
 

 

Runtime Microcode Update 
Technical Paper 

 
 

 

 

 

 

 

 

 
June 2025 

Document Number: 356111-003US 
Revision 1.2 

 



 

Document Number:  356111-003, Revision 1.2  2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notice: This document contains information on products in the design phase of development. The information here is subject to change 
without notice. Do not finalize a design with this information. 

Intel technologies may require enabled hardware, software, or service activation. Learn more at Intel.com or from the OEM or retailer. 
No product or component can be absolutely secure. 
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products 
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject 
matter disclosed herein. 
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. 
The products described may contain design defects or errors known as errata, which may cause the product to deviate from published 
specifications. Currently characterized errata are available on request. 
This document contains information on products, services and/or processes in development. All information provided here is subject to change 
without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. 
Intel disclaims all express and implied warranties, including, without limitation, the implied warranties of merchantability, fitness for a 
particular purpose, and non-infringement, as well as any warranty arising from the course of performance, the course of dealing, or usage in 
trade. 
Your costs and results may vary. 
 
© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands 
may be claimed as the property of others. 



 

 

Document Number: 356111-003, Revision 1.2  3 

Contents 

1 Introduction ............................................................................................................................................... 6 

2 Runtime Microcode Update ........................................................................................................................ 7 
2.1 Minimum Runtime Update Revision ...................................................................................................... 7 
2.2 Microcode Update Enumeration and Status .......................................................................................... 9 
2.3 Preparing to Load the Update .............................................................................................................. 12 
2.4 Uniform Microcode Update ................................................................................................................. 12 
2.5 ILP Determination................................................................................................................................. 14 
2.6 Loading the Update .............................................................................................................................. 15 
2.7 Completing the Update ........................................................................................................................ 16 

3 Extended MCU Metadata .......................................................................................................................... 18 

4 Microcode Update Rollback ...................................................................................................................... 21 
4.1 MCU SVN and Deferred SVN Commit ................................................................................................... 21 

4.1.1 MCU SVN ................................................................................................................................ 21 
4.1.2 Deferred MCU SVN Commit ................................................................................................... 21 
4.1.3 SVN Reporting ........................................................................................................................ 23 
4.1.4 Minimum MCU SVN ............................................................................................................... 23 
4.1.5 SVN Commit Rules .................................................................................................................. 25 

4.2 Rollback ID Reporting ........................................................................................................................... 25 
4.2.1 Rollback and BIOS MCU ......................................................................................................... 26 

4.3 MCU Header Changes .......................................................................................................................... 27 

5 MCU Staging ............................................................................................................................................. 28 
5.1 MCU Staging Mailbox Overview ........................................................................................................... 28 
5.2 MCU Staging Mailbox Discovery ........................................................................................................... 28 
5.3 MCU Staging Mailbox Data Object Format .......................................................................................... 29 

5.3.1 Discovery Object .................................................................................................................... 30 
5.3.2 MCU Staging Object ............................................................................................................... 31 

5.4 MCU Staging Mailbox Interface Registers ............................................................................................ 34 
5.4.1 MCU Staging Control Register ................................................................................................ 35 
5.4.2 MCU Staging Status Register .................................................................................................. 36 
5.4.3 MCU Staging Write Data Register .......................................................................................... 36 
5.4.4 MCU Staging Read Data Register ........................................................................................... 36 

5.5 MCU Staging Mailbox Message Protocol ............................................................................................. 37 



 

 

4  Document Number: 356111-003, Revision 1.2 

Tables 

Table 2-1  Format of the Microcode Update Header ............................................................................. 8 

Table 2-2 IA32_MCU_ENUMERATION (MSR 7BH) – Read-only – Package Scoped ............................. 10 

Table 2-3  IA32_MCU_STATUS (MSR 7CH) – Read-only – Core Scoped ............................................... 11 

Table 2-4  Configuration Enumeration ................................................................................................. 13 

Table 2-5        Update Completion Descriptions ......................................................................................... 16 

Table 4-1        IA32_MCU_SVN_CONFIG (MSR 7A0) – Read/Write – Package Scoped ............................... 22 

Table 4-2        IA32_MCU_SVN_COMMIT (MSR 7A1) – Read/Write – Core Scoped ................................... 22 

Table 4-3        IA32_MCU_SVN_INFO (MSR 7A2) – Read only – Core Scoped ............................................ 23 

Table 4-4        IA32_ROLLBACK_SIGN_ID_x (MSRs 7B0H .. 7BFH) – Read only – Core Scoped 
                        (0 <= x <= 15) ......................................................................................................................... 25 

Table 4-5        IA32_MCU_STATUS (MSR 7CH) – Read-only – Core Scoped ................................................ 26 

Table 4-6        IA32_MCU_ROLLBACK_MIN_ID (MSR 7A4H) – Read only – Core Scoped ........................... 27 

Table 4-7        Data Structure Added for the MCU Rollback Architecture ................................................... 27 

Table 5-1       Staging Mailbox VSEC Structure ............................................................................................ 29 

Table 5-2       Mailbox Data Object Format ................................................................................................. 29 

Table 5-3       Mailbox Discovery Request ................................................................................................... 30 

Table 5-4       Mailbox Discovery Response ................................................................................................. 30 

Table 5-5       MCU Staging Command Format ............................................................................................ 31 

Table 5-6       MCU Staging Discovery Request ............................................................................................ 32 

Table 5-7       MCU Staging Discovery Response ......................................................................................... 32 

Table 5-8       Get Staged MCU Revision Request ........................................................................................ 32 

Table 5-9       Get Staged MCU Revision Response...................................................................................... 33 

Table 5-10     MCU Load and Verify Request ............................................................................................... 34 

Table 5-11     MCU Load and Verify Response ............................................................................................ 34 

Table 5-12     IA32_MCU_STAGING_MBOX_ADDR (MSR 7A5H) – Read-only – Package Scoped ............... 35 

Table 5-13     MCU_STAGING_CTRL register ............................................................................................... 35 

Table 5-14     MCU_STAGING_CTRL (offset 0x00) – Read/write – Package Scoped ................................... 35 

Table 5-15     MCU_STAGING_STATUS (offset 0x04) – Read-only – Package Scoped ................................. 36 

Table 5-16     MCU_STAGING_WRITE_DATA (offset 0x08) – Read/Write – Package Scoped ..................... 36 

Table 5-17     MCU_STAGING_READ_DATA (offset 0x0C) – Read/Write – Package Scoped ...................... 36 



 

Document Number: 356111-003, Revision 1.2  5 

Revision History 
 

Document 
Number 

Revision 
Number Description Date 

356111-001 1.0 Initial Release. June 2023 

356111-002 1.1 

Incorporated Minimum Runtime Update Revision 

Added Module, Tile, and Die encodings to the Uniform MCU 
Scope definition. 

Added MCU Staging interface and protocol 

Removed TEE_SVN_SUPPORT bit from MCU_ENUMERATION 
register 

September 
2024 

356111-003 1.2 Added new Section 5.2, “MCU Staging Mailbox Discovery,” 
and renumbered subsequent sections. June 2025 

 



 

 

6  Document Number: 356111-003, Revision 1.2 

1 Introduction 
Intel microcode updates allow the processor firmware to be updated after manufacturing. Typically, a microcode 
update (MCU) is loaded by the platform firmware during the boot process (e.g., BIOS) and/or during the operating 
system's boot phase. However, due to evolving usage models, requiring the load of microcode updates has 
become increasingly common. At the same time, the system is fully operational, including while end-user 
workloads and virtual machines may be running. 

This document describes architectural enhancements and a software methodology for efficiently loading 
microcode updates during runtime. The enhancements described are intended to be backward compatible, so 
existing OS MCU drivers should continue to work as is, while newer drivers may be developed to take advantage of 
and benefit from the enhancements. 

The architectural enhancements described here are targeted for future product releases. They are preliminary and 
subject to change, as are the exact definitions and product intercepts until finalized. 



 

Document Number: 356111-003, Revision 1.2  7 

2 Runtime Microcode Update 
Loading a microcode update during runtime requires coordination across all logical processors within the platform. 

Loading a microcode update may cause changes to CPU capabilities or functionality that may be visible to running 
software. This is true whenever a microcode update is loaded. Still, it is particularly important when loading an 
update during runtime while virtual machines and/or user-mode applications may be running. Examples may 
include, but are not limited to: 

• Changes to CPUID or other enumeration bits (e.g., IA32_ARCH_CAPABILITIES). 
• Changes to Architectural Model Specific Registers (MSRs) or individual bits within Architectural MSRs. 

When loading a newer update over an older update, Intel intends that any such changes to capabilities or 
functionality will be architecturally compatible with any running software. However, if an older update is loaded 
over a newer update (i.e., rollback), then software must ensure, before loading the update, that any functionality 
not present in the older update is no longer in use by any running software. Failure to do so may cause running 
software to malfunction. 

