

Whitepaper:
Hardware Prefetch Controls for Intel® Atom® Cores

Document No: 357930-001US
December 2023

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 2

Notices & Disclaimers
Performance varies by use, configura�on, and other factors. Learn more at www.Intel.com/PerformanceIndex

Performance results are based on tes�ng as of dates shown in configura�ons and may not reflect all publicly available
updates. See backup for configura�on details. No product or component can be absolutely secure.

Intel technologies may require enabled hardware, so�ware, or service ac�va�on.

Intel is a trademark of Intel Corpora�on or in the US and other countries. * Other brands and names may be claimed as the
property of others.
Copyright © 2023 Intel Corpora�on. All rights reserved.

Revision History

Revision Descrip�on Date

357930-001US Ini�al Release. December 2023

http://www.intel.com/PerformanceIndex%E2%80%8B%E2%80%8B

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 3

CONTENTS
1 INTRODUCTION 4

1.1 Hardware Prefetch Overview 4

1.2 Prefetchers 5

1.2.1 Instruc�on Point Prefetcher (L1 IPP) .. 5
1.2.2 Next Line Prefetcher (L1 NLP) .. 6
1.2.3 Next Page Prefetcher (L1 NPP) ... 6

1.3 L2 Prefetchers 6

1.3.1 MLC Streamer .. 6
1.3.2 LLC Streamer .. 6
1.3.3 Adap�ve Mul�-Path (AMP) .. 7
1.3.4 L2 Next Line Prefetch (L2 NLP) ... 7

2 TUNABLE PARAMETERS 8

2.1 Enable / Disable 8

2.2 AMP and MLC/LLC Streamer Source Selec�on 8

2.3 Streamer Configura�on 8

2.4 AMP Configura�on 9

3 PERFORMANCE MONITORS 10

3.1 IMC RD CAS 10

3.2 MEM_UOPS_RETIRED_ALL_LOADS 10

3.3 MEM_LOAD_UOPS_RETIRED_L2_HIT 10

3.4 MEM_LOAD_UOPS_RETIRED_L3_HIT 10

3.5 LONGEST_LAT_CACHE.MISS 10

3.6 MEM_LOAD_UOPS_RETIRED_DRAM_HIT 10

3.7 XQ_PROMOTION_ALL 10

4 L2 PREFETCH MSR 11

4.1 MSR 0x1A4 11

4.2 Intel® Atom® MSR 0x1320 11

4.3 Intel® Atom® MSR 0x1321 12

4.4 Intel® Atom® MSR 0x1322 12

4.5 Intel® Atom® MSR 0x1323 13

5 REFERENCES 15

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 4

1 INTRODUCTION
Hardware prefetchers are an excellent way of improving performance by fetching informa�on ahead of �me. The most basic
prefetchers that only fetched the next cache line were introduced in the early days of processors. Today, prefetchers can track
complex paterns to get the most relevant data into the caches ahead of usage. However, prefetching in mul�core systems is a
complex task; it can improve performance significantly, but driving more data into the caches can also evict more relevant
data. Furthermore, prefetchers drive up the DDR bandwidth, which can become a botleneck and lower overall system
performance. By tuning the prefetchers, one can ensure op�mal performance at any given �me; for instance, Figure 1 shows
SpecInt GCC performance on a Raptor Lake microarchitecture with default se�ngs and a rela�vely basic dynamic prefetch
tuning, see [1].

This document describes how the hardware prefetchers are used in the Intel® Atom® Efficient-cores (or E-cores) and how they
can be tuned to improve the core and memory-related performance. It is relevant for the Intel Atom E-cores, star�ng with the
Alder and Raptor Lake microarchitectures, and server CPUs based on those Intel Atom E-cores, such as those with Grand
Ridge and Sierra Forest microarchitectures.

Figure 1: Performance gain with rudimentary dynamic prefetch tuning (dPF) vs. default sta�c boot se�ngs.

1.1 HARDWARE PREFETCH OVERVIEW
The Intel Atom cores are placed in a group of four per module with private L1 caches for each core. The banked L2 mid-level
cache (MLC) is shared (see Figure 2). Each module is then atached to the CPU interconnect, where the centrally shared L3
cache is located. The interface between the cores and the L2 cache is called the L2 Queue (L2Q). Any L2/MLC cache misses
con�nue through the External Queue (XQ) into the Bus Interface Unit (BIU) and onto the Uncore interconnect towards the L3
Last-level caches (LLC). Transac�ons that miss in the L3 will con�nue to the DDR.

