
XCOFF Object File Format

Contents

XCOFF Object File Format

Purpose

The extended common object file format (XCOFF) is the object file format for the operating system. XCOFF
combines the standard common object file format (COFF) with the TOC module format concept, which
provides for dynamic linking and replacement of units within an object file. A variation of XCOFF is used for
64-bit object files and executable files.

XCOFF is the formal definition of machine-image object and executable files. These object files are produced
by language processors (assemblers and compilers) and the binder (or link editor), and are used primarily by
the binder and the system loader.

The default name for an XCOFF executable file is a.out.

Note: This information lists bits in big-endian order.

Read the following information to learn more about XCOFF object files:

Composite File Header

Sections and Section Headers

Relocation Information for XCOFF File (reloc.h)

Line Number Information for XCOFF File (linenum.h)

Symbol Table Information

dbx Stabstrings

Writing Applications that Use XCOFF Declarations

Programs can be written to understand 32-bit XCOFF files, 64-bit XCOFF files, or both. The programs
themselves may be compiled in 32-bit mode or 64-bit mode to create 32-bit or 64-bit programs. By defining
preprocessor macros, applications can select the proper structure definitions from the XCOFF header files.

Note: This document uses "XCOFF32" and "XCOFF64" as shorthand for "32-bit XCOFF" and "64-bit XCOFF",
respectively.

Selecting XCOFF32 Declarations

To select the XCOFF32 definitions, an application merely needs to include the appropriate header files. Only
XCOFF32 structures, fields, and preprocessor defines will be included.

Selecting XCOFF64 Declarations

To select the XCOFF64 definitions, an application should define the preprocessor macro __XCOFF64__. When
XCOFF header files are included, the structures, fields, and preprocessor defines for XCOFF64 will be
included. Where possible, the structure names and field names are identical to the XCOFF32 names, but field
sizes and offsets may differ.

Selecting Both XCOFF32 and XCOFF64 Declarations

To select structure definitions for both XCOFF32 and XCOFF64, an application should define both the
preprocessor macros __XCOFF32__ and __XCOFF64__. This will define structures for both kinds of XCOFF
files. Structures and typedef names for XCOFF64 files will have the suffix "_64" added to them. (Consult the
header files for details.)

Selecting Hybrid XCOFF Declarations

An application may choose to select single structures that contain field definitions for both XCOFF32 and
XCOFF64 files. For fields that have the same size and offset in both XCOFF32 and XCOFF64 definitions, the
field names are retained. For fields whose size or offset differ between XCOFF32 and XCOFF64 definitions,
the XCOFF32 fields have a "32" suffix, while the XCOFF64 fields have a "64" suffix. To select hybrid structure

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

1 of 71 03/10/13 15:32

definitions, an application should define the preprocessor macro __XCOFF_HYBRID__. For example, the
symbol table definition (in /usr/include/syms.h) will have the name n_offset32 used for the n_offset field
for XCOFF32, and the name n_offset64 used for the n_offset field for XCOFF64.

Understanding XCOFF

Assemblers and compilers produce XCOFF object files as output. The binder combines individual object files
into an XCOFF executable file. The system loader reads an XCOFF executable file to create an executable
memory image of a program. The symbolic debugger reads an XCOFF executable file to provide symbolic
access to functions and variables of an executable memory image.

An XCOFF file contains the following parts:

A composite header consisting of:

A file header

An optional auxiliary header

Section headers, one for each of the file's raw-data sections

Raw-data sections, at most one per section header

Optional relocation information for individual raw-data sections

Optional line number information for individual raw-data sections

An optional symbol table

An optional string table, which is used for all symbol names in XCOFF64 and for symbol names longer
than 8 bytes in XCOFF32.

Not every XCOFF file contains every part. A minimal XCOFF file contains only the file header.

Object and Executable Files

XCOFF object files and executable files are similar in structure. An XCOFF executable file (or "module") must
contain an auxiliary header, a loader section header, and a loader section.

The loader raw-data section contains information needed to dynamically load a module into memory for
execution. Loading an XCOFF executable file into memory creates the following logical segments:

A text segment (initialized from the .text section of the XCOFF file).

A data segment, consisting of initialized data (initialized from the .data section of the XCOFF file)
followed by uninitialized data (initialized to 0). The length of uninitialized data is specified in the .bss
section header of the XCOFF file.

The XCOFF file Organization illustrates the structure of the XCOFF object file.

XCOFF Header Files

The xcoff.h file defines the structure of the XCOFF file. The xcoff.h file includes the following files:

Item Description

filehdr.h Defines the file header.

aouthdr.h Defines the auxiliary header.

scnhdr.h Defines the section headers.

loader.h Defines the format of raw data in the .loader section.

typchk.h Defines the format of raw data in the .typchk section.

exceptab.h Defines the format of raw data in the .except section.

dbug.h Defines the format of raw data in the .debug section.

reloc.h Defines the relocation information.

linenum.h Defines the line number information.

syms.h Defines the symbol table format.

storclass.h Defines ordinary storage classes.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

2 of 71 03/10/13 15:32

Item Description

dbxstclass.h Defines storage classes used by the symbolic debuggers.

The a.out.h file includes the xcoff.h file. All of the XCOFF include files include the xcoff32_64.h file.

For more information on sections of the XCOFF object file, see "Sections and Section Headers." For more
information on the symbol table, see "Symbol Table Information." For more information on the string table,
see "String Table." For more information on the Debug section, see "Debug Section."

Composite File Header

The following sections describe the XCOFF composite file header components:

File Header (filehdr.h)

Auxiliary Header (aouthdr.h)

Section Headers (scnhdr.h)

File Header (filehdr.h)

The filehdr.h file defines the file header of an XCOFF file. The file header is 20 bytes long in XCOFF32 and
24 bytes long in XCOFF64. The structure contains the fields shown in the following table.

Table 1. File Header Structure (Defined in filehdr.h)

Field Name and Description XCOFF32 XCOFF64

f_magic

Target machine

Offset: 0

Length: 2

Offset: 0

Length: 2

f_nscns

Number of sections

Offset: 2

Length: 2

Offset: 2

Length: 2

f_timdat

Time and date of file creation

Offset: 4

Length: 4

Offset: 4

Length: 4

f_symptr+

Byte offset to symbol table start

Offset: 8

Length: 4

Offset: 8

Length: 8

f_nsyms+

Number of entries in symbol table

Offset: 12

Length: 4

Offset: 20

Length: 4

f_opthdr

Number of bytes in optional header

Offset: 16

Length: 2

Offset: 16

Length: 2

f_flags

Flags (see "Field Definitions")

Offset: 18

Length: 2

Offset: 18

Length: 2

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

Item Description

f_magic Specifies an integer known as the magic number, which specifies the target machine and
environment of the object file. For XCOFF32, the only valid value is 0x01DF (0737 Octal). For
XCOFF64 on AIX® 4.3, the only valid value is 0x01EF (0757 Octal). For XCOFF64 on AIX 5.1
and later, the only valid value is 0x01F7 (0767 Octal). Symbolic names for these values are

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

3 of 71 03/10/13 15:32

Item Description

found in the file, /usr/include/filehdr.h.

f_nscns Specifies the number of section headers contained in the file. The first section header is
section header number one; all references to a section are one-based.

f_timdat Specifies when the file was created (number of elapsed seconds since 00:00:00 Universal
Coordinated Time (UCT), January 1, 1970). This field should specify either the actual time or
be set to a value of 0.

f_symptr Specifies a file pointer (byte offset from the beginning of the file) to the start of the symbol
table. If the value of the f_nsyms field is 0, then f_nsyms is undefined.

f_nsyms Specifies the number of entries in the symbol table. Each symbol table entry is 18 bytes
long.

f_opthdr Specifies the length, in bytes, of the auxiliary header. For an XCOFF file to be executable,
the auxiliary header must exist and be _AOUTHSZ_EXEC bytes long. (_AOUTHSZ_EXEC is
defined in aouthdr.h.)

f_flags Specifies a bit mask of flags that describe the type of the object file. The following
information defines the flags:

Bit Mask

Flag

0x0001

F_RELFLG

Indicates that the relocation information for binding has been removed from the
file. This flag must not be set by compilers, even if relocation information was not
required.

0x0002

F_EXEC

Indicates that the file is executable. No unresolved external references exist.

0x0004

F_LNNO

Indicates that line numbers have been stripped from the file by a utility program.
This flag is not set by compilers, even if no line-number information has been
generated.

0x0008

Reserved.

0x0010

F_FDPR_PROF

Indicates that the file was profiled with the fdpr command.

0x0020

F_FDPR_OPTI

Indicates that the file was reordered with the fdpr command.

0x0040

F_DSA

Indicates that the file uses Very Large Program Support.

0x0080

Reserved.

0x0100

F_VARPG

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

4 of 71 03/10/13 15:32

Item Description

Indicates that one of the members of the auxiliary header specifying the medium
page sizes is non-zero. By default, the value of this bit is always zero.

0x0200

Reserved.

0x0400

Reserved.

0x0800

Reserved.

0x1000

F_DYNLOAD

Indicates the file is dynamically loadable and executable. External references are
resolved by way of imports, and the file might contain exports and loader
relocation.

0x2000

F_SHROBJ

Indicates the file is a shared object (shared library). The file is separately loadable.
That is, it is not normally bound with other objects, and its loader exports symbols
are used as automatic import symbols for other object files.

0x4000

F_LOADONLY

If the object file is a member of an archive, it can be loaded by the system loader,
but the member is ignored by the binder. If the object file is not in an archive, this
flag has no effect.

0x8000

Reserved.

Auxiliary Header (aouthdr.h)

The auxiliary header contains system-dependent and implementation-dependent information, which is used
for loading and executing a module. Information in the auxiliary header minimizes how much of the file must
be processed by the system loader at execution time.

The binder generates an auxiliary header for use by the system loader. Auxiliary headers are not required for
an object file that is not to be loaded. When auxiliary headers are generated by compilers and assemblers, the
headers are ignored by the binder.

The auxiliary header immediately follows the file header.

Note: If the value of the f_opthdr field in the file header is 0, the auxiliary header does not exist.

The C language structure for the auxiliary header is defined in the aouthdr.h file. The auxiliary header
contains the fields shown in the following table.

Table 2. Auxiliary Header Structure (Defined in aouthdr.h)

Field Name and Description XCOFF32 XCOFF64

o_mflag

Flags

Offset: 0

Length: 2

Offset: 0

Length: 2

o_vstamp

Version

Offset: 2

Length: 2

Offset: 2

Length: 2

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

5 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

o_tsize+

Text size in bytes

Offset: 4

Length: 4

Offset: 56

Length: 8

o_dsize+

Initialized data size in
bytes

Offset: 8

Length: 4

Offset: 64

Length: 8

o_bsize+

Uninitialized data size in
bytes

Offset: 12

Length: 4

Offset: 72

Length: 8

o_entry+

Entry point descriptor
(virtual address)

Offset: 16

Length: 4

Offset: 80

Length: 8

o_text_start+

Base address of text
(virtual address)

Offset: 20

Length: 4

Offset: 8

Length: 8

o_data_start+

Base address of data
(virtual address)

Offset: 24

Length: 4

Offset: 16

Length: 8

o_toc+

Address of TOC anchor

Offset: 28

Length: 4

Offset: 24

Length: 8

o_snentry

Section number for entry
point

Offset: 32

Length: 2

Offset: 32

Length: 2

o_sntext

Section number for .text

Offset: 34

Length: 2

Offset: 34

Length: 2

o_sndata

Section number for .data

Offset: 36

Length: 2

Offset: 36

Length: 2

o_sntoc

Section number for TOC

Offset: 38

Length: 2

Offset: 38

Length: 2

o_snloader

Section number for
loader data

Offset: 40

Length: 2

Offset: 40

Length: 2

o_snbss

Section number for .bss

Offset: 42

Length: 2

Offset: 42

Length: 2

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

6 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

o_algntext

Maximum alignment for
.text

Offset: 44

Length: 2

Offset: 44

Length: 2

o_algndata

Maximum alignment for
.data

Offset: 46

Length: 2

Offset: 46

Length: 2

o_modtype

Module type field

Offset: 48

Length: 2

Offset: 48

Length: 2

o_cpuflag

Bit flags - cpu types of
objects

Offset: 50

Length: 1

Offset: 50

Length: 1

o_cputype

Reserved for CPU type

Offset: 51

Length: 1

Offset: 51

Length: 1

o_maxstack+

Maximum stack size
allowed (bytes)

Offset: 52

Length: 4

Offset: 88

Length: 8

o_maxdata+

Maximum data size
allowed (bytes)

Offset: 56

Length: 4

Offset: 96

Length: 8

o_debugger+

Reserved for debuggers.

Offset: 60

Length: 4

Offset: 4

Length: 4

o_textpsize+

Requested text page size.

Offset: 64

Length: 1

Offset: 52

Length: 1

o_datapsize+

Requested data page
size.

Offset: 65

Length: 1

Offset: 53

Length: 1

o_datapsize+

Requested data page
size.

Offset: 65

Length: 1

Offset: 53

Length: 1

o_datapsize+

Requested data page
size.

Offset: 65

Length: 1

Offset: 53

Length: 1

o_stackpsize+

Requested stack page

Offset: 66

Length: 1

Offset: 53

Length: 1

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

7 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

size.

o_flags

Flags and thread-local
storage alignment

Offset: 67

Length: 1

Offset: 55

Length: 1

o_sntdata

Section number for
.tdata

Offset: 68

Length: 2

Offset: 104

Length: 2

o_sntbss

Section number for .tbss

Offset: 70

Length: 2

Offset: 106

Length: 2

o_x64flags

Requested text page size

Offset: N/A

Length: N/A

Offset: 108

Length: 2

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

The following information defines the auxiliary header fields. For entries with two labels, the label in
parentheses is the alternate original COFF a.out file format name.