2.1 Minimum Runtime Update Revision 
While all microcode updates are generally suitable for loading during BIOS or OS early load, some microcode 
updates may not be suitable for runtime load. Updates that deprecate features or change interfaces in a way that 
may adversely impact running software are examples of microcode updates that may not be suitable for runtime 
updates. 

Whether a particular microcode update (MCU) is suitable for runtime update depends on its specific content and 
the microcode revision already loaded on the system before the runtime update. 

To facilitate operating system identification of whether a given microcode update is suitable to load at runtime, a 
field in the microcode update header is allocated to indicate the Minimum Runtime Update Revision. This field 
indicates the minimum revision of the currently loaded MCU1 required to support runtime updates to the new 
MCU. Operating system software may use this information to make an informed decision regarding runtime load. 

The format of the microcode update header is fully documented in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual2, Volume 3, Chapter 10, Section 10.11.1: Microcode Update. A portion of the header format 
follows to indicate the location of the new Minimum Runtime Update Revision field. 
 

 

 
1 As reported by the IA32_BIOS_SIGN_ID MSR. 
2 https://www.intel.com/sdm  

https://www.intel.com/sdm


 

 

8  Document Number: 356111-003, Revision 1.2 

Table 2-1 Format of the Microcode Update Header 

Field Offset 
(Bytes) 

Size  
(Bytes) Description 

Header Version 0 4 Version number of the update header 

Update Revision 4 4 Unique version number for the update 

Date 8 4 Date of update creation 

Processor Signature 12 4 Family/model/stepping of the processor to which this update 
applies 

Checksum 16 4 Checksum of the update header and data 

Loader Revision 20 4 Version of the loader required to load this update 

Processor Flags 24 4 Bitmask of platform IDs to which this update applies 

Data Size 28 4 Size (in bytes) of the encrypted data 

Total Size 32 4 Size (in bytes) of the entire update, including all header and data 
fields 

Metadata Size 36 4 Size (in bytes) of the extended metadata (see section 3) 

Minimum Runtime Update 
Revision 40 4 Minimum revision of the currently loaded update required to 

support runtime loading of this update 

Reserved 44 4 Reserved for future use 

Update Data 48 Variable Encrypted update data 

For microcode updates that may be suitable for runtime updates, the Minimum Runtime Update Revision field 
indicates the minimum MCU revision that must already be loaded to support the new MCU's runtime loading. 

For microcode updates unsuitable for runtime updates, the Minimum Runtime Update Revision will be set equal to 
its update revision, indicating that this update is unsuitable for runtime updates over any previous update revision. 
Such updates are still suitable for OS early loading. 

Microcode updates with a Minimum Runtime Update Revision field of zero may or may not be suitable for runtime 
updates. This includes updates released before introducing the Minimum Runtime Update Revision field. 
Operating system software may choose to prevent runtime loading of updates that do not specify a Minimum 
Runtime Update Revision. OS early load of such updates should still be allowed. 

Runtime update software should examine the Minimum Runtime Update Revision of the incoming MCU to 
determine whether the MCU is suitable for runtime updates. If the Minimum Runtime Update Revision is non-zero, 
and the revision of the currently loaded MCU (as reported by the IA32_BIOS_SIGN_ID MSR) is greater than or 
equal to the Minimum Runtime Update Revision, then the MCU is suitable for runtime update. If the Minimum 
Runtime Update Revision field is zero, or if the revision of the currently loaded MCU is less than the Minimum 
Runtime Update Revision, then the MCU may not be suitable for runtime update and should not be loaded at 
runtime. 



 

Document Number: 356111-003, Revision 1.2  9 

For example, if the incoming MCU is revision 10, and its Minimum Runtime, Update Revision field, is 6, then MCU 
revision 10 is suitable for a runtime update if the current MCU revision is greater than or equal to 6. 

The following pseudo-code demonstrates how to determine whether an MCU is suitable for runtime update: 

Suitable_For_Runtime_Update(Update_Base) { 
    wrmsr(IA32_BIOS_SIGN_ID, 0) 
    cpuid(1) 
    Current_Revision = rdmsr(IA32_BIOS_SIGN_ID) >> 32 
 
    if (Update_Base.Min_Runtime_Update_Revision != 0 && 
        Current_Revision >= Update_Base.Min_Runtime_Update_Revision) { 
        return True 
    } else { 
        return False 
    } 
} 

2.2 Microcode Update Enumeration and Status 
The IA32_MCU_ENUMERATION MSR is a read-only register that provides information about the microcode update 
capabilities of the processor. The IA32_MCU_STATUS MSR is a read-only register that provides status information 
for the most recent attempt to load a microcode update. The IA32_MCU_ENUMERATION and IA32_MCU_STATUS 
MSRs are present if both of the following are true: 

• CPUID.(EAX=07H, ECX=0):EDX[29] == 1, and 
• IA32_ARCH_CAPABILITIES[16] == 1. 

CPUID.(EAX=07H, ECX=0):EDX[29] indicates the presence of IA32_ARCH_CAPABILITIES (MSR 10AH), and 
IA32_ARCH_CAPABILITIES[MCU_ENUMERATION] (bit 16) indicates the presence of IA32_MCU_ENUMERATION 
(MSR 7BH) and IA32_MCU_STATUS (MSR 7CH). 
  



 

 

10  Document Number: 356111-003, Revision 1.2 

The format of the IA32_MCU_ENUMERATION MSR is described below. Later sections provide details on how these 
bits should be used. 

Table 2-2 IA32_MCU_ENUMERATION (MSR 7BH) – Read-only – Package Scoped 

Bit Field Name Description 

0 UNIFORM_MCU_AVAIL 

When set to 1, a uniform microcode update is available, and 
UNIFORM_MCU_SCOPE (bits [10:8]) indicates the scope of 
writes to IA32_BIOS_UPDT_TRIG. 
When set to 0, uniform microcode update is unavailable, and 
writes to IA32_BIOS_UPDT_TRIG are core scoped. 

1 UNIFORM_MCU_CONFIG_REQD 

When set to 1, it indicates that configuration is required to 
ensure that all MCU components are updated on WRMSR 
79H, and UNIFORM_MCU_CONFIG_COMPLETE (bit 2) should 
be checked to determine whether the necessary configuration 
has been completed. 
When set to 0, it indicates that no configuration is required, 
and UNIFORM_MCU_CONFIG_COMPLETE should be ignored. 

2 UNIFORM_MCU_CONFIG_COMPLETE 

If UNIFORM_MCU_CONFIG_REQD (bit 1) is 0, this bit should 
be ignored. 
If UNIFORM_MCU_CONFIG_REQD is 1, then this bit indicates 
whether all necessary configurations have been completed to 
ensure that all MCU components will be updated on WRMSR 
79H. 

3 ARCH_ROLLBACK_SVN_COMMIT 
When set to 1, indicates support for the MCU deferred SVN 
architecture, SVN reporting architecture, and MCU rollback 
architecture. See section 4 for details. 

4 MCU_STAGING 

When set to 1, the processor supports the microcode update 
staging capability. When supported, the MCU staging 
capability is recommended to reduce the latency of the 
IA32_BIOS_UPDT_TRIG operation. See section 5 for details. 

7:5 Reserved Reserved for future use. 



 

Document Number: 356111-003, Revision 1.2  11 

15:8 UNIFORM_MCU_SCOPE 

Indicates the current* uniform microcode update scope: 
0x02: Core Scoped 
0x03: Module Scoped** 
0x04: Tile Scoped** 
0x05: Die Scoped** 
0x80: Package Scoped 
0xC0: Platform Scoped 
All others: Reserved for future use 

* The value of this field reflects the state of the platform 
configuration and may change as the configuration changes 
during the boot process. Once configuration is complete, it is 
not expected to change during runtime. 
** If CPUID. 1F enumerates these domains, then this field may 
also report them as appropriate. 

63:16 Reserved Reserved for future use. 

The format of the IA32_MCU_STATUS MSR is described below. For details on how to use these bits, refer to the 
“Completing the Update” section. 

Table 2-3 IA32_MCU_STATUS (MSR 7CH) – Read-only – Core Scoped 

Bit Field Name Description 

0 MCU_PARTIAL_UPDATE When set to 1, it indicates that the most recent write to 
IA32_BIOS_UPDT_TRIG resulted in a partial update. This 
means that microcode update components were only partially 
updated after some part of the MCU had already been 
committed and the Revision ID had been updated. 

1 AUTH_FAIL_ON_MCU_COMPONENT When set to 1, it indicates that an authentication failure 
occurred on some portion of the MCU after another portion 
had already been committed and the Revision ID had already 
been updated on the most recent write to 
IA32_BIOS_UPDT_TRIG. 

2 Reserved Reserved for future use. 

3 POST_BIOS_MCU When set to 1, it indicates that an update was successfully 
loaded via IA32_BIOS_UPDT_TRIG after bit 0 of 
MSR_BIOS_DONE (MSR 151H) was set to 1. See section 4.2.1 
for the usage of this bit. 

