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Introduction 
Intel® Architecture IA-32 platforms initiated hardware support for multi-processing 
by first using two or more sockets per system board, where each socket can be 
populated with one physical package. Prior to the introduction of Hyper-Threading 
Technology (HT Technology), each physical package of an IA-32 processor is capable 
of executing one thread at a time.  
 
In 2002, IA-32 platform introduced Hyper-Threading Technology, where each 
physical package provides functionality logically equivalent to two discrete, single-
thread-execution processors, but sharing the same processor core in a physical 
package. In 2005, Intel introduced IA-32 platforms with multi-core technology with 
the Intel® Pentium® processor Extreme Edition, which provides two processor 
cores, each supporting HT Technology. Thus, hardware support for multi-processing 
has evolved from multiple discrete sockets, to HT Technology, to multiple cores with 
HT Technology.  
 
This paper discusses a robust algorithm to help application software enumerate the 
processor and cache topology in any single or multi-processor platform, using Intel 
processors. Enumerating processor topology correctly is essential for implementing 
licensing policy requirements. Understanding processor and cache topology 
information will allow multithreading software to make more efficient use of 
hardware multithreading resources and deliver optimal performance. 
 
Software must recognize hardware multi-processing support in all of these 
combinations. For licensing purposes, Intel recommends a policy based on discrete 
physical packages. For performance optimization purposes, software may need to 
manage physical resources depending on the details of the sharing topology 
implemented in these various forms of hardware multiprocessing. 
 
In this paper we show how to detect the topological relationships between physical 
package, processor core, and logical processors sharing the same core in a multi-
processing platform with IA-32 processors. The algorithm described in this paper 
applies across many hardware multi-processing configurations, including single-
socket and multi-socket platforms, IA-32 processors supporting Hyper-Threading 
Technology, dual-core and multiple cores. 

Hyper-Threading Technology, Multi-Core and Initial APIC ID 
In a multithreading environment, using IA-32 processors with hardware 
multithreading support, each logical processor in the platform must have a unique 
identifier. This is established during platform power-up, and is referred to as “initial 
APIC1 ID.” Each initial APIC ID’s value in a multiprocessor (MP) platform is assigned 
in an orderly manner such that software can extract a topological relationship 
between an initial APIC ID and the physical package and processor core. 
Software can also extract the topological relationships of sibling logical processors 
sharing the same core or sharing a particular cache level of the cache hierarchy. 
 
1 APIC stands for Advanced Programmable Interrupt Controller           

 
In general, each physical package can provide one or more processor cores. The 
number of logical processors sharing the same core must be derived from 



information provided by the CPUID instruction. With respect to the cache-sharing 
topology of the same microarchitecture, the number of logical processors sharing a 
given cache level may vary for each cache level in the cache hierarchy. Between 
different microarchitectures, the cache sharing topology may also vary. 
 
With HT Technology enabled processors, each cache level is shared by the all logical 
processors sharing a processor core. Software must use the CPUID instruction to 
query for relevant data for each cache level at runtime. (Details of using CPUID 
instruction to query initial APIC IDs, logical processor/core/cache configurations can 
be found in Chapter 3 of IA-32 Intel® Architecture Software Developer’s Manual Vol. 
2A.) 
 
CPUID Instruction 
Aside from the initial APIC IDs reported by CPUID instruction, there are three other 
essential parameters reported by CPUID. These parameters are used to determine 
the multithreading resource topology of an IA-32 platform: 
 

• Logical Processors per Package (CPUID.1.EBX[23:16]) — Indicates the 
maximum number of logical processors in a physical package. This represents 
the hardware capability of the processor as manufactured, and does not 
necessarily equate to the number of logical processors enabled by the 
platform bios or operating system. 

 
• Cores per Package2 (CPUID.4.EAX[31:26] + 1) — The maximum number of 

cores in a physical package is indicated by one plus the decimal value 
represented by CPUID.4.EAX[31:26]. 