Item Description

o_mflags (magic) If the value of the o_vstamp field is greater than 1, the o_mflags field is reserved for
future use and it should contain 0. Otherwise, this field is not used.

o_vstamp (vstamp) Specifies the format version for this auxiliary header. The valid values are 1 and 2.
When the o_vstamp field is 2 in an XCOFF32 file, the new interpretation of the
n_type field in the symbol table entry is used.

o_tsize (tsize) Specifies the size (in bytes) of the raw data for the .text section. The .text section
typically contains the read-only part of the program. This is the same value as
contained in the s_size field of the section header for the .text section.

o_dsize (dsize) Specifies the size (in bytes) of the raw data for the .data section. The .data section
contains the initialized data of the program and is writable. This is the same value as
contained in the s_size field of the section header for the .data section.

o_bsize (bsize) Specifies the size (in bytes) of .bss area, which is used for uninitialized variables
during execution and is writable. No raw data exists in the file for the .bss section.
This is the same value as contained in the s_size field of the section header for the
.bss section.

o_entry (entry) Specifies the virtual address of the entry point. (See the definition of the o_snentry
field.) For application programs, this virtual address is the address of the function
descriptor. The function descriptor contains the addresses of both the entry point
itself and its TOC anchor. The offset of the entry point function descriptor from the
beginning of its containing section can be calculated as follows:

Section_offset_value=o_entry-s_paddr[o_snentry - 1],

where s_paddr is the virtual address contained in the specified section header.

o_text_start
(text_start)

Specifies the virtual address of the .text section. This is the address assigned to (that
is, used for) the first byte of the .text raw-data section. This is the same value as
contained in the s_paddr field of the section header for the .text section.

o_data_start
(data_start)

Specifies the virtual address of the .data section. This is the address assigned to
(that is, used for) the first byte of the .data raw-data section. This is the same value
as contained in the s_paddr field of the section header for the .data section.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

8 of 71 03/10/13 15:32

Item Description

For addressing purposes, the .bss section is considered to follow the .data section.

o_toc Specifies the virtual address of the TOC anchor (see the definition of the o_sntoc
field).

o_snentry Specifies the number of the file section containing the entry-point. (This field
contains a file section header sequence number.) The entry point must be in the
.text or .data section.

o_sntext Specifies the number of the file .text section. (This field contains a file section
header sequence number.)

o_sndata Specifies the number of the file .data section. (This field contains a file section
header sequence number.)

o_sntoc Specifies the number of the file section containing the TOC. (This field contains a file
section header sequence number.)

o_snloader Specifies the number of the file section containing the system loader information.
(This field contains a file section header sequence number.)

o_snbss Specifies the number of the file .bss section. (This field contains a file section
header sequence number.)

o_algntext Specifies the log (base 2) of the maximum alignment needed for any csect in the
.text section.

o_algndata Specifies the log (base 2) of the maximum alignment needed for any csect in the
.data and .bss sections.

o_modtype Specifies a module type. The value is an ASCII character string. The following
module type is recognized by the system loader:

RO

Specifies a read-only module. If a shared object with this module type has
no BSS section and only depends on other read-only modules, the data
section of the module will be mapped read-only and shared by all
processes using the object.

o_cpuflag Bit flags - cputypes of objects.

o_cputype Reserved. This byte must be set to 0.

o_maxstack Specifies the maximum stack size (in bytes) allowed for this executable. If the value
is 0, the system default maximum stack size is used.

o_maxdata Specifies the maximum data size (in bytes) allowed for this executable. If the value is
0, the system default maximum data size is used.

o_debugger This field should contain 0. When a loaded program is being debugged, the memory
image of this field may be modified by a debugger to insert a trap instruction.

o_sntdata Specifies the number of the .tdata file section. (This field contains a file section
header sequence number.)

o_sntbss Specifies the number of the .tbss file section. (This field contains a file section
header sequence number.)

o_flags Consists of four 1-bit flags and a 4-bit .tdata alignment:

_AOUT_TLS_LE 0x80 (High-order bit of o_flags)

Program uses local-exec model for thread-local storage. Such a program
cannot be loaded dynamically.

_AOUT_RAS 0x40

Indicates that a kernel extension is key and recovery safe.

_AOUT_ALGNTDATA (Low-order 4 bits of o_flags)

This field specifies the desired alignment of the module's thread-local
storage. The value of this 4-bit number is interpreted as follows:

Bit 0-8 Log (base 2) of desired alignment

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

9 of 71 03/10/13 15:32

Item Description

Bit 9-11 Reserved.
Bit 12 4KB page alignment
Bit 13 64KB page alignment
Bit 14-15 Reserved.

o_textpsize Specifies the size of pages for the exec text. The default value is 0 (system-selected
page size).

o_datapsize Specifies the size of pages for the exec data. The default value is 0 (system-selected
page size). The value of o_datapsize overrides the large page data request (by
setting the F_LPDATA bit in the XCOFF file).

o_stackpsize Specifies the size of pages for the stack. The default value is 0 (system-selected page
size).

o_x64flags Consists of 16 flag bits. This field only exists in the XCOFF64 definition.

_AOUT_SHR_SYMTAB 0x8000

Requests that a shared symbol table be created for this program, to be
used by all instances of the program on the system.

In general, an object file might contain multiple sections of a given type, but in a loadable module, there must
be exactly one .text, .data, .bss, and .loader section. A loadable object might also have one .tdata
section and one.tbss section.

Section Headers (scnhdr.h)

Each section of an XCOFF file has a corresponding section header, although some section headers may not
have a corresponding raw-data section. A section header provides identification and file-accessing
information for each section contained within an XCOFF file. Each section header in an XCOFF32 file is 40
bytes long, while XCOFF64 section headers are 72 bytes long. The C language structure for a section header
can be found in the scnhdr.h file. A section header contains the fields shown in the following table.

Table 3. Section Header Structure (Defined in scnhdr.h)

Field Name and Description XCOFF32 XCOFF64

s_name

Section name

Offset: 0

Length: 8

Offset: 0

Length: 8

s_paddr+

Physical address

Offset: 8

Length: 4

Offset: 8

Length: 8

s_vaddr+

Virtual address (same as physical address)

Offset: 12

Length: 4

Offset: 16

Length: 8

s_size+

Section size

Offset: 16

Length: 4

Offset: 24

Length: 8

s_scnptr+

Offset in file to raw data for section

Offset: 20

Length: 4

Offset: 32

Length: 8

s_relptr+

Offset in file to relocation entries for section

Offset: 24

Length: 4

Offset: 40

Length: 8

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

10 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

s_lnnoptr+

Offset in file to line number entries for section

Offset: 28

Length: 4

Offset: 48

Length: 8

s_nreloc+

Number of relocation entries

Offset: 32

Length: 2

Offset: 56

Length: 4

s_nlnno+

Number of line number entries

Offset: 34

Length: 2

Offset: 60

Length: 4

s_flags+

Flags to define the section type

Offset: 36

Length: 2

Offset: 64

Length: 4

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

The following information defines the section header fields:

Item Description

s_name Specifies an 8-byte, null-padded section name. An 8-byte section name will not have a
terminating null character. Use the s_flags field instead of the s_name field to determine a
section type. Two sections of the same type may have different names, allowing certain
applications to distinguish between them.

s_paddr Specifies the physical address of the section. This is the address assigned and used by the
compilers and the binder for the first byte of the section. This field should contain 0 for all
sections except the .text , .data , and .bss sections.

s_vaddr Specifies the virtual address of the section. This field has the same value as the s_paddr field.

s_size Specifies the size (in bytes) of this section.

s_scnptr Specifies a file pointer (byte offset from the beginning of the file) to this section's raw data. If
this field contains 0, this section has no raw data. Otherwise, the size of the raw data must be
contained in the s_size field.

s_relptr Specifies a file pointer (byte offset from the beginning of the file) to the relocation entries for
this section. If this section has no relocation entries, this field must contain 0.

s_lnnoptr Specifies a file pointer (byte offset from the beginning of the file) to the line number entries for
this section. If this section has no line number entries, this field must contain 0.

s_nreloc Specifies the number of relocation entries for this section. In an XCOFF32 file, if more than
65,534 relocation entries are required, the field value will be 65535, and an STYP_OVRFLO
section header will contain the actual count of relocation entries in the s_paddr field. Refer to
the discussion of overflow headers in "Sections and Section Headers" . If this field is set to
65535, the s_nlnno field must also be set to 65535.

s_nlnno Specifies the number of line number entries for this section. In an XCOFF32 file, if more than
65,534 line number entries are required, the field value will be 65535, and an STYP_OVRFLO
section header will contain the actual number of line number entries in the s_vaddr field. Refer
to the discussion of overflow headers in "Sections and Section Headers" . If this field is set to
65535, the s_nreloc field must also be set to 65535.

s_flags Specifies flags defining the section type. A section type identifies the contents of a section and
specifies how the section is to be processed by the binder of the system loader. The s_flags field
consists of two 16-bit fields. The low-order 16 bits specify the primary section type. Only a
single bit should be set in the low-order 16 bits. The high-order 16-bits specify a section
subtype. For a primary section type without subtypes, the high-order 16 bits should be 0.

Note: The strip command logically deletes a section header by setting the s_flags field to -1.

Valid bit values are:

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

11 of 71 03/10/13 15:32

Item Description

Value

Flag

0x0000

Reserved.

0x0001

Reserved.

0x0002

Reserved.

0x0004

Reserved.

0x0008

STYP_PAD

Specifies a pad section. A section of this type is used to provide alignment padding
between sections within an XCOFF executable object file. This section header type is
obsolete since padding is allowed in an XCOFF file without a corresponding pad
section header.

0x0010

STYP_DWARF

Specifies a DWARF debugging section, which provide source file and symbol
information for the symbolic debugger.

There are multiple types of DWARF sections defined. The type of a DWARF section is
specified with the high-order 16 bits of the s_flags field. Valid subtypes are:

 Value | Macro | Description

0x10000 | SSUBTYP_DWINFO | DWARF info section
0x20000 | SSUBTYP_DWLINE | DWARF line-number section
0x30000 | SSUBTYP_DWPBNMS | DWARF public names section
0x40000 | SSUBTYP_DWPBTYP | DWARF public types section
0x50000 | SSUBTYP_DWARNGE | DWARF aranges section
0x60000 | SSUBTYP_DWABREV | DWARF abbreviation section
0x70000 | SSUBTYP_DWSTR | DWARF strings section
0x80000 | SSUBTYP_DWRNGES | DWARF ranges section

0x0020

STYP_TEXT

Specifies an executable text (code) section. A section of this type contains the
executable instructions of a program.

0x0040

STYP_DATA

Specifies an initialized data section. A section of this type contains the initialized data
and the TOC of a program.

0x0080

STYP_BSS

Specifies an uninitialized data section. A section header of this type defines the
uninitialized data of a program.

0x0100

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

12 of 71 03/10/13 15:32

Item Description

STYP_EXCEPT

Specifies an exception section. A section of this type provides information to identify
the reason that a trap or exception occurred within an executable object program.

Item Description

0x0200

STYP_INFO

Specifies a comment section. A section of this type provides comments or data to
special processing utility programs.

0x0400

STYP_TDATA

Specifies an initialized thread-local data section.

0x0800

STYP_TBSS

Specifies an uninitialized thread-local data section.

s_flags
continued Valid bit values are:

Value

Flag

0x1000

STYP_LOADER

Specifies a loader section. A section of this type contains object file information
for the system loader to load an XCOFF executable. The information includes
imported symbols, exported symbols, relocation data, type-check information, and
shared object names.

0x2000

STYP_DEBUG

Specifies a debug section. A section of this type contains stabstring information
used by the symbolic debugger.

0x4000

STYP_TYPCHK

Specifies a type-check section. A section of this type contains
parameter/argument type-check strings used by the binder.

0x8000

STYP_OVRFLO

Note: An XCOFF64 file may not contain an overflow section header.

Specifies a relocation or line-number field overflow section. A section header of
this type contains the count of relocation entries and line number entries for
some other section. This section header is required when either of the counts
exceeds 65,534. See the s_nreloc and s_nlnno fields in "Sections and Section
Headers" for more information on overflow headers.

Sections and Section Headers

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

13 of 71 03/10/13 15:32

Section headers are defined to provide a variety of information about the contents of an XCOFF file.
Programs that process XCOFF files will recognize only some of the valid sections.

See the following information to learn more about XCOFF file sections:

Loader Section (loader.h)

Debug Section

Type-Check Section

Exception Section

Comment Section

Current applications do not use the s_name field to determine the section type. Nevertheless, conventional
names are used by system tools, as shown in the following table.

Table 4. Conventional Header Names

Description Multiple Allowed? s_flag (and its conventional name)

Text section Yes STYP_TEXT (.text)

Data section Yes STYP_DATA (.data)

BSS section Yes STYP_BSS (.bss)

Pad section Yes STYP_PAD (.pad)

Loader section No STYP_LOADER (.loader)

Debug section No STYP_DEBUG (.debug)

Type-check section Yes STYP_TYPCHK (.typchk)

Exception section No STYP_EXCEPT (.except)

Overflow section Yes (one per .text or .data
section)

STYP_OVRFLO (.ovrflo)

Comment section Yes STYP_INFO (.info)

Tdata section Yes STYP_TDATA (.tdata)

TBSS section Yes STSTYP_TBSS (.tbss) STYP_TBSS
(.tbss)YP_TBSS (.tbss)

DWARF section Yes STYP_DWARF

SSUBTYPE_DWINFO (.dwinfo)

SSUBTYPE_DWLINE (.dwline)

SSUBTYPE_DWPBNMS (.dwpbnms)

SSUBTYPE_DWBTYP (.dwpbtyp)

SSUBTYPE_DWARNGE (.dwarnge)

SSUBTYPE_DWABREV (.dwabrev)

SSUBTYPE_DWSTR (.dwstr)

SSUBTYPE_DWRNGES (.dwrnges)

Some fields of a section header may not always be used, or may have special usage. This pertains to the
following fields:

Item Description

s_name On input, ignored by the binder and system loader. On output, the conventional names
(shown in the "Conventional Header Names" table) are used.

s_scnptr Ignored for .bss sections.

s_relptr Recognized for the .text , .data , .tdata, and STYP_DWARF sections only.

s_lnnoptr Recognized for the .text section only. Otherwise, it must be 0.

s_nreloc ,
s_nlnno

Handles relocation or line-number field overflows in an XCOFF32 file. (XCOFF64 files
may not have overflow section headers.) If a section has more than 65,534 relocation
entries or line number entries, both of these fields are set to a value of 65535. In this
case, an overflow section header with the s_flags field equal to STYP_OVRFLO is used

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

14 of 71 03/10/13 15:32

Item Description

to contain the relocation and line-number count information. The fields in the overflow
section header are defined as follows:

s_nreloc

Specifies the file section number of the section header that overflowed; that is,
the section header containing a value of 65535 in its s_nreloc and s_nlnno
fields. This value provides a reference to the primary section header. This field
must have the same value as the s_nlnno field.

Note: There is no reference in the primary section header that identifies the
appropriate overflow section header. All the section headers must be searched
to locate an overflow section header that contains the correct primary section
header reference in this field.

s_nlnno

Specifies the file section number of the section header that overflowed. This
field must have the same value as the s_nreloc field.

s_paddr

Specifies the number of relocation entries actually required. This field is used
instead of the s_nreloc field of the section header that overflowed.

s_vaddr

Specifies the number of line-number entries actually required. This field is
used instead of the s_nlnno field of the section header that overflowed.

The s_size and s_scnptr fields have a value of 0 in an overflow section header. The
s_relptr and s_lnnoptr fields must have the same values as in the corresponding
primary section header.

An XCOFF file provides special meaning to the following sections:

The .text, .data, and .bss sections, and the optional .tdata and .tbss sections, define the memory
image of the program. The relocation parts associated with the .text and .data sections contain the full
binder relocation information so it can be used for replacement link editing. Only the .text section is
associated with a line number part. The parts associated with the executable code are produced by the
compilers and assemblers.

The .pad section is defined as a null-filled, raw-data section that is used to align a subsequent section in
the file on some defined boundary such as a file block boundary or a system page boundary. Padding is
allowed in an XCOFF file without a corresponding section header so that the binder does not generate
pad section headers.

The .loader section is a raw-data section defined to contain the dynamic loader information. This section
is generated by the binder and has its own self-contained symbol table and relocation table. There is no
reference to this section from the XCOFF Symbol Table.

The .debug section is a raw-data section defined to contain the stab (symbol table) or dictionary
information required by the symbolic debugger.

The .dwinfo,.dwline,.dwpbnms,.dwpbtyp,.dwarnge, .dwabrev,.dwstr, and .dwrnges sections are
raw-data sections defined to contain symbol table and source file information for the symbolic debugger.