Each core has a set of L1 hardware prefetchers that can be individually enabled/disabled. These feed prefetches into the L2Q
and the normal load/store requests.

The L2 prefetch block is shared for all cores in the module and contains several trackers. Each tracker searches for and then
locks on to a flow of either instruc�on or data. These trackers are shared between the cores but only serve one core at a �me.
Mul�ple prefetch func�ons within the block work together to form a unity. All prefetch requests are based on one or mul�ple
cache lines, with one cache line being 64 bytes of data. The generated requests are injected into the L2Q, similarly to the core
requests. Data is then fetched to either the L2/MLC or the L3/LLC cache. The L2 prefetcher monitors data requests coming
from a load instruc�on, referred to as demand reads, through the queues in the module's L2 pipeline. This is to iden�fy
access paterns as a basis for onward predic�ons. These predic�ons are combined with data such as queue depth, throtling
indica�ons, etc., to generate prefetches and ensure they work op�mally.

60

70

80

90

100

0 5 10 15 20

Ex
ec

ut
io

n
tim

e
pe

r i
ns

ta
nc

e

cores active

GCC small use-case

boot default dPF

0

200

400

600

800

1000

0 2 4 6 8 10

Ex
ec

ut
io

n
tim

e
pe

r i
ns

ta
nc

e

cores active

GCC large use-case

Boot default dPF

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 5

Figure 2: Intel® Atom® Core Module and Interface to Uncore

The overall target is to prefetch data that will be used rela�vely soon, decreasing the latency to access the data. Fetching data
as close to the core as possible is preferred to minimize latency, i.e., L1, then L2, and L3. In the worst case, one must wait for
the DDR, which has the longest latency and a more limited bandwidth. However, prefetching data too soon risks evic�ng data
from the cache s�ll in use, which is counterproduc�ve. The prefetcher will lock on access paterns that are only repeated for
some �me, typically a loop in the so�ware or a block of loaded new data. Hence, the access patern will stop sooner or later,
and the prefetchers will have requested data that won’t be used. Some wasteful data fetches are generally an acceptable
tradeoff to reduce latency. However, the degree of wasteful fetches is highly applica�on-dependent; for example, many small
loops with random data accesses vs. a few lengthy loops of highly repe��ve fetches. The tolerance for such waste is also very
system-dependent. A system with botlenecks in DDR bandwidth has nothing to gain from prefetches that add further load on
DDR. However, the latency to DDR is a func�on of the DDR bandwidth used with a knee towards the end. Systems that
operate with a low or medium level of DDR load can benefit significantly from more aggressive prefetching as long as the DDR
loads stay below this knee.

The balance of when and where to prefetch can be tricky, especially since the applica�on and system behavior o�en change
over �me. This is where the L1 and L2 Prefetch tuning capability comes in, allowing for per-core and per-module
configura�on, both sta�c and dynamic, over �me. These can be combined with Performance Monitor Unit (PMU) events and
other sta�s�cs counters to iden�fy load on the DDR interfaces, load/stores executed by each core, cache hit/miss ra�o, and
rate of prefetches that are subsequently used.

1.2 PREFETCHERS
The Atom core genera�on up to Gracemont, i.e., Alder Lake and Raptor Lake pla�orms, includes the L1 prefetchers listed
below. These L1 prefetchers can enable/disable through MSRs but not further tunable through so�ware. They are integrated
into each core and only consider per-core aspects. The generated prefetch requests are sent from the respec�ve core into the
L2Q, similar to normal load/stores.

1.2.1 Instruc�on Point Prefetcher (L1 IPP)

The IPP is commonly listed as the DCU_IP_PREFETCH1 in Basic Input/Output System (BIOS).

The IPP Keeps track of individual load instruc�ons. When a load instruc�on is detected to have a regular stride, a prefetch is
sent to the next address, which is the sum of the current address and the stride.

1 DCU – Data Caching Unit is the block that holds the L1 data cache.

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 6

1.2.2 Next Line Prefetcher (L1 NLP)

The NLP is commonly also listed as the DCU_STREAMER_PREFETCH in BIOS.

