpoline: A Branch Target Injection Mitigation
(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf):

The predictable speculative behavior of the RET instruction is the key to retpoline
being a robust mitigation. RET has this behavior on all processors which are based
on the Intel® microarchitecture codename Broadwell and earlier when updated with
the latest microcode. Processors based on the Intel® microarchitecture codename
Skylake and its close derivatives have different RSB behavior than other processors
when the RSB is empty.

For processors based on Intel® microarchitecture code name Skylake and its close
derivatives which have different Return Stack Buffer (RSB) behavior, although the near
call indirect and near jump indirect retpolines significantly raise the bar for successful
attacks, developers need to additionally use return retpolines to further mitigate the
RET instruction. Refer to Example 3 in the Example retpoline sequences section below.
You can identify processors with this RSB behavior using the Family/Model signatures

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 19

in Table 3-2. Refer to the CPUID Instruction
(https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-software-developer-vol-2a-manual.html) in the Intel® 64 and IA-32
Architectures Developer's Manual.

Table 3-2: Processor Family/Model signatures with alternate empty RSB behavior3

Family Model
06H 4EH
06H 5EH
06H 55H
06H 66H
06H 67H
06H 8EH
06H 9EH

Managed runtimes could be used in a virtualized environment. A valuable tool in
modern data centers is live migration of virtual machines (VMs) among a cluster of
bare-metal hosts. However, those bare-metal hosts often differ in hardware
capabilities. These differences could prevent a VM that started on one host from being
migrated to another host that has different capabilities. For instance, a VM using Intel®
Advanced Vector Extensions 512 (Intel® AVX512) instructions could not be live-
migrated to an older system without Intel® AVX-512.

A common approach to solving this issue is exposing the oldest processor model with
the smallest subset of hardware features to the VM. This addresses the live-migration
issue, but results in a new issue: Software using model/family numbers from CPUID can
no longer detect when it is running on a newer processor that is vulnerable to exploits
of Empty RSB conditions.

To remedy this situation, a managed runtime running in a virtualized environment
needs to query bit 2 of the IA32_ARCH_CAPABILITIES MSR, known as “RSB Alternate”
(RSBA). Since applications can’t read MSRs directly, OS vendors may expose this
information through an API to help applications take corrective measures. When RSBA
is set, it indicates that the underlying VM may run on a processor vulnerable to exploits
of Empty RSB conditions regardless of the processor’s Family/Model signature, and
that the managed runtime should deploy appropriate mitigations.

3.3.4 Example retpoline sequences

The assembly snippets below show retpoline mitigations in GNU Assembler syntax.
Refer to Retpoline: A Branch Target Injection Mitigation

3 Additional processors may exhibit vulnerable RSB behavior that are not listed in this table.

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
20 Document Number: 337313-001

(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf) for more details.

Example 1: Near call/jump indirect retpoline sequence for address in register

Before: jmp *rax

After: call load_label

capture_ret_spec:

 pause ; lfence

 jmp capture_ret_spec

load_label:

 mov %rax, (%rsp)

 ret

Before: call *rax

After: jmp label2

label0:

 call label1

capture_ret_spec:

 pause ; lfence

 jmp capture_ret_spec

label1:

 mov %rax, (%rsp)

 ret

label2:

 call label0

Example 2: Near call/jump indirect retpoline sequence for address in memory

Before: jmp *mem

After: push mem

 call load_label

capture_ret_spec:

 pause ; lfence

 jmp capture_ret_spec

load_label:

 lea 8(%rsp), %rsp

https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 21

 ret

Before: call *mem

After: jmp label2

label0:

 push mem

 call label1

capture_ret_spec:

 pause ; lfence

 jmp capture_ret_spec

label1:

 lea 8(%rsp), %rsp

 ret

label2:

 call label0

Example 3: Near return retpoline sequence for processors with alternate empty
RSB behavior

Before: ret

After: call load_label

capture_ret_spec:

 pause ; lfence

 jmp capture_ret_spec

load_label:

 lea 8(%rsp), %rsp

 ret

3.3.5 Runtime/Host retpoline mitigation overview

Managed runtimes and host application are usually implemented in C/C++. To mitigate
branch target injection when the managed runtime is used in a sandbox environment,
you should also consider applying mitigations to the runtime itself, the hosting process,
and the libraries used by the runtime.

Managed runtimes can also have inline assembly. Some low-level critical elements of
the managed runtimes are implemented in assembly for performance reasons (for
example, interpreter, portions of object allocation or garbage collection, etc.). The

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
22 Document Number: 337313-001

mitigations for branch target injection need to be carefully applied to the inline
assembly as well.