The .typchk section is a raw-data section defined to contain parameter and argument type-checking
strings.

The .except section is a raw-data section defined to contain the exception tables used to identify the
reasons for an exception in program execution.

The .info comment section is a raw-data section defined to contain comments or data that are of
significance to special processing utility programs.

The .debug, .except, .info, and .typchk sections are produced by compilers and assemblers.
References to these sections or to items within these sections are made from the XCOFF Symbol Table.

For more information on XCOFF file sections, see "Loader Section (loader.h)," "Debug Section," "Type-Check
Section," "Exception Section," and "Comment Section."

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

15 of 71 03/10/13 15:32

Loader Section (loader.h)

The loader section contains information required by the system loader to load and relocate an executable
XCOFF object. The loader section is generated by the binder. The loader section has an s_flags section type
flag of STYP_LOADER in the XCOFF section header. By convention, .loader is the loader section name. The
data in this section is not referenced by entries in the XCOFF symbol table.

The loader section consists of the following parts:

Header fields

Symbol table

Relocation table

Import file ID strings

Symbol name string table

The C language structure for the loader section can be found in the loader.h file.

Loader Header Field Definitions

The following table describes the loader section's header field definitions.

Table 5. Loader Section Header Structure (Defined in loader.h)

Field Name and Description XCOFF32 XCOFF64

l_version

Loader section version number

Offset: 0

Length: 4

Offset: 0

Length: 4

l_nsyms

Number of symbol table entries

Offset: 4

Length: 4

Offset: 4

Length: 4

l_nreloc

Number of relocation table entries

Offset: 8

Length: 4

Offset: 8

Length: 4

l_istlen

Length of import file ID string table

Offset: 12

Length: 4

Offset: 12

Length: 4

l_nimpid

Number of import file IDs

Offset: 16

Length: 4

Offset: 16

Length: 4

l_impoff+

Offset to start of import file IDs

Offset: 20

Length: 4

Offset: 24

Length: 8

l_stlen+

Length of string table

Offset: 24

Length: 4

Offset: 20

Length: 4

l_stoff+

Offset to start of string table

Offset: 28

Length: 4

Offset: 32

Length: 8

l_symoff

Offset to start of symbol table

Offset: N/A

Length: N/A

Offset: 40

Length: 8

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

16 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

l_rldoff

Offset to start of relocation entries

Offset: 36

Length: 2

Offset: 64

Length: 4

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The following information defines the loader section's header fields:

Item Description

l_version Specifies the loader section version number. This value must be 1 for XCOFF32, 2 for
XCOFF64.

l_nsyms Specifies the number of symbol table entries in the loader section. This value is the actual
count of symbol table entries contained in the loader section and does not include the three
implicit entries for the .text, .data, and .bss symbol entries.

l_nreloc Specifies the number of relocation table entries in the loader section.

l_istlen Specifies the byte length of the import file ID string table in the loader section.

l_nimpid Specifies the number of import file IDs in the import file ID string table.

l_impoff Specifies the byte offset from beginning of the loader section to the first import file ID.

l_stlen Specifies the length of the loader section string table.

l_stoff Specifies the byte offset from beginning of the loader section to the first entry in the string
table.

l_symoff Specifies the byte offset from beginning of the loader section to the start of the loader
symbol table (in XCOFF64 only).

l_rldoff Specifies the byte offset from beginning of the loader section to the start of the loader
section relocation entries (in XCOFF64 only).

Loader Symbol Table Field Definitions

The loader section symbol table contains the symbol table entries that the system loader needs for its import
and export symbol processing and dynamic relocation processing.

The loader.h file defines the symbol table fields. Each entry is 24 bytes long.

There are five implicit external symbols, one each for the .text, .data, .bss, .tdata, and .tbss sections.
These symbols are referenced from the relocation table entries using symbol table index values 0, 1, 2, -1,
and -2, respectively.

Table 6. Loader Section Symbol Table Entry Structure

Field Name and Description XCOFF32 XCOFF64

l_name+

Symbol name or byte offset into string table

Offset: 0

Length: 8

Offset: N/A

Length: N/A

l_zeroes+

Zero indicates symbol name is referenced from l_offset

Offset: 0

Length: 4

Offset: N/A

Length: N/A

l_offset+

Byte offset into string table of symbol name

Offset: 4

Length: 4

Offset: 8

Length: 4

l_value+

Address field

Offset: 8

Length: 4

Offset: 0

Length: 8

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

17 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

l_scnum

Section number containing symbol

Offset: 12

Length: 2

Offset: 12

Length: 2

l_smtype

Symbol type, export, import flags

Offset: 14

Length: 1

Offset: 14

Length: 1

l_smclas

Symbol storage class

Offset: 15

Length: 1

Offset: 15

Length: 1

l_ifile

Import file ID; ordinal of import file IDs

Offset: 16

Length: 4

Offset: 16

Length: 4

l_parm

Parameter type-check field

Offset:20

Length: 4

Offset: 20

Length: 4

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The symbol table fields are:

Item Description

l_name (XCOFF32 only) Specifies an 8-byte, null-padded symbol name if it is 8 bytes or less in length.
Otherwise, the field is treated as the following two 4-byte integers for accessing the symbol
name:

l_zeroes

(XCOFF32 only) A value of 0 indicates that the symbol name is in the loader section
string table. This field overlays the first word of the l_name field. An l_name field
having the first 4 bytes (first word) equal to 0 is used to indicate that the name
string is contained in the string table instead of the l_name field.

l_offset

(XCOFF32 only) This field overlays the second word of the l_name field. The value
of this field is the byte offset from the beginning of the loader section string table to
the first byte of the symbol name (not its length field).

l_offset (XCOFF64 only) This field has the same use as the l_offset field in XCOFF32.

l_value Specifies the virtual address of the symbol

l_scnum Specifies the number of the XCOFF section that contains the symbol. If the symbol is
undefined or imported, the section number is 0. Otherwise, the section number refers to the
.text, .data, or .bss section. Section headers are numbered beginning with 1.

l_smtype Specifies the symbol type, import flag, export flag, and entry flag.

Bits 0-4 are flag bits defined as follows:

Bit 0 0x80 Reserved.
Bit 1 0x40 Specifies an imported symbol.
Bit 2 0x20 Specifies an entry point descriptor symbol.
Bit 3 0x10 Specifies an exported symbol.
Bit 4 0x08 Specifies a weak symbol.
Bits 5-7 0x07 Symbol type--see below.

Bits 5-7 constitute a 3-bit symbol type field with the following definitions:

0

XTY_ER

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

18 of 71 03/10/13 15:32

Item Description

Specifies an external reference providing a symbol table entry for an external
(global) symbol contained in another XCOFF object file.

1

XTY_SD

Specifies the csect section definition, providing the definition of the smallest
initialized unit within an XCOFF object file.

2

XTY_LD

Specifies the label definition, providing the definition of the global entry points for
initialized csects. An uninitialized csect of type XTY_CM may not contain a label
definition.

3

XTY_CM

Specifies a common (BSS uninitialized data) csect definition, providing the
definition of the smallest uninitialized unit within an XCOFF object file.

4-7

Reserved.

l_smclas
Specifies the storage mapping class of the symbol, as defined in syms.h for the x_smclas
field of the csect auxiliary symbol table entry. Values have the symbolic form XMC_xx, where
xx is PR, RO, GL, XO, SV, SV64, SV3264, RW, TC, TD, DS, UA, BS, UC, TL, or UL. See "csect
Auxiliary Entry for the C_EXT, C WEAKEXT, and C_HIDEXT Symbols" for more information.

l_ifile
Specifies the import file ID string. This integer is the ordinal value of the position of the
import file ID string in the import file ID name string table of the loader section. For an
imported symbol, the value of 0 in this field identifies the symbol as a deferred import to the
system loader. A deferred import is a symbol whose address can remain unresolved following
the processing of the loader. If the symbol was not imported, this field must have a value of 0.

l_parm
Specifies the offset to the parameter type-check string. The byte offset is from the beginning
of the loader section string table. The byte offset points to the first byte of the parameter
type-check string (not to its length field). For more information on the parameter type-check
string, see "Type-Check Section" . A value of 0 in the l_parm field indicates that the
parameter type-checking string is not present for this symbol, and the symbol will be treated
as having a universal hash.

Loader Relocation Table Field Definitions

The Loader Section Relocation Table Structure contains all of the relocation information that the system
loader needs to properly relocate an executable XCOFF file when it is loaded. The loader.h file defines the
relocation table fields. Each entry in the loader section relocation table is 12 bytes long in XCOFF32, and 16
bytes long in XCOFF64. The l_vaddr, l_symndx, andl_rtype fields have the same meaning as the
corresponding fields of the regular relocation entries, which are defined in the reloc.h file. For more
information about relocation entries, see Relocation Information for XCOFF File (reloc.h).

Table 7. Loader Section Relocation Table Entry Structure

Field Name and Description XCOFF32 XCOFF64

l_vaddr+

Address field

Offset: 0

Length: 4

Offset: 0

Length: 8

l_symndx+

Loader section symbol table index of referenced item

Offset: 4

Length: 4

Offset: 12

Length: 4

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

19 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

l_rtype

Relocation type

Offset: 4

Length: 4

Offset: 8

Length: 4

l_value+

Address field

Offset: 8

Length: 2

Offset: 8

Length: 2

l_rsecnm

File section number being relocated

Offset: 10

Length: 2

Offset: 10

Length: 2

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The loader.h file defines the following fields:

Name Description

l_vaddr Specifies the virtual address of the relocatable reference.

l_symndx Specifies the loader section symbol table index (n-th entry) of the symbol that is being
referenced. Values 0, 1, and 2 are implicit references to .text, .data, and .bss sections,
respectively. Symbol index 3 is the index for the first symbol actually contained in the loader
section symbol table.

Note: A reference to an exported symbol can be made using the symbol's section number
(symbol number 0, 1, or 2) or using the actual number of the exported symbol.

l_rtype Specifies the relocation size and type. (This field has the same interpretation as the r_type
field in the reloc.h file.) For more information about relocation entries, see Relocation
Information for XCOFF File (reloc.h).

l_rsecnm Specifies the section number of the sections being relocated. This is a one-based index into
the section headers.

Loader Import File ID Name Table Definition

The loader section import file ID name strings of a module provide a list of dependent modules that the
system loader must load in order for the module to load successfully. However, this list does not contain the
names of modules that the named modules depend on.

Table 8. Loader Section Import File IDs - Contains Variable Length Strings

Offset Length in Bytes Name and Description

0 n1 l_impidpath

Import file ID path string, null-delimited

n1 + 1 n2 l_impidbase

Import file ID base string, null-delimited

n1 + n2 + 2 n3 l_impidmem

Import file ID member string, null-delimited

Fields repeat for each string.

Each import file ID name consists of three null-delimited strings.

The first import file ID is a default LIBPATH value to be used by the system loader. The LIBPATH
information consists of file paths separated by colons. There is no base name or archive member name, so the
file path is followed by three null bytes.

Each entry in the import file ID name table consists of:

Import file ID path name

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

20 of 71 03/10/13 15:32

Null delimiter (ASCII null character)

Import file ID base name

Null delimiter

Import file ID archive-file-member name

Null delimiter

For example:

/usr/lib\0mylib.a\0shr.o\0

Loader String Table Definition

The loader section string table contains the parameter type-checking strings, all symbols names for an
XCOFF64 file, and the names of symbols longer than 8 bytes for an XCOFF32 file. Each string consists of a
2-byte length field followed by the string.

Table 9. Loader Section String Table

Offset Length in
Bytes

Description

0 2 Length of string.

2 n Symbol name string (null-delimited) or parameter type string (not null-delimited).

Fields repeat for each string.

Symbol names are null-terminated. The value in the length-field includes the length of the string plus the
length of the null terminator but does not include the length of the length field itself.

The parameter type-checking strings contain binary values and are not null-terminated. The value in the
length field includes the length of the string only but does not include the length of the length field itself.

The symbol table entries of the loader section contain a byte offset value that points to the first byte of the
string instead of to the length field.

Loader Section Header Contents

The contents of the section header fields for the loader section are:

Name Contents

s_name .loader

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the loader section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the loader section data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_LOADER

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Debug Section

The debug section contains the symbolic debugger stabstrings (symbol table strings). It is generated by the
compilers and assemblers. It provides symbol attribute information for use by the symbolic debugger. The
debug section has a section type flag of STYP_DEBUG in the XCOFF section header. By convention, .debug
is the debug section name. The data in this section is referenced from entries in the XCOFF symbol table. A

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

21 of 71 03/10/13 15:32

stabstring is a null-terminated character string. Each string is preceded by a 2-byte length field in XCOFF32
or a 4-byte length field in XCOFF64.

Field Definitions

The following two fields are repeated for each symbolic debugger stabstring:

A 2-byte (XCOFF32) or 4-byte (XCOFF64) length field containing the length of the string. The value
contained in the length field includes the length of the terminating null character but does not include the
length of the length field itself.

The symbolic debugger stabstring.

Refer to discussion of symbolic debugger stabstring grammar for the specific format of the stabstrings.

Debug Section Header Contents

The contents of the section header fields for the debug section are:

Name Contents

s_name .debug

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the debug section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the debug section data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_DEBUG

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section,", "Exception Section," and "Comment Section."

DWARF Sections

The DWARF sections contain debugging information for the symbolic debugger. DWARF is an alternate
debugging format used instead of debugger stabstrings. The contents of the various DWARF sections is
described in the "DWARF Debugging Information Format" which can be obtained from www.dwarfstd.org.

All DWARF sections have a primary section type flag of STYP_DWARF in the XCOFF section header.
Conventional sections names are listed in "Conventional Header Names".

DWARF Section Header Contents

The contents of the section header fields for the debug section are:

Name Contents

s_name Depends on s_flags

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the section.

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the section data.

s_relptr Offset from the beginning of the XCOFF file to the relocation entries for the section.

s_lnnoptr 0

s_nreloc Number of relocation entries.

s_nlnno 0

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

22 of 71 03/10/13 15:32

Name Contents

s_flags STYP_DWARF ored with a DWARF subtype value.

Type-Check Section

The type-check section contains the type-checking hash strings and is produced by compilers and assemblers.
It is used by the binder to detect variable mismatches and argument interface errors when linking separately
compiled object files. (The type-checking hash strings in the loader section are used to detect these errors
prior to running a program.) The type-check section has a section type flag of STYP_TYPCHK in the XCOFF
section header. By convention, .typchk is the type-check section name. The strings in this section are
referenced from entries in the XCOFF symbol table.

Field Definitions

The following two fields are repeated for each parameter type-checking string:

A 2-byte length field containing the length of the type-checking string. The value contained in the length
field does not include the length of the length field itself.

The parameter type-checking hash string.

Type Encoding and Checking Format for Data

The type-checking hash strings are used to detect errors prior to execution of a program. Information about
all external symbols (data and functions) is encoded by the compilers and then checked for consistency at
bind time and load time. The type-checking strings are designed to enforce the maximum checking required
by the semantics of each particular language supported, as well as provide protection to applications written
in more than one language.

