

Runtime Microcode Update
Technical Paper

June 2023

Revision1.0

Document Number: 356111-001US

2 Document Number: 356111-001US, Revision: 1.0

Notice: This document contains information on products in the design phase of development. The information here is subject
to change without notice. Do not finalize a design with this information.

Intel technologies may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or
retailer.
No product or component can be absolutely secure.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing,
or usage in trade.
Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

Document Number: 356111-001US, Revision: 1.0 3

Contents
1 Introduction .. 5

2 Runtime Microcode Update ... 6
2.1 Microcode Update Enumeration and Status ... 6
2.2 Preparing to Load the Update ... 8
2.3 Uniform Microcode Update .. 9
2.4 ILP Determination .. 11
2.5 Loading the Update ... 12
2.6 Completing the Update ... 13

3 Extended MCU Metadata .. 14

4 Microcode Update Rollback .. 17
4.1 MCU SVN and Deferred SVN Commit ... 17

4.1.1 MCU SVN ... 17
4.1.2 Deferred MCU SVN Commit .. 18
4.1.3 SVN Reporting ... 19
4.1.4 Minimum MCU SVN .. 20
4.1.5 SVN Commit Rules .. 21

4.2 Rollback ID Reporting ... 22
4.2.1 Rollback and BIOS MCU .. 22

4.3 MCU Header Changes ... 23

5 MCU Staging .. 25
5.1 MCU Staging Mailbox Overview ... 25
5.2 MCU Staging Mailbox Data Object Format .. 25

5.2.1 Discovery Object .. 26
5.2.2 MCU Staging Object .. 27

5.3 MCU Staging Mailbox Interface Registers .. 31
5.3.1 MCU Staging Control Register .. 31
5.3.2 MCU Staging Status Register .. 32
5.3.3 MCU Staging Write Data Register ... 33
5.3.4 MCU Staging Read Data Register .. 33

5.4 MCU Staging Mailbox Message Protocol ... 33

4 Document Number: 356111-001US, Revision: 1.0

Revision History
Document

Number

Revision

Number

Description

Date

356111-001US 1.0 Initial release. June 2023

Document Number: 356111-001US, Revision: 1.0 5

1 Introduction
Intel microcode updates provide the ability to update the processor firmware after manufacturing.
Typically, a microcode update (MCU) is loaded by the platform firmware during the boot process (e.g.,
BIOS) and/or during the boot phase of the operating system. However, due to evolving usage models,
it has become increasingly common to need to load microcode updates while the system is fully
operational, including while end user workloads and virtual machines may be running.

This document describes architectural enhancements and a software methodology to facilitate the
efficient loading of microcode updates during runtime. The enhancements described are intended to
be backward compatible such that existing OS MCU drivers should continue to work as is, while newer
drivers may be developed to take advantage of and benefit from the enhancements.

The architectural enhancements described here are targeted for future products releases. They are
preliminary and subject to change. The exact definitions and product intercepts are also subject to
change until they are finalized.

6 Document Number: 356111-001US, Revision: 1.0

2 Runtime Microcode Update
Loading a microcode update during runtime requires coordination across all logical processors within
the platform.

Loading a microcode update may cause changes to CPU capabilities or functionality that may be
visible to running software. This is true whenever a microcode update is loaded, but it is particularly
important when loading an update during runtime, while virtual machines and/or user mode
applications may be running. Examples may include, but are not limited to:

• Changes to CPUID or other enumeration bits (e.g., IA32_ARCH_CAPABILITIES).
• Changes to Architectural Model Specific Registers (MSRs) or individual bits within Architectural

MSRs.

When loading a newer update over an older update, Intel intends that any such changes to capabilities
or functionality will be architecturally compatible with any running software. However, if an older
update is loaded over a newer update (i.e., rollback), then software must ensure, prior to loading the
update, that any functionality not present in the older update is no longer in use by any running
software. Failure to do so may cause running software to malfunction.

2.1 Microcode Update Enumeration and Status
The IA32_MCU_ENUMERATION MSR is a read-only register that provides information about the
microcode update capabilities of the processor. The IA32_MCU_STATUS MSR is a read-only register
that provides status information for the most recent attempt to load a microcode update. The
IA32_MCU_ENUMERATION and IA32_MCU_STATUS MSRs are present if both of the following are true:

• CPUID.(EAX=07H, ECX=0):EDX[29] == 1, and
• IA32_ARCH_CAPABILITIES[16] == 1.

CPUID.(EAX=07H, ECX=0):EDX[29] indicates the presence of IA32_ARCH_CAPABILITIES (MSR 10AH),
and IA32_ARCH_CAPABILITIES[MCU_ENUMERATION] (bit 16) indicates the presence of
IA32_MCU_ENUMERATION (MSR 7BH) and IA32_MCU_STATUS (MSR 7CH).

Document Number: 356111-001US, Revision: 1.0 7

The format of the IA32_MCU_ENUMERATION MSR is described below. Later sections provide details
on how these bits should be used.

IA32_MCU_ENUMERATION (MSR 7BH) – Read-only – Package Scoped
Bit Field Name Description
0 UNIFORM_MCU_AVAIL When set to 1, uniform microcode update is available,

and UNIFORM_MCU_SCOPE (bits [10:8]) indicates the
scope of writes to IA32_BIOS_UPDT_TRIG.
When set to 0, uniform microcode update is not available,
and writes to IA32_BIOS_UPDT_TRIG are core scoped.

1 UNIFORM_MCU_CONFIG_REQD When set to 1, indicates that configuration is required to
ensure that all MCU components are updated on WRMSR
79H, and UNIFORM_MCU_CONFIG_COMPLETE (bit 2)
should be checked to determine whether the necessary
configuration has been completed.
When set to 0, indicates that no configuration is required,
and UNIFORM_MCU_CONFIG_COMPLETE should be
ignored.

2 UNIFORM_MCU_CONFIG_COMPLETE If UNIFORM_MCU_CONFIG_REQD (bit 1) is 0, then this bit
should be ignored.
If UNIFORM_MCU_CONFIG_REQD is 1, then this bit
indicates whether all necessary configuration has been
completed to ensure that all MCU components will be
updated on WRMSR 79H.

3 ARCH_ROLLBACK_SVN_COMMIT When set to 1, indicates support for the MCU deferred
SVN architecture, SVN reporting architecture, and MCU
rollback architecture. See section 4 for details.

4 MCU_STAGING When set to 1, indicates that the microcode update
staging capability is supported by the processor. When
supported, use of the MCU staging capability is
recommended to reduce the latency of the
IA32_BIOS_UPDT_TRIG operation. See section 5 for
details.

5 TEE_SVN_SUPPORT When set to 1, indicates that the processor supports
the IA32_TEE_SVN_STATUS MSR.

7:6 Reserved Reserved for future use.
15:8 UNIFORM_MCU_SCOPE Indicates the current* uniform microcode update scope:

0x02: Core scoped
0x80: Package Scoped
0xC0: Platform Scoped
All others: Reserved for future use

* The value of this field reflects the state of platform
configuration and may change as the configuration
changes during the boot process. Once configuration is
complete, it is not expected to change during runtime.

