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CHAPTER 

INTRODUCTION 
VIA is providing a suite of security technologies called Padlock in all new processors.  The first Padlock 
technology, introduced in the VIA Nehemiah processor, provided a fast hardware random number generator 
(RNG) on the processor. 

The updated VIA Nehemiah (Stepping 8 and higher) processor core, provides a high performance 
implementation of the Advanced Encryption Standard (AES), as specified in Federal Information Processing 
Standards Publication 197 (FIPS-197.) This new Padlock feature is called the Advanced Cryptography Engine 
(ACE). 

NOTE: Throughout this document, a reference to encryption generally means both encryption and 
decryption.  For example, "the ACE can encrypt" should be taken to mean "the ACE can encrypt or 
decrypt".  Differences that exist between the encryption and decryption functions of the ACE will be 
explicitly discussed. 

This guide defines the ACE feature as implemented in the newer VIA Nehemiah processor. The detailed 
CPUID identification of the first VIA processor containing the ACE is: 

 Vendor ID: CentaurHauls 
 Type:   0 
     Family:  6 
 Model:  9 
 Stepping:  8 

 

For support, developers should contact: ace_support centtech.com. 

 



VIA Nehemiah ACE Programming Guide   -   3 

 

CHAPTER 

ARCHITECTURE 

2.1 HARDWARE 
 

The VIA Nehemiah Stepping 8 processor Advanced Cryptography Engine (ACE) is implemented in 
hardware with associated microcode. The hardware performs the encryption functions, and the microcode 
provides a well-architected x86 instruction interface providing transparent multitasking. This section 
describes the ACE hardware structure. This information is hidden from the x86 instruction interface and is 
not necessary for proper use of the ACE. 

 
Figure 1 illustrates the conceptual architecture approach used in adding the ACE. A 128-bit wide X-unit is 
added in parallel with the SSE unit sharing instruction, load, and store buses. The X-unit has a discrete set of 
internal registers that are not visible to x86 instructions. X-unit instructions are issued, in order, to the SSE 
unit along with SSE instructions. Once the X-unit instruction is ready for execution, it is dispatched by the 
SSE unit to the X-unit hardware. Instruction execution in other units, such as integer, MMX, and floating 
point, can proceed in parallel to X-unit operations. SSE instructions, however, are blocked from execution 
until the X-unit operation is completed, because all X-unit operations end with storing data to memory. This 
store must be completed before subsequent SSE instructions can execute. 
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Figure 1. Adding Security Features to x86 Architecture 

SSE Unit

SSE registers X registers

X-Unit

128-bit load data

128-bit store data

instruction bus

store stall

 
 
 
 

Figure 2 provides a further conceptual breakout of X-unit components. There are four input registers and two 
output registers. In addition, there is a 128-bit wide, 16-entry RAM that holds the extended keys for 
encryption. This RAM can be loaded from memory, or by an extended key generation unit that calculates the 
extended key sequence based on the primary key. The AES encryption engine is pipelined and can operate on 
two 128-bit data blocks concurrently. 

Figure 2. Conceptual X-unit Hardware Overview 
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The X-unit is more complicated than shown in Figure 2 because the X-unit hardware directly supports 
several different operating modes. In addition, the extended-key generation hardware is not a distinct 
component, but rather is built into the encryption logic to minimize distinct circuitry.  Figure 3 summarizes 
the VIA Nehemiah Stepping 8 processor X-unit hardware structure surrounding the round engine, which 
implements the AES encryption function. 

 

Figure 3. X-unit Hardware  
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Consider the data path for a typical xcrypt-ecb instruction. If key loading is necessary, microcode directs 
the loading of the key and extended keys are generated into or loaded into the extended key RAM. The 
RAM is large enough to hold an extended key for 15 rounds plus the initial key. The hardware automatically 
accesses the appropriate 128-bit extended key sequence needed for each round. 

 

Microcode then loads the second data block into input_1 register, and the first data block into input_0 
register (ECB mode always works on two data blocks). A load into input_0 automatically starts the 
encryption operation. In the first pipeline stage, the first data block is brought from the input 0 register, 
XOR'd with the first expanded key block (first key), and passed into the AES round engine. The collection 
of holding registers, muxes, and XORs are used by the various operating modes. 

 
The AES round engine takes two clocks per round, but is pipelined to operate on two blocks at a time. Thus, 
on the clock after the first data block starts in the round engine, the second data block is XOR'd with the key 
and sent to the round engine. In our ECB example, the operation provides an effective throughput of one 
clock per round per 128-bit data block. The results of each round feedback to the next round within the 
round engine. The appropriate extended key for each round is output from the key RAM to the round 
engine. After all rounds are completed, the first-block result passes directly to output_0 register for 
subsequent storing. The results for the second data block are passed to output_1 register. 