The type encoding and checking mechanism features 4-part hash encoding that provides some flexibility in
checking. The mechanism also uses a unique value, UNIVERSAL, that matches any code. The UNIVERSAL
hash can be used as an escape mechanism for assembly programs or for programs in which type information
or subroutine interfaces might not be known. The UNIVERSAL hash is four blank ASCII characters
(0x20202020) or four null characters (0x00000000).

The following fields are associated with the type encoding and checking mechanism:

Item Description

code length A 2-byte field containing the length of the hash. This field has a value of 10.

language identifier A 2-byte code representing each language. These codes are the same as those
defined for the e_lang field in the "Exception Section" information .

general hash A 4-byte field representing the most general form by which a data symbol or
function can be described. This form is the most common to languages
supported by . If the information is incomplete or unavailable, a universal hash
should be generated. The general hash is language-independent and must match
for the binding to succeed.

language hash A 4-byte field containing a more detailed, language-specific representation of
what is in the general hash. It allows for the strictest type-checking required by
a given language. This part is used in intra-language binding and is not checked
unless both symbols have the same language identifier.

Section Header Contents

The contents of the section header fields for the type-check section are:

Name Contents

s_name .typchk

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the type-check section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the type-check section data

s_relptr 0

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

23 of 71 03/10/13 15:32

Name Contents

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_TYPCHK.

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Exception Section

The exception section contains addresses of trap instructions, source language identification codes, and trap
reason codes. This section is produced by compilers and assemblers, and used during or after run time to
identify the reason that a specific trap or exception occurred. The exception section has a section type flag of
STYP_EXCEPT in the XCOFF section header. By convention, .except is the exception section name. Data in
the exception section is referenced from entries in the XCOFF symbol table.

An exception table entry with a value of 0 in the e_reason field contains the symbol table index to a function's
C_EXT, C_WEAKEXT, or C_HIDEXT symbol table entry. Reference from the symbol table to an entry in the
exception table is via the function auxiliary symbol table entry. For more information on this entry, see "csect
Auxiliary Entry for C_EXT, C_WEAKEXT and C_HIDEXT Symbols."

The C language structure for the exception section entries can be found in the exceptab.h file.

The exception section entries contain the fields shown in the following tables.

Table 10. Initial Entry: Exception Section Structure

Field Name and Description XCOFF32 XCOFF64

e_addr.e_symndx+

Symbol table index for function

Offset: 0

Length: 4

Offset: 0

Length: 4

e_lang+

Compiler language ID code

Offset: 4

Length: 1

Offset: 8

Length: 1

e_reason+

Value 0 (exception reason code 0)

Offset: 5

Length: 1

Offset: 9

Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With e_addr.e_symndx, the suffix is
added to e_addr (i.e. e_addr32.e_symndx).

Table 11. Subsequent Entry: Exception Section Structure

Field Name and Description XCOFF32 XCOFF64

e_addr.e_paddr+

Address of the trap instruction

Offset: 0

Length: 4

Offset: 0

Length: 8

e_lang+

Compiler language ID code

Offset: 4

Length: 1

Offset: 8

Length: 1

e_reason+

Trap exception reason code

Offset: 5

Length: 1

Offset: 9

Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With e_addr.e_paddr, the suffix is

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

24 of 71 03/10/13 15:32

added to e_addr (i.e. e_addr32.e_paddr).

Field Definitions

The following defines the fields listed of the exception section:

Item Description

e_symndx Contains an integer (overlays the e_paddr field). When the e_reason field is 0, this field is the
symbol table index of the function.

e_paddr Contains a virtual address (overlays the e_symndx field). When the e_reason field is nonzero,
this field is the virtual address of the trap instruction.

e_lang Specifies the source language. The following list defines the possible values of the e_lang
field.

ID

Language

0x00

C

0x01

FORTRAN

0x02

Pascal

0x03

Ada

0x04

PL/I

0x05

BASIC

0x06

Lisp

0x07

COBOL

0x08

Modula2

0x09

C++

0x0A

RPG

0x0B

PL8, PLIX

0x0C

Assembly

0x0D-0xFF

Reserved

e_reason Specifies an 8-bit, compiler-dependent trap exception reason code. Zero is not a valid trap
exception reason code because it indicates the start of exception table entries for a new
function.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

25 of 71 03/10/13 15:32

Section Header Contents

The following fields are the contents of the section header fields for the exception section.

Name Contents

s_name .except

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the exception section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the exception section data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_EXCEPT

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Comment Section

The comment section contains information of special processing significance to an application. This section
can be produced by compilers and assemblers and used during or after run time to fulfill a special processing
need of an application. The comment section has a section type flag of STYP_INFO in the XCOFF section
header. By convention, .info is the comment section name. Data in the comment section is referenced from
C_INFO entries in the XCOFF symbol table.

The contents of a comment section consists of repeated instances of a 4-byte length field followed by a string
of bytes (containing any binary value). The length of each string is stored in its preceding 4-byte length field.
The string of bytes need not be terminated by a null character nor by any other special character. The
specified length does not include the length of the length field itself. A length of 0 is allowed. The format of
the string of bytes is not specified.

A comment section string is referenced from an entry in the XCOFF symbol table. The storage class of the
symbol making a reference is C_INFO. See "Symbol Table Field Contents by Storage Class" for more
information.

A C_INFO symbol is associated with the nearest C_FILE, C_EXT, C_WEAKEXT, or C_HIDEXT symbol
preceding it.

Section Header Contents

The following fields are the contents of the section header fields for the comment section.

Name Contents

s_name .info

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the comment section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the comment section data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_INFO

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

26 of 71 03/10/13 15:32

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Relocation Information for XCOFF File (reloc.h)

Some sections have relocation information. The s_relptr field in the section header specifies the file offset to
the relocation entries for the section. The binder uses the relocation information to modify address constants
and other relocatable values when individual XCOFF object files are linked to create an XCOFF executable
file.

Compilers and assemblers generate the relocation entries for the information for sections. The binder
generates relocation information contained in the .loader section, as required by the system loader.

Each relocation entry is 10 bytes long (14 for XCOFF64). (A relocation entry in the .loader section is 12
bytes long (16 for XCOFF64) and is explained in the loader section description in this document. See
"Relocation Table Field Definitions" for more information.) You can find the C language structure for a
relocation entry in the reloc.h file. A relocation entry contains the fields shown in the following table.

Table 12. Relocation Entry Structure

Field Name and Description XCOFF32 XCOFF64

r_vaddr+

Virtual address (position) in section to be relocated

Offset: 0

Length: 4

Offset: 0

Length: 8

r_symndx+

Symbol table index of item that is referenced

Offset: 4

Length: 4

Offset: 8

Length: 4

r_rsize+

Relocation size and information

Offset: 8

Length: 1

Offset: 12

Length: 1

r_rtype+

Relocation type

Offset: 9

Length: 1

Offset: 13

Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The relocation entries for a section must be in ascending address order.

(The loader section contains a single set of relocation entries used by the system loader; so a section number
is required within each relocation entry to identify the section that needs to be modified.)

Field Definitions

The following defines the relocation-information fields:

Item Description

r_vaddr Specifies the virtual address of the value that requires modification by the binder. The
byte offset value to the data that requires modification from the beginning of the section
that contains the data can be calculated as follows:

offset_in_section = r_vaddr - s_paddr

r_symndx Specifies a zero-based index into the XCOFF symbol table for locating the referenced
symbol. The symbol table entry contains an address used to calculate a modification value
to be applied at the r_vaddr relocation address.

r_rsize Specifies the relocation size and sign. Its contents are detailed in the following list:

0x80 (1 bit)

Indicates whether the relocation reference is signed (1) or unsigned (0).

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

27 of 71 03/10/13 15:32

Item Description

0x40 (1 bit)

If this field is one, it indicates that the binder replaced the original instruction
with a modified instruction.

0x3F(6 bits)

Specifies the bit length of the relocatable reference minus one. The current
architecture allows for fields of up to 32 bits (XCOFF32) or 64 bits (XCOFF64) to
be relocated.

r_rtype Specifies an 8-bit relocation type field that indicates to the binder which relocation
algorithm to use for calculating the modification value. This value is applied at the
relocatable reference location specified by the r_vaddr field. The following relocation
types are defined:

0x00

R_POS

Specifies positive relocation. Provides the address of the symbol specified by the
r_symndx field.

0x01

R_NEG

Specifies negative relocation. Provides the negative of the address of the symbol
specified by the r_symndx field.

0x02

R_REL

Specifies relative-to-self relocation. Provides a displacement value between the
address of the symbol specified by the r_symndx field and the address of the
csect to be modified.

0x03

R_TOC

Specifies a relocation that is relative to TOC. Provides a displacement value that
is the difference between the address value in the symbol specified by the
r_symndx field and the address of the TOC anchor csect. The TOC anchor csect
is a symbol with storage-mapping class defined as XMC_TC0 and with a length
of 0. At most, one TOC anchor csect is allowed per XCOFF section.

A link editor is allowed to transform the instruction referenced by the r_vaddr
field. The symbol specified by the r_symndxfield is a TOC symbol if its storage-
mapping class is XMC_TC, and the TOC symbol contains the address of another
symbol that is within 32,768 bites of the TOC anchor or the thread-local storage
base. Therefore, if the referenced instruction is a load, and the symbol specified
by the r_symndx field is a TOC symbol, the load can be converted in to an
add-immediate instruction. This transformation eliminates a storage reference
during execution. If the instruction is transformed, the R_TOC relocation type is
replaced by a R_TRLA relocation type when the output file is written. This
enables a reverse transformation if the object is re-linked.

0x04

R_TRL

Specifies a relocation that is relative to TOC. This relocation entry is treated the
same as an R_TOC relocation entry, except that link editors are not allowed to
convert the instruction from a load to an add-immediate instruction.

0x13

R_TRLA

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

28 of 71 03/10/13 15:32

Item Description

Specifies a relocation that is either relative to TOC or relative to the thread-local
storage base. The instruction specified by the r_vaddr field is an add-immediate
instruction, and the symbol specified by the r_symndx field must be a TOC
symbol, which means that its storage-mapping class is XMC_TC. This instruction
is previously transformed by a link editor from a load instruction into an
add-immediate instruction. The link editor transforms the instruction back into a
load instruction, and changes the relocation type from R_TRLA to R_TOC. The
instruction can be transformed again as described for the R_TOC relocation
entry.

Compilers are not permitted to generate this relocation type.

r_rtype
continued 0x05

R_GL

Specifies Global Linkage-External TOC address relocation. Provides the address
of the TOC associated with a defined external symbol. The external symbol with
the required TOC address is specified by the r_symndx field of the relocation
entry. This relocation entry provides a method of accessing the address of the
TOC contained within the same executable where the r_symndx external symbol
is defined.

0x06

R_TCL

Specifies local object TOC address relocation. Provides the address of the TOC
associated with a defined external symbol. The external symbol for which the
TOC address is required is specified by the r_symndx field of the relocation
entry. The external symbol is defined locally within the resultant executable.
This relocation entry provides a method of accessing the address of the TOC
contained within the same executable where the r_symndx external symbol is
defined.

0x0C

R_RL

Treated the same as the R_POS relocation type.

0x0D

R_RLA

Treated the same as the R_POS relocation type.

0x0F

R_REF

Specifies a nonrelocating reference to prevent garbage collection (by the binder)
of a symbol. This relocation type is intended to provide compilers and
assemblers a method to specify that a given csect has a dependency upon
another csect without using any space in the actual csect. The reason for making
the dependency reference is to prevent the binder from garbage-collecting
(eliminating) a csect for which another csect has an implicit dependency.

0x08

R_BA

Treated the same as the R_RBA relocation type.

0x18

R_RBA

Specifies branch absolute relocation. Provides the address of the symbol
specified by the r_symndx field as the target address of a branch instruction.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

29 of 71 03/10/13 15:32

Item Description

The instruction can be modified to a (relative) branch instruction if the target
address is relocatable.

0x0A

R_BR

Treated the same as the R_RBR relocation type.

0x1A

R_RBR

Specifies (relative) branch relocation. Provides a displacement value between
the address of the symbol specified by the r_symndx field and the address of the
csect containing the branch instruction to be modified. The instruction can be
modified to an absolute branch instruction if the target address is not
relocatable.

The R_RBR relocation type is the standard branch relocation type used by
compilers and assemblers for the . This relocation type along with glink code
allows an executable object file to have a text section that is position-
independent.

r_rtype
continued 0x20

R_TLS

Specifies thread-local storage relocation, using the general-dynamic model.
Provides an offset into the thread-local storage for the module.

0x21

R_TLS_IE

Same as R_TLS, except that the initial-exec model is used. That is, the
referenced symbol must be exported by the main program or a module that is
loaded at exec time.

0x22

R_TLS_LD

Same as R_TLS, except that the local-dynamic model is used. That is, the
referenced symbol must be in the referencing module.

0x23

R_TLS_LE

Same as R_TLS, except that local-exec model is used. That is, both the reference
and the referenced symbol must be in the main program.

0x24

R_TLSM

Specifies thread-local storage relocation. Provides a handle for the thread-local
storage of the referenced variable. The handle is used by the pthread runtime to
locate the thread-local storage.

0x25

R_TLSML

Specifies thread-local storage relocation. Provides a handle for the module
containing the reference. The r_symndx field must specify the symbol table index
of the csect symbol containing the reference.

0x30

R_TOCU

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

30 of 71 03/10/13 15:32

Item Description

Specifies the high-order 16 bits of a TOC-relative relocation. Similar to the
R_TOC relocation, a displacement value is computed. The displacement value is
the difference between the address value in the symbol that the r_symndx field
specifies and the address of the TOC anchor csect. The high-order 16 bits of the
displacement are used to update the instruction. This relocation can overflow if
the TOC size is larger than 231 bytes.

0x31

R_TOCL

Specifies the low-order 16 bits of a TOC-relative relocation. Similar to the
R_TOC relocation, a displacement value is computed. The displacement value is
the difference between the address value in the symbol that the r_symndx field
specifies and the address of the TOC anchor csect. The low-order 16 bits of the
displacement are used to update the instruction.

Additional Relocation Features

Standard practice is to retain relocation information only for unresolved references or references between
distinct sections. Once a reference is resolved, the relocation information is discarded. This is sufficient for
an incremental bind and a fixed address space model. To provide the capability for rebinding and handling a
relocatable address space model, the relocation information is not discarded from an XCOFF file.

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on relocation field table definitions, see "Relocation Table Field Definitions" in the
loader section.

Line Number Information for XCOFF File (linenum.h)

Line number entries are used by the symbolic debugger to debug code at the source level. When present,
there is a single line number entry for every source line that can have a symbolic debugger breakpoint. The
line numbers are grouped by function. The beginning of each function is identified by the l_lnno field
containing a value of 0. The first field, l_symndx , is the symbol table index to the C_EXT, C_WEAKEXT, or
C_HIDEXT symbol table entry for the function.

Each line number entry is six bytes long. The C language structure for a line number entry can be found in
the linenum.h file. A line number entry contains the fields shown in the following tables.

Table 13. Initial Line Number Structure Entry for Function

Field Name and Description XCOFF32 XCOFF64

l_ addr.l_ symndx+

Symbol table index for function

Offset: 0

Length: 4

Offset: 0

Length: 4

l_ lnno +

Value 0 (line number 0)

Offset: 4

Length: 2

Offset: 8

Length: 4

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With l_addr.l_symndx, the suffix is
added to l_addr (i.e. l_addr32.l_symndx).