 
• Logical Processors Sharing a Cache (CPUID.4.EAX[25:14] + 1) — The 

maximum number of logical processors in a physical package sharing the 
target level cache is indicated by one plus the decimal value represented by 
CPUID.4.EAX[25:14]. 

 
Intel supports only homogeneous MP systems. This means that in an MP system, any 
logical processor from any physical package must report the same values for the 
three parameters described above. 
 
CPUID cannot be called directly from high-level languages such as C or C++. This 
must be done using assembly language. In this paper, we show sample code that 
executes the CPUID instruction from C/C++ source code using inline assembly. 
 
Three Level Topology and Initial APIC ID 
For a single-clustered MP system3, the 8-bit value of an initial APIC ID decomposes 
into three bit fields. The order in which initial APIC IDs are assigned in an IA-32 MP 
system ensures that the right most bit field represents the maximum number of 
logical processors sharing the same core. 
 
This sub-field is referred to as SMT_ID, and its width is related to the maximum 
number of unique IDs required to identify each logical processor sharing the same 
core. This width of this field can be zero, e.g., Pentium D processor does not support 
Hyper-Threading Technology. Software must use the algorithm described in this 
paper to determine the width dynamically. 
 



Adjacent to the SMT_ID bit field is a bit field that represents the maximum number 
of processor cores in a package. This sub-field is referred to as CORE_ID. For a 
single-core processor, the width of the CORE_ID field is zero. 
 
The remaining bit field can be used to identify a physical package in a non-clustered 
MP platform. The sub-field is referred to as PACKAGE_ID. 
 
Figure 1 shows the layout out of the initial APIC ID (content of CPUID.1.EBX 
[31:24]). Note the width of each bit field depends on multithreading hardware 
configurations. Figures 2 through 4 depict the dependence of each bit field position 
on three different hardware configurations. These three examples illustrate the 
important point that software must not assume each bit field has a constant width, 
or exists at all. This paper does not discuss clustered systems. 
 
2 Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If 
CPUID leaf 4 is not available at runtime, software can handle the situation as if there is only one core per 
package 
 
3 Typically, a clustered system is made up of many nodes of multi-processor systems. This paper applies to 
multi-processor systems within the same node in a clustered system. A multi-node clustered system will 
have a four-level topology and is beyond the scope of this paper. 
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Figure 1. Generalized bit position layout of initial APIC ID for a non-
clustered system 

With a dual-core system that supports Hyper-Threading Technology, x will be equal 
to 1 and y will be equal to 1. This is shown in Figure 2. 
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Figure 2. Bit position layout for a dual-core system configuration supporting 
Hyper-Threading Technology. 

With a dual-core system that does not support Hyper-Threading Technology, x will 
be equal to 0 and y will be equal to 1. This is shown in Figure 3. 
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Figure 3. Bit Position Layout for a dual-core system that does not support 
Hyper-Threading Technology 

With a single-core-system supporting Hyper-Threading Technology, x will be equal 
to 1 and y will be equal to 0. This is shown in Figure 4. 
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Figure 4. Bit position layout for a single-core system supporting Hyper-
Threading Technology 

An algorithm to map initial APIC ID to three-level topological IDs 

The following algorithm demonstrates the method by which the initial APIC ID is 
decomposed into its three topological identifiers. Several support routines used in 
this algorithm are described in the following text. 

Detecting Hardware Support for Multi-Threading 
The first support routine determines if the current logical processor is contained in a 
physical package with hardware multi-threading support. This is accomplished by 
executing the CPUID instruction with register EAX set equal to one. If bit 28 of the 
returned value in register EDX is set, the associated physical package supports 
hardware multithreading. Note that this only asserts that a physical package is 
capable of hardware multithreading. It does not imply that hardware multithreading 
is enabled, or indicate the number of logical processors in the package enabled by 
system software. 
 
// 
// The function returns 0 when the hardware multi-threaded bit is 
// not set. 
// 
#define HWD_MT_BIT (1 << 28) // more descriptive 
unsigned int is_HWMT_Supported(void) 
{ 
unsigned int Regedx = 0; 
if ((CpuIDSupported() >= 1) && GenuineIntel()) 
{ 
__asm 
{ 
mov eax, 1 
cpuid 
mov Regedx, edx 
} 
} 
return (Regedx & HWD_MT_BIT); 
} 
// 
// CpuIDSupported will return 0 if CPUID instruction is 
// unavailable. 