 
 

Figure 4 illustrates the internal design of the AES round engine. This logic directly implements the AES 
algorithm. The lightly drawn lines represent additional logic (added to the base round logic) used to calculate 
the extended key sequence. Each round, for a single block, requires two pipeline stages. 

 

Encryption is performed as shown in section 5.1 of FIPS-197 as summarized in Figure 5 of that document. 
The first stage performs the SubBytes S-Box substitution followed by the ShiftRows operation. The S-Box is 
implemented as sixteen 2x256x8-bit ROMs (2x for separate encryption and decryption values). The second 
pipeline stage performs the MixColumns operation and the XOR of the extended key. The key XOR is 
included as another leg in the sequence of XORs performing the mix column function and a bypass of the 
mix column function exists for the special last-round function. 

 

Decryption is performed using the equivalent inverse cipher algorithm as described in section 5.3.5 and 
summarized in Figure 15 of FIPS-197. The first stage implements the InvSubBytes S-box substitution 
followed by the InvShiftRows operation. The second stage implements the InvMixColumns function. This 
path is the slowest timing path in the round engine due to the increased number of XOR levels over mix 
column. 

The hardware occupies about 0.6 mm2 on the VIA Nehemiah Stepping 8 processor and runs at the processor 
clock frequency.  
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Figure 4. Round Engine Hardware  
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2.2 SOFTWARE 
All X-unit functions are accessed using one new x86 primary opcode. This is a group opcode providing eight 
sub-opcode functions. X-unit instruction operands are defined by multiple memory values whose addresses 
are contained in general purpose registers. The approach is similar to x86 string instruction formats.  

Figure 5 illustrates the instruction architecture and opcodes.  

Figure 5. General X-unit Architecture Format 
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The major components are: 

Two bits in the Centaur extended feature flags returned by the CPUID instruction. These bits identify (1) 
whether the ACE physically exists on the processor, and (2) whether it is currently enabled. 

� A new bit in the existing FCR MSR that allows a privileged program to enable or disable the ACE. 

� One non-privileged x86 opcode that provides the VIA Nehemiah Stepping 8 processor cryptographic 
features. This is a group format opcode that defines eight group instructions, as shown in Figure 6 
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Figure 6. X-unit Instruction Functions 
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The xcrypt instructions are atomic with respect to the encryption of a single data block (two data blocks in 
ECB mode); that is, once execution starts, the specified function completes each block before interrupts are 
allowed. 
 
All xcrypt instructions exist in REP form only. Like other REP x86 instructions, they can be interrupted 
and restarted. They differ from other REP instructions in that the performance of encrypting N blocks of data 
with a REP xcrypt instruction is faster (as much as 50%) than the execution of N separate xcrypt 
instructions. 
 
The xcrypt instructions define their operands in x86 general purpose registers. 
 
An EFLAGS register extension in Bit 30, previously unused, allows multiple tasks to use xcrypt 
instructions in a fashion transparent to applications and to the operating system. 

 
Figure 7 shows the detailed format of the REP xcrypt-ecb instruction. This performs encryption using the 
Electronic CodeBook (ECB) mode. The basic steps to use the instruction:  [Note: All addresses assume the 
ES segment selector, which may not be overridden] 

1. Check the Centaur extended CPUID flags to see if the ACE is present. 

2. If necessary, enable the ACE using the FCR MSR. This is a privileged operation but rarely needs to 
be done, as the default state at RESET is that ACE is enabled. 
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3. Set bit 30 of EFLAGS to 0. This is interpreted by microcode to mean that the control word and 
extended keys provided by the subsequent REP xcrypt-ecb instruction are new to this task and 
thus need to be loaded into internal hardware registers. This can be done by a PUSHF instruction 
followed by a POPF instruction. (Any load of EFLAGS zeroes bit 30).  Be sure to do this whenever 
you use a new key. 

4. Load the effective address (offset) of either (1) the entire extended key sequence, or (2) the key itself 
into EBX.  A bit in the control word indicates the distinction between these two key-extension 
options. 

5. Load the effective address (offset) of the desired ACE control word into EDX. The control word 
specifies encryption or decryption, the number of rounds, where the extended key comes from, and so 
forth. 

6. Load the effective address (offset) of the first data block to be encrypted into ESI. 

7. Load the effective address (offset) of the start of the ciphertext result area into EDI.  The source data 
address and the result data address may be identical; the ACE supports encryption in place. 