63:4 Reserved Reserved for future use. 

 

  



 

 

12  Document Number: 356111-003, Revision 1.2 

2.3 Preparing to Load the Update 
Model-specific platform configuration may be necessary for systems that enumerate Uniform Microcode Update 
to enable full support for runtime microcode updates. Platform firmware (e.g., BIOS) would typically perform this 
configuration during the boot process before launching the OS. If the necessary configuration is not done, then 
runtime updates may not properly load all components of the update. The UNIFORM_MCU_CONFIG_REQD field 
(bit 1) of IA32_MCU_ENUMERATION indicates whether the CPU requires any such configuration. If this bit is set, 
OS software should consult the UNIFORM_MCU_CONFIG_COMPLETE field (bit 2) to determine whether the 
necessary configuration has been completed. 

UNIFORM_MCU_ 
CONFIG_REQD 

UNIFORM_MCU_ 
CONFIG_COMPLETE Description 

0 - No configuration is required. Runtime updates are enabled. 

1 0 Necessary configuration has not been correctly completed. 
Runtime updates may not load all MCU components. 

1 1 Necessary configuration has been correctly completed, and 
runtime updates are enabled. 

 

If UNIFORM_MCU_CONFIG_REQD is 1 and UNIFORM_MCU_CONFIG_COMPLETE is 0, the necessary configuration 
has not been completed, and the update may not load all MCU components. In this scenario, Intel recommends 
that microcode updates not be loaded at runtime. 

To load an update during runtime, software must synchronize all logical processors within the system (perform a 
rendezvous) to load the update in a coordinated manner. 

Before loading the update, software may wish to snapshot any enumeration values of interest to detect any 
changes caused by the update. Examples of such values may include CPUID leaves and sub-leaves, architectural 
enumeration MSRs (IA32_ARCH_CAPABILITIES, IA32_CORE_CAPABILITIES, IA32_MCG_CAP, etc.), VMX capability 
MSRs, CAPID registers, etc. The exact set of values of interest may be OS/VMM specific. 

2.4 Uniform Microcode Update 
It is sufficient for some processor configurations to load the update on only one logical processor per package or 
platform. This is known as Uniform Microcode Update. At least one logical processor per physical core must load 
the update on other processor configurations. Uniform Microcode Update is supported if 
IA32_MCU_ENUMERATION is present and UNIFORM_MCU_AVAIL (bit 0) is set to 1. The enhancements described 
herein are intended to be backward compatible. Existing Operating system MCU drivers should continue to work 
as is, while newer drivers may be developed to take advantage of and benefit from the enhancements. 

If Uniform Microcode Update is not supported, then writes to IA32_BIOS_UPDT_TRIG are core scoped. If Uniform 
Microcode Update is supported, then the UNIFORM_MCU_SCOPE field (bits [15:8]) of IA32_MCU_ENUMERATION 
indicates whether writes to IA32_BIOS_UPDT_TRIG are core, package, or platform scoped. 

• Non-Uniform Microcode Update. On processors that do not enumerate Uniform Microcode Update or on 
processors that enumerate Uniform Microcode Update with core scope, writes to IA32_BIOS_UPDT_TRIG are 
core-scoped, and at least one logical processor per core must load the update. 

• Package-Scoped Uniform Microcode Update. On processors that enumerate Package-Scoped Uniform 
Microcode Update, writes to IA32_BIOS_UPDT_TRIG are package-scoped, which is sufficient for one logical 



 

Document Number: 356111-003, Revision 1.2  13 

processor per package to load the update. In this case, loading a microcode update on any logical processor 
will cause the same update to automatically be loaded on all logical processors within the CPU package.  

• Platform Scoped Uniform Microcode Update. On processors that enumerate Platform Scoped Uniform 
Microcode Update, writes to IA32_BIOS_UPDT_TRIG are platform-scoped, sufficient for one logical processor 
per platform to load the update. In this case, loading a microcode update on any logical processor will cause 
the same update to automatically be loaded on all logical processors across all CPUs in the system. 

NOTE 

Some processors may support Uniform Microcode Update even if it is not enumerated or may 
support Uniform Microcode Update at a wider scope than what is enumerated. This is a model-
specific Uniform Microcode Update and may occur when certain features are enabled. For example, 
when Intel® Software Guard Extensions (Intel® SGX) is enabled, the CPU will enable platform-scoped 
Uniform Microcode Update even if it is not enumerated or is enumerated with a narrower scope. In 
these cases, the model-specific behavior will never have a narrower scope than what is enumerated. 
Software may ignore this model-specific behavior and rely solely on the architectural enumeration (or 
lack thereof) when loading the update. It is always allowed to load the update on more logical 
processors than necessary, which may result in unnecessary additional latency. 

The following table summarizes the enumeration of the various configurations: 

Table 2-4 Configuration Enumeration 

CPUID.(EAX=07H, 
ECX=0):EDX[29] IA32_ARCH_CAPABILITIES[16] 

IA32_MCU_ENUMERATION 
Description 

Bit 0 Bits [15:8] 

0 - - - Core Scoped 

1 0 - - Core-Scoped 

1 1 0 - Core-Scoped 

1 1 1 0x02 Core-Scoped 

1 1 1 0x03 Module-Scoped 

1 1 1 0x04 Tile-Scoped 

1 1 1 0x05 Die-Scoped 

1 1 1 0x80 Package-Scoped 

1 1 1 0xC0 Platform-Scoped 

The following pseudo-code demonstrates how to determine the scope of IA32_BIOS_UPDT_TRIG: 

Determine_Scope() { 
    if (CPUID.(EAX=7, ECX=0).EDX[29] == 0) 
        return CORE_SCOPED 
 
    if (IA32_ARCH_CAPABILITIES[16] == 0) 



 

 

14  Document Number: 356111-003, Revision 1.2 

        return CORE_SCOPED 
 
    if (IA32_MCU_ENUMERATION[0] == 0) 
        return CORE_SCOPED 
 
    if (IA32_MCU_ENUMERATION[15:8] == 0x03) 
        return MODULE_SCOPED 
 
    if (IA32_MCU_ENUMERATION[15:8] == 0x04) 
        return TILE_SCOPED 
 
    if (IA32_MCU_ENUMERATION[15:8] == 0x05) 
        return DIE_SCOPED 
 
    if (IA32_MCU_ENUMERATION[15:8] == 0xC0) 
        return PLATFORM_SCOPED 
 
    if (IA32_MCU_ENUMERATION[15:8] == 0x80) 
        return PACKAGE_SCOPED 
 
    return CORE_SCOPED 
} 

2.5 ILP Determination 
Depending on the scope of the IA32_BIOS_UPDT_TRIG MSR, one or more logical processors must be designated to 
load the microcode update. Logical processors that explicitly load the update are known as Initiating Logical 
Processors (ILPs)3. Logical processors that do not explicitly load the update are known as Receiving Logical 
Processors (RLPs). 

• On processors that enumerate platform-scoped Uniform Microcode Update, there must be at least one ILP for 
the platform. 

• On processors that enumerate package-scoped Uniform Microcode Update, there must be at least one ILP per 
package. 

• On processors that enumerate die-scoped Uniform Microcode Update, there must be at least one ILP per die. 
• On processors that enumerate tile-scoped Uniform Microcode Update, there must be at least one ILP per tile. 
• On processors that enumerate module-scoped Uniform Microcode Update, there must be at least one ILP per 

module. 
• On processors that do not enumerate Uniform Microcode Update or processors that enumerate Uniform 

Microcode Update but do not indicate Platform or Package scope, there must be at least one ILP per core. 

In all cases, loading the update on more logical processors than necessary (including loading it on all logical 
processors) is allowed and will be functional. However, it may not be efficient and could result in longer latencies.  

The following pseudo-code demonstrates how to determine whether a given logical processor is an ILP: 
Is_ILP() { 
    scope = Determine_Scope() 
 
    if (scope == PLATFORM_SCOPED) { 

 

 
3 In this context, the terms ILP and RLP are unrelated to the same or similar terms used for other capabilities, such as the Safer Mode 

Extensions (SMX) that support an Intel® Trusted Execution Technology (Intel® TXT) platform.  



 

Document Number: 356111-003, Revision 1.2  15 

        if (platform leader) 
            return True  
        else 
            return False  
    } else if (scope == PACKAGE_SCOPED) { 
        if (package leader) 
            return True  
        else 
            return False  
    } else if (scope == DIE_SCOPED) { 
        if (die leader) 
            return True  
        else 
            return False  
    } else if (scope == TILE_SCOPED) { 
        if (tile leader) 
            return True  
        else 
            return False  
    } else if (scope == MODULE_SCOPED) { 
        if (module leader) 
            return True  
        else 
            return False  
    } else { 
        if (core leader) 
            return True  
        else 
            return False  
    } 
} 

2.6 Loading the Update 
Once all logical processors have been designated as an ILP or RLP, the software should synchronize all threads. 
After synchronization, all RLPs must wait in a spin loop while all ILPs write to IA32_BIOS_UPDT_TRIG to load the 
update. On processor configurations with more than one ILP, all ILPs may load the update in parallel to minimize 
the overall time required to load the update. The RLP spin loop must consist of only simple instructions; PAUSE or 
LFENCE may be used to throttle the loop, but MWAIT and HLT must not be used. 