Table 14. Subsequent Line Number Entries for Function

Field Name and Description XCOFF32 XCOFF64

l_ paddr+

Address at which break point can be inserted

Offset: 0

Length: 4

Offset: 0

Length: 8

l_ lnno +

Line number relative to start of function

Offset: 4

Length: 2

Offset: 8

Length: 4

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

31 of 71 03/10/13 15:32

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With l_addr.l_paddr, the suffix is
added to l_addr (i.e. l_addr32.l_paddr).

Field Definitions

The following list defines the line number entries:

Item Description

l_symndx Specifies the symbol table index to the function name (overlays the l_paddr field). When the
l_lnno field is 0, this interpretation of the field is used.

l_paddr Specifies the virtual address of the first instruction of the code associated with the line
number (overlays the l_symndx field). When the l_lnno field is not 0, this interpretation of
the field is used.

l_lnno Specifies either the line number relative to the start of a function or 0 to indicate the
beginning of a function.

Note: If part of a function other than the beginning comes from an include file, the line numbers are
absolute, rather than relative to the beginning of the function. (See the C_BINCL and C_EINCL symbol types
in "Storage Classes by Usage and Symbol Value Classification" for more information.)

For general information on the XCOFF file format, see "XCOFF Object File Format."

For information on debugging, see "Debug Section."

Symbol Table Information

One composite symbol table is defined for an XCOFF file. The symbol table contains information required by
both the binder (external symbols) and the symbolic debugger (function definitions and internal and external
symbols).

The symbol table consists of a list of 18-byte, fixed-length entries. Each symbol represented in the symbol
table consists of at least one fixed-length entry, and some are followed by auxiliary entries of the same size.

See the following information to learn more about the symbol table:

Symbol Table Auxiliary Information

Symbol Table Field Contents by Storage Class

String Table

For each external symbol, one or more auxiliary entries are required that provide additional information
concerning the external symbol. There are three major types of external symbols of interest to the binder,
performing the following functions:

Define replaceable units or csects.

Define the external names for functions or entry points within csects.

Reference the names of external functions in another XCOFF object.

For symbols defining a replaceable unit (csect), a csect auxiliary entry defines the length and storage-
mapping class of the csect. For symbols defining external names for functions within a csect, the csect
auxiliary entry points to the containing csect, the parameter type-checking information, and the symbolic
debugger information for the function. For symbols referencing the name of an external function, a csect
auxiliary entry identifies the symbol as an external reference and points to parameter type-checking
information.

Symbol Table Contents

An XCOFF symbol table has the following general contents and ordering:

The C_FILE symbol table entries used to bracket all the symbol table entries associated with a given
source file.

The C_INFO comment section symbol table entries that are of source file scope. These follow the C_FILE
entry but before the first csect definition symbol table entry.

The symbolic debugger symbol table entries that are of file scope. These follow the C_FILE entry but
before the first csect entry.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

32 of 71 03/10/13 15:32

The C_DWARF symbols for DWARF debugging information. These follow the C_FILE entry and no csect
symbols should appear between the C_FILE entry and its C_DWARF symbols.

csect definition symbol table entries used to define and bracket all the symbols contained with a csect.

C_INFO comment section symbol table entries that follow a csect definition symbol table entry are
associated with that csect.

All symbolic debugger symbol table entries that follow a csect definition symbol table entry or label
symbol table entry are associated with that csect or label.

The ordering of the symbol table must be arranged by the compilers and assemblers both to accommodate
the symbolic debugger requirements and to permit effective management by the binder of the different
sections of the object file as a result of such binder actions as garbage collection, incremental binding, and
rebinding. This ordering is required by the binder so that if a csect is deleted or replaced, all the symbol table
information associated with the csect can also be deleted or replaced. Likewise, if all the csects associated
with a source file are deleted or replaced, all the symbol table and related information associated with the file
can also be deleted or replaced.

Symbol Table Layout

The following example shows the general ordering of the symbol table.

un_external Undefined global symbols

.file Prolog --defines stabstring compaction level

.file Source file 1
 .info Comment section reference symbol with file scope
 stab Global Debug symbols of a file
 dwarf DWARF Information of a file
 csect Replaceable unit definition (code)
 .info Comment section reference symbol with csect scope
 function Local/External function
 stab Debug and local symbols of function
 function Local/External function
 stab Debug and local symbols of function

 csect Replaceable unit definition (local statics)
 stab Debug and local statics of file

 csect Relocatable unit definition (global data)
 external Defined global symbol
 stab Debug info for global symbol

.file Source file 2
 stab Global Debug symbols of a file
 dwarf DWARF Information of a file
 csect Replaceable unit definition (code)
 function Local/External function
 stab Debug and local symbols of function

 csect Replaceable unit definition (local statics)
 stab Debug and Local statics of file

 csect Replaceable unit definition (global data)
 external Defined global symbol
 stab Debug info for global symbol
.file Source file

Symbol Table Entry (syms.h)

Each symbol, regardless of storage class and type, has a fixed-format entry in the symbol table. In addition,
some symbol types may have additional (auxiliary) symbol table entries immediately following the fixed-
format entry. Each entry in the symbol table is 18 bytes long. The C language structure for a symbol table
entry can be found in the syms.h file. The index for the first entry in the symbol table is 0. The following
table shows the structure of the fixed-format part of each symbol in the symbol table.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

33 of 71 03/10/13 15:32

Table 15. Symbol Table Entry Format

Field Name and Description XCOFF32 XCOFF64

n_name

Symbol name (occupies
the same 8 bytes as
n_zeroes and
n_offset)

Offset: 0

Length: 8

Offset: N/A

Length: N/A

n_zeroes

Zero, indicating name in
string table or .debug
section (overlays first 4
bytes of n_name)

Offset: 0

Length: 4

Offset: N/A

Length: N/A

n_offset+

Offset of the name in
string table or .debug
section (In XCOFF32:
overlays last 4 bytes of
n_name)

Offset: 4

Length: 4

Offset: 8

Length: 4

n_value+

Symbol value; storage
class-dependent

Offset: 8

Length: 4

Offset: 0

Length: 8

n_scnum

Section number of
symbol

Offset: 12

Length: 2

Offset: 12

Length: 2

n_type

Basic and derived type
specification

Offset: 14

Length: 2

Offset: 14

Length: 2

n_lang

Source language ID
(overlays first byte of
n_type)

Offset: 14

Length: 1

Offset: 14

Length: 1

n_cpu

CPU Type ID (overlays
second byte of n_type)

Offset: 15

Length: 1

Offset: 15

Length: 1

n_sclass

Storage class of symbol

Offset: 16

Length: 1

Offset: 16

Length: 1

n_numaux

Number of auxiliary
entries

Offset: 17

Length: 1

Offset: 17

Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

34 of 71 03/10/13 15:32

The following defines the symbol table entry fields:

Item Description

n_name Used by XCOFF32 only. Specifies an 8-byte, null-padded symbol name or symbolic debugger
stabstring. The storage class field is used to determine if the field is a symbol name or
symbolic debugger stabstring. By convention, a storage class value with the high-order bit on
indicates that this field is a symbolic debugger stabstring.

If the XCOFF32 symbol name is longer than 8 bytes, the field is interpreted as the following
two fields:

n_zeroes

A value of 0 indicates that the symbol name is in the string table or .debug section
(overlays first word of n_name).

n_offset

Specifies the byte offset to the symbol name in the string table or .debug section
(overlays last 4 bytes of n_name). The byte offset is relative to the start of the string
table or .debug section. A byte offset value of 0 is a null or zero-length symbol
name.

n_offset For XCOFF64: Specifies the byte offset to the symbol name in the string table or .debug
section. The byte offset is relative to the start of the string table or .debug section. A byte
offset value of 0 is a null or zero-length symbol name. (For XCOFF32 only, used in conjunction
with n_zeroes. See entry immediately above.)

n_value Specifies the symbol value. The contents of the symbol value field is storage class-dependent,
as shown in the following definitions:

Content

Storage Class

Relocatable address

C_EXT, C_WEAKEXT, C_HIDEXT, C_FCN, C_BLOCK, C_STAT

Zero

C_GSYM, C_BCOMM, C_DECL, C_ENTRY, C_ESTAT, C_ECOMM

Offset in csect

C_FUN, C_STSYM

Offset in file

C_BINCL, C_EINCL

Offset in comment section

C_INFO

Symbol table index

C_FILE, C_BSTAT

Offset relative to stack frame

C_LSYM, C_PSYM

Register number

C_RPSYM, C_RSYM

Offset within common block

C_ECOML

Offset within corresponding DWARF section

C_DWARF

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

35 of 71 03/10/13 15:32

Item Description

n_scnum Specifies a section number associated with one of the following symbols:

-2

Specifies N_DEBUG, a special symbolic debugging symbol.

-1

Specifies N_ABS, an absolute symbol. The symbol has a value but is not
relocatable.

0

Specifies N_UNDEF, an undefined external symbol.

Any other value

Specifies the section number where the symbol was defined.

n_type The use of this field depends on the storage class of the symbol. For C_FILE symbols, see
"File Auxiliary Entry for the C_FILE Symbol" .

For the C_EXT, C_HIDEXT, and C_WEAKEXT symbols, the n_type field has two
interpretations in XCOFF32, and a single interpretation in XCOFF64. The old interpretation
is used in XCOFF32 if the value of the o_vstamp field in the auxiliary header is 1.

In the old XCOFF32 interpretation, bit 10 (0x0020) can be set if the symbol is a function.
Otherwise, bit 10 should be 0. The remaining bits are defined in COFF file to represent type
information and are no longer used.

In XCOFF64 and the new XCOFF32 interpretation, the n_type field is used for the symbol
type and visibility as follows:

Bits 0-3

Symbol visibility. The SYM_V_MASK macro, with the value 0xF000, can be used to
mask off bits in the n_type field that do not specify visibility. The following
visibilities are defined:

0x1000 SYM_V_INTERNAL
0x2000 SYM_V_HIDDEN
0x3000 SYM_V_PROTECTED
0x4000 SYM_V_EXPORTED

Bit 10

Optionally set to 1 if the symbol is a function. Otherwise, it is set to 0.

Bits 4-9, 11-15

Reserved for future use.

Symbol visibility is described in the ld command.

Note: For all other storage classes, the n_type field is reserved for future use and should
contain 0.

n_sclass Specifies the storage class of the symbol. The storclass.h and dbxstclass.h files contain the
definitions of the storage classes. See "Symbol Table Field Contents by Storage Class" for
more information.

n_numaux Specifies the number of auxiliary entries for the symbol. In XCOFF64, auxiliary symbols have
an identifying type field, but in XCOFF32, there is no type field. Therefore, if more than one
auxiliary entry is required for a symbol, the order of the auxiliary entries is determined by
convention.

For general information on the XCOFF file format, see "XCOFF Object File Format."

Symbol Table Auxiliary Information

The symbol table contains auxiliary entries to provide supplemental information for a symbol. The auxiliary
entries for a symbol follow its symbol table entry. The length of each auxiliary entry is the same as a symbol

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

36 of 71 03/10/13 15:32

table entry (18 bytes). The format and quantity of auxiliary entries depend on the storage class (n_sclass)
and type (n_type) of the symbol table entry.

In XCOFF32, symbols having a storage class of C_EXT, C_WEAKEXT or C_HIDEXT and more than one
auxiliary entry must have the csect auxiliary entry as the last auxiliary entry. In XCOFF64, the x_auxtype
field of each auxiliary symbol table entry differentiates the symbols, but the convention is to generate the
csect auxiliary symbol table entry last.

File Auxiliary Entry for C_FILE Symbols

The file auxiliary symbol table entry is defined to contain the source file name and compiler-related strings. A
file auxiliary entry is optional and is used with a symbol table entry that has a storage-class value of C_FILE.
The C language structure for a file auxiliary entry can be found in the x_file structure in the syms.h file.

The C_FILE symbol provides source file-name information, source-language ID and CPU-version ID
information, and, optionally, compiler-version and time-stamp information.

The n_type field of the symbol table entry identifies the source language of the source file and the CPU
version ID of the compiled object file. The field information is as follows:

Item Description

Source Language ID Overlays the high-order byte of the n_type field. This field contains the
source-language identifier. The values for this field are defined in the
e_lang field in "Exception Section" . This field can be used by the symbolic
debuggers to determine the source language.

The optional values for this field are 248 (TB_OBJECT) for symbols from
object files with no C_FILE symbol table entry; or 249 (TB_FRONT) or 250
(TB_BACK) for generated entries used to provide debugging information. If
the source language is TB_FRONT or TB_BACK, the 8-character name field
begins with ' ' (blank) , '\0'(NULLl). If the source language is TB_FRONT,
the third byte is the stabstring compaction level for the object file, and the
n_offset field contains the symbol table index of the TB_BACK symbol table
entry, if it exists, or 0 otherwise.

CPU Version ID Defined as the low-order byte of the n_type field. Decribes the kind of
instructions generated for the file. The following values are defined:

0

Reserved.

1

Specifies , 32-bit mode.

2

Reserved.

3

Specifies the common intersection of 32-bit and Processor.

4

Specifies Processor.

5

Specifies any mix of instructions between different architectures.

6

Specifies a mix of and instructions ().

7-223

Reserved.

224

Specifies instructions.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

37 of 71 03/10/13 15:32

Item Description

225-255

Reserved.

If both fields are 0, no information is provided about the source language.

File Name Auxiliary Entry Format

Offset

Length in Bytes

Name

Description

0

14

x_fname

Source file string

0

4

x_zeroes

Zero, indicating file string in string table (overlays first 4 bytes of
x_fname)

4

4

x_offset

Offset of file string in string table (overlays 5th-8th bytes of
x_fname)

14

1

x_ftype

File string type

15

2

Reserved. Must contain 0.

17

1

x_auxtype

Auxiliary symbol type(XCOFF64 only)

Field Definitions

The following defines the fields listed above:

Item Description

x_fname Specifies the source file name or compiler-related string.

If the file name or string is longer than 8 bytes, the field is interpreted as the following two
fields:

x_zeroes

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

38 of 71 03/10/13 15:32

Item Description

A value of 0 indicates that the source file string is in the string table (overlays
first 4 bytes of x_fname).

x_offset

Specifies the offset from the beginning of the string table to the first byte of the
source file string (overlays last 4 bytes of x_fname).

x_ftype Specifies the source-file string type.

0 XFT_FN

Specifies the source-file name

1 XFT_CT

Specifies the compiler time stamp

2 XFT_CV

Specifies the compiler version number

128 XFT_CD

Specifies compiler-defined information

(no name) Reserved. This field must contain 2 bytes of 0.

x_auxtype (XCOFF64 only) Specifies the type of auxiliary entry. Contains _AUX_FILE for this auxiliary
entry.

If the file auxiliary entry is not used, the symbol name is the name of the source file. If the file auxiliary entry
is used, then the symbol name should be .file, and the first file auxiliary entry (by convention) contains the
source file name. More than one file auxiliary entry is permitted for a given symbol table entry. The n_numaux
field contains the number of file auxiliary entries.

csect Auxiliary Entry for C_EXT, C_WEAKEXT, and C_HIDEXT Symbols

The csect auxiliary entry identifies csects (section definitions), entry points (label definitions), and external
references (label declarations). A csect auxiliary entry is required for each symbol table entry that has a
storage class value of C_EXT, C_WEAKEXT, or C_HIDEXT. See "Symbol Table Entry (syms.h)" for more
information. By convention, the csect auxiliary entry in an XCOFF32 file must be the last auxiliary entry for
any external symbol that has more than one auxiliary entry. The C language structure for a csect auxiliary
entry can be found in the x_csect structure in the syms.h file.