// Otherwise, it will return 
// the maximum supported standard function. 
// 
unsigned int CpuIDSupported(void) 
{ 
unsigned int MaxInputValue =0; 
__try // If CPUID instruction is supported 
{ 
__asm 
{ 
xor eax, eax // call cpuid with eax = 0 
cpuid 
mov MaxInputValue, eax 
} 
} 
__except (EXCEPTION_EXECUTE_HANDLER) 
{ 
return(0); // cpuid instruction is unavailable 
} 
return MaxInputValue; 
} 
// 
// GenuineIntel will return 0 if the processor is not a Genuine 
// Intel Processor 
// 
unsigned int GenuineIntel(void) 
{ 
unsigned int VendorID[3] = {0, 0, 0}; 
__try // If CPUID instruction is supported 
{ 
__asm 
{ 
xor eax, eax // call cpuid with eax = 0 
cpuid // Get vendor id string 
mov VendorID, ebx 
mov VendorID + 4, edx 
mov VendorID + 8, ecx 
} 
} 
__except (EXCEPTION_EXECUTE_HANDLER) 
{ 
return(0); // cpuid instruction is unavailable 
} 
return ( (VendorID[0] == 'uneG') && 
(VendorID[1] == 'Ieni') && 
(VendorID[2] == 'letn')); 
} 
 
Determining Maximum Logical Processors per Physical Package (Socket) 
The second support routine determines the maximum number of logical processors in 
a physical package. This parameter is obtained by executing CPUID with the register 
EAX set equal to one and storing bits 16 to 23 of register EBX on return. If an IA-32 
processor does not have hardware multithreading support, the value in 
CPUID.1.EBX[23:16] is reserved. However, in this case, one can treat this as a 
discrete processor containing a maximum of one logical processor per package. Note 
that the number of logical processors obtained here is the maximum number of 



logical processors supported by this physical package. The actual number of logical 
processors enabled by system software and made available to applications may be 
less. 
 
#define NUM_LOGICAL_BITS 0xFF0000 //(or (0xFF << 16)) 
unsigned GetMaxNumLPperPackage(void) 
{ 
unsigned int reg_ebx = 0; 
if (!is_HWMT_supported()) return (unsigned char) 1; 
__asm { 
mov eax, 1 
cpuid 
mov reg_ebx, ebx 
} 
return (unsigned) ((reg_ebx & NUM_LOGICAL_BITS) >> 16); 
} 
 
Determining Maximum Number of Cores in a Package 
The third support routine determines the maximum number of cores per physical 
package. This parameter is obtained by executing the CPUID instruction with the 
input value of 4 in EAX and 0 in ECX, followed by storing the returned decimal value 
of EAX[31:26] and incrementing it by one. 
If a processor does not support theCPUID.4 leaf, then software must assume this is a 
single-core processor4. Note that if the maximum number of cores in a physical 
package is greater than one, it only indicates that the physical package provides 
more than one core. The actual number of cores enabled by system software and 
made available to application may be less. 
 
#define NUM_CORE_BITS 0xfc000000 //(or (0xFC << 26) ) 
unsigned GetMaxNumCoresPerPackage(void) 
{ 
unsigned int reg_eax = 0; 
if (!is_HWMT_supported()) 
{ 
// must be single-core 
return (unsigned) 1; 
 
4 Software must check for the availability of CPUID leaf 4 before querying for information using CPUID 
leaf 4. If a BIOS allows the end user to configure a multi-core processor to work with an older operating 
system that is not compatible with the presence of CPUID leaf 4, the user must ensure that the proper 
configuration of the platform is enforced by restoring the BIOS setting to default such that CPUID leaf 4 is 
available. The proper configuration and optimal performance of modern OS supporting multi-core 
processors relies on CPUID leaf 4 to be available. 
 