8. Load the number of 128-bit data blocks to be encrypted into ECX. Note that each execution of the 
REP xcrypt-ecb function processes two data blocks.  When ECX is odd, one extra block will be 
encrypted but the result will not be stored to memory. 

9. Execute the REP xcrypt-ecb instruction, which performs the following steps: 
a. If ECX==0, continue at step 14: the REP instruction is complete. 
b. If EFLAGS:30 is 0, the extended keys and control word are loaded into internal hardware registers. 
c. EFLAGS:30 is set to 1. 
d. Two 128-bit input data blocks are loaded from memory into the hardware.  
e. The encryption operation starts.  

10. The single encryption operation continues until the specified number of rounds has been completed, or 
an addressing exception is encountered. Each round takes two processor clocks. When processing of 
all rounds is complete, the result is placed in the appropriate memory location and both ESI and EDI 
are incremented by the size of the data stored (usually 32 bytes, but only 16 when ECX is equal to 1).   

11. If an addressing exception occurs during the execution of REP xcrypt-ecb (for example, a page 
fault), the interrupted EIP and the register state saved by the exception allows the REP xcrypt-ecb 
instruction to be re-executed with correct results. 

12. If the single operation has completed successfully, two is subtracted from ECX (except if ECX=1, 
when only 1 is subtracted) and execution continues at step 9 or at step 13 . 

13. Every so often, after an encryption operation has been completed, the REP xcrypt-ecb instruction 
allows external interrupts to occur. If the execution is interrupted, the interrupted EIP and the register 
state saved by the exception allows the REP xcrypt-ecb instruction to be re-executed continuing 
the original sequence of encryptions. 

14. Execution of the REP xcrypt-ecb instruction is now complete and interrupts are allowed before 
execution of the next x86 instruction starts. 
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Figure 7. xcrypt-ecb Instruction 
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MULTI-TASKING 2.3 

The ACE architecture is specifically designed to address two major (and related) goals: 

To allow multiple applications (including the operating system) to use the xcrypt functions without any 
operating systems support (such as a device driver), and 

To allow multiple applications (including the operating system) to use the xcrypt functions without any 
awareness of, or visibility of, other tasks (and their data) that are also using xcrypt functions. 

That is, if 

(1) Task A executes an xcrypt instruction, and 

(2) A task switch subsequently occurs to task B that 

(3) Subsequently executes an xcrypt instruction, the following must be true:  

• Any inter-instruction state needed to later restart task A and execute subsequent task A xcrypt 
instructions must be saved (when task A is suspended) and restored (when task A is restarted) by 
existing operating system code, and 

• Any inter-instruction state required to execute task B's xcrypt instructions correctly must be restored 
(when task B is started) by existing operating system code, and 
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• Task B must not be able to see, touch or smell anything (such as the keys) relating to task A's use of 
the xcrypt instruction, and vice versa. 

The ACE approach to satisfy these requirements is to make xcrypt self-contained. That is, all of the 
information needed to perform an encryption is contained within the xcrypt instruction by using pointers 
in GPRs to all of the operands. These pointers are saved across task switches by existing operating systems. 

A problem with this approach is that loading the extended key sequence into the hardware registers takes 
about as long as performing the encryption operation itself. To improve performance, ACE has a mechanism 
to avoid reloading keys into the hardware unless they have changed. 

 
For all xcrypt instructions, bit 30 in EFLAGS specifies whether the processor needs to load the extended 
key sequence and the control word from memory into the hardware registers: 
 

If EFLAGS:30 is 0 when an xcrypt instruction is executed, the control word and extended key 
sequence are loaded into the hardware registers. EFLAGS:30 is then set to 1. 

If EFLAGS:30 is 1 when an xcrypt instruction is executed, the control word and extended key 
sequence in the hardware registers are presumed correct and are not reloaded. EFLAGS:30 is not 
changed. 

 

In addition to this xcrypt behavior, the VIA Nehemiah Stepping 8 processor implements changes to 
existing x86 instructions and operation that affect EFLAGS: 

EFLAGS:30 is set to 0 by any x86 instruction, interrupt, exception, task switch, etc. operation that causes 
EFLAGS to be stored (even if executed in 16-bit mode) 

EFLAGS:30 cannot be set to 1 by any x86 instruction that causes EFLAGS to be loaded. Only xcrypt 
instructions set this bit to 1. 

EFLAGS:30 is set to 0 by a SYSENTER instruction. 