63:16 Reserved Reserved for future use.

8 Document Number: 356111-001US, Revision: 1.0

The format of the IA32_MCU_STATUS MSR is described below. Refer to the section “Completing the
Update” for details on how these bits should be used.

IA32_MCU_STATUS (MSR 7CH) – Read-only – Core Scoped
Bit Field Name Description
0 MCU_PARTIAL_UPDATE When set to 1, indicates that the most recent write to

IA32_BIOS_UPDT_TRIG resulted in a partial update. This
means that microcode update components were only
partially updated after some portion of the MCU had
already been committed and the Revision ID had been
updated.

1 AUTH_FAIL_ON_MCU_COMPONENT When set to 1, indicates that an authentication failure
occurred on some portion of the MCU after another
portion of the MCU had already been committed and the
Revision ID had already been updated on the most recent
write to IA32_BIOS_UPDT_TRIG.

2 Reserved Reserved for future use.
3 POST_BIOS_MCU When set to 1, indicates that an update was successfully

loaded via IA32_BIOS_UPDT_TRIG after bit 0 of
MSR_BIOS_DONE (MSR 151H) was set to 1. See section
4.2.1 for the usage of this bit.

63:4 Reserved Reserved for future use.

2.2 Preparing to Load the Update
On systems that enumerate Uniform Microcode Update, model-specific platform configuration may
be necessary to enable full support for runtime microcode updates. Platform firmware (e.g. BIOS)
would typically perform this configuration during the boot process before launching the OS. If the
necessary configuration is not done, then runtime updates may not properly load all components of
the update. The UNIFORM_MCU_CONFIG_REQD field (bit 1) of IA32_MCU_ENUMERATION indicates
whether the CPU requires any such configuration. If this bit is set, then OS software should consult the
UNIFORM_MCU_CONFIG_COMPLETE field (bit 2) to determine whether the necessary configuration
has been completed.

UNIFORM_MCU_
CONFIG_REQD

UNIFORM_MCU_
CONFIG_COMPLETE

Description

0 - No configuration is required. Runtime updates are enabled.

1 0 Necessary configuration has not been correctly completed.
Runtime updates may not load all MCU components.

1 1 Necessary configuration has been correctly completed, and
runtime updates are enabled.

Document Number: 356111-001US, Revision: 1.0 9

If UNIFORM_MCU_CONFIG_REQD is 1 and UNIFORM_MCU_CONFIG_COMPLETE is 0, then the
necessary configuration has not been completed, and the update may not load all components of the
MCU. In this scenario, Intel recommends that microcode updates not be loaded at runtime.

To load an update during runtime, software must synchronize all logical processors within the system
(perform a rendezvous) to load the update in a coordinated manner.

Prior to loading the update, software may wish to snapshot any enumeration values of interest to
detect any changes caused by the update. Examples of such values may include CPUID leaves and
sub-leaves, architectural enumeration MSRs (IA32_ARCH_CAPABILITIES, IA32_CORE_CAPABILITIES,
IA32_MCG_CAP, etc.), VMX capability MSRs, CAPID registers, etc. The exact set of values of interest
may be OS/VMM specific.

2.3 Uniform Microcode Update
On some processor configurations, it is sufficient to load the update on only one logical processer per
package or per platform. This is known as Uniform Microcode Update. On other processor
configurations, at least one logical processor per physical core must load the update. Uniform
Microcode Update is supported if IA32_MCU_ENUMERATION is present and UNIFORM_MCU_AVAIL
(bit 0) is set to 1.

If Uniform Microcode Update is not supported, then writes to IA32_BIOS_UPDT_TRIG are core scoped.
If Uniform Microcode Update is supported, then the UNIFORM_MCU_SCOPE field (bits [10:8]) of
IA32_MCU_ENUMERATION indicate whether writes to IA32_BIOS_UPDT_TRIG are core, package, or
platform scoped.

Non-Uniform Microcode Update. On processors that do not enumerate Uniform Microcode Update,
or on processors that enumerate Uniform Microcode Update with core scope, writes to
IA32_BIOS_UPDT_TRIG are core scoped, and at least one logical processor per core must load the
update.

Package Scoped Uniform Microcode Update. On processors that enumerate Package Scoped
Uniform Microcode Update, writes to IA32_BIOS_UPDT_TRIG are package scoped, and it is sufficient
for one logical processor per package to load the update. In this case, loading a microcode update on
any logical processor will cause the same update to automatically be loaded on all logical processors
within the CPU package.

Platform Scoped Uniform Microcode Update. On processors that enumerate Platform Scoped
Uniform Microcode Update, writes to IA32_BIOS_UPDT_TRIG are platform scoped, and it is sufficient
for one logical processor per platform to load the update. In this case, loading a microcode update on
any logical processor will cause the same update to automatically be loaded on all logical processors
across all CPUs in the system.

10 Document Number: 356111-001US, Revision: 1.0

NOTE

Some processors may support Uniform Microcode Update even if it is not enumerated, or
may support Uniform Microcode Update at a wider scope than what is enumerated. This is
known as model-specific Uniform Microcode Update and may occur when certain features
are enabled. For example, when Intel® Software Guard Extensions (Intel® SGX) is enabled, the
CPU will enable platform scoped Uniform Microcode Update even if it is not enumerated or
is enumerated with a narrower scope. In these cases, the model-specific behavior will never
have narrower scope than what is enumerated. Software may choose to ignore this model-
specific behavior and rely solely on the architectural enumeration (or lack thereof) when
loading the update. It is always allowed to load the update on more logical processors than
necessary, though this may result in unnecessary additional latency.

The following table summarizes the enumeration of the various configurations:

CPUID.(EAX=07H,
ECX=0):EDX[29]

IA32_ARCH_CAPABILITIES[16] IA32_MCU_ENUMERATION Description
Bit 0 Bits [15:8]

0 - - - Core Scoped
1 0 - - Core Scoped
1 1 0 - Core Scoped
1 1 1 0x02 Core Scoped
1 1 1 0x80 Package Scoped
1 1 1 0xC0 Platform Scoped

The following pseudo-code demonstrates how to determine the scope of IA32_BIOS_UPDT_TRIG:

Determine_Scope() {
 if (CPUID.(EAX=7, ECX=0).EDX[29] == 0)
 return CORE_SCOPED

 if (IA32_ARCH_CAPABILITIES[16] == 0)
 return CORE_SCOPED

 if (IA32_MCU_ENUMERATION[0] == 0)
 return CORE_SCOPED

 if (IA32_MCU_ENUMERATION[15:8] == 0xC0)
 return PLATFORM_SCOPED

 if (IA32_MCU_ENUMERATION[15:8] == 0x80)
 return PACKAGE_SCOPED

 return CORE_SCOPED
}

Document Number: 356111-001US, Revision: 1.0 11

2.4 ILP Determination
Depending on the scope of the IA32_BIOS_UPDT_TRIG MSR, one or more logical processors must be
designated to load the microcode update. Logical processors that explicitly load the update are known
as Initiating Logical Processors (ILPs)1. Logical processors that do not explicitly load the update are
known as Receiving Logical Processors (RLPs).