} 
__asm { 
mov eax, 0 // how many leaves does cpuid support? 
cpuid 
cmp eax, 4 // does cpuid support leaf 4 
jl single_core // if not, must be single core 
mov eax, 4 // call cpuid with eax = 4 
mov ecx, 0 // start with 1st level using index = 0 
cpuid 
mov reg_eax, eax // Has info on number of cores 
jmp multi_core 



single_core: 
mov reg_eax, 0 // must be single core 
multi_core: 
} 
return (unsigned ) ((reg_eax & NUM_CORE_BITS) >> 26)+1; 
} 
 
Determining the Width of a Bit Field 
An important part of the algorithm is to determine the width of each bit field. This 
can be accomplished using a general purpose support routine that determines the 
width of a bit field based on the maximum number of unique identifiers that bit field 
can represent. The input value to determine the width of the SMT_ID bit field is the 
“maximum number of logical processors sharing the same core,” and the input value 
to determine the width of the CORE_ID bit field is the “maximum number of cores 
per physical package.” One should not assume that the number of available threads 
or cores will be a power of two. 
 
unsigned find_maskwidth(unsigned count_item) 
{ 
unsigned int mask_width, cnt = count_item; 
__asm 
{ 
mov eax, cnt 
mov ecx, 0 
mov mask_width, ecx 
dec eax 
bsr cx, ax 
jz next 
inc cx 
mov mask_width, ecx 
next: 
mov eax, mask_width 
} 
return mask_width; 
} 
 
Collecting the Initial APIC IDs of Each Logical Processor 
Before putting the algorithm together, we must retrieve the initial APIC ID of each 
logical processor in the platform. This requires using an OS-specific processor affinity 
service and using an affinity mask to bind the current execution thread to a specific 
logical processor. Once the current thread has successfully affinitized to the 
specific logical processor, the following code will retrieve the initial APIC ID of the 
logical processor that this code is currently running on: 
 
#define INITIAL_APIC_ID_BITS 0xff000000 //(or (0xFF << 24) ) 
unsigned char GetInitialApicId (void) 
{ 
unsigned int reg_ebx = 0; 
__asm { 
mov eax, 1 // call cpuid with eax = 1 
cpuid 
mov reg_ebx, ebx // Has APIC ID info 
} 
return (unsigned char) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24); 
} 



 
Extracting a Bit Field from an 8-bit ID 
The next routine provides the finishing touch to complete the support routines 
needed to decompose an 8-bit initial APIC ID into three topological identifiers. A 
subset of bits in an 8-bit initial APIC ID can be extracted using the appropriate bit 
mask and shift value. The code below allows one to extract from an 8-bit “Full_ID” a 
subset of bits using two other input parameters. The input parameter 
“MaxSubIDvalue” determines the width of bit field to extract from the “Full_ID.” The 
input parameter “Shift_Count” specifies an offset from the right most bit of the 8-bit 
“Full_ID.” 
 
// 
// This routine extracts a subset of bit fields from the 8-bit Full_ID 
// The return value, or subID, is a non-zero-based, 8-bit value 
// 
unsigned char GetNzbSubID(unsigned char Full_ID, 
unsigned char MaxSubIDvalue, 
unsigned char Shift_Count) 
{ 
unsigned MaskWidth; 
unsigned char SubID, MaskBits; 
MaskWidth = find_maskwidth((unsigned ) MaxSubIDvalue); 
MaskBits = ((unsigned char) (0xff << Shift_Count)) ^ 
((unsigned char) (0xff << (Shift_Count + MaskWidth))) ; 
SubID = Full_ID & MaskBits; 
return SubID; 
} 

Putting Everything Together to Extract IDs for the Three-
Level Topology 
Under an MP-aware OS, an application can assemble a list of all the initial APIC IDs 
of logical processors that are enabled by OS and made available to applications. 
Although there is a one-to-one mapping between each bit in an affinity mask to each 
unique APIC ID value, the ordering of affinity mask bits and the numerical values of 
initial APIC IDs are platform-specific. Because the OS allows applications to manage 
logical processors via affinity masks, the algorithm we describe here will construct 
two tables: 
 

• One table provides a list of affinity masks corresponding to each unique 
PACKAGE_ID, each affinity mask includes logical processors residing in the 
same physical package. 