 

The effect of this mechanism relative to multitasking is (starting at the beginning of time): 

Task 1 executes a first xcrypt instruction. Since EFLAGS:30 is 0, the xcrypt logic loads the control 
word and extended keys into the hardware, and sets EFLAGS:30 to 1. 

Task 1 executes a second xcrypt instruction. Since EFLAGS:30 is 1, the xcrypt logic bypasses 
loading the control word and extended keys. This improves the performance of the second xcrypt 
instruction. 

A task switch to task 2 occurs. The process of loading the context of task 2 always involves saving task 1's 
EFLAGS and loading task 2's EFLAGS. The save of task 1's EFLAGS sets bit 30 to 0 in the saved 
value. The load of task 2's EFLAGS may be done by the operating system with an explicit POPF 
instruction, or it may done by the built-in x86 exception or task switch mechanism. Regardless, this load 
causes task 2's EFLAGS:30 to be set to 0. 

Task 2 executes an xcrypt instruction. Since its EFLAGS:30 is 0, the xcrypt logic loads the control 
word and extended keys into the hardware, and sets EFLAGS:30 to 1.  

A task switch back to task 1 occurs. The EFLAGS:30 for task 1 has bit 30 cleared to 0, so the next task 1 
xcrypt execution will reload the task 1 control word and keys. 
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2.4 EXTENDED KEYS 
 

An xcrypt instruction always points to the encryption key. However, AES encryption requires an extended 
key sequence. This sequence provides a unique 128-bit value for each round of the algorithm. The ACE 
supports two methods for providing these extended keys: 

 

Hardware Generated. The hardware can generate the extended key sequence for both encryption and 
decryption for all specifiable round counts. This generation is performed as a side effect of an xcrypt 
instruction that points to the base key and points to a control word that specifies hardware-generated 
extended keys. This option is the normal approach. 

Application Provided. The application can provide the entire extended key sequence instead of letting the 
hardware generate it. The load of this extended-key data is performed as a side effect of an xcrypt 
instruction that points to the base key followed by the extended keys and points to a control word that 
specifies application-provided extended keys. 

 

For hardware generated keys, the key data pointed to by EBX must start with byte 0 of the key (w[0] in AES 
notation) on a 16-byte aligned linear address, followed by byte 1 (w[1] in AES notation), up to byte 15 (128-
bit key), 23 (192-bit key), or 31 (256-bit key).  

For application loaded keys for encryption, the extended key sequence starts with the normal key as described 
above followed immediately by the first byte of the extended key sequence, followed by the second byte, etc. 
for the entire sequence of extended keys. That is, the memory sequence w[0], w[1], etc. is as described in 
Figure 11 of FIPS-197. 

For application loaded keys for decryption, the equivalent inverse cipher extended keys must be provided in the 
inverse order (the real key comes last) as described in Figure 15 of FIPS-197. That is, the first addressed byte 
is defined in FIPS-197 Figure 15 as dw[0], the next is dw[1], and so forth. 

For the application-loaded keys option, the hardware always loads sixteen 128-bit values from memory 
regardless of the specified key size.  Any values beyond the normal extended key size are ignored and have no 
affect on the results, but that memory area must be accessible (within the segment limit, etc.) 

 

2.5 MODES OF OPERATION 
The supported modes are implemented by a collection of datapaths surrounding the basic AES round engine. 
The application program does not directly control these paths; instead, the application program merely 
specifies the operating mode to be used and the hardware manages the routing of data.  

 



VIA Nehemiah ACE Programming Guide   -   14 

 

 ECB MODE 
In this mode, each data block is encrypted independently from other blocks. Two blocks are pipelined 
through the round engine. One block comes from input_0 register, the other from input_1 register (via 
the hold register). Each data block is initially XOR'd with the first key block and the result feeds into the 
round engine. The result of each encryption round is feed back into the core for the next round. When all 
rounds have been completed, the final result is captured in one of the two output registers. 

 

Figure 8. ECB Operating Mode Support 
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 CBC MODE 
In this mode, the result of each encryption is XOR'd with the next incoming data block. This cipher block 
chaining (forwarding) operation insures that any single block of cipher text cannot be decrypted to plain 
text; only the entire file can be decrypted. This forwarding means that only one block is encrypted at a 
time; no pipelining of the round engine occurs. On the first round, an Initialization Vector (IV) provided 
by the application is used in place of the forwarded cipher text. 

Unlike EBC, encryption and decryption have different routings through the X-unit.  

