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Preface
1. Conventions
The OpenPOWER Foundation documentation uses several typesetting conventions.

Notices
Notices take these forms:

Note

A handy tip or reminder.

Important

Something you must be aware of before proceeding.

Warning

Critical information about the risk of data loss or security issues.

Changes
At certain points in the document lifecycle, knowing what changed in a document is important. In
these situations, the following conventions will used.

• New text will appear like this. Text marked in this way is completely new.

• Deleted text will appear like this. Text marked in this way was removed from the previous version
and will not appear in the final, published document.

• Changed text will appear like this. Text marked in this way appeared in previous versions but has
been modified.

Command prompts
In general, examples use commands from the Linux operating system. Many of these are also
common with Mac OS, but may differ greatly from the Windows operating system equivalents.

For the Linux-based commands referenced, the following conventions will be followed:

$ prompt Any user, including the root user, can run commands that are prefixed with the $
prompt.

# prompt The root user must run commands that are prefixed with the # prompt. You can also
prefix these commands with the sudo command, if available, to run them.
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Document links
Document links frequently appear throughout the documents. Generally, these links include a text
for the link, followed by a page number in parenthesis. For example, this link, Preface [x],
references the Preface chapter on page x.

2. Document change history
This version of the guide replaces and obsoletes all earlier versions.

The following table describes the most recent changes:

Revision Date Summary of Changes

December 1, 2020 • Revision 1.5: POWER10 support.

May 10, 2017 • Revision 1.4: Conversion from FrameMaker to DocBook, minor corrections.

June 13, 2016 • Revision 1.3: POWER9 support.

June 13, 2016 • Revision 1.2: POWER8 errata.

July 16, 2015 • Revision 1.1: Incorporate errata.

July 21, 2014 • Revision 1.0: Initial release.
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About this Document
This specification defines the OpenPOWER ELF V2 application binary interface (ABI). This ABI is
derived from and represents the first major update to the Power ABI since the original release of
the IBM® RS/6000® ABI. It was developed to make extensive use of new functions available in
OpenPOWER-compliant processors. It expects an OpenPOWER-compliant processor to implement
at least Power ISA V2.07B with all OpenPOWER Architecture instruction categories as well as
OpenPOWER-defined implementation characteristics for some implementation-specific features.

Notices
This document is based on the following publications:

Power Architecture 32-bit Application Binary Interface Supplement 1.0 by Ryan S. Arnold, Greg
Davis, Brian Deitrich, Michael Eager, Emil Medve, Steven J. Munroe, Joseph S. Myers, Steve
Papacharalambous, Anmol P. Paralkar, Katherine Stewart, and Edmar Wienskoski, 1.0 Edition.
Published April 19, 2011. Copyright © 1999, 2003, 2004 IBM Corporation. Copyright © 2002
Freescale Semiconductor, Inc. Copyright © 2003, 2004 Free Standards Group. Copyright © 2011
Power.org

Portions of Power Architecture 32-bit Application Binary Interface Supplement 1.0 are derived from
the 64-bit PowerPC® ELF Application Binary Interface Supplement 1.8, originally written by Ian
Lance Taylor under contract for IBM, with later revisions by: David Edelsohn, Torbjorn Granlund,
Mark Mendell, Kristin Thomas, Alan Modra, Steve Munroe, and Chris Lorenze.

The Thread Local Storage section of this document is an original contribution of IBM written by Alan
Modra and Steven Munroe.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
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1. Introduction
The Executable and Linking Format (ELF) defines a linking interface for executables and shared
objects in two parts.

• The first part is the generic System V ABI (http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-
Core-generic/LSB-Core-generic/normativerefs.html#NORMATIVEREFSSECT).

• The second part is a processor-specific supplement.

This document, the OpenPOWER ABI for Linux Supplement for the Power Architecture 64-bit ELF
V2 ABI, is the OpenPOWER-compliant processor-specific supplement for use with ELF V2 on 64-
bit IBM Power Architecture® systems. This is not a complete System V ABI supplement because it
does not define any library interfaces.

This document establishes both big-endian and little-endian application binary interfaces (see
Section 2.1.2.1, “Byte Ordering” [4]). OpenPOWER-compliant processors in the 64-bit Power
Architecture can execute in either big-endian or little-endian mode. Executables and executable-
generated data (in general) that subscribe to either byte ordering are not portable to a system
running in the other mode.

• Note: This ABI specification does not address little-endian byte ordering before Power ISA 2.03.

The OpenPOWER ELF V2 ABI is not the same as either the Power Architecture 32-bit ABI supple-
ment or the 64-bit IBM PowerPC® ELF ABI (ELF V1).

The Power Architecture 64-bit OpenPOWER ELF V2 ABI supplement is intended to use the same
structural layout now followed in practice by other processor-specific ABIs.

1.1. Reference Documentation
The archetypal ELF ABI is described by the System V ABI. Supersessions and addenda that are
specific to OpenPOWER ELF V2 Power Architecture (64-bit) processors are described in this
document.

The following documents are complementary to this document and equally binding:

• IBM Power Instruction Set Architecture, Versions 2.07, 3.0, and 3.1, IBM, 2013-2020.  https://
openpowerfoundation.org/technical/resource-catalog/

• POWER Vector Intrinsics Programming Reference, Version 1.0.0, OpenPOWER Foundation,
2020.  https://openpowerfoundation.org/technical/resource-catalog/

• DWARF Debugging Information Format, Version 4, DWARF Debugging Information Format
Workgroup, 2010.  http://dwarfstd.org/Dwarf4Std.php

• ISO/IEC 9899:2011: Programming languages—C.  http://www.iso.org/iso/home/store/
catalogue_tc/catalogue_detail.htm?csnumber=57853

• Itanium C++ ABI: Exception Handling. Rev 1.22, CodeSourcery, 2001.  http://
www.codesourcery.com/public/cxx-abi/abi-eh.html

• ISO/IEC TR 24732:2009 – Programming languages, their environments and system software
interfaces – Extension for the programming language C to support decimal floating-point

http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/normativerefs.html#NORMATIVEREFSSECT
http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/normativerefs.html#NORMATIVEREFSSECT
http://www.power.org/
https://openpowerfoundation.org/technical/resource-catalog/
https://openpowerfoundation.org/technical/resource-catalog/
https://openpowerfoundation.org/technical/resource-catalog/
http://dwarfstd.org/Dwarf4Std.php
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.codesourcery.com/public/cxx-abi/abi-eh.html
http://www.codesourcery.com/public/cxx-abi/abi-eh.html
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arithmetic, ISO/IEC, January 05, 2009. Available from ISO.  http://www.iso.org/iso/home/store/
catalogue_tc/catalogue_tc_browse.htm?commid=45202

• ELF Handling for Thread-Local Storage, Version 0.20, Ulrich Drepper, Red Hat Inc., December
21, 2005.  http://people.redhat.com/drepper/tls.pdf

• ELFv2 ABI Compliance TH/TS Specification 1.00, OpenPOWER Foundation, June 27, 2017.   
http://cdn.openpowerfoundation.org/wp-content/uploads/resources/openpower-elfv2abi-thts/
openpower-elfv2abi-thts-20170627.pdf

The following documents are of interest for their historical information but are not normative in any
way.

• 64-bit PowerPC ELF Application Binary Interface Supplement 1.9.  http://
refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html

• IBM PowerOpen™ ABI Application Binary Interface Big-Endian 32-Bit Hardware Implementation.
ftp://www.sourceware.org/pub/binutils/ppc-docs/ppc-poweropen/

• Power Architecture 32-bit ABI Supplement 1.0 Embedded/Linux/Unified.    https://
www.power.org/documentation/power-architecture-32-bit-abi-supplement-1-0-embeddedlinuxuni-
fied/

• ALTIVEC PIM: AltiVec™ Technology Programming Interface Manual, Freescale Semiconductor,
1999.  http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

• ELF Assembly User’s Guide, Fourth edition, IBM, 2000.    https://
www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/assem_um.pdf?
id=109917A251EFD64C872569D900656D07&linkid=1h3000&c_t=md515o6ntgh671shz9ioar20oyfp1grs

1.2. Changes from Revision 1.4
• Errata recorded at https://openpowerfoundation.org/?resource_lib=openpower-elfv2-errata-elfv2-

abi-version-1-4 have been incorporated into this document.

• PowerISA version 3.1 introduces PC-relative instructions for accessing code and data. Thus
compilers and assembly programmers that target version 3.1 or later can, if desired, avoid usage
of a TOC pointer for such accesses. The ABI has been updated to describe the implications of
this new capability. For specifics, see Section 2.2.1, “Function Call Linkage Protocols” [24],
Section 2.1.3, “Code Alignment” [23], Section 2.3, “Coding Examples” [51], Section 3.5,
“Relocation Types” [80], Section 3.6, “Assembler- and Linker-Mediated Executable Optimiza-
tion” [92], Section 4.2.3, “Global Offset Table” [122], and Section 4.2.5.3, “Procedure
Linkage Table” [125].

• Appendix A, "Predefined Functions for Vector Programming," and most of Chapter 6, "Vector
Programming Interfaces," have been removed from this document. This material is now incorpo-
rated into the POWER Vector Intrinsics Programming Reference. See Section 1.1, “Reference
Documentation” [1] for a link to this document.

1.3. Conformance to this Specification
Compilers, assemblers, linkers, system libraries, and other toolchain components that implement
this specification should fully implement all relevant aspects described in chapters 2 through 6 of this

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45202
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=45202
http://people.redhat.com/drepper/tls.pdf
http://cdn.openpowerfoundation.org/wp-content/uploads/resources/openpower-elfv2abi-thts/openpower-elfv2abi-thts-20170627.pdf
http://cdn.openpowerfoundation.org/wp-content/uploads/resources/openpower-elfv2abi-thts/openpower-elfv2abi-thts-20170627.pdf
http://cdn.openpowerfoundation.org/wp-content/uploads/resources/openpower-elfv2abi-thts/openpower-elfv2abi-thts-20170627.pdf
http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html
http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html
ftp://www.sourceware.org/pub/binutils/ppc-docs/ppc-poweropen/
https://www.power.org/documentation/power-architecture-32-bit-abi-supplement-1-0-embeddedlinuxunified/
https://www.power.org/documentation/power-architecture-32-bit-abi-supplement-1-0-embeddedlinuxunified/
https://www.power.org/documentation/power-architecture-32-bit-abi-supplement-1-0-embeddedlinuxunified/
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/assem_um.pdf?id=109917A251EFD64C872569D900656D07&linkid=1h3000&c_t=md515o6ntgh671shz9ioar20oyfp1grs
https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/assem_um.pdf?id=109917A251EFD64C872569D900656D07&linkid=1h3000&c_t=md515o6ntgh671shz9ioar20oyfp1grs
https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/assem_um.pdf?id=109917A251EFD64C872569D900656D07&linkid=1h3000&c_t=md515o6ntgh671shz9ioar20oyfp1grs
https://openpowerfoundation.org/?resource_lib=openpower-elfv2-errata-elfv2-abi-version-1-4
https://openpowerfoundation.org/?resource_lib=openpower-elfv2-errata-elfv2-abi-version-1-4
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specification, except for material that is specifically denoted as optional, as an optimization, or as
an example. Some aspects will only be relevant to a compiler, while others will only be relevant to a
linker, and so forth.
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2. Low-Level System Information
2.1. Machine Interface
The machine interface describes the specific use of the Power ISA 64-bit features to implement the
ELF ABI version 2.

2.1.1. Processor Architecture
This ABI is predicated on, at a minimum, Power ISA version 2.07 and contains additional implemen-
tation characteristics.

All OpenPOWER instructions that are defined by the Power Architecture can be assumed to be
implemented and to work as specified. ABI-conforming implementations must provide these instruc-
tions through software emulation if they are not provided by the OpenPOWER-compliant processor.

In addition, the instruction specification must meet additional implementation-defined specifics as
commonly required by the OpenPOWER specification.

OpenPOWER-compliant processors may support additional instructions beyond the published Power
Instruction Set Architecture (ISA) and may include optional Power Architcture instructions.

This ABI does not explicitly impose any performance constraints on systems.

2.1.2. Data Representation
2.1.2.1. Byte Ordering
The following standard data formats are recognized:

• 8-bit byte
• 16-bit halfword
• 32-bit word
• 64-bit doubleword
• 128-bit quadword

In little-endian byte ordering, the least-significant byte is located in the lowest addressed byte
position in memory (byte 0). This byte ordering is alternately referred to as least-significant byte
(LSB) ordering.

In big-endian byte ordering, the most-significant byte is located in the lowest addressed byte position
in memory (byte 0). This byte ordering is alternately referred to as most-significant byte (MSB)
ordering.

A specific OpenPOWER-compliant processor implementation must state which type of byte ordering
is to be used.

Note
MSR[LE|SLE]: Although it may be possible to modify the active byte ordering of an
application process that uses application-accessible configuration controls or that uses
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system calls on some systems, applications that change active byte ordering during the
course of execution do not conform to this ABI.

Table 2.2, “Little-Endian Bit and Byte Numbering in Halfwords” [5] through Table 2.5, “Little-
Endian Bit and Byte Numbering in Quadwords” [5] show the conventions assumed in little-
endian byte ordering at the bit and byte levels. These conventions are applied to integer and floating-
point data types. As shown in Table 2.1, “Little-Endian Bit and Byte Numbering Example” [5],
byte numbers are indicated in the upper corners, and bit numbers are indicated in the lower corners.

Table 2.1. Little-Endian Bit and Byte Numbering Example

Little-Endian Byte Number

 

 

Little-Endian Bit Number End Little-Endian Bit Number Start

Table 2.2. Little-Endian Bit and Byte Numbering in Halfwords

1 0

MSB LSB

15 8 7 0

Table 2.3. Little-Endian Bit and Byte Numbering in Words

3 2 1 0

MSB LSB

31 24 23 16 15 8 7 0

Table 2.4. Little-Endian Bit and Byte Numbering in Doublewords

7 6 5 4

MSB

63 56 55 48 47 40 39 32

3 2 1 0

LSB

31 24 23 16 15 8 7 0

Table 2.5. Little-Endian Bit and Byte Numbering in Quadwords

15 14 13 12

MSB

127 120 119 112 111 104 103 96

11 10 9 8

 

95 88 87 80 79 72 71 64

7 6 5 4

 

63 56 55 48 47 40 39 32

3 2 1 0

LSB
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31 24 23 16 15 8 7 0

Table 2.7, “Big-Endian Bit and Byte Numbering in Halfwords” [6] through Table 2.10, “Big-Endian
Bit and Byte Numbering in Quadwords” [6] show the conventions assumed in big-endian byte
ordering at the bit and byte levels. These conventions are applied to integer and floating-point data
types. As shown in Table 2.6, “Big-Endian Bit and Byte Numbering Example” [6], byte numbers
are indicated in the upper corners, and bit numbers are indicated in the lower corners.

Table 2.6. Big-Endian Bit and Byte Numbering Example

Big-Endian Byte Number

 

Big-Endian Bit Number Start Big-Endian Bit Number End

Table 2.7. Big-Endian Bit and Byte Numbering in Halfwords

0 1

MSB LSB

0 7 8 15

Table 2.8. Big-Endian Bit and Byte Numbering in Words

0 1 2 3

MSB LSB

0 7 8 15 16 23 24 31

Table 2.9. Big-Endian Bit and Byte Numbering in Doublewords

0 1 2 3

MSB

0 7 8 15 16 23 24 31

4 5 6 7

LSB

32 39 40 47 48 55 56 63

Table 2.10. Big-Endian Bit and Byte Numbering in Quadwords

0 1 2 3

MSB

0 7 8 15 16 23 24 31

4 5 6 7

 

32 39 40 47 48 55 56 63

8 9 10 11

 

64 71 72 79 80 87 88 95

12 13 14 15

LSB

96 103 104 111 112 119 120 127
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Note
In the Power ISA, the figures are generally only shown in big-endian byte order. The bits
in this data format specification are numbered from left to right (MSB to LSB).

Note
FPSCR Formats: As of Power ISA version 2.05, the FPSCR is extended from 32 bits
to 64 bits. The fields of the original 32-bit FPSCR are now held in bits 32–63 of the 64-
bit FPSCR. The assembly instructions that operate upon the 64-bit FPSCR have either
a W instruction field added to select the operative word for the instruction (for example,
mtfsfi) or the instruction is extended to operate upon the entire 64-bit FPSCR, (for
example, mffs). Fields of the FPSCR that represent 1 or more bits are referred to by field
number with an indication of the operative word rather than by bit number.

2.1.2.2. Fundamental Types
Table 2.11, “Scalar Types” [7] describes the ISO C scalar types, and Table 2.12, “Vector
Types” [8] describes the vector types of the POWER SIMD vector programming API. Each
type has a required alignment, which is indicated in the Alignment column. Use of these types in
data structures must follow the alignment specified, in the order encountered, to ensure consistent
mapping. When using variables individually, more strict alignment may be imposed if it has optimiza-
tion benefits.

Table 2.11. Scalar Types
Type ISO C Types sizeof Alignment Description

Boolean _Bool 1 Byte Boolean

char

unsigned char

1 Byte Unsigned byteCharacter

signed char 1 Byte Signed byte

signed enum 4 Word Signed wordEnumeration

unsigned enum 4 Word Unsigned word

int

signed int

4 Word Signed word

unsigned int 4 Word Unsigned word

long int

signed long int

8 Doubleword Signed doubleword

unsigned long int 8 Doubleword Unsigned doubleword

long long int

signed long long int

8 Doubleword Signed doubleword

unsigned long long int 8 Doubleword Unsigned doubleword

short int

signed short int

2 Halfword Signed halfword

unsigned short int 2 Halfword Unsigned halfword

__int128

signed __int128

16 Quadword Signed quadword

Integral

unsigned __int128 16 Quadword Unsigned quadword

Pointer any * 8 Doubleword Data pointer
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Type ISO C Types sizeof Alignment Description

any (*) ( ) Function pointer

float 4 Word Single-precision float

double 8 Doubleword Double-precision float

Binary Floating-
Point

long double 16 Quadword Extended- or quad-precision float

Note

• A NULL pointer has all bits set to zero.

• A Boolean value is represented as a byte with a value of 0 or 1. If a byte with a value
other than 0 or 1 is evaluated as a boolean value (for example, through the use of
unions), the behavior is undefined.

• If an enumerated type contains a negative value, it is compatible with and has the
same representation and alignment as int. Otherwise, it is compatible with and has
the same representation and alignment as an unsigned int.

• For each real floating-point type, there is a corresponding imaginary type with the
same size and alignment, and there is a corresponding complex type. The complex
type has the same alignment as the real type and is twice the size; the representa-
tion is the real part followed by the imaginary part.

Table 2.12. Vector Types

Type Power SIMD C Types sizeof Alignment Description

vector-128 vector unsigned char 16 Quadword Vector of 16 unsigned bytes.

vector signed char 16 Quadword Vector of 16 signed bytes.

vector bool char 16 Quadword Vector of 16 bytes with a value of either 0 or 28 – 1.

vector unsigned short 16 Quadword Vector of 8 unsigned halfwords.

vector signed short 16 Quadword Vector of 8 signed halfwords.

vector bool short 16 Quadword Vector of 8 halfwords with a value of either 0 or 216

– 1.

vector pixel 16 Quadword Vector of 8 halfwords containing a 1-bit channel
and three 5-bit channels.

vector unsigned int 16 Quadword Vector of 4 unsigned words.

vector signed int 16 Quadword Vector of 4 signed words.

vector bool int 16 Quadword Vector of 4 words with a value of either 0 or 232 – 1.

vector unsigned longa

vector unsigned long
long

16 Quadword Vector of 2 unsigned doublewords.

vector signed longa

vector signed long long

16 Quadword Vector of 2 signed doublewords.

vector bool longa

vector bool long long

16 Quadword Vector of 2 doublewords with a value of either 0 or
264 – 1.

vector unsigned
__int128

16 Quadword Vector of 1 unsigned quadword.

vector signed __int128 16 Quadword Vector of 1 signed quadword.

vector float 16 Quadword Vector of 4 single-precision floats.
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Type Power SIMD C Types sizeof Alignment Description

vector double 16 Quadword Vector of 2 double-precision floats.
aThe vector long types are deprecated due to their ambiguity between 32-bit and 64-bit environments. The use of the vector long long types is
preferred.

Note

Elements of Boolean vector data types must have a value corresponding to all bits set to
either 0 or 1. The result of computations on Boolean vectors, where at least one element
is not well formed1, is undefined for all vector elements.

Decimal Floating-Point (ISO TR 24732 Support)

The decimal floating-point data type is used to specify variables corresponding to the IEEE 754-2008
densely packed, decimal floating-point format.

Table 2.13. Decimal Floating-Point Types

Type ISO TR 24732 C Types sizeof Alignment Description

Decimal Floating-
Point

_Decimal32 4 Word Single-precision decimal float.

_Decimal64 8 Doubleword Double-precision decimal float.

_Decimal128 16 Quadword Quad-precision decimal float.

IBM EXTENDED PRECISION

Table 2.14. IBM EXTENDED PRECISION Type

Type ISO C Types sizeof Alignment Description

IBM EXTENDED
PRECISION

long double 16 Quadword Two double-precision floats.

IEEE BINARY 128 QUADRUPLE PRECISION

Table 2.15. IEEE BINARY 128 QUADRUPLE PRECISION Type

Type ISO C Types sizeof Alignment Description Notes

IEEE BINARY
128 QUADRUPLE
PRECISION

long double 16 Quadword IEEE 128-bit quad-precision float. 1

IEEE BINARY
128 QUADRUPLE
PRECISION

_Float128 16 Quadword IEEE 128-bit quad-precision float. 1, 2

1. Phased in. This type is being phased in and it may not be available on all implementations.

2. __float128 shall be recognized as a synonym for the _Float128 data type, and it is used interchangeably to refer to the same
type. Implementations that do not offer support for _Float128 may provide this type with the __float128 type only.

Availability of the long double data type is subject to conformance to a long double standard where
the IBM EXTENDED PRECISION format and the IEEE BINARY 128 QUADRUPLE PRECISION
format are mutually exclusive.

1An element is well formed if it has all bits set to 0 or all bits set to 1.
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This ABI provides the following choices for implementation of long double in compilers and systems.
The preferred implementation for long double is the IEEE 128-bit quad-precision binary floating-point
type.

• IEEE BINARY 128 QUADRUPLE PRECISION

– Long double is implemented as an IEEE 128-bit quad-precision binary floating-point type in
accordance with the applicable IEEE floating-point standards.

– Support is provided for all IEEE standard features.

– IEEE128 quad-precision values are passed and returned in VMX parameter registers.

– With some compilers, _Float128 can be used to access IEEE128 independent of the
floating-point representation chosen for the long double ISO C type. However, this is not part
of the C standard.

– This implementation differs from the IEEE 754 Standard in the following ways:

○ The software support is restricted to round-to-nearest mode. Programs that use extend-
ed precision must ensure that this rounding mode is in effect when extended-precision
calculations are performed.

○ This implementation does not fully support the IEEE special numbers NaN and INF.
These values are encoded in the high-order double value only. The low-order value is
not significant, but the low-order value of an infinity must be positive or negative zero.

○ This implementation does not support the IEEE status flags for overflow, underflow, and
other conditions. These flags have no meaning in this format.

• IBM EXTENDED PRECISION

– Support is provided for the IBM EXTENDED PRECISION format. In this format, double-
precision numbers with different magnitudes that do not overlap provide an effective
precision of 106 bits or more, depending on the value. The high-order double-precision value
(the one that comes first in storage) must have the larger magnitude. The high-order double-
precision value must equal the sum of the two values, rounded to nearest double (the Linux
convention, unlike AIX).

– IBM EXTENDED PRECISION form provides the same range as double precision (about 10–
308 to 10308) but more precision (a variable amount, about 31 decimal digits or more).

– As the absolute value of the magnitude decreases (near the denormal range), the precision
available in the low-order double also decreases.

– When the value represented is in the subnormal or denormal range, this representation
provides no more precision than 64-bit (double) floating-point.

– The actual number of bits of precision can vary. If the low-order part is much less than one
unit of least precision (ULP) of the high-order part, significant bits (all 0s or all 1s) are implied
between the significands of high-order and low-order numbers. Some algorithms that rely on
having a fixed number of bits in the significand can fail when using extended precision.
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2.1.2.3. Aggregates and Unions

The following rules for aggregates (structures and arrays) and unions apply to their alignment and
size:

• The entire aggregate or union must be aligned to its most strictly aligned member, which
corresponds to the member with the largest alignment, including flexible array members.

• Each member is assigned the lowest available offset that meets the alignment requirements of
the member. Depending on the previous member, internal padding can be required.

• Unless it is packed, the entire aggregate or union must have a size that is a multiple of its
alignment. Depending on the last member, tail padding may be required.

For Figure 2.1, “Structure Smaller than a Word” [11] through Figure 2.10, “Union Alloca-
tion” [19], the big-endian byte offsets are located in the upper left corners, and the little-endian
byte offsets are located in the upper right corners.

Figure 2.1. Structure Smaller than a Word

Figure 2.2. Structure with No Padding
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Figure 2.3. Structure with Internal Padding
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Figure 2.4. Structure with Internal and Tail Padding
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Figure 2.5. Structure with Vector Element and Internal Padding
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Figure 2.6. Structure with Vector Element and Tail Padding
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Figure 2.7. Structure with Internal Padding and Vector Element
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Figure 2.8. Structure with Internal Padding and 128-Bit Integer
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Figure 2.9. Packed Structure
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Figure 2.10. Union Allocation

2.1.2.4. Bit Fields
Bit fields can be present in definitions of C structures and unions. These bit fields define whole
objects within the structure or union where the number of bits in the bit field is specified.

In Table 2.16, “Bit Field Types” [19], a signed range goes from –2w – 1 to 2w – 1 – 1 and an
unsigned range goes from 0 to 2w – 1.

Table 2.16. Bit Field Types
Bit Field Type Width (w)

_Bool 1

signed char

unsigned char

1–8

signed short

unsigned short

1–16

signed int

unsigned int

enum

1–32

signed long

unsigned long

signed long long

unsigned long long

1–64

signed __int128 1–128
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Bit Field Type Width (w)

unsigned __int128

Bit fields can be a signed or unsigned of type short, int, long, or long long. However, bit fields shall
have the same range for each corresponding type. For example, signed short must have the same
range as unsigned short. All members of structures and unions, including bit fields, must comply
with the size and alignment rules. The following list of additional size and alignment rules apply to bit
fields:

• The allocation of bit fields is determined by the system endianness. For little-endian implemen-
tations, the bit allocation is from the least-significant (right) end to the most-significant (left) end.
The reverse is true for big-endian implementations; the bit allocation is from most-significant
(left) end to the least-significant (right) end.

• Unless it appears in a packed struct, a bit field cannot cross its unit boundary; it must occupy
part or all of the storage unit allocated for its declared type.

• If there is enough space within a storage unit, bit fields must share the storage unit with other
structure members, including members that are not bit fields. Clearly, all the structure members
occupy different parts of the storage unit.

• The types of unnamed bit fields have no effect on the alignment of a structure or union.
However, the offsets of an individual bit field's member must comply with the alignment rules. An
unnamed bit field of zero width causes sufficient padding (possibly none) to be inserted for the
next member, or the end of the structure if there are no more nonzero width members, to have
an offset from the start of the structure that is a multiple of the size of the declared type of the
zero-width member.

In Table 2.17, “Little-Endian Bit Numbering for 0x0001000200030004” [20], the little-endian byte
offsets are given in the upper right corners, and the bit numbers are given in the lower corners.

Table 2.17. Little-Endian Bit Numbering for 0x0001000200030004
7 6 5 4

0 1 0 2

63 56 55 48 47 40 39 32

3 2 1 0

0 3 0 4

31 24 23 16 15 8 7 0

In Table 2.18, “Big-Endian Bit Numbering for 0x0001000200030004” [20], the big-endian byte
offsets are given in the upper left corners, and the bit numbers are given in the lower corners.

Table 2.18. Big-Endian Bit Numbering for 0x0001000200030004
0 1 2 3

0 1 0 2

0 7 8 15 16 23 24 31

4 5 6 7

0 3 0 4

32 39 40 47 48 55 56 63

The byte offsets for structure and union members are shown in Figure 2.11, “Simple Bit Field Alloca-
tion” [21] through Figure 2.15, “Bit Field Allocation with Unnamed Bit Fields” [23].
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Figure 2.11. Simple Bit Field Allocation

Figure 2.12. Bit Field Allocation with Boundary Alignment
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Figure 2.13. Bit Field Allocation with Storage Unit Sharing

Figure 2.14. Bit Field Allocation in a Union
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Figure 2.15. Bit Field Allocation with Unnamed Bit Fields

Note

In Figure 2.15, “Bit Field Allocation with Unnamed Bit Fields” [23], the alignment of the
structure is not affected by the unnamed short and int fields. The named members are
aligned relative to the start of the structure. However, it is possible that the alignment of
the named members is not on optimum boundaries in memory. For instance, in an array
of the structure in Figure 2.15, “Bit Field Allocation with Unnamed Bit Fields” [23], the
d members will not all be on 4-byte (integer) boundaries.

2.1.3. Code Alignment
Functions must be aligned on at least a 4-byte boundary.

If a function contains any prefixed (8-byte) instructions, functions should preferably be aligned on
at least a 64-byte boundary. In ISA 3.1, executing a prefixed instruction that crosses a 64-byte
boundary causes an alignment interrupt. Compilers and assemblers can avoid this if functions are
aligned on a 64-byte boundary.
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2.2. Function Calling Sequence
The standard sequence for function calls is outlined in this section. The layout of the stack frame, the
parameter passing convention, and the register usage are also described in this section. Standard
library functions use these conventions, except as documented for the register save and restore
functions.

The conventions given in this section are adhered to by C programs. For more information about the
implementation of C, See Section 2.3, “Coding Examples” [51].

Note

While it is recommended that all functions use the standard calling sequence, the
requirements of the standard calling sequence are only applicable to global functions.
Different calling sequences and conventions can be used by local functions that cannot
be reached from other compilation units, if they comply with the stack back trace require-
ments. Some tools may not work with alternate calling sequences and conventions.

2.2.1. Function Call Linkage Protocols
The compiler (or assembly programmer) and linker cooperate to make function calls as efficient as
possible. Different protocols are required depending on whether a call is local, whether the caller
and/or callee use a TOC pointer in r2 for code or data accesses (see Section 3.3, “TOC” [77]),
and whether the caller and/or callee guarantee to preserve r2. A local function call is one where
the callee is known and visible within the unit of code being compiled or assembled. A function
that uses a TOC pointer always has a separate local entry point (see Section 2.3.2.1, “Function
Prologue” [55]), and preserves r2 when called via its local entry point. See Section 3.4.1, “Symbol
Values” [78] for information about encoding this information in the symbol table entries of
functions.

Table 2.19, “Protocols for External Function Calls” [24] summarizes the protocol requirements for
external function calls, and Table 2.20, “Protocols for Local Function Calls” [25] summarizes the
protocol requirements for local function calls. Each entry in these tables is further described in the
referenced section. A program may contain any combination of the function call protocols in these
tables.

Note

This ABI does not define protocols where the caller does not use a TOC pointer, but does
preserve r2. It is most efficient when such functions are always leaf procedures. It is not
forbidden for such a function to call another function, but in this case it is up to the caller
to save and restore r2 around each call.

Table 2.19. Protocols for External Function Calls

Caller Callee PLT stub nop needed? Relocation Section link

Uses TOC Any r2 save Yes R_PPC64_REL24 Section 2.2.1.1, “External
Call, Caller Uses TOC”

Does not use
TOC, does not

preserve r2
Any No r2 save No R_PPC64_REL24_NOTOC

Section 2.2.1.2, “External
Call, Caller Does Not

Use TOC or Preserve r2”
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Table 2.20. Protocols for Local Function Calls

Caller Callee Call method nop needed? Relocation Section link

Uses TOC Local No R_PPC64_REL24
Section 2.2.1.3, “Local
Call, Caller Uses TOC,
Callee Preserves r2”

Does not
use TOC,

preserves r2
Local No R_PPC64_REL24

Section 2.2.1.3, “Local
Call, Caller Uses TOC,
Callee Preserves r2”

Uses TOC

Does not use
TOC, does not

preserve r2
r2 save stub Yes R_PPC64_REL24

Section 2.2.1.4, “Local Call,
Caller Uses TOC, Callee
Does Not Preserve r2”

Uses TOC r12 setup stub No R_PPC64_REL24_NOTOC
Section 2.2.1.5, “Local Call,
Caller Does Not Preserve

r2, Callee Uses TOC”Does not use
TOC, does not

preserve r2 Does not
use TOC Local No R_PPC64_REL24_NOTOC

Section 2.2.1.6, “Local Call,
Caller Does Not Preserve r2,
Callee Does Not Use TOC”

2.2.1.1. External Call, Caller Uses TOC
When a function that uses a TOC pointer makes any call to an external function, the compiler
generates a nop instruction after the bl instruction for the call. The linker generates a procedure
linkage table (PLT) stub that saves r2 and replaces the nop instruction with a restore of r2. (The
save of r2 may be omitted from the PLT stub if the R_PPC64_TOCSAVE relocation is used;
see Section 3.5.4, “Relocation Descriptions” [89].) See Section 4.2.5.3, “Procedure Linkage
Table” [125] for a full description of PLT stubs.

2.2.1.2. External Call, Caller Does Not Use TOC or Preserve r2
When a function that does not use a TOC pointer and does not preserve r2 makes any call to an
external function, the compiler does not generate a nop instruction after the bl instruction for the call.
Instead, the compiler annotates the bl instruction with an R_PPC64_REL24_NOTOC relocation. The
linker generates a PLT stub that does not include a save of r2.

2.2.1.3. Local Call, Caller Uses TOC, Callee Preserves r2
When a function that uses a TOC pointer makes a local call to a function that also preserves r2,
the compiler generates a direct call to the function's local entry point, and does not generate a nop
instruction after the call.

2.2.1.4. Local Call, Caller Uses TOC, Callee Does Not Preserve r2
When a function that uses a TOC pointer makes a local call to a function that does not preserve
r2, the compiler generates a nop instruction after the call. The linker generates a PLT stub that
saves r2, but does not include code to place the callee's global entry point into r12, and replaces
the nop instruction with a restore of r2. (The save of r2 may be omitted from the PLT stub if the
R_PPC64_TOCSAVE relocation is used; see Section 3.5.4, “Relocation Descriptions” [89].)

2.2.1.5. Local Call, Caller Does Not Preserve r2, Callee Uses TOC
When a function that does not use a TOC and does not preserve r2 makes a local call to a function
that requires a TOC pointer, the compiler does not generate a nop instruction after the bl instruc-
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tion for the call. The linker generates a PLT stub that does not include a save of r2, but does include
code to place the callee's global entry point into r12. The compiler annotates the bl instruction with
an R_PPC64_REL24_NOTOC relocation.