• On processors that enumerate platform scoped Uniform Microcode Update, there must be at
least one ILP for the platform.

• On processors that enumerate package scoped Uniform Microcode Update, there must be at
least one ILP per package.

• On processors that do not enumerate Uniform Microcode Update, or processors that
enumerate Uniform Microcode Update but do not indicate Platform or Package scope, there
must be at least one ILP per core.

In all cases, loading the update on more logical processors than necessary (including loading it on all
logical processors) is allowed and will be functional. However, it may not be efficient, and could result
in longer latencies.

The following pseudo-code demonstrates how to determine whether a given logical processor is an
ILP:

Is_ILP() {
 scope = Determine_Scope()

 if (scope == PLATFORM_SCOPED) {
 if (platform leader)
 return True
 else
 return False
 } else if (scope == PACKAGE_SCOPED) {
 if (package leader)
 return True
 else
 return False
 } else {
 if (core leader)
 return True
 else
 return False
 }
}

1 In this context, the terms ILP and RLP are unrelated to the same or similar terms used for other capabilities, such as the Safer

Mode Extensions (SMX) that support an Intel® Trusted Execution Technology (Intel® TXT) platform.

12 Document Number: 356111-001US, Revision: 1.0

2.5 Loading the Update
Once all logical processors have been designated as either an ILP or RLP, then software should
synchronize all threads. After synchronization, all RLPs must wait in a spin loop while all ILPs write to
IA32_BIOS_UPDT_TRIG to load the update. On processor configurations with more than one ILP, all
ILPs may load the update in parallel to minimize the overall time required to load the update. The RLP
spin loop must consist of only simple instructions; PAUSE or LFENCE may be used to throttle the loop,
but MWAIT and HLT must not be used.

After all ILPs have written to IA32_BIOS_UPDT_TRIG, all logical processors must verify that the new
update signature matches the update revision from the microcode update header. When the CPUID
instruction is executed, the CPU populates the IA32_BIOS_SIGN_ID MSR (MSR 0x8B) with the update
signature of the currently loaded microcode update. Therefore, to determine the signature of the
currently loaded microcode update, software must clear IA32_BIOS_SIGN_ID to 0, then execute the
CPUID instruction, then read the IA32_BIOS_SIGN_ID MSR.

The following pseudo-code demonstrates the sequence to read the current update revision:

Get_Current_MCU_Revision() {
 wrmsr(IA32_BIOS_SIGN_ID, 0)
 cpuid(1)
 return rdmsr(IA32_BIOS_SIGN_ID) >> 32
}

The following pseudo-code demonstrates the complete sequence to load the update:

Load_MCU(update_ptr) {
 global uint32 ILP_count = 0

 bool ILP = Is_ILP()
 if (ILP)
 atomic_increment(ILP_count)

 sync_logical_processors()

 if (ILP) {
 wrmsr(IA32_BIOS_UPDT_TRIG, update_ptr)
 atomic_decrement(ILP_count)
 }

 while (ILP_count != 0)
 pause

 if (Get_Current_MCU_Revision() == expected_rev)
 return Success
 else
 return Fail
}

Document Number: 356111-001US, Revision: 1.0 13

2.6 Completing the Update
On processors that enumerate the IA32_MCU_STATUS MSR, software should confirm that the entire
update was successfully loaded. If both MCU_PARTIAL_UPDATE (bit 0) and
AUTH_FAIL_ON_MCU_COMPONENT (bit 1) are 0, then the entire update was loaded successfully. If
MCU_PARTIAL_UPDATE (bit 0) is set to 1, then one or more MCU components failed to load. If
AUTH_FAIL_ON_MCU_COMPONENT (bit 1) is also set to 1, then one or more components of the MCU
failed authentication. If AUTH_FAIL_ON_MCU_COMPONENT is 0, then the partial load was not related
to authentication.

MCU_PARTIAL_UPDATE AUTH_FAIL_ON_MCU_COMPONENT Description
0 - Success.
1 0 Partial update due to configuration error.
1 1 Partial update due to authentication

failure.

After loading the update and verifying the update signature and status, software may wish to compare
the CPUID and other feature enumeration information against the earlier snapshot to detect any
changes caused by the update.

After loading the update, software may also need to perform additional follow up actions, such as SGX
TCB recovery, or activation or configuration of capabilities added via the update. Which logical
processors need to perform these actions may vary depending on the specific actions required and is
independent from the scope of the Uniform Update.

14 Document Number: 356111-001US, Revision: 1.0

3 Extended MCU Metadata
The existing microcode update binary format is described in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3, Section 10.11.1. It includes a 48-byte header, an encrypted
microcode update data block, and an optional extended signature table.

To support enhanced usage models for microcode updates such as runtime rollback, additional
metadata must be carried within the microcode update binary file itself. This section describes a
mechanism to add additional metadata into the microcode update binary image that can be used by
enlightened software while maintaining backward compatibility with existing legacy software.

The previously reserved DWORD at byte offset 36 of the microcode update header is repurposed as
the Metadata Size field. If the value of this field is 0, then the microcode update image does not contain
any additional metadata. If the value of this field is non-zero, then additional metadata is present, and
it begins at an offset of (Data Size + 48 – Metadata Size). This relationship maintains the previous

Document Number: 356111-001US, Revision: 1.0 15

definitions of both the Data Size and Total Size fields of the microcode update header to preserve
backward compatibility with existing legacy software that is not aware of the additional metadata.

The additional metadata, if present, is organized as a list of one or more metadata blocks. Each
metadata block consists of a 32-bit Type field, a 32-bit Size field, and zero or more DWORDs of data.
The Type field indicates the type of metadata contained in this block. The Size field indicates of the
size in bytes of this metadata block, including the type and size fields themselves, and will always be
a multiple of four bytes. Software can iterate over the list of blocks by adding the size of each block to
its starting offset to find the starting offset of the next block.

The following types of metadata are defined:

• Type 0: End of Metadata. The last metadata block in the list will always be of Type 0: End of
Metadata. This can be used by software to detect the end of the additional metadata. The Size
field of the End of Metadata block will always indicate 8 bytes: 4 bytes for the type field and 4
bytes for the size field itself; the End of Metadata block does not have any additional data.

Type 00000000h

Size (bytes) 00000008h

No Additional Data

• Type 2: Rollback Metadata. This metadata block contains information about the runtime
rollback capabilities of the microcode update. Refer to section 4.3 for the details of this
metadata type.

16 Document Number: 356111-001US, Revision: 1.0

All other Type encodings are reserved for future use. To ensure future compatibility, software must
ignore any metadata types that it does not recognize.

The following pseudo-code demonstrates how to locate a specific metadata block type within the
microcode update image:

Find_Metadata_Type(Update_Base, Type) {
 if (Update_Base.Metadata_Size == 0)
 return NULL

 Metadata_Base =
 Update_Base + 48 + Update_Base.Data_Size – Update_Base.Metadata_Size

 while (Metadata_Base.Type != END_OF_METADATA) {
 if (Metadata_Base.Type == Type)
 return Metadata_Base
 } else {
 Metadata_Base += Metadata_Base.Size
 }
 }
 return NULL
}

Document Number: 356111-001US, Revision: 1.0 17

4 Microcode Update Rollback
In general, a microcode update should only be loaded if it is newer (i.e., has a higher revision) than
what is already loaded. However, under some usage scenarios, it may be desirable to revert, or roll
back, the microcode update to a previous revision.