In the following sections, we outline the compiler flags that you can use to mitigate
branch target injection when you compile managed runtime C/C++ elements to create a
sandbox environment.

3.3.6 Linux* and GCC retpoline mitigation

Managed runtimes written in C/C++ can use mitigation support in native C/C++
compilers. For example, you can implement branch target injection mitigation on Linux*
with GCC
(https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90a
a6c335ed6) by compiling the runtime with the following compiler switches:

-mindirect-branch=thunk/thunk-inline/thunk-extern

When compiling for the processors identified in Table 3-2 above, you also need to
generate the ret retpolines
(https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece
39bf08c6) with the following compiler switches:

-mfunction-return=thunk/thunk-inline/thunk-extern

3.3.7 Intel® C Compiler (ICC) retpoline mitigation

Intel® C Compiler v18.0.3 also supports the switches described above. Work is ongoing
to backport these switches version 16 and version 17.

3.3.8 LLVM Clang retpoline mitigation

The LLVM Clang C/C++ Compiler supports -mretpoline and -mretpoline-
external-thunk (https://reviews.llvm.org/rC323155) switches for retpoline
generation. These switches are backported to version 6.0.0
(http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html), and work is ongoing to
backport to version 5.0.2 (http://lists.llvm.org/pipermail/llvm-dev/2018-
March/121771.html).

3.4 Speculative store bypass mitigation

Modern high performance processors use memory disambiguation predictors to
speculatively execute load operations even when the addresses of preceding store
operations are unknown. In cases where the memory disambiguation predictor does
not correctly predict an address overlap, speculative loads could consume stale data
until the processor makes the necessary corrections.

https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://reviews.llvm.org/rC323155
https://reviews.llvm.org/rC323155
https://reviews.llvm.org/rC323155
http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html
http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 23

Refer to the example scenario below:

//Store N at address ‘ptrA’

*ptrA = N;

 ...

//expr is a high-latency expression evaluating to address
‘prtA’

*(<expr>) = P;

//Read value from ‘ptrA’

X = *ptrA; //X can read the stale value N

//Leak the value X into the cache using a gadget.

For additional information, refer to the Intel Analysis of Speculative Execution Side
Channels white paper
(https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-
of-Speculative-Execution-Side-Channels-White-Paper.pdf).

3.4.1 Speculative store bypass mitigation

Managed runtimes using language-based security in sandbox environments are
vulnerable to malicious actors who can use confused deputy code to influence JIT/AOT
code generation to break the sandbox isolation. Software that does not rely on
language-based security mechanisms, for example, because it instead uses process
isolation, might not need the speculative store bypass mitigation. The speculative store
bypass method can be mitigated with software modifications or using the processor-
supported mitigation mechanism.

3.4.2 Software-based mitigations

Isolating secrets to a separate address space from untrusted code will mitigate
speculative store bypass. For example, creating separate processes for different
websites ensures that secrets are mapped to different address spaces than a malicious
website executing code. Similar techniques can be used for other runtime
environments that rely on language-based security to run trusted and untrusted code
within the same process.

Inserting LFENCE between a store and a subsequent load, or between the load and any
subsequent usage of the data returned that might create a side channel will mitigate
speculative store bypass. Software should apply this mitigation when there is a realistic
risk of an exploit to minimize performance degradation.

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
24 Document Number: 337313-001

3.4.3 Speculative Store Bypass Disable (SSBD) overview

When the software based mitigations are not feasible, you can use the processor-
supported Speculative Store Bypass Disable (SSBD) mechanism to mitigate speculative
store bypass. When SSBD is set, loads will not execute speculatively until the addresses
of the older stores are known. Use SSBD judiciously to minimize the impact on
performance. Managed runtimes can use OS-provided API’s to enable and disable
SSBD.

For additional information on SSBD, refer to the Speculative Execution Side Channel
Mitigations document
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf).

3.4.4 Speculative Store Bypass Disable (SSBD) on Linux

In Linux, the spec_store_bypass_disable boot option controls whether the system
uses the SSBD optimization. The parameter takes the following values:

on Unconditionally disable speculative store bypass

off Unconditionally enable speculative store bypass

auto The kernel detects whether the CPU model contains an
implementation of speculative store bypass and picks the
most appropriate mitigation. If the CPU is not vulnerable, this
option selects off. If the CPU is vulnerable, the default
mitigation is architecture and Kconfig dependent. See below.

prctl Controls speculative store bypass per thread via prctl.
Speculative store bypass is enabled for processes by default.
The state of the control is inherited on fork.

seccomp Same as prctl, except all seccomp threads will disable
Speculative store bypass unless they explicitly opt out

Not specifying this boot option is equivalent to setting
spec_store_bypass_disable=auto.