After all ILPs have written to IA32_BIOS_UPDT_TRIG, all logical processors must verify that the new update 
signature matches the update revision from the microcode update header. When the CPUID instruction is 
executed, the CPU populates the IA32_BIOS_SIGN_ID MSR (MSR 0x8B) with the update signature of the currently 
loaded microcode update. Therefore, to determine the signature of the currently loaded microcode update, 
software must clear IA32_BIOS_SIGN_ID to 0, then execute the CPUID instruction, then read the 
IA32_BIOS_SIGN_ID MSR.  

The following pseudo-code demonstrates the sequence to read the current update revision: 



 

 

16  Document Number: 356111-003, Revision 1.2 

Get_Current_MCU_Revision() { 
    wrmsr(IA32_BIOS_SIGN_ID, 0) 
    cpuid(1) 
    return rdmsr(IA32_BIOS_SIGN_ID) >> 32 
} 

The following pseudo-code demonstrates the complete sequence to load the update: 

Load_MCU(update_ptr) { 
    global uint32 ILP_count = 0 
 
    bool ILP = Is_ILP() 
    if (ILP) 
        atomic_increment(ILP_count) 
 
    sync_logical_processors() 
 
    if (ILP) { 
        wrmsr(IA32_BIOS_UPDT_TRIG, update_ptr) 
        atomic_decrement(ILP_count) 
    } 
 
    while (ILP_count != 0) 
        pause 
 
    if (Get_Current_MCU_Revision() == expected_rev) 
        return Success 
    else 
        return Fail 
} 

2.7 Completing the Update 

On processors that enumerate the IA32_MCU_STATUS MSR, software should confirm that the entire update was 
successfully loaded (IA32_MCU_STATUS MSR needs to be consulted if and only if MSR 0x8B reports a new revision 
ID after the update). If both MCU_PARTIAL_UPDATE (bit 0) and AUTH_FAIL_ON_MCU_COMPONENT (bit 1) are 0, 
the entire update was loaded successfully. If MCU_PARTIAL_UPDATE is set to 1, then one or more MCU 
components failed to load. If AUTH_FAIL_ON_MCU_COMPONENT is also set to 1, then one or more components of 
the MCU failed authentication. If AUTH_FAIL_ON_MCU_COMPONENT is 0, then the partial load was not related to 
authentication. If both MCU_PARTIAL_UPDATE and AUTH_FAIL_ON_MCU_COMPONENT are set to 1, software 
may signal a fatal error. If MCU_PARTIAL_UPDATE is set to 1 and AUTH_FAIL_ON_MCU_COMPONENT is 0, 
software may log an error and continue the operation. 

 

Table 2-5 Update Completion Descriptions 

MCU_PARTIAL_UPDATE AUTH_FAIL_ON_MCU_COMPONENT Description 

0 0 Microcode update succeeded on all CPUs. A 
new revision reported in MSR 0x8B 

0 1 n/a – not possible 



 

Document Number: 356111-003, Revision 1.2  17 

1 0 
Partial update due to configuration error. 
Microcode revision is updated (to the new 
version) on all CPUs 

1 1 
Partial update due to authentication failure.  
Microcode revision is updated (to the new 
version) on all CPUs 

After loading the update and verifying the update signature and status, software may wish to compare the CPUID 
and other feature enumeration information against the earlier snapshot to detect any changes caused by the 
update. 

After loading the update, software may also need to perform additional follow-up actions, such as SGX TCB 
recovery, activation, or configuration of capabilities added via the update. Which logical processors need to 
perform these actions may vary depending on the specific actions required and is independent from the scope of 
the Uniform Update. 

 



 

 

18  Document Number: 356111-003, Revision 1.2 

3 Extended MCU Metadata 
The existing microcode update binary format is described in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3, Section 10.11.1. It includes a 48-byte header, an encrypted microcode update data 
block, and an optional extended signature table. 

Additional metadata must be carried within the microcode update binary file to support enhanced usage models 
for microcode updates such as runtime rollback. This section describes a mechanism for adding additional 
metadata to the microcode update binary image that can be used by enlightened software while maintaining 
backward compatibility with existing legacy software. 

 

Figure 3-1 

The previously reserved DWORD at byte offset 36 of the microcode update header is repurposed as the Metadata 
Size field. If the value of this field is 0, then the microcode update image does not contain any additional metadata. 
If the value of this field is non-zero, then additional metadata is present, and it begins at an offset of (Data Size + 
48 – Metadata Size). This relationship maintains the previous definitions of both the Data Size and Total Size fields 
of the microcode update header to preserve backward compatibility with existing legacy software that is unaware 
of the additional metadata. 



 

Document Number: 356111-003, Revision 1.2  19 

The additional metadata, if present, is organized as a list of one or more metadata blocks. Each metadata block 
consists of a 32-bit Type field, a 32-bit Size field, and zero or more DWORDs of data. The Type field indicates the 
type of metadata contained in this block. The Size field indicates the size in bytes of this metadata block, including 
the type and size fields themselves, and will always be a multiple of four bytes. Software can iterate over the list of 
blocks by adding the size of each block to its starting offset to find the starting offset of the next block. 

 

Figure 3-2 

The following types of metadata are defined: 

• Type 0: End of Metadata. The last metadata block in the list will always be of Type 0: End of Metadata. 
Software can use this to detect the end of the additional metadata. The Size field of the End of Metadata block 
will always indicate 8 bytes: 4 bytes for the type field and 4 bytes for the size field itself; the End of Metadata 
block does not have any additional data. 

Type 00000000h 

Size (bytes) 00000008h 

No Additional Data 

• Type 2: Rollback Metadata. This metadata block contains information about the runtime rollback capabilities 
of the microcode update. Refer to section 4.3 for the details of this metadata type. 

All other Type encodings are reserved for future use. To ensure future compatibility, software must ignore any 
metadata types it does not recognize. 

The following pseudo-code demonstrates how to locate a specific metadata block type within the microcode 
update image:  



 

 

20  Document Number: 356111-003, Revision 1.2 

Find_Metadata_Type(Update_Base, Type) { 
    if (Update_Base.Metadata_Size == 0) 
        return NULL 
  
    Metadata_Base = 
        Update_Base + 48 + Update_Base.Data_Size – Update_Base.Metadata_Size 
  
    while (Metadata_Base.Type != END_OF_METADATA) { 
        if (Metadata_Base.Type == Type) 
               return Metadata_Base 
        } else { 
                Metadata_Base += Metadata_Base.Size 
        } 
    } 
    return NULL 
} 

 
  



 

Document Number: 356111-003, Revision 1.2  21 

4 Microcode Update Rollback 
Generally, a microcode update should only be loaded if it is newer (i.e., has a higher revision) than what is already 
loaded. However, it may be desirable to revert or roll back the microcode update to a previous revision under 
some usage scenarios. 

MCU Rollback is the act of requesting a runtime update to an older MCU with a lower revision while a newer MCU 
with a higher revision is currently loaded on the CPU. Rollback intends to revert the system, without a reboot, to a 
state resembling (or matching) the state before a WRMSR 79H with a new MCU.  

For example: 
1. WRMSR 79H with MCU revision X. 
2. MCU loaded successfully, and CPU resumes running software with no issues. 
3. WRMSR 79H with MCU revision Y (Y > X). 
4. MCU loaded successfully, and CPU resumes running software. 
5. System instability was observed after loading MCU Y, and we want to revert to the system's state after (2). 
6. WRMSR 79H with MCU revision X – this is the rollback action. 

This section describes extensions to the microcode update format and the CPU architecture to enumerate and 
enable certain specific supported rollback configurations. 

• Sections 4.1 and 4.2 describe extensions to the processor architecture for software to enable rollback 
capabilities and enumerate supported rollback configurations.  

• Section 4.3 describes extended MCU metadata within the microcode update binary to enumerate supported 
rollback configurations and limitations for a given update. 

On products that support the rollback architecture described here, Intel will support and validate specific rollback 
targets for each new microcode update. Intel does not guarantee or support rolling back to any arbitrary older 
microcode update not enumerated by this architecture. 

The rollback architecture described in this section is enumerated by IA32_MCU_ENUMERATION bit 3.  

4.1 MCU SVN and Deferred SVN Commit 

4.1.1 MCU SVN 
Microcode updates have a Secure Version Number (SVN) to manage rollback, which would preclude users from 
rolling back MCU past a given point. Once an MCU is loaded, its SVN explicitly prevents loading any (generally 
older) MCU with a lower SVN.  

This is intended to prevent a Ring 0 attacker from being able to roll back certain updates to expose exploitable 
security issues. 