MCU Rollback is the act of requesting a runtime update to an older MCU with a lower revision while a
newer MCU with a higher revision is currently loaded on the CPU. The intent of rollback is to revert the
system, without a reboot, to a state resembling (or matching) the state prior to a WRMSR 79H with a
new MCU.

For example:
1. WRMSR 79H with MCU revision X.
2. MCU loaded successfully and CPU resumes running software with no issues.
3. WRMSR 79H with MCU revision Y (Y > X).
4. MCU loaded successfully and CPU resumes running software.
5. System instability observed after loading MCU Y and we want to revert to the state of the

system as it was after (2).
6. WRMSR 79H with MCU revision X – this is the rollback action.

This section describes extensions to the microcode update format and the CPU architecture to
enumerate and enable certain specific supported rollback configurations.

• Sections 4.1 and 4.2 describe extensions to the processor architecture for software to enable
rollback capabilities and enumerate supported rollback configurations.

• Section 4.3 describes extended MCU metadata within the microcode update binary to
enumerate supported rollback configurations and limitations for a given update.

On products that support the rollback architecture described here, Intel will support and validate
specific rollback targets for each new microcode update. Intel does not guarantee or support rolling
back to any arbitrary older microcode update that is not enumerated by this architecture.

The rollback architecture described in this section is enumerated by IA32_MCU_ENUMERATION bit 3.

4.1 MCU SVN and Deferred SVN Commit

4.1.1 MCU SVN

Microcode updates have a Secure Version Number (SVN) to manage rollback which would preclude
users from rolling back MCU past a given point. Once an MCU is loaded, its SVN explicitly prevents
loading any (generally older) MCU with a lower SVN.

This is intended to prevent a Ring 0 attacker from being able to roll back certain updates to expose
exploitable security issues.

18 Document Number: 356111-001US, Revision: 1.0

4.1.2 Deferred MCU SVN Commit

Without architectural rollback support, MCU SVN is committed once MCU is loaded via WRMSR 79H.

This architecture adds an option to defer SVN commit to a later point after WRMSR 79H. This will allow
validating the system, decide on rollback, and if everything is fine to commit the MCU SVN via a new
MSR write.

We are adding two new MSRs, one to decide on the SVN commit mode and one to identify the need
for manual commit and perform the commit.

IA32_MCU_SVN_CONFIG - Allow to configure handling of MCU SVN, there are two cases:

1. Auto-commit – MCU SVN will be committed as part of WRMSR 79H, this will prevent rolling
back to MCU with lower SVN.

2. Manual-commit – MCU SVN will not be updated via WRMSR 79H2, rolling back to previous
MCU (same SVN as the current CPU SVN) is allowed after WRMSR 79H and before WRMSR
IA32_MCU_SVN_COMMIT.

IA32_MCU_SVN_CONFIG (MSR 7A0) – Read/Write – Package Scoped
Bit Field Name Description
0 LOCK Update of MSR not allowed once this bit is set, WRMSR

will result into #GP.
1 DEFER_SVN 0: Auto-Commit (Legacy SVN handling – default)

1: Manual Commit
63:2 Reserved Reserved for future use.

IA32_MCU_COMMIT_SVN (MSR 7A1) – Read/Write – Core Scoped
Bit Field Name Description
0 COMMIT_SVN On Read reports if there is pending SVN to commit

On write:
“1” - Commit SVN
“0” - Ignored

63:1 Reserved Reserved for future use.

So now we can have two phases for software to decide on MCU SVN handling.

Configuration phase:

Software will configure the IA32_MCU_CONFIG MSR to either manual or auto commit; the default
value will be auto commit if the MSR was not configured.

It is expected that systems that do not intend to support rollback will lock the MSR with auto
commit.

2 See exception with the MINIMUM MCU SVN chapter.

Document Number: 356111-001US, Revision: 1.0 19

Systems that intend to support rollback may choose to lock the MSR after choosing between
manual and auto commit.

Software must not change the configuration from manual to auto commit while any core reports
COMMIT_SVN as 1 (i.e., an SVN update is pending).

Configuring the IA32_MCU_CONFIG MSR is expected to happen after the WRMSR 79H performed
by the BIOS (IA32(MCU_STATUS[POST_BIOS_MCU] == 1). Configuring the MSR to Auto-commit
before that can lead into BIOS failure.

Runtime update phase:

When software loads a new MCU with new MCU SVN (MCU_SVN will be part of the MCU header,
see chapter 4.3), it cannot rollback to a previous MCU with lower SVN (Last loaded MCU SVN) if
auto commit was chosen in the configuration phase.

It can rollback to lower MCU SVN when manual commit was chosen in the configuration phase.

Expectation is that after verifying that the new MCU does not cause any system instability, SW
performs WRMSR to IA32_MCU_COMMIT MSR with EAX=1 to commit the SVN.

There is no enforcement for software to commit the MCU SVN, but not doing so will prevent
loading a subsequent newer MCU with higher MCU SVN (See software rules chapter) and will not
guarantee that the CPU has the required security level.

Example of software flow with manual commit:
1. WRMSR 79H with MCU revision X with MCU_SVN A.
2. MCU loaded successfully and CPU resume to run software, no issues.
3. WRMSR IA32_MCU_SVN_COMMIT with EAX=1 – MCU_SVN A committed.
4. WRMSR 79H with MCU revision Y (Y > X) and MCU_SVN B (B > A).
5. MCU loaded successfully and CPU resume to run software.
6. System instability observed as a result of loading MCU Y, we want to revert to same

situation in (2).
7. WRMSR 79H with MCU revision X and MCU_SVN A.

a. This action will succeed as we did not yet commit MCU_SVN B.

4.1.3 SVN Reporting

CPU will report the MCU SVN and the value pending in case of manual commit and commit is pending
in IA32_MCU_SVN_INFO.

This MSR is enumerated by same rollback enumeration bit: IA32_MCU_ENUMERATION[3].

IA32_MCU_SVN_INFO (MSR 7A2) – Read only – Core Scoped
Bit Field Name Description
15:0 MCU_SVN Committed MCU SVN, value can be updated on WRMSR 79H or

IA32_MCU_SVN_COMMIT
31:16 PENDING_MCU_SVN Pending SVN, value updated on WRMSR 79H and will be copied to

MCU_SVN field on IA32_MCU_COMMIT_SVN WRMSR.
63:32 Reserved Reserved for future use.

20 Document Number: 356111-001US, Revision: 1.0

If IA32_MCU_COMMIT_SVN[COMMIT_SVN] indicates than an SVN update is pending, then the
PENDING_MCU_SVN field reports the pending SVN. If an SVN update is not pending, then the value of
this field is model specific.