For CBC encryption, the plain text comes from the input_0 register, is then XOR'd with either the IV or 
the forwarded cipher text results from the last block (from the hold register), and the results proceeds to 
the key XOR and the round engine. The encryption results are sent to the output register and the hold 
register for use on the following encryption. 

For CBC decryption, the incoming cipher block is passed on to the key XOR and the round engine for 
decrypting. The incoming cipher block is also moved into the hold register for subsequent XOR'ing with 
the results of the round engine operating on the next subsequent cipher block. 

 

 

 Figure 9. CBC Operating Mode Support 
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 CFB MODE 
For encryption, the IV is encrypted from the hold register, and then P1 in routed from input_0 register to 
the hold register. The final round results are XOR'd with P1 in xor-b, with the result sent to the output, 
and in xor-b, with the result placed back in the hold register to feed the next encryption. Decryption is 
similar, except only xor-b is used and Cn is saved in the hold register for the subsequent cycle. 

 

 

Figure 10. CFB Operating Mode Support 
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 OFB MODE 
In this mode, the Initialization Vector is encrypted and the result is forwarded to the next round for 
further encryption, yielding a sequence of 128-bit blocks.  A "one-time pad".  This sequence is XOR'd 
with the plaintext to produce the ciphertext, or with the ciphertext to reconstruct the plaintext.  It is thus 
critical that no 128-bit block of the encryped sequence be re-used. 

 
 Figure 11. OFB Operating Mode Support 
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CHAPTER 

X86 INSTRUCTIONS 

3.1 PARAMETERS  
 MEMORY FORMATS 
All X-unit data loads and stores must be 16-byte aligned. Relative to AES notation, byte 0 is at the lowest 
address, byte 1 is at the next higher address, and so forth. That is, data is organized in the normal x86 
little endian fashion such that AES byte 0 is the normal x86 architecture byte 0 (the linear address 
provided by an instruction operand). 

 EDX: THE CONTROL WORD POINTER 
DX or EDX in all xcrypt instructions contains the effective address of the ACE control word. This 
address is always relative to segment ES. The resulting linear address must be aligned on a 128-bit 
boundary, otherwise a General Protection exception occurs.  

Whether DX or EDX is used is based on the effective address size for the executed instruction. 

The control word fields are: 

127:32 31:12 11:10 9:9 8:8 7:7 6:4 3:0 

Reserved Reserved 
0 

Key 
size 

Decrypt/
encrypt 

Intermediate/
normal 

key- 
 generation

type 
algorithm 

type 
round
count 

 

Bits 3:0 Round count: This four-bit field contains the number of rounds to be used for the encryption or 
decryption operation. Although the number of rounds for each key size is specified by the AES, this 
standard value is not built into the hardware; the application program must specify the number of rounds. 

Bits 6:4 Algorithm Type: This three-bit field specifies the cryptographic algorithm. The only algorithm 
currently supported is the AES, which has a field value of 0. Other values are reserved and the ACE 
behavior is undefined if this field is set to reserved values. 
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Bit 7 Key Generation Type: This one-bit field specifies whether the extended keys are to be generated by 
the hardware (0) or are to be loaded from memory (1). 

Bit 8 Intermediate/Normal: This one-bit field specifies normal operation (0) or intermediate operation 
(1). Intermediate mode allows examination of the result of intermediate rounds. 

Bit 9 Encrypt/Decrypt: This one-bit field specifies encryption (0) or decryption (1).  

Bits 11:10 Key size: This two-bit field specifies the key size: 128-bit (0), 192-bit (1), 256-bit (2), and 
reserved (3). The ACE behavior is undefined if key size is set to the reserved value. 

Bits 31:12 Reserved: These bits should be set to 0 and the contents of this field should not be used by the 
application. 

Bits 127:32 Reserved: Although these bits are not used as part of the control word, they are modified 
during key generation.  While it is possible for an application to use them as temporary scratch buffers, 
this use is not recommended. 

 ESI: SOURCE DATA POINTER 
SI or ESI in all xcrypt instructions contains the effective address (offset) of the input data. This address 
is always relative to the segment specified in ES. The resulting linear address must be aligned on a 128-bit 
boundary, otherwise a General Protection exception occurs.  

At the end of instruction execution, or if an interrupt (or page fault, etc.) has occurred, SI or ESI is 
incremented by the number of bytes stored. The address is always incremented: EFLAGS.DF has no 
effect. Whether SI or ESI is used and updated is based on the effective address size for the executed 
instruction. 