4.1.2 Deferred MCU SVN Commit 
Without architectural rollback support, MCU SVN is committed once MCU is loaded via WRMSR 79H. 

This architecture adds an option to defer the SVN commit to a later point after WRMSR 79H. This will allow 
validating the system, deciding on a rollback, and, if everything is fine, committing the MCU SVN via a new MSR 
write. 

We are adding two new MSRs, one to decide on the SVN commit mode and one to identify the need for manual 
commit and perform the commit. 



 

 

22  Document Number: 356111-003, Revision 1.2 

IA32_MCU_SVN_CONFIG - Allows to configure handling of MCU SVN; there are two cases: 

1. Auto-commit – MCU SVN will be committed as part of WRMSR 79H; this will prevent rolling back to MCU with 
lower SVN. 

2. Manual-commit – MCU SVN will not be updated via WRMSR 79H4, rolling back to the previous MCU (the same 
SVN as the current CPU SVN) is allowed after WRMSR 79H and before WRMSR IA32_MCU_SVN_COMMIT. 

 

Table 4-1 IA32_MCU_SVN_CONFIG (MSR 7A0) – Read/Write – Package Scoped 

Bit Field Name Description 

0 LOCK An update of MSR is not allowed once this bit is set; WRMSR 
will result in #GP. 

1 DEFER_SVN 0: Auto-Commit (Legacy SVN handling – default) 
1: Manual Commit 

63:2 Reserved Reserved for future use. 

 

Table 4-2 IA32_MCU_SVN_COMMIT (MSR 7A1) – Read/Write – Core Scoped 

Bit Field Name Description 

0 COMMIT_SVN On Read reports if there is pending SVN to commit 
On write: 

“1” - Commit SVN 
“0” - Ignored 

63:1 Reserved Reserved for future use. 

So now we can have two phases for software to decide on MCU SVN handling. 

Configuration phase: 

• Software will configure the IA32_MCU_SVN_CONFIG MSR to either manual or auto-commit. 

o Default value will be auto commit if the MSR was not configured. 

• It is expected that systems that do not intend to support a rollback to lock the MSR with auto-commit. 

• Systems that intend to support rollback may choose to lock the MSR after choosing between manual and auto-
commit. 

• Software must not change the configuration from manual to auto-commit while any core reports 
COMMIT_SVN as 1 (i.e., an SVN update is pending). 

• Configuring the IA32_MCU_SVN_CONFIG MSR is expected to happen after the WRMSR 79H performed by the 
BIOS (IA32_MCU_STATUS[POST_BIOS_MCU] == 1). Configuring the MSR to Auto-commit before that can lead 
to BIOS failure.  

Runtime update phase: 

 

 
4 See exception with the MINIMUM MCU SVN chapter. 



 

Document Number: 356111-003, Revision 1.2  23 

• When software loads a new MCU with new MCU SVN (MCU_SVN will be part of the MCU header, see chapter 
4.3), it cannot rollback to a previous MCU with lower SVN (Last loaded MCU SVN) if auto commit was chosen 
in the configuration phase. 

• It can roll back to lower MCU SVN when the manual commit was chosen in the configuration phase.  

• The expectation is that after verifying that the new MCU does not cause any system instability, SW will 
perform WRMSR to IA32_MCU_SVN_COMMIT MSR with EAX=1 to commit the SVN. 

• There is no enforcement for software to commit the MCU SVN, but not doing so will prevent loading a 
subsequent newer MCU with a higher MCU SVN (See software rules chapter) and will not guarantee that the 
CPU has the required security level. 

Example of software flow with manual commit: 
1. WRMSR 79H with MCU revision X with MCU_SVN A. 
2. MCU loaded successfully, and CPU resumed running the software with no issues. 
3. WRMSR IA32_MCU_SVN_COMMIT with EAX=1 – MCU_SVN A committed. 
4. WRMSR 79H with MCU revision Y (Y > X) and MCU_SVN B (B > A). 
5. MCU loaded successfully, and CPU resumed to run software. 
6. System instability observed due to loading MCU Y; we want to revert to the same situation in (2). 
7. WRMSR 79H with MCU revision X and MCU_SVN A. 
a. This action will succeed as we have not yet committed MCU_SVN B. 

4.1.3 SVN Reporting 
CPU will report the MCU SVN and the value pending in case of manual commit and commit is pending in 
IA32_MCU_SVN_INFO. 

This MSR is enumerated by the same rollback enumeration bit: IA32_MCU_ENUMERATION[3].  

Table 4-3 IA32_MCU_SVN_INFO (MSR 7A2) – Read only – Core Scoped 

Bit Field Name Description 

15:0 MCU_SVN Committed MCU SVN value can be updated on WRMSR 79H or 
IA32_MCU_SVN_COMMIT 

31:16 PENDING_MCU_SVN Pending SVN, value updated on WRMSR 79H and will be copied 
to MCU_SVN field on IA32_MCU_SVN_COMMIT WRMSR. 

63:32 Reserved Reserved for future use. 

If IA32_MCU_SVN_COMMIT[COMMIT_SVN] indicates an SVN update is pending, then the PENDING_MCU_SVN 
field reports the pending SVN. If an SVN update is not pending, then the value of this field is model-specific. 

4.1.4 Minimum MCU SVN 
With manual commit, software can revert to the last MCU loaded in the CPU as the new MCU SVN will not be 
committed on WRMSR 79H, while with auto-commit, this cannot happen when MCU SVN is incremented. 

A CPU could have a very old MCU loaded, and allowing rollback to such an older MCU may create a security threat 
to the CPU. While we still want to allow rollback with manual commit, rollback may be limited to an SVN greater 
than what was in effect with the previous MCU. 



 

 

24  Document Number: 356111-003, Revision 1.2 

To aid with this, MCUs have an additional value – MINIMUM_MCU_SVN. If the SVN of the currently loaded MCU is 
lower than the MINIMUM_MCU_SVN, then this value will become the new IA32_MCU_SVN_INFO[MCU_SVN] once 
WRMSR 79H is executed regardless of the chosen MCU commit configuration.  

MINIMUM_MCU_SVN will be part of the MCU header, as mentioned in Section 4.3. 

Here are examples of a few scenarios with manual MCU SVN commits: 

Base scenario: 
 CPU has MCU_SVN=3, and there is no pending SVN commit 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 0 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [3,3] 

 WMRSR 79H with MCU that have MCU_SVN=7 and minimum SVN of 5 
o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5] 

Scenario #1, in addition to the base scenario: 

Loading MCU with higher MCU_SVN than the pending MCU SVN, while MCU SVN is pending – no success. 
 Base scenario 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5] 

 WRMSR 79H with MCU that have MCU_SVN=8 
 Result: Silent drop5, no update MCU revision ID (MSR 8BH) 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5] 

Scenario #2, in addition to the base scenario: 

Loading MCU with same pending MCU SVN - success 
 Base scenario 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]  

 WRMSR 79H with MCU that have MCU_SVN=7 
 Result: success, update MCU revision ID (MSR 8BH) 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]  

Scenario #3, in addition to the base scenario: 

Loading MCU with lower MCU_SVN than the pending MCU SVN and higher than the committed MCU SVN – 
success, pending SVN will be updated. 
 Base scenario 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]  

 WRMSR 79H with MCU that have MCU_SVN=6 
 Result: success, update MCU revision ID (MSR 8BH) 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [6,5]  

Scenario #4, in addition to the base scenario: 

Loading MCU with same committed MCU SVN - success, No pending SVN commit. 
 Base scenario 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 

 

 
5 Silent Drop – WRMSR 79H completed but MCU was not loaded – MSR 8BH still shows old MCU revision. 



 

Document Number: 356111-003, Revision 1.2  25 

o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]  
 WRMSR 79H with MCU that have MCU_SVN=5 
 Result: success, update MCU revision ID (MSR 8BH) 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 0 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [5,5]  

Scenario #5, in addition to the base scenario: 

Loading MCU with MCU_SVN less than the committed MCU SVN – fail. 
 Base scenario 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]  

 WRMSR 79H with MCU that have MCU_SVN=4 
 Result: Silent drop, no update MCU revision ID (MSR 8BH) 

o IA32_MCU_SVN_COMMIT[MCU_SVN] = 1 
o IA32_MCU_SVN_INFO[PENDING_MCU_SVN, MCU_SVN] = [7,5]  

4.1.5 SVN Commit Rules 
Software needs to adhere to the following rules for successful MCU load: 

• MCU SVN is a barrier to rollback beyond committed SVN.  
o Make sure that WRMSR 79H with MCU_SVN >= IA32_MCU_SVN_INFO[MCU_SVN].  

• Must Commit a Deferred SVN update before a subsequent newer MCU with a higher SVN can be loaded.  
o Make sure that WRMSR 79H with MCU_SVN <= IA32_MCU_SVN_INFO[PENDING_MCU_SVN] when 

IA32_MCU_SVN_COMMIT[MCU_SVN] = 1. 