2.2.1.6. Local Call, Caller Does Not Preserve r2, Callee Does Not Use
TOC
When a function that does not use a TOC and does not preserve r2 makes a local call to a function
that does not require a TOC pointer, the compiler generates a direct call to the function's local entry
point, and does not generate a nop instruction after the call. The compiler annotates the bl instruc-
tion with an R_PPC64_REL24_NOTOC relocation.

2.2.2. Registers
Programs and compilers may freely use all registers except those reserved for system use. The
system signal handlers are responsible for preserving the original values upon return to the original
execution path. Signals that can interrupt the original execution path are documented in the System
V Interface Definition (SVID).

The tables in Section 2.2.2.1, “Register Roles” [26] give an overview of the registers that are
global during program execution. The tables use four terms to describe register preservation rules:

Nonvolatile A caller can expect that the contents of all registers marked nonvolatile are valid after control returns
from a function call.

A callee shall save the contents of all registers marked nonvolatile before modification. The callee must
restore the contents of all such registers before returning to its caller.

Volatile A caller cannot trust that the contents of registers marked volatile have been preserved across a function
call.

A callee need not save the contents of registers marked volatile before modification.

Limited-access The contents of registers marked limited-access have special preservation rules. These registers have
mutability restricted to certain bit fields as defined by the Power ISA. The individual bits of these bit fields
are defined by this ABI to be limited-access.

Under normal conditions, a caller can expect that these bits have been preserved across a function call.
Under the special conditions indicated in Section 2.2.2.2, “Limited-Access Bits” [31], a caller shall
expect that these bits will have changed across function calls even if they have not.

A callee may only permanently modify these bits without preserving the state upon entrance to the
function if the callee satisfies the special conditions indicated in Section 2.2.2.2, “Limited-Access
Bits” [31]. Otherwise, these bits must be preserved before modification and restored before returning
to the caller.

Reserved The contents of registers marked reserved are for exclusive use of system functions, including the ABI.
In limited circumstances, a program or program libraries may set or query such registers, but only when
explicitly allowed in this document.

2.2.2.1. Register Roles
In the 64-bit OpenPOWER Architecture, there are always 32 general-purpose registers, each 64
bits wide. Throughout this document the symbol rN is used, where N is a register number, to refer to
general-purpose register N.

Table 2.21. Register Roles
Register Preservation Rules Purpose

r0 Volatile Optional use in function linkage.
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Register Preservation Rules Purpose
Used in function prologues.

r1 Nonvolatile Stack frame pointer.

r2 Nonvolatilea or Volatileb TOC pointer.

r3–r10 Volatile Parameter and return values.

r11 Volatile Optional use in function linkage.

Used as an environment pointer in languages that require environment pointers.

r12 Volatile Optional use in function linkage.

Function entry address at the global entry point.

r13 Reserved Thread pointer (see Section 3.7, “Thread Local Storage ABI” [95]).

r14–r31c Nonvolatile Local variables.

LR Volatile Link register.

CTR Volatile Loop count register.

TAR Reserved Reserved for system use. This register should not be read or written by application
software.

XER Volatile Fixed-point exception register.

CR0–CR1 Volatile Condition register fields.

CR2–CR4 Nonvolatile Condition register fields.

CR5–CR7 Volatile Condition register fields.

DSCR Limited Access Data stream prefetch control.

VRSAVE Reserved Reserved for system use. This register should not be read or written by application
software.

aRegister r2 is nonvolatile with respect to calls between functions in the same compilation unit, except under the conditions in footnote (b). For
more information, see Section 2.2.2.1, “TOC Pointer Usage” [27] and Section 2.2.1, “Function Call Linkage Protocols” [24].
bRegister r2 is volatile and available for use in a function that does not use a TOC pointer and that does not guarantee that it preserves r2. See
Section 2.2.1, “Function Call Linkage Protocols” [24] and Section 3.4.1, “Symbol Values” [78].
cIf a function needs a frame pointer, assigning r31 to the role of the frame pointer is recommended.

 

TOC Pointer Usage

As described in Section 3.4, “Symbol Table” [78], the TOC pointer, r2, is commonly initialized
by the global function entry point when a function is called through the global entry point. It may be
called from a module other than the current function's module or from an unknown call point, such as
through a function pointer. (For more information, see Section 2.3.2.1, “Function Prologue” [55].)

In those instances, it is the caller's responsibility to store the TOC pointer, r2, in the TOC pointer
doubleword of the caller's stack frame. For references external to the compilation unit, this code
is inserted by the static linker if a function is to be resolved by the dynamic linker. For references
through function pointers, it is the compiler's or assembler programmer's responsibility to insert
appropriate TOC save and restore code. If the function is called from the same module as the callee,
the callee must normally preserve the value of r2. If the callee function is called from a function in
the same compilation unit as the callee, and the callee does not preserve r2, the caller is responsi-
ble for saving and restoring the TOC pointer if it needs it. (See Section 2.2.1, “Function Call Linkage
Protocols” [24] for more information.)

When a function calls another function that requires a TOC pointer, the TOC pointer must have a
legal value pointing to the TOC base, which may be initialized as described in Section 4.2.3, “Global
Offset Table” [122].
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When global data is accessed, the TOC pointer must be available for dereference at the point of all
uses of values derived from the TOC pointer in conjunction with the @l operator. This property is
used by the linker to optimize TOC pointer accesses. In addition, all reaching definitions for a TOC-
pointer-derived access must compute the same definition for code to be ABI compliant. (See the
Section 3.6.3.1, “TOC Pointer Usage” [93].)

In some implementations, non ABI-compliant code may be processed by providing additional linker
options; for example, linker options disabling linker optimization. However, this behavior in support of
non-ABI compliant code is not guaranteed to be portable and supported in all systems. For examples
of compliant and noncompliant code, see Section 3.6.3.1, “TOC Pointer Usage” [93].

 

Optional Function Linkage

Except as follows, a function cannot depend on the values of those registers that are optional in the
function linkage (r0, r11, and r12) because they may be altered by interlibrary calls:

• When a function is entered in a way to initialize its environment pointer, register r11 contains
the environment pointer. It is used to support languages with access to additional environment
context; for example, for languages that support lexical nesting to access its lexically nested
outer context.

• When a function that requires a TOC pointer is entered through its global entry point, register r12
contains the entry-point address. For more information, see the description of dual entry points in
Section 2.3.2.1, “Function Prologue” [55] and Section 2.3.2.2, “Function Epilogue” [57].

 

Stack Frame Pointer

The stack pointer always points to the lowest allocated valid stack frame. It must maintain quadword
alignment and grow toward the lower addresses. The contents of the word at that address point to
the previously allocated stack frame when the code has been compiled to maintain back chains.
A called function is permitted to decrement it if required. For more information, see Section 2.3.8,
“Dynamic Stack Space Allocation” [71].

 

Link Register

The link register contains the address that a called function normally returns to. It is volatile across
function calls.

 

Condition Register Fields

In the condition register, the bit fields CR2, CR3, and CR4 are nonvolatile. The value on entry must
be restored on exit. The other bit fields are volatile.

This ABI requires OpenPOWER-compliant processors to implement mfocr instructions in a manner
that initializes undefined bits of the RT result register of mfocr instructions to one of the following
values:
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• 0, in accordance with OpenPOWER-compliant processor implementation practice

• The architected value of the corresponding CR field in the mfocr instruction

Note

When executing an mfocr instruction, the POWER8 processor does not implement the
behavior described in the "Fixed-Point Invalid Forms and Undefined Conditions" section
of POWER8 Processor User's Manual for the Single-Chip Module. Instead, it replicates
the selected condition register field within the byte that contains it rather than initializ-
ing to 0 the bits corresponding to the nonselected bits of the byte that contains it. When
generating code to save two condition register fields that are stored in the same byte, the
compiler must mask the value received from mfocr to avoid corruption of the resulting
(partial) condition register word.

This erratum does not apply to POWER9 and subsequent processors.

For more information, see Power ISA, version 3.0B and "Fixed-Point Invalid Forms and Undefined
Conditions" in POWER9 Processor User's Manual.

Floating-Point Registers

In OpenPOWER-compliant processors, floating-point and vector functions are implemented
using a unified vector-scalar model. As shown in Figure 2.16, “Floating-Point Registers as Part of
VSRs” [29] and Figure 2.17, “Vector Registers as Part of VSRs” [30], there are 64 vector-
scalar registers; each is 128 bits wide.

The vector-scalar registers can be addressed with vector-scalar instructions, for vector and scalar
processing of all 64 registers, or with the "classic" Power floating-point instructions to refer to a 32-
register subset of 64 bits per register. They can also be addressed with VMX instructions to refer to a
32-register subset of 128-bit wide registers.

Figure 2.16. Floating-Point Registers as Part of VSRs
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Figure 2.17. Vector Registers as Part of VSRs

The classic floating-point repertoire consists of 32 floating-point registers, each 64 bits wide, and
an associated special-purpose register to provide floating-point status and control. Throughout this
document, the symbol fN is used, where N is a register number, to refer to floating-point register N.

For the purpose of function calls, the least-significant halves of those VSX registers corresponding to
the classic floating-point registers (that is, vsr0–vsr31), are volatile.

Table 2.22. Floating-Point Register Roles for Binary Floating-Point Types
Register Preservation Rules Purpose

f0 Volatile Local variables.

f1–f13 Volatile Used for parameter passing and return values of binary float types.

f14–f31 Nonvolatile Local variables.

FPSCR Limited-access Floating-Point Status and Control Register limited-access bits. Preservation rules
governing the limited-access bits for the bit fields [VE], [OE], [UE], [ZE], [XE], and
[RN] are presented in Section 2.2.2.2, “Limited-Access Bits” [31].

 

DFP Support

The OpenPOWER ABI supports the decimal floating-point (DFP) format and DFP language
extensions. The default implementation of DFP types shall be an implementation of the IEEE DFP
standard (IEEE Standard 754-2008). The default may be either a hardware or a software implemen-
tation.

The Power ISA decimal floating-point category extends the Power Architecture by adding a decimal
floating-point unit. It uses the existing 64-bit floating-point registers and extends the FPSCR register
to 64 bits, where it defines a decimal rounding-control field in the extended space.

Single-precision, double-precision, and quad-precision decimal floating-point parameters shall
be passed in the floating-point registers. Single-precision decimal floating-point shall occupy the
lower half of a floating-point register. Quad-precision floating-point values shall occupy an even/odd
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register pair. When passing quad-precision decimal floating-point parameters in accordance with
this ABI, an odd floating-point register may be skipped in allocation order to align quad-precision
parameters and results in an even/odd register pair. When a floating-point register is skipped during
input parameter allocation, words in the corresponding GPR or memory doubleword in the parameter
list are not skipped.

Table 2.23. Floating-Point Register Roles for Decimal Floating-Point Types

Register Preservation Rules Purpose

FPSCR Limited-access Floating-Point Status and Control Register limited-access bits. Preservation
rules governing the limited-access bits for the bit field [DRN] are presented in
Section 2.2.2.2, “Limited-Access Bits” [31].

Vector Registers

The OpenPOWER vector-category instruction repertoire provides the ability to reference 32 vector
registers, each 128 bits wide, of the vector-scalar register file, and a special-purpose register VSCR.
Throughout this document, the symbol vN is used, where N is a register number, to refer to vector
register N.

Table 2.24. Vector Register Roles

Register Preservation Rules Purpose

v0–v1 Volatile Local variables.

v2–v13 Volatile Used for parameter passing and return values.

v14–v19 Volatile Local variables.

v20–v31 Nonvolatile Local variables.

VSCR Limited-access 32-bit Vector Status and Control Register. Preservation rules governing the limited-
access bits for the bit field [NJ] are presented in Section 2.2.2.2, “Limited-Access
Bits” [31].

 

IEEE BINARY 128 QUADRUPLE PRECISION

Parameters and function results in IEEE BINARY 128 QUADRUPLE PRECISION format shall be
passed in a single 128-bit vector register as if they were vector values.

 

IBM EXTENDED PRECISION

Parameters and function results in the IBM EXTENDED PRECISION format with a pair of two
double-precision floating-point values shall be passed in two successive floating-point registers.

If only one value can be passed in a floating-point register, the second parameter will be passed in a
GPR or in memory in accordance with the parameter passing rules for structure aggregates.

2.2.2.2. Limited-Access Bits

The Power ISA identifies a number of registers that have mutability limited to the specific bit fields
indicated in the following list:
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FPSCR [VE] The Floating-Point Invalid Operation Exception Enable bit [VE] of the FPSCR register.

FPSCR [OE] The Floating-Point Overflow Exception Enable bit [OE] of the FPSCR register.

FPSCR [UE] The Floating-Point Underflow Exception Enable bit [UE] of the FPSCR register.

FPSCR [ZE] The Floating-Point Zero Divide Exception Enable bit [ZE] of the FPSCR register.

FPSCR [XE] The Floating-Point Inexact Exception Enable bit [XE] of the FPSCR register.

FPSCR [RN] The Binary Floating-Point Rounding Control field [RN] of the FPSCR register.

FPSCR [DRN] The DFP Rounding Control field [DRN] of the 64-bit FPSCR register.

VSCR [NJ] The Vector Non-Java Mode field [NJ] of the VSCR register.

The bits composing these bit fields are identified as limited access because this ABI manages how
they are to be modified and preserved across function calls. Limited-access bits may be changed
across function calls only if the called function has specific permission to do so as indicated by
the following conditions. A function without permission to change the limited-access bits across a
function call shall save the value of the register before modifying the bits and restore it before return-
ing to its calling function.

 

Limited-Access Conditions

Standard library functions expressly defined to change the state of limited-access bits are not
constrained by nonvolatile preservation rules; for example, the fesetround( ) and feenableexcept( )
functions. All other standard library functions shall save the old value of these bits on entry, change
the bits for their purpose, and restore the bits before returning.

Where a standard library function, such as qsort( ), calls functions provided by an application, the
following rules shall be observed:

• The limited-access bits, on entry to the first call to such a callback, must have the values they
had on entry to the library function.

• The limited-access bits, on entry to a subsequent call to such a callback, must have the values
they had on exit from the previous call to such a callback.

• The limited-access bits, on exit from the library function, must have the values they had on exit
from the last call to such a callback.

The compiler can directly generate code that saves and restores the limited-access bits.

The values of the limited-access bits are unspecified on entry into a signal handler because a library
or user function can temporarily modify the limited-access bits when the signal is taken. 

When setjmp( ) returns from its first call (also known as direct invocation), it does not change the
limited access bits. The limited access bits have the values they had on entry to the setjmp( )
function.

When longjmp( ) is performed, it appears to be returning from a call to setjmp( ). In this instance, the
limited access bits are not restored to the values they had on entry to the setjmp( ) function.

C library functions, such as _FPU_SETCW( ) defined in <fpu_control.h>, may modify the limited-
access bits of the FPSCR. Additional C99 functions that can modify the FPSCR are defined in
<fenv.h>.
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The vector vec_mtvscr( ) function may change the limited-access NJ bit.

The unwinder does not modify limited-access bits. To avoid the overhead of saving and restoring the
FPSCR on every call, it is only necessary to save it briefly before the call and to restore it after any
instructions or groups of instructions that need to change its control flags have been completed. In
some cases, that can be avoided by using instructions that override the FPSCR rounding mode.

If an exception and the resulting signal occur while the FPSCR is temporarily modified, the signal
handler cannot rely on the default control flag settings and must behave as follows:

• If the signal handler will unwind the stack, print a traceback, and abort the program, no other
special handling is needed.

• If the signal handler will adjust some register values (for example, replace a NaN with a zero or
infinity) and then resume execution, no other special handling is needed. There is one exception;
if the signal handler changed the control flags, it should restore them.

• If the signal handler will unwind the stack part way and resume execution in a user exception
handler, the application should save the FPSCR beforehand and the exception handler should
restore its control flags.

2.2.3. The Stack Frame
A function shall establish a stack frame if it requires the use of nonvolatile registers, its local variable
usage cannot be optimized into registers and the protected zone, or it calls another function. For
more information about the protected zone, see Section 2.2.3.4, “Protected Zone” [40]. It need
only allocate space for the required minimal stack frame, consisting of a back-chain doubleword
(optionally containing a back-chain pointer), the saved CR word, a reserved word, the saved LR
doubleword, and the saved TOC pointer doubleword.

Figure 2.18, “Stack Frame Organization” [34] shows the relative layout of an allocated stack
frame following a nonleaf function call, where the stack pointer points to the back-chain word of the
caller's stack frame. By default, the stack pointer always points to the back-chain word of the most
recently allocated stack frame. For more information, see Section 2.2.3.2, “Minimum Stack Frame
Elements” [35].
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Figure 2.18. Stack Frame Organization

In Figure 2.18, “Stack Frame Organization” [34] the white areas indicate an optional save
area of the stack frame. For a description of the optional save areas described by this ABI, see
Section 2.2.3.3, “Optional Save Areas” [36].

2.2.3.1. General Stack Frame Requirements
The following general requirements apply to all stack frames:

• The stack shall be quadword aligned.

• The minimum stack frame size shall be 32 bytes. A minimum stack frame consists of the first 4
doublewords (back-chain doubleword, CR save word and reserved word, LR save doubleword,
and TOC pointer doubleword), with padding to meet the 16-byte alignment requirement.

• There is no maximum stack frame size defined.
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• Padding shall be added to the Local Variable Space of the stack frame to maintain the defined
stack frame alignment.

• The stack pointer, r1, shall always point to the lowest address doubleword of the most recently
allocated stack frame.

• The stack shall start at high addresses and grow downward toward lower addresses.

• The lowest address doubleword (the back-chain word in Figure 2.18, “Stack Frame Organiza-
tion” [34]) shall point to the previously allocated stack frame when a back chain is present. As
an exception, the first stack frame shall have a value of 0 (NULL).

• If required, the stack pointer shall be decremented in the called function's prologue and restored
in the called function's epilogue.

• See Section 2.3.2.3, “Rules for Prologue and Epilogue Sequences” [57].

• Before a function calls any other functions, it shall save the value of the LR register into the LR
save doubleword of the caller's stack frame.

Note
An optional frame pointer may be created if necessary (for example, as a result of
dynamic allocation on the stack as described in Section 2.3.8, “Dynamic Stack Space
Allocation” [71] to address arguments or local variables.

An example of a minimum stack frame allocation that meets these requirements is shown in
Figure 2.19, “Minimum Stack Frame Allocation with and without Back Chain” [35].

Figure 2.19. Minimum Stack Frame Allocation with and without Back Chain

2.2.3.2. Minimum Stack Frame Elements

Back Chain Doubleword

When a back chain is not present, alternate information compatible with the ABI unwind framework
to unwind a stack must be provided by the compiler, for all languages, regardless of language
features. A compiler that does not provide such system-compatible unwind information must
generate a back chain. All compilers shall generate back chain information by default, and default
libraries shall contain a back chain.
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On systems where system-wide unwind capabilities are not provided, compilers must not generate
object files without back-chain generation. A system shall provided a programmatic interface to
query unwind information when system-wide unwind capabilities are provided.

 

CR Save Word

If a function changes the value in any nonvolatile field of the condition register, it shall first save at
least the value of those nonvolatile fields of the condition register, to restore before function exit. The
caller frame CR Save Word may be used as the save location. This location in the current frame may
be used as temporary storage, which is volatile over function calls.

 

Reserved Word

This word is reserved for system functions. Modifications of the value contained in this word are
prohibited unless explicitly allowed by future ABI amendments.

 

LR Save Doubleword

If a function changes the value of the link register, it must first save the old value to restore before
function exit. The caller frame LR Save Doubleword may be used as the save location. This location
in the current frame may be used as temporary storage, which is volatile over a function call.

 

TOC Pointer Doubleword

If a function changes the value of the TOC pointer register, it shall first save it in the TOC pointer
doubleword.

2.2.3.3. Optional Save Areas
This ABI provides a stack frame with a number of optional save areas. These areas are always
present, but may be of size 0. This section indicates the relative position of these save areas in
relation to each other and the primary elements of the stack frame.

Because the back-chain word of a stack frame must maintain quadword alignment, a reserved word
is introduced above the CR save word to provide a quadword-aligned minimal stack frame and align
the doublewords within the fixed stack frame portion at doubleword boundaries.

An optional alignment padding to a quadword-boundary element might be necessary above the
Vector Register Save Area to provide 16-byte alignment, as shown in Figure 2.18, “Stack Frame
Organization” [34].

 

Floating-Point Register Save Area

If a function changes the value in any nonvolatile floating-point register fN, it shall first save the value
in fN in the Floating-Point Register Save Area and restore the register upon function exit.
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If full unwind information such as DWARF is present, registers can be saved in arbitrary locations in
the stack frame. If the system floating-point register save and restore functions are to be used, the
floating-point registers shall be saved in a contiguous range. Floating-point register fN is saved in the
doubleword located 8 × (32 – N) bytes before the back-chain word of the previous frame, as shown
in Figure 2.18, “Stack Frame Organization” [34]

The Floating-Point Register Save Area is always doubleword aligned. The size of the Floating-Point
Register Save Area depends upon the number of floating-point registers that must be saved. If no
floating-point registers are to be saved, the Floating-Point Register Save Area has a zero size.

 

General-Purpose Register Save Area

If a function changes the value in any nonvolatile general-purpose register rN, it shall first save the
value in rN in the General-Purpose Register Save Area and restore the register upon function exit.

If full unwind information such as DWARF is present, registers can be saved in arbitrary locations in
the stack frame. If the system general-purpose register save and restore functions are to be used,
the general-purpose registers shall be saved in a contiguous range. General-purpose register rN is
saved in the doubleword located 8 x (32 – N) bytes before the Floating-Point Register Save Area, as
shown in Figure 2.18, “Stack Frame Organization” [34].

The General-Purpose Register Save Area is always doubleword aligned. The size of the General-
Purpose Register Save Area depends upon the number of general registers that must be saved. If
no general-purpose registers are to be saved, the General-Purpose Register Save Area has a zero
size.

 

Vector Register Save Area

If a function changes the value in any nonvolatile vector register vN, it shall first save the value in vN
in the Vector Register Save Area and restore the register upon function exit.

If full unwind information such as DWARF is present, registers can be saved in arbitrary locations in
the stack frame. If the system vector register save and restore functions are to be used, the vector
registers shall be saved in a contiguous range. Vector register vN is saved in the quadword located
16 x (32 – N) bytes before the General-Purpose Register Save Areas plus alignment padding, as
shown in Figure 2.18, “Stack Frame Organization” [34].

The Vector Register Save Area is always quadword aligned. If necessary to ensure suitable
alignment of the vector save area, a padding doubleword may be introduced between the vector
register and General-Purpose Register Save Areas, and/or the Local Variable Space may be
expanded to the next quadword boundary. The size of the Vector Register Save Area depends upon
the number of vector registers that must be saved. It ranges from 0 bytes to a maximum of 192 bytes
(12 X 16). If no vector registers are to be saved, the Vector Register Save Area has a zero size.

 

Local Variable Space

The Local Variable Space is used for allocation of local variables. The Local Variable Space is
located immediately above the Parameter Save Area, at a higher address. There is no restriction on
the size of this area.
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Note

Sometimes a register spill area is needed. It is typically positioned above the Local
Variable Space.

The Local Variable Space also contains any parameters that need to be assigned a memory address
when the function's parameter list does not require a save area to be allocated by the caller.

 

Parameter Save Area

The Parameter Save Area shall be allocated by the caller for function calls unless a prototype is
provided for the callee indicating that all parameters can be passed in registers. (This requires a
Parameter Save Area to be created for functions where the number and type of parameters exceeds
the registers available for parameter passing in registers, for those functions where the prototype
contains an ellipsis to indicate a variadic function, and functions declared without a prototype.)

When the caller allocates the Parameter Save Area, it will always be automatically quadword aligned
because it must always start at SP + 32. It shall be at least 8 doublewords in length. If a function
needs to pass more than 8 doublewords of arguments, the Parameter Save Area shall be large
enough to spill all register-based parameters and to contain the arguments that the caller stores in it.

The calling function cannot expect that the contents of this save area are valid when returning from
the callee.

The Parameter Save Area, which is located at a fixed offset of 32 bytes from the stack pointer,
is reserved in each stack frame for use as an argument list when an in-memory argument list
is required. For example, a Parameter Save Area must be allocated by the caller when calling
functions with the following characteristics:

• Prototyped functions where the parameters cannot be contained in the parameter registers

• Prototyped functions with variadic arguments

• Functions without a suitable declaration available to the caller to determine the called function's
characteristics (for example, functions in C without a prototype in scope, in accordance with
Brian Kernighan and Dennis Ritchie, The C Programming Language, 1st edition).

Under these circumstances, a minimum of 8 doublewords are always reserved. The size of this area
must be sufficient to hold the longest argument list being passed by the function that owns the stack
frame. Although not all arguments for a particular call are located in storage, when an in-memory
parameter list is required, consider the parameters to be forming a list in this area. Each argument
occupies one or more doublewords.

More arguments might be passed than can be stored in the parameter registers. In that case, the
remaining arguments are stored in the Parameter Save Area. The values passed on the stack are
identical to the values placed in registers. Therefore, the stack contains register images for the
values that are not placed into registers.

This ABI uses a simple va_list type for variable lists to point to the memory location of the next
parameter. Therefore, regardless of type, variable arguments must always be in the same location
so that they can be found at runtime. The first 8 doublewords are located in general registers r3–r10.
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Any additional doublewords are located in the stack Parameter Save Area. Alignment requirements
such as those for vector types may require the va_list pointer to first be aligned before accessing a
value.

Follow these rules for parameter passing:

• Map each argument to enough doublewords in the Parameter Save Area to hold its value.

• Map single-precision floating-point values to the least-significant word in a single doubleword.

• Map double-precision floating-point values to a single doubleword.

• Map simple integer types (char, short, int, long, enum) to a single doubleword. Sign or zero
extend values shorter than a doubleword to a doubleword based on whether the source data
type is signed or unsigned.

• When 128-bit integer types are passed by value, map each to two consecutive GPRs, two
consecutive doublewords, or a GPR and a doubleword.2 The required alignment of int128 data
types is 16 bytes. Therefore, by-value parameters must be copied to a new location in the local
variable area of the callee's stack frame before the address of the type can be provided (for
example, using the address-of operator, or when the variable is to be passed by reference),
when the incoming parameter is not aligned at a 16-byte boundary.

• If extended precision floating-point values in IEEE BINARY 128 QUADRUPLE
PRECISION format are supported (see Section 2.1.2.2, “IEEE BINARY 128 QUADRUPLE
PRECISION” [9]), map them to a single quadword, quadword aligned. This might result in
skipped doublewords in the Parameter Save Area.

• If extended precision floating-point values in IBM EXTENDED PRECISION format are support-
ed (see Section 2.1.2.2, “IBM EXTENDED PRECISION” [9]), map them to two consecutive
doublewords. The required alignment of IBM EXTENDED PRECISION data types is 16 bytes.
Therefore, by-value parameters must be copied to a new location in the local variable area of
the callee's stack frame before the address of the type can be provided (for example, using the
address-of operator, or when the variable is to be passed by reference), when the incoming
parameter is not aligned at a 16-byte boundary.

• Map complex floating-point and complex integer types as if the argument was specified as
separate real and imaginary parts.

• Map pointers to a single doubleword.

• Map vectors to a single quadword, quadword aligned. This might result in skipped doublewords
in the Parameter Save Area.

• Map fixed-size aggregates and unions passed by value to as many doublewords of the Parame-
ter Save Area as the value uses in memory. Align aggregates and unions as follows:

– Aggregates that contain qualified floating-point or vector arguments are normally aligned
at the alignment of their base type. For more information about qualified arguments, see
Section 2.2.4, “Parameter Passing in Registers” [40].

2In big-endian environments, the most-significant doubleword of the quadword (__int128) parameter is stored in the lower numbered GPR or
parameter word. The least-significant doubleword of the quadword (__int128) is stored in the higher numbered GPR or parameter word. In little-
endian environments, the least-significant doubleword of the quadword (__int128) parameter is stored in the lower numbered GPR or parameter
word. The most-significant doubleword of the quadword (__int128) is stored in the higher numbered GPR or parameter word.



64-Bit ELF V2 ABI Specification December 1, 2020 Revision 1.5

OpenPOWER Foundation 40
Workgroup Specification

Standard Track

– Other aggregates are normally aligned in accordance with the aggregate's defined
alignment.

– The alignment will never be larger than the stack frame alignment (16 bytes).

This might result in doublewords being skipped for alignment. When a doubleword in the
Parameter Save Area (or its GPR copy) contains at least a portion of a structure, that
doubleword must contain all other portions mapping to the same doubleword. (That is, a
doubleword can either be completely valid, or completely invalid, but not partially valid and
invalid, except in the last doubleword where invalid padding may be present.)

• Pad an aggregate or union smaller than one doubleword in size, but having a non-zero size, so
that it is in the least-significant bits of the doubleword. Pad all others, if necessary, at their tail.
Variable size aggregates or unions are passed by reference.

• Map other scalar values to the number of doublewords required by their size.

• Future data types that have an architecturally defined quadword-required alignment will be
aligned at a quadword boundary.

• If the callee has a known prototype, arguments are converted to the type of the corresponding
parameter when loaded to their parameter registers or when being mapped into the Parameter
Save Area. For example, if a long is used as an argument to a float double parameter, the value
is converted to double-precision and mapped to a doubleword in the Parameter Save Area.

2.2.3.4. Protected Zone

The 288 bytes below the stack pointer are available as volatile program storage that is not preserved
across function calls. Interrupt handlers and any other functions that might run without an explicit
call must take care to preserve a protected zone, also referred to as the red zone, of 512 bytes that
consists of:

• The 288-byte volatile program storage region that is used to hold saved registers and local
variables

• An additional 224 bytes below the volatile program storage region that is set aside as a volatile
system storage region for system functions

If a function does not call other functions and does not need more stack space than is available in
the volatile program storage region (that is, 288 bytes), it does not need to have a stack frame. The
224-byte volatile system storage region is not available to compilers for allocation to saved registers
and local variables.

2.2.4. Parameter Passing in Registers
For the OpenPOWER Architecture, it is more efficient to pass arguments to functions in registers
rather than through memory. For more information about passing parameters through memory, see
Section 2.2.3.3, “Parameter Save Area” [38]. For the OpenPOWER ABI, the following parameters
can be passed in registers:

• Up to eight arguments can be passed in general-purpose registers r3–r10.
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• Up to thirteen qualified floating-point arguments can be passed in floating-point registers f1–f13
or up to twelve in vector registers v2–v13.

• Up to thirteen single-precision or double-precision decimal floating-point arguments can be
passed in floating-point registers f1–f13.

• Up to six quad-precision decimal floating-point arguments can be passed in even-odd floating-
point register pairs f2–f13.

• Up to 12 qualified vector arguments can be passed in v2–v13.

A qualified floating-point argument corresponds to:

• A scalar floating-point data type

• Each member of a complex floating-point type

• A member of a homogeneous aggregate of multiple like data types passed in up to eight floating-
point registers

A homogeneous aggregate can consist of a variety of nested constructs including structures,
unions, and array members, which shall be traversed to determine the types and number of
members of the base floating-point type. (A complex floating-point data type is treated as if two
separate scalar values of the base type were passed.)

Homogeneous floating-point aggregates can have up to four IBM EXTENDED PRECISION
members, four _Decimal128 members, or eight members of other floating-point types. (Unions
are treated as their largest member. For homogeneous unions, different union alternatives may
have different sizes, provided that all union members are homogeneous with respect to each
other.) They are passed in floating-point registers if parameters of that type would be passed
in floating-point registers. They are passed in vector registers if parameters of that type would
be passed in vector registers. They are passed as if each member was specified as a separate
parameter.

A qualified vector argument corresponds to:

• A vector data type

• A member of a homogeneous aggregate of multiple like data types passed in up to eight vector
registers

• Any future type requiring 16-byte alignment (see Section 2.2.3.3, “Optional Save Areas” [36])
or processed in vector registers

For the purpose of determining a qualified floating-point argument, IEEE BINARY 128 QUADRU-
PLE PRECISION shall be considered a vector data type. In addition, IEEE BINARY 128
QUADRUPLE PRECISION is like a vector data type for determining if multiple aggregate
members are like.

A homogeneous aggregate can consist of a variety of nested constructs including structures,
unions, and array members, which shall be traversed to determine the types and number of
members of the base vector type. Homogeneous vector aggregates with up to eight members
are passed in up to eight vector registers as if each member was specified as a separate
parameter. (Unions are treated as their largest member. For homogeneous unions, different
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union alternatives may have different sizes, provided that all union members are homogeneous
with respect to each other.)

Note
Floating-point and vector aggregates that contain padding words and integer fields with a
width of 0 should not be treated as homogeneous aggregates.

A homogeneous aggregate is either a homogeneous floating-point aggregate or a homogeneous
vector aggregate. This ABI does not specify homogeneous aggregates for integer types.

Binary extended precision numbers in IEEE BINARY 128 QUADRUPLE PRECISION format
(see Section 2.2.2.1, “IEEE BINARY 128 QUADRUPLE PRECISION” [31]) are passed using
a VMX register. Binary extended precision numbers in IBM EXTENDED PRECISION format
(see Section 2.1.2.2, “IBM EXTENDED PRECISION” [9]) are passed using two successive
floating-point registers. Single-precision decimal floating-point numbers (see Section 2.2.2.1, “DFP
Support” [30]) are passed in the lower half of a floating-point register. Quad-precision decimal
floating-point numbers (see Section 2.2.2.1, “DFP Support” [30]) are passed using a paired even/
odd floating-point register pair. A floating-point register might be skipped to allocate an even/odd
register pair when necessary. When a floating-point register is skipped, no corresponding memory
word is skipped in the natural home location; that is, the corresponding GPR or memory doubleword
in the parameter list.

All other aggregates are passed in consecutive GPRs, in GPRs and in memory, or in memory.

When a parameter is passed in a floating-point or vector register, a number of GPRs are skipped,
in allocation order, commensurate to the size of the corresponding in-memory representation of the
passed argument's type.

The parameter size is always rounded up to the next multiple of a doubleword.3

 

Full doubleword rule:
When a doubleword in the Parameter Save Area (or its GPR copy) contains at least a portion of a
structure, that doubleword must contain all other portions mapping to the same doubleword. (That is,
a doubleword can either be completely valid, or completely invalid, but not partially valid and invalid,
except in the last doubleword where invalid padding may be present.)

 

IEEE BINARY 128 QUADRUPLE PRECISION
Up to 12 quad-precision parameters can be passed in v2–v13. For the purpose of determining
qualified floating-point and vector arguments, an IEEE 128b type shall be considered a "like"
vector type, and a complex _Float128 shall be treated as two individual scalar elements.