Setting the spec_store_bypass_disable parameter value to prctl or seccomp
enables controlling speculative store bypass per thread. The prctl interface is
documented in the Linux kernel documentation
(https://github.com/torvalds/linux/blob/master/Documentation/userspace-
api/spec_ctrl.rst).

prctl has two options that are related to speculative store bypass disable:

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst

Managed runtime sandboxes and specific mitigations

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 25

• PR_GET_SPECULATION_CTRL

• PR_SET_SPECULATION_CTRL

PR_GET_SPECULATION_CTRL returns the state of the speculation feature selected
with argument 2 of prctl(2). The return value uses bits 0-3, corresponding to the
following:

Bit Definition Description

0 PR_SPEC_PRCTL Mitigation can be controlled per task
using PR_SET_SPECULATION_CTRL.

1 PR_SPEC_ENABLE The speculation feature is enabled,
mitigation is disabled.

2 PR_SPEC_DISABLE The speculation feature is disabled,
mitigation is enabled.

3 PR_SPEC_FORCE_DISABLE Same as PR_SPEC_DISABLE, but cannot
be undone. A subsequent prctl(...,
PR_SPEC_ENABLE) will fail.

PR_SET_SPECULATION_CTRL allows controlling the speculation feature.

Sample invocations:

• prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, 0, 0,
0);

• prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS,
PR_SPEC_ENABLE, 0, 0);

• prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS,
PR_SPEC_DISABLE, 0, 0);

• prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS,
PR_SPEC_FORCE_DISABLE, 0, 0);

3.4.5 Speculative Store Bypass Disable (SSBD) on Windows*

Microsoft plans to provide a mitigation that leverages the new hardware features in a
future Windows* update. More details are available on Microsoft’s public blog
(https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-
speculative-store-bypass-cve-2018-3639/).

https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
26 Document Number: 337313-001

4.0 Related Intel security features and
technologies

Several related security features and technologies, which are either present in existing
Intel processors or are planned for future processors, can reduce the effectiveness of
the side channel methods mentioned in the previous sections.

4.1 Execute Disable Bit

Execute Disable Bit is a hardware-based security feature present in existing Intel
processors that can help reduce system exposure to viruses and malicious code.
Execute Disable Bit allows the processor to classify areas in memory where application
code can or cannot execute, even speculatively. This helps reduce the gadget space,
which increases the difficulty of branch target injection attacks. All major operating
systems enable Execute Disable Bit support by default.

While generating code, managed runtime JIT/AOT compilers can mark the code buffers
as not executable until the compilation of the method is complete. This is good code
hygiene in general, but is especially helpful in mitigating gadget sources in managed
runtimes.

4.2 Control flow Enforcement Technology (CET)

On future Intel processors, Control flow Enforcement Technology (CET) will allow
developers to limit near indirect jump and call instructions to only target ENDBRANCH
instructions. This feature can help reduce the speculation allowed to instructions that
are not ENDBRANCH instructions. This greatly reduces the gadget space, which increases
the difficulty of branch target injection attacks.

CET also provides capabilities to defend against Return-Oriented-Programming (ROP)
control-flow subversion attacks. However, the retpoline technique closely resembles
the approaches used in ROP attacks. Be aware that if used in conjunction with CET,
retpoline might trigger false positives in the CET defenses.

For additional information on CET, refer to the Control-flow Enforcement Technology
Preview (https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technologypreview.pdf).

4.3 Protection keys

On future Intel processors that have both hardware support for mitigating rogue data
cache load and protection keys support, protection keys can limit the data that is

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technologypreview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technologypreview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technologypreview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technologypreview.pdf

Related Intel security features and technologies

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 27

accessible to a piece of software. This can be used to limit the memory addresses that
could be revealed by a bound check bypass or branch target injection attack.

A managed runtime could deploy protection keys by changing the protection key used
to map secrets and then limiting what is executed while those secrets are marked
accessible in the Protection Keys Rights register (PKRU). The secrets being protected
could be of any class: runtime host, runtime environment or payload.

Protection keys can also be used to produce execute-only memory areas. An execute-
only memory area cannot be accessed with loads and stores, which potentially limits
gadget discovery which might then be used to carry out an exploit.

As is the case any time protection keys are in use, gadgets containing the WRPKRU
instruction are valuable in defeating mitigations provided by protection keys. Managed
runtimes should limit available occurrences of WRPKRU in both their own executables
and the generated instructions.