4.1.4 Minimum MCU SVN

With manual commit, software can revert to the last MCU that was loaded in the CPU as the new MCU
SVN will not be committed on WRMSR 79H, while with auto-commit this cannot happen when MCU
SVN is incremented.

A CPU could have a very old MCU loaded and allowing rollback to such an older MCU may create a
security threat to the CPU. While we still want to allow rollback with manual commit, rollback may be
limited to an SVN greater than what was in effect with the previous MCU.

To aid with this, MCUs have an additional value – MINIMUM_MCU_SVN. If the SVN of the currently
loaded MCU is lower than the MINIMUM_MCU_SVN, then this value will become the new
IA32_MCU_SVN_INFO[MCU_SVN] once WRMSR 79H is executed regardless of the chosen MCU
commit configuration.

MINIMUM_MCU_SVN will be part of the MCU header as mentioned in chapter 4.3.

Here are examples of few scenarios with manual MCU SVN commit:

Base scenario:
 CPU has MCU_SVN=3, and there is no pending SVN commit

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 0
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [3,3]

 WMRSR 79H with MCU that have MCU_SVN=7 and minimum SVN of 5
 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

Scenario #1 on top of base scenario:

Loading MCU with higher MCU_SVN than the pending MCU SVN, while MCU SVN is pending – no
success.

 Base scenario
 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

 WRMSR 79H with MCU that have MCU_SVN=8
 Result: Silent drop3, no update MCU revision ID (MSR 8BH)

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

Scenario #2 on top of base scenario:

Loading MCU with same pending MCU SVN - success
 Base scenario

3 Silent Drop – WRMSR 79H completed but MCU was not loaded – MSR 8BH still shows old MCU revision.

Document Number: 356111-001US, Revision: 1.0 21

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

 WRMSR 79H with MCU that have MCU_SVN=7
 Result: success, update MCU revision ID (MSR 8BH)

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

Scenario #3 on top of base scenario:

Loading MCU with lower MCU_SVN than the pending MCU SVN and higher than the committed
MCU SVN – success, pending SVN will be updated.

 Base scenario
 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

 WRMSR 79H with MCU that have MCU_SVN=6
 Result: success, update MCU revision ID (MSR 8BH)

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [6,5]

Scenario #4 on top of base scenario:

Loading MCU with same committed MCU SVN - success, No pending SVN commit.
 Base scenario

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

 WRMSR 79H with MCU that have MCU_SVN=5
 Result: success, update MCU revision ID (MSR 8BH)

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 0
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [5,5]

Scenario #5 on top of base scenario:

Loading MCU with MCU_SVN less than the committed MCU SVN – fail.
 Base scenario

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

 WRMSR 79H with MCU that have MCU_SVN=4
 Result: Silent drop, no update MCU revision ID (MSR 8BH)

 IA32_MCU_COMMIT_SVN[MCU_SVN] = 1
 IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]

4.1.5 SVN Commit Rules

Software needs to adhere to the following rules for successful MCU load:
• MCU SVN is a barrier to rollback beyond committed SVN.

o Make sure that WRMSR 79H with MCU_SVN >= IA32_MCU_SVN_INFO[MCU_SVN].
• Must Commit a Deferred SVN update before a subsequent newer MCU with higher SVN can be

loaded.

22 Document Number: 356111-001US, Revision: 1.0

o Make sure that WRMSR 79H with MCU_SVN <=
IA32_MCU_SVN_INFO[PENDING_MCU_SVN] when
IA32_MCU_COMMIT_SVN[MCU_SVN] = 1.

Software should note that:
• New MCU Update with same SVN as current committed SVN does not require manual commit.
• Even with manual commit, new MCU may update the SVN to minimum MCU SVN.

4.2 Rollback ID Reporting
Each MCU can support set of rollback Ids (up to 16), these Ids are determined when MCU created and
reported as part of the MCU header.

Rollback Ids are reported by the CPU via 16 read only MSRs (IA32_ROLLBACK_SIGN_ID_0 to
IA32_ROLLBACK_SIGN_ID_15) after successful WRMSR 79H.

Rollback Ids MSRs are enumerated by same rollback enumeration bit: IA32_MCU_ENUMERATION[3].

IA32_ROLLBACK_SIGN_ID_x (MSRs 7B0H .. 7BFH) – Read only – Core Scoped (0 <= x <= 15)
Bit Field Name Description
31:0 ROLLBACK_ID Supported Rollback ID
47:32 ROLLBACK_MCU_SVN MCU_SVN correspond to the Rollback ID
63:48 Reserved Reserved for future use.

These MSRs are updated after successful WRMSR 79H, value of zero in one of the MSRs mean that
this MSR does not contain valid rollback ID.

If IA32_ROLLBACK_SIGN_ID_x return “zero” then all IA32_ROLLBACK_SIGN_ID_y MSRs after it will
return zero (x < y).

ROLLBACK MCU_SVN that correspond to the rollback ID is reported within the ROLLBACK_SIGN_ID
MSR, software can check based on the IA32_MCU_SVN_INFO[MCU_SVN] if rollback to this MCU still
supported (follow SVN rules).

4.2.1 Rollback and BIOS MCU

During Boot, MCU will be loaded by uCode reset sequence and later loaded by BIOS after MRC (setting
bit #0 of MSR_BIOS_DONE - 151H).

Run time software should not attempt to roll back to an MCU that is older than the MCU loaded by
BIOS.

 MCU during BIOS may perform initializations that can’t be undone by a later load of an older
MCU.

To aid software, a status bit has been added to indicate the stage post BIOS MCU load and report the
minimum rollback ID in a new MSR.

Document Number: 356111-001US, Revision: 1.0 23

 IA32_MCU_STATUS[3] - POST_BIOS_MCU - When set indicates that a successful WRMSR 79H
performed (Revision ID reflected in MSR 8BH) after setting bit #0 of MSR_BIOS_DONE (151H).

Basically, rollback is not supported until we have bit #3 set in the IA32_MCU_STATUS MSR.

IA32_MCU_STATUS (MSR 7CH) – Read-only – Core Scoped
Bit Field Name Description
0 MCU_PARTIAL_UPDATE When set to 1, indicates that the most recent write to

IA32_BIOS_UPDT_TRIG resulted in a partial update. This
means that microcode update components were only
partially updated after some portion of the MCU had
already been committed and the Revision ID had been
updated.

1 AUTH_FAIL_ON_MCU_COMPONENT When set to 1, indicates that an authentication failure
occurred on some portion of the MCU after another
portion of the MCU had already been committed and the
Revision ID had already been updated on the most recent
write to IA32_BIOS_UPDT_TRIG.

2 Reserved Reserved for future use.
3 POST_BIOS_MCU When set indicates that a successful WRMSR 79H

performed (Revision ID reflected in MSR 8BH) after
setting bit #0 of MSR_BIOS_DONE (151H)

63:4 Reserved Reserved for future use.

 IA32_MCU_ROLLBACK_MIN_ID[31:0] - Reports the minimal MCU revision ID that software can
rollback to per boot.

 Exists if IA32_MCU_ENUMERATION[3] set.