IBM EXTENDED PRECISION
IBM EXTENDED PRECISION format parameters are passed as if they were a struct consisting
of separate double parameters.

3Consequently, each parameter of a non-zero size is allocated to at least one doubleword.
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IBM EXTENDED PRECISION format parameters shall be considered as a distinct type for the
determination of homogeneous aggregates.

If fewer arguments are needed, the unused registers defined previously will contain undefined values
on entry to the called function.

If there are more arguments than registers or no function prototype is provided, a function must
provide space for all arguments in its stack frame. When this happens, only the minimum storage
needed to contain all arguments (including allocating space for parameters passed in registers)
needs to be allocated in the stack frame.

General-purpose registers r3–r10 correspond to the allocation of parameters to the first 8 double-
words of the Parameter Save Areah. Specifically, this requires a suitable number of general-purpose
registers to be skipped to correspond to parameters passed in floating-point and vector registers.

If a parameter corresponds to an unnamed parameter that corresponds to the ellipsis, a caller
shall promote float values to double. If a parameter corresponds to an unnamed parameter that
corresponds to the ellipsis, the parameter shall be passed in a GPR or in the Parameter Save Area.

If no function prototype is available, the caller shall promote float values to double and pass floating-
point parameters in both available floating-point registers and in the Parameter Save Area. If no
function prototype is available, the caller shall pass vector parameters in both available vector
registers and in the Parameter Save Area. (If the callee expects a float parameter, the result will be
incorrect.)

It is the callee's responsibility to allocate storage for the stored data in the local variable area. When
the callee's parameter list indicates that the caller must allocate the Parameter Save Area (because
at least one parameter must be passed in memory or an ellipsis is present in the prototype), the
callee may use the preallocated Parameter Save Area to save incoming parameters.

2.2.4.1. Parameter Passing Register Selection Algorithm
The following algorithm describes where arguments are passed for the C language. In this algorithm,
arguments are assumed to be ordered from left (first argument) to right. The actual order of evalua-
tion for arguments is unspecified.

• gr contains the number of the next available general-purpose register.
• fr contains the number of the next available floating-point register.
• vr contains the number of the next available vector register.

Note
The following types refer to the type of the argument as declared by the function
prototype. The argument values are converted (if necessary) to the types of the
prototype arguments before passing them to the called function.

If a prototype is not present, or it is a variable argument prototype and the argument is after the
ellipsis, the type refers to the type of the data objects being passed to the called function.

• INITIALIZE: If the function return type requires a storage buffer, set gr = 4; else set gr = 3.

Set fr = 1 
Set vr = 2
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• SCAN: If there are no more arguments, terminate. Otherwise, allocate as follows based on the
class of the function argument:

switch(class(argument)) 

unnamed parameter: 
        if gr > 10 
                goto mem_argument 
        
        size = size_in_DW(argument) 
        reg_size = min(size, 11 – gr) 
        pass (GPR, gr, first_n_DW (argument, reg_size)); 
        
        if remaining_members 
                argument = after_n_DW(argument,reg_size)) 
                goto mem_argument 
        
        break; 

integer: // up to 64b 
pointer: // this also includes all pass by reference values 

        if gr > 10 
                goto mem_argument
        pass (GPR, gr, argument); 
        gr++ 
        
        break; 
        
aggregate: 
        if (homogeneous(argument,float) and regs_needed(members(argument)) <=8) 
                if (register_type_used (type (argument)) == vr)
                   goto use_vrs;
                n_fregs = n_fregs_for_type(member_type(argument,0)) 
                agg_size = members(argument) * n_fregs 
                reg_size = min(agg_size, 15 – fr)
                pass(FPR,fr,first_n_DW(argument,reg_size) 
                fr += reg_size; 
                gr += size_in_DW (first_n_DW(argument,reg_size)) 
                  
                if remaining_members
                    argument = after_n_DW(argument,reg_size)) 
                    goto gpr_struct 
                
                break; 
                
        if (homogeneous(argument,vector) and members(argument) <= 8) 
                use_vrs:
                  agg_size = members(argument) 
                  reg_size = min(agg_size, 14 – vr) 
                  if (gr&1 = 0) // align vector in memory 
                    gr++
                  pass(VR,vr,first_n_elements(argument,reg_size); 
                  vr += reg_size 
                  gr += size_in_DW (first_n_elements(argument,reg_size) 
                  
                if remaining_members
                    argument = after_n_elements(argument,reg_size)) 
                    goto gpr_struct 
        break;
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        if gr > 10 
                goto mem_argument 
                
        size = size_in_DW(argument) 

gpr_struct:
        reg_size = min(size, 11 – gr) 
        pass (GPR, gr, first_n_DW (argument, reg_size)); 
        gr += size_in_DW (first_n_DW (argument, reg_size)) 
        
        if remaining_members 
                argument = after_n_DW(argument,reg_size)) 
                goto mem_argument 
                
        break; 
        
float: 

// float is passed in one FPR. 
// double is passed in one FPR. 
// IBM EXTENDED PRECISION is passed in the next two FPRs. 
// IEEE BINARY 128 QUADRUPLE PRECISION is passed in one VR. 
// _Decimal32 is passed in the lower half of one FPR. 
// _Decimal64 is passed in one FPR. 
// _Decimal128 is passed in an even-odd FPR pair, skipping an FPR if necessary. 

        if (register_type_used (type (argument)) == vr) 
        // Assumes == vr is true for IEEE BINARY 128 QUADRUPLE PRECISION.
                goto use_vr; 
        
        fr += align_pad(fr,type(argument)) 
        // Assumes align_pad = 8 for _Decimal128 if fr is odd; otherwise = 0. 
        if fr > 14 
                goto mem_argument 
        
        n_fregs = n_fregs_for_type(argument) 
        // Assumes n_fregs_for_type == 2 for IBM EXTENDED PRECISION 
        // or _Decimal128, == 1 for float, double, _Decimal32 or _Decimal64. 
        pass(FPR,fr,argument) 
        fr += n_fregs 
        gr += size_in_DW(argument) 
        
        break; 

vector: 
        Use vr: 
          if vr > 13 
                  goto mem_argument 
          
          if (gr&1 = 0) // align vector in memory 
                  gr++
          
          pass(VR,vr,argument) 
          vr ++ 
          gr += 2 
          
          break; 

next argument; 
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mem_argument:
          need_save_area = TRUE 
          pass (stack, gr, argument) 
          gr += size_in_DW(argument) 

next argument;

All complex data types are handled as if two scalar values of the base type were passed as separate
parameters.

If the callee takes the address of any of its parameters, values passed in registers are stored to
memory. It is the callee's responsibility to allocate storage for the stored data in the local variable
area. When the callee's parameter list indicates that the caller must allocate the Parameter Save
Area (because at least one parameter must be passed in memory, or an ellipsis is present in the
prototype), the callee may use the preallocated Parameter Save Area to save incoming parameters.
(If an ellipsis is present, using the preallocated Parameter Save Area ensures that all arguments are
contiguous.) If the compilation unit for the caller contains a function prototype, but the callee has a
mismatching definition, this may result in the wrong values being stored.

Note

If the declaration of a function that is used by the caller does not match the definition for
the called function, corruption of the caller's stack space can occur.

2.2.4.2. Parameter Passing Examples

This section provides some examples that use the algorithm described in Section 2.2.4.1, “Parame-
ter Passing Register Selection Algorithm” [43].

Figure 2.20, “Passing Arguments in GPRs, FPRs, and Memory” [46] shows how parameters are
passed for a function that passes arguments in GPRs, FPRs, and memory.

Figure 2.20. Passing Arguments in GPRs, FPRs, and Memory

typedef struct { 
  int a; 
  double dd; 
} sparm; 
sparm s, t; 
int c, d, e; 
long double ld;/* IBM EXTENDED PRECISION format */
double ff, gg, hh; 

x = func(c, ff, d, ld, s, gg, t, e, hh); 

Parameter    Register       Offset in parameter save area 
c            r3             0–7 (not stored in parameter save area) 
ff           f1             8–15 (not stored) 
d            r5             16–23 (not stored)
ld           f2,f3          24–39 (not stored) 
s            r8,r9          40–55 (not stored) 
gg           f4             56–63 (not stored) 
t            (none)         64–79 (stored in parameter save area) 
e            (none)         80–87 (stored) 
hh           f5             88–95 (not stored)
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Note
If a prototype is not in scope:

• The floating-point argument ff is also passed in r4.
• The long double argument ld is also passed in r6 and r7.
• The floating-point argument gg is also passed in r10.
• The floating-point argument hh is also stored into the Parameter Save Area.

If a prototype containing an ellipsis describes any of these floating-point arguments as
being part of the variable argument part, the general registers and Parameter Save Area
are used as when no prototype is in scope. The floating-point registers are not used.

Figure 2.21, “Parameter Passing Definitions” [47] shows the definitions that are used in the
remaining examples of parameter passing.

Figure 2.21. Parameter Passing Definitions
typedef struct { 
  double a 
  double b; 
} dpfp2; 

typedef struct 
  float a 
  float b; 
} spfp2; 

double a1,a4; 
dpfp2 a2,a3 ; 
spfp a6,a7; 
double func2 (double a, dpfp2 p1, dpfp p2, double b, int x);
double func3 (double a, dpfp2 p1, dpfp p2, double b, int x, spfp2 p3,spfpp4); 

struct three_floats { float a,b,c;} 
struct two_floats { float a,b;}

Figure 2.22, “Passing Homogeneous Floating-Point Aggregates and Integer Parameters in Registers
without a Parameter Save Area” [47] shows how parameters are passed for a function that
passes homogenous floating-point aggregates and integer parameters in registers without allocating
a Parameter Save Area because all the parameters can be contained in the registers.

Figure 2.22. Passing Homogeneous Floating-Point Aggregates and Integer
Parameters in Registers without a Parameter Save Area
x = func2(a1,a2,a3,a4, 5); 
Parameter     Register    Offset in parameter save area 
a1            f1          n/a 
a2.a          f2          n/a 
a2.b          f3          n/a 
a3.a          f4          n/a
a3.b          f5          n/a 
a4            f6          n/a 
5             r9          n/a

Figure 2.23, “Passing Homogeneous Floating-Point Aggregates and Integer Parameters in Registers
without a Parameter Save Area” [48] shows how parameters are passed for a function that
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passes homogenous floating-point aggregates and integer parameters in registers without allocating
a Parameter Save Area because all parameters can be passed in registers.

Figure 2.23. Passing Homogeneous Floating-Point Aggregates and Integer
Parameters in Registers without a Parameter Save Area

x = func3(a1,a2,a3,a4, 5,a6,a7); 
Parameter     Register    Offset in parameter save area 
a1            f1          n/a 
a2.a          f2          n/a 
a2.b          f3          n/a 
a3.a          f4          n/a 
a3.b          f5          n/a 
a4            f6          n/a 
5             r9          n/a 
a6.a          f7          n/a 
a6.b          f8          n/a 
a7.a          f9          n/a 
a7.b          f10         n/a

Figure 2.24, “Passing Floating-Point Scalars and Homogeneous Floating-Point Aggregates in
Registers and Memory” [48] shows how parameters are passed for a function that passes
floating-point scalars and homogeneous floating-point aggregates in registers and memory because
the number of available parameter registers has been exceeded. It demonstrate the full doubleword
rule.

Figure 2.24. Passing Floating-Point Scalars and Homogeneous Floating-Point
Aggregates in Registers and Memory

x = oddity (float d1, float d2, float d3, float d4, float d5, 
            float d6, float d7, float d8, float d9, float d10, 
            float d11, float d12, struct three_floats x)
Parameter     Register    Offset in parameter save area 
d1            f1          0 (not stored) 
d2            f2          8 (not stored) 
d3            f3          16 (not stored) 
d4            f4          24 (not stored) 
d5            f5          32 (not stored) 
d6            f6          40 (not stored) 
d7            f7          48 (not stored) 
d8            f8          56 (not stored) 
d9            f9          64 (not stored) 
d10           f10         72 (not stored) 
d11           f11         80 (not stored) 
d12           f12         88 (not stored) 
x.a           f13         96 (store because of no partial DW rule) 
x.b           -           100 (stored) 
x.c           -           104 (stored)

Figure 2.25, “Passing Floating-Point Scalars and Homogeneous Floating-Point Aggregates in FPRs
and GPRs without a Parameter Save Area” [49] shows how parameters are passed for a function
that passes homogeneous floating-point aggregates and floating-point scalars in general-purpose
registers because the number of available floating-point registers has been exceeded. In this figure,
a Parameter Save Area is not allocated because all the parameters can be passed in registers.
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Figure 2.25. Passing Floating-Point Scalars and Homogeneous Floating-Point
Aggregates in FPRs and GPRs without a Parameter Save Area

x = oddity2 (struct two_floats s1, struct two_floats s2, 
             struct two_floats s3, struct two_floats s4, 
             struct two_floats s5, struct two_floats s6, 
             struct two_floats s7, struct two_floats s8)
Parameter     Register    Offset in parameter save area 
s1.a          f1          n/a 
s1.b          f2          n/a 
s2.a          f3          n/a 
s2.b          f4          n/a 
s3.a          f5          n/a 
s3.b          f6          n/a 
s4.a          f7          n/a 
s4.b          f8          n/a 
s5.a          f9          n/a 
s5.b          f10         n/a 
s6.a          f11         n/a 
s6.b          f12         n/a 
s7.a          f13         n/a 
s7.b          -           n/a 
s7            gpr9        n/a 
s8            gpr10       n/a

Figure 2.26, “Passing Homogeneous Floating-Point Aggregates in FPRs, GPRs, and Memory with
a Parameter Save Area” [49] shows how parameters are passed for a function that passes
homogeneous floating-point aggregates in FPRs, GPRs, and memory because the number of
available floating-point and integer parameter registers has been exceeded. In this figure, a Parame-
ter Save Area is allocated because all the parameters cannot be passed in the registers. This figure
also demonstrates the full doubleword rule applied to GPR7.

Figure 2.26. Passing Homogeneous Floating-Point Aggregates in FPRs, GPRs,
and Memory with a Parameter Save Area

x = oddity3 (struct two_floats s1, struct two_floats s2, struct two_floats s3,
             struct two_floats s4, struct two_floats s5, struct two_floats s6, 
             struct two_floats s7, struct two_floats s8, struct two_floats s9) 
Parameter     Register    Offset in parameter save area 
s1.a          f1          0 (not stored) 
s1.b          f2          4 (not stored) 
s2.a          f3          8 (not stored) 
s2.b          f4          12 (not stored) 
s3.a          f5          16 (not stored) 
s3.b          f6          20 (not stored) 
s4.a          f7          24 (not stored) 
s4.b          f8          28 (not stored) 
s5.a          f9          32 (not stored) 
s5.b          f10         36 (not stored) 
s6.a          f11         40 (not stored)
s6.b          f12         44 (not stored) 
s7.a          f13         48 (not stored, SPFP in FPR) 
s7.b          -           52 (not stored) 
s7            gpr9        48 (not stored, full gpr) 
s8            gpr10       56 (not stored, full gpr) 
s9                        64 (stored)
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Figure 2.27, “Passing Vector Data Types without Parameter Save Area” [50] shows how parame-
ters are passed for a function that passes vector data types in VRs, GPRs, and FPRs. In this figure,
a Parameter Save Area is not allocated.

Figure 2.27. Passing Vector Data Types without Parameter Save Area
x =func4(int s1, vector float s2, float s3, vector int s4, 
         vector char s5) 
Parameter     Register    Offset in parameter save area 
s1            gpr3        n/a
s2            v2          n/a 
s3            f1          n/a 
s4            v3          n/a 
s5            v4          n/a

Figure 2.28, “Passing Vector Data Types with a Parameter Save Area” [50] shows how parame-
ters are passed for a function that passes vector data types in VRs, GPRs, and FPRs. In this figure,
a Parameter Save Area is allocated.

Figure 2.28. Passing Vector Data Types with a Parameter Save Area
x =func5(int s1, vector float s2, float s3, vector int s4, 
         int s5, char s6) 
Parameter     Register    Offset in parameter save area 
s1            gpr3        0 (not stored) 
s2            v2          16 (not stored) 
s3            f1          32 (not stored) 
s4            v3          48 (not stored) 
s5            -           64 (stored) 
s6            -           72 (stored)

When a function takes the address of at least one of its arguments, it is the callee's responsibility to
store function parameters in memory and provide a suitable memory address for parameters passed
in registers.

For functions where all parameters can be contained in the parameter registers and without an
ellipsis, the caller shall allocate saved parameters in the local variable save area because the
caller may not have allocated a Parameter Save Area. This can be performed, for example, in the
prologue. For functions where the caller must allocate a Parameter Save Area because at least one
parameter must be passed in memory, or has an ellipsis in the prototype to indicate the presence of
a variadic function, references to named parameters may be spilled to the Parameter Save Area.

2.2.5. Variable Argument Lists
C programs that are intended to be portable across different compilers and architectures must
use the header file <stdarg.h> to deal with variable argument lists. This header file contains a set
of macro definitions that define how to step through an argument list. The implementation of this
header file may vary across different architectures, but the interface is the same.

C programs that do not use this header file for the variable argument list and assume that all the
arguments are passed on the stack in increasing order on the stack are not portable, especially on
architectures that pass some of the arguments in registers. The Power Architecture is one of the
architectures that passes some of the arguments in registers.

The caller of any function with a variable argument list must allocate a Parameter Save Area, as
described in Section 2.2.3.3, “Parameter Save Area” [38].



64-Bit ELF V2 ABI Specification December 1, 2020 Revision 1.5

OpenPOWER Foundation 51
Workgroup Specification

Standard Track

2.2.6. Return Values
Functions that return a value shall place the result in the same registers as if the return value was
the first named input argument to a function unless the return value is a nonhomogeneous aggregate
larger than 2 doublewords or a homogeneous aggregate with more than eight registers.4 (Homoge-
neous aggregates are arrays, structs, or unions of a homogeneous floating-point or vector type and
of a known fixed size.) Therefore, IBM EXTENDED PRECISION functions are returned in f1:f2.

Homogeneous floating-point or vector aggregate return values that consist of up to eight registers
with up to eight elements will be returned in floating-point or vector registers that correspond to the
parameter registers that would be used if the return value type were the first input parameter to a
function.

Aggregates that are not returned by value are returned in a storage buffer provided by the caller. The
address is provided as a hidden first input argument in general-purpose register r3.

Note
Quadword decimal floating-point return values shall be returned in the first paired
floating-point register parameter pair; that is, f2:f3.

Functions that return values of the following types shall place the result in register r3 as signed or
unsigned integers, as appropriate, and sign extended or zero extended to 64 bits where necessary:

• char
• enum
• short
• int
• long
• pointer to any type
• _Bool

2.3. Coding Examples
The following ISO C coding examples are provided as illustrations of how operations may be done,
not how they shall be done, for calling functions, accessing static data, and transferring control from
one part of a program to another. They are shown as code fragments with simplifications to explain
addressing modes. They do not necessarily show the optimal code sequences or compiler output.
The small data area is not used in any of them. For more information, see Section 3.4.2, “Use of the
Small Data Area” [80].

The previous sections explicitly specify what a program, operating system, and processor may and
may not assume and are the definitive reference to be used.

In these examples, absolute code and position-independent code are referenced.

When instructions hold absolute addresses, a program must be loaded at a specific virtual address
to permit the absolute code model to work.

When instructions hold relative addresses, a program library can be loaded at various positions in
virtual memory and is referred to as a position-independent code model.

4For a definition of homogeneous aggregates, see Section 2.2.4, “Parameter Passing in Registers” [40].
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When generating code for PowerISA version 3.1 or above, this specification provides two ways to
address non-local data and text. The historical method relies on a dedicated table-of-contents (TOC)
pointer to obtain such addresses. PowerISA version 3.1 introduces new "PC-relative" instructions
that can be used to obtain such addresses relative to the current instruction address (CIA). Both
methods may be used in the same executable, dynamically shared object (DSO), object file, or even
in the same function. If a function does not require a TOC pointer for addressing, it is not required
to establish this pointer in register r2, and may choose not to preserve register r2's value provided
that the function's symbol table entry is appropriately annotated. Full details of function call linkage
requirements are provided in Section 2.2.1, “Function Call Linkage Protocols” [24].

2.3.1. Code Model Overview
Executable modules can be built to use either position-dependent or position-independent memory
references. Position-dependent references generally result in better performing programs.

Static modules representing the base executables and libraries intended to be statically linked into
a base executable can be compiled and linked using either position-dependent or position-indepen-
dent code.

Dynamic shared objects (DSOs) intended to be used as shared libraries and position-independent
executables must be compiled and linked as position-independent code.

2.3.1.1. Position-Dependent Code
Static objects are preferably built by using position-dependent code. Position-dependent code can
reference data in one of the following ways:

• Directly by creating absolute memory addresses using a combination of instructions such as lis,
addi, and memory instructions:

lis     r16, symbol@ha 
ld      r10, symbol@l(r16) 

lis     r16, symbol2@ha 
addi    r16, r16, symbol2@l 
lvx     v1, r0, r16

• By instantiating the TOC pointer in r2 and using TOC-pointer relative addressing. (For more
information, see Section 3.3, “TOC” [77].)

<load TOC base to r2> 
ld      r10, symbol@toc(r2) 

li      r16, symbol2@toc 
lvx     v1, r2, r16

• By instantiating the TOC pointer in r2 and using GOT-indirect addressing:

<load TOC base to r2> 

ld      r10, symbol@got(r2) 
ld      r10, 0(r10) 

ld      r10, symbol2@got(r2) 
lvx     v1, 0, r10



64-Bit ELF V2 ABI Specification December 1, 2020 Revision 1.5

OpenPOWER Foundation 53
Workgroup Specification

Standard Track

• By using PC-relative addressing.

pld     r10, symbol@pcrel

plxv    v1, symbol@pcrel

In the OpenPOWER ELF V2 ABI, position-dependent code built with this addressing scheme may
have a Global Offset Table (GOT) in the data segment that holds addresses. (For more informa-
tion, see Section 4.2.3, “Global Offset Table” [122].) For position-dependent code, GOT entries
are typically updated to reflect the absolute virtual addresses of the reference objects at static link
time. Any remaining GOT entries are updated by the loader to reflect the absolute virtual address-
es that were assigned for the process. These data segments are private, while the text segments
are shared. In systems based on the Power Architecture, the GOT can be addressed with a single
instruction if the GOT size is less than 65,536 bytes. A larger GOT requires more general code to
access all of its entries.

OpenPOWER-compliant processor hardware implementation and linker optimizations described
here work together to optimize efficient code generation for applications with large GOTs. They use
instruction fusion to combine multiple ISA instructions into a single internal operation.

Offsets from the TOC register can be generated using either:

• 16-bit offsets (small code model), with a maximum addressing reach of 64 KB for TOC-based
relative addressing or GOT accesses

• 32-bit offsets (medium or large code model) with a maximum addressing reach of 4 GB

Efficient implementation of the OpenPOWER ELF V2 ABI medium code model is supported by
additional optimizations present in OpenPOWER-compliant processor implementations and the
OpenPOWER ABI toolchain (see Section 2.3.1.3, “Code Models” [55]).

Position-dependent code is most efficient if the application is loaded in the first 2 GB of the address
space because direct address references and TOC-pointer initializations can be performed using a
two-instruction sequence.

PC-relative offsets are usually 34 bits for all code models, with a maximum addressing reach of
16GB. The effective addressing reach for global data is 8GB, since data sections are always located
at higher virtual addresses than text sections.

2.3.1.2. Position-Independent Code

A shared object file is mapped with virtual addresses to avoid conflicts with other segments in the
process. Because of this mapping, shared objects use position-independent code, which means
that the instructions do not contain any absolute addresses. Avoiding the use of absolute address-
es allows shared objects to be loaded into different virtual address spaces without code modification,
which can allow multiple processes to share the same text segment for a shared object file.

Two techniques are used to deal with position-independent code:

• First, branch instructions use an offset to the current effective address (EA) or use registers
to hold addresses. The Power Architecture provides both EA-relative branch instructions and
branch instructions that use registers. In both cases, absolute addressing is not required.
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• Second, when absolute addressing is required, the value can be computed with a Global
Offset Table (GOT), which holds the information for address computation. Static and const
references can be accessed using a TOC pointer relative addressing model, while (shared)
extern references must be accessed using the GOT-indirect addressing scheme. Both address-
ing schemes require a TOC pointer to be initialized.

DSOs can access data as follows:

• By instantiating the TOC pointer in r2 and using TOC pointer relative addressing (for private
data).

<load TOC base to r2> 

ld      r10, symbol@toc(r2) 

li      r16, symbol2@toc 
lvx     v1, r2, r16

• By instantiating the TOC pointer in r2 and using GOT-indirect addressing (for shared data or for
very large data sections):

<load TOC base to r2> 

ld      r10, symbol@got(r2) 

ld      r10, 0(r10) 

ld      r10, symbol2@got(r2) 
lvx     v1, 0, r10

• By using PC-relative addressing (for private data).

pld     r10, symbol@pcrel

plxv    v1, symbol@pcrel

• By using PC-relative GOT-indirect addressing (for shared data):

pld     r10, symbol@got@pcrel
ld      r10, 0(r10)

pld     r10, symbol@got@pcrel
lvx     v1, 0, r10

A compiler may generate a PC-relative addressing sequence to access static or restricted-visibility
data, but must generate a PC-relative GOT-indirect sequence for extern data. Extern data may be
satisfied from a statically or dynamically linked source, so the compiler must be conservative. The
compiler and linker can cooperate to replace a PC-relative GOT-indirect sequence with a PC-relative
sequence when the data reference is satisfied at static link time. See Section 3.6.3.3, “Displacement
Optimization for PC-Relative Accesses” [94].

Position-independent executables or shared objects have a GOT in the data segment that holds
addresses. When the system creates a memory image from the file, the GOT entries are updated to
reflect the absolute virtual addresses that were assigned for the process. These data segments are
private, while the text segments are shared. In systems based on the Power Architecture, the GOT
can be addressed with a single instruction if the GOT size is less than 65,536 bytes. A larger GOT
requires more general code to access all of its entries.
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The OpenPOWER-compliant processor hardware implementation and linker optimizations described
here work together to optimize efficient code generation for applications with large GOTs. They use
instruction fusion to combine multiple ISA instructions into a single internal operation.

2.3.1.3. Code Models
Compilers may provide different code models depending on the expected size of the TOC and the
size of the entire executable or shared library.

• Small code model: The TOC is accessed using 16-bit offsets from the TOC pointer. This limits
the size of a single TOC to 64 KB. Position-independent code uses GOT-indirect addressing to
access other objects in the binary.

• Large code model: The TOC is accessed using 32-bit offsets from the TOC pointer, except
for .sdata and .sbss, which are accessed using 16-bit offsets from the TOC pointer. This allows a
TOC of at least 2 GB. Position-independent code uses GOT-indirect addressing to access other
objects in the binary.

• Medium code model: Like the large code model, the TOC is accessed using 32-bit offsets
from the TOC pointer, except for .sdata and .sbss, which are accessed using 16-bit offsets. In
addition, accesses to module-local code and data objects use TOC pointer relative addressing
with 32-bit offsets. Using TOC pointer relative addressing removes a level of indirection, result-
ing in faster access and a smaller GOT. However, it limits the size of the entire binary to between
2 GB and 4 GB, depending on the placement of the TOC base.

Note
The medium code model is the default for compilers, and it is applicable to most
programs and libraries. The code examples in this document generally use the
medium code model.

When linking medium and large code model relocatable objects, the linker should place the .sdata
and .sbss sections near to the TOC base.

A linker must allow linking of relocatable object files using different code models. This may be
accomplished by sorting the constituent sections of the TOC so that sections that are accessed
using 16-bit offsets are placed near to the TOC base, by using multiple TOCs, or by some other
method. The suggested allocation order of sections is provided in Section 3.3, “TOC” [77].

PC-relative addressing may be used with the medium code model. Accesses to module-local code
and data objects use PC-relative addressing with up to 34-bit offsets. Position-independent code
uses PC-relative GOT-indirect addressing to access shared objects.

2.3.2. Function Prologue and Epilogue
A function's prologue and epilogue are described in this section.

2.3.2.1. Function Prologue
A function's prologue establishes addressability by initializing a TOC pointer in register r2, if
necessary, and a stack frame, if necessary, and may save any nonvolatile registers it uses. Not all
functions must initialize a TOC pointer, and not all functions must preserve the existing value of r2.
See Section 2.2.1, “Function Call Linkage Protocols” [24] for more information.
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All functions have a global entry point available to any caller and pointing to the beginning of the
prologue. Some functions may have a secondary entry point to optimize the cost of TOC pointer
management. In particular, functions within a common module sharing the same TOC base value
in r2 may be entered using a secondary entry point (the local entry point) that may bypass the code
that loads a suitable TOC pointer value into the r2 register. When a dynamic or global linker transfers
control from a function to another function in the same module, it may choose (but is not required)
to use the local entry point when the r2 register is known to hold a valid TOC base value. Function
pointers shared between modules shall always use the global entry point to specify the address of a
function.

When control is transferred to a global entry point of a function that also has a local entry point, the
linker must insert a glue code sequence that loads r12 with the global entry-point address. Code
at the global entry point of a function that also has a local entry point can assume that register r12
points to the global entry point. However, code at the global entry point of a function that does not
have a separate local entry point cannot make any assumptions about the values of either r2 or 12.

Addresses between the global and local entry points must not be branch targets, either for function
entry or referenced by program logic of the function, because a linker may rewrite the code
sequence establishing addressability to a different, more optimized form.

For example, while linking a static module with a known load address in the first 2 GB of the address
space, the following code sequence may be rewritten:

addis r2, r12, .TOC.-func@ha 
addi r2, r2, .TOC.-func@l

It may be rewritten by a linker or assembler to an equivalent form that is faster due to instruction
fusion, such as:

lis r2, .TOC.@ha 
addi r2, r2, .TOC.@l

In addition to establishing addressability, the function prologue is responsible for the following
functions:

• Creating a stack frame when required

• Saving any nonvolatile registers that are used by the function

• Saving any limited-access bits that are used by the function, per the rules described in
Section 2.2.2.2, “Limited-Access Bits” [31]

This ABI shall be used in conjunction with the Power Architecture that implements the mfocrf
architecture level. Further, OpenPOWER-compliant processors shall implement implementa-
tion-defined bits in a manner to allow the combination of multiple mfocrf results with an OR instruc-
tion; for example, to yield a word in r0 including all three preserved CRs as follows:

mfocrf r0, crf2 
mfocrf r1, crf3 
or r0, r0, r1 
mfocrf r1, crf4 
or r0, r0, r1

Specifically, this allows each OpenPOWER-compliant processor implementation to set each field to
hold either 0 or the correct in-order value of the corresponding CR field at the point where the mfocrf
instruction is performed.



64-Bit ELF V2 ABI Specification December 1, 2020 Revision 1.5

OpenPOWER Foundation 57
Workgroup Specification

Standard Track

Assembly Language Syntax for Defining Entry Points

When a function has two entry points, the global entry point is defined as a symbol. The local entry
point is defined with the .localentry assembler pseudo op.

my_func: 
        addis r2, r12, (.TOC.-my_func)@ha 
        addi r2, r2, (.TOC.-my_func)@l 
        .localentry my_func, .-my_func 
        ... ; function definition 
        blr

Section 3.4.1, “Symbol Values” [78] shows how to represent dual entry points in symbol tables
in an ELF object file. It also defines the meaning of the second parameter, which is put in the three
most-significant bits of the st_other field in the ELF Symbol Table entry.

2.3.2.2. Function Epilogue

The purpose of the epilogue is to perform the following functions:

• Restore all registers and limited-access bits that we saved by the function's prologue.

• Restore the last stack frame.

• Return to the caller.

2.3.2.3. Rules for Prologue and Epilogue Sequences

Set function prologue and function epilogue code sequences are not imposed by this ABI. There are
several rules that must be adhered to in order to ensure reliable and consistent call chain backtrac-
ing:

• Before a function calls any other function, it shall establish its own stack frame, whose size shall
be a multiple of 16 bytes.

– In instances where a function's prologue creates a stack frame, the back-chain word of
the stack frame shall be updated atomically with the value of the stack pointer (r1) when a
back chain is implemented. (This must be supported as default by all ELF V2 ABI-compliant
environments.) This task can be done by using one of the following Store Doubleword with
Update instructions:

○ Store Doubleword with Update instruction with relevant negative displacement for stack
frames that are smaller than 32 KB

○ Store Doubleword with Update Indexed instruction where the negative size of the stack
frame has been computed, using addis and addi or ori instructions, and then loaded
into a volatile register, for stack frames that are 32 KB or greater

– The function shall save the link register that contains its return address in the LR save
doubleword of its caller's stack frame before calling another function.

• The deallocation of a function's stack frame must be an atomic operation. This task can be
accomplished by one of the following methods:
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– Increment the stack pointer by the identical value that it was originally decremented by in the
prologue when the stack frame was created.

– Load the stack pointer (r1) with the value in the back-chain word in the stack frame, if a back
chain is present.

• The calling sequence does not restrict how languages leverage the Local Variable Space of the
stack frame. There is no restriction on the size of this section.

• The Parameter Save Area shall be allocated by the caller. It shall be large enough to contain
the parameters needed by the caller if a Parameter Save Area is needed (as described in
Section 2.2.3.3, “Optional Save Areas” [36]). Its contents are not saved across function calls.

• If any nonvolatile registers are to be used by the function, the contents of the register must be
saved into a register save area. See Section 2.2.3.3, “Optional Save Areas” [36] for informa-
tion on all of the optional register save areas.

Saving or restoring nonvolatile registers used by the function can be accomplished by using in-line
code. Alternately, one of the system subroutines described in Section 2.3.3, “Register Save and
Restore Functions” [58] may offer a more efficient alternative to in-line code, especially in cases
where there are many registers to be saved or restored.

2.3.3. Register Save and Restore Functions
This section describes functions that can be used to save and restore the contents of nonvolatile
registers. Using these routines, rather than performing these saves and restores inline in the
prologue and epilogue of functions, can help reduce the code footprint. The calling conventions of
these functions are not standard, and the executables or shared objects that use these functions
must statically link them.

The register save and restore functions affect consecutive registers from register N through register
31, where N represents a number between 14 and 31. Higher-numbered registers are saved at
higher addresses within a save area. Each function described in this section is a family of functions
with identical behavior except for the number and kind of registers affected.

Systems must provide three pairs of functions to save and restore general-purpose, floating-
point, and vector registers. They may be implemented as multiple-entry-point routines or as
individual routines. The specific calling conventions for each of these functions are described
in Section 2.3.3.1, “GPR Save and Restore Functions” [58], Section 2.3.3.2, “FPR Save and
Restore Functions” [60], and Section 2.3.3.3, “Vector Save and Restore Functions” [61].
Visibility rules are described in Section 5.1.2, “Save and Restore Routines” [128].