 
• The second table provides a list of affinity masks corresponding to each 

unique CORE_ID; each affinity mask includes logical processors residing in 
the same core. 

 
These two tables are built by first extracting the three-level identifiers from the initial 
APIC IDs of each logical processor. The code below illustrates how to use the support 
routines described previously to assemble individual tables that stores the sub-field 
ID of each level and for each logical processor. 
 
To enumerate the processor and cache topology of all logical processors visible to an 
application, application software must rely on OS-specific services, such as affinity 



APIs, to bind the current execution context to each logical processor. The code 
example below uses Win32 APIs to manage processor affinity. The tables below 
demonstrate the relationships between processor/cache topology information with 
OS-specific affinity constructs. 
 
AFFINITY_MASK dwProcessAffinity; 
AFFINITY_MASK dwSystemAffinity; 
int j, numLP_enabled, MaxLPPerCore; 
unsigned char apicId; 
unsigned char PackageIDMask; 
unsigned char tblPkg_ID[256]; 
unsigned char tblCore_ID[256]; 
unsigned char tblSMT_ID[256]; 
GetProcessAffinityMask( 
GetCurrentProcess(), 
&dwProcessAffinity, 
&dwSystemAffinity); 
if (dwProcessAffinity != dwSystemAffinity) { 
printf ("Not all logical processors in the platform 
are enabled for this process. \n"); 
} 
j = 0; 
dwAffinityMask = 1; 
numLP_enabled = 0; 
// 
// This algorithm assumes that core within a package has the 
// same number of logical processors. 
// It does not assume that the value returned by 
// MaxLPPerPackage()or MaxCoresPerPackage() is a power of 2. 
// 
MaxLPPerCore = 
GetMaxNumLPperPackage()/GetMaxNumCoresPerPackage(); 
while (dwAffinityMask && dwAffinityMask <= dwSystemAffinity) { 
if (SetThreadAffinityMask(GetCurrentThread(), dwAffinityMask)) { 
Sleep(0); // Ensure this thread is on the affinitized CPU 
apicId = GetInitialApicId(); 
// 
// store SMT_ID and Core_ID of each logical processor 
// Shift value for SMT_ID is 0 
// Shift value for Core_ID is the mask width for maximum 
// logical processors per core 
// 
tblSMT_ID[j] = GetNzbSubID(apicId, MaxLPPerCore, 0); 
tblCore_ID[j] = GetNzbSubID( 
apicId, 
GetMaxNumCoresPerPackage(), 
find_maskwidth(MaxLPPerCore)); 
// 
// Extract PACKAGE_ID: 
// Assume single cluster. 
// Shift value is mask width for maximum logical processors 
// per package 
// 
PackageIDMask = 
((unsigned char) (0xff << 
find_maskwidth(GetMaxNumLPperPackage()))); 



tblPkg_ID[j] = apicId & PackageIDMask; 
numLP_enabled ++; 
} 
j++; 
dwAffinityMask = 1 << j; 
} 
// 
// numLP_enabled contains the number logical processors in the platform 
// that are enabled by system software and available for applications 
// 

Counting Physical Packages Enabled in the Platform 
Once we have the three-level topological IDs of each logical processors enabled in 
the platform, we can create an affinity mask to represent the sibling logical 
processors residing in the same physical package. The code below sorts out the 
initial APIC IDs in the platform and puts those initial APIC IDs with identical 
PACKAGE_ID into the same group, and updates the affinity mask associated with 
each distinct PACKAGE_ID. 
 
