
VIA Nehemiah
Advanced Cryptography

Engine

Programming Guide

Version 1.0

This is Version 1.0 of the VIA Nehemiah Advanced Cryptography Engine Programming Guide.

© 2003 VIA Technologies, Inc. All Rights Reserved.
© 2003 Centaur Technology, Inc. All Rights Reserved.

VIA Technologies and Centaur Technology reserve the right to make changes in its products without
notice in order to improve design or performance characteristics.

This publication neither states nor implies any representations or warranties of any kind, including but
not limited to any implied warranty of merchantability or fitness for a particular purpose. No license,
express or implied, to any intellectual property rights is granted by this document.

VIA Technologies and Centaur Technology make no representations or warranties with respect to the
accuracy or completeness of