Table 16. csect Auxiliary Entry Format

Field Name and Description XCOFF32 XCOFF64

x_scnlen

(See field definition
section)

Offset: 0

Length: 4

Offset: N/A

Length: N/A

x_scnlen_lo

(See field definition
section) Low 4 bytes of
section length

Offset: N/A

Length: N/A

Offset: 0

Length: 4

x_parmhash

Offset of parameter
type-check hash in
.typchk section

Offset: 4

Length: 4

Offset: 4

Length: 4

x_snhash

.typchk section

Offset: 8

Length: 2

Offset: 8

Length: 2

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

39 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

number

x_smtyp

Symbol alignment and
type 3-bit symbol
alignment (log 2) 3-bit
symbol type

Offset: 10

Length: 1

Offset: 10

Length: 1

x_smclas

Storage mapping class

Offset: 11

Length: 1

Offset: 11

Length: 1

x_stab

Reserved

Offset: 12

Length: 4

Offset: N/A

Length: N/A

x_snstab

Reserved

Offset: 16

Length: 2

Offset: N/A

Length: N/A

x_scnlen_hi

(See field definition
section) High 4 bytes of
section length

Offset: N/A

Length: N/A

Offset: 12

Length: 4

(pad)

Reserved

Offset: N/A

Length: N/A

Offset: 16

Length: 1

x_auxtype

Contains _AUX_CSECT;
indicates type of
auxiliary entry

Offset: N/A

Length: N/A

Offset: 17

Length: 1

Field Definitions

The following defines the fields listed above:

Item Description

x_scnlen Specifies a meaning dependent on x_smtyp as follows:

If

Then

XTY_SD

x_scnlen contains the csect length.

XTY_LD

x_scnlen contains the symbol table index of the containing csect.

XTY_CM

x_scnlen contains the csect length.

XTY_ER

x_scnlen contains 0.

In the XCOFF64 format, the value of x_scnlen is divided into two fields: x_scnlen_hi,
representing the upper 4 bytes of the value, and x_scnlen_lo, representing the lower 4

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

40 of 71 03/10/13 15:32

Item Description

bytes of the value.

x_parmhash Specifies the byte offset of the parameter type-check string in the .typchk section. The
byte offset is from the beginning of the .typchk section in an XCOFF file. The byte offset
points to the first byte of the parameter type-check string (not to its length field). See
"Type-Check Section" for more information. A value of 0 in the x_parmhash field indicates
that the parameter type-checking string is not present for this symbol, and the symbol will
be treated as having a universal hash. The value should be 0 for C_HIDEXT symbols.

x_snhash Specifies the .typchk section number. The XCOFF section number containing the
parameter type-checking strings. The section numbers are one-based. For compatibility
with object files generated by some compilers, if x_parmhash is not equal to 0 but
x_snhash does equal 0, then the first .typchk section in the file is used. The value should
be 0 for C_HIDEXT symbols.

x_smtyp Specifies symbol alignment and type:

Bits 0-4

Contains a 5-bit csect address alignment value (log base 2). For example, a value
of 3 in this field indicates 23, or 8, meaning the csect is to be aligned on an
8-byte address value. The alignment value is used only when the value of bits 5-7
of the x_smtyp field is either XTY_SD or XTY_CM.

Bits 5-7

Contains a 3-bit symbol type field. See the definitions for bits 5-7 of the
l_smtype field in "Loader Section" for more information.

x_smclas Specifies the csect storage-mapping class. This field permits the binder to arrange csects
by their storage-mapping class. The x_smclas field is used only when the value of bits 5-7
of the x_smtyp field is either XTY_SD or XTY_CM.

The following storage-mapping classes are read-only and normally mapped to the .text
section:

Value Class

Description

0 XMC_PR

Specifies program code. The csect contains the executable instructions of the
program.

1 XMC_RO

Specifies a read-only constant. The csect contains data that is constant and will
not change during execution of the program.

2 XMC_DB

Specifies the debug dictionary table. The csect contains symbolic-debugging
data or exception-processing data. This storage mapping class was defined to
permit compilers with special symbolic-debugging or exception-processing
requirements to place data in csects that are loaded at execution time but that
can be collected separately from the executable code of the program.

6 XMC_GL

Specifies global linkage. The csect provides the interface code necessary to
handle csect relative calls to a target symbol that can be out-of-module. This
global linkage csect has the same name as the target symbol and becomes the
local target of the relative calls. As a result, the csect maintains position-
independent code within the .text section of the executable XCOFF object file.

7 XMC_XO

Specifies extended operation. A csect of this type has no dependency on
(references through) the TOC. It is intended to reside at a fixed address in
memory such that it can be the target of a branch-absolute instruction.

12 XMC_TI

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

41 of 71 03/10/13 15:32

Item Description

Reserved.

13 XMC_TB

Reserved.

The following storage-mapping classes are read/write and normally mapped to the .data
or .bss section:

Value Class

Description

5 XMC_RW

Specifies read/write data. A csect of this type contains initialized or uninitialized
data that is permitted to be modified during program execution. If the x_smtyp
value is XTY_SD, the csect contains initialized data and is mapped into the
.data section. If the x_smtyp value is XTY_CM, the csect is uninitialized and is
mapped into the .bss section. Typically, all the initialized static data from a C
source file is contained in a single csect of this type. The csect would have a
storage class value of C_HIDEXT. An initialized definition for a global data
scalar or structure from a C source file is contained in its own csect of this type.
The csect would have a storage class value of C_EXT. A csect of this type is
accessible by name references from other object files.

x_smclas
continued Value Class

Description

15 XMC_TC0

Specifies TOC anchor for TOC addressability. This is a zero-length csect whose
n_value address provides the base address for TOC relative addressability. Only
one csect of type XMC_TC0 is permitted per section of an XCOFF object file. In
implementations that permit compilers and assemblers to generate multiple
.data sections, there must be a csect of type XMC_TC0 in each section that
contains data that is referenced (by way of a relocation entry) as a TOC-relative
data item. Some hardware architectures limit the value that a relative
displacement field within a load instruction may contain. This limit then
becomes an inherent limit on the size of a TOC for an executable XCOFF object.
For RS/6000®, this limit is 65,536 bytes, or 16,384 4-byte TOC entries.

3 XMC_TC

22 XMC_TE

Specifies general TOC entries. Csects of this type are the same size as a pointer
and contain the address of other csects or global symbols. These csects provide
addressability to other csects or symbols. The symbols might be in either the
local executable XCOFF object or another executable XCOFF object. The binder
uses special processing semantics to eliminate duplicate TOC entries as follows:

Symbols that have a storage class value of C_EXT are global symbols and
must have names (a non-null n_name field). These symbols require no special
TOC processing logic to combine duplicate entries. Duplicate entries with
the same n_name value are combined into a single entry.

Symbols that have a storage class value of C_HIDEXT are not global
symbols, and duplicate entries are resolved by context. Any two such
symbols are defined as duplicates and combined into a single entry
whenever the following conditions are met:

The n_name fields are the same. That is, they have either a null name or
the same name string.

Each is the same size as a pointer.

Each has a single RLD entry that references external symbols with the
same name.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

42 of 71 03/10/13 15:32

Item Description

To minimize the number of duplicate TOC entries that the binder cannot
combine, compilers and assemblers should adhere to a common naming
convention for TOC entries. By convention, compilers and assemblers produce
TOC entries that have a storage class value of C_HIDEXT and an n_name string
that is the same as the n_name value for the symbol that the TOC entry
addresses.

Storage-mapping classes XMC_TC and XMC_TE are equivalent, except that the
binder should map XMC_TE symbols after XMC_TC and XMC_TD symbols.

x_smclas
continued Value Class

Description

16 XMC_TD

Specifies scalar data entry in the TOC. A csect that is a special form of an
XMC_RW csect that is directly accessed from the TOC by compiler generated
code. This lets some frequently used globol symbols be accessed directly from
the TOC rather than indirectly through an address pointer csect contained in the
TOC. A csect of type XMC_TD has the following characteristics:

The compiler generates code that is TOC relative to directly access the data
contained in the csect of type XMC_TD.

It is 4-bytes long or less.

It has initialized data that can be modified as the program runs.

If a same named csect of type XMC_RW or XMC_UA exist, it is replaced by
the XMC_TD csect.

For the cases where TOC scalar cannot reside in the TOC, the binder must be
capable of transforming the compiler generated TOC relative instruction into a
conventional indirect addressing instruction sequence. This transformation is
necessary if the TOC scalar is contained in a shared object.

10 XMC_DS

Specifies a csect containing a function descriptor, which contains the following
three values:

The address of the executable code for a function.

The address of the TOC anchor (TOC base address) of the module that
contains the function.

The environment pointer (used by languages such as Pascal and PL/I).

There is only one function descriptor csect for a function, and it must be
contained within the same executable as the function itself is contained. The
function descriptor has a storage class value of C_EXT and has an n_name value
that is the same as the name of the function in the source file. The addresses of
function descriptors are imported to and exported from an executable XCOFF
file.

8 XMC_SV

Specifies 32-bit supervisor call descriptor csect. The supervisor call descriptors
are contained within the operating system kernel. To an application program,
the reference to a supervisor call descriptor is treated the same as a reference
to a regular function descriptor. It is through the import/export mechanism that
a function descriptor is treated as a supervisor call descriptor. These symbols
are only available to 32-bit programs.

17 XMC_SV64

Specifies 64-bit supervisor call descriptor csect. See XMV_SV for supervisor call
information. These symbols are only available to 64-bit programs.

18 XMC_SV3264

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

43 of 71 03/10/13 15:32

Item Description

Specifies supervisor call descriptor csect for both 32-bit and 64-bit. See
XMV_SV for supervisor call information. These symbols are available to both
32-bit and 64-bit programs.

4 XMC_UA

Unclassified. This csect is treated as read/write. This csect is frequently
produced by an assembler or object file translator program that cannot
determine the true classification of the resultant csect.

9 XMC_BS

Specifies BSS class (uninitialized static internal). A csect of this type is
uninitialized, and is intended to be mapped into the .bss section. This type of
csect must have a x_smtyp value of XTY_CM.

x_smclas
continued Value Class

Description

11 XMC_UC

Specifies unnamed FORTRAN common. A csect of this type is intended for an
unnamed and uninitialized FORTRAN common. It is intended to be mapped into
the .bss section. This type of csect must have a x_smtyp value of XTY_CM.

The following storage mapping class is read-write and is mapped to the .tdata section:

20 XMC_TL

Specifies read/write thread-local data. A csect of this type contains initialized
data that is local to every thread in a process. When a new thread is created, a
csect with type XMC_TL is used to initialize the thread-local data for the thread.

The following storage mapping class is read-write and is mapped to the .tbss section:

21 XMC_UL

Specifies read/write thread-local data. A csect of this type contains uninitialized
data that is local to every thread in a process. When a new thread is created, the
thread-local storage for a csect of this type is initialized to zero.

x_stab Reserved (Unused for 64-bit).

x_snstab Reserved (Unused for 64-bit).

Auxiliary Entries for the C_EXT, C_WEAKEXT, and C_HIDEXT Symbols

Auxiliary symbol table entries are defined in XCOFF to contain reference and size information associated with
a defined function. These auxiliary entries are produced by compilers and assembler for use by the symbolic
debuggers. In XCOFF32, a function auxiliary symbol table entry contains the required information. In
XCOFF64, both a function auxiliary entry and an exeption auxiliary entry may be needed. When both auxiliary
entries are generated for a single C_EXT, C_WEAKEXT, or C_HIDEXT symbol, the x_size and x_endndx
fields must have the same values.

The function auxiliary symbol table entry is defined in the following table.

Table 17. Function Auxiliary Entry Format

Field Name and Description XCOFF32 XCOFF64

x_exptr

File offset to exception
table entry

Offset: 0

Length: 4

Offset: N/A

Length: N/A

x_fsize

Size of function in bytes

Offset: 4

Length: 4

Offset: 8

Length: 4

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

44 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

x_lnnoptr

File pointer to line
number

Offset: 8

Length: 4

Offset: 0

Length: 8

x_endndx

Symbol table index of
next entry beyond this
function

Offset: 12

Length: 4

Offset: 12

Length: 4

(pad)

Unused

Offset: 16

Length: 1

Offset: 16

Length: 1

x_auxtype

Contains _AUX_FCN;
Type of auxiliary entry

Offset: N/A

Length: N/A

Offset: 17

Length: 1

Field Definitions

The following defines the fields listed in the Function Auxiliary Entry Format table:

Item Description

x_exptr (XCOFF32 only) This field is a file pointer to an exception table entry. The value is the byte
offset from the beginning of the XCOFF object file. In an XCOFF64 file, the exception table
offsets are in an exception auxiliary symbol table entry.

x_fsize Specifies the size of the function in bytes.

x_lnnoptr Specifies a file pointer to the line number. The value is the byte offset from the beginning of
the XCOFF object file.

x_endndx Specifies the symbol table index of the next entry beyond this function.

The exception auxiliary symbol table entry, defined in XCOFF64 only, is shown in the following table.

Table 18. Exception Auxiliary Entry Format (XCOFF64 only)

Offset Length Name and Description

0 8
x_exptr

File offset to exception table entry.

8 4
x_fsize

Size of function in bytes

12 4
x_endndx

Symbol table index of next entry beyond this function

16 1
(pad)

Unused

17 1
x_auxtype

Contains _AUX_EXCEPT; Type of auxiliary entry

Field Definitions

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

45 of 71 03/10/13 15:32

The following defines the fields listed in the Exception Auxiliary Entry Format table:

Item Description

x_exptr This field is a file pointer to an exception table entry. The value is the byte offset from the
beginning of the XCOFF object file.

x_fsize Specifies the size of the function in bytes.

x_endndx Specifies the symbol table index of the next entry beyond this function.

Block Auxiliary Entry for the C_BLOCK and C_FCN Symbols

The symbol auxiliary symbol table entry is defined in XCOFF to provide information associated with the begin
and end blocks of functions. The symbol auxiliary symbol table entry is produced by compilers for use by the
symbolic debuggers.

Table 19. Table Entry Format

Field Name and Description XCOFF32 XCOFF64

(no name)

Reserved

Offset: 0

Length: 2

Offset: N/A

Length: N/A

x_lnnohi

High-order 2 bytes of
the source line number

Offset: 2

Length: 2

Offset: N/A

Length: N/A

x_lnno

Low-order 2 bytes of the
source line number

Offset: 4

Length: 2

Offset: N/A

Length: N/A

x_lnno

Source line number

Offset: N/A

Length: N/A

Offset: 0

Length: 4

(no name)

Reserved

Offset: 6

Length: 12

Offset: 4

Length: 13

x_auxtype

Contains _AUX_SYM;
Type of auxiliary entry

Offset: N/A

Length: N/A

Offset: 17

Length: 1

Field Definitions

The following defines the fields above:

Item Description

(no name) Reserved.

x_lnnohi For XCOFF32, specifies the high-order 16 bits of a source file line number.

x_lnno Specifies the line number of a source file. The maximum value of this field is 65535 for
XCOFF64 and 232 for XCOFF64.