Software should note that: 

• New MCU Update with the same SVN as the current committed SVN does not require a manual commit. 
• Even with a manual commit, a new MCU may update the SVN to a minimum MCU SVN.  

4.2 Rollback ID Reporting 
Each MCU can support a set of rollback IDs (up to 16). These IDs are determined when the MCU is created and 
reported as part of the MCU header. 

The CPU reports rollback IDs via 16 read-only MSRs (IA32_ROLLBACK_SIGN_ID_0 to IA32_ROLLBACK_SIGN_ID_15) 
after a successful WRMSR 79H. 

Rollback IDs MSRs are enumerated by the same rollback enumeration bit: IA32_MCU_ENUMERATION[3]. 

 

Table 4-4 IA32_ROLLBACK_SIGN_ID_x (MSRs 7B0H .. 7BFH) – Read only – Core Scoped (0 <= x <= 15) 

Bit Field Name Description 

31:0 ROLLBACK_ID Supported Rollback ID 

47:32 ROLLBACK_MCU_SVN MCU_SVN corresponds to the Rollback ID 

63:48 Reserved Reserved for future use. 

These MSRs are updated after a successful WRMSR 79H. A value of zero in one of the MSRs means that this MSR 
does not contain a valid rollback ID. 



 

 

26  Document Number: 356111-003, Revision 1.2 

If IA32_ROLLBACK_SIGN_ID_x returns “zero,” then all IA32_ROLLBACK_SIGN_ID_y MSRs after it will return zero (x 
< y). 

ROLLBACK MCU_SVN that corresponds to the rollback ID is reported within the ROLLBACK_SIGN_ID MSR; software 
can check based on the IA32_MCU_SVN_INFO[MCU_SVN] if rollback to this MCU still supported (follow SVN rules). 

4.2.1 Rollback and BIOS MCU 
During Boot, the uCode reset sequence loads the MCU and is later loaded by the BIOS after MRC (setting bit #0 of 
MSR_BIOS_DONE—151H). 

Run time software should not attempt to roll back to an MCU that is older than the MCU loaded by BIOS.   

 MCU during BIOS may perform initializations that a later load of an older MCU can’t undo. 

To aid software,  a status bit has been added to indicate the stage post-BIOS MCU load and report the minimum 
rollback ID in a new MSR. 

 IA32_MCU_STATUS[3] - POST_BIOS_MCU - When set indicates that a successful WRMSR 79H performed 
(Revision ID reflected in MSR 8BH) after setting bit #0 of MSR_BIOS_DONE (151H). 

Rollback is not supported until we have bit #3 set in the IA32_MCU_STATUS MSR. 

 

Table 4-5 IA32_MCU_STATUS (MSR 7CH) – Read-only – Core Scoped 

Bit Field Name Description 

0 MCU_PARTIAL_UPDATE When set to 1, it indicates that the most recent write to 
IA32_BIOS_UPDT_TRIG resulted in a partial update. This 
means that microcode update components were only partially 
updated after some portion of the MCU had already been 
committed and the Revision ID had been updated. 

1 AUTH_FAIL_ON_MCU_COMPONENT When set to 1, it indicates that an authentication failure 
occurred on some portion of the MCU after another portion of 
the MCU had already been committed and the Revision ID had 
already been updated on the most recent write to 
IA32_BIOS_UPDT_TRIG. 

2 Reserved Reserved for future use. 

3 POST_BIOS_MCU When set indicates that a successful WRMSR 79H performed 
(Revision ID reflected in MSR 8BH) after setting bit #0 of 
MSR_BIOS_DONE (151H)  

63:4 Reserved Reserved for future use. 

 IA32_MCU_ROLLBACK_MIN_ID[31:0] - Reports the minimal MCU revision ID that software can roll back to per 
boot. 

 Exists if IA32_MCU_ENUMERATION[3] set. 



 

Document Number: 356111-003, Revision 1.2  27 

Table 4-6 IA32_MCU_ROLLBACK_MIN_ID (MSR 7A4H) – Read only – Core Scoped 

Bit Field Name Description 

31:0 REVISION_ID Minimal MCU revision ID for rollback 

63:32 Reserved Reserved for future use. 

4.3 MCU Header Changes 
MCU rollback architecture requires adding metadata to the MCU header. See the chapter on extensible MCU 
metadata for more information on how software can extract the following data from the MCU.  

Here is the data structure that was added for the MCU rollback architecture: 

 

Table 4-7 Data Structure Added for the MCU Rollback Architecture 

Type 00000002h 

Size (bytes) 0000006Ch 

MCU SVN info DWORD 

Rollback ID 0 DWORD 

Rollback ID 1  DWORD 

Rollback ID 2 DWORD 

: DWORD 

: DWORD 

Rollback ID 15  DWORD 

Rollback SVN 1 Rollback SVN 0 DWORD 

Rollback SVN 3 Rollback SVN 2 DWORD 

: : DWORD 

: : DWORD 

Rollback SVN 15 Rollback SVN 14 DWORD 

 

MCU SVN info field consists of the following: 

• 15:0 – MCU_SVN 
• 31:16 – MINIMUM_MCU_SVN 

 

 



 

 

28  Document Number: 356111-003, Revision 1.2 

5 MCU Staging 
As the payload size of microcode updates continues to increase, the latency required to load the update via 
IA32_BIOS_UPDT_TRIG (MSR 79H) has also increased. When an update is loaded during runtime, when system 
responsiveness and interrupt latency requirements are critical, this increased latency may lead to system 
instability. Microcode Update Staging is a capability to load and verify portions of the microcode update into 
staging buffers within the processor in a preemptable, interruptible manner, in parallel with other workloads, 
before writing IA32_BIOS_UPDT_TRIG. Staging can be done as a lower priority task while other processes continue 
to run normally and will result in significantly lower latency when IA32_BIOS_UPDT_TRIG is written to activate the 
update. 

Conversely, using the MCU Staging capability during the system boot phase is not recommended. Since the boot 
phase is generally less sensitive to responsiveness and interrupt latency, the benefits of the MCU Staging capability 
likely do not justify the additional overhead. They may negatively impact the overall boot time.  

The MCU Staging capability is enumerated by bit 4 in the IA32_MCU_ENUMERATION MSR. This enumeration bit 
indicates the presence of the IA32_MCU_STAGING_MBOX_ADDR MSR and the MCU Staging mailbox registers. See 
section 2.1 for details of the IA32_MCU_ENUMERATION MSR. 

On processors that support MCU Staging, it is still valid and permissible to load a microcode update at runtime 
without first staging the update. Without staging, the WRMSR to IA32_BIOS_UPDT_TRIG may incur long latency 
but will complete successfully. Similarly, it is permissible and allowed to load a microcode update at runtime if 
staging has failed or has only been partially completed or if the MCU revision loaded through 
IA32_BIOS_UPDT_TRIG is different from the staged revision. In all such cases, runtime updates of microcode will 
succeed but may incur long latency. If the MCU revision loaded through IA32_BIOS_UPDT_TRIG does not match 
the staged revision, then the revision loaded through IA32_BIOS_UPDT_TRIG takes precedence. 

5.1 MCU Staging Mailbox Overview 
The MCU staging capability provides a mailbox interface for software to load portions of the microcode update 
into the internal staging buffers. System software uses the mailbox interface to transmit data objects to the staging 
hardware (a request) and to receive data objects returned from the staging hardware back to system software (a 
response). Each data object consists of multiple DWORDs that are transmitted through the mailbox interface 
registers one by one. The following sections describe the data objects, interface registers, and protocols in more 
detail. 

 

5.2 MCU Staging Mailbox Discovery 
Software can determine whether the MCU Staging Mailbox is supported and, if so, its MMIO location using either 
of two methods: 

1. MSR-Based Discovery: A value of 1 in bit 4 (MCU_STAGING) of the IA32_MCU_ENUMERATION MSR 
indicates support for the MCU Staging Mailbox. If set, then its MMIO address can be obtained by reading 
the IA32_MCU_STAGING_MBOX_ADDR MSR. 

2. PCIe VSEC-Based Discovery: The MCU Staging Mailbox is also discoverable as a PCIe Vendor-Specific 
Extended Capability (VSEC). A VSEC ID of 0044H indicates support for the MCU Staging Mailbox, and the 
address is calculated using values in the Vendor-Specific Registers portion of the VSEC. Refer to Table 5-1 
for details. 
 



 

Document Number: 356111-003, Revision 1.2  29 

Table 5-1 Staging Mailbox VSEC Structure 

Byte 3 Byte 2 Byte 1 Byte 0 
DWORD Section 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Next Capability Offset Capability 
Ver. (1H) PCI Express Extended Capability ID (000BH) 

0 PCIe Extended 
Capability 

Header 

VSEC Length (010H) VSEC Rev. 
(1H) VSEC ID (0044H) 1 VSEC Header 

Entry Size (04H) Num Entries (01H) Reserved (0000H) 2 Vendor- 
Specific 

Registers MMIO Offset TBIR 3 

• TBIR – Table BAR Indicator Register. Indicates which of the function’s Base Address Registers should be used 
with the MMIO Offset. 