2.3.3.1. GPR Save and Restore Functions
Each _savegpr0_N routine saves the general registers from rN–r31, inclusive. Each routine also
saves the LR. The stack frame must not have been allocated yet. When the routine is called, r1
contains the address of the word immediately beyond the end of the general register save area, and
r0 must contain the value of the LR on function entry.

The _restgpr0_N routines restore the general registers from rN–r31, and then return to their caller's
caller. The caller's stack frame must already have been deallocated. When the routine is called, r1
contains the address of the word immediately beyond the end of the general register save area, and
the LR must contain the return address.
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A sample implementation of _savegpr0_N and _restgpr0_N follows:

  _savegpr0_14: std r14,-144(r1) 
  _savegpr0_15: std r15,-136(r1) 
  _savegpr0_16: std r16,-128(r1) 
  _savegpr0_17: std r17,-120(r1) 
  _savegpr0_18: std r18,-112(r1) 
  _savegpr0_19: std r19,-104(r1) 
  _savegpr0_20: std r20,-96(r1) 
  _savegpr0_21: std r21,-88(r1) 
  _savegpr0_22: std r22,-80(r1) 
  _savegpr0_23: std r23,-72(r1)
  _savegpr0_24: std r24,-64(r1) 
  _savegpr0_25: std r25,-56(r1)
  _savegpr0_26: std r26,-48(r1) 
  _savegpr0_27: std r27,-40(r1)
  _savegpr0_28: std r28,-32(r1) 
  _savegpr0_29: std r29,-24(r1)
  _savegpr0_30: std r30,-16(r1) 
  _savegpr0_31: std r31,-8(r1) 
                std r0, 16(r1) 
                blr 

  _restgpr0_14: ld r14,-144(r1) 
  _restgpr0_15: ld r15,-136(r1)
  _restgpr0_16: ld r16,-128(r1) 
  _restgpr0_17: ld r17,-120(r1)
  _restgpr0_18: ld r18,-112(r1) 
  _restgpr0_19: ld r19,-104(r1)
  _restgpr0_20: ld r20,-96(r1) 
  _restgpr0_21: ld r21,-88(r1) 
  _restgpr0_22: ld r22,-80(r1) 
  _restgpr0_23: ld r23,-72(r1) 
  _restgpr0_24: ld r24,-64(r1) 
  _restgpr0_25: ld r25,-56(r1) 
  _restgpr0_26: ld r26,-48(r1)
  _restgpr0_27: ld r27,-40(r1) 
  _restgpr0_28: ld r28,-32(r1) 
  _restgpr0_29: ld r0, 16(r1) 
                ld r29,-24(r1) 
                mtlr r0 
                ld r30,-16(r1) 
                ld r31,-8(r1) 
                blr
  _restgpr0_30: ld r30,-16(r1) 
  _restgpr0_31: ld r0, 16(r1) 
                ld r31,-8(r1)
                mtlr r0 
                blr

Each _savegpr1_N routine saves the general registers from rN–r31, inclusive. When the routine is
called, r12 contains the address of the word just beyond the end of the general register save area.

The _restgpr1_N routines restore the general registers from rN–r31. When the routine is called, r12
contains the address of the word just beyond the end of the general register save area, superseding
the normal use of r12 on a call.

A sample implementation of _savegpr1_N and _restgpr1_N follows:

  _savegpr1_14: std r14,-144(r12) 
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  _savegpr1_15: std r15,-136(r12) 
  _savegpr1_16: std r16,-128(r12) 
  _savegpr1_17: std r17,-120(r12) 
  _savegpr1_18: std r18,-112(r12) 
  _savegpr1_19: std r19,-104(r12) 
  _savegpr1_20: std r20,-96(r12) 
  _savegpr1_21: std r21,-88(r12) 
  _savegpr1_22: std r22,-80(r12) 
  _savegpr1_23: std r23,-72(r12) 
  _savegpr1_24: std r24,-64(r12) 
  _savegpr1_25: std r25,-56(r12) 
  _savegpr1_26: std r26,-48(r12) 
  _savegpr1_27: std r27,-40(r12) 
  _savegpr1_28: std r28,-32(r12) 
  _savegpr1_29: std r29,-24(r12) 
  _savegpr1_30: std r30,-16(r12) 
  _savegpr1_31: std r31,-8(r12) 
                blr

  _restgpr1_14: ld r14,-144(r12) 
  _restgpr1_15: ld r15,-136(r12) 
  _restgpr1_16: ld r16,-128(r12) 
  _restgpr1_17: ld r17,-120(r12) 
  _restgpr1_18: ld r18,-112(r12) 
  _restgpr1_19: ld r19,-104(r12) 
  _restgpr1_20: ld r20,-96(r12) 
  _restgpr1_21: ld r21,-88(r12) 
  _restgpr1_22: ld r22,-80(r12) 
  _restgpr1_23: ld r23,-72(r12) 
  _restgpr1_24: ld r24,-64(r12) 
  _restgpr1_25: ld r25,-56(r12) 
  _restgpr1_26: ld r26,-48(r12) 
  _restgpr1_27: ld r27,-40(r12) 
  _restgpr1_28: ld r28,-32(r12) 
  _restgpr1_29: ld r29,-24(r12) 
  _restgpr1_30: ld r30,-16(r12) 
  _restgpr1_31: ld r31,-8(r12)
                blr

2.3.3.2. FPR Save and Restore Functions
Each _savefpr_N routine saves the floating-point registers from fN–f31, inclusive. When the routine
is called, r1 contains the address of the word immediately beyond the end of the Floating-Point
Register Save Area, which means that the stack frame must not have been allocated yet. Register r0
must contain the value of the LR on function entry.

The _restfpr_N routines restore the floating-point registers from fN–f31, inclusive. When the routine
is called, r1 contains the address of the word immediately beyond the end of the Floating-Point
Register Save Area, which means that the stack frame must not have been allocated yet.

It is incorrect to call both _savefpr_M and _savegpr0_M in the same prologue, or _restfpr_M and
_restgpr0_M in the same epilogue. It is correct to call _savegpr1_M and _savefpr_M in either order,
and to call _restgpr1_M and then _restfpr_M.

A sample implementation of _savefpr_N and _restfpr_N follows:

  _savefpr_14: stfd f14,-144(r1) 
  _savefpr_15: stfd f15,-136(r1) 
  _savefpr_16: stfd f16,-128(r1) 
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  _savefpr_17: stfd f17,-120(r1) 
  _savefpr_18: stfd f18,-112(r1) 
  _savefpr_19: stfd f19,-104(r1) 
  _savefpr_20: stfd f20,-96(r1) 
  _savefpr_21: stfd f21,-88(r1)
  _savefpr_22: stfd f22,-80(r1) 
  _savefpr_23: stfd f23,-72(r1)
  _savefpr_24: stfd f24,-64(r1) 
  _savefpr_25: stfd f25,-56(r1)
  _savefpr_26: stfd f26,-48(r1) 
  _savefpr_27: stfd f27,-40(r1)
  _savefpr_28: stfd f28,-32(r1) 
  _savefpr_29: stfd f29,-24(r1)
  _savefpr_30: stfd f30,-16(r1) 
  _savefpr_31: stfd f31,-8(r1) 
               std r0, 16(r1) 
               blr

  _restfpr_14: lfd f14,-144(r1) 
  _restfpr_15: lfd f15,-136(r1)
  _restfpr_16: lfd f16,-128(r1) 
  _restfpr_17: lfd f17,-120(r1)
  _restfpr_18: lfd f18,-112(r1) 
  _restfpr_19: lfd f19,-104(r1)
  _restfpr_20: lfd f20,-96(r1) 
  _restfpr_21: lfd f21,-88(r1) 
  _restfpr_22: lfd f22,-80(r1) 
  _restfpr_23: lfd f23,-72(r1) 
  _restfpr_24: lfd f24,-64(r1) 
  _restfpr_25: lfd f25,-56(r1) 
  _restfpr_26: lfd f26,-48(r1)
  _restfpr_27: lfd f27,-40(r1) 
  _restfpr_28: lfd f28,-32(r1) 
  _restfpr_29: ld r0, 16(r1) 
               lfd f29,-24(r1) 
               mtlr r0 
               lfd f30,-16(r1) 
               lfd f31,-8(r1)
               blr 

  _restfpr_30: lfd f30,-16(r1) 
  _restfpr_31: ld r0, 16(r1) 
               lfd f31,-8(r1) 
               mtlr r0 
               blr

2.3.3.3. Vector Save and Restore Functions
Each _savevr_M routine saves the vector registers from vM–v31 inclusive.       On entry to this
function, r0 contains the address of the word just beyond the end of the Vector Register Save Area.
The routines leave r0 undisturbed. They modify the value of r12.

The _restvr_M routines restore the vector registers from vM–v31 inclusive. On entry to this function,
r0 contains the address of the word just beyond the end of the Vector Register Save Area. The
routines leave r0 undisturbed. They modify the value of r12. The following code is an example of
restoring a vector register.

It is valid to call _savevr_M before any of the other register save functions, or after _savegpr1_M. It
is valid to call _restvr_M before any of the other register restore functions, or after _restgpr1_M.
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A sample implementation of _savevr_M and _restvr_M follows:

_savevr_20:   addi  r12,r0,-192 
              stvx  v20,r12,r0        # save v20
_savevr_21:   addi  r12,r0,-176 
              stvx  v21,r12,r0        # save v21 
_savevr_22:   addi  r12,r0,-160 
              stvx  v22,r12,r0        # save v22 
_savevr_23:   addi  r12,r0,-144 
              stvx  v23,r12,r0        # save v23 
_savevr_24:   addi  r12,r0,-128
              stvx  v24,r12,r0        # save v24 
_savevr_25:   addi  r12,r0,-112 
              stvx  v25,r12,r0        # save v25 
_savevr_26:   addi  r12,r0,-96 
              stvx  v26,r12,r0        # save v26
_savevr_27:   addi  r12,r0,-80 
              stvx  v27,r12,r0        # save v27 
_savevr_28:   addi  r12,r0,-64 
              stvx  v28,r12,r0        # save v28 
_savevr_29:   addi  r12,r0,-48 
              stvx  v29,r12,r0        # save v29 
_savevr_30:   addi  r12,r0,-32 
              stvx  v30,r12,r0        # save v30 
_savevr_31:   addi  r12,r0,-16 
              stvx  v31,r12,r0        # save v31 
              blr                     # return to epilogue 
              
_restvr_20:   addi  r12,r0,-192 
              lvx   v20,r12,r0        # restore v20 
_restvr_21:   addi  r12,r0,-176 
              lvx   v21,r12,r0        # restore v21
_restvr_22:   addi  r12,r0,-160 
              lvx   v22,r12,r0        # restore v22 
_restvr_23:   addi  r12,r0,-144 
              lvx   v23,r12,r0        # restore v23 
_restvr_24:   addi  r12,r0,-128 
              lvx   v24,r12,r0        # restore v24 
_restvr_25:   addi  r12,r0,-112 
              lvx   v25,r12,r0        # restore v25 
_restvr_26:   addi  r12,r0,-96 
              lvx   v26,r12,r0        # restore v26 
_restvr_27:   addi  r12,r0,-80 
              lvx   v27,r12,r0        # restore v27
_restvr_28:   addi  r12,r0,-64 
              lvx   v28,r12,r0        # restore v28 
_restvr_29:   addi  r12,r0,-48 
              lvx   v29,r12,r0        # restore v29 
_restvr_30:   addi  r12,r0,-32 
              lvx   v30,r12,r0        # restore v30 
_restvr_31:   addi  r12,r0,-16 
              lvx   v31,r12,r0        # restore v31 
              blr                     #return to epilogue

2.3.4. Function Pointers
A function's address is defined to be its global entry point. Function pointers shall contain the global
entry-point address.
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2.3.5. Static Data Objects
Data objects with static storage duration are described here. Stack-resident data objects are omitted
because the virtual addresses of stack-resident data objects are derived relative to the stack or
frame pointers. Heap data objects are omitted because they are accessed via a program pointer.

The only instructions that can access memory in the Power Architecture are load and store instruc-
tions. Programs typically access memory by placing the address of the memory location into a
register and accessing the memory location indirectly through the register because Power Architec-
ture instructions cannot hold 64-bit addresses directly. The values of symbols or their absolute virtual
addresses are placed directly into instructions for symbolic references in absolute code.

Examples of absolute and position-independent compilations are shown in Table 2.25, “Absolute
Load and Store Example” [63], Table 2.26, “Small Model Position-Independent Load and
Store (DSO)” [63], Table 2.27, “Medium or Large Model Position-Independent Load and Store
(DSO)” [64], and Table 2.28, “PC-Relative Load and Store” [64]. These examples show the
C language statements together with the generated assembly language. The assumption for these
figures is that only executables can use absolute addressing while shared objects must use position-
independent code addressing. The figures are intended to demonstrate the compilation of each C
statement independent of its context; hence, there can be redundant operations in the code.

Absolute addressing efficiency depends on the memory-region addresses:

Top 32 KB Addressed directly with load and store D forms.

Top 2 GB Addressed by a two-instruction sequence consisting of an lis with load and store D forms.

Remaining addresses More than two instructions.

Bottom 2 GB Addressed by a two-instruction sequence consisting of an lis with load and store D forms.

Bottom 32 KB Addressed directly with load and store D forms.

Table 2.25. Absolute Load and Store Example
C Code Assembly Code
extern int src;
extern int dst;
extern int *ptr; 

dst = src; 

ptr = &dst; 

*ptr = src;

.extern src

.extern dst 

.extern ptr 

.section ".text" 
lis r9,src@ha 
lwz r9,src@l(r9) 
lis r11,dst@ha 
stw r9,dst@l(r11) 
lis r11,ptr@ha 
lis r9,dst@ha 
la r9,dst@l(r9) 
std r9,ptr@l(r11) 
lis r11,ptr@ha 
lwz r11,ptr@l(r11) 
lis r9,src@ha
lwz r9,src@l(r9) 
stw r9,0(r11)

Table 2.26. Small Model Position-Independent Load and Store (DSO)
C Code Assembly Code
extern int src;
extern int dst; 
extern int *ptr; 

dst = src; 

.extern src 

.extern dst 

.extern ptr 

.section ".text" 
# TOC base in r2 
ld r9,src@got(2) 
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C Code Assembly Code

ptr = &dst; 

*ptr = src;

lwz r0,0(r9) 
ld r9,dst@got(r2) 
stw r0,0(r9) 
ld r9,ptr@got(r2) 
ld r0,dst@got(r2)
std r0,0(r9) 
ld r9,ptr@got(r2) 
ld r11,0(r9) 
ld r9,src@got(r2)
lwz r0,0(r9) 
stw r0,0(r11)

Table 2.27. Medium or Large Model Position-Independent Load and Store (DSO)
C Code Assembly Code
extern int src; 
extern int dst; 
int *ptr; 

dst = src; 

ptr = &dst; 

*ptr = src;

.extern src 

.extern dst 

.extern ptr 

.section".text" 
# AssumesTOC pointer in r2 
addis r6,r2,src@got@ha 
ld r6,src@got@l(r6) 
addis r7,r2,dst@got@ha 
ld r7,dst@got@l(r7) 
lwz r0,0(r6) 
stw r0,0(r7) 
addis r6,r2,dst@got@ha 
ld r6,dst@got@l(r6) 
addis r7,r2,ptr@got@ha 
ld r7,ptr@got@l(r7) 
stw r6,0(r7) 
addis r6,r2,src@got@ha 
ld r6,src@got@l(r6) 
addis r7,r2,ptr@got@ha 
ld r7,ptr@got@l(r7) 
ld r7,0(r7) 
lwz r0,0(r6)
stw r0,0,(r7)

Table 2.28. PC-Relative Load and Store
C Code Assembly Code
extern int src; 
extern int dst; 
int *ptr; 

dst = src; 

ptr = &dst; 

*ptr = src;

.extern src 

.extern dst 

.extern ptr 

.section ".text" 
plwz   r9, src@pcrel
pstw   r9, dst@pcrel
paddi  r11, dst@pcrel
pstd   r11, ptr@pcrel
pld    r11, ptr@pcrel
plwz   r9, src@pcrel
stw    r9, 0(r11)

Due to fusion hardware support, the preferred code forms are destructive5 addressing forms with an
addis specifying a set of high-order bits followed immediately by a destructive load using the same
target register as the addis instruction to load data from a signed 32-bit offset from a base register.

For TOC-based PIC code (see Table 2.26, “Small Model Position-Independent Load and Store
(DSO)” [63] and Table 2.27, “Medium or Large Model Position-Independent Load and Store
(DSO)” [64]), the offset in the Global Offset Table where the value of the symbol is stored is given
by the assembly syntax symbol@got. This syntax represents the address of the variable named
"symbol."

5Destructive in this context refers to a code sequence where the first intermediate result computed by a first instruction is overwritten (that is,
"destroyed") by the result of a second instruction so that only one result register is produced. Fusion can then give the same performance as a
single load instruction with a 32-bit displacement.
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The offset for this assembly syntax cannot be any larger than 16 bits. In cases where the offset is
greater than 16 bits, the following assembly syntax is used for offsets up to 32 bits:

• High (32-bit) adjusted part of the offset: symbol@got@ha

Causes a linker error if the offset is larger than 32 bits.

• High (32-bit) part of the offset: symbol@got@h

Causes a linker error if the offset is larger than 32 bits.

• Low part of the offset: symbol@got@l

To obtain the multiple 16-bit segments of a 64-bit offset, the following operators may be used:

• Highest (most-significant 16 bits) adjusted part of the offset: symbol@highesta
• Highest (most-significant 16 bits) part of the offset: symbol@highest
• Higher (next significant 16 bits) adjusted part of the offset: symbol@highera
• Higher (next significant 16 bits) part of the offset: symbol@higher
• High (next significant 16 bits) adjusted part of the offset: symbol@higha
• High (next significant 16 bits) part of the offset: symbol@high
• Low part of the offset: symbol@l

If the instruction using symbol@got@l has a signed immediate operand (for example, addi), use
symbol@got@ha(high adjusted) for the high part of the offset. If it has an unsigned immediate
operand (for example, ori), use symbol@got@h. For a description of high-adjusted values, see
Section 3.5.2, “Relocation Notations” [83].

2.3.6. Function Calls
Direct function calls are made in programs with the Power Architecture bl instruction. A bl instruc-
tion can reach 32 MB backwards or forwards from the current position due to a self-relative branch
displacement in the instruction. Therefore, the size of the text segment in an executable or shared
object is constrained when a bl instruction is used to make a function call. When the distance of the
called function exceeds the displacement reach of the bl instruction, a linker implementation may
either introduce branch trampoline code to extend function call distances or issue a link error.

As shown in Figure 2.29, “Direct Function Call” [65], the bl instruction is generally used to call a
local function.

Two possibilities exist for the location of the function with respect to the caller:

1. The called function is in the same executable or shared object as the caller. In this case, the
symbol is resolved by the link editor and the bl instruction branches directly to the called function
as shown in Figure 2.29, “Direct Function Call” [65].

Figure 2.29. Direct Function Call
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2. The called function is not in the same executable or shared object as the caller. In this case,
the symbol cannot be directly resolved by the link editor. The link editor generates a branch
to glue code that loads the address of the function from the Procedure Linkage Table. See
Section 4.2.5, “Procedure Linkage Table” [124].

For indirect function calls, the address of the function to be called is placed in r12 and the CTR
register. A bctrl instruction is used to perform the indirect branch as shown in Table 2.29, “Indirect
Function Call (Absolute Medium Model)” [66], Table 2.30, “Small-Model Position-Independent
Indirect Function Call” [66], and Table 2.31, “Large-Model Position-Independent Indirect Function
Call” [66]. The ELF V2 ABI requires the address of the called function to be in r12 when a cross-
module function call is made.

Table 2.29. Indirect Function Call (Absolute Medium Model)
C Code Assembly Code
extern void function( ); 
void (*ptrfunc) ( ); 

ptrfunc = function; 

(*ptrfunc) ( );

.section .text
lis    r11,ptrfunc@ha
lis    r9,function@ha
addi   r9,r9,function@l
std    r9,ptrfunc@l(r11)

lis    r12,ptrfunc@ha
ld     r12,ptrfunc@l(r12)
mtctr  r12
bctrl

Table 2.30, “Small-Model Position-Independent Indirect Function Call” [66] shows how to make an
indirect function call using small-model position-independent code.

Table 2.30. Small-Model Position-Independent Indirect Function Call
C Code Assembly Code
extern void function( ); 
void (*ptrfunc) ( ); 

ptrfunc = function; 

(*ptrfunc) ( );

.section .text
/* TOC pointer is in r2 */
ld     r9,ptrfunc@got(r2)
ld     r0,function@got(r2)
std    r0,0(r9)

ld     r9,ptrfunc@got(r2)
ld     r12,0(r9)
mtctr  r12
std    r2,24(r1)
bctrl
ld     r2,24(r1)

Table 2.31, “Large-Model Position-Independent Indirect Function Call” [66] shows how to make
an indirect function call using large-model position-independent code.

Table 2.31. Large-Model Position-Independent Indirect Function Call
C Code Assembly Code
extern void function( ); 
void (*ptrfunc) ( ); 

ptrfunc = function; 

.section .text
/* TOC pointer is in r2 */
addis  r9,r2,ptrfunc@got@ha
ld     r9,ptrfunc@got@l(r9)
addis  r12,r2,function@got@ha
ld     r12,function@got@l(r12)
std    r12,0(r9)
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C Code Assembly Code
(*ptrfunc) ( ); addis  r9,r2,ptrfunc@got@ha

ld     r9,ptrfunc@got@l(r9)
ld     r12,0(r9)
std    r2,24(r1)
mtctr  r12
bctrl
ld     r2,24(r1)

Table 2.32, “PC-Relative Position-Independent Indirect Function Call” [67] shows how to make an
indirect function call using PC-relative addressing in a function that does not preserve r2.

Table 2.32. PC-Relative Position-Independent Indirect Function Call
C Code Assembly Code
extern void function( ); 

void (*ptrfunc) ( ); 
ptrfunc=function; 

(*ptrfunc) ( );

.section .text

pld    r9,ptrfunc@got@pcrel
pld    r0,function@got@pcrel
std    r0,0(r9)

pld    r9, ptrfunc@got@pcrel
ld     r12,0(r9)
mtctr  r12
bctrl

When a function requires addressability through the TOC pointer register, r2, and that function calls
another function that may not preserve the value of r2, the caller must provide a nop after the bl
instruction performing the call. The linker will replace the nop with an r2-restoring instruction if it
determines that r2 may be changed as a result of the call; otherwise the linker will leave the nop
unchanged. See Section 2.2.1, “Function Call Linkage Protocols” [24] for a full description of
when a nop must be inserted.

There are two cases where the caller need not provide a nop after the bl instruction performing a
call:

• When the bl instruction is marked with an R_PPC64_REL24_NOTOC relocation (see
Section 3.5.4, “Relocation Descriptions” [89]); or

• When the callee is in the same compilation unit and is guaranteed to preserve r2.

For calls to functions resolved at runtime, the linker must generate stub code to load the function
address from the PLT.

The stub code also must save r2 to 24(r1) unless either the call is marked with an
R_PPC64_REL24_NOTOC relocation, or the call is marked with an R_PPC64_TOCSAVE reloca-
tion that points to a nop provided in the caller's prologue. In either case, the stub code can omit the
r2 save. In the latter case, the linker replaces the prologue nop with an r2 save.

tocsaveloc: 
   nop 
 ... 
bl target 
   .reloc ., R_PPC64_TOCSAVE, tocsaveloc 
   nop

The linker may assume that r2 is valid at the point of a call. Thus, stub code may use r2 to load an
address from the PLT unless the call is marked with an R_PPC64_REL24_NOTOC relocation to
indicate that r2 is not available.

The nop instruction must be:
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ori r0,r0,0

For more information, see Section 2.3.2.1, “Function Prologue” [55], Section 3.4.1, “Symbol
Values” [78], and Table 3.2, “Relocation Table” [85].

2.3.7. Branching
The flow of execution in a program is controlled by the use of branch instructions. Unconditional
branch instructions can jump to locations up to 32 MB in either direction because they hold a signed
value with a 64 MB range that is relative to the current location of the program execution.

Table 2.33, “Branch Instruction Model” [68] shows the model for branch instructions.

Table 2.33. Branch Instruction Model
C Code Assembly Code
label:
...
goto label;

.L01:

...
b      .L01

Selecting one of multiple branches is accomplished in C with switch statements. An address table is
used by the compiler to implement the switch statement selections in cases where the case labels
satisfy grouping constraints. In the examples that follow, details that are not relevant are avoided by
the use of the following simplifying assumptions:

• r12 holds the selection expression.

• Case label constants begin at zero.

• The assembler names .Lcasei, .Ldefault, and .Ltab are used for the case labels, the default, and
the address table respectively.

For position-dependent code (for example, the main module of an application) loaded into the low or
high address range, absolute addressing of a branch table yields the best performance.

Table 2.34. Absolute Switch Code (Within) for static modules located in low or
high 2 GB of address space
C Code Assembly Code
switch (j)
{
case 0:
...
case 1:
...
case 3:
...
default:
...
}

cmplwi  r12,4
bge     .Ldefault
slwi    r12,2
addis   r12,r12,.Ltab@ha
lwa     r12,.Ltab@l(r12)
mtctr   r12
bctr
.rodata
.Ltab:
.long   .Lcase0
.long   .Lcase1
.long   .Ldefault
.long   .Lcase3
.text

Note

A faster variant of this code may be used to locate branch targets in the bottom 2 GB of
the address space in conjunction with the lwz instruction in place of the lwa instruction.
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Table 2.35. Absolute Switch Code (Beyond) for static modules beyond the top or
bottom 2 GB of the address space

C Code Assembly Code
switch (j)
{
case 0:
...
case 1:
...
case 3:
...
default:
...
}

cmplwi  r12,4
bge     .Ldefault
slwi    r12,2
addis   r12,r12,.Ltab@ha
ld      r12,.Ltab@l(r12)
mtctr   r12
bctr
.rodata
.Ltab:
.long   .Lcase0
.long   .Lcase1
.long   .Ldefault
.long   .Lcase3
.text

For position-independent code targeted at being dynamically loaded to different address ranges as
DSO, the preferred code pattern uses TOC-relative addressing by taking advantage of the fact that
the TOC pointer points to a fixed offset from the code segment. The use of relative offsets from the
start address of the branch table ensures position-independence when code is loaded at different
addresses.

Table 2.36. Position-Independent Switch Code for Small/Medium Models
(preferred, with TOC-relative addressing)

C Code Assembly Code
switch (j)
{
case 0:
...
case 1:
...
case 3:
...
default:
...
}

cmplwi  r12,4
bge     .Ldefault
addis   r10,r2,(.Ltab-.TOC.)@ha
addi    r10,r10,(.Ltab-.TOC.)@l
slwi    r12,2
lwax    r8,r10,r12
add     r10,r8,r10
mtctr   r10
bctr
.Ltab:
.word   (.Lcase0-.Ltab)
.word   (.Lcase1-.Ltab)
.word   (.Ldefault-.Ltab)
.word   (.Lcase3-.Ltab)

For position-independent code targeted at being dynamically loaded to different address ranges as
a DSO or a position-independent executable (PIE), the preferred code pattern uses TOC-indirect
addresses for code models where the distance between the TOC and the branch table exceeds 2
GB. The use of relative offsets from the start address of the branch table ensures position indepen-
dence when code is loaded at different addresses.
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Table 2.37. Position-Independent Switch Code for All Models (alternate, with GOT-
indirect addressing)

C Code Assembly Code
switch (j)
{
case 0:
...
case 1:
...
case 3:
...
default:
...
}

cmplwi  r12,4
bge     .Ldefault
addis   r10,r2,.Ltab@got@ha
ld      r10,r10,.Ltab@got@l(r10)
slwi    r12,2
lwax    r8,r10,r12
add     r10,r8,r10
mtctr   r10
bctr
.Ltab:
.word   (.Lcase0-.Ltab)
.word   (.Lcase1-.Ltab)
.word   (.Ldefault-.Ltab)
.word   (.Lcase3-.Ltab)

Figure 2.30, “PIC Code that Avoids the lwa Instruction” [70] shows how, in the medium code
model, PIC code can be used to avoid using the lwa instruction, which may result in lower perfor-
mance in some POWER processor implementations.

Figure 2.30. PIC Code that Avoids the lwa Instruction

    .text 
f1: 
    addis r9,r2,.Ltab@ha 
    sldi r10,r3,2 
    addi r9,r9,.Ltab@l 
    lwzx r10,r10,r9 
    sub r10,r2,r10 
    mtctr r10 
    bctr 
.Ltab:
    .long .TOC. - Lcase0 
    .long .TOC. - Lcase1 
    .long .TOC. - Ldefault 
    .long .TOC. - Lcase13

Table 2.38, “ Position-Independent Switch Code (PC-Relative Addressing) ” [70] shows a switch
implementation for PC-relative compilation units.

Table 2.38.  Position-Independent Switch Code (PC-Relative Addressing)

C Code Assembly Code
switch(j) 
{ 
case 0: 
... 
case 1: 
... 
case 3: 
...
default: 
...
}

  cmplwi r12, 4 
  bge    .Ldefault 
  slwi   r12, 2
  paddi  r10, .Ltab@pcrel
  lwax   r8, r10, r12 
  add    r10, r8, r10 
  mtctr  r10 
  bctr 
  .p2align 2
.Ltab: 
  .word (.Lcase0-.Ltab) 
  .word (.Lcase1-.Ltab) 
  .word (.Ldefault-.Ltab)
  .word (.Lcase3-.Ltab)
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2.3.8. Dynamic Stack Space Allocation
When allocated, a stack frame may be grown or shrunk dynamically as many times as necessary
across the lifetime of a function. Standard calling conventions must be maintained because a
subfunction can be called after the current frame is grown and that subfunction may stack, grow,
shrink, and tear down a frame between dynamic stack frame allocations of the caller. The following
constraints apply when dynamically growing or shrinking a stack frame:

• Maintain 16-byte alignment.

• Stack pointer adjustments shall be performed atomically so that at all times the value of the
back-chain word is valid, when a back chain is used.

• Maintain addressability to the previously allocated local variables in the presence of multiple
dynamic allocations or conditional allocations.

• Ensure that other linkage information is correct, so that the function can return or its stack space
can be deallocated by exception handling without deallocating any dynamically allocated space.

Note

Using a frame pointer is the recognized method for maintaining addressability to
arguments or local variables. (This may be a pointer to the top of the stack frame, typical-
ly in r31.) For correct behavior in the cases of setjmp( ) and longjmp( ), the frame pointer
shall be allocated in a nonvolatile general-purpose register.

Figure 2.31, “Before Dynamic Stack Allocation” [72] shows the organization of a stack frame
before a dynamic allocation.
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Figure 2.31. Before Dynamic Stack Allocation

Figure 2.32. Example Code to Allocate n Bytes

#define n 13 
; char *a = alloca(n); 
; rnd(x) = round x to be multiple of stack alignment 
; psave = size of parameter save area (may be zero). 
p = 32 + rnd(sizeof(psave)+15); Offset to the start of the dynamic allocation 
ld    r0,0(r1)          ; Load 
stdu  r0,-rnd(n+15)(r1) ; Store new back chain, quadword-aligned. 
addi  r3,r1,p           ; R3 = new data area following parameter save area.

Because it is allowed (and common) to return without first deallocating this dynamically allocated
memory, all the linkage information in the new location must be valid. Therefore, it is also necessary
to copy the TOC pointer doubleword from its old location to the new. It is not necessary to copy the
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LR save doubleword because, until this function makes a call, it does not contain a value that needs
to be preserved. In the future, if it is defined and if the function uses the Reserved word, the LR save
doubleword must also be copied.

Note

Additional instructions will be necessary for an allocation of variable size. If a dynamic
deallocation will occur, the r1 stack pointer must be saved before the dynamic alloca-
tion, and r1 reset to that by the deallocation. The deallocation does not need to copy any
stack locations because the old ones should still be valid.

Figure 2.33, “After Dynamic Stack Allocation” [73] shows an example organization of a stack
frame after a dynamic allocation.

Figure 2.33. After Dynamic Stack Allocation
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2.4. DWARF Definition
Although this ABI itself does not define a debugging format, debug with arbitrary record format
(DWARF) is defined here for systems that implement the DWARF specification. For information
about how to locate the specification, see Section 1.1, “Reference Documentation” [1].

The DWARF specification is used by compilers and debuggers to aid source-level or symbolic
debugging. However, the format is not biased toward any particular compiler or debugger. Per the
DWARF specification, a mapping from Power Architecture registers to register numbers is required
as described in Table 2.39, “Mappings of Common Registers” [74].

All instances of the Power Architecture use the mapping shown in Table 2.39, “Mappings of Common
Registers” [74] for encoding registers into DWARF. DWARF register numbers 32–63 and 77–
108 are also used to indicate the location of variables in VSX registers vsr0–vsr31 and vsr32–vsr63,
respectively, in DWARF debug information.

Table 2.39. Mappings of Common Registers

DWARF Register Number Register Name Register Width (Bytes)

Reg 0–31 r0–r31 8

Reg 32–63 f0–f31 8

Reg 64 Reserved N/A

Reg 65 lr 8

Reg 66 ctr 8

Reg 67 Reserved N/A

Reg 68–75 cr0–cr7 0.5a

Reg 76 xer 4

Reg 77–108 vr0–vr31 16

Reg 109 Reserved N/A

Reg 110 vscr 8

Reg 111 Reserved N/A

Reg 112 Reserved N/A

Reg 113 Reserved N/A

Reg 114 tfhar 8

Reg 115 tfiar 8

Reg 116 texasr 8
aThe CRx registers correspond to 4-bit fields within a word where the offset of the 4-bit group within a word is a function of the CRFx number
(x).

DWARF for the OpenPOWER ABI defines the address class codes described in Table 2.40,
“Address Class Codes” [74].

Table 2.40. Address Class Codes

Code Value Meaning

ADDR_none 0 No class specified
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2.5. Exception Handling
Where exceptions can be thrown or caught by a function, or thrown through that function, or where
a thread can be canceled from within a function, the locations where nonvolatile registers have been
saved must be described with unwind information. The format of this information is based on the
DWARF call frame information with extensions.

Any implementation that generates unwind information must also provide exception handling
functions that are the same as those described in the Itanium C++ ABI, the normative text on the
issue. For information about how to locate this material, see Section 1.1, “Reference Documenta-
tion” [1].

When unwinding, care must be taken to restore the TOC pointer r2 if and only if it has been saved. It
is recommended that the unwinder reads the instruction at the return address in the link register and
restores r2 if and only if that instruction is an explicit restore of r2, i.e., ld r2,24(r1).
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3. Object Files
3.1. ELF Header
The file class member of the ELF header identification array, e_ident[EI_CLASS], identifies the ELF
file as 64-bit encoded by holding the value ELFCLASS64.