// 
// pPkgMask points to a buffer allocated by the caller 
// NumStartedLPs is an integer supplied by the caller after the 
// caller had assembled three tables of PKG_ID, CORE_ID and SMT_ID 
// 
DWORD pPkgMask[256]; 
unsigned char PackageIDBucket[256]; 
unsigned ProcessorMask; 
int ProcessorNum; 
int i, PkgNum = 1; 
PackageIDBucket[0] = tblPkg_ID[0]; 
ProcessorMask = 1; 
pPkgMask[0] = ProcessorMask; 
for (ProcessorNum = 1; ProcessorNum < NumStartedLPs; 
ProcessorNum++) { 
ProcessorMask <<= 1; 
for (i=0; i < PkgNum; i++) { 
// 
// we may be comparing bit-fields of logical processors 
// residing in different packages, the code below assumes 
// that the bit-masks are the same on all processors in 
// the system 
// 
if ( tblPkg_ID[ProcessorNum] == PackageIDBucket[i]) { 
pPkgMask[i] |= ProcessorMask; 
break; 
} 
} 
if (i == PkgNum) { 
// 
// Did not match any bucket, start new bucket 
// 
PackageIDBucket[i] = tblPkg_ID[ProcessorNum] ; 
pPkgMask[i] = ProcessorMask; 
PkgNum++; 
} 
} 



// 
// PkgNum has the actual number of physical packages enabled in 
// the platform 
// pPkgMask[i] has the affinity mask of the sibling logical processors 
// for the i’th package 
// 
 
Counting Processor Cores Enabled in the Platform 
The procedure to count OS-enabled processor cores in a platform is similar to the 
previous routine. Here, we compare both PACKAGE_ID and CORE_ID to distinguish 
whether more than one logical processors are siblings in the same core. The code 
below sorts out the initial APIC IDs in the platform and puts those initial APIC IDs 
with identical values of for PACKAGE_ID and CORE_ID into the same group and 
updates the affinity mask associated with each distinct core. 
 
// 
// pCoreProcessorMask points to a buffer allocated by the caller 
// NumStartedLPs is an integer supplied by the caller after the 
// caller had assembled three tables of PKG_ID, CORE_ID and SMT_ID 
// 
DWORD pCoreProcessorMask[256]; 
unsigned char CoreIDBucket [256]; 
unsigned ProcessorMask; 
int ProcessorNum; 
int i, CoreNum = 1; 
CoreIDBucket[0] = tblPkg_ID[0] | tblCore_ID[0]; 
ProcessorMask = 1; 
pCoreProcessorMask[0] = ProcessorMask; 
for (ProcessorNum = 1; ProcessorNum < NumStartedLPs; 
ProcessorNum++) { 
ProcessorMask <<= 1; 
for (i=0; i < CoreNum; i++) { 
// 
// we may be comparing bit-fields of logical processors 
// residing in different packages, the code below assumes 
// that the bit-masks are the same on all processors in 
// the system 
// 
if (( tblPkg_ID[ProcessorNum] | tblCore_ID[ProcessorNum]) == 
CoreIDBucket[i]) { 
pCoreProcessorMask[i] |= ProcessorMask; 
break; 
} 
} 
if (i == CoreNum) { 
// 
// Did not match any bucket, start new bucket 
// 
CoreIDBucket[i] = tblPkg_ID[ProcessorNum] | 
tblCore_ID[ProcessorNum]; 
pCoreProcessorMask[i] = ProcessorMask; 
CoreNum++; 
} 
} 
// 
// CoreNum has the actual number of cores enabled in the platform 
// pCoreProcessorMask[i] has the affinity mask of the sibling 



// logical processors for the i’th core 
// 
 
The appendix shows an example of how to tie all of the above code snippets 
together. The example will examine every logical processor visible to the running 
process and enumerate the processor topology and cache topology of these logical 
processors. The status multi-core and hyper-threading capability in the platform is 
also summarized. The source code of the example is listed and can be compiled in a 
Win32 environment as well as Linux* environment5. Some compilers do not support 
inline assembly; it is left as an exercise for the reader to complete compiler-specific 
customizations. 
 
5 The source code listing can be compiled using Linux* kernel verison 2.6 or higher (e.g. RH 4AS-2.8 using GCC 3.4.4). 
Due to syntax variances of Linux affinity APIs with earlier kernel version and dependence on glibc library versions, 
compilation on Linux environment with older kernels and compilers may require kernel patches or compiler upgrades. 