Prefetches next line of any given access, applicable to instruc�ons and data. The NLP is one of the earliest types of
prefetchers introduced at a �me well before mul�-core was the norm. It was a blunt approach: simple to implement, worked
well for single-core systems, but drove much bandwidth. This impacted both DDR bandwidth and L1/L2 caches and queues.
Use of the NLP should be done with care, and a general recommenda�on is to run with the NLP disabled unless you can
observe a benefit to your system.

1.2.3 Next Page Prefetcher (L1 NPP)

The NPP is commonly also listed as the DCU_NEXT_PAGE_PREFETCH in BIOS.

Tracks access during streaming and prefetches the next TLB entry, both applicable to instruc�ons and data. The NPP is
lightweight and reduces page-walk costs, which is especially important for applica�ons that touch a lot of new data.

1.3 L2 PREFETCHERS
Three types of prefetchers within the L2 prefetch block are jointly structured into a set of trackers. These are named since
they make decisions by tracking requests from the core, as normal demand reads and L1 prefetches. The number of trackers
varies between implementa�ons, but there are typically mul�ple dozens of trackers per module. Each tracker searches for
access paterns, locks on to them, and starts proac�vely fetching ahead. If a patern breaks for some �me, the tracker stops
prefetching and returns to search for a new patern. The different prefetcher types work together and share the same queue
of requests that feeds into the L2Q.

The type of requests used to train and trigger the L2 prefetcher is one of the configurable parameters; see Sec�on 4.5. The L2
prefetchers are highly configurable. However, addi�onal mechanisms not covered in this paper ensure fairness, overload
protec�on, and �mely relevance in the requests.

A central feedback parameter is the depth of the XQ. The XQ threshold level for when to issue prefetches is also a valuable
configura�on parameter present in mul�ple MSRs. A higher number of entries in that queue states that more loads go
beyond the L2 cache; hence, the L3 cache will see a higher load. If these miss in the L3 cache, they will likely generate a
significant DDR load, for which it is generally a good prac�ce to reduce the number of prefetches issued. Requests towards
MMIO address space (such as PCIe) will also be routed through the XQ but are seldom a significant load.

1.3.1 MLC Streamer

MLC Streamer is commonly listed as the MLC_STREAMER_PREFETCH in BIOS and some�mes referred to as simply the Stream
Prefetcher or L2 Streamer.

The MLC Streamer works on both instruc�ons and data; it tracks access paterns such as A+0, A+1, A+2, … where A is the
linear address of a cache line. Paterns can be either incremental or decremental. Once a patern is locked, it will fetch
subsequent accesses into the L2 cache. The number of requests ahead of demand reads issued is configurable; see Sec�on
4.1.

1.3.2 LLC Streamer

The LLC Streamer is some�mes called the LLC Prefetcher or L3 Prefetcher.

The LCC Streamer behaves like the MLC Streamer but fetches into the LLC. The inten�on is that the LLC Streamer should issue
requests further ahead, i.e., further out in �me. The larger LLC size can be leveraged to be more specula�ve and balance the
risk of miss-fetches vs. poten�al benefits. The MLC prefetcher carries the data closer to the core once we have more certainty
that the data will be used, i.e., when the distance to current demand reads is closer.

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 7

1.3.3 Adap�ve Mul�-Path (AMP)

The AMP prefetcher builds on top of the MLC Streamer but can fetch more complex paterns such as A+0, A+8, A+0+N,
A+8+N, A+0+2N, … where N is a distance ahead/behind. The AMP prefetcher generally has more precision and, therefore,
higher priority than the Streamers. In a scenario where prefetching should be limited, it can be valuable to disable or limit the
streamers and let the AMP stay on.

The confidence level of AMP can be set for different throtling levels, where the later is a feedback parameter taken from the
uncore, see Sec�on 0.

1.3.4 L2 Next Line Prefetch (L2 NLP)

The L2 Next Line Prefetcher (L2 NLP) is part of the MLC Streamer block and behaves similarly to the L1 NLP except that it
fetches to the L2 cache. This commonly generates a significant increase in prefetches, which can be of value to certain
workloads and systems where single-core performance is important. However, this increased request load is generally
nega�ve for mul�core systems, and the L2 NLP is, by default, turned off.

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 8

2 Tunable parameters
The tunable parameters vary between prefetch types and apply primarily to the MLC or LLC Streamer and AMP. These three
blocks share some common structures; hence, the tuning parameters are slightly intertwined.