Section Auxiliary Entry for the C_STAT Symbol

The section auxiliary symbol table entry ID is defined in XCOFF32 to provide information in the symbol table
concerning the size of sections produced by a compiler or assembler. The generation of this information by a
compiler is optional, and is ignored and removed by the binder.

Note: The + after x_scnlen and x_nreloc should be a superscript. You can find other instances of this
superscript in the existing documentation.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

46 of 71 03/10/13 15:32

Table 20. Section Auxiliary Entry Format (XCOFF32 Only)

Offset Length in Bytes Name and Description

0 4
x_scnlen

Section length

4 2
x_nreloc

Number of relocation entries

6 2
x_nlinno

Number of line numbers

8 10
(no name)

Reserved

Field Definitions

The following list defines the fields:

Item Description

x_scnlen Specifies section length in bytes.

x_nreloc Specifies the number of relocation entries. The maximum value of this field is 65535.

x_nlinno Specifies the number of line numbers. The maximum value of this field is 65535.

(no name) Reserved.

For general information on the XCOFF file format, see "XCOFF Object File Format." For more information on
the symbol table, see "Symbol Table Information."

For information on debugging, see "Debug Section."

SECT Auxiliary Entry for the C_DWARF Symbol

The SECT auxiliary symbol table entry is defined to provide information in the symbol table concerning the
size of the portion of the section represented by the C_DWARF symbol.

Table 21. Section Auxiliary Entry Format for C_DWARF symbols

Field Name and Description XCOFF32 XCOFF64

x_scnlen+

Length of portion of section represented by symbol.

Offset: 0

Length: 4

Offset: 0

Length: 8

(no name)

Reserved

Offset: 4

Length: 4

Offset: N/A

Length: N/A

x_nreloc +

Number of relocation entries in section

Offset: 8

Length: 4

Offset: 8

Length: 8

(no name)

Reserved

Offset: 12

Length: 4

Offset: N/A

Length: N/A

(no name)

Reserved

Offset: 16

Length: 2

Offset: 16

Length: 1

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

47 of 71 03/10/13 15:32

Field Name and Description XCOFF32 XCOFF64

x_auxtype

Contains _AUX_SECT; Type of Auxillary entry

Offset: N/A

Length: N/A

Offset: 17

Length: 1

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

The following list defines the fields:

Item Description

(no name) Reserved

x_scnlen Size of portion of section represented by this symbol.

x_nreloc Number of relocation entries for this symbol. The binder sets this field to 0.

Symbol Table Field Contents by Storage Class

This section defines the symbol table field contents for each of the defined storage classes (n_sclass) that
are used in XCOFF. The following table lists storage class entries in alphabetic order. See "Symbol Table
Entry (syms.h)" for more information.

Table 22. Symbol Table by Storage Class

Class Definition Field Contents

C_BCOMM 135 Beginning of common
block n_name

Name of the common block*

n_value

0, undefined

n_scnum

N_DEBUG

Aux. Entry

C_BINCL 108 Beginning of include file
n_name

Source name of the include file**

n_value

File pointer

n_scnum

N_DEBUG

Aux. Entry

C_BLOCK 100 Beginning or end of inner
block n_name

.bb or .eb

n_value

Relocatable address

n_scnum

N_SCNUM

Aux. Entry

BLOCK

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

48 of 71 03/10/13 15:32

Class Definition Field Contents

C_BSTAT 143 Beginning of static block
n_name

.bs

n_value

Symbol table index

n_scnum

N_DEBUG

Aux. Entry

C_DECL 140 Declaration of object (type)
n_name

Debugger stabstring*

n_value

0, undefined

n_scnum

N_SCNUM

Aux. Entry

C_DWARF 112 DWARF symbol
n_name

Same as name of corresponding DWARF section

n_value

Relocatable offset into corresponding DWARF section

n_scnum

Section number of a DWARF section

Aux. Entry

SECT

C_ECOML 136 Local member of common
block n_name

Debugger stabstring*

n_value

Offset within common block

n_scnum

N_ABS

Aux. Entry

C_ECOMM 137 End of common block
n_name

Debugger stabstring*

n_value

0, undefined

n_scnum

N_DEBUG

Aux. Entry

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

49 of 71 03/10/13 15:32

Class Definition Field Contents

C_EINCL 109 End of include file
n_name

Source name of the include file**

n_value

File pointer

n_scnum

N_DEBUG

Aux. Entry

C_ENTRY 141 Alternate entry
n_name

*

n_value

0, undefined

n_scnum

N_DEBUG

Aux. Entry

C_ESTAT 144 End of static block
n_name

.es

n_value

0, undefined

n_scnum

N_DEBUG

Aux. Entry

C_EXT 2 External symbol (defining
external symbols for binder processing) n_name

Symbol Name**

n_value

Relocatable address

n_scnum

N_SCNUM or N_UNDEF

Aux. Entry

FUNCTION CSECT

C_FCN 101 Beginning or end of function
n_name

.bf or .ef

n_value

Relocatable address

n_scnum

N_SCNUM

Aux. Entry

BLOCK

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

50 of 71 03/10/13 15:32

Class Definition Field Contents

C_FILE 103 Source file name and
compiler information n_name

.file or source file name (if no auxiliary entries)**

n_value

Symbol table index

n_scnum

N_DEBUG

Aux. Entry

FILE

C_FUN 142 Function or procedure
n_name

Debugger stabstring*

n_value

Offset within containing csect

n_scnum

N_ABS

Aux. Entry

C_GSYM 128 Global variable
n_name

Debugger stabstring*

n_value

0, undefined

n_scnum

N_DEBUG

Aux. Entry

C_GTLS 145 Global thread-local variable
n_name

Debugger stabstring*

n_value

0, undefined

n_scnum

N_DEBUG

Aux. Entry

C_HIDEXT 107 Unnamed external
symbol n_name

Symbol Name or null**

n_value

Relocatable address

n_scnum

N_SCNUM

Aux. Entry

FUNCTION CSECT

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

51 of 71 03/10/13 15:32

Class Definition Field Contents

C_INFO 100 Comment section reference
n_name

Info Name Identifier or null**

n_value

Offset within comment section

n_scnum

N_SCNUM

Aux. Entry

C_LSYM 129 Automatic variable
allocated on stack n_name

Debugger stabstring*

n_value

Offset relative to stack frame

n_scnum

N_ABS

Aux. Entry

C_NULL 0 Symbol table entry marked for
deletion. n_name

n_value

0x00DE1E00

n_scnum

Aux. Entry

Any

C_PSYM 130 Argument to subroutine
allocated on stack n_name

Debugger stabstring*

n_value

Offset relative to stack frame

n_scnum

N_ABS

Aux. Entry

C_RPSYM 132 Argument to function or
procedure stored in register n_name

Debugger stabstring*

n_value

Register number

n_scnum

N_ABS

Aux. Entry

C_RSYM 131 Register variable
n_name

Debugger stabstring*

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

52 of 71 03/10/13 15:32

Class Definition Field Contents

n_value

Register number

n_scnum

N_ABS

Aux. Entry

C_STAT 3 Static symbol (Unknown. Some
compilers generate these symbols in the
symbol table to identify size of the .text ,
.data , and .bss sections. Not used or
preserved by binder.)

n_name

Symbol Name**

n_value

Relocatable address

n_scnum

N_SCNUM

Aux. Entry

SECTION

C_STSYM 133 Statically allocated
symbol n_name

Debugger stabstring*

n_value

Offset within csect

n_scnum

N_DEBUG

Aux. Entry

C_STTLS 146 Static thread-local variable
n_name

Debugger stabstring*

n_value

0, undefined

n_scnum

N_DEBUG

Aux. Entry

C_TCSYM 134 Reserved
n_name

Debugger stabstring*

n_value

n_scnum

Aux. Entry

C_WEAKEXT 111 Weak external symbol
(defining weak external symbols for
binder processing)

n_name

Symbol Name**

n_value

Relocatable address

n_scnum

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

53 of 71 03/10/13 15:32

Class Definition Field Contents

N_SCNUM or N_UNDEF

Aux. Entry

FUNCTION CSECT

Note:

*For long name, the n_offset value is an offset into the .debug section.1.

**For long name, the n_offset value is an offset into the string table.2.

Storage Classes by Usage and Symbol Value Classification

Following are the storage classes used and relocated by the binder. The symbol values (n_value) are
addresses.

Class Description

C_EXT Specifies an external or global symbol

C_WEAKEXT Specifies an external or global symbol with weak binding

C_HIDEXT Specifies an internal symbol

C_BLOCK Specifies the beginning or end of an inner block (.bb or .eb)

C_FCN Specifies the beginning or end of a function (.bf or .ef only)

C_STAT Specifies a static symbol (contained in statics csect)

Following are storage classes used by the binder and symbolic debugger or by other utilities for file scoping
and accessing purposes:

Class Description

C_FILE Specifies the source file name. The n_value field holds the symbol index of the next file entry.
The n_name field is the name of the file.

C_BINCL Specifies the beginning of include header file. The n_value field is the line number byte offset
in the object file to the first line number from the include file.

C_EINCL Specifies the end of include header file. The n_value field is the line number byte offset in the
object file to last line number from the include file.

C_INFO Specifies the location of a string in the comment section. The n_value field is the offset to a
string of bytes in the specified STYP_INFO section. The string is preceded by a 4-byte
length field. The n_name field is preserved by the binder. An application-defined unique name
in this field can be used to filter access to only those comment section strings intended for
the application.

C_DWARF Specifies the portion of the DWARF section that applies to the current C_FILE symbol. The
n_value field contains the offset with the section to the portion of the section represented by
this symbol. The n_scnlen field in the SECT auxiliary entry contains the length of the portion
of the section represented by this symbol.

Following are the storage classes that exist only for symbolic debugging purposes:

Class Description

C_BCOMM Specifies the beginning of a common block. The n_value field is meaningless; the name is the
name of the common block.

C_ECOML Specifies a local member of a common block. The n_value field is byte-offset within the
common block.

C_ECOMM Specifies the end of a common block. The n_value field is meaningless.

C_BSTAT Specifies the beginning of a static block. The n_value field is the symbol table index of the
csect containing static symbols; the name is .bs.

C_ESTAT Specifies the end of a static block. The n_value field is meaningless; the name is .es.

C_DECL Specifies a declaration of object (type declarations). The n_value field is undefined.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

54 of 71 03/10/13 15:32

Class Description

C_ENTRY Specifies an alternate entry (FORTRAN) and has a corresponding C_EXT or C_WEAKEXT
symbol. The n_value field is undefined.

C_FUN Specifies a function or procedure. May have a corresponding C_EXT or C_WEAKEXT symbol.
The n_value field is byte-offset within the containing csect.

C_GSYM Specifies a global variable and has a corresponding C_EXT or C_WEAKEXT symbol. The
n_value field is undefined.

C_LSYM Specifies an automatic variable allocated on the stack. The n_value field is byte offset relative
to the stack frame (platform dependent).

C_PSYM Specifies an argument to a subroutine allocated on the stack. The n_value field is byte-offset
relative to the stack frame (platform dependent).

C_RSYM Specifies a register variable. The n_value field is the register number.

C_RPSYM Specifies an argument to a function or procedure stored in a register. The n_value field is the
register number where argument is stored.

C_STSYM Specifies a statically allocated symbol. The n_value field is byte-offset within csect pointed to
by containing C_BSTAT entry.

C_GTLS Specifies a global thread-local variable and follows a C_EXT or C_WEAKEXT symbol with the
same name. The n_value field is undefined.

C_STTLS Specifies a static thread-local variable and follows a C_HIDEXT symbol with the same name.
The n_value field is undefined.

For general information on the XCOFF file format, see "XCOFF Object File Format." For more information on
the symbol table, see "Symbol Table Information."

For information on debugging, see "Debug Section."

String Table

IN XCOFF32, the string table contains the names of symbols that are longer than 8 bytes. In XCOFF64, the
string table contains the names of all symbols. If the string table is present, the first 4 bytes contain the
length (in bytes) of the string table, including the length of this length field. The remainder of the table is a
sequence of null-terminated ASCII strings. If the n_zeroes field in the symbol table entry is 0, then the
n_offset field gives the byte offset into the string table of the name of the symbol.

If a string table is not used, it may be omitted entirely, or a string table consisting of only the length field
(containing a value of 0 or 4) may be used. A value of 4 is preferable. The following table shows string table
organization.

Table 23. String Table Organization

Offset Length in Bytes Description

0 4 Length of string table.

4 n Symbol name string, null-terminated.

Field repeats for each symbol name.

For general information on the XCOFF file format, see "XCOFF Object File Format."

dbx Stabstrings

The debug section contains the symbolic debugger stabstrings (symbol table strings). It is generated by the
compilers and assemblers. It provides symbol attribute information for use by the symbolic debugger.

See "Debug Section" for a general discussion.

Stabstring Terminal Symbols

In the stabstring grammar, there are five types of terminal symbols, which are written in all capital letters.
These symbols are described by the regular expressions in the following list:

Note: The [] (brackets) denote one instance, []* (brackets asterisk) denote zero or more instances, []+
(brackets plus sign) denote one or more instances, () (parentheses) denote zero or one instance, .* (dot
asterisk) denotes a sequence of zero or more bytes, and | (pipe) denotes alternatives.

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

55 of 71 03/10/13 15:32

Symbol Regular Expression

NAME [^ ; : ' "] (A name consists of any non-empty set of characters, excluding ; : ' or ".)

STRING '.*' | ".*", where \", \', or \\ can be used inside the string

Within a string, the \ (backslash character) may have a special meaning. If the character
following the \ is another \, one of the backslashes is ignored. If the next character is the
quote character used for the current string, the string is interpreted as containing an
embedded quote. Otherwise, the \ is interpreted literally. However, if the closing quote is
the last character in the stabstring, and a \ occurs immediately before the quote, the \ is
interpreted literally. This use is not recommended.

The \ must be quoted only in the following instances:

The \ is the last character in the string (to avoid having the closing quote escaped).

The \ is followed by the current quote character.

The \ is followed by another \.

An escaped quote is required only when a single string contains both a single quote and a
double quote. Otherwise, the string should be quoted with the quote character not
contained in the strings.

A string can contain embedded null characters, so utilities that process stabstrings must
use the length field to determine the length of a stabstring.

INTEGER (-)[0-9]+

HEXINTEGER [0-9A-F]+

The hexadecimal digits A-F must be uppercase.

REAL [H|D|DD]([+-][0-9]+(.)[0-9]*([eEqQ](+-)[0-9]+) | (+-)INF | QNAN | SNAN)

Stabstring Grammar

REALs may be preceded by white space, and STRINGs may contain any characters, including null and blank
characters. Otherwise, there are no null or blank characters in a stabstring.

Long stabstrings can be split across multiple symbol table entries for easier handling. In the stabstring
grammar, a # (pound sign) indicates a point at which a stabstring may be continued. A continuation is
indicated by using either the ? (question mark) or \ as the last character in the string. The next part of the
stabstring is in the name of the next symbol table entry. If an alternative for a production is empty, the
grammar shows the keyword /*EMPTY*/.