4.4 Trusted execution environments (TEE)

The goal of all side channel method attacks is to steal secrets in the OS and application
memory or register states. Removing secret data from the normal OS/application
security domains would remove the motivation for those attacks. Intel provides Intel®
Software Guard Extensions (Intel® SGX) and Intel® Trusted Execution Engine (Intel® TXE)
on some Intel processors to provide a trusted execution environment for parts of
applications that need to protect their data or algorithms. We encourage application
developers to partition their applications into normal and secure portions, and then
move the portions of their application that contain secrets and must be secure into a
trusted execution environment.

Managed Runtime Speculative Execution Side Channel Mitigations
White Paper June 2018
28 Document Number: 337313-001

5.0 References
• Google* Project Zero description of bounds check bypass (Spectre variant 1)

and branch target injection (Spectre variant 2)
(https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html)

• Retpoline: A Branch Target Injection Mitigation
(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-
Branch-Target-Injection-Mitigation.pdf)

• Google retpoline introduction
(https://support.google.com/faqs/answer/7625886)

• Intel security advisory regarding models and steppings for retpoline
(https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-
00088&languageid=en-fr)

• CPUID reference (https://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-developer-vol-2a-manual.html)

• Side-Channel Security Issue: Intel® Software Support
(https://software.intel.com/en-us/side-channel-security-support)

• Speculative Execution Side Channel Mitigations
(https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations.pdf)

• Intel Analysis of Speculative Execution Side Channels
(https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf)

• Site Isolation (https://www.chromium.org/Home/chromium-security/site-
isolation)

• Mozilla Foundation Security Advisory 2018-01
(https://www.chromium.org/Home/chromium-security/site-isolation)

• Linux Speculation Control
(https://github.com/torvalds/linux/blob/master/Documentation/userspace-
api/spec_ctrl.rst)

• Analysis and mitigation of speculative store bypass (CVE-2018-3639)
(https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-
of-speculative-store-bypass-cve-2018-3639/)

• GCC support
o https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html
o https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c1

56070ba6e90aa6c335ed6
o https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d21

32f2f94161ece39bf08c6
• LLVM compiler support

o https://reviews.llvm.org/rC323155
o http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html
o http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://software.intel.com/en-us/side-channel-security-support
https://software.intel.com/en-us/side-channel-security-support
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://reviews.llvm.org/rC323155
http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html

References

 Managed Runtime Speculative Execution Side Channel Mitigations
June 2018 White Paper
Document Number: 337313-001 29

o https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
• Microsoft compiler options and guidance

o https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-
mitigations-in-msvc/

o https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
o https://docs.microsoft.com/en-us/cpp/cpp/spectre

• Spectre Mitigations in Microsoft C/C++ Compiler
(https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html)

• Control-Flow Enforcement Technology Preview
(https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf)

https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
https://docs.microsoft.com/en-us/cpp/cpp/spectre
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

	1.0 Introduction
	1.1 Document audience
	1.2 Document scope

	2.0 General mitigations
	2.1 Process isolation

	3.0 Managed runtime sandboxes and specific mitigations
	3.1 Short term mitigations
	3.2 Bounds check bypass mitigation
	3.2.1 Bounds check bypass mitigation overview
	3.2.2 Mitigation through ordering instructions
	3.2.3 Runtime/Host mitigation through ordering instructions
	3.2.4 Mitigation through index or data clipping

	3.3 Branch target injection mitigation
	3.3.1 Indirect branch control mechanisms
	3.3.2 Retpoline
	3.3.3 Mitigation for processors with alternate empty RSB behavior
	3.3.4 Example retpoline sequences
	3.3.5 Runtime/Host retpoline mitigation overview
	3.3.6 Linux* and GCC retpoline mitigation
	3.3.7 Intel® C Compiler (ICC) retpoline mitigation
	3.3.8 LLVM Clang retpoline mitigation

	3.4 Speculative store bypass mitigation
	3.4.1 Speculative store bypass mitigation
	3.4.2 Software-based mitigations
	3.4.3 Speculative Store Bypass Disable (SSBD) overview
	3.4.4 Speculative Store Bypass Disable (SSBD) on Linux
	3.4.5 Speculative Store Bypass Disable (SSBD) on Windows*

	4.0 Related Intel security features and technologies
	4.1 Execute Disable Bit
	4.2 Control flow Enforcement Technology (CET)
	4.3 Protection keys
	4.4 Trusted execution environments (TEE)

	5.0 References