2.1 ENABLE / DISABLE
Each prefetcher's “big hammer” is the enable/disable bit; they are spread out over MSR 0x1A4 and MSR 0x1320/21. Note
that 0x1A4 is also used by the P-cores but with slightly different definitions. For instance, the L2 Spatial Prefetcher is
unavailable on Intel® Atom® cores.

Prefetcher MSR bit

MLC/LLC Streamer disable 0x1A4 0

DCU Streamer (L1 NLP) 0x1A4 2

DCU IP Prefetcher (L1 IPP) 0x1A4 3

DCU Next Page Prefetcher (L1 NLP) 0x1A4 4

AMP 0x1A4 5

LLC Streamer 0x1320 43

L2 NLP 0x1321 40

2.2 AMP AND MLC/LLC STREAMER SOURCE SELECTION
The source selection for AMP and the MLC/LLC Streamer can be found in MSR 0x1323; see Section 4.5. There are two types
of switches: those that enable training of the prefetcher from the respective source and those that enable tracking the
prefetcher from the respective source. Both should be enabled for the respective source that is of interest.

The types of requests that can be selected include the various hardware L1 prefetches, different software prefetches
generated by the code, and different types of reads. Reads, also known as demand reads, are normal load operations and can
co-exist in multiple caches. Read for Ownership (RFO) are reads where the core intends to write a value and requests
exclusive ownership of the cache line.

2.3 STREAMER CONFIGURATION
There are three key parameters for the MLC and LLC Streamer, respectively.

1. The maximum distance ahead of current generated requests, i.e., where the core is currently execu�ng; see Sec�on 4.2.
A higher value will drive more prefetches and hence increase the chance of hi�ng in the respec�ve cache layer, but this
can also evict relevant data that would be beter to keep in the caches. A longer distance will also drive more DDR
bandwidth.

2. The XQ threshold; see Sec�on 4.2 for MLC Streamer.
a. Note that this se�ng is also shared with AMP. For more informa�on about LLC Streamer, see Sec�on 0. The XQ

queue handles all requests that are misses in the L2 cache.
b. The value set specifies how many empty entries the XQ must have to accept new prefetch requests. A high

threshold value will generally lower the prefetch aggressiveness.
3. The third is the demand density parameters; see Sec�on 4.3 for the MLC Streamer and Sec�on 0 for the LLC Streamer.

The name refers to demand reads (and the number of prefetches upgraded to demand reads) from the core over an
internally pre-defined period of �me.
a. A high-demand density indicates that the core is using the prefetches.
b. Demand density is measured as an average for all trackers assigned to a given core in the module. A value lower

than the configura�on will hold prefetch requests from all the MLC respec�ve LLC Streamer trackers. This is because
the overall accuracy in prefetches is deemed too low.

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 9

c. The trackers will con�nue to follow the data flows and update the demand density. However, individual trackers
that reach a higher level of demand density, specified by the demand density override, are deemed accurate
enough and will, therefore, generate prefetch requests.

Finally, two configurations connect the demand density and XQ Threshold. If the demand density is lower than the
L2_LLC_STREAM_DEMAND_DENSITY_XQ setting, then the XQ Thresholds are set per the
L2_LLC_STREAM_AMP_XQ_THRESHOLD. See Sec�ons 4.3 and 0.

2.4 AMP CONFIGURATION
The AMP prefetcher shares the XQ threshold with the MLC Prefetcher but has no maximum distance setting. However, it has
two additional settings:

1. AMP has a tunable confidence level required to trigger a request; see Sec�on 0.
a. This parameter is set for different throtling levels. The throtling level is an unconfigurable uncore feedback

parameter for the AMP block. Se�ng a higher confidence level will make AMP more selec�ve in making requests,
lowering the overall number of requests generated.

b. Note that this can drive more MLC/LLC Streamer requests as AMP has higher priority. Only one prefetcher issues
requests per �meslot. Therefore, increasing confidence does not necessarily lower the total number of prefetch
requests unless Streamer parameters are also tuned down.

2. An enable/disable recursive lookup patern specifies how AMP should trigger on paterns; see Sec�on 4.2. Disabling
recursive lookup will lower the number of prefetch requests. It is strongly recommended to leave this disabled.

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 10

3 PERFORMANCE MONITORS
Performance monitoring events in the Intel® Atom® core (the Gracemont microarchitecture) and Intel® Core™ (Alder/Raptor
Lake microarchitectures) are relevant to hardware prefetch tuning. See the respec�ve device manual for details. Performance
events are also available at perfmon-events.intel.com. Some generic sugges�ons for how these can be used follow.