IA32_MCU_ROLLBACK_MIN_ID (MSR 7A4H) – Read only – Core Scoped
Bit Field Name Description
31:0 REVISION_ID Minimal MCU revision ID for rollback
63:32 Reserved Reserved for future use.

4.3 MCU Header Changes
MCU rollback architecture requires adding metadata into the MCU header, see chapter for extensible
MCU metadata for more information on how software can extract the following data from the MCU.

24 Document Number: 356111-001US, Revision: 1.0

Here is the data structure that added for the MCU rollback architecture:

Type 00000002h

Size (bytes) 0000006Ch

MCU SVN info DWORD

Rollback ID 0 DWORD

Rollback ID 1 DWORD

Rollback ID 2 DWORD

: DWORD

: DWORD

Rollback ID 15 DWORD

Rollback SVN 1 Rollback SVN 0 DWORD

Rollback SVN 3 Rollback SVN 2 DWORD

: : DWORD

: : DWORD

Rollback SVN 15 Rollback SVN 14 DWORD

MCU SVN info field consists of:
• 15:0 – MCU_SVN
• 31:16 – MINIMUM_MCU_SVN

Document Number: 356111-001US, Revision: 1.0 25

5 MCU Staging
As the payload size of microcode updates continues to increase, the latency required to load the
update via IA32_BIOS_UPDT_TRIG (MSR 79H) has increased. When an update is loaded during
runtime, this increased latency may lead to system instability. Microcode Update Staging is a capability
to load and verify portions of the microcode update into staging buffers within the processor prior
writing IA32_BIOS_UPDT_TRIG. During runtime, the staging can be done as a lower priority task while
other processes continue to run normally and will result in significantly lower latency when
IA32_BIOS_UPDT_TRIG is written to apply the update.

The MCU Staging capability is enumerated by bit 4 in the IA32_MCU_ENUMERATION MSR. This
enumeration bit indicates the presence of the IA32_MCU_STAGING_MBOX_ADDR MSR and the MCU
Staging mailbox registers. See section 2.1 for details of the IA32_MCU_ENUMERATION MSR.

5.1 MCU Staging Mailbox Overview
The MCU staging capability provides a mailbox interface for software to load portions of the microcode
update into the internal staging buffers. System software uses the mailbox interface to transmit data
objects to the staging hardware (a request), and to receive data objects returned from the staging
hardware back to system software (a response). Each data object consists of multiple DWORDs that
are transmitted through the mailbox interface registers one by one. The following sections describe
the data objects, interfaces registers, and protocols in more detail.

The MCU staging mailbox is modeled after the Data Object Exchange (DOE) mechanism defined by the
PCIe Specification, but it is not implemented within the PCI configuration space and does not precisely
conform to the DOE specification.

5.2 MCU Staging Mailbox Data Object Format
An MCU staging mailbox data object consists of an 8-byte mailbox header that specifies a vendor ID,
data object type, object length, and zero or more DWORDs of type-specific data.

Mailbox Data Object Format

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Object Type Vendor ID 0 Mailbox
Header Reserved Length 1

Type-Specific Data DWORD 0 2
Type-Specific

Data … …

Type-Specific Data DWORD N N+2

Vendor ID – 16-bit PCI-SIG Vendor ID of the entity that defined the type of this data object.

26 Document Number: 356111-001US, Revision: 1.0

Data Object Type – 8-bit Type of the data object. The Vendor ID and Data Object Type together
uniquely identify the type of the data object and the layout of the type-specific data.

Length – 18-bit length of the entire data object in DWORDs, including the mailbox header. A value
of 0 indicates 218 DWORDs (1 MB).

The MCU Staging mailbox supports two data object types: the Discovery object type and the MCU
Staging object type.

Discovery Index Vendor ID Data Object Type Description
0 0001H 00H Discovery
1 8086H 0BH MCU Staging

5.2.1 Discovery Object

The Discovery data object type provides an interface to identify the data object types supported by
the mailbox.

Mailbox Discovery Request

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (00H) Vendor ID (0001H) 0 Mailbox
Header Reserved Length (00003H) 1

Reserved Index 2 Data

Index – 8-bit index to query for discovery. Software should start with index 00H and
incrementally query each index to discover the supported object types until no additional object
types are indicated.

Mailbox Discovery Response

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (00H) Vendor ID (0001H) 0 Mailbox
Header Reserved Length (00003H) 1

Next Index Data Object Type Vendor ID 2 Data

Vendor ID – 16-bit Vendor ID of the enumerated protocol. If the requested index is invalid or out
of range, the Vendor ID in the response must be FFFFH.

Data Object Type – 8-bit Data Object Type of the enumerated protocol. If the Vendor ID value in
the response is FFFFH, then this field is undefined. The Discovery protocol itself is enumerated
at index 0.

Next Index – 8-bit index of the next available protocol for enumeration. If additional protocols
are present beyond the requested index, the response returns the index provided in the request

Document Number: 356111-001US, Revision: 1.0 27

incremented by 1. If there are no additional protocols to enumerate, this value will be 00H. If the
Vendor ID value in the response is FFFFH, then this field is undefined.

To enumerate the protocols supported by the MCU staging mailbox, software should send a Discovery
request with index equal to 00H. If the next index field of the response is non-zero, software should
increment the index and send another Discovery request, and so on, until the next index field of the
response is zero, indicating no additional protocols to enumerate.

5.2.2 MCU Staging Object

The MCU Staging object provides multiple commands to facilitate staging of the microcode update.
Each MCU Staging command object consists of a mailbox header followed an 8-byte MCU Staging
command header and zero or more DWORDs of command data. The specified command determines
the layout of the command data.

MCU Staging Command Format

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox
Header Reserved Length (variable) 1

Parameters[1] Parameters[0] Sub-Command Command 2 Command
Header Parameters[5] Parameters[4] Parameters[3] Parameters[2] 3

Data Object DWORD 0 4
Command

Data … …

Data Object DWORD N N+4

Command – 8-bit index of the MCU Staging command to execute. The MCU Staging object
supports the following commands:

Command Index Description
0 MCU Staging Discovery – Returns various parameters of

the MCU Staging interface.
1 Get Staged MCU Revision – Returns the Revision ID of the

currently staged MCU, if available.
2 Reserved for future use. Response is undefined
3 MCU Load and Verify – Loads and verifies one page of

MCU data into the internal staging buffers.
4-255 Reserved for future use. Reponses are undefined

Sub-Command – The definition of the 8-bit sub-command field depends on the command.

Parameters[x] – The definition of the six 8-bit parameter fields depend on the command.

28 Document Number: 356111-001US, Revision: 1.0

5.2.2.1 MCU Staging Discovery

The MCU Staging Discovery command returns various information about the MCU Staging capabilities.
This command does not support any sub-commands or parameters; those fields are reserved and
must be zero.

MCU Staging Discovery Request

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox
Header Reserved Length (00004H) 1

Reserved Command (00H) 2 Command
Header Reserved 3

MCU Staging Discovery Response

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox
Header Reserved Length (00005H) 1

Reserved Major Revision Minor Revision 2
Response

Data Mailbox Size 3

Maximum Page Size 4

Major/Minor Revision – 16-bit revision of the MCU staging mailbox interface. Expected to be
xx.yy for the initial implementation.