 EDI: RESULT DATA POINTER 
DI or EDI in all xcrypt instructions contains the effective address (offset) of the result data generated 
by the instruction function. This address is always relative to the segment specified in ES. The resulting 
linear address must be aligned on a 128-bit boundary, otherwise a General Protection exception occurs.  

At the end of instruction execution, or if an interrupt (or page fault, etc.) has occurred, DI or EDI is 
incremented by the number of bytes stored. The address is always incremented: EFLAGS.DF has no 
effect. Whether DI or EDI is used and updated is based on the effective address size for the executed 
instruction. 

 EBX: KEY POINTER 
BX or EBX in all xcrypt instructions contains the effective address (offset) of the key data. This address 
is always relative to the segment specified in ES. The resulting linear address must be aligned on a 128-bit 
boundary, otherwise a General Protection exception occurs. Whether BX or EBX is used is based on the 
effective address size for the executed instruction. 

The key data takes one of two forms depending on bit 7 of the control word: 

� Bit 7 = 0:  The primary key. The extended key sequence will be generated by the hardware. 

� Bit 7 = 1:  The primary key followed by the application calculated extended key sequence. 
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 ECX: REP COUNT 
CX or ECX in all rep xcrypt instructions contains the count of 128-bit data blocks to be processed.  

At the end of instruction execution, CX or ECX will be zero.  If an interrupt (or page fault, etc.) has 
occurred, CX or ECX will be decremented by the number of blocks processed and stored by the 
instruction prior to the interrupt.. Whether CX or ECX is used and updated is based on the effective 
address size for the executed instruction. 

 EAX: INITIALIZATION VECTOR 
AX or EAX in chaining mode rep xcrypt instructions (all modes except ECB) contains the effective 
address (offset) of the initialization vector (IV). This address is always relative to the segment specified in 
ES. The resulting linear address must be aligned on a 128-bit boundary, otherwise a General Protection 
exception occurs. The choice of whether AX or EAX is used is based on the effective address size for the 
executed instruction. 

As for normal x86 string instructions, if an external interrupt occurs during the processing of the rep 
xcrypt instruction, the registers are updated before the interrupt transition occurs such that the rep 
instruction may be restarted upon return from interrupt handling. The initialization vector presents a 
problem since the original IV is not the right one to use upon instruction restart. So the xcrypt logic 
changes either the address in AX/EAX, or changes the data value pointed to by AX/EAX to be the 
appropriate IV for the continuing iteration.  

Thus, an application program must not assume that EAX is unchanged, or that the value pointed to by EAX is 
unchanged, after the execution of a chaining mode rep xcrypt instruction. For OFB mode, and for decryption 
using CBC and CFB modes, the value pointed to by EAX will be changed.  For encryption using CBC and CFB 
modes, the value in EAX itself is changed. 

3.2 REP 
 

The rep xcrypt- instructions have similarities with the x86 movs instruction:  

The value in EDI is updated with the number of result bytes stored. 

An address-size prefix affects the size of EAX, EBX, EDX, ESI, and EDI used. 

The usual address exceptions (past the segment limit, page fault, etc.) can occur. 

 

And there are some different semantics: 

• The value in ESI is updated with the number of result bytes stored. Note that in ECB mode with an 
initial odd value in ECX, one more data block from ESI is processed than is stored. 

• A REPNE prefix causes an Invalid Instruction exception. 

• An operand size prefix causes an Invalid Instruction exception. 

• The DF (direction flag) in EFLAGS has no effect. The operation always proceeds from low address to 
high address. 
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CHAPTER 

USING THE ACE 

4.1 ENABLING 

To use the VIA Nehemiah Stepping 8 processor ACE, three conditions must be met: 

The ACE must physically exist on the chip. Its existence can be discovered from the Centaur Extended 
CPUID Feature Flags. This condition is permanently set as part of the manufacturing process. 

The ACE must be enabled. The enabled state can be also discovered from the Centaur Extended CPUID 
Feature Flags. The ACE can be enabled/disabled by writing to the Function Control Register (FCR), 
MSR 0x1107.  The RESET default is enabled. But, see the next condition. 

SSE instructions must be enabled via the standard x86 method of enabling the FXSAVE/FXRSTOR 
instructions using CR4[9]  This CR4 enabling also enables the full set of SSE instructions on Intel 
processors and VIA Nehemiah Stepping 8 processors. 

 
The VIA Nehemiah Stepping 8 processor supports the Centaur Extended Feature Flags. When the CPUID 
instruction is executed with EAX=0xC0000000, the processor returns 0xC0000001 in EAX. Note that 
earlier VIA C3 Nehemiah processors do not support the Centaur Extended CPUID Functions and will 
return EAX=0xC0000000 or EAX=0x00000000 (see the VIA Nehemiah processor datasheet for details on 
the extended CPUID function). 