3.1 IMC RD CAS
The Integrated Memory Controller (IMC) on client pla�orms typically has two sta�c counters tracking the number of read and
write requests. On server pla�orms, there are generally configurable performance monitoring counters instead. These
counters measure requests at the cache line level of granularity, so the value should be mul�plied by 64 to get the number of
bytes transferred. The sta�c counters start coun�ng on power-on, and the configurable counters start coun�ng when the start
signal is provided. In either case, the amount of DDR requests generated is derived by taking the delta values between two
points in �me.

The read counter is of primary interest for hardware prefetch tuning as hardware prefetchers drive addi�onal reads, although
dirty cache lines can also be pushed out as writes. These counters are shared resources at the pla�orm level, not �ed to
individual cores or modules. Note that there are generally mul�ple IMCs per device. The usage of DDR interleaving, which is
the default configura�on, gives a near-equal load on the interfaces.

Se�ng prefetch aggressiveness based on DDR load is a simple and efficient method to improve performance.

3.2 MEM_UOPS_RETIRED_ALL_LOADS
This per-core event tracks the number of load opera�ons completed, i.e., not including specula�ve loads or prefetches not
upgraded to demand reads. This value can be used with respec�ve cache layers hit/miss events.

The total number of loads rela�ve to respec�ve core loads can also be used to iden�fy the core driving most loads. However,
a core that executes many loads could hit well in caches and does not necessarily contribute to the DDR load. Another
parameter to size the DDR pressure per core is LONGEST_LAT_CACHE.MISS or MEM_LOAD_UOPS_RETIRED_DRAM_HIT.

3.3 MEM_LOAD_UOPS_RETIRED_L2_HIT
This event measures the number of load operations concluded where the load hits in the MLC / L2 cache.

3.4 MEM_LOAD_UOPS_RETIRED_L3_HIT
This event measures the number of load operations concluded where the load hits in the LLC / L3 cache.

The L2 hit vs. L3 hit and DDR hit (i.e., L2 miss) can be used to identify the L2 hit ratio. This is similar to the L3 hit ratio to the
L3 hit vs. DDR hit. These can be leveraged to estimate how well prefetches to the MLC and LLC work.

3.5 LONGEST_LAT_CACHE.MISS
This event counts the number of cacheable memory requests that miss in the LLC and hence targets DDR or other coherent
memory.

3.6 MEM_LOAD_UOPS_RETIRED_DRAM_HIT
This event measures the number of load opera�ons concluded where the load hit in DDR. This can be leveraged to iden�fy
how much of the overall DDR bandwidth originates from the respec�ve core. A more fine-grained selec�on of what cores
should be throtled can thus be made.

See also event MEM_BOUND_STALLS.LOAD_DRAM_HIT, which counts the cycle’s cost for the penalty of going to DDR.

3.7 XQ_PROMOTION_ALL
This even counts the number of XQ entries ini�ated as hardware prefetches, but where a normal request was made that
upgraded the entry. This indicates that the prefetch was correct and reduced access latency. However, prefetches that
completed and brought the data into the respec�ve cache and then were used are not counted.

It is currently impossible in the Intel Atom cores covered in this document to measure the number of prefetches issued. But
the promo�ons rela�ve L2 misses and respec�ve such ra�o per core can be an es�mate of how successful the prefetching is.
This must also account for respec�ve core prefetch-se�ng.

https://perfmon-events.intel.com/

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 11

4 L2 PREFETCH MSR
MSRs are shared within a module, and changes from one core will be seen by the other in that module. Only cores within the
module can access the module's configura�on. For example, it is enough if one core changes the MSR; use core affinity to
ensure you are execu�ng on the relevant module.

The MSRs described below are only applicable to the Intel® Atom® cores. Use the CPUID feature to iden�fy core types, and if
a hybrid pla�orm is in use, see [2] for more details. Bits outside of the ones described may be reserved or have other
func�ons, including having other func�ons on other cores; see the respec�ve device documenta�on and ensure that values
outside these listed are preserved.

4.1 MSR 0X1A4
Width Bits Descriptor

1 0:0 MLC Stream disabled; when set to 1, the MLC Streamer is disabled.

1 2:2 L1 data Stream disabled; when set to 1, the L1 data Streamer is disabled.

1 3:3 L1 instruc�on Stream disabled; when set to 1, the L1 instruc�on Streamer is disabled.