The following list contains the stabstring grammar:

Stabstring:

Basic structure of stabstring:

NAME : Class

Name of object followed by object classification

:Class

Unnamed object classification.

Class:

Object classifications:

c = Constant ;

Constant object

NamedType

User-defined types and tags

Parameter

Argument to subprogram

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

56 of 71 03/10/13 15:32

Procedure

Subprogram declaration

Variable

Variable in program

Label

Label object.

Constant:

Constant declarations:

b OrdValue

Boolean constant

c OrdValue

Character constant

e TypeID , OrdValue

Enumeration constant

i INTEGER

Integer constant

r REAL

Decimal or binary floating point constant

s STRING

String constant

C REAL, REAL

Complex constant

S TypeID , NumElements , NumBits , BitPattern

Set constant.

OrdValue:

Associated numeric value: INTEGER

NumElements:

Number of elements in the set: INTEGER

NumBits:

Number of bits in item: INTEGER

NumBytes:

Number of bytes in item: INTEGER

BitPattern:

Hexadecimal representation, up to 32 bytes: HEXINTEGER

NamedType:

User-defined types and tags:

t TypeID

User-defined type (TYPE or typedef), excluding those that are valid for T TypeID

T TypeID

Struct, union, class, or enumeration tag

Parameter:

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

57 of 71 03/10/13 15:32

Argument to procedure or function:

a TypeID

Passed by reference in general register

p TypeID

Passed by value on stack

v TypeID

Passed by reference on stack

C TypeID

Constant passed by value on stack

D TypeID

Passed by value in floating point register

R TypeID

Passed by value in general register

X TypeID

Passed by value in vector register

Procedure:

Procedure or function declaration:

Proc

Procedure at current scoping level

Proc , NAME : NAME

Procedure named 1st NAME, local to 2nd NAME, where 2nd NAME is different from the current
scope.

Variable:

Variable in program:

TypeID

Local (automatic) variable of type TypeID

d TypeID

Floating register variable of type TypeID

hTypeID

Static thread-local variable of type TypeID

r TypeID

Register variable of type TypeID

x TypeID

Vector register variable of type TypeID

G TypeID

Global (external) variable of type TypeID

H TypeID

Global (external) thread-local variable of type TypeID

S TypeID

Module variable of type TypeID (C static global)

V TypeID

Own variable of type TypeID (C static local)

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

58 of 71 03/10/13 15:32

Y

FORTRAN pointer variable

Z TypeID NAME

FORTRAN pointee variable

Label:

Label:

L

Label name.

Proc:

Different types of functions and procedures:

f TypeID

Private function of type TypeID

g TypeID

Generic function (FORTRAN)

m TypeID

Module (Modula-2, ext. Pascal)

J TypeID

Internal function of type TypeID

F TypeID

External function of type TypeID

I

(capital i) Internal procedure

P

External procedure

Q

Private procedure

TypeID:

Type declarations and identifiers:

INTEGER

Type number of previously defined type

INTEGER = TypeDef

New type number described by TypeDef

INTEGER = TypeAttrs TypeDef

New type with special type attributes

TypeAttrs:

@ TypeAttrList ;

Note: Type attributes (TypeAttrs) are extra information associated with a type, such as alignment
constraints or pointer-checking semantics. The dbx program recognizes only the size attribute and the
packed attribute. The size attribute denotes the total size of a padded element within an array. The
packed attribute indicates that a type is a packed type. Any other attributes are ignored by dbx.

TypeAttrList:

List of special type attributes:

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

59 of 71 03/10/13 15:32

TypeAttrList ;

@ TypeAttr TypeAttr

TypeAttr:

Special type attributes:

a INTEGER

Align boundary

s INTEGER

Size in bits

p INTEGER

Pointer class (for checking)

P

Packed type

Other

Anything not covered is skipped entirely

TypeDef:

Basic descriptions of objects:

INTEGER

Type number of a previously defined type

b TypeID ; # NumBytes

Pascal space type

c TypeID ; # NumBits

Complex type TypeID

d TypeID

File of type TypeID

e EnumSpec ;

Enumerated type (default size, 32 bits)

g TypeID ; # NumBits

Floating-point type of size NumBits

D TypeID ; # NumBits

Decimal floating-point type of size NumBits

For i types, ModuleName refers to the Modula-2 module from which it is imported.

i NAME : NAME ;

Imported type ModuleName:Name

i NAME : NAME , TypeID ;

Imported type ModuleName:Name of type TypeID

k TypeID

C++ constant type

l ; #

Usage-is-index; specific to COBOL

m OptVBaseSpec OptMultiBaseSpec TypeID : TypeID : TypeID ;

C++ pointer to member type; the first TypeID is the member type; the second is the type of the
class

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

60 of 71 03/10/13 15:32

n TypeID ; # NumBytes

String type, with maximum string length indicated by NumBytes

o NAME ;

Opaque type

o NAME , TypeID

Opaque type with definition of TypeID

w TypeID

Wide character

z TypeID ; # NumBytes

Pascal gstring type

C Usage

COBOL Picture

I NumBytes ; # PicSize

(uppercase i) Index is type; specific to COBOL

K CobolFileDesc;

COBOL File Descriptor

M TypeID ; # Bound

Multiple instance type of TypeID with length indicated by Bound

N

Pascal Stringptr

S TypeID

Set of type TypeID

* TypeID

Pointer of type TypeID

& TypeID

C++ reference type

V TypeID

C++ volatile type

Z

C++ ellipses parameter type

Array Subrange ProcedureType

For function types rather than declarations

Record

Record, structure, union, or group types

EnumSpec:

List of enumerated scalars:

EnumList

Enumerated type (C and other languages)

TypeID : EnumList

C++ enumerated type with repeating integer type

EnumList: Enum

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

61 of 71 03/10/13 15:32

EnumList Enum

Enum:

Enumerated scalar description: NAME : OrdValue , #

Array:

Array descriptions:

a TypeID ; # TypeID

Array; FirstTypeID is the index type

A TypeID

Open array of TypeID

D INTEGER ,TypeID

N-dimensional dynamic array of TypeID

E INTEGER , TypeID

N-dimensional dynamic subarray of TypeID

O INTEGER , TypeID

New open array

P TypeID ; # TypeID

Packed array

Subrange:

Subrange descriptions:

r TypeID ; # Bound ; # Bound

Subrange type (for example, char, int,\,), lower and upper bounds

Bound:

Upper and lower bound descriptions:

INTEGER

Constant bound

Boundtype INTEGER

Variable or dynamic bound; value is address of or offset to bound

J

Bound is indeterminable (no bounds)

Boundtype:

Adjustable subrange descriptions:

A

Bound passed by reference on stack

S

Bound passed by value in static storage

T

Bound passed by value on stack

a

Bound passed by reference in register

t

Bound passed by value in register

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

62 of 71 03/10/13 15:32

ProcedureType:

Function variables (1st type C only; others Modula-2 & Pascal)

f TypeID ;

Function returning type TypeID

f TypeID , NumParams ; TParamList ;

Function of N parameters returning type TypeID

p NumParams ; TParamList ;

Procedure of N parameters

R NumParams ; NamedTParamList

Pascal subroutine parameter

F TypeID, NumParams ; NamedTParamList ;

Pascal function parameter

NumParams:

Number of parameters in routine:

INTEGER.

TParamList:

Types of parameters in Modula-2 function variable:

TParam

Type of parameter and passing method

TParam:

Type and passing method

TypeID , PassBy ; #

NamedTParamList:

Types of parameters in Pascal-routine variable: /*EMPTY*/ NamedTPList

NamedTPList:

NamedTParam NamedTPList NamedTParam

NamedTParam:

Named type and passing method: Name : TypeID , PassBy InitBody ; # : TypeID , PassBy InitBody ; #
Unnamed parameter

Record:

Types of structure declarations:

s NumBytes # FieldList ;

Structure or record definition

u NumBytes # FieldList ;

Union

v NumBytes # FieldList VariantPart ;

Variant Record

Y NumBytes ClassKey OptPBV OptBaseSpecList (ExtendedFieldListOptNameResolutionList ;

C++ class

G Redefinition , n NumBits # FieldList ;

COBOL group without conditionals

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

63 of 71 03/10/13 15:32

Gn NumBits FieldList ;

G Redefinition , c NumBits # CondFieldList ;

COBOL group with conditionals

Gc NumBits CondFieldList ;

OptVBaseSpec:

v

ptr-to-mem class has virtual bases.

/*EMPTY*/

Class has no virtual bases.

OptMultiBaseSpec:

m

Class is multi-based.

/*EMPTY*/

Class is not multi-based.

OptPBV:

V

Class is always passed by value.

/*EMPTY*/

Class is never passed by value.

ClassKey:

s

struct

u

union

c

class

OptBaseSpecList:

/*EMPTY*/ BaseSpecList

BaseSpecList:

BaseSpec BaseSpecList , BaseSpec

BaseSpec:

VirtualAccessSpec BaseClassOffset : ClassTypeID

BaseClassOffset:

INTEGER

Base record offset in bytes

ClassTypeID:

TypeID

Base class type identifier

VirtualAccessSpec:

v AccessSpec

Virtual

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

64 of 71 03/10/13 15:32

v

Virtual

AccessSpec

/*EMPTY*/

GenSpec:

c

Compiler-generated

/*EMPTY*/

AccessSpec:

i #

Private

o #

Protected

u #

Public

AnonSpec:

a

Anonymous union member

/*EMPTY*/

VirtualSpec:

v p

Pure virtual

v

Virtual

/*EMPTY*/

ExtendedFieldList:

ExtendedFieldList ExtendedField /*EMPTY*/

ExtendedField:

GenSpec AccessSpec AnonSpec DataMember GenSpec VirtualSpec AccessSpec OptVirtualFuncIndex
MemberFunction AccessSpec AnonSpec NestedClass AnonSpec FriendClass AnonSpec FriendFunction

DataMember:

MemberAttrs : Field ;

MemberAttrs:

IsStatic IsVtblPtr IsVBasePtr

IsStatic:

/*EMPTY*/

s

Member is static.

IsVtblPtr:

/*EMPTY*/

p INTEGER NAME

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

65 of 71 03/10/13 15:32

Member is vtbl pointer; NAME is the external name of v-table.

IsVBasePtr:

/*EMPTY*/

b

Member is vbase pointer.

r

Member is vbase self-pointer.

Member Function:

[FuncType MemberFuncAttrs : NAME : TypeID ; #

MemberFuncAttrs:

IsStatic IsInline IsConst IsVolatile

IsInline:

/*EMPTY*/

i

Inline function

IsConst:

/*EMPTY*/

k

const member function

IsVolatile:

/*EMPTY*/

V

Volatile member function

NestedClass:

N TypeID ; #

FriendClass:

(TypeID ; #

FriendFunction:

] NAME : TypeID ; #

OptVirtualFuncIndex:

/*EMPTY*/ INTEGER

FuncType:

f

Member function

c

Constructor

d

Destructor

InitBody:

STRING /*EMPTY*/

OptNameResolutionList:

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

66 of 71 03/10/13 15:32

/*EMPTY*/) NameResolutionList

NameResolutionList: NameResolution

NameResolution , NameResolutionList

NameResolution: MemberName : ClassTypeID

Name is resolved by compiler.

MemberName:

Name is ambiguous.

MemberName:

NAME

FieldList:

Structure content descriptions:

Field

/*EMPTY*/

FieldList Field

Member of record or union.

Field:

Structure-member type description:

NAME : TypeID , BitOffset , NumBits ; #

VariantPart:

Variant portion of variant record:

[Vtag VFieldList]

Variant description

VTag:

Variant record tag:

(Field

Member of variant record

(NAME : ; #

Variant key name

VFieldList:

Variant record content descriptions:

VList VFieldList VList

Member of variant record

VList:

Variant record fields:

VField VField VariantPart

Member of variant record

VField:

Variant record member type description:

(VRangeList : FieldList

Variant with field list

VRangeList:

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

67 of 71 03/10/13 15:32

List of variant field labels:

VRange VRangeList , VRange

Member of variant record

VRange:

Variant field descriptions:

b OrdValue

Boolean variant

c OrdValue

Character variant

e TypeID , OrdValue

Enumeration variant

i INTEGER

Integer variant

r TypeID ; Bound ; Bound

Subrange variant

CondFieldList:

Conditions,#FieldList FieldList# ;

Conditions:

/*Empty*/ Conditions condition

BitOffset:

Offset in bits from beginning of structure: INTEGER

Usage:

Cobol usage description: PICStorageType NumBits , EditDescription , PicSize ; Redefinition ,
PICStorageType NumBits , EditDescription , PicSize ; PICStorageType NumBits , EditDescription ,
PicSize , # Condition ; Redefinition , PICStorageType NumBits , EditDescription , PicSize , # Condition
;

Redefinition:

Cobol redefinition: r NAME

PICStorageType:

Cobol PICTURE types:

a

Alphabetic

b

Alphabetic, edited

c

Alphanumeric

d

Alphanumeric, edited

e

Numeric, signed, trailing, included

f

Numeric, signed, trailing, separate

g

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

68 of 71 03/10/13 15:32

Numeric, signed, leading, included

h

Numeric, signed, leading, separate

i

Numeric, signed, default, comp

j

Numeric, unsigned, default, comp

k

Numeric, packed, decimal, signed

l

Numeric, packed, decimal, unsigned

m

Numeric, unsigned, comp-x

n

Numeric, unsigned, comp-5

o

Numeric, signed, comp-5

p

Numeric, edited

q

Numeric, unsigned

s

Indexed item

t

Pointer

EditDescription:

Cobol edit description:

STRING

Edit characters in an alpha PIC

INTEGER

Decimal point position in a numeric PIC

PicSize:

Cobol description length:

INTEGER

Number of repeated '9's in numeric clause, or length of edit format for edited numeric

Condition:

Conditional variable descriptions:

NAME : INTEGER = q ConditionType , ValueList ; #

ConditionType:

Condition descriptions:

ConditionPrimitive , KanjiChar

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

69 of 71 03/10/13 15:32

ConditionPrimitive:

Primitive type of Condition:

n Sign DecimalSite

Numeric conditional

a

Alphanumeric conditional

f

Figurative conditional

Sign:

For types with explicit sign:

+

Positive

-

Negative

[^+-]

Not specified

DecimalSite:

Number of places from left for implied decimal point:

INTEGER

KanjiChar:

0 only if Kanji character in value: INTEGER

ValueList

Values associated with condition names

Value ValueList Value

Value

Values associated with condition names:

INTEGER : ArbitraryCharacters #

Integer indicates length of string

CobolFileDesc:

COBOL file description: Organization AccessMethod NumBytes

Organization:

COBOL file-description organization:

i

Indexed

l

Line Sequential

r

Relative

s

Sequential

AccessMethod:

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

70 of 71 03/10/13 15:32

COBOL file description access method:

d

Dynamic

o

Sort

r

Random

s

Sequential

PassBy:

Parameter passing method:

INTEGER

0 = passed-by reference; 1 = passed-by value

Parent topic: File Formats

Related reference:
ar File Format (Big)
ar File Format (Small)

Related information:
as command
dbx command
dump command
ld command
size command
strip command
what command

[Feedback]

XCOFF Object File Format http://pic.dhe.ibm.com/infocenter/aix/v7r1/adva...

71 of 71 03/10/13 15:32