For a big-endian encoded ELF file, the data encoding member of the ELF header identification array,
e_ident[EI_DATA], holds the value 2, defined as data encoding ELFDATA2MSB. For a little-endian
encoded ELF file, it holds the value 1, defined as data encoding ELFDATA2LSB.

e_ident[EI_CLASS]    ELFCLASS64   For all 64-bit implementations.
e_ident[EI_DATA]     ELFDATA2MSB  For all big-endian implementations.
e_ident[EI_DATA]     ELFDATA2LSB  For all little-endian implementations.

The ELF header's e_flags member holds bit flags associated with the file. The 64-bit PowerPC
processor family defines the following flags.

E_flags defining the ABI level:

0 For ELF object files of an unspecified nature.

1 For the Power ELF V1 ABI using function descriptors. This ABI is currently only used for big-endian PowerPC
implementations.

2 For the OpenPOWER ELF V2 ABI using the facilities described here and including function pointers to directly
reference functions.

The ABI version to be used for the ELF header file is specified with the .abiversion pseudo-op:

.abiversion 2

Processor identification resides in the ELF header's e_machine member, and must have the value
EM_PPC64, defined as the value 21.

3.2. Special Sections
Table 3.1, “Special Sections” [76] lists the sections that are used in the Power Architecture to hold
program and control information. It also shows their types and attributes.

Table 3.1. Special Sections

Section Name Type Attributes

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.toc SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.plta SHT_NOBITS SHF_ALLOC + SHF_WRITE

.sdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.sbss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE
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Section Name Type Attributes

.bss1 SHT_NOBITS SHF_ALLOC + SHF_WRITE
aThe type of the OpenPOWER ABI .plt section is SHT_NOBITS, not SHT_PROGBITS as on most other processors.

Suggested uses of these special sections follow:

• The .got section may hold the Global Offset Table (GOT). This section is not normally present in
a relocatable object file because it is linker generated. The linker must ensure that .got is aligned
to an 8-byte boundary. In an executable or shared library, it may contain part or all of the TOC.
For more information, see Section 2.3, “Coding Examples” [51] and Section 4.2.3, “Global Offset
Table” [122].

• The .toc section may hold the initialized TOC. The .toc section must be aligned to an 8-byte
boundary. Address elements within .toc must be aligned to 8-byte boundaries to support linker
optimization of the .toc section. In a relocatable object file, .toc may contain addresses of
objects and functions; in this respect it may be thought of as a compiler-managed GOT. It
may also contain other constants or variables; in this respect it is like .sdata. In an executable
or shared library, it may contain part or the entirety of the TOC. For more information, see
Section 3.3, “TOC” [77], Section 2.3, “Coding Examples” [51], and Section 4.2.3, “Global
Offset Table” [122].

• The .plt section may hold the procedure linkage table. This section is not normally present in
a relocatable object file because it is linker generated. Each entry within the .plt section is an
8-byte address. The linker must ensure that .plt is aligned to an 8-byte boundary. For more
information, see Section 4.2.5, “Procedure Linkage Table” [124].

• The .sdata section may hold initialized small-sized data. For more information, see Section 3.4.2,
“Use of the Small Data Area” [80].

• The .sbss section may hold uninitialized small-sized data.

• The .data1 section may hold initialized medium-sized data.

• The .bss1 section may hold uninitialized medium-sized data.

Tools that support this ABI are not required to use these sections. However, if a tool uses these
sections, it must assign the types and attributes specified in Table 3.1, “Special Sections” [76].
Tools are not required to use the sections precisely as suggested. Relocation information and the
code that refers to it define the actual use of a section.

3.3. TOC
The TOC is part of the data segment of an executable program.

This section describes a common layout of the TOC in an executable file or shared object. Particular
tools are not required to follow the layout specified here.

The TOC region commonly includes data items within the .got, .toc, .sdata, and .sbss sections. In the
medium code model, they can be addressed with 32-bit signed offsets from the TOC pointer register.
The TOC pointer register typically points to the beginning of the .got section + 0x8000, which permits
a 2 GB TOC with the medium and large code models. The .got section is typically created by the link
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editor based on @got relocations. The .toc section is typically included from relocatable object files
referenced during the link phase.

The TOC may straddle the boundary between initialized and uninitialized data in the data segment.
The common order of sections in the data segment, some of which may be empty, follows:

.rodata

.data

.data1

.got

.toc

.sdata

.sbss

.plt

.bss1

.bss

The medium code model is expected to provide a sufficiently large TOC to provide all data address-
ing needs of a module with a single TOC.

Compilers may generate two-instruction medium code model references (or, if selected, short
displacement one-instruction references) for all data items that are in the TOC for the object file
being compiled. Such references are relative to the TOC pointer register, r2. (The linker may
optimize two-instruction forms to one instruction forms, replacing a first instruction of the two instruc-
tion form with a nop and rewriting the second instruction. Consequently, the TOC pointer must be live
during the first and second instruction of a two-instruction reference.)

3.3.1. Modules Containing Multiple TOCs
The link editor may create multiple TOCs. In such a case, the constituent .got, .toc, .sdata, and .sbss
sections are conceptually repeated as necessary, with each TOC typically using a TOC pointer value
of its base plus 0x8000. Any constituent section of type SHT_NOBITS in any TOC but the last is
converted to type SHT_PROGBITS filled with zeros.

When multiple TOCs are present, linking must take care to save, initialize, and restore TOC pointers
within a single module when calling from one function to a second function using a different TOC
pointer value. Many of the same issues associated with a cross-module call apply also to calls within
a module but using different TOC pointers.

3.4. Symbol Table
3.4.1. Symbol Values
An executable file that contains a symbol reference that is to be resolved dynamically by an associ-
ated shared object will have a symbol table entry for that symbol. This entry will identify the symbol
as undefined by setting the st_shndx member to SHN_UNDEF.

The OpenPOWER ABI uses the three most-significant bits in the symbol st_other field to specify the
number of bytes between a function's global entry point and local entry point. The global entry point
is used when it is necessary to set up the TOC pointer (r2) for the function. The local entry point is
used when r2 is known to already be valid for the function. A value of zero in these bits asserts that
the function does not use r2.
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The values of these three most significant bits of the st_other field have the following meanings:

0 The local and global entry points are the same, and the function has a single entry point with no requirement on r12 or
r2. On return, r2 will contain the same value as at entry.

This value should be used for functions that do not require the use of a TOC register to access external data. In
particular, functions that do not access data through the TOC pointer can use a common entry point for the local and
global entry points.

Note
If the function is not a leaf function, it must call subroutines using the R_PPC64_REL24_NOTOC
relocation to indicate that the TOC register is not initialized. In turn, this may lead to more expensive
procedure linkage table (PLT) stub code than would be necessary if a TOC register were initialized.

1 The local and global entry points are the same, and r2 should be treated as caller-saved for local and global callers.

2 The local entry point is at four bytes past the global entry point.

When called at the global entry point, r12 must be set to the function entry address. r2 will be set to the TOC base that
this function needs, so it must be preserved and restored by the caller.

When called at the local entry point, r12 is not used and r2 must already point to the TOC base that this function
needs, and it will be preserved.

3 The local entry point is at eight bytes past the global entry point.

When called at the global entry point, r12 must be set to the function entry address. r2 will be set to the TOC base that
this function needs, so it must be preserved and restored by the caller.

When called at the local entry point, r12 is not used and r2 must already point to the TOC base that this function
needs, and it will be preserved.

4 The local entry point is at sixteen bytes past the global entry point.

When called at the global entry point, r12 must be set to the function entry address. r2 will be set to the TOC base that
this function needs, so it must be preserved and restored by the caller.

When called at the local entry point, r12 is not used and r2 must already point to the TOC base that this function
needs, and it will be preserved.

5 The local entry point is at thirty-two bytes past the global entry point.

When called at the global entry point, r12 must be set to the function entry address. r2 will be set to the TOC base that
this function needs, so it must be preserved and restored by the caller.

When called at the local entry point, r12 is not used and r2 must already point to the TOC base that this function
needs, and it will be preserved.

6 The local entry point is at sixty-four bytes past the global entry point.

When called at the global entry point, r12 must be set to the function entry address. r2 will be set to the TOC base that
this function needs, so it must be preserved and restored by the caller.

When called at the local entry point, r12 is not used and r2 must already point to the TOC base that this function
needs, and it will be preserved.

7 Reserved

The local-entry-point handling field of st_other is generated with the .localentry pseudo op. The
following is an example using the medium code model:

    .globl my_func
    .type my_func, @function
my_func:
    addis r2, r12, (.TOC.-my_func)@ha
    addi r2, r2, (.TOC.-my_func)@l
    .localentry my_func, .-my_func
    ... ; function definition
    blr
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Functions called via symbols with an st_other value of 0 may be called without a valid TOC pointer
in r2. Symbols of functions that require a local entry with a valid TOC pointer should generate a
symbol with an st_other field value of 2–6 and both local and global entry points, even if the global
entry point will not be used. (In such a case, the instructions of the global entry setup sequence may
optionally be initialized with TRAP instructions.)

The value of st_other is determined from the .localentry directive as follows: If the .localentry value
is 0, the value of st_other is 0. If the .localentry value is 1, the value of st_other is 1. Otherwise, the
value of st_other is the logarithm (base 2) of the .localentry value.

For very large programs, a 32-bit offset from the TOC base may not suffice to reach all function
addresses. In this case, the large program model must be used, and the above sequence is replaced
by:

    .globl my_func
    .type  my_func, @function
    .quad  .TOC.-my_func
my_func:
    .reloc ., R_PPC64_ENTRY  ; optional
    ld r2,-8(r12)
    add r2,r2,r12
    .localentry my_func, .-my_func
    ... ; function definition
    blr

The linker will resolve .TOC.-my_func to a 64-bit offset stored 8 bytes prior to the global entry point.
The prologue code then forms the absolute address of the TOC base.

Optionally, the linker may optimize the prologue sequence for functions that are within 2GB of the
TOC base. To faciliate this, the compiler may associate an R_PPC64_ENTRY relocation with the
global entry point. Note that this relocation simply provides a hint, and imposes no obligations on the
linker to optimize the prologue sequence. Nor does the absence of this relocation forbid the linker
from optimizing the prologue sequence.

3.4.2. Use of the Small Data Area
For a data item in the .sdata or .sbss sections, a compiler may generate short-form one-instruc-
tion references. In an executable file or shared library, such a reference is relative to the address
of the TOC base symbol (which can be obtained from r2 if a TOC pointer is initialized). A compiler
that generates code using the small data area should provide an option to select the maximum size
of objects placed in the small data area, and a means of disabling any use of the small data area.
When generating code for ELF shared libraries, the small data area should not be used for default-
visibility global objects. This is to satisfy ELF shared-library symbol interposition rules. That is, an
ordinary global symbol in a shared library may be overridden by a symbol of the same name defined
in the executable or another shared library. Supporting interposition when using TOC-pointer relative
addressing would require text relocations.

3.5. Relocation Types
The relocation entries in a relocatable file are used by the link editor to transform the contents of that
file into an executable file or a shared object file. The application and result of a relocation are similar
for both. Several relocatable files may be combined into one output file. The link editor merges the
content of the files, sets the value of all function symbols, and performs relocations.
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The 64-bit OpenPOWER Architecture uses Elf64_Rela relocation entries exclusively. A relocation
entry may operate upon a halfword, word, or doubleword. The r_offset member of the relocation
entry designates the first byte of the address affected by the relocation. The subfield of r_offset
affected by a relocation is implicit in the definition of the applied relocation type. The r_addend
member of the relocation entry serves as the relocation addend, which is described in Section 3.5.1,
“Relocation Fields” [81] for each relocation type.

A relocation type defines a set of instructions and calculations necessary to alter the subfield data of
a particular relocation field.

3.5.1. Relocation Fields
The following relocation fields identify a subfield of an address affected by a relocation.

Bit numbers are shown at the bottom of the boxes. (Only big-endian bit numbers are shown for
space considerations.) Byte numbers are shown in the top of the boxes; big-endian byte numbers
are displayed in the upper left corners and little-endian in the upper right corners. The byte order
specified in a relocatable file’s ELF header applies to all the elements of a relocation entry, the
relocation field definitions, and relocation type calculations.

In the following figure, doubleword64 specifies a 64-bit field occupying 8 bytes, the alignment of
which is 8 bytes unless otherwise specified.

0 7 1 6 2 5 3 4

doubleword64

0

4 3 5 2 6 1 7 0

doubleword64 (continued)

63

In the following figure, word32 specifies a 32-bit field taking up 4 bytes and maintaining 4-byte
alignment unless otherwise indicated.

0 3 1 2 2 1 3 0

word32

0 31

In the following figure, word30 specifies a 30-bit field taking up bits 0–29 of a word and maintaining
4-byte alignment unless otherwise indicated.

0 3 1 2 2 1 3 0

word30

0 29 30 31

In the following figure, low24 specifies a 24-bit field taking up bits 6–29 of a word. The 32-bit word
is 4-byte aligned. The other bits remain unchanged. A call or unconditional branch instruction is an
example of this field.

0 3 1 2 2 1 3 0

low24

0 5 6 29 30 31
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In the following figure, low21 specifies a 21-bit field occupying the least-significant bits of a word with
4-byte alignment.

0 3 1 2 2 1 3 0

low21

0 10 11 31

In the following figure, low14 specifies a 14-bit field taking up bits 16–29 and possibly bit 10 (the
branch prediction bit) of a word and maintaining 4-byte alignment. The other bits remain unchanged.
A conditional branch instruction is an example usage.

0 3 1 2 2 1 3 0

low14

0 10 15 16 29 30 31

In the following figure, half16 specifies a 16-bit field taking up two bytes and maintaining 2-byte
alignment. The immediate field of an Add Immediate instruction is an example of this field.

0 1 1 0

half16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In the following figure, half16ds is similar to half16, but is really just 14 bits because the two least-
significant bits must be zero and are not really part of the field. (Used by, for example, the ldu
instruction.) In addition to the use of this relocation field with the DS forms, half16ds relocations are
also used in conjunction with DQ forms. In those instances, the linker and assembler collaborate to
create valid DQ forms. They raise an error if the specified offset does not meet the constraints of a
valid DQ instruction form displacement.

0 1 1 0

half16ds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In the following figure, prefix34 specifies a 34-bit field split between bits 14-31 and 48-63 of two
consecutive words. This is used by many PC-relative load and store instructions.

0 3 1 2 2 1 3 0

prefix34 (high 18 bits)

0 13 14 31

4 7 5 6 6 5 7 4

prefix34 (low 16 bits)

32 47 48 63

In the following figure, prefix28 specifies a 28-bit field taking up bits 20-31 and 48-63 of two consecu-
tive words. This is reserved for future use.

0 3 1 2 2 1 3 0

prefix28 (high 12 bits)

0 19 20 31

4 7 5 6 6 5 7 4

prefix28 (low 16 bits)

32 47 48 63
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3.5.2. Relocation Notations
The following notations are used in the relocation table.

A Represents the addend used to compute the value of the relocatable field.

B Represents the base address at which a shared object file has been loaded into memory during
execution. Generally, a shared object file is built with a 0 base virtual address, but the execution address
will be different. See Program Header in the System V ABI for more information about the base address.

G Represents the address in the TOC at which the address of the relocation entry’s symbol plus addend
resides during execution. This implies the creation of a .got section. For more information, see
Section 2.3, “Coding Examples” [51] and Section 4.2.3, “Global Offset Table” [122].

Reference in a calculation to the value G implicitly creates a GOT entry for the indicated symbol.

L Represents the address of the procedure linkage table entry for the symbol. This implies the creation of
a .plt section if one does not already exist. It also implies the creation of a procedure linkage table (PLT)
entry for resolving the symbol. For an unresolved symbol, the PLT entry points to a PLT resolver stub.
For a resolved symbol, a procedure linkage table entry holds the final effective address of a dynamically
resolved symbol (see Section 4.2.5, “Procedure Linkage Table” [124]).

M Similar to G, except that the address that is stored may be the address of the procedure linkage table
entry for the symbol.

P Represents the place (section offset or address) of the storage unit being relocated (computed using
r_offset).

R Represents the offset of the symbol within the section in which the symbol is defined (its section-relative
address).

S Represents the value of the symbol whose index resides in the relocation entry.

+ Denotes 64-bit modulus addition.

– Denotes 64-bit modulus subtraction.

>> Denotes arithmetic right-shifting.

#lo(value) Denotes the least-significant 16 bits of the indicated value. That is:

#lo(x) = (x & 0xffff).

#hi(value) Denotes bits 16–63 of the indicated value. That is:

#hi(x) = x >> 16

#ha(value) Denotes the high adjusted value: bits 16–63 of the indicated value, compensating for #lo( ) being treated
as a signed number. That is:

#ha(x) = (x + 0x8000) >> 16

#high(value) Denotes bits 16–31 of the indicated value. That is:

#high(x) = (x >> 16) & 0xffff

#higha(value) Denotes the high adjusted value: bits 16–31 of the indicated value, compensating for #lo( ) being treated
as a signed number. That is:

#higha(x) = ((x + 0x8000) >> 16) & 0xffff

#higher(value) Denotes bits 32–47 of the indicated value. That is:

#higher(x) = (x >> 32) & 0xffff

#highera(value) Denotes the higher adjusted value: bits 32–47 of the indicated value, compensating for #lo( ) being
treated as a signed number. That is:

#highera(x) = ((x + 0x8000) >> 32) & 0xffff

#highest(value) Denotes bits 48–63 of the indicated value. That is:

#highest(x) = x >> 48

#highesta(value) Denotes the highest adjusted value: bits 48–63 of the indicated value, compensating for #lo( ) being
treated as a signed number. That is:

#highesta(x) = (x + 0x8000) >> 48
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#lo34(value) Denotes the least-significant 34 bits of the indicated 64-bit value. That is:

#lo34(x) = x & 0x3ffffffff

#lo28(value) Denotes the least-significant 28 bits of the indicated 64-bit value. That is:

#lo28(x) = x & 0x00fffffff

#hi30(value) Denotes bits 34-63 of the indicated 64-bit value. That is:

#hi30(x) = x >> 34

#ha30(value) Denotes bits 34-63 of the indicated 64-bit value, compensating for #lo34( ) being treated as a signed
number. That is:

#ha30(x) = (x + 0x200000000) >> 34

#higher34(value) Denotes bits 34–49 of the indicated value. That is:

#higher34(x) = (x >> 34) & 0xffff

#highera34(value) Denotes the higher adjusted value: bits 34–49 of the indicated value, compensating for #lo34( ) being
treated as a signed number. That is:

#highera34(x) = ((x + 0x200000000) >> 34) & 0xffff

#highest34(value) Denotes bits 50–63 of the indicated value. That is:

#highest34(x) = x >> 50

#highesta34(value) Denotes the highest adjusted value: bits 50–63 of the indicated value, compensating for #lo34( ) being
treated as a signed number. That is:

#highesta34(x) = (x + 0x200000000) >> 50

TP The value of the thread pointer in general-purpose register r13.

TLS_TP_OFFSET The constant value 0x7000, representing the offset (in bytes) of the location that the thread pointer is
initialized to point to, relative to the start of the thread local storage for the first initially available module.

TCB_LENGTH The constant value 0x8, representing the length of the thread control block (TCB) in bytes.

tcb Represents the base address of the TCB.

tcb = (tp – (TLS_TP_OFFSET + TCB_LENGTH))

dtv Represents the base address of the dynamic thread vector (DTV).

dtv = tcb[0]

dtpmod Represents the load module index of the load module that contains the definition of the symbol being
relocated and is used to index the DTV.

dtprel Represents the offset of the symbol being relocated relative to the value of dtv[dtpmod].

dtv[dtpmod] + dtprel = (S + A)

rel16dx Represents a 16-bit signed offset split across three fields, as required by the addpcis instruction.

tprel Represents the offset of the symbol being relocated relative to the TP.

tp + tprel = (S + A)

@got@tlsgd Allocates two contiguous entries in the GOT to hold a tls_index structure, with values dtpmod and dtprel,
and computes the address of the first entry.

@got@tlsld Allocates two contiguous entries in the GOT to hold a tls_index structure, with values dtpmod and zero,
and computes the address of the first entry.

@got@dtprel Allocates an entry in the GOT with value dtprel, and computes the address of the entry.

@got@tprel Allocates an entry in the GOT with value tprel, and computes the address of the entry.

Note

Relocations flagged with an asterisk(*) will trigger a relocation failure if the value comput-
ed does not fit in the field specified.
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3.5.3. Relocation Types Table
The following rules apply to the relocation types defined in Table 3.2, “Relocation Table” [85]:

• For relocation types in which the names contain 14 or 16, the upper 49 bits of the value comput-
ed before shifting must all be the same. For relocation types in which the names contain 24, the
upper 39 bits of the value computed before shifting must all be the same. For relocation types in
which the names contain 14 or 24, the low 2 bits of the value computed before shifting must all
be zero.

• The relocation types whose Field column entry contains an asterisk (*) are subject to failure if the
value computed does not fit in the allocated bits.

• Relocations that refer to half16ds (56–66, 87–88, 91–92, 95–96, and 101–102) are to be used
to direct the linker to look at the underlying instruction and treat the field as a DS or DQ field.
ABI-compliant tools should give an error for attempts to relocate an address to a value that is not
divisible by 4.

Table 3.2. Relocation Table
Relocation Name Value Field Expression

R_PPC64_NONE 0 none none

R_PPC64_ADDR32 1 word32* S + A

R_PPC64_ADDR24 2 low24* (S + A) >> 2

R_PPC64_ADDR16 3 half16* S + A

R_PPC64_ADDR16_LO 4 half16 #lo(S + A)

R_PPC64_ADDR16_HI 5 half16* #hi(S + A)

R_PPC64_ADDR16_HA 6 half16* #ha(S + A)

R_PPC64_ADDR14 7 low14* (S + A) >> 2

R_PPC64_REL24 10 low24* (S + A – P) >> 2

R_PPC64_REL14 11 low14* (S + A – P) >> 2

R_PPC64_GOT16 14 half16* G – .TOC.

R_PPC64_GOT16_LO 15 half16 #lo(G – .TOC.)

R_PPC64_GOT16_HI 16 half16* #hi(G – .TOC.)

R_PPC64_GOT16_HA 17 half16* #ha(G – .TOC.)

R_PPC64_COPY 19 varies See Section 3.5.4, “Reloca-
tion Descriptions” [89].

R_PPC64_GLOB_DAT 20 doubleword64 S + A

R_PPC64_JMP_SLOT 21 doubleword64 See Section 3.5.4, “Reloca-
tion Descriptions” [89].

R_PPC64_RELATIVE 22 doubleword64 B + A

R_PPC64_UADDR32 24 word32* S + A

R_PPC64_UADDR16 25 half16* S + A

R_PPC64_REL32 26 word32* S + A – P

R_PPC64_PLT32 27 word32* L

Note
Relocation values 8, 9, 12, 13, 18, 23, 32, and 247 are not used. This is to maintain a correspondence to the
relocation values used by the 32-bit PowerPC ELF ABI.
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Relocation Name Value Field Expression

R_PPC64_PLTREL32 28 word32* L – P

R_PPC64_PLT16_LO 29 half16 #lo(L – .TOC.)

R_PPC64_PLT16_HI 30 half16* #hi(L – .TOC.)

R_PPC64_PLT16_HA 31 half16* #ha(L – .TOC.)

R_PPC64_SECTOFF 33 half16* R + A

R_PPC64_SECTOFF_LO 34 half16 #lo(R + A)

R_PPC64_SECTOFF_HI 35 half16* #hi(R + A)

R_PPC64_SECTOFF_HA 36 half16* #ha(R + A)

R_PPC64_REL30 37 word30 (S + A – P) >> 2

R_PPC64_ADDR64 38 doubleword64 S + A

R_PPC64_ADDR16_HIGHER 39 half16 #higher(S + A)

R_PPC64_ADDR16_HIGHERA 40 half16 #highera(S + A)

R_PPC64_ADDR16_HIGHEST 41 half16 #highest(S + A)

R_PPC64_ADDR16_HIGHESTA 42 half16 #highesta(S + A)

R_PPC64_UADDR64 43 doubleword64 S + A

R_PPC64_REL64 44 doubleword64 S + A – P

R_PPC64_PLT64 45 doubleword64 L

R_PPC64_PLTREL64 46 doubleword64 L – P

R_PPC64_TOC16 47 half16* S + A – .TOC.

R_PPC64_TOC16_LO 48 half16 #lo(S + A – .TOC.)

R_PPC64_TOC16_HI 49 half16* #hi(S + A – .TOC.)

R_PPC64_TOC16_HA 50 half16* #ha(S + A – .TOC.)

R_PPC64_TOC 51 doubleword64 .TOC.

R_PPC64_PLTGOT16 52 half16* M

R_PPC64_PLTGOT16_LO 53 half16 #lo(M)

R_PPC64_PLTGOT16_HI 54 half16* #hi(M)

R_PPC64_PLTGOT16_HA 55 half16* #ha(M)

R_PPC64_ADDR16_DS 56 half16ds* (S + A) >> 2

R_PPC64_ADDR16_LO_DS 57 half16ds #lo(S + A) >> 2

R_PPC64_GOT16_DS 58 half16ds* (G – .TOC.) >> 2

R_PPC64_GOT16_LO_DS 59 half16ds #lo(G – .TOC.) >> 2

R_PPC64_PLT16_LO_DS 60 half16ds #lo(L – .TOC.) >> 2

R_PPC64_SECTOFF_DS 61 half16ds* (R + A) >> 2

R_PPC64_SECTOFF_LO_DS 62 half16ds #lo(R + A) >> 2

R_PPC64_TOC16_DS 63 half16ds* (S + A – .TOC.) >> 2

R_PPC64_TOC16_LO_DS 64 half16ds #lo(S + A – .TOC.) >> 2

R_PPC64_PLTGOT16_DS 65 half16ds* M >> 2

R_PPC64_PLTGOT16_LO_DS 66 half16ds #lo(M) >> 2

R_PPC64_TLS 67 none none

R_PPC64_DTPMOD64 68 doubleword64 @dtpmod

R_PPC64_TPREL16 69 half16* @tprel

Note
Relocation values 8, 9, 12, 13, 18, 23, 32, and 247 are not used. This is to maintain a correspondence to the
relocation values used by the 32-bit PowerPC ELF ABI.
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Relocation Name Value Field Expression

R_PPC64_TPREL16_LO 70 half16 #lo(@tprel)

R_PPC64_TPREL16_HI 71 half16* #hi(@tprel)

R_PPC64_TPREL16_HA 72 half16* #ha(@tprel)

R_PPC64_TPREL64 73 doubleword64 @tprel

R_PPC64_DTPREL16 74 half16* @dtprel

R_PPC64_DTPREL16_LO 75 half16 #lo(@dtprel)

R_PPC64_DTPREL16_HI 76 half16* #hi(@dtprel)

R_PPC64_DTPREL16_HA 77 half16* #ha(@dtprel)

R_PPC64_DTPREL64 78 doubleword64 @dtprel

R_PPC64_GOT_TLSGD16 79 half16* @got@tlsgd – .TOC.

R_PPC64_GOT_TLSGD16_LO 80 half16 #lo(@got@tlsgd – .TOC.)

R_PPC64_GOT_TLSGD16_HI 81 half16* #hi(@got@tlsgd – .TOC.)

R_PPC64_GOT_TLSGD16_HA 82 half16* #ha(@got@tlsgd – .TOC.)

R_PPC64_GOT_TLSLD16 83 half16* @got@tlsld – .TOC.

R_PPC64_GOT_TLSLD16_LO 84 half16 #lo(@got@tlsld – .TOC.)

R_PPC64_GOT_TLSLD16_HI 85 half16* #hi(@got@tlsld – .TOC.)

R_PPC64_GOT_TLSLD16_HA 86 half16* #ha(@got@tlsld – .TOC.)

R_PPC64_GOT_TPREL16_DS 87 half16ds* @got@tprel – .TOC.

R_PPC64_GOT_TPREL16_LO_DS 88 half16ds #lo(@got@tprel – .TOC.)

R_PPC64_GOT_TPREL16_HI 89 half16* #hi(@got@tprel – .TOC.)

R_PPC64_GOT_TPREL16_HA 90 half16* #ha(@got@tprel – .TOC.)

R_PPC64_GOT_DTPREL16_DS 91 half16ds* @got@dtprel – .TOC.

R_PPC64_GOT_DTPREL16_LO_DS 92 half16ds #lo(@got@dtprel – .TOC.)

R_PPC64_GOT_DTPREL16_HI 93 half16* #hi(@got@dtprel – .TOC.)

R_PPC64_GOT_DTPREL16_HA 94 half16* #ha(@got@dtprel – .TOC.)

R_PPC64_TPREL16_DS 95 half16ds* @tprel

R_PPC64_TPREL16_LO_DS 96 half16ds #lo(@tprel)

R_PPC64_TPREL16_HIGHER 97 half16 #higher(@tprel)

R_PPC64_TPREL16_HIGHERA 98 half16 #highera(@tprel)

R_PPC64_TPREL16_HIGHEST 99 half16 #highest(@tprel)

R_PPC64_TPREL16_HIGHESTA 100 half16 #highesta(@tprel)

R_PPC64_DTPREL16_DS 101 half16ds* @dtprel

R_PPC64_DTPREL16_LO_DS 102 half16ds #lo(@dtprel)

R_PPC64_DTPREL16_HIGHER 103 half16 #higher(@dtprel)

R_PPC64_DTPREL16_HIGHERA 104 half16 #highera(@dtprel)

R_PPC64_DTPREL16_HIGHEST 105 half16 #highest(@dtprel)

R_PPC64_DTPREL16_HIGHESTA 106 half16 #highesta(@dtprel)

R_PPC64_TLSGD 107 none none

R_PPC64_TLSLD 108 none none

R_PPC64_TOCSAVE 109 none none

R_PPC64_ADDR16_HIGH 110 half16 #high(S + A)

Note
Relocation values 8, 9, 12, 13, 18, 23, 32, and 247 are not used. This is to maintain a correspondence to the
relocation values used by the 32-bit PowerPC ELF ABI.
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Relocation Name Value Field Expression

R_PPC64_ADDR16_HIGHA 111 half16 #higha(S + A)

R_PPC64_TPREL16_HIGH 112 half16 #high(@tprel)

R_PPC64_TPREL16_HIGHA 113 half16 #higha(@tprel)

R_PPC64_DTPREL16_HIGH 114 half16 #high(@dtprel)

R_PPC64_DTPREL16_HIGHA 115 half16 #higha(@dtprel)

R_PPC64_REL24_NOTOC 116 low24* (S + A – P) >> 2

R_PPC64_ADDR64_LOCAL 117 doubleword64 S + A (See Section 3.5.4, “Reloca-
tion Descriptions” [89].)

R_PPC64_ENTRY 118 none none

R_PPC64_PLTSEQ 119 none none

R_PPC64_PLTCALL 120 none none

R_PPC64_PLTSEQ_NOTOC 121 none none

R_PPC64_PLTCALL_NOTOC 122 none none

R_PPC64_PCREL_OPT 123 none none

R_PPC64_D34 128 prefix34* S + A

R_PPC64_D34_LO 129 prefix34 #lo34(S + A)

R_PPC64_D34_HI30 130 prefix34 #hi30(S + A)

R_PPC64_D34_HA30 131 prefix34 #ha30(S + A)

R_PPC64_PCREL34 132 prefix34* S + A – P

R_PPC64_GOT_PCREL34 133 prefix34* G – P

R_PPC64_PLT_PCREL34 134 prefix34* L – P

R_PPC64_PLT_PCREL34_NOTOC 135 prefix34* L – P

R_PPC64_ADDR16_HIGHER34 136 half16 #higher34(S + A)

R_PPC64_ADDR16_HIGHERA34 137 half16 #highera34(S + A)

R_PPC64_ADDR16_HIGHEST34 138 half16 #highest34(S + A)

R_PPC64_ADDR16_HIGHESTA34 139 half16 #highesta34(S + A)

R_PPC64_REL16_HIGHER34 140 half16 #higher34(S + A – P)

R_PPC64_REL16_HIGHERA34 141 half16 #highera34(S + A – P)

R_PPC64_REL16_HIGHEST34 142 half16 #highest34(S + A – P)

R_PPC64_REL16_HIGHESTA34 143 half16 #highesta34(S + A – P)

R_PPC64_D28 144 prefix28* S + A

R_PPC64_PCREL28 145 prefix28* S + A – P

R_PPC64_TPREL34 146 prefix34* @tprel

R_PPC64_DTPREL34 147 prefix34* @dtprel

R_PPC64_GOT_TLSGD_PCREL34 148 prefix34* @got@tlsgd – P

R_PPC64_GOT_TLSLD_PCREL34 149 prefix34* @got@tlsld – P

R_PPC64_GOT_TPREL_PCREL34 150 prefix34* @got@tprel – P

R_PPC64_GOT_DTPREL_PCREL34 151 prefix34* @got@dtprel – P

R_PPC64_REL16_HIGH 240 half16 #high(S + A – P)

R_PPC64_REL16_HIGHA 241 half16 #higha(S + A – P)

R_PPC64_REL16_HIGHER 242 half16 #higher(S + A – P)

Note
Relocation values 8, 9, 12, 13, 18, 23, 32, and 247 are not used. This is to maintain a correspondence to the
relocation values used by the 32-bit PowerPC ELF ABI.
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Relocation Name Value Field Expression

R_PPC64_REL16_HIGHERA 243 half16 #highera(S + A – P)

R_PPC64_REL16_HIGHEST 244 half16 #highest(S + A – P)

R_PPC64_REL16_HIGHESTA 245 half16 #highesta(S + A – P)

R_PPC64_REL16DX_HA 246 rel16dx* #ha(S + A – P)

R_PPC64_IRELATIVE 248 doubleword64 See Section 3.5.4, “Reloca-
tion Descriptions” [89].

R_PPC64_REL16 249 half16* S + A – P

R_PPC64_REL16_LO 250 half16 #lo(S + A – P)

R_PPC64_REL16_HI 251 half16* #hi(S + A – P)

R_PPC64_REL16_HA 252 half16* #ha(S + A – P)

R_PPC64_GNU_VTINHERIT 253

R_PPC64_GNU_VTENTRY 254

Note
Relocation values 8, 9, 12, 13, 18, 23, 32, and 247 are not used. This is to maintain a correspondence to the
relocation values used by the 32-bit PowerPC ELF ABI.

3.5.4. Relocation Descriptions
The following list describes relocations that can require special handling or description.

R_PPC64_GOT16*

These relocation types are similar to the corresponding R_PPC64_ADDR16* types. However, they
refer to the address of the symbol’s GOT entry and instruct the link editor to build a GOT.