1 5:5 L2 AMP disabled; when set to 1, the L2 AMP is disabled.

4.2 INTEL® ATOM® MSR 0X1320
Width Bits Descriptor

5 4:0 L2 Stream and AMP XQ threshold. The value specifies the number of empty XQ entries
to emit prefetches. I.e., a higher value drives fewer prefetches.

5 24:20 L2 Stream max distance from core execu�on. A higher number will prefetch more data.

1 30:30 AMP recursive lookup disabled; se�ng to 1 decreases the number of prefetches.

6 42:37 LLC Stream max distance from core execu�on. A higher number will prefetch more data.

1 43:43 LLC Stream disable; when set to 1, the LLC Streamer is disabled.

5 62:58 LLC Stream XQ threshold. The value specifies the number of empty XQ entries to emit
prefetches. For example, a higher value drives fewer prefetches.

struct msr1320_s{
 uint64_t L2_STREAM_AMP_XQ_THRESHOLD : 5;
 uint64_t pad0 : 15;
 uint64_t L2_STREAM_MAX_DISTANCE : 5;
 uint64_t pad1 : 5;
 uint64_t L2_AMP_DISABLE_RECURSION : 1;
 uint64_t pad2 : 6;
 uint64_t LLC_STREAM_MAX_DISTANCE : 6;
 uint64_t LLC_STREAM_DISABLE : 1;
 uint64_t pad3 : 14;
 uint64_t LLC_STREAM_XQ_THRESHOLD : 5;
};

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 12

4.3 INTEL® ATOM® MSR 0X1321
Width Bits Descriptor

1 0:0 MLC Streamer and AMP enabled tracking of instruc�on flows.

8 28:21 MLC Streamer demand density.

4 32:29 MLC Streamer demand density override.

1 40:40 L2 Next Line Prefetcher disabled; when set to 1, the L2 NLP is disabled.

6 46:41 XQ threshold when demand density is low. Typically set higher than normal XQ
thresholds. Applicable to MLC/LLC Streamer and AMP.

struct msr1321_s{
 uint64_t L2_STREAM_AMP_CREATE_IL1 : 1;
 uint64_t pad0 : 20;
 uint64_t L2_STREAM_DEMAND_DENSITY : 8;
 uint64_t L2_STREAM_DEMAND_DENSITY_OVR : 4;
 uint64_t pad1 : 7;
 uint64_t L2_DISABLE_NEXT_LINE_PREFETCH : 1;
 uint64_t L2_LLC_STREAM_AMP_XQ_THRESHOLD : 6;
};

4.4 INTEL® ATOM® MSR 0X1322
Width Bits Descriptor

9 22:14 LLC Steamer demand density.

4 26:23 LLC Steamer demand density override.

6 32:27
AMP Confidence threshold at throtle level 0 (no throtling):

• Emits prefetches when confidence is above this level.
• A higher level gives less aggressive prefetching.

6 38:33
AMP Confidence threshold at throtle level 1 (light throtling):

• Emits prefetches when confidence is above this level.
• A higher level gives less aggressive prefetching.

6 44:39
AMP Confidence threshold at throtle level 2 (moderate throtling):

• Emits prefetches when confidence is above this level.
• A higher level gives less aggressive prefetching.

6 50:45
AMP Confidence threshold at throtle level 3 (aggressive throtling):

• Emits prefetches when confidence is above this level.
• A higher level gives less aggressive prefetching.

3 61:59 Demand density to switch to alterna�ve XQ threshold.
(L2_LLC_STREAM_AMP_XQ_THRESHOLD)

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 13

struct msr1322_s{
 uint64_t pad0 : 14;
 uint64_t LLC_STREAM_DEMAND_DENSITY : 9;
 uint64_t LLC_STREAM_DEMAND_DENSITY_OVR : 4;
 uint64_t L2_AMP_CONFIDENCE_DPT0 : 6;
 uint64_t L2_AMP_CONFIDENCE_DPT1 : 6;
 uint64_t L2_AMP_CONFIDENCE_DPT2 : 6;
 uint64_t L2_AMP_CONFIDENCE_DPT3 : 6;
 uint64_t pad1 : 8;
 uint64_t L2_LLC_STREAM_DEMAND_DENSITY_XQ : 3;
};

4.5 INTEL ® ATOM® MSR 0X1323
Width Bits Descriptor

1 34:34 Begin tracking so�ware data prefetches with the intent to write. Affects both the MLC
Streamer and AMP.