• MMIO Offset – 32-bit offset from the specified BAR which should be used by software to calculate the MMIO 
location of the MCU staging mailbox. Software should mask the TBIR field (bits 2:0) to 000b to produce the 
complete 32-bit qword-aligned offset value. 

 

5.3 MCU Staging Mailbox Data Object Format 
An MCU staging mailbox data object consists of an 8-byte mailbox header that specifies a vendor ID, data object 
type, object length, and zero or more DWORDs of type-specific data. 

Table 5-2 Mailbox Data Object Format 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Object Type Vendor ID 0 Mailbox 
Header Reserved Length 1 

Type-Specific Data DWORD 0 2 
Type-Specific 

Data … … 

Type-Specific Data DWORD N N+2 

• Vendor ID – 16-bit PCI-SIG Vendor ID of the entity that defined the type of this data object. 
• Data Object Type – 8-bit Type of the data object. The Vendor ID and Data Object Type together uniquely 

identify the type of the data object and the layout of the type-specific data. 
• Length – 18-bit length of the entire data object in DWORDs, including the mailbox header. A value of 0 

indicates 218 DWORDs (1 MBs). 

  



 

 

30  Document Number: 356111-003, Revision 1.2 

The MCU Staging mailbox supports two data object types: the Discovery object type and the MCU Staging object 
type. 

Discovery Index Vendor ID Data Object Type Description 

0 0001H 00H Discovery 

1 8086H 0BH MCU Staging 

5.3.1 Discovery Object 
The Discovery data object type provides an interface to identify the data object types supported by the mailbox. 

Table 5-3 Mailbox Discovery Request 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (00H) Vendor ID (0001H) 0 Mailbox 
Header Reserved Length (00003H) 1 

Reserved Index 2 Data 

• Index – 8-bit index to query for discovery. Software should start with index 00H and incrementally query each 
index to discover the supported object types until no additional object types are indicated. 

Table 5-4 Mailbox Discovery Response 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (00H) Vendor ID (0001H) 0 Mailbox 
Header Reserved Length (00003H) 1 

Next Index Data Object Type Vendor ID 2 Data 

• Vendor ID – 16-bit Vendor ID of the enumerated protocol. If the requested index is invalid or out of range, the 
Vendor ID in the response must be FFFFH. 

• Data Object Type – 8-bit Data Object Type of the enumerated protocol. If the Vendor ID value in the response 
is FFFFH, then this field is undefined. The Discovery protocol itself is enumerated at index 0. 

• Next Index – 8-bit index of the next available protocol for enumeration. If additional protocols are present 
beyond the requested index, the response returns the index provided in the request incremented by 1. If 
there are no additional protocols to enumerate, this value will be 00H. If the Vendor ID value in the response 
is FFFFH, then this field is undefined. 

To enumerate the protocols supported by the MCU staging mailbox, software should send a Discovery request 
with an index equal to 00H. If the next index field of the response is non-zero, software should increment the index 
and send another Discovery request, and so on, until the next index field of the response is zero, indicating no 
additional protocols to enumerate. 



 

Document Number: 356111-003, Revision 1.2  31 

5.3.2 MCU Staging Object 
The MCU Staging object provides multiple commands to facilitate the staging of the microcode update. Each MCU 
Staging command object consists of a mailbox header followed by an 8-byte MCU Staging command header and 
zero or more DWORDs of command data. The specified command determines the layout of the command data. 

Table 5-5 MCU Staging Command Format 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (0BH) Vendor ID (8086H) 0 
Mailbox Header 

Reserved Length (variable) 1 

Parameters[1] Parameters[0] Reserved Command 2 Command 
Header Parameters[5] Parameters[4] Parameters[3] Parameters[2] 3 

Data Object DWORD 0 4 

Command Data … … 

Data Object DWORD N N+4 

• Command – 8-bit index of the MCU Staging command to execute. The MCU Staging object supports the 
following commands: 

Command Index Description 

0 MCU Staging Discovery – Returns various parameters of the MCU Staging interface. 

1 Get Staged MCU Revision – Returns the Revision ID of the currently staged MCU, if 
available. 

2 Reserved for future use. Response is undefined 

3 MCU Load and Verify – Loads and verifies one page of MCU data into the internal 
staging buffers. 

4-255 Reserved for future use. Responses are undefined 

• Parameters[x] – The definition of the six 8-bit parameter fields depends on the command. 

5.3.2.1 MCU Staging Discovery 
The MCU Staging Discovery command returns various information about the MCU Staging capabilities. This 
command does not support any parameters; those fields are reserved and must be zero. 

 



 

 

32  Document Number: 356111-003, Revision 1.2 

Table 5-6 MCU Staging Discovery Request 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox 
Header Reserved Length (00004H) 1 

Reserved Command (00H) 2 Command 
Header Reserved 3 

 

Table 5-7 MCU Staging Discovery Response 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox 
Header Reserved Length (00005H) 1 

Reserved Major Revision Minor Revision 2 
Response 

Data Mailbox Size 3 

Maximum Page Size 4 

• Major/Minor Revision – 16-bit revision of the MCU staging mailbox interface. The initial implementation of 
this specification will return Major Revision as 01H and Minor Revision as 00H. 

• Mailbox Size – 32-bit size in bytes of the MCU staging mailbox interface. The initial implementation of this 
specification will report 4,112 bytes to accommodate 8 bytes for the mailbox header, 8 bytes for the MCU 
Staging command header, and up to 4,096 bytes of MCU data. 

• Maximum Page Size – 32-bit size in bytes of the maximum MCU data payload. The initial implementation of 
this specification will report 4,096 bytes. The MCU is transferred incrementally to the staging buffers in chunks 
up to this size. 

5.3.2.2 Get Staged MCU Revision 
The Get Staged MCU Revision command returns the Revision ID of the currently staged MCU, if available, and 
status information about the MCU Staging interface. This command does not support any parameters; those fields 
are reserved and must be zero. 

Table 5-8 Get Staged MCU Revision Request 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox 
Header Reserved Length (00004H) 1 

Reserved Command (01H) 2 Command 
Header Reserved 3 

 



 

Document Number: 356111-003, Revision 1.2  33 

Table 5-9 Get Staged MCU Revision Response 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox 
Header Reserved Length (00005H) 1 

MCU Revision ID 2 
Response 

Data Flags 3 

Reserved SVN 4 

• MCU Revision ID – 32-bit Revision ID of the currently staged MCU. If an MCU is successfully staged, then this 
returns the Revision ID of the staged MCU. If no MCU is currently staged or staging is not complete, then this 
field returns 0. 

• Flags – 32-bit flags indicating the status of the MCU Staging hardware. 
o Bit 0: When set to 1, indicates that the MCU Revision ID specified in the response is valid and that staging 

has completed successfully. 
o Bit 1: When set to 1, indicates that MCU staging is currently in progress, i.e., at least one data chunk of 

MCU data has been received, but staging is not yet complete. 
o Bit 2: When set to 1, it indicates an error has been detected, and the staging process must be restarted.  
o Bits 3 through 31 are reserved for future use. 
o SVN – 16-bit Secure Version Number of the currently staged MCU. 

5.3.2.3 MCU Load and Verify 
The MCU Load and Verify command is used to stage the MCU data. To stage an update, software sends a series of 
MCU Load and Verify commands to send the data in chunks up to the Maximum Page Size specified by the MCU 
Staging Discovery response. The first MCU Load and Verify request must begin from the start of the microcode 
update header (offset 0). After each MCU Load and Verify request, the staging hardware responds with the offset 
of the next chunk to the stage. The offsets specified in response to the MCU Load and Verify commands are 
specified in bytes from the start of the microcode update header. Note that the responses may specify chunks out 
of sequential order, and portions of the update that do not need to be staged may be skipped altogether. The 
staging hardware solely determines which chunks must be staged and in what order. Failure to stage the chunks as 
requested by the hardware may cause staging to fail. When no additional chunks are required, the staging 
hardware will respond with an offset of FFFFFFFFH. This command does not support any parameters; those fields 
are reserved and must be zero. 



 

 

34  Document Number: 356111-003, Revision 1.2 

Table 5-10 MCU Load and Verify Request 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox 
Header Reserved Length (variable) 1 

Reserved Command (03H) 2 Command 
Header Reserved 3 

MCU Data 

4 
Command 

Data 
... 

N 

• MCU Data – One chunk of MCU data up to the Maximum Page Size specified by the MCU Staging Discovery 
object. 