R_PPC64_PLTGOT16*

These relocation types are similar to the corresponding R_PPC64_GOT16* types. However, if
the link editor cannot determine the actual value of the symbol, the GOT entry may contain the
address of an entry in the procedure linkage table. The link editor creates that entry in the procedure
linkage table and stores that address in the GOT entry. This permits lazy resolution of function
symbols at run time. If the link editor can determine the value of the symbol, it stores that value in
the corresponding GOT entry. The link editor may generate an R_PPC64_GLOB_DAT relocation as
usual.

R_PPC64_PLTREL32, R_PPC64_PLTREL64

These relocations indicate that reference to a symbol should be resolved through a call to the
symbol’s procedure linkage table entry. Additionally, it instructs the link editor to build a procedure
linkage table for the executable or shared object if one is not created.

R_PPC64_COPY

This relocation type is created by the link editor for dynamic linking. Its offset member refers to a
location in a writable segment. The symbol table index specifies a symbol that should exist both in
the current relocatable file and in a shared object file. During execution, the dynamic linker copies
data associated with the shared object’s symbol to the location specified by the offset.

R_PPC64_GLOB_DAT
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This relocation type allows determination of the correspondence between symbols and GOT entries.
It is similar to R_PPC64_ADDR64. However, it sets a GOT entry to the address of the specified
symbol.

R_PPC64_JMP_SLOT

This relocation type is created by the link editor for dynamic linking. Its offset member gives the
location of a procedure linkage table (PLT) entry. The dynamic linker modifies the PLT entry
to transfer control to the designated symbol’s address (see Section 4.2.5, “Procedure Linkage
Table” [124]).

R_PPC64_RELATIVE

This relocation type is created by the link editor for dynamic linking. Its offset member gives
a location within a shared object that contains a value representing a relative address. The
corresponding virtual address is computed by the dynamic linker. It adds the virtual address at which
the shared object was loaded to the relative address. Relocation entries for this type must specify 0
for the symbol table index.

R_PPC64_IRELATIVE

The link editor creates this relocation type for dynamic linking. Its addend member specifies the
global entry-point location of a resolver function returning a function pointer. It is used to implement
the STT_GNU_IFUNC framework. The resolver is called, and the returned pointer copied into the
location specified by the relocation offset member.

R_PPC64_TLS, R_PPC64_TLSGD, R_PPC64_TLSLD

Used as markers on thread local storage (TLS) code sequences, these relocations tie the entire
sequence with a particular TLS symbol. For more information, see Section 3.7, “Thread Local
Storage ABI” [95].

R_PPC64_TOCSAVE

This relocation type indicates a position where a TOC save may be inserted in the function to avoid a
TOC save as part of the PLT stub code. A nop can be emitted by a compiler in a function's prologue
code. A link editor can change it to a TOC pointer save instruction. This marker relocation is placed
on the prologue nop and on nops after bl instructions, with the symbol plus addend pointing to the
prologue nop. If the link editor uses the prologue to save r2, it may omit r2 saves in the PLT call stub
code emitted for calls marked by R_PPC64_TOCSAVE.

R_PPC64_UADDR*

These relocation types are the same as the corresponding R_PPC64_ADDR* types, except that the
datum to be relocated is allowed to be unaligned.

R_PPC64_ADDR64_LOCAL

When a separate local entry point exists, this relocation type is used to initialize a memory location
with the address of that local entry point.

R_PPC64_REL24_NOTOC

This relocation type is used to specify a function call where the TOC pointer is not initialized. It is
similar to R_PPC64_REL24 in that it specifies a symbol to be resolved. If the symbol resolves to a
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function that requires a TOC pointer (as determined by st_other bits) then a link editor must arrange
for the call to be via the global entry point of the called function. Any stub code must not rely on a
valid TOC base address in r2.

R_PPC64_ENTRY

This relocation type may optionally be associated with a global entry point. See Section 3.4.1,
“Symbol Values” [78] for discussion of its use.

R_PPC64_PLTSEQ, R_PPC64_PLTCALL

These relocations mark the instruction as being part of an inline PLT call sequence in a function
where r2 is a valid TOC pointer. R_PPC64_PLTCALL is used to mark the call instruction, while
R_PPC64_PLTSEQ is used on other instructions in the sequence that don't have PLT relocations. All
instructions in a given sequence shall have relocations with the same symbol and addend. Note that
R_PPC64_PLTCALL also implicitly marks the nop or TOC-restoring instruction immediately following
the call instruction.

R_PPC64_PLTSEQ_NOTOC, R_PPC64_PLTCALL_NOTOC

These relocations are like the corresponding R_PPC64_PLTSEQ and R_PPC64_PLTCALL reloca-
tions, but are used in functions where r2 is not a valid TOC pointer. All instructions in the sequence
shall use _NOTOC variant relocations.

R_PPC64_PCREL_OPT

This relocation specifies that the instruction at r_offset and the instruction at r_offset + r_addend
may be optimized by the linker; the compiler must guarantee that register lifetimes are such that
the optimization is safe. In code sequences where this relocation is valid, the first instruction also
has another relocation at r_offset. The R_PPC64_PCREL_OPT entry occurs immediately after
that relocation in the table of relocations. See Section 3.6.3.3, “Displacement Optimization for PC-
Relative Accesses” [94] for more details.

3.5.5. Assembler Syntax
The offset from .TOC. in the GOT where the value of the symbol is stored is given by the assembly
syntax symbol@got. The value of the symbol alone is the address of the variable named symbol.

For example:

addis  r3, r2,x@got@ha
ld     r3,x@got@l(r3)

Although the Power ISA only defines 16-bit displacements, many TOCs (and hence a GOT) are
larger then 64 KB but fit within 2 GB, which can be addressed with 32-bit offsets from r2. Therefore,
this ABI defines a simple syntax for 32-bit offsets to the GOT.

The syntaxes SYMBOL@got@ha, SYMBOL@got@h, and SYMBOL@got@l refer to the high adjust-
ed, high, and low parts of the GOT offset. (For an explanation of the meaning of “high adjusted,”
see Section 3.5, “Relocation Types” [80]). SYMBOL@got@ha corresponds to bits 32–63 of the
offset within the global offset table with adjustment for the sign extension of the low-order offset bits.
SYMBOL@got@l corresponds to the 16 low-order bits of the offset within the global offset table.
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The syntax SYMBOL@toc refers to the value (SYMBOL – .TOC.), where .TOC. represents the TOC
base for the current object file. This provides the address of the variable whose name is SYMBOL as
an offset from the TOC base.

As with the GOT, the syntaxes SYMBOL@toc@ha, SYMBOL@toc@h, and SYMBOL@toc@l refer
to the high adjusted, high, and low parts of the TOC offset.

The syntax SYMBOL@got@plt may be used to refer to the offset in the TOC of a procedure linkage
table entry stored in the global offset table. The corresponding syntaxes SYMBOL@got@plt@ha,
SYMBOL@got@plt@h, and SYMBOL@got@plt@l are also defined.

Note

If X is a variable stored in the TOC, then X@got is the offset within the TOC of a double-
word whose value is X@toc.

The special symbol .TOC. is used to represent the TOC base for the current object file.

The following code might appear in a PIC code setup sequence to compute the distance from a
function entry point to the TOC base:

addis  2,12,.TOC.-func@ha
addi   2,2,.TOC.-func@l

The syntax SYMBOL@localentry refers to the value of the local entry point associated with a
function symbol. It can be used to initialize a memory word with the address of the local entry point
as follows:

.quad  func@localentry

3.6. Assembler- and Linker-Mediated
Executable Optimization
To optimize object code, the assembler and linker may rewrite object code to implement the function
call and return conventions and access to global and thread-local data. It is the responsibility of
compilers and programmers to generate assembly programs and objects that conform to the require-
ments as indicated in this section.

3.6.1. Function Call
Unless the bl instruction is annotated with an R_PPC64_REL24_NOTOC relocation, the static
linker must modify a nop instruction after a bl function call to restore the TOC pointer in r2 from
24(r1) when an external symbol that may use the TOC may be called, as in Section 2.3.6, “Function
Calls” [65].

3.6.2. Reference Optimization
References to the GOT may be optimized by rewriting indirect reference code to replace the
reference by an address computation. This transformation is only performed by the linker when the
symbol is known to be local to the module.
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3.6.3. Displacement Optimization for TOC Pointer
Relative Accesses
Assemblers and linkers may optimize TOC reference code that consists of two instructions with
equivalent code when offset@ha is 0.

TOC reference code:

addis  rt, r2, offset@ha
lwz    rt, offset@l(rt)

Equivalent code:

NOP
lwz    rt, offset(r2)

Compilers and programmers must ensure that r2 is live at the actual data access point associated
with extended displacement addressing.

3.6.3.1. TOC Pointer Usage

To enable linker-based optimizations when global data is accessed, the TOC pointer needs to be
available for dereference at the point of all uses of values derived from the TOC pointer in conjunc-
tion with the @l operator. This property is used by the linker to optimize TOC pointer accesses. In
addition, all reaching definitions for a TOC-pointer-derived access must compute the same definition.

In some implementations, non-ABI-compliant code may be processed by providing additional linker
options; for example, linker options disabling linker optimization. However, this behavior in support of
non-ABI-compliant code is not guaranteed to be portable and supported in all systems.

 

Compliant example

        addis  r4, r2, mysym@toc@ha
        b      target
 
 
        ...
 

        addis  r4, r2, mysym@toc@ha
target:
        addi   r4, r4, mysym@toc@l
        ...
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Non-compliant example
               li     r4, 0 ; #d1
        b      target
 
        ...
 
        addis  r4, r2, mysym@toc@ha ; #d2
target:
        addi   r4, r4, mysym@toc@l ; incompatible definitions #d1 and #d2 reach this
        ...

3.6.3.2. Table Jump Sequences
Some linkers may rewrite jump table sequences, as described in Section 2.3.7, “Branching” [68].
For example, linkers may rewrite address references created using GOT-indirect loads and bl+4
sequences to use TOC-relative address computation.

3.6.3.3. Displacement Optimization for PC-Relative Accesses
Compilers and assembly programmers must assume that references to extern data having
unrestricted visibility may be satisfied by a dynamically linked object, and must therefore use PC-
relative GOT-indirect addressing for such references. A linker may determine that such a reference
is satisfied during static linking and replace the reference with direct PC-relative addressing. For
example:

pld     r10, symbol@got@pcrel
lxv     vs1, 0(r10)

The previous sequence may be replaced by:

plxv    vs1, symbol@pcrel
nop

However, this optimization is not universally safe, since it changes lifetimes of registers set in both
instructions. In the example, the compiler or programmer must ensure that the value of r10 set by
the first instruction is not used after that instruction, and that vs1 is not used between the two instruc-
tions. If these conditions are met, the linker is informed that the optimization is safe by placing an
R_PPC64_PCREL_OPT relocation on the first instruction in the sequence with the addend of that
relocation giving the offset to the second instruction in the sequence.

3.6.4. Fusion
Code generation in compilers, linkers, and by programmers should use a destructive sequence
of two sequential instructions consisting of first an addis followed by a second instruction using a
D form instruction to create or load from a 32-bit offset from a register to enable hardware fusion
whenever possible:

addis     r4, r3, upper
<lbz,lhz,lwz,ld> r4, lower(r4)
 
addis     r4, r3, upper
addi      r4, r4, lower

It is encouraged that assemblers provide pseudo-ops to facilitate such code generation with a single
assembler mnemonic.
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3.6.5. Thread-Local Linker Optimizations
Additional code rewriting is performed by the linker in conjunction with the use of thread-local
storage described in Section 3.7.4, “TLS Link Editor Optimizations” [102].

3.7. Thread Local Storage ABI
The ELF Handling for Thread-Local Storage document is the authoritative TLS ABI specification
that defines the context in which information in the TLS section of this Power Architecture 64-bit
ELF V2 ABI must be viewed. For information about how to access this document, see Section 1.1,
“Reference Documentation” [1]. To maintain congruence with that document, in this section the term
module refers to an executable or shared object since both are treated similarly.

3.7.1. TLS Background
Most C/C++ implementations support (as an extension to earlier versions of the language) the
keyword __thread to be used as a storage-class specifier in variable declarations and definitions
of data objects with thread storage duration. (The 2011 ISO C Standard uses _Thread_local as the
keyword, while the 2011 ISO C++ Standard uses thread_local.) A variable declared in this manner
is automatically allocated local to each thread. Its lifetime is defined to be the entire execution of the
thread. Any initialization value is assigned once before thread startup.

3.7.2. TLS Runtime Handling
A thread-local variable is completely identified by the module in which it is defined, along with the
offset of the variable relative to the start of the TLS block for the module. A module is referenced by
its index (an integer starting with 1, which is assigned by the run-time environment) into the dynamic
thread vector (DTV). The offset of the variable is kept in the st_value field of the TLS variable’s
symbol table entry.

The TLS data structures follow variant I of the ELF TLS ABI. For the 64-bit PowerPC Architecture,
the specific organization of the data structures is as follows.

The thread control block (TCB) consists of the DTV, which is an 8-byte pointer. An extended TCB
may have additional implementation-specific fields; these fields are located before the DTV pointer
because the addresses are computed as negative offsets from the TCB address. The fields must
never be rearranged for any reason.

The current glibc extended TCB is:

typedef struct {
    /* Reservation for HWCAP data. */
        uint64_t hwcap;
 
    /* Reservation for AT_PLATFORM data.  */
        uint32_t __unused;
        uint32_t at_platform;

    /* Reservation for dynamic system optimizer ABI. */
        uintptr_t dso_slot2;
        uintptr_t dso_slot1;
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    /* Reservation for tar register (ISA 2.07). */
        uintptr_t tar_save;
 
    /* GCC split stack support. */
        void *__private_ss;
 
    /* Reservation for the event-based branching ABI. */
        uintptr_t ebb_handler;
        uintptr_t ebb_ctx_pointer;
        uintptr_t ebb_reserved1;
        uintptr_t ebb_reserved2;
        uintptr_t pointer_guard;
 
    /* Reservation for stack guard */
        uintptr_t stack_guard;
 
    /* DTV pointer */
        dtv_t *dtv;
    } tcbhead_t;

Modules that will not be unloaded will be present at startup time; the TLS blocks for these are
created consecutively and immediately follow the TCB. The offset of the TLS block of an initially
available module from the TCB remains fixed after program start.

The tlsoffset(m) values for a module with index m, where m ranges from 1–M, M being the total
number of modules, are computed as follows:

tlsoffset(1) = round(16, align(1))
tlsoffset(m + 1) = round(tlsoffset(m) + tlssize(m), align(m + 1))

• The function round( ) returns its first argument rounded up to the next multiple of its second
argument:

round(x, y) = y × ceiling(x / y)

• The function ceiling( ) returns the smallest integer greater than or equal to its argument, where n
is an integer satisfying: n – 1 < x ≤ n:

ceiling(x) = n

In the case of dynamic shared objects (DSO), TLS blocks are allocated on an as-needed basis, with
the details of allocation abstracted away by the __tls_get_addr( ) function, which is used to retrieve
the address of any TLS variable.

The prototype for the __tls_get_addr( ) function, is defined as follows.

typedef struct
{
   unsigned long int ti_module;
   unsigned long int ti_offset;
} tls_index;
 
extern void *__tls_get_addr (tls_index *ti);

The thread pointer (TP) is held in r13 and is used to access the TCB. The TP is initialized to point
0x7000 bytes past the end of the TCB. The TP offset allows for efficient addressing of the TCB and
up to 4 KB – 8 B of other thread library information (placed before the TCB).
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Figure 3.1, “Thread Pointer Addressable Memory” [97] shows the region of memory before and
after the TCB that can be efficiently addressed by the TP.

Figure 3.1. Thread Pointer Addressable Memory

Each DTV pointer points 0x8000 bytes past the start of each TLS block. (For implementation
reasons, the actual value stored in the DTV may point to the start of a TLS block. However, values
returned by accessor functions will be offset by 0x8000 bytes.) This offset allows the first 64 KB of
each block to be addressed from a DTV pointer using fewer machine instructions.

Figure 3.2. TLS Block Diagram

TLS[m] denotes the TLS block for the module with index m. DTV[m] denotes the DTV pointer for the
module with index m.

3.7.3. TLS Access Models
TLS data access is categorized into the following models:

• General Dynamic TLS Model
• Local Dynamic TLS Model
• Initial Exec TLS Model
• Local Exec TLS Model
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Examples for each access model are provided in the following TLS Model subsections.

3.7.3.1. General Dynamic TLS Model

Note

This specification provides examples based on the medium code model, which is the
default for the ELF V2 ABI.

Given the following code fragment, to determine the address of a thread-local variable x, the
__tls_get_addr( ) function is called with one parameter. That parameter is a pointer to a data object
of type tls_index. Note that different code generation is used for PC-relative addressing, but the GOT
entry relocations are identical.

extern __thread unsigned int x;
&x;

Table 3.3. General Dynamic Initial Relocations
Code Sequence Relocation Symbol

addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x

addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x

R_PPC64_TLSGD xbl __tls_get_addr(x@tlsgd)

R_PPC64_REL24 __tls_get_addr

nop

Table 3.4. PC-Relative General Dynamic Initial Relocations
Code Sequence Relocation Symbol

pla r3, x@got@tlsgd@pcrel R_PPC64_GOT_TLSGD_PCREL34 x

R_PPC64_TLSGD xbl __tls_get_addr@notoc(x@tlsgd)

R_PPC64_REL24_NOTOC __tls_get_addr

Table 3.5. General Dynamic GOT Entry Relocations
Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x

GOT[n+1] R_PPC64_DTPREL64 x

The relocation specifier @got@tlsgd causes the link editor to create a data object of type tls_index in
the GOT. The address of this data object is loaded into the first argument register with the addis and
addi instruction, and a standard function call is made. Notice that the bl instruction has two reloca-
tions: the R_PPC64_TLSGD tying it to the argument setup instructions and the R_PPC64_REL24 or
R_PPC64_REL24_NOTOC specifying the call destination.

3.7.3.2. Local Dynamic TLS Model
For the Local Dynamic TLS Model, three different relocation sequences may be used, depending on
the size of the thread storage block offset to the variable. For the following code sequence, a differ-
ent relocation sequence is used for each variable.
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static __thread unsigned int x1;
static __thread unsigned int x2;
static __thread unsigned int x3;
&x1;
&x2;
&x3;

Table 3.6. Local Dynamic Initial Relocations
Code Sequence Relocation Symbol

addis r3, r2, x1@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x1

addi r3, r3, x1@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x1

R_PPC64_TLSLD x1bl __tls_get_addr(x1@tlsld)

R_PPC64_REL24 __tls_get_addr

nop

...

addi r9, r3, x1@dtprel R_PPC64_DTPREL16 x1

...

addis r9, r3, x2@dtprel@ha R_PPC64_DTPREL16_HA x2

addi r9, r9, x2@dtprel@l R_PPC64_DTPREL16_LO x2

...

addis r9, r2, x3@got@dtprel@ha R_PPC64_GOT_DTPREL16_HA x3

ld r9, x3@got@dtprel@l(r9) R_PPC64_GOT_DTPREL16_LO_DS x3

add r9, r9, r3

Once again, there are alternative sequences for PC-relative addressing.

Table 3.7. PC-Relative Local Dynamic Initial Relocations
Code Sequence Relocation Symbol

pla r3, x1@got@tlsld@pcrel R_PPC64_GOT_TLSLD_PCREL34 x1

R_PPC64_TLSLD x1bl __tls_get_addr@notoc(x1@tlsld)

R_PPC64_REL24_NOTOC __tls_get_addr

...

addi r9, r3, x1@dtprel R_PPC64_DTPREL16 x1

...

paddi r9, r3, x2@dtprel R_PPC64_DTPREL34 x2

...

pld r9, x3@got@dtprel@pcrel R_PPC64_GOT_DTPREL_PCREL34 x3

add r9, r9, r3

Table 3.8. Local Dynamic GOT Entry Relocations
Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x1

GOT[n+1] 0

GOT[m] R_PPC64_DTPREL64 x3

The relocation specifier @got@tlsld in the first instruction causes the link editor to generate a
tls_index data object in the GOT with a fixed 0 offset. The following code assumes that x1 is in the
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first 64 KB of the thread storage block. The x2 symbol is not within the first 64 KB but is within the
first 2 GB, and x3 is outside the 2 GB area. To load the values of x1, x2, and x3 instead of their
addresses, replace the latter part of Table 3.6, “Local Dynamic Initial Relocations” [99] with the
following code sequence.

Table 3.9. Local Dynamic Relocations with Values Loaded

Code Sequence Relocation Symbol

...

lwz r0, x1@dtprel(r3) R_PPC64_DTPREL16 x1

...

addis r9, r3, x2@dtprel@ha R_PPC64_DTPREL16_HA x2

lwz r0, x2@dtprel@l(r9) R_PPC64_DTPREL16_LO x2

...

addis r9, r2, x3@got@dtprel@ha R_PPC64_GOT_DTPREL16_HA x3

ld r9, x3@got@dtprel@l(r9) R_PPC64_GOT_DTPREL16_LO_DS x3

lwzx r0, r3, r9

For PC-relative addressing, replace the latter part of Table 3.7, “PC-Relative Local Dynamic Initial
Relocations” [99] with the following code sequence.

Table 3.10. Local Dynamic Relocations with Values Loaded

Code Sequence Relocation Symbol

...

lwz r0, x1@dtprel(r3) R_PPC64_DTPREL16 x1

...

plwz r0, x2@dtprel@pcrel(r3) R_PPC64_DTPREL34 x2

...

pld r9, x3@got@dtprel@pcrel(r3) R_PPC64_GOT_DTPREL_PCREL34 x3

lwzx r0, r3, r9

3.7.3.3. Initial Exec TLS Model

Given the following code fragment, the relocation sequence in Table 3.11, “Initial Exec Initial Reloca-
tions” [100] is used for the Initial Exec TLS Model:

extern __thread unsigned int x;
&x;

Table 3.11. Initial Exec Initial Relocations

Code Sequence Relocation Symbol

addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x

ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x

add r9, r9, x@tls R_PPC64_TLS x

With PC-relative addressing, the relocation sequence in Table 3.12, “PC-Relative Initial Exec Initial
Relocations” [101] is used instead:
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Table 3.12. PC-Relative Initial Exec Initial Relocations

Code Sequence Relocation Symbol

pld r9, x@got@tprel@pcrel R_PPC64_GOT_TPREL_PCREL34 x

add r9, r9, x@tls@pcrel R_PPC64_TLS with one-byte displace-
ment

x

Table 3.13. Initial Exec GOT Entry Relocations

Code Sequence Relocation Symbol

GOT[n] R_PPC64_TPREL64 x

The relocation specifier @got@tprel in the first instruction causes the link editor to generate a GOT
entry with a relocation that the dynamic linker will replace with the offset for x relative to the thread
pointer. The relocation specifier x@tls tells the assembler to use an r13 form of the instruction. That
is, add r9,r9,r13 in this case, and tag the instruction with a relocation that indicates it belongs to a
TLS sequence. This relocation specifier can be used later by the link editor when optimizing TLS
code.

To read the contents of the variable instead of calculating its address, the add r9, r9, x@tls instruc-
tion in Table 3.11, “Initial Exec Initial Relocations” [100] might be replaced with lwzx r0, r9, x@tls.
The add r9, r9, x@tls@pcrel instruction in Table 3.12, “PC-Relative Initial Exec Initial Reloca-
tions” [101] might likewise be replaced with lwzx r0, r9, x@tls@pcrel.

Note that both the x@tls and x@tls@pcrel assembly forms are annotated with R_PPC64_TLS
relocations. To distinguish between the two, the second of these has a field value displaced by one
byte from the beginning of the instruction.

3.7.3.4. Local Exec TLS Model

Given the following code fragment, three different relocation sequences may be used, depending
on the size of the offset to the variable. The sequence in Table 3.14, “Local Exec Initial Relocations
(Sequence 1)” [102] handles offsets within 60 KB relative to the end of the TCB (where r13 points
28 KB past the end of the TCB, which is immediately before the first TLS block). The sequence in
Table 3.15, “Local Exec Initial Relocations (Sequence 2)” [102] handles offsets past 60 KB and
less than 2 GB + 28 KB relative to the end of the TCB. The third sequence is identical to the Initial
Exec sequence shown in Table 3.11, “Initial Exec Initial Relocations” [100].

static __thread unsigned int x;
&x;

Figure 3.3, “Local Exec TLS Model Sequences” [102] illustrates which sequence is used.
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Figure 3.3. Local Exec TLS Model Sequences

Table 3.14. Local Exec Initial Relocations (Sequence 1)

Code Sequence Relocation Symbol

addi r9, r13, x1@tprel R_PPC_TPREL16 x

Table 3.15. Local Exec Initial Relocations (Sequence 2)

Code Sequence Relocation Symbol

addis r9, r13, x2@tprel@ha R_PPC64_TPREL16_HA x

addi r9, r9, x2@tprel@l R_PPC64_TPREL16_LO x

Table 3.16. PC-Relative Local Exec Initial Relocations (Sequences 1 and 2)

Code Sequence Relocation Symbol

paddi r9, r13, x1@tprel R_PPC64_TPREL34 x

3.7.4. TLS Link Editor Optimizations
In some cases, the link editor may be able to optimize TLS code sequences, provided the compiler
emits code sequences as described.

The following TLS link editor transformations are provided as optimizations to convert between
specific TLS access models:

• General Dynamic to Initial Exec
• General Dynamic to Local Exec
• Local Dynamic to Local Exec
• Initial Exec to Local Exec

Section 3.7.4.1, “General Dynamic to Initial Exec (TOC)” [103] through Section 3.7.4.4, “Initial
Exec to Local Exec (TOC) ” [105] describe TLS link editor transformations using a TOC address-
ing model, and Section 3.7.4.5, “General Dynamic to Initial Exec (PC-Relative)” [106] through
Section 3.7.4.8, “Initial Exec to Local Exec (PC-Relative)” [109] describe TLS link editor transfor-
mations using a PC-relative addressing model.
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3.7.4.1. General Dynamic to Initial Exec (TOC)

Table 3.17. General-Dynamic-to-Initial-Exec Initial Relocations (TOC)
Code Sequence Relocation Symbol

addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x

addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x

R_PPC64_TLSGD xbl __tls_get_addr(x@tlsgd)

R_PPC64_REL24 __tls_get_addr

nop

Table 3.18. General-Dynamic-to-Initial-Exec GOT Entry Relocations (TOC)
Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x

GOT[n+1] R_PPC64_DTPREL64 x

The preceding code and global offset table entries are replaced by the following code and global
offset table entries.

Table 3.19. General-Dynamic-to-Initial-Exec Replacement Initial Relocations (TOC)
Code Sequence Relocation Symbol

addis r3, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x

ld r3, x@got@tprel@l(r3) R_PPC64_GOT_TPREL16_LO_DS x

nop

add r3, r3, r13

Table 3.20. General-Dynamic-to-Initial-Exec Replacement GOT Entry Relocations
(TOC)
Code Sequence Relocation Symbol

GOT[n] R_PPC64_TPREL64 x

3.7.4.2. General Dynamic to Local Exec (TOC)

Table 3.21. General-Dynamic-to-Local-Exec Initial Relocations
Code Sequence Relocation Symbol

addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x

addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x

R_PPC64_TLSGD xbl __tls_get_addr(x@tlsgd)

R_PPC64_REL24 __tls_get_addr

nop

Table 3.22. General-Dynamic-to-Local-Exec GOT Entry Relocations (TOC)
Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x

GOT[n+1] R_PPC64_DTPREL64 x
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The preceding code and global offset table entries are replaced by the following code, which makes
no reference to GOT entries. The GOT entries in Table 3.22, “General-Dynamic-to-Local-Exec GOT
Entry Relocations (TOC)” [103] can be removed from the GOT by the linker when performing this
code transformation.1

Table 3.23. General-Dynamic-to-Local-Exec Replacement Initial Relocations (TOC)

Code Sequence Relocation Symbol

nop

addis r3, r13, x@tprel@ha R_PPC64_TPREL16_HA x

nop

addi r3, r3, x@tprel@l R_PPC64_TPREL16_LO x

3.7.4.3. Local Dynamic to Local Exec (TOC)

Under this TLS linker optimization, the function call is replaced with an equivalent code sequence.
However, as shown in the following code examples, the dtprel sequences are left unchanged.

Table 3.24. Local-Dynamic-to-Local-Exec Initial Relocations (TOC)

Code Sequence Relocation Symbol

addis r3, r2, x1@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x1

addi r3, r3, x1@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x1

bl __tls_get_addr(x1@tlsld) R_PPC64_TLSLD x1

R_PPC64_REL24 __tls_get_addr

nop

...

addi r9, r3, x1@dtprel R_PPC64_DTPREL16 x1

...

addis r9, r3, x2@dtprel@ha R_PPC64_DTPREL16_HA x2

addi r9, r9, x2@dtprel@l R_PPC64_DTPREL16_LO x2

...

addis r9, r2, x3@got@dtprel@ha R_PPC64_GOT_DTPREL16_HA x3

ld r9, x3@got@dtprel@l(r9) R_PPC64_GOT_DTPREL16_LO_DS x3

add r9, r9, r3

Table 3.25. Local-Dynamic-to-Local-Exec GOT Entry Relocations (TOC)

Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x1

GOT[n+1]

...

GOT[m] R_PPC64_DTPREL64 x3

1To further optimize the code in Table 3.22, “General-Dynamic-to-Local-Exec GOT Entry Relocations (TOC)” [103], a linker may reschedule
the sequence to exploit fusion by generating a sequence that may be fused by Power processors:

nop
addis  r3, r13, x@tprel@ha
addi   r3, r3, x@tprel@l
nop
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The preceding code and global offset table entries are replaced by the following code and global
offset table entries.

Table 3.26. Local-Dynamic-to-Local-Exec Replacement Initial Relocations (TOC)

Code Sequence Relocation Symbol

nop

addis r3, r13, L@tprel@ha R_PPC64_TPREL16_HA link editor generated local symbol

nop

addi r3, r3, L@tprel@l R_PPC64_TPREL16_LO link editor generated local symbola

..

addi r9, r3, x1@dtprel R_PPC64_DTPREL16 x1

..

addis r9, r3, x2@dtprel@ha R_PPC64_DTPREL16_HA x2

addi r9, r9, x2@dtprel@l R_PPC64_DTPREL16_LO x2

...

addis r9, r2, x3@got@dtprel@ha R_PPC64_GOT_DTPREL16_HA x3

ld r9, x3@got@dtprel@l(r9) R_PPC64_GOT_DTPREL16_LO_DS x3

add r9, r9, r3
aThe linker may prefer to schedule the addis and addi to be adjacent to take advantage of fusion as a microarchitecture optimization opportunity.

The GOT[n] and GOT[n+1] entries can be removed by the linker after the code transformation as
shown in Table 3.27, “Local-Dynamic-to-Local-Exec Replacement GOT Entry Relocations (TOC)
” [105].

Table 3.27. Local-Dynamic-to-Local-Exec Replacement GOT Entry Relocations
(TOC)

Code Sequence Relocation Symbol

GOT[m] R_PPC64_DTPREL64 x3

The local symbol generated by the link editor points to the start of the thread storage block plus
0x7000 bytes. In practice, a section symbol with a suitable offset will be used.

3.7.4.4. Initial Exec to Local Exec (TOC)

This transformation is only performed by the linker when the symbol is within 2 GB + 28 KB of the
thread pointer.

Table 3.28. Initial-Exec-to-Local-Exec Initial Relocations (TOC)

Code Sequence Relocation Symbol

addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x

ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x

add r9, r9, x@tls R_PPC64_TLS x

Table 3.29. Initial-Exec-to-Local-Exec GOT Entry Relocations (TOC)

Code Sequence Relocation Symbol

GOT[n] R_PPC64_TPREL64 x
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The preceding code and global offset table entries are replaced by the following code and global
offset table entries.

Table 3.30. Initial-Exec-to-Local-Exec Replacement Initial Relocations (TOC)

Code Sequence Relocation Symbol

nop

addis r9, r13, x@tprel@ha R_PPC64_TPREL16_HA x

addi r9, r9, x@tprel@l R_PPC64_TPREL16_LO x

Other sizes and types of thread-local variables may use any of the X-form indexed load or store
instructions.

Table 3.31, “Initial-Exec-to-Local-Exec X-form Initial Relocations (TOC) ” [106] shows how to
access the contents of a variable using the X-form indexed load and store instructions.

Table 3.31. Initial-Exec-to-Local-Exec X-form Initial Relocations (TOC)

Code Sequence Relocation Symbol

addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x

ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x

lbzx r10, r9, x@tls R_PPC64_TLS x

addi r10, r10, 1

stbx r10, r9, x@tls R_PPC64_TLS x

Table 3.32. Initial-Exec-to-Local-Exec X-form GOT Entry Relocations (TOC)

Code Sequence Relocation Symbol

GOT[n] R_PPC64_TPREL64 x

The preceding code and global offset table entries are replaced by the following code and global
offset table entries.

Table 3.33. Initial-Exec-to-Local-Exec X-form Replacement Initial Relocations
(TOC)

Code Sequence Relocation Symbol

nop

addis r9, r13, x@tprel@ha R_PPC64_TPREL16_HA x

lbz r10, x@tprel@l(r9) R_PPC64_TPREL16_LO x

addi r10, r10, 1

stb r10, x@tprel@l(r9) R_PPC64_TPREL16_LO x

3.7.4.5. General Dynamic to Initial Exec (PC-Relative)

Table 3.34. General-Dynamic-to-Initial-Exec Initial Relocations (PC-Relative)

Code Sequence Relocation Symbol

pla r3, x@got@tlsgd@pcrel R_PPC64_GOT_TLSGD_PCREL34 x

bl __tls_get_addr@notoc(x@tlsgd) R_PPC64_TLSGD x
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Code Sequence Relocation Symbol

R_PPC64_REL24_NOTOC __tls_get_addr

Table 3.35. General-Dynamic-to-Initial-Exec GOT Entry Relocations (PC-Relative)
Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x

GOT[n+1] R_PPC64_DTPREL64 x

The preceding code and global offset table entries are replaced by the following code and global
offset table entries.