Mailbox Size – 32-bit size in bytes of the MCU staging mailbox interface. Will be 4,112 bytes on
GNR to accommodate 8 bytes for the mailbox header, 8 bytes for the MCU Staging command
header, and up to 4,096 bytes of MCU data.

Maximum Page Size – 32-bit size in bytes of the maximum MCU data payload. Will be 4,096 bytes
on GNR. The MCU will be transferred incrementally to the staging buffers in chunks of up to 4,096
bytes each.

5.2.2.2 Get Staged MCU Revision

The Get Staged MCU Revision command returns the Revision ID of the currently staged MCU, if
available, and status information about the MCU Staging interface. This command does not support
any sub-commands or parameters; those fields are reserved and must be zero.

Document Number: 356111-001US, Revision: 1.0 29

Get Staged MCU Revision Request

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox
Header Reserved Length (00004H) 1

Reserved Command (01H) 2 Command
Header Reserved 3

Get Staged MCU Revision Response

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox
Header Reserved Length (00005H) 1

MCU Revision ID 2
Response

Data Flags 3

Reserved SVN 4

MCU Revision ID – 32-bit Revision ID of the currently staged MCU. If an MCU is successfully
staged, then this returns the Revision ID of the staged MCU. If no MCU is currently staged or
staging is not complete, then this field returns 0.

Flags – 32-bit flags indicating the status of the MCU Staging hardware.
• Bit 0: When set to 1, indicates that the MCU Revision ID specified in the response is valid,

and that staging has completed successfully.
• Bit 1: When set to 1, indicates that MCU staging is currently in progress, i.e., at least one

data chunk of MCU data has been received, but staging is not yet complete.
• Bit 2: When set to 1, indicates an error has been detected, and the staging process must

be restarted.
• Bits 3 through 31 are reserved for future use.

SVN – 16-bit Secure Version Number of the currently staged MCU.

5.2.2.3 MCU Load and Verify

The MCU Load and Verify command is used to stage the MCU data. The data is staged in chunks up to
the Maximum Page Size specified by the MCU Staging Discovery response. To begin staging an update,
software sends an MCU Load and Verify command with the sub-command set to 01H and no MCU
data payload to initialize the staging hardware. The staging hardware responds with the offset of the
first chunk to stage. The offset is specified in bytes from the start of the microcode update header.
Software then sends MCU Load and Verify commands with the sub-command set to 00H and MCU
data up to the Maximum Page Size to stage each subsequent chunk according to the offset specified
in each response. Note that the responses may specify chunks out of sequential order, and portions
of the update that do not need to be staged may be skipped altogether. The staging hardware solely

30 Document Number: 356111-001US, Revision: 1.0

determines which chunks must be staged and in what order. Failure to stage the chunks as requested
by the hardware may cause staging to fail. This command does not support any parameters; those
fields are reserved and must be zero.

MCU Load and Verify Request

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox
Header Reserved Length (variable) 1

Reserved Sub-Command Command (03H) 2 Command
Header Reserved 3

MCU Data

4
Command

Data ...

N

Sub-Command – The MCU Load and Verify command supports two sub-commands:
• Sub-command 00H is used for normal operation to load one chunk of update data into

the staging buffers.
• Sub-command 01H is used to initialize the MCU staging hardware prior to loading the

first chunk of MCU data, and to reset the hardware in the event of any errors. When
sending an MCU Load and Verify command with sub-command equal to 01H, software
should not include any data with the request.

MCU Data – For sub-command 00H, one chunk of MCU data, up to the Maximum Page Size
specified by the MCU Staging Discovery object (4,096 bytes on GNR). No data should be sent with
sub-command 01H.

MCU Load and Verify Response

Byte 3 Byte 2 Byte 1 Byte 0
DWORD Section

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox
Header Reserved Length (00004H) 1

Next Chunk Offset 2 Response
Data Flags 3

Next Chunk Offset– 32-bit offset of the next chunk to stage. After each chunk of update data is
written to the staging buffers, the staging hardware responds with the offset of the next chunk to
stage. The offset is specified in bytes from the start of the microcode update header. If no
additional chunks are required, this field will return 0xFFFFFFFF. If software provides different
chunks than indicated by the response, the update data will eventually fail verification, and the
staging hardware will indicate an error via bit 2 of the flags field.

Document Number: 356111-001US, Revision: 1.0 31

Flags – 32-bit flags indicating the status of the staging hardware after each chunk is processed.
• Bit 0: When set to 1, indicates that staging and verification of all required chunks has

completed successfully.
• Bit 1: When set to 1, indicates that MCU staging is currently in progress, i.e., at least one

data chunk of MCU data has been received, but more chunks must be delivered before
staging and verification can complete.

• Bit 2: When set to 1, indicates an error has been detected, and the staging process must
be restarted. Software must issue an MCU Load and Verify command with sub-command
equal to 01H to reset the staging hardware and restart staging.

• Bits 3 through 31 are reserved for future use.

5.3 MCU Staging Mailbox Interface Registers
The interface to the staging hardware is provided by a set of four memory mapped I/O (MMIO) registers
within the platform physical address space. The IA32_MCU_STAGING_MBOX_ADDR MSR provides the
platform physical address of the first mailbox register (MCU_STAGING_CTRL).

There is one set of mailbox registers and internal staging buffers per physical processor package.
Therefore, the IA32_MCU_STAGING_MBOX_ADDR MSR is package scoped, and in a multi-socket
system, will provide a different physical address on each physical package.

IA32_MCU_STAGING_MBOX_ADDR (MSR 7A5H) – Read-only – Package Scoped
Bit Field Name Description
63:0 MCU_STAGING_MBOX_ADDR Indicates the MMIO platform physical address of the

MCU Staging Control register.
If the value is 0, then the mailbox has not been configured
by platform firmware (BIOS).

The remaining mailbox registers are located at 4-byte offsets from the MCU_STAGING_CTRL register.

Byte Offset Register Description
+00h MCU_STAGING_CTRL Control Register
+04h MCU_STAGING_STATUS Status Register
+08h MCU_STAGING_WRITE_DATA Write Data Register
+0Ch MCU_STAGING_READ_DATA Read Data Register

5.3.1 MCU Staging Control Register

The MCU Staging Control register (MCU_STAGING_CTRL) is written by software to control the MCU
staging interface.

32 Document Number: 356111-001US, Revision: 1.0

MCU_STAGING_CTRL (offset 0x00) – Read/write – Package Scoped
Bit Field Name Description
0 ABORT (RW) Writing 1 to this bit causes all data object transfer

operations associated with this MCU staging mailbox
instance to be aborted.
Always read as 0.

28:1 Reserved Must be 0.
29 MBOX_EN (RO) When 1, indicates that the mailbox interface is

enabled. When 0, indicates that the mailbox interface has
not been properly enabled by system firmware (BIOS).
Writes to this bit are ignored.