If a CPUID with EAX=0xC0000000 returns a value in EAX >= 0xC0000001 then Centaur Extended 
Feature Flags are supported. A CPUID with EAX=0xC0000001 then returns the Centaur Extended Feature 
Flags in EDX. There are two bits in EDX that describe the ACE: 

EDX[6] == 0  ACE does not exist on this chip. FCR[28] cannot be set to enable the ACE and the new 
xcrypt instructions cause an Invalid Opcode Fault. 

EDX[6] == 1  ACE exists. The behavior of xcrypt instructions is dependent upon whether the ACE is 
enabled or not. 

EDX[7] == 0  ACE is disabled. The new xcrypt instructions cause an Invalid Opcode Fault. If the 
ACE is present, FCR[28] can be set to enable the ACE  
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EDX[7] == 1  ACE is enabled (usually the RESET default. The xcrypt instructions behave as defined 
in this application note (provided CR4[9] =1) 

 

All VIA C3 Nehemiah processors implement a Function Control Register (FCR), MSR 0x1107, which can 
be written by software to enable or disable various features. One bit controls the ACE - FCR[28]: 

0=The ACE is not enabled. If EDX[6] indicates that ACE is present, a WRMSR can set this bit to 1 
thus enabling the ACE. 

1=The ACE is enabled. A WRMSR can set this bit to 0 thus disabling the ACE. 

4.2 STARTUP 
 

The RESET signal is an immediate asynchronous process: RESET halts operation immediately regardless of 
the state of the processor. As part of the RESET process, the following ACE actions are performed: 

Any in-progress ACE instruction is immediately cancelled with undefined results being stored. 

The FCR is reset to its default value. This may or may not directly change the ACE enable status. 

The CR4 register is reset to zero. Since this resets the FXSAVE/FXRSTOR enable, (CR4[9]) the ACE 
is indirectly disabled. 

EFLAGS:30 is cleared to zero. 

 
The INIT signal is an interrupt that occurs between x86 instructions: INIT never halts instructions in the 
middle of their execution (except for REP string instructions, where INIT behaves like INTR). The ACE 
effect of INIT is: 

The CR4 register is reset to zero. Since this resets the FXSAVE/FXRSTOR enable, (CR4[9]) the ACE 
is indirectly disabled. 

EFLAGS:30 is cleared to zero. 

 

MANUFACTURED STATE 
The ACE is tested as part of the VIA Nehemiah Stepping 8 processor manufacturing process. Relative to 
potential fault coverage, however, this level of testing is not 100% complete. For certain sensitive applications, 
additional testing (by the application) may be desirable.  
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CHAPTER 

PERFORMANCE 

As for all x86 instructions that reference memory, the timing of xcrypt instructions is non-deterministic 
due to cache misses, page faults, interrupts, load and store buffer stalls, SSE queue-full stalls, external DMA 
snoops, etc. Consistent with other published x86 instruction timings, this section ignores these variables and 
assumes a perfect environment: everything is in the cache, no interrupts, no snoops, no stalls, etc. 

X-unit instruction timing is more complicated in that a large number of xcrypt execution clocks are 
overlapped with subsequent instruction execution clocks. To understand this, Figure 12 is a simple 
illustration of the VIA Nehemiah Stepping 8 processor pipeline structure (as it affects the ACE). x86 
instructions are fetched and translated by the instruction fetch front-end stages (not shown). Internal micro-
instructions are provided to the execution pipeline from either the x86-instruction translator or the associated 
micro-instruction ROM.  

All types of microinstructions proceed through the integer pipeline. Media-type instructions (x87 floating-
point, MMX, and SSE instructions) are passed from the E-stage of the integer pipeline to instruction and 
data queues feeding the appropriate media-execution engines. Once a SSE micro-instruction (for example) is 
placed in the SSE media queue, it can no longer cause an exception and the integer pipeline and other media 
units are free to continue executing other instructions while the SSE micro-instruction percolates down the 
queue. Thus, the execution of X-unit instructions (handled as SSE instructions) is overlapped with the 
execution of subsequent integer, MMX, or floating point instructions. 
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Figure 12. VIA Nehemiah Stepping 8 Execution Pipeline Overview 
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As an example, referring to the first entry in Table 1, we see that a rep xcrypt-ecb instruction requires 31 
clocks to execute (for a round count of 10 and ECX=2) from the viewpoint of an SSE instruction that follows 
the rep xcrypt-ecb instruction. If the rep xcrypt-ecb instruction is followed by integer, MMX, or 
floating point instructions, however, the rep xcrypt-ecb instruction only appears to take 12 clocks total 
relative to these instructions. The missing 19 clocks of X-unit execution are overlapped with 19 clocks of 
execution of non-SSE instructions. 