Table 3.36. General-Dynamic-to-Initial-Exec Replacement Initial Relocations (PC-
Relative)
Code Sequence Relocation Symbol

pld r3, x@got@tprel@pcrel R_PPC64_GOT_TPREL_PCREL34 x

add r3, r3, r13

Table 3.37. General-Dynamic-to-Initial-Exec Replacement GOT Entry Relocations
(PC-Relative)
Code Sequence Relocation Symbol

GOT[n] R_PPC64_TPREL64 x

3.7.4.6. General Dynamic to Local Exec (PC-Relative)

Table 3.38. General-Dynamic-to-Local-Exec Initial Relocations (PC-Relative)
Code Sequence Relocation Symbol

pla r3, x@got@tlsgd@pcrel R_PPC64_GOT_TLSGD_PCREL34 x

R_PPC64_TLSGD xbl __tls_get_addr@notoc(x@tlsgd)

R_PPC64_REL24_NOTOC __tls_get_addr

Table 3.39. General-Dynamic-to-Local-Exec GOT Entry Relocations (PC-Relative)
Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x

GOT[n+1] R_PPC64_DTPREL64 x

The preceding code and global offset table entries are replaced by the following code, which makes
no reference to GOT entries. The GOT entries in Table 3.39, “General-Dynamic-to-Local-Exec GOT
Entry Relocations (PC-Relative)” [107] can be removed from the GOT by the linker when perform-
ing this code transformation.

Table 3.40. General-Dynamic-to-Local-Exec Replacement Initial Relocations (PC-
Relative)
Code Sequence Relocation Symbol

paddi r3, r13, x@tprel R_PPC64_TPREL34 x

nop
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3.7.4.7. Local Dynamic to Local Exec (PC-Relative)

Under this TLS linker optimization, the function call is replaced with an equivalent code sequence.
However, as shown in the following code examples, the dtprel sequences are left unchanged.

Table 3.41. Local-Dynamic-to-Local-Exec Initial Relocations (PC-Relative)

Code Sequence Relocation Symbol

pla r3, x1@got@tlsld@pcrel R_PPC64_GOT_TLSLD_PCREL34 x1

bl __tls_get_addr@notoc(x1@tlsld) R_PPC64_TLSLD x1

R_PPC64_REL24_NOTOC __tls_get_addr

...

paddi r9, r3, x2@dtprel R_PPC64_DTPREL34 x2

...

pld r9, x3@got@dtprel@pcrel R_PPC64_GOT_DTPREL_PCREL34 x3

add r9, r9, r3

Table 3.42. Local-Dynamic-to-Local-Exec GOT Entry Relocations (PC-Relative)

Code Sequence Relocation Symbol

GOT[n] R_PPC64_DTPMOD64 x1

GOT[n+1]

...

GOT[m] R_PPC64_DTPREL64 x3

The preceding code and global offset table entries are replaced by the following code and global
offset table entries.

Table 3.43. Local-Dynamic-to-Local-Exec Replacement Initial Relocations (PC-
Relative)

Code Sequence Relocation Symbol

paddi r3, r13, 0x1000

nop

..

paddi r9, r3, x2@dtprel R_PPC64_DTPREL34 x2

..

pld r9, x3@got@dtprel@pcrel R_PPC64_GOT_DTPREL_PCREL34 x3

add r9, r9, r3

The GOT[n] and GOT[n+1] entries can be removed by the linker after the code transformation as
shown in Table 3.44, “Local-Dynamic-to-Local-Exec Replacement GOT Entry Relocations (PC-
Relative)” [108].

Table 3.44. Local-Dynamic-to-Local-Exec Replacement GOT Entry Relocations
(PC-Relative)

Code Sequence Relocation Symbol

GOT[m] R_PPC64_DTPREL64 x3
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3.7.4.8. Initial Exec to Local Exec (PC-Relative)

Table 3.45. Initial-Exec-to-Local-Exec Initial Relocations (PC-Relative)

Code Sequence Relocation Symbol

pld r9, x@got@tprel@pcrel R_PPC64_GOT_TPREL_PCREL34 x

add r9, r9, x@tls@pcrel R_PPC64_TLS with one-byte displace-
ment

x

Table 3.46. Initial-Exec-to-Local-Exec GOT Entry Relocations (PC-Relative)

Code Sequence Relocation Symbol

GOT[n] R_PPC64_TPREL64 x

The preceding code and global offset table entries are replaced by the following code. The global
offset entry GOT[n] can be eliminated by the linker.

Table 3.47. Initial-Exec-to-Local-Exec Replacement Initial Relocations (PC-
Relative)

Code Sequence Relocation Symbol

paddi r9, r9, x@tprel R_PPC64_TPREL34 x

nop

Table 3.48, “Initial-Exec-to-Local-Exec X-form Initial Relocations (PC-Relative)” [109] shows how to
access the contents of a variable using the X-form indexed load and store instructions.

Table 3.48. Initial-Exec-to-Local-Exec X-form Initial Relocations (PC-Relative)

Code Sequence Relocation Symbol

pld r9, x@got@tprel@pcrel R_PPC64_GOT_TPREL_PCREL34 x

lbzx r10, r9, x@tls@pcrel R_PPC64_TLS x

addi r10, r10, 1

stbx r10, r9, x@tls@pcrel R_PPC64_TLS x

Table 3.49. Initial-Exec-to-Local-Exec X-form GOT Entry Relocations (PC-Relative)

Code Sequence Relocation Symbol

GOT[n] R_PPC64_TPREL64 x

The preceding code and global offset table entries are replaced by the following code. The global
offset table entry GOT[n] can be removed by the linker.

Table 3.50. Initial-Exec-to-Local-Exec X-form Replacement Initial Relocations (PC-
Relative)

Code Sequence Relocation Symbol

paddi r9, r13, x@tprel R_PPC64_TPREL34 x

lbz r10, 0(r9)

addi r10, r10, 1
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Code Sequence Relocation Symbol

stb r10, 0(r9)

3.7.5. ELF TLS Definitions
The result of performing a relocation for a TLS symbol is the module ID and its offset within the TLS
block. These are then stored in the GOT. Later, they are obtained by the dynamic linker at run-time
and passed to __tls_get_addr( ), which returns the address for the variable for the current thread.

For more information, see Section 3.5, “Relocation Types” [80]. For TLS relocations, see
Table 3.2, “Relocation Table” [85].

TLS Relocation Descriptions
The following marker relocations tie together instructions in TLS code sequences. They allow the
link editor to reliably optimize TLS code. R_PPC64_TLSGD and R_PPC64_TLSLD shall be emitted
immediately before their associated __tls_get_addr call relocation.

R_PPC64_TLS

R_PPC64_TLSGD

R_PPC64_TLSLD

3.8. System Support Functions and Extensions
3.8.1. Back Chain
Systems must provide a back chain by default, and they must include compilers allocating a back
chain and system libraries allocating a back chain. Alternate libraries may be supplied in addition to,
and beyond, but never instead of those providing a back chain. Code generating and using a back
chain shall be the default for compilers, linkers, and library selection.

3.8.2. Nested Functions
Nested functions that access their ancestors’ stack frames are entered with r11 initialized to an
environment pointer. The environment pointer is typically a copy of the stack pointer for the most
recent instance of the nested function's parent's stack frame. When a function pointer to a nested
function referencing its outer context is created, an implementation may create a trampoline to load
the present environment pointer to r11, followed by an unconditional branch to the function code of
the nested function contained in the text segment.

When a trampoline is used, a pointer to a nested function is represented by the code address of the
trampoline.

In some environments, the trampoline code may be created by allocating memory on the data stack,
making at least pages containing trampolines executable. In other environments, executable pages
may be prohibited in the stack area for security reasons.

Alternate implementations, such as creating code stacks for allocating nested function trampolines,
may be used. In garbage-collected environments, yet other ways for managing trampolines are
available.
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3.8.3. Traceback Tables
To support debuggers and exception handlers, the 64-bit OpenPOWER ELF V2 ABI defines the
use of descriptive debug and unwind information that enables flexible debugging and unwinding of
optimized code (such as, for example, DWARF).

To support legacy tooling, the OpenPOWER ELF V2 ABI also specifies the use of a traceback table
that may provide additional information about functions.

Section 3.8.4, “Traceback Table Fields” [111] describes a minimal set of fields that may, option-
ally, specify information about a function. Additional fields may be present in a traceback table in
accordance with commonly used PowerPC traceback conventions in other environments, but they
are not specified in the current ABI definition.

3.8.4. Traceback Table Fields
If a traceback table is present, the following fields are mandatory:

version Eight-bit field. This defines the type code for the table. The only currently defined value is zero.

lang Eight-bit field. This defines the source language for the compiler that generated the code to which this
traceback table applies. The default values are as follows:

C 0

Fortran 1

Pascal 2

Ada 3

PL/1 4

Basic 5

LISP 6

COBOL 7

Modula2 8

C++ 9

RPG 10

PL.8, PLIX 11

Assembly 12

Java 13

Objective C 14

The codes 0xf–0xfa are reserved. The codes 0xfb–0xff are reserved for IBM.

globalink One-bit field. This field is set to 1 if this routine is a special routine used to support the linkage convention: a
linkage function including a procedure linkage table function, pointer glue code, a trampoline, or other compiler-
or linker-generated functions that stack traceback functions should skip, other than is_eprol functions. For more
information, see Section 2.3.6, “Function Calls” [65]. These routines have an unusual register usage and stack
format.

is_eprol One-bit field. This field is set to 1 if this routine is an out-of-line prologue or epilogue function, including a
register save or restore function. Stack traceback functions should skip these. For more information, see
Section 2.3.2, “Function Prologue and Epilogue” [55]. These routines have an unusual register usage and stack
format.

has_tboff One-bit field. This field is set to 1 if the offset of the traceback table from the start of the function is stored in the
tb_offset field.

int_proc One-bit field. This field is set to 1 if this function is a stackless leaf function that does not have a separate stack
frame.
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has_ctl One-bit field. This field is set to 1 if ctl_info is provided.

tocless One-bit field. This field is set to 1 if this function does not have a TOC. For example, a stackless leaf assembly
language routine with no references to external objects.

fp_present One-bit field. This field is set to 1 if the function uses floating-point processor instructions.

log_abort One-bit field. Reserved.

int_handl One-bit field. Reserved.

name_present One-bit field. This field is set to 1 if the name for the procedure is present following the traceback field, as
determined by the name_len and name fields.

uses_alloca One-bit field. This field is set to 1 if the procedure performs dynamic stack allocation. To address their local
variables, these procedures require a different register to hold the stack pointer value. This register may be
chosen by the compiler, and must be indicated by setting the value of the alloc_reg field.

cl_dis_inv Three-bit field. Reserved.

saves_cr One-bit field. This field indicates whether the CR fields are saved in the CR save word. If traceback tables are
used in place of DWARF unwind information, at least all volatile CR fields must be saved in the CR save word.

saves_lr One-bit field. This field is set to 1 if the function saves the LR in the LR save doubleword.

stores_bc One-bit field. This field is set to 1 if the function saves the back chain (the SP of its caller) in the stack frame
header.

fixup One-bit field. This field is set to 1 if the link editor replaced the original instruction by a branch instruction to a
special fix-up instruction sequence.

fp_saved Six-bit field. This field is set to the number of nonvolatile floating-point registers that the function saves. When
traceback unwind and debug information is used, the last register saved is always f31. Therefore, for example,
a value of 2 in this field indicates that f30 and f31 are saved.

has_vec_info One-bit field. This field is set to 1 if the procedure saves nonvolatile vector registers in the Vector Register Save
Area, specifies the number of vector parameters, or uses VMX instructions.

spare4 One-bit field. Reserved.

gpr_saved Six-bit field. This field is set to the number of nonvolatile general registers that the function saves. As with
fp_saved, when traceback unwind and debug information is used, the last register saved is always r31.

fixedparms Eight-bit field. This field is set to the number of fixed-point parameters.

floatparms Seven-bit field. This field is set to the number of floating-point parameters.

parmsonstk One-bit field. This field is set to 1 if all of the parameters are placed in the Parameter Save Area.
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4. Program Loading and Dynamic
Linking
4.1. Program Loading
A number of criteria constrain the mapping of an executable file or shared object file to virtual
memory segments. During mapping, the operating system may use delayed physical reads to
improve performance, which necessitates that file offsets and virtual addresses are congruent,
modulo the page size.

Page size must be less than or equal to the operating system implemented congruency. This ABI
defines 64 KB congruency as the minimum allowable. To maintain interoperability between operating
system implementations, 64 KB congruency is recommended.

Note

There is historical precedence for 64 KB congruency in that there is synergy with the
Power Architecture instruction set whereby low and high adjusted relocations can be
easily performed using addi or addis instructions.

The value of the p_align member of the program header struct must be 0x10000 or a larger power of
2. If a larger congruency size is used for large pages, p_align should match the congruency value.

The following program header information illustrates an application that is mapped with a base
address of 0x10000000:

Table 4.1. Program Header Example

Header Member Text Segment Data Segment

p_type PT_LOAD PT_LOAD

p_offset 0x000000 0x000af0

p_vaddr 0x10000000 0x10010af0

p_paddr 0x10000000 0x10010af0

p_filesz 0x00af0 0x00124

p_memsz 0x00af0 0x00128

p_flags R-E RW-

p_align 0x10000 0x10000

Note

For the PT_LOAD entry describing the data segment, the p_memsz may be greater
than the p_filesz. The difference is the size of the .bss section. On implementations that
use virtual memory file mapping, only the portion of the file between the .data p_offset
(rounded down to the nearest page) to p_offset + p_filesz (rounded up to the next page
size) is included. If the distance between p_offset + p_filesz and p_offset + p_memsz
crosses a page boundary, then additional memory must be allocated out of anonymous
memory to include data through p_vaddr + p_memsz.
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Table 4.2, “Memory Segment Mappings” [114] demonstrates a typical mapping of file to memory
segments.

Table 4.2. Memory Segment Mappings

File Section Virtual Address

0x0 header 0x10000000

0x100 .text 0x10000100

0xaf0 .data 0x10010af0

Not applicable. Zero-initialized
data is not stored in the file.

.bss 0x10010c14

Not stored in the file. End of sections 0x10010c18

Operating systems typically enforce memory permission on a per-page granularity. This ABI
maintains that the memory permissions are consistent across each memory segment when a file
image is mapped to a process memory segment. The text segment and data segment require
differing memory permissions. To maintain congruency of file offset to virtual address modulo the
page size, the system maps the file region holding the overlapped text and data twice at differ-
ent virtual addresses for each segment (see Figure 4.1, “File Image to Process Memory Image
Mapping” [115]).

To increase the security attributes of this ABI, the text and certain sections of the data segment (such
as the .rodata section) may be protected as read only after the pages are mapped and relocations
are resolved. See Section 4.2.5.2, “Immediate Binding” [124] for more information.
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Figure 4.1. File Image to Process Memory Image Mapping

As a result of this mapping, there can be up to four pages of impure text or data in the virtual
memory segments for the application as described in the following list:

1. ELF header information, program headers, and other information will precede the .text section
and reside at the beginning of the text segment.

2. The last memory page of the text segment can contain a copy of the partial, first file-image data
page as an artifact of page faulting the last file-image text page from the file image to the text
segment while maintaining the required offsets as shown in Figure 4.1, “File Image to Process
Memory Image Mapping” [115].

3. Likewise, the first memory page of the data segment may contain a copy of the partial, last file-
image text page as an artifact of page faulting the first file-image data page from the file image to
the data segment while maintaining the required offsets.
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4. The last faulted data-segment memory page may contain residual data from the last file-image
data page that is not part of the actual file image. The system is required to zero this residual
memory after that page is mapped to the data segment. If the application requires static data,
the remainder of this page is used for that purpose. If the static data requirements exceed the
remnant left in the last faulted memory page, additional pages shall be mapped from anonymous
memory and zeroed.

Note

The handling of the contents of the first three pages is undefined by this ABI. They are
unused by the executable program once started.

4.1.1. Addressing Models
When mapping an executable file or shared object file to memory, the system can use the following
addressing models. Each application is allocated its own virtual address space.

• Traditionally, executable files are mapped to virtual memory using an absolute addressing
model, where the mapping of the sections to segments uses the section p_vaddr specified by
the ELF header directly as an absolute address.

• The position-independent code (PIC) addressing model allows the file image text of an
executable file or shared object file to be loaded into the virtual address space of a process at an
arbitrary starting address chosen by the kernel loader or program interpreter (dynamic linker).

Note

• Shared objects need to use the PIC addressing model so that all references to global
variables go through the Global Offset Table.

• Position-independent executables should use the PIC addressing model.

4.1.2. Process Initialization
To provide a standard environment for application programs, the exec system call creates an initial
program machine state. That state includes the use of registers, the layout of the stack frame, and
argument passing. For example, a C program might typically issue the following declaration to begin
executing at the local entry point of a function named main:

extern int main (int argc, char *argv[ ], char *envp[ ], void *auxv[ ]);
int main(int argc, char *argv[ ], char *envp[ ], ElfW(auxv_t) *auxvec)

where:

argc is a nonnegative argument count.

argv is an array of argument strings. It is terminated by a NULL pointer, argv[argc] == 0.

envp is an array of environment strings. It is also terminated by a NULL pointer.

auxv is an array of structures that contain the auxiliary vector. It is terminated by a structure
entry with an a_type of AT_NULL. For more information, see Section 4.1.2.3, “Auxiliary
Vector” [118].
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This section explains how to implement the call to main or to the entry point.

4.1.2.1. Registers

The contents of most registers are not specified when a process is first entered from an exec system
call. A program should not expect the operating system to set all registers to 0. If a register other
than those listed in Table 4.3, “Registers Specified during Process Initialization” [117] must have a
specific value, the program must set it to that value during process initialization.

The contents of the following registers are specified:

Table 4.3. Registers Specified during Process Initialization

Register Description

r1 The initial stack pointer, aligned to a quadword boundary.

r2 Undefined.

r3 Contains argc, the nonnegative argument count.

r4 Contains argv, a pointer to the array of argument pointers in the stack. The array is immediately followed by a
NULL pointer. If there are no arguments, r4 points to a NULL pointer.

r5 Contains envp, a pointer to the array of environment pointers in the stack. The array is immediately followed by
a NULL pointer. If no environment exists, r5 points to a NULL pointer.

r6 Contains a pointer to the auxiliary vector. The auxiliary vector shall have at least one member, a terminating
entry with an a_type of AT_NULL (see Section 4.1.2.3, “Auxiliary Vector” [118]).

r7 Contains a termination function pointer. If r7 contains a nonzero value, the value represents a function pointer
that the application should register with atexit. If r7 contains zero, no action is required.

r12 Contains the address of the global entry point of the first function being invoked, which represents the start
address of the executable specified in the exec call.

FPSCR Contains 0, specifying “round to nearest” mode for both binary and decimal rounding modes, IEEE Mode, and
the disabling of floating-point exceptions.

VSCR Vector Status and Control Register. Contains 0, specifying vector Java/IEEE mode and that no saturation has
occurred.

The run-time that gets control from _start is responsible for:

• Creating the first stack frame
• Initializing the first stack frame's back chain pointer to NULL
• Allocating and initializing TLS storage
• Initializing the thread control block (TCB) and dynamic thread vector (DTV)
• Initializing any __thread variables
• Setting R13 for the initial process thread.

This initialization must be completed before any library initialization codes are run and before control
is transferred to the main program (main( )).

4.1.2.2. Process Stack

Although every process has a stack, no fixed stack address is defined by the system. In addition,
a program's stack address can change from one system to another. It can even change from one
process invocation to another. Thus, the process initialization code must use the stack address in
general-purpose register r1. Data in the stack segment at addresses below the stack pointer contain
undefined values.
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4.1.2.3. Auxiliary Vector

The argument and environment vectors transmit information from one application program to
another. However, the auxiliary vector conveys information from the operating system to the
program. This vector is an array of structures, defined as follows:

typedef struct
{
   long a_type;
   union
      {
         long a_val;
         void *a_ptr;
         void (*a_fcn)( );
      } a_un;
} auxv_t;
 
Name                  Value   a_un field    Comment
AT_NULL               0       ignored       /* End of vector */
AT_PHDR               3       a_ptr         /* Program headers for program */
AT_PHENT              4       a_val         /* Size of program header entry */
AT_PHNUM              5       a_val         /* Number of program headers */
AT_PAGESZ             6       a_val         /* System page size */
AT_BASE               7       a_ptr         /* Base address of interpreter */
AT_FLAGS              8       a_val         /* Flags */
AT_ENTRY              9       a_ptr         /* Entry point of program */
AT_UID                11                    /* Real user ID (uid) */
AT_EUID               12                    /* Effective user ID (euid) */
AT_GID                13                    /* Real group ID (gid) */
AT_EGID               14                    /* Effective group ID (egid) */
AT_PLATFORM           15      a_ptr         /* String identifying platform. */
AT_HWCAP              16      a_val         /* Machine-dependent hints about 
                                         processor capabilities. */
AT_CLKTCK             17                    /* Frequency of times( ), always 100 */
AT_DCACHEBSIZE        19      a_val         /* Data cache block size */
AT_ICACHEBSIZE        20      a_val         /* Instruction cache block size */
AT_UCACHEBSIZE        21      a_val         /* Unified cache block size */
AT_IGNOREPPC          22                    /* Ignore this entry! */
AT_SECURE             23                    /* Boolean, was exec authorized to use 
                                         setuid or setgid */
AT_BASE_PLATFORM      24      a_ptr         /* String identifying real platforms */
AT_RANDOM             25                    /* Address of 16 random bytes */
AT_HWCAP2             26      a_val         /* More machine-dependent hints about 
                                         processor capabilities. */
AT_EXECFN             31                    /* File name of executable */
AT_SYSINFO_EHDR       33                    /* In many architectures, the kernel 
                                            provides a virtual dynamic shared 
                                            object (VDSO) that contains a function 
                                            callable from the user state.   
                                            AT_SYSINFO_EHDR is the address of the
                                            VDSO header that is used by the
                                            dynamic linker to resolve function 
                                            symbols with the VDSO. */
AT_L1I_CACHESIZE      40                    /* Cache sizes and geometries. */
AT_L1I_CACHEGEOMETRY  41
AT_L1D_CACHESIZE      42
AT_L1D_CACHEGEOMETRY  43
AT_L2_CACHESIZE       44
AT_L2_CACHEGEOMETRY   45
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AT_L3_CACHESIZE       46
AT_L3_CACHEGEOMETRY   47
 

AT_NULL

The auxiliary vector has no fixed length; instead an entry of this type denotes the end of the vector.
The corresponding value of a_un is undefined.

AT_PHDR

Under some conditions, the system creates the memory image of the application program before
passing control to an interpreter program. When this happens, the a_ptr member of the AT_PHDR
entry tells the interpreter where to find the program header table in the memory image. If the
AT_PHDR entry is present, entries of types AT_PHENT, AT_PHNUM, and AT_ENTRY must also be
present. See the Program Header section in Chapter 5 of the System V ABI for more information
about the program header table.

AT_PHENT

The a_val member of this entry holds the size, in bytes, of one entry in the program header table to
which the AT_PHDR entry points.

AT_PHNUM

The a_val member of this entry holds the number of entries in the program header table to which the
AT_PHDR entry points.

AT_PAGESZ

If present, this entry's a_val member gives the system page size in bytes. The same information is
also available through the sysconf system call.

AT_BASE

The a_ptr member of this entry holds the base address at which the interpreter program was loaded
into memory. See the Program Header section in Chapter 5 of the System V ABI for more informa-
tion about the base address.

AT_FLAGS

If present, the a_val member of this entry holds 1-bit flags. Bits with undefined semantics are set to
zero. Other auxiliary vector types are reserved. No flags are currently defined for AT_FLAGS on the
64-bit OpenPOWER ABI Architecture.

AT_ENTRY

The a_ptr member of this entry holds the entry point of the application program to which the
interpreter program should transfer control.

AT_DCACHEBSIZE

The a_val member of this entry gives the data cache block size for processors on the system on
which this program is running. If the processors have unified caches, AT_DCACHEBSIZE is the
same as AT_UCACHEBSIZE.
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AT_ICACHEBSIZE

The a_val member of this entry gives the instruction cache block size for processors on the system
on which this program is running. If the processors have unified caches, AT_ICACHEBSIZE is the
same as AT_UCACHEBSIZE.

AT_UCACHEBSIZE

The a_val member of this entry is zero if the processors on the system on which this program is
running do not have a unified instruction and data cache. Otherwise, it gives the cache block size.

AT_PLATFORM

The a_ptr member is the address of the platform name string. For virtualized systems, this may be
different (that is, an older platform) than the physical machine running this environment.

AT_BASE_PLATFORM

The a_ptr member is the address of the platform name string for the physical machine. For virtual-
ized systems, this will be the platform name of the real hardware.

AT_HWCAP

The a_val member of this entry is a bit map of hardware capabilities. Some bit mask values include:

PPC_FEATURE_32            0x80000000 /* Always set for powerpc64 */
PPC_FEATURE_64            0x40000000 /* Always set for powerpc64 */
PPC_FEATURE_HAS_ALTIVEC   0x10000000
PPC_FEATURE_HAS_FPU       0x08000000
PPC_FEATURE_HAS_MMU       0x04000000
PPC_FEATURE_UNIFIED_CACHE 0x01000000
PPC_FEATURE_NO_TB         0x00100000 /* 601/403gx have no timebase */
PPC_FEATURE_POWER4        0x00080000 /* POWER4 ISA 2.00 */
PPC_FEATURE_POWER5        0x00040000 /* POWER5 ISA 2.02 */
PPC_FEATURE_POWER5_PLUS   0x00020000 /* POWER5+ ISA 2.03 */
PPC_FEATURE_CELL_BE       0x00010000 /* CELL Broadband Engine */
PPC_FEATURE_BOOKE         0x00008000 /* ISA Category Embedded */
PPC_FEATURE_SMT           0x00004000 /* Simultaneous Multi-Threading */
PPC_FEATURE_ICACHE_SNOOP  0x00002000
PPC_FEATURE_ARCH_2_05     0x00001000 /* ISA 2.05 */
PPC_FEATURE_PA6T          0x00000800 /* PA Semi 6T Core */
PPC_FEATURE_HAS_DFP       0x00000400 /* Decimal FP Unit */
PPC_FEATURE_POWER6_EXT    0x00000200 /* P6 + mffgpr/mftgpr */
PPC_FEATURE_ARCH_2_06     0x00000100 /* ISA 2.06 */
PPC_FEATURE_HAS_VSX       0x00000080 /* P7 Vector Extension. */
PPC_FEATURE_PSERIES_PERFMON_COMPAT 0x00000040
PPC_FEATURE_TRUE_LE       0x00000002
PPC_FEATURE_PPC_LE        0x00000001

Bit 0x00000004 is reserved for kernel use.

AT_HWCAP2

The a_val member of this entry is a bit map of hardware capabilities. Some bit mask values include:

PPC_FEATURE2_ARCH_2_07      0x80000000 /* ISA 2.07 */
PPC_FEATURE2_HAS_HTM        0x40000000 /* Hardware Transactional Memory */
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PPC_FEATURE2_HAS_DSCR       0x20000000 /* Data Stream Control Register */
PPC_FEATURE2_HAS_EBB        0x10000000 /* Event Base Branching */
PPC_FEATURE2_HAS_ISEL       0x08000000 /* Integer Select */
PPC_FEATURE2_HAS_TAR        0x04000000 /* Target Address Register */
PPC_FEATURE2_HAS_VCRYPTO    0x02000000 /* The processor implements the
                                          Vector.AES category */
PPC_FEATURE2_HTM_NOSC       0x01000000
PPC_FEATURE2_ARCH_3_00      0x00800000 /* ISA 3.0 */
PPC_FEATURE2_HAS_IEEE128    0x00400000 /* VSX IEEE Binary Float 128-bit */
PPC_FEATURE2_DARN           0x00200000 /* darn instruction */
PPC_FEATURE2_SCV            0x00100000 /* scv syscall */
PPC_FEATURE2_HTM_NO_SUSPEND 0x00080000 /* TM without suspended state */
PPC_FEATURE2_ARCH_3_1       0x00040000 /* ISA 3.1 */
PPC_FEATURE2_MMA            0x00020000 /* Matrix Multiply Assist */

When a process starts to execute, its stack holds the arguments, environment, and auxiliary vector
received from the exec call. The system makes no guarantees about the relative arrangement of
argument strings, environment strings, and the auxiliary information, which appear in no defined or
predictable order. Further, the system may allocate memory after the null auxiliary vector entry and
before the beginning of the information block.

AT_L1I_CACHESIZE

The size of the level-1 instruction cache, in bytes.

AT_L1I_CACHEGEOMETRY

The geometry of the level-1 instruction cache. The low-order sixteen bits contain the cache associa-
tivity as a value N, where N = 1 represents a direct-mapped cache, N = 0xffff represents a fully
associative cache, and any other N represents an N-way set-associative cache. The next higher-
order sixteen bits contain the size of the cache line in bytes. Note that the cache line size is not
necessarily the same as the cache block size.

AT_L1D_CACHESIZE

The size of the level-1 data cache, in bytes.

AT_L1D_CACHEGEOMETRY

The geometry of the level-1 data cache, defined in the same manner as for
AT_L1I_CACHEGEOMETRY.

AT_L2_CACHESIZE

The size of the level-2 cache, in bytes.

AT_L2_CACHEGEOMETRY

The geometry of the level-2 cache, defined in the same manner as for AT_L1I_CACHEGEOMETRY.

AT_L3_CACHESIZE

The size of the level-3 cache, in bytes.

AT_L3_CACHEGEOMETRY
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The geometry of the level-3 cache, defined in the same manner as for AT_L1I_CACHEGEOMETRY.

4.2. Dynamic Linking
4.2.1. Program Interpreter
For dynamic linking, the standard program interpreter is /lib/ld64.so.2. It may be located in different
places on different distributions.

4.2.2. Dynamic Section
The dynamic section provides information used by the dynamic linker to manage dynamically loaded
shared objects, including relocation, initialization, and termination when loaded or unloaded, resolv-
ing dependencies on other shared objects, resolving references to symbols in the shared object, and
supporting debugging. The following dynamic tags are relevant to this processor-specific ABI:

DT_PLTGOT

The d_ptr member of this dynamic tag points to the first byte of the PLT.

DT_JMPREL

The d_ptr member of this dynamic tag points to the first byte of the table of relocation entries, which
have a one-to-one correspondence with PLT entries. Any executable or shared object with a PLT
must have DT_JMPREL. A shared object containing only data will not have a PLT and thus will not
have DT_JMPREL.

DT_PPC64_GLINK (DT_LOPROC + 0)

The d_ptr member of this dynamic tag points to 32 bytes before the .glink lazy link symbol resolver
stubs that are described in Section 4.2.5.3, “Procedure Linkage Table” [125].

DT_PPC64_OPT (DT_LOPROC + 3)

The d_val member of this dynamic tag specifies whether various optimizations are possible. The low
bit will be set to indicate that an optimized __tls_get_addr call stub is used. The next most-significant
bit will be set if multiple TOCs are present.

4.2.3. Global Offset Table
To support position-independent code, a Global Offset Table (GOT) shall be constructed by the
link editor in the data segment when linking code that contains any of the various R_PPC64_GOT*
relocations or when linking code that references the .TOC. address. The GOT consists of an 8-byte
header that contains the TOC base (the first TOC base when multiple TOCs are present), followed
by an array of 8-byte addresses. The link editor shall emit dynamic relocations as appropriate for
each entry in the GOT. At runtime, the dynamic linker will apply these relocations after the address-
es of all memory segments are known (and thus the addresses of all symbols). While the GOT may
be appear to be an array of absolute addresses, this ABI does not preclude the GOT containing
nonaddress entries and specifies the presence of nonaddress tls_index entries.
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Absolute addresses are generated for all GOT relocations by the dynamic linker before giving control
to general application code. (However, IFUNC resolution functions may be invoked before reloca-
tion is completed, limiting the use of global variables by such functions.) The dynamic linker is free
to choose different memory segment addresses for the executable or shared objects in a differ-
ent process image. After the initial mapping of the process image by the dynamic linker, memory
segments reside at fixed addresses for the life of a process.

The symbol .TOC. may be used to access the GOT or in TOC-relative addressing to other data
constructs, such as the procedure linkage table. The symbol may be offset by 0x8000 bytes, or
another offset, from the start of the .got section. This offset allows the use of the full (64 KB) signed
range of 16-bit displacement fields by using both positive and negative subscripts into the array of
addresses, or a larger offset to afford addressing using references within ±2 GB with 32-bit displace-
ments. The 32-bit displacements are constructed by using the addis instruction to provide a first
high-order 16-bit portion of a 32-bit displacement in conjunction with an instruction to supply a low-
order 16-bit portion of a 32-bit displacement.

In PIC code that uses the TOC, the TOC pointer r2 points to the TOC base, enabling easy reference.
For static nonrelocatable modules, the GOT address is fixed and can be directly used by code.

Code may access GOT entries directly using PC-relative addressing, where available.

4.2.4. Function Addresses
The following requirements concern function addresses.

When referencing a function address, consider the following requirements:

• Intraobject executable or shared object function address references may be resolved by the
dynamic linker to the absolute virtual address of the symbol.

• Function address references from within the executable file to a function defined in a shared
object file are resolved by the link editor to the .text section address of the PLT call stub for that
functionwithin the executable file.

• In a static module, when a function pointer reference is made to a function provided by a
dynamically loaded shared module, the function may be resolved to the address of a PLT stub. If
this resolution is made, all function pointer references must be made through the same PLT stub
in the static module to ensure correct intraobject comparisons for function addresses.

• A function address of a nested function may also be resolved to the address of a trampoline
used to call it.

When comparing function addresses, consider the following requirements:

• The address of a function shall compare to the same value in executables and shared objects.

• For intraobject comparisons of function addresses within the executable or shared object, the
link editor may directly compare the absolute virtual addresses.

• For a function address comparison where an executable references a function defined in a
a shared object, the link editor will place the address of a .text section PLT call stub for that
function in the corresponding dynamic symbol table entry's st_value field (see Section 3.4.1,
“Symbol Values” [78]).
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• When the dynamic linker loads shared objects associated with an executable and resolves any
GOT entry relocations into absolute addresses, it will search the dynamic symbol table of the
executable for each symbol that needs to be resolved.

• If it finds the symbol and the st_value of the symbol table entry is nonzero, it shall use the
address indicated in the st_value entry as the symbol’s address. If the dynamic linker does not
find the symbol in the executable’s dynamic symbol table or the entry’s st_value member is zero,
the dynamic linker may consider the symbol as undefined in the executable file.

4.2.5. Procedure Linkage Table
When the link editor builds an executable file or shared object file, it does not know the absolute
address of undefined function calls. Therefore, it cannot generate code to directly transfer execution
to another shared object or executable. For each execution transfer to an undefined function call
in the file image, the link editor places a relocation against an entry in the Procedure Linkage Table
(PLT) of the executable or shared object that corresponds to that function call.

Additionally, for all nonstatic functions with standard (nonhidden) visibility in a shared object, the link
editor invokes the function through the PLT, even if the shared object defines the function. The same
is not true for executables.

The link editor knows the number of functions invoked through the PLT, and it reserves space for
an appropriately sized .plt section. The .plt section is located in the section following the .got. It
consists of an array of addresses and is initialized by the module loader. There will also be an array
of R_PPC_JMP_SLOT relocations in .rela.plt, with a one-to-one correspondence between elements
of each array. Each R_PPC_JMP_SLOT relocation will have r_offset pointing at the .plt word it
relocates.