Licensing Considerations 
Multi-core and Hyper-Threading Technologies provide hardware multi-processing 
support within a physical package (or on each socket). These technologies are 
designed to enable mainstream adoption of the benefits of multi-processing 
environments. Intel recommends basing licensing policy on a per-physical-package 
scheme. A per-package based licensing scheme is expected to accelerate 
mainstream adoption of platforms with hardware multithreading support. 
 
A per-package based licensing scheme will also accelerate end-user adoption of 
multithreaded applications that can best take advantage of the performance 
potentials of multi-cores. To implement such a licensing policy correctly, software 
must detect and count physical packages correctly.  
 
Normally, using OS system calls alone will only count the total number of logical 
processors enabled in the platform, which is not adequate to implement a per-
package licensing policy. This paper presents a more robust technique that combines 
data returned by the CPUID instruction regarding hardware multithreading support 
with some OS services to determine the three-level topology of PACKAGE_ID, 
CORE_ID, and SMT_ID. We have demonstrated how to use these topological 
identifiers to count the number of enabled physical packages and processor cores in 
the platform. Detecting shared cache topology can be done by adapting the 
algorithm presented; a follow-up paper will demonstrate such a technique. 
 
The example in this paper also provides look-up tables of affinity masks for each 
package and each core, which can be used for performance tuning of multithreaded 
applications. 

Conclusion 
Intel recommends licensing policy be based on a per-physical-package scheme. This 
paper presents a robust algorithm for licensing software to count the number of 
physical packages that are enabled for use by applications. Counting the number of 
physical packages correctly in a system was very important before the introduction 
of HT Technology, and is even more important with the introduction of multi-core 
processors. The techniques presented in this paper will work for past and present IA-
32 processors, and are expected to work for future multi-core IA-32 processors. 



Glossary 
Physical Processor: The physical package of a microprocessor capable of executing 
one or more threads of software at the same time. Each physical package plugs into 
a physical socket. Each physical package may contain one or more processor cores. 
Also referred to as physical package. 

Processor Core: The circuitry that provides dedicated functionalities to decode, 
execute instructions, and transfer data between certain sub-systems in a physical 
package. A processor core may contain one or more logical processors. 

Logical Processor: The basic modularity of processor hardware resource that allows 
software executive (OS) to dispatch task or execute a thread context. Each logical 
processor can execute only one thread context at a time. 

Hyper-Threading Technology (HT Technology): A feature within the IA-32 
family of processors, where each processor core provides the functionality of more 
than one logical processor. 

SMT: Abbreviated name for Simultaneous Multi-Threading. An efficient means in 
silicon to provide the functionalities of multiple logical processors within the same 
processor core by sharing execution resources and cache hierarchy between logical 
processors. 

Multi-Core Processor: A physical processor that contains more than one processor 
core. 

Multi-Processor Platform: A computer system made of two or more physical 
sockets. 

Hardware Multithreading: Refers to any combination of hardware support to allow 
a system to run multithreaded software. The forms of hardware support for multi-
threading are SMT, multi-core, and multi-processor. 

Processor Topology: Hierarchical relationships of "shared vs. dedicated" hardware 
resources within a computing platform using physical processors capable of one or 
more forms of hardware multithreading. 

Cache Topology: Hierarchical relationships of "shared vs. dedicated" cache 
resources within a computing platform using physical processors capable of one or 
more forms of hardware multithreading. 

Appendix 
 
To compile yourself, download the source code CpuCount.cpp
 
 

http://www.intel.com/cd/ids/developer/asmo-na/eng/19287.htm?desturl=276611.htm
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Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, 
Pentium III Xeon, Performance at Your Command, Pentium Inside, skoool, 
Sound Mark, The Computer Inside., The Journey Inside, VTune, Xeon, 
Xeon Inside and Xircom are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States and other countries. 

* Other names and brands may be claimed as the property of others. 
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