In the instruction timing tables below, the following terms are used: 

R = the number of rounds specified 

N = the number of 128-bit blocks to be encrypted 

 

Microcode is optimized for execution with the extended key and control word already loaded.  Thus, the 
ACE is started immediately on the assumption that the system is ready and only then is the EFLAGS bit 
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tested to determine if keys should be loaded.  If so, microcode resets the ACE to halt the encryption, loads or 
generates the key, and restarts.  Along the way, ECX is tested for zero. That means that unlike REP string 
instructions where an ECX value of zero is a NOP, it is possible for REP xcrypt instructions to page fault 
when ECX = 0.  It also means that the REP xcrypt instructions can be used as long NOP instructions if you 
need a delay in your program. 

When ECX = 0, REP xcrypt instructions will between 22 and 27 clocks, depending on the state of the 
ELFAGS:30 bit and the operating mode. 

For large values of the REP count we do not provide separate integer timings.  The integer pipeline quickly 
slips and stalls into sync with the X-unit.  At the completion of the cipher operation, there will be a slight 
overlap where the integer unit can fetch subsequent instructions while the ACE completes the final block.  
This overlap is comparable to the extra clocks available when doing a single encryption or decryption. 

 
ECB MODE XCRYPT SSE Clocks Integer Clocks 

Data Size EFLAGS 
bit 30 

Extended Key
 Source Base Variable Base Variable 

128b 1  9 2*R 17 0 

128b 0 Hardware 45 2*R 61 0 

128b 0 Memory 76 2*R 84 0 

 

2*128b 1  11 2*R 12 0 

2*128b 0 Hardware 47 2*R 56 0 

2*128b 0 Memory 78 2*R 79 0 

 

N*128b 1  11 N*R   

N*128b 0 Hardware 47 N*R   

N*128b 0 Memory 78 N*R   

Notes 

The REP xcrypt-ecb instruction always operates on two 128-bit blocks of data. However when the 
block count in ECX is odd, the extra block of data is not stored. 

When ECX is odd and greater than 2, add an extra (R-2) clocks to the SSE Base clocks calculation.  The 
extra R comes from the fact that ACE does an even number of rounds, but saves two clocks on the final 
store since only the first block is written to memory. 
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CBC/CFB MODE XCRYPT SSE Clocks Integer Clocks 

Data Size EFLAGS 
bit 30 

Extended Key
 Source Base Variable Base Variable 

128b 1  7 2*(R+1) 23 0 

128b 0 Hardware 51 2*(R+1) 65 0 

128b 0 Memory 72 2*(R+1) 88 0 

       

N*128b 1  7 2*N*(R+1)   

N*128b 0 Hardware 51 2*N*(R+1)   

N*128b 0 Memory 72 2*N*(R+1)   

Notes 

Add 11 clocks to the integer timing for DECRYPT of a single block. 

Add 5 clocks to the base integer timing for XRCYPT-CFB 

  
OFB MODE XCRYPT SSE Clocks Integer Clocks 

Data Size EFLAGS 
bit 30 

Extended Key
 Source Base Variable Base Variable 

128b 1 n/a   48 0 

128b 0 Hdw   90 0 

128b 0 Appl   113 0 

       

N*128b 1 N/a   4*R-26 45*N 

N*128b 0 Hdw   4*R-26 45*N 

N*128b 0 Appl   4*R-26 45*N 

 
Notes  
In OFB mode, a new IV must be calculated, and stored, for each 128-bit block processed.  Thus the SSE 
clocks are fewer than the Integer clocks and are not separately recorded. 
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CHAPTER 

VERIFICATION 

Cryptography Research, Inc., of San Francisco has performed an independent evaluation of the ACE unit.  A 
copy of their report will be available on the VIA website or ask a VIA representative for a copy. 

 

6.1 ERRATA 
Some functions documented in this note do not work properly in the current VIA Nehemiah processor 
stepping 8: 

• The ability to generate extended keys for key sizes of 196- and 256-bits is not working. Attempts to 
use this function will cause incorrect and unpredictable results. Hardware extended-key generation for 
128-bit keys works correctly. 

• Intermediate round results for decryption require that the user provide the extended key schedule. 

These errata may be fixed in later steppings. 
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