30 MAILBOX_DATA_READY (RW) During data writes, software sets this bit to indicate
that a DWORD has been written to the
MCU_STAGING_WRITE_DATA register. The processor
clears this bit after consuming the DWORD written to the
register.
During data reads, the processor sets this bit to indicate
that a DWORD is ready to be read from the
MCU_STAGING_READ_DATA register. Software must
clear this bit after consuming the DWORD read from the
register.

31 GO (RW) Software sets this bit to 1 after writing an entire data
object to indicate to the processor to begin processing
the object. The processor clears this bit to 0 after it
completes processing the object.

5.3.2 MCU Staging Status Register

The MCU Staging Status register (MCU_STAGING_STATUS) is used by software to determine the status
of the MCU staging interface.

MCU_STAGING_STATUS (offset 0x04) – Read-only – Package Scoped
Bit Field Name Description
0 BUSY (RO) When set to 1, indicates that the processor is

temporarily unable to receive new data through the
MCU_STAGING_WRITE_DATA register.

1 Reserved Must be 0.
2 ERROR (RO) When set to 1, indicates that an error has occurred

while the processor was handling the last MCU staging
mailbox data object.

30:3 Reserved Must be 0.
31 OBJECT_READY (RO) When set to 1, indicates that the processor has

completed processing the last MCU staging mailbox data
object received and a new object is available in response.

Document Number: 356111-001US, Revision: 1.0 33

5.3.3 MCU Staging Write Data Register

The MCU Staging Write Data register (MCU_STAGING_WRITE_DATA) is written by software to transfer
one DWORD of an object to the MCU staging mailbox interface.

MCU_STAGING_WRITE_DATA (offset 0x08) – Read/Write – Package Scoped
Bit Field Name Description
31:0 WRITE_DATA (RW) Software writes this register to transfer one DWORD

of object data into the MCU staging mailbox interface.
After writing this register, software must set the
MAILBOX_DATA_READY bit in the MCU_STAGING_CTRL
register to indicate to the processor that new data is
available.

5.3.4 MCU Staging Read Data Register

The MCU Staging Read Data register (MCU_STAGING_READ_DATA) is read by software to transfer one
DWORD of an object from the MCU staging mailbox interface.

MCU_STAGING_READ_DATA (offset 0x0C) – Read/Write – Package Scoped
Bit Field Name Description
31:0 READ_DATA (RW) Software reads this register to transfer one DWORD

of object data from the MCU staging mailbox interface.
After reading this register, software must clear the
MAILBOX_DATA_READY bit in the MCU_STAGING_CTRL
register to indicate to the processor that the data has
been read.

5.4 MCU Staging Mailbox Message Protocol
System software uses the MCU staging mailbox to load the microcode update into internal staging
buffers by sending data object requests to the staging hardware and receiving data object responses
from the staging hardware.

During initialization, system software must verify the presence of the mailbox interface via
enumeration and determine the maximum supported page size by issuing the MCU Staging Discovery
request.

To stage a patch for loading during runtime, software must begin by initializing the staging hardware
with an MCU Load and Verify request with sub-command equal to 01H and no data payload. The
staging hardware responds with the offset of the first chunk to stage. Software must then issue a
sequence of MCU Load and Verify requests with sub-command equal to 00H to incrementally load the
microcode update data into the staging buffers in chunks up to the maximum supported page size,
beginning from the offset specified in response to the initialization sub-command. After each MCU
Load and Verify request, the staging hardware responds with the offset of the next chunk to stage. The
offsets specified in response to the MCU Load and Verify commands are specified in bytes from the
start of the microcode update header. The staging hardware may not specify chunks in sequential

34 Document Number: 356111-001US, Revision: 1.0

order, and some portions of the update that do not require staging may be skipped altogether. When
no additional chunks are required, the staging hardware will respond with an offset of FFFFFFFFH.

After staging all required chunks, system software should issue the Get Staged MCU Revision request
to confirm whether the staging was successful.

To send a data object request to the staging hardware, software must first verify that the BUSY bit in
MCU_STAGING_STATUS is clear. Then, software sends the entire object one DWORD at a time as
described below. After the entire object has been sent (which includes waiting for the
MAILBOX_DATA_READY bit to be cleared after sending the last DWORD), software must set the GO
bit in the MCU_STAGING_CTRL register to indicate that the object is complete. If the submitted request
produces a response, software must then poll the OBJECT_READY bit in the MCU_STAGING_STATUS
register until it is set, indicating that the hardware has processed the entire object and is ready to
return the response. Software then must read the response one DWORD at a time as described below.

To send one DWORD to the staging hardware, software must write the DWORD into the
MCU_STAGING_WRITE_DATA register, then set the MAILBOX_DATA_READY bit in the
MCU_STAGING_CTRL register. Software must then poll the MAILBOX_DATA_READY bit in the
MCU_STAGING_CTRL register until it is cleared by the staging hardware, indicating that the DWORD
has been consumed by the hardware. If software writes another DWORD into the
MCU_STAGING_WRITE_DATA register before the MAILBOX_DATA_READY bit is cleared by the
hardware, then either DWORD may be dropped and the MCU staging may fail. Note that in some
implementations, the MAILBOX_DATA_READY bit may be cleared by hardware immediately after
being set by software (software may not observe the bit as set).

To receive one DWORD from the staging hardware, software must poll the MAILBOX_DATA_READY
bit in the MCU_STAGING_CTRL register until it is set by the staging hardware, indicating that a DWORD
has been populated by the hardware into the MCU_STAGING_READ_DATA register. Software must
then read the DWORD from the MCU_STAGING_READ_DATA register and clear the
MAILBOX_DATA_READY bit in the MCU_STAGING_CTRL register, indicating that the DWORD has been
consumed by the software.

	1 Introduction
	2 Runtime Microcode Update
	2.1 Microcode Update Enumeration and Status
	2.2 Preparing to Load the Update
	2.3 Uniform Microcode Update
	2.4 ILP Determination
	2.5 Loading the Update
	2.6 Completing the Update

	3 Extended MCU Metadata
	4 Microcode Update Rollback
	4.1 MCU SVN and Deferred SVN Commit
	4.1.1 MCU SVN
	4.1.2 Deferred MCU SVN Commit
	4.1.3 SVN Reporting
	4.1.4 Minimum MCU SVN
	4.1.5 SVN Commit Rules

	4.2 Rollback ID Reporting
	4.2.1 Rollback and BIOS MCU

	4.3 MCU Header Changes

	5 MCU Staging
	5.1 MCU Staging Mailbox Overview
	5.2 MCU Staging Mailbox Data Object Format
	5.2.1 Discovery Object
	5.2.2 MCU Staging Object
	5.2.2.1 MCU Staging Discovery
	5.2.2.2 Get Staged MCU Revision
	5.2.2.3 MCU Load and Verify

	5.3 MCU Staging Mailbox Interface Registers
	5.3.1 MCU Staging Control Register
	5.3.2 MCU Staging Status Register
	5.3.3 MCU Staging Write Data Register
	5.3.4 MCU Staging Read Data Register

	5.4 MCU Staging Mailbox Message Protocol