Table 5-11 MCU Load and Verify Response 
Byte 3 Byte 2 Byte 1 Byte 0 

DWORD Section 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Reserved Data Type (0BH) Vendor ID (8086H) 0 Mailbox 
Header Reserved Length (00004H) 1 

Next Chunk Offset 2 Response 
Data Flags 3 

• Next Chunk Offset– 32-bit offset of the next chunk to the stage. After each chunk of updated data is written to 
the staging buffers, the staging hardware responds with the offset of the next chunk to the stage. The offset is 
specified in bytes from the start of the microcode update header. If no additional chunks are required, this 
field will return 0xFFFFFFFF. If software provides different chunks than indicated by the response, the update 
data will eventually fail verification, and the staging hardware will indicate an error via bit 2 of the flags field. 

• Flags – 32-bit flags indicating the status of the staging hardware after each chunk is processed. 
o Bit 0: When set to 1, indicates that staging and verification of all required chunks have completed 

successfully. 
o Bit 1: When set to 1, indicates that MCU staging is currently in progress, i.e., at least one data chunk of 

MCU data has been received, but more chunks must be delivered before staging and verification can 
complete. 

o Bit 2: When set to 1, it indicates an error has been detected, and the staging process must be restarted.  
o Bits 3 through 31 are reserved for future use. 

5.4 MCU Staging Mailbox Interface Registers 
A set of four memory-mapped I/O (MMIO) registers within the platform's physical address space provides the 
interface to the staging hardware. The IA32_MCU_STAGING_MBOX_ADDR MSR provides the platform physical 
address of the first mailbox register (MCU_STAGING_CTRL). 

There is one set of mailbox registers and internal staging buffers per physical processor package. Therefore, the 
IA32_MCU_STAGING_MBOX_ADDR MSR is package-scoped and will provide a different physical address on each 
physical package. In a multi-socket system, the update must be staged separately on all physical packages before 



 

Document Number: 356111-003, Revision 1.2  35 

the update is activated. Since the staging mailbox interface registers are memory mapped, software may use a 
single logical processor on one physical package to perform the staging for all physical packages or one logical 
processor per package to perform the staging for its own physical package. 

Table 5-12 IA32_MCU_STAGING_MBOX_ADDR (MSR 7A5H) – Read-only – Package Scoped 

Bit Field Name Description 

63:0 MCU_STAGING_MBOX_ADDR Indicates the MMIO platform physical address of the 
MCU Staging Control register. 
If the value is 0, then the mailbox has not been 
configured by platform firmware (BIOS). 

The remaining mailbox registers are located at 4-byte offsets from the MCU_STAGING_CTRL register.  

Table 5-13 MCU_STAGING_CTRL register 

Byte Offset Register Description 

+00h MCU_STAGING_CTRL Control Register 

+04h MCU_STAGING_STATUS Status Register 

+08h MCU_STAGING_WRITE_DATA Write Data Register 

+0Ch MCU_STAGING_READ_DATA Read Data Register 

5.4.1 MCU Staging Control Register 
The MCU Staging Control register (MCU_STAGING_CTRL) is written by software to control the MCU staging 
interface. 

Table 5-14 MCU_STAGING_CTRL (offset 0x00) – Read/write – Package Scoped 

Bit Field Name Description 

0 ABORT (RW) Writing 1 to this bit causes all data object transfer 
operations associated with this MCU staging mailbox 
instance to be aborted. 
Always read as 0. 

30:1 Reserved Must be 0. 

31 GO (RW) Software sets this bit to 1 after writing an entire 
data object to indicate to the processor to begin 
processing the object. The processor clears this bit to 0 
after it completes processing the object. 

 
  



 

 

36  Document Number: 356111-003, Revision 1.2 

5.4.2 MCU Staging Status Register 
The MCU Staging Status register (MCU_STAGING_STATUS) is used by software to determine the status of the MCU 
staging interface. 

Table 5-15 MCU_STAGING_STATUS (offset 0x04) – Read-only – Package Scoped 

Bit Field Name Description 

0 BUSY (RO) When set to 1, indicates that the processor is 
temporarily unable to receive new data through the 
MCU_STAGING_WRITE_DATA register. 

1 Reserved Must be 0. 

2 ERROR (RO) When set to 1, indicates that an error has occurred 
while the processor was handling the last MCU staging 
mailbox data object. 

30:3 Reserved Must be 0. 

31 OBJECT_READY (RO) When set to 1, indicates that the processor has 
completed processing the last MCU staging mailbox data 
object received and a new object is available in 
response. 

5.4.3 MCU Staging Write Data Register 
The MCU Staging Write Data register (MCU_STAGING_WRITE_DATA) is written by software to transfer one 
DWORD of an object to the MCU staging mailbox interface. 

Table 5-16 MCU_STAGING_WRITE_DATA (offset 0x08) – Read/Write – Package Scoped 

Bit Field Name Description 

31:0 WRITE_DATA (RW) Software writes this register to transfer one DWORD of 
object data into the MCU staging mailbox interface.  

5.4.4 MCU Staging Read Data Register 
The MCU Staging Read Data register (MCU_STAGING_READ_DATA) is read by software to transfer one DWORD of 
an object from the MCU staging mailbox interface. 

Table 5-17 MCU_STAGING_READ_DATA (offset 0x0C) – Read/Write – Package Scoped 

Bit Field Name Description 

31:0 READ_DATA 

(RW) Software reads this register to transfer one DWORD of 
object data from the MCU staging mailbox interface. After 
reading this register, software must write zero to this register 
to indicate to the processor that the data has been read. 



 

Document Number: 356111-003, Revision 1.2  37 

5.5 MCU Staging Mailbox Message Protocol 
System software uses the MCU staging mailbox to load the microcode update into internal staging buffers by 
sending data object requests to the staging hardware and receiving data object responses from the staging 
hardware.  

Software must first initialize the staging mailbox interface by issuing an ABORT command by writing ABORT (bit 0) 
in the MCU_STAGING_CTRL register. This results in resetting the mailbox interface – an indication to the staging 
hardware that a new staging process is about to begin. To send a data object request to the staging hardware,  
software writes the entire object one DWORD at a time into the MCU_STAGING_WRITE_DATA register. After the 
entire object has been sent, software must set the GO bit in the MCU_STAGING_CTRL register to indicate that the 
object is complete. 

If the submitted request produces a response, software must then poll the OBJECT_READY bit in the 
MCU_STAGING_STATUS register until it is set, indicating that the hardware has processed the entire object and is 
ready to return the response. Software must then read the response one DWORD at a time from the 
MCU_STAGING_READ_DATA register. After each DWORD is read from the MCU_STAGING_READ_DATA register, 
software must write a zero to the MCU_STAGING_READ_DATA register to indicate that the DWORD has been 
consumed and hardware can populate the register with the next DWORD. 

During initialization, system software must verify the presence of the mailbox interface via enumeration. 
Furthermore, the system software may determine the maximum supported page size by issuing the MCU Staging 
Discovery request (4096 bytes is enumerated in the initial implementation and is the default size supported). 

To stage a patch for loading during runtime, software must issue a sequence of MCU Load and Verify requests to 
incrementally load the microcode update data into the staging buffers in chunks up to the maximum supported 
page size. The first MCU Load and Verify request should begin from the start of the microcode update header 
(offset 0). After each MCU Load and Verify request, the staging hardware responds with the offset of the next 
chunk to stage. The offsets specified in response to the MCU Load and Verify commands are specified in bytes 
from the start of the microcode update header. The staging hardware may not specify chunks in sequential order, 
and some portions of the update that do not require staging may be skipped altogether. When no additional 
chunks are required, the staging hardware will respond with an offset of FFFFFFFFH. 

After staging all required chunks, the system software may issue the Get Staged MCU Revision request to confirm 
whether the staging was successful.  

 


	1 Introduction
	2 Runtime Microcode Update
	2.1 Minimum Runtime Update Revision
	2.2 Microcode Update Enumeration and Status
	2.3 Preparing to Load the Update
	2.4 Uniform Microcode Update
	2.5 ILP Determination
	2.6 Loading the Update
	2.7 Completing the Update

	3 Extended MCU Metadata
	4 Microcode Update Rollback
	4.1 MCU SVN and Deferred SVN Commit
	4.1.1 MCU SVN
	4.1.2 Deferred MCU SVN Commit
	4.1.3 SVN Reporting
	4.1.4 Minimum MCU SVN
	4.1.5 SVN Commit Rules

	4.2 Rollback ID Reporting
	4.2.1 Rollback and BIOS MCU

	4.3 MCU Header Changes

	5 MCU Staging
	5.1 MCU Staging Mailbox Overview
	5.2 MCU Staging Mailbox Discovery
	5.3 MCU Staging Mailbox Data Object Format
	5.3.1 Discovery Object
	5.3.2 MCU Staging Object
	5.3.2.1 MCU Staging Discovery
	5.3.2.2 Get Staged MCU Revision
	5.3.2.3 MCU Load and Verify


	5.4 MCU Staging Mailbox Interface Registers
	5.4.1 MCU Staging Control Register
	5.4.2 MCU Staging Status Register
	5.4.3 MCU Staging Write Data Register
	5.4.4 MCU Staging Read Data Register

	5.5 MCU Staging Mailbox Message Protocol