1 35:35 Begin tracking so�ware data prefetches. Affects both the MLC Stream and AMP.

1 37:37 Begin tracking requests coming from the L1 NLP prefetcher. Affects both the MLC
Stream and AMP.

1 38:38 Begin tracking demand requests with intent to write. Affects both the MLC Stream and
AMP.

1 39:39 Allow SW prefetch read for ownership to train a prefetch streamer entry.

1 40:40 Allow SW prefetch reads to train a prefetch streamer entry.

1 41:41 Allow IL1 to train a prefetch streamer entry.

1 43:43 Allow hardware prefetch read to train a prefetch streamer entry.

1 44:44 Allow read-for-ownership (RFO) requests to train a prefetch streamer entry.

1 45:45 Begin tracking requests coming from the L1 NPP prefetcher. Affects both the MLC
Stream and AMP.

1 46:46 Begin tracking requests coming from the L1 IPP prefetcher. Affects both the MLC Stream
and AMP.

1 47:47 Allow NPP prefetcher to train L2 prefetchers.

1 48:48 Allow IPP prefetcher to train L2 prefetchers.

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 14

struct msr1323_s{
 uint64_t pad0 : 34;
 uint64_t L2_STREAM_AMP_CREATE_SWPFRFO : 1;
 uint64_t L2_STREAM_AMP_CREATE_SWPFRD : 1;
 uint64_t pad1 : 1;
 uint64_t L2_STREAM_AMP_CREATE_HWPFD : 1;
 uint64_t L2_STREAM_AMP_CREATE_DRFO : 1;
 uint64_t STABILIZE_PREF_ON_SWPFRFO : 1;
 uint64_t STABILIZE_PREF_ON_SWPFRD : 1;
 uint64_t STABILIZE_PREF_ON_IL1 : 1;
 uint64_t pad2 : 1;
 uint64_t STABILIZE_PREF_ON_HWPFD : 1;
 uint64_t STABILIZE_PREF_ON_DRFO : 1;
 uint64_t L2_STREAM_AMP_CREATE_PFNPP : 1;
 uint64_t L2_STREAM_AMP_CREATE_PFIPP : 1;
 uint64_t STABILIZE_PREF_ON_PFNPP : 1;
 uint64_t STABILIZE_PREF_ON_PFIPP : 1;
};

Hardware Prefetch Control for Intel® Atom® Cores

357930-001US 15

5 REFERENCES
[1] GitHub:hardwarePrefetching. 2023. [Online]. Available: htps://github.com/uart/hardwarePrefetching

[2] Intel Architecture Instruc�on Set Extensions Programming Reference. [Online]. Available:
htps://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruc�on-set-extensions-programming-
reference.html.

https://github.com/uart/hardwarePrefetching
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html

	1 Introduction
	1.1 Hardware Prefetch Overview
	1.2 Prefetchers
	1.2.1 Instruction Point Prefetcher (L1 IPP)
	1.2.2 Next Line Prefetcher (L1 NLP)
	1.2.3 Next Page Prefetcher (L1 NPP)

	1.3 L2 Prefetchers
	1.3.1 MLC Streamer
	1.3.2 LLC Streamer
	1.3.3 Adaptive Multi-Path (AMP)
	1.3.4 L2 Next Line Prefetch (L2 NLP)

	2 Tunable parameters
	2.1 Enable / Disable
	2.2 AMP and MLC/LLC Streamer Source Selection
	2.3 Streamer Configuration
	2.4 AMP Configuration

	3 Performance Monitors
	3.1 IMC RD CAS
	3.2 MEM_UOPS_RETIRED_ALL_LOADS
	3.3 MEM_LOAD_UOPS_RETIRED_L2_HIT
	3.4 MEM_LOAD_UOPS_RETIRED_L3_HIT
	3.5 LONGEST_LAT_CACHE.MISS
	3.6 MEM_LOAD_UOPS_RETIRED_DRAM_HIT
	3.7 XQ_PROMOTION_ALL

	4 L2 Prefetch MSR
	4.1 MSR 0x1A4
	4.2 Intel® Atom® MSR 0x1320
	4.3 Intel® Atom® MSR 0x1321
	4.4 Intel® Atom® MSR 0x1322
	4.5 Intel ® Atom® MSR 0x1323

	5 References