A unique PLT is constructed by the static linker for each static module (that is, the main executable)
and each dynamic shared object. The PLT is located in the data segment of the process image at
object load time by the dynamic linker using the information about the .plt section stored in the file
image. The individual PLT entries are populated by the dynamic linker using one of the following
binding methods. Execution can then be redirected to a dependent shared object or executable.

4.2.5.1. Lazy Binding
The lazy binding method is the default. It delays the resolution of a PLT entry to an absolute address
until the function call is made the first time. The benefit of this method is that the application does not
pay the resolution cost until the first time it needs to call the function, if at all.

To implement lazy binding, the dynamic loader points each PLT entry to a lazy resolution stub at load
time. After the function call is made the first time, this lazy resolution stub gets control, resolves the
symbol, and updates the PLT entry to hold the final value to be used for future calls.

4.2.5.2. Immediate Binding
The immediate binding method resolves the absolute addresses of all PLT entries in the executable
and dependent shared objects at load time, before passing execution control to the application. The
environment variable LD_BIND_NOW may be set to a nonnull value to signal the dynamic linker that
immediate binding is requested at load time, before control is given to the application.

For some performance-sensitive situations, it may be better to pay the resolution cost to populate the
PLT entries up front rather than during execution.
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4.2.5.3. Procedure Linkage Table

For every call site that needs to use the PLT, the link editor constructs a call stub in the .text section
and resolves the call site to use that call stub. The call stub transfers control to the address indicat-
ed in the PLT entry. These call stubs need not be adjacent to one another or unique. They can be
scattered throughout the text segment so that they can be reached with a branch and link instruction.

Depending on relocation information at the call site, the stub provides one of the following properties:

1. The caller has set up r2 to hold the TOC pointer and expects the PLT call stub to save that value
to the TOC save stack slot. This is the default.

2. The caller has set up r2 to hold the TOC pointer and has already saved that value to the TOC
save stack slot itself. This is indicated by the presence of a R_PPC64_TOCSAVE relocation on
the nop following the call.

tocsaveloc:
     nop
   ...
  bl target
     .reloc ., R_PPC64_TOCSAVE, tocsaveloc
     nop

3. The caller has not set up r2 to hold the TOC pointer. This is indicated by use of a
R_PPC64_REL24_NOTOC relocation (instead of R_PPC64_REL24) on the call instruction.

In any scenario, the PLT call stub must transfer control to the function whose address is provided
in the associated PLT entry. This address is treated as a global entry point for ABI purposes. This
means that the PLT call stub loads the address into r12 before transferring control.

Although the details of the call stub implementation are left to the link editor, some examples are
provided. In those examples, func@plt is used to denote the address of the PLT entry for func;
func@plt@toc denotes the offset of that address relative to the TOC pointer; and the @ha and @l
variants denote the high-adjusted and low parts of these values as usual. Because the link editor
synthesizes the PLT call stubs directly, it can determine all these values as immediate constants.
The assembler is not required to support those notations.

A possible implementation for case 1 looks as follows (if func@plt@toc is less than 32 KB, the call
stub may be simplified to omit the addis):

std    r2,24(r1)
  addis  r12,r2,func@plt@toc@ha
  ld     r12,func@plt@toc@l(r12)
  mtctr  r12
  bctr

For case 2, the same implementation as for case 1 may be used, except that the first instruction “std
r2,24(r1)” is omitted:

addis  r12,r2,func@plt@toc@ha
  ld     r12,func@plt@toc@l(r12)
  mtctr  r12
  bctr

A possible implementation for case 3 looks as follows:
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   mflr   r0
     bcl    20,31,1f
  1: mflr   r2
     mtlr   r0
     addis  r2,r2,(.TOC.-1b)@ha
     addi   r2,r2,(.TOC.-1b)@l
     addis  r12,r2,func@plt@toc@ha
     ld     r12,func@plt@toc@l(r12)
     mtctr  r12
     bctr

When generating non-PIC code for the small or medium code model, a simpler variant may alterna-
tively be used for cases 2 or 3:

lis    r12,func@plt@ha
  ld     r12,func@plt@l(r12)
  mtctr  r12
  bctr

When PC-relative addressing is available, another simpler variant may alternatively be used for
cases 2 or 3:

pld     r12, func@plt@pcrel
mtctr   r12
bctr

To support lazy binding, the link editor also provides a set of symbol resolver stubs, one for each
PLT entry. Each resolver stub consists of a single instruction, which is usually a branch to a common
resolver entry point or a nop. The resolver stubs are placed in the .glink section, which is merged
into the .text section of the final executable or dynamic object. The address of the resolver stubs is
communicated to the dynamic loader through the DT_PPC64_GLINK dynamic section entry. The
address of the symbol resolver stub associated with PLT entry N is determined by adding 4xN + 32
to the d_ptr field of the DT_PPC64_GLINK entry. When using lazy binding, the dynamic linker initial-
izes each PLT entry at load time to that address.

The resolver stubs provided by the link editor must call into the main resolver routine provided by
the dynamic linker. This resolver routine must be called with r0 set to the index of the PLT entry to
be resolved, r11 set to the identifier of the current dynamic object, and r12 set to the resolver entry
point address (as usual when calling a global entry point). The resolver entry point address and the
dynamic object identifier are installed at load time by the dynamic linker into the two doublewords
immediately preceding the array of PLT entries, allowing the resolver stubs to retrieve these values
from there. These two doublewords are considered part of the .plt section; the DT_PLTGOT dynamic
section entry points to the first of those words.

Beyond the above requirements, the implementation of the .glink resolver stubs is up to the link
editor. The following shows an example implementation:

  # ABI note: At entry to the resolver stub:
    # - r12 holds the address of the res_N stub for the target routine
    # - all argument registers hold arguments for the target routine
  PLTresolve:
    # Determine addressability. This sequence works for both PIC
    # and non-PIC code and does not rely on presence of the TOC pointer.
    mflr r0
    bcl 20,31,1f
  1: mflr r11
    mtlr r0
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    # Compute .plt section index from entry point address in r12
    # .plt section index is placed into r0 as argument to the resolver
    sub r12,r12,r11
    subi r12,r12,res_0-1b
    srdi r0,r12,2
    # Load address of the first byte of the PLT
    ld r12,PLToffset-1b(r11)
    add r11,r12,r11
    # Load resolver address and DSO identifier from the
    # first two doublewords of the PLT
    ld r12,0(r11)
    ld r11,8(r11)
    # Branch to resolver
    mtctr r12
    bctr
    # ABI note: At entry to the resolver:
    # - r12 holds the resolver address
    # - r11 holds the DSO identifier
    # - r0 holds the PLT index of the target routine
    # - all argument registers hold arguments for the target routine
     
    # Constant pool holding offset to the PLT
    # Note that there is no actual symbol PLT; the link editor
    # synthesizes this value when creating the .glink section
  PLToffset:
    .quad PLT-.
     
    # A table of branches, one for each PLT entry
    # The idea is that the PLT call stub loads r12 with these
    # addresses, so (r12 - res_0) gives the PLT index × 4.
     
  res_0: b PLTresolve
  res_1: b PLTresolve
    ...

After resolution, the value of a PLT entry in the PLT is the address of the function’s global entry point,
unless the resolver can determine that a module-local call occurs with a shared TOC value wherein
the TOC is shared between the caller and the callee.
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5. Libraries
5.1. Library Requirements
This ABI does not specify any additional interfaces for general-purpose libraries. However, certain
processor-specific support routines are defined to ensure portability between ABI-conforming
implementations.

Such processor-specific support definitions concern vector and floating-point alignment, register
save and restore routines, variable argument list layout, and a limited set of data definitions.

5.1.1. C Library Conformance with Generic ABI

5.1.1.1. Malloc Routine Return Pointer Alignment
The malloc( ) routine must always return a pointer with the alignment of the largest alignment
needed for loads and stores of the built-in data types. This is currently 16 bytes.

5.1.1.2. Library Handling of Limited-Access Bits in Registers
Requirements for the handling of limited-access bits in certain registers by standard library functions
are defined in Section 2.2.2.2, “Limited-Access Bits” [31].

5.1.2. Save and Restore Routines
All of the save and restore routines described in Section 2.3.3, “Register Save and Restore
Functions” [58] are required. These routines use unusual calling conventions due to their special
purpose. Parameters for these functions are described in Section 2.3.3.1, “GPR Save and Restore
Functions” [58], Section 2.3.3.2, “FPR Save and Restore Functions” [60], and Section 2.3.3.3,
“Vector Save and Restore Functions” [61].

The symbols for these functions shall be hidden and locally resolved within each module. The
symbols so created shall not be exported.

These functions can either be provided in a utility library that is linked by the linker to each module,
or the functions can be synthesized by the linker as necessary to resolve symbols.

5.1.3. Types Defined in the Standard Header
The type va_list shall be defined as follows:

typedef void * va_list;

The following integer types are defined in headers, which must be provided by freestanding
implementations, or have their limits defined in such headers. They shall have the following defini-
tions:

• typedef long ptrdiff_t;
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• typedef unsigned long size_t;
• typedef int wchar_t;
• typedef int sig_atomic_t;
• typedef unsigned int wint_t;
• typedef signed char int8_t;
• typedef short int16_t;
• typedef int int32_t;
• typedef long int64_t;
• typedef unsigned char uint8_t;
• typedef unsigned short uint16_t;
• typedef unsigned int uint32_t;
• typedef unsigned long uint64_t;
• typedef signed char int_least8_t;
• typedef short int_least16_t;
• typedef int int_least32_t;
• typedef long int_least64_t;
• typedef unsigned char uint_least8_t;
• typedef unsigned short uint_least16_t;
• typedef unsigned int uint_least32_t;
• typedef unsigned long uint_least64_t;
• typedef signed char int_fast8_t;
• typedef int int_fast16_t;
• typedef int int_fast32_t;
• typedef long int_fast64_t;
• typedef unsigned char uint_fast8_t;
• typedef unsigned int uint_fast16_t;
• typedef unsigned int uint_fast32_t;
• typedef unsigned long uint_fast64_t;
• typedef long intptr_t;
• typedef unsigned long uintptr_t;
• typedef long intmax_t;
• typedef unsigned long uintmax_t;

5.1.4. Predefined Macros
A C preprocessor that conforms to this ABI shall predefine the macro _CALL_ELF to have a value of
2.

The macros listed in Table 5.1, “Predefined Target Architecture Macros” [129] are based on
environment characteristics. They shall be predefined to a value of 1 by conforming C preprocessors
when the corresponding condition applies.

Table 5.1. Predefined Target Architecture Macros

Macro Condition

__PPC__

__powerpc__

The target is a Power Architecture processor.

__PPC64__

__powerpc64__

The target is a Power Architecture processor running in 64-bit mode.
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Macro Condition
__64BIT__a

__BIG_ENDIAN__ The target processor is big endian.

__LITTLE_ENDIAN__ The target processor is little endian.

_ARCH_PWRn Indicates that the target processor supports the Power ISA level for POWERn or higher. For example,
_ARCH_PWR8 supports the Power ISA for a POWER8 processor.

__PCREL__ The target processor supports PC-relative addressing instructions.
aPhased in.

The macros in listed Table 5.2, “Predefined Target Data Order Macros” [130] are based on the
order of the data elements. They shall be predefined to one of the allowable values by conforming C
preprocessors when the corresponding condition applies.

Table 5.2. Predefined Target Data Order Macros
Macro Value Condition

__ORDER_BIG_ENDIAN__ The target processor is big endian.__BYTE_ORDER__

__ORDER_LITTLE_ENDIAN__ The target processor is little endian.

__ORDER_BIG_ENDIAN__ The target processor is big endian.__FLOAT_WORD_ORDER__

__ORDER_LITTLE_ENDIAN__ The target processor is little endian.

__ORDER_BIG_ENDIAN__ The target processor is big endian, or big-endian vector
element order has been requested.

__VEC_ELEMENT_REG_ORDER__

__ORDER_LITTLE_ENDIAN__ The target processor is little endian, and big-endian vector
element order has not been requested.

5.2. POWER ISA-Specific API and ABI
Extensions
The Data Stream Control Register (DSCR) affects how the processor handles data streams that
are detected by the hardware and defined by the software. For more information, see “Data Stream
Control Overview, ABI, and API” at the following link:

https://github.com/paflib/paflib/wiki/Data-Stream-Control-Overview,-ABI,-and-API

The event-based branching facility generates exceptions when certain criteria are met. For more
information, see the “Event Based Branching Overview, ABI, and API” section at the following link:

https://github.com/paflib/paflib/wiki/Event-Based-Branching----Overview,-ABI,-and-API

https://github.com/paflib/paflib/wiki/Data-Stream-Control-Overview,-ABI,-and-API
https://github.com/paflib/paflib/wiki/Event-Based-Branching----Overview,-ABI,-and-API
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6. Vector Programming Interfaces
Earlier versions of this ABI included a description of vector programming interfaces and techniques
for POWER®, along with an appendix enumerating the supported vector built-in functions. Most
of this information is not ABI, and is removed from this version of the document. Instead, those
interested are encouraged to now refer to the POWER Vector Intrinsics Programming Reference,
available from the OpenPOWER Foundation in their Technical Resources Catalog (https://
openpowerfoundation.org/technical/resource-catalog/).

6.1. Library Interfaces
6.1.1. printf and scanf of Vector Data Types
Support for vector variable input and output may be provided as an extension to the following POSIX
library functions for the new vector conversion format strings:

• scanf
• fscanf
• sscanf
• wsscanf
• printf
• fprintf
• sprintf
• snprintf
• wsprintf
• vprintf
• vfprintf
• vsprintf
• vwsprintf

(One sample implementation for such an extended specification is libvecprintf.)

The size formatters are as follows:

• vl or lv consumes one argument and modifies an existing integer conversion, resulting in vector
signed int, vector unsigned int, or vector bool for output conversions or vector signed int * or
vector unsigned int * for input conversions. The data is then treated as a series of four 4-byte
components, with the subsequent conversion format applied to each.

• vh or hv consumes one argument and modifies an existing short integer conversion, resulting
in vector signed short or vector unsigned short for output conversions or vector signed short *
or vector unsigned short * for input conversions. The data is treated as a series of eight 2-byte
components, with the subsequent conversion format applied to each.

• v consumes one argument and modifies a 1-byte integer, 1-byte character, or 4-byte floating-
point conversion. If the conversion is a floating-point conversion, the result is vector float for
output conversion or vector float * for input conversion. The data is treated as a series of four
4-byte floating-point components with the subsequent conversion format applied to each. If
the conversion is an integer or character conversion, the result is either vector signed char,
vector unsigned char, or vector bool char for output conversion, or vector signed char * or

https://openpowerfoundation.org/technical/resource-catalog/
https://openpowerfoundation.org/technical/resource-catalog/
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vector unsigned char * for input conversions. The data is treated as a series of sixteen 1-byte
components, with the subsequent conversion format applied to each.

• vv consumes one argument and modifies an 8-byte floating-point conversion. If the conversion is
a floating-point conversion, the result is vector double for output conversion or vector double * for
input conversion. The data is treated as a series of two 8-byte floating-point components with the
subsequent conversion format applied to each. Integer and byte conversions are not defined for
the vv modifier.

Note

As new vector types are defined, new format codes should be defined to support scanf
and printf of those types.

Any conversion format that can be applied to the singular form of a vector-data type can be used
with a vector form. The %d, %x, %X, %u, %i, and %o integer conversions can be applied with the
%lv, %vl, %hv, %vh, and %v vector-length qualifiers. The %c character conversion can be applied
with the %v vector length qualifier. The %a, %A, %e, %E, %f, %F, %g, and %G float conversions can
be applied with the %v vector length qualifier.

For input conversions, an optional separator character can be specified excluding white space
preceding the separator. If no separator is specified, the default separator is a space including white
space characters preceding the separator, unless the conversion is c. Then, the default conversion is
null.

For output conversions, an optional separator character can be specified immediately preceding
the vector size conversion. If no separator is specified, the default separator is a space unless the
conversion is c. Then, the default separator is null.
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Appendix A. Binary-Coded Decimal
Built-In Functions
Binary-coded decimal (BCD) values are compressed; each decimal digit and sign bit occupies 4
bits. Digits are ordered with the most significant on the left and the least on the right. The final 4 bits
encode the sign. A valid encoding must have a value in the range 0–9 in each of its 31 digits, and a
value in the range 10–15 for the sign field.

Source operands with sign codes of 0b1010, 0b1100, 0b1110, or 0b1111 are interpreted as positive
values. Source operands with sign codes of 0b1011 or 0b1101 are interpreted as negative values.

BCD arithmetic operations encode the sign of their result as follows: A value of 0b1101 indicates a
negative value, while 0b1100 and 0b1111 indicate positive values or zero, depending on the value of
the positive sign (PS) bit.

These built-in functions can operate on values of at most 31 digits. BCD values are stored in
memory as contiguous arrays of 1–16 bytes.

Note
BCD built-in functions are valid only when -march or -qarch is set to target POWER8
processors or later.

Table A.1, “Binary-Coded Decimal Built-In Functions” [133] summarizes the BCD built-in functions.
Functions are grouped by type. Within type, functions are listed alphabetically. Prototypes are provid-
ed for each function.

Table A.1. Binary-Coded Decimal Built-In Functions
Group Description of Binary-Coded Decimal Built-In Functions (with Prototypes)

BCD Add and Subtract

__BUILTIN_BCDADD (a, b, ps) Purpose:

Returns the result of the addition of the BCD values a and b.

The sign of the result is determined as follows:

• If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).

• If the result is a nonnegative value and ps is 1, the sign is set to 0b1111 (0xF).

• If the result is a negative value, the sign is set to 0b1101 (0xD).

Parameters:

The ps parameter selects the numeric format for the positive-signed BCD numbers. It must
be set to one of the values defined in Section A.1.1, “BCD API Named Constants” [137].

vector unsigned char __builtin_bcdadd (vector unsigned char, vector unsigned char, const
int);

__BUILTIN_BCDSUB (a, b, ps) Purpose

Returns the result of the subtraction of the BCD values a and b. Sets the sign of the
nonnegative result to 0b1100 if ps is 0. Otherwise, sets the sign of the nonnegative result to
0b1111.

The sign of the result is determined as follows:
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Group Description of Binary-Coded Decimal Built-In Functions (with Prototypes)
• If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).

• If the result is a nonnegative value and L is 1, the sign is set to 0b1111 (0xF).

• If the result is a negative value, the sign is set to 0b1101 (0xD).

Parameters:

The ps parameter selects the numeric format for the positive-signed BCD numbers. It must
be set to one of the values defined in Section A.1.1, “BCD API Named Constants” [137]

vector unsigned char __builtin_bcdsub (vector unsigned char, vector unsigned char, const
int);

BCD Predicates

__BUILTIN_BCDADD_OFL (a, b) Purpose:

Returns one if the corresponding BCD add operation results in an overflow. Otherwise,
returns zero.

int __builtin_bcdadd_ofl (vector unsigned char, vector unsigned char);

__BUILTIN_BCDSUB_OFL (a, b) Purpose:

Returns one if the corresponding BCD subtract operation results in an overflow. Otherwise,
returns zero.

int __builtin_bcdsub_ofl (vector unsigned char, vector unsigned char);

__BUILTIN_BCD_INVALID (a) Purpose:

Returns one if a is an invalid encoding of a BCD value. Otherwise, returns zero.

int __builtin_bcd_invalid (vector unsigned char);

BCD Comparison

__BUILTIN_BCDCMPEQ (a, b) Purpose:

Returns one if the BCD value a is equal to b. Otherwise, returns zero.

int __builtin_bcdcmpeq (vector unsigned char, vector unsigned char);

__BUILTIN_BCDCMPGE (a, b) Purpose:

Returns one if the BCD value a is greater than or equal to b. Otherwise, returns zero.

int __builtin_bcdcmpge (vector unsigned char, vector unsigned char);

__BUILTIN_BCDCMPGT (a, b) Purpose:

Returns one if the BCD value a is greater than b. Otherwise, returns zero.

int __builtin_bcdcmpgt (vector unsigned char, vector unsigned char);

__BUILTIN_BCDCMPLE (a, b) Purpose:

Returns one if the BCD value a is less than or equal to b. Otherwise, returns zero.

int __builtin_bcdcmple (vector unsigned char, vector unsigned char);

__BUILTIN_BCDCMPLT (a, b) Purpose:

Returns one if the BCD value a is less than b. Otherwise, returns zero.

int __builtin_bcdcmplt (vector unsigned char, vector unsigned char);

BCD Load and Store

__BUILTIN_BCD2DFP (a) Purpose:

Converts a signed BCD value stored as a vector of unsigned characters to a 128-bit
decimal floating-point format.

• Parameter value a is a 128-bit vector that is treated as a signed BCD 31-digit value.

• The return value is a doubleword floating-point pair in a decimal 128 floating-point
format.
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Group Description of Binary-Coded Decimal Built-In Functions (with Prototypes)

_Decimal128 __builtin_bcd2dfp (vector unsigned char);

__BUILTIN_BCDMUL10 (ARG1) Purpose:

Multiplies the BCD number in ARG1 by 10. The sign indicator remains unmodified.

vector unsigned char __builtin_bcdmul10 (vector unsigned char);

__BUILTIN_BCDDIV10 (ARG1) Purpose:

Divides the BCD number in ARG1 by 10. The sign indicator remains unmodified.

vector unsigned char __builtin_bcddiv10 (vector unsigned char);

A.1. BCD Header Functions
Note

These functions are being phased in for POWER8, and might not be available on all
implementations. Phased-in functions are optional for the current generation of compliant
systems.

The bcd.h header file defines a BCD data type and the interfaces to efficiently compute the BCD
functions listed in Table A.2, “BCD Functions Defined by bcd.h” [135]. These interfaces can be
implemented as macros or by another method, such as static inline functions. Table A.2, “BCD
Functions Defined by bcd.h” [135] shows one suggested implementation using macros and the
built-in operators shown in Table A.1, “Binary-Coded Decimal Built-In Functions” [133]. A sample
bcd.h listing is shown in Section A.1.2, “Exemplary Implementation for bcd.h” [137].

The bcd data type is defined as follows in the bcd.h:

typedef bcd vector unsigned char;

The header file also defines a bcd_default_format as follows:

#ifndef bcd_default_format
#define bcd_default_format __BCD_FORMAT_IBM
#endif

Table A.2. BCD Functions Defined by bcd.h

Macroa Macro Definition

bcd_add(a,b) (bcd)__builtin_bcdadd (a,b, bcd_default_format)

bcd_sub(a,b) (bcd)__builtin_bcdsub (a,b, bcd_default_format)

bcd_add_ofl(a,b) (_Bool)__builtin_bcdadd_ofl (a,b)

bcd_sub_ofl(a,b) (_Bool)__builtin_bcdsub_ofl (a,b)

bcd_invalid(a) (_Bool)__builtin_bcd_invalid (a)

bcd_cmpeq(a,b) (_Bool)__builtin_bcdcmpeq (a,b)

bcd_cmpge(a,b) (_Bool)__builtin_bcdcmpge (a,b)

bcd_cmpgt(a,b) (_Bool)__builtin_bcdcmpgt (a,b)

bcd_cmple(a,b) (_Bool)__builtin_bcdcmple (a,b)

bcd_cmplt(a,b) (_Bool)__builtin_bcdcmplt (a,b)

bcd_cmpne(a,b) !(_Bool)__builtin_bcdcmpeq (a,b)
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Macroa Macro Definition

bcd_xl(a,b) (bcd)vec_xl_len_r(a,b)b

bcd_xst(a,b) (bcd)vec_xst_len_r(a,b)c

bcd_quantize(d) __builtin_bcdquantize (d)

bcd_dfp(a) __builtin_bcd2dfp (a)

bcd_dfp2bcd(dfp) (bcd)__builtin_vec_DFP2BCD (_Decimal128 dfp)

bcd_string2bcd(string) (bcd) __bcd_string2bcd (string, bcd_default_format)

bcd_mul10(a) (bcd) __builtin_bcdmul10 (a)

bcd_div10(a) (bcd) __builtin_bcddiv10 (a)

bcd_mul(a,b) (bcd) __bcd_mul (a,b,bcd_default_format)

bcd_div(a,b) (bcd) __bcd_div (a,b,bcd_default_format)
aOr static inline function.
bOptionally, __builtin_ldrmb (a,b) for previous generations of XL compilers.
cOptionally, __builtin_strmb (a,b) for previous generations of XL compilers.

In addition, the bcd.h file provides access to the library functions shown in Table A.3, “BCD Support
Functions” [136]. These functions may be provided either as a static inline function by bcd.h or in a
system library that is linked with an application which uses such functions.

Table A.3. BCD Support Functions
Function Name Description of BCD Support Functions (with Prototypes)

__BCD_MUL (A,B,F) Purpose:

Two signed 31-digit values are multiplied, and the lower 31 digits of the product are returned.
Overflow is ignored.

• Parameter A is a 128-bit vector that is treated as a signed BCD 31-digit value.

• Parameter B is a 128-bit vector that is treated as a signed BCD 31-digit value.

• Parameter F specifies the format of the BCD number result.

This function returns a 128-bit vector that is the lower 31 digits of (a × b).

bcd __bcd_mul (bcd, bcd, const int)

__BCD_DIV (A,B,F) Purpose:

One signed 31-digit value is divided by a second 31-digit value. The quotient is returned.

• Parameter A is a 128-bit vector that is treated as a signed BCD 31-digit value.

• Parameter B is a 128-bit vector that is treated as a signed BCD 31-digit value.

• Parameter F specifies the format of the BCD number result.

This function returns a 128-bit vector that is the lower 31 digits of (a / b).

bcd __builtin_bcddiv (bcd, bcd, const int);

__BCD_STRING2BCD(S,F) Purpose:

The received ASCII string is converted to a BCD number and returned as a BCD type.

• Parameter S is the string to be converted.

• Parameter F specifies the format of the BCD number result.

This function returns a 128-bit vector that consists of 31 BCD digits and a sign.

bcd __bcd_string2bcd (char *, const int);
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A.1.1. BCD API Named Constants
The BCD header file, bcd.h, defines named constants. Table A.4, “Constants Used with
BCD_FORMAT” [137] defines constants for use in conjunction with the BCD format representation.
They can be used for format specification and to set the bcd_default_format.

Table A.4. Constants Used with BCD_FORMAT

Constants

#define BCD_FORMAT_IBM 0

#define BCD_FORMAT_Z 0

#define BCD_FORMAT_POWER 0

#define BCD_FORMAT_IBMi 1

#define BCD_FORMAT_I 1

#define BCD_FORMAT_NCR 1

A.1.2. Exemplary Implementation for bcd.h
Section A.1.3, “Sample bcd.h Listing” [137] shows an exemplary implementation of the bcd.h with
the interfaces shown in Table A.2, “BCD Functions Defined by bcd.h” [135], using the macros and
the built-in operators shown in Table A.1, “Binary-Coded Decimal Built-In Functions” [133], and the
functions shown in Table A.3, “BCD Support Functions” [136].

A.1.3. Sample bcd.h Listing
#ifndef __BCD_H
#define __BCD_H

typedef bcd vector unsigned char;

#define BCD_FORMAT_IBM 0
#define BCD_FORMAT_Z 0
#define BCD_FORMAT_POWER 0
#define BCD_FORMAT_IBMi 1
#define BCD_FORMAT_I 1
#define BCD_FORMAT_NCR 1

#ifndef bcd_default_format
#define bcd_default_format __BCD_FORMAT_IBM
#endif

#define bcd_add(a,b) ((bcd)__builtin_bcdadd (a,b,bcd_default_format))
#define bcd_sub(A,b) ((bcd)__builtin_bcdsub (a,b,bcd_default_format))
#define bcd_add_ofl(a,b) ((_Bool)__builtin_bcdadd_ofl (a,b))
#define bcd_sub_ofl(a,b) ((_Bool)__builtin_bcdsub_ofl (a,b))
#define bcd_invalid(a) ((_Bool)__builtin_bcd_invalid (a))
#define bcd_cmpeq(a,b) ((_Bool)__builtin_bcdcmpeq (a,b))
#define bcd_cmpge(a,b) ((_Bool)__builtin_bcdcmpge (a,b))
#define bcd_cmpgt(a,b) ((_Bool)__builtin_bcdcmpgt (a,b))
#define bcd_cmple(a,b) ((_Bool)__builtin_bcdcmple (a,b))
#define bcd_cmplt(a,b) ((_Bool)__builtin_bcdcmplt (a,b))
#define bcd_cmpne(a,b) (!(_Bool)__builtin_bcdcmpeq (a,b))
#define bcd_xl(a,b) ((bcd)vec_xl_len_r(a,b))
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#define bcd_xst(a,b) ((bcd)vec_xst_len_r(a,b))
#define bcd_quantize(d) (__builtin_bcdquantize(d))
#define bcd_dfp(a) (__builtin_bcd2dfp (a))
#define bcd_dfp2bcd(DFP) ((bcd)__builtin_vec_DFP2BCD (_Decimal128 dfp))
#define bcd_string2bcd(string) ((bcd) __bcd_string2bcd (string, bcd_default_format)
#define bcd_mul10(a) ((bcd) __builtin_bcdmul10 (a))
#define bcd_div10(a) ((bcd) __builtin_bcddiv10 (a))
#define bcd_mul(a,b) ((bcd) __bcd_mul (a,b,bcd_default_format))
#define bcd_div(a,b) ((bcd) __bcd_div (a,b,bcd_default_format))  

#endif /* __BCD_H */
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Appendix B. Glossary
ABI Application binary interface

AES Advanced Encryption Standard

API Application programming interface

ASCII American Standard Code for Information Interchange

BCD Binary-coded decimal

BE Big-endian

COBOL Common Business Oriented Language

CR Condition Register

CTR Count Register

DFP Decimal floating-point

DP Double precision

DRN The DFP Rounding Control field [DRN] of the 64-bit FPSCR register.

DSCR Data Stream Control Register

DSO Dynamic shared object

DTV Dynamic thread vector

DWARF Debug with arbitrary record format

EA Effective address

ELF Executable and Linking Format

EOS End-of-string

FPR Floating-Point Register

FPSCR Floating-Point Status and Control Register

GCC GNU Compiler Collection

GOT Global offset table

GPR General Purpose Register

HTM Hardware trace monitor

ID Identification

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

INF Infinity

ISA Instruction Set Architecture

ISO International Organization for Standardization

KB Kilobyte

LE Little-endian

LR Link Register

LSB Least-significant byte, least-significant bit

MB Megabyte

MSB Most-significant byte, most-significant bit

MSR Machine State Register

N/A Not applicable

NaN Not-a-Number

NOP No operation. A single-cycle operation that does not affect registers or generate bus activity.

NOR In Boolean logic, the negation of a logical OR.

OE The Floating-Point Overflow Exception Enable bit of the FPSCR register.

PIC Position-independent code

PIE Position-independent executable
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PIM Programming Interface Manual

PLT Procedure linkage table

PMR Performance Monitor Registers

POSIX Portable Operating System Interface

PS Positive sign

RN The Binary Floating-Point Rounding Control field of the FPSCR register.

RPG Report Program Generator

SHA Secure Hash Algorithm

SIMD Single instruction, multiple data

SP Stack pointer

SPR Special Purpose Register

SVID System V Interface Definition

TCB Thread control block

TLS Thread local storage

TOC Table of contents

TP Thread pointer

UE The Floating-Point Underflow Exception Enable bit of the FPSCR register.

ULP Unit of least precision

VDSO Virtual dynamic shared object

VE The Floating-Point Invalid Operation Exception Enable bit of the FPSCR register.

VMX Vector multimedia extension

VSCR Vector Status and Control Register

VSX Vector scalar extension

XE The Floating-Point Inexact Exception Enable bit of the FPSCR register.

XER Fixed-Point Exception Register

XNOR Exclusive NOR

XOR Exclusive OR

ZE The Floating-Point Zero Divide Exception Enable bit of the FPSCR register.
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Appendix C. OpenPOWER Foundation
overview
The OpenPOWER Foundation was founded in 2013 as an open technical membership organiza-
tion that will enable data centers to rethink their approach to technology. Member companies are
enabled to customize POWER CPU processors and system platforms for optimization and innova-
tion for their business needs. These innovations include custom systems for large or warehouse
scale data centers, workload acceleration through GPU, FPGA or advanced I/O, platform optimiza-
tion for SW appliances, or advanced hardware technology exploitation. OpenPOWER members are
actively pursing all of these innovations and more and welcome all parties to join in moving the state
of the art of OpenPOWER systems design forward.

To learn more about the OpenPOWER Foundation, visit the organization website at
openpowerfoundation.org.

C.1. Foundation documentation
Key foundation documents include:

• Bylaws of OpenPOWER Foundation

• OpenPOWER Foundation Intellectual Property Rights (IPR) Policy

• OpenPOWER Foundation Membership Agreement

• OpenPOWER Anti-Trust Guidelines

More information about the foundation governance can be found at openpowerfoundation.org/about-
us/governance.

C.2. Technical resources
Development resouces fall into the following general categories:

• Technical Steering Committee

• Foundation work groups

• OpenPOWER Ready documentation, products, and certification criteria

• Resource Catalog

To find all OpenPOWER resources of the following types, select the specificied combination of
Resource Type/Main Category/Sub-category in the Resource Catalog:

Specifications Developer Resources / OpenPOWER Documents /
Specifications

Work Group Notes Developer Resources / OpenPOWER Documents / Work
Group Notes

http://openpowerfoundation.org
https://members.openpowerfoundation.org/document/dl/1688
https://members.openpowerfoundation.org/document/dl/566
https://members.openpowerfoundation.org/document/dl/1186
https://members.openpowerfoundation.org/document/dl/498
http://openpowerfoundation.org/about-us/governance/
http://openpowerfoundation.org/about-us/governance/
https://openpowerfoundation.org/technical/tech-steering-committee/
http://openpowerfoundation.org/technical/working-groups/
https://openpowerfoundation.org/technical/openpower-ready/
https://openpowerfoundation.org/technical/resource-catalog/
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Cloud development virtual
machines

Developer Resources / Software Developer Cloud
Resources / <empty>

Developer Tools Developer Resources / Developer Tools / <empty>

Note

Use the Search field to focus your search using key words or phrases for specific
resources.

C.3. Contact the foundation
To learn more about the OpenPOWER Foundation, please use the following contact points:

• General information -- <info@openpowerfoundation.org>

• Membership -- <membership@openpowerfoundation.org>

• Technical Work Groups and projects -- <tsc-chair@openpowerfoundation.org>

• Events and other activities -- <admin@openpowerfoundation.org>

• Press/Analysts -- <press@openpowerfoundation.org>

More contact information can be found at openpowerfoundation.org/get-involved/contact-us.

http://openpowerfoundation.org/get-involved/contact-us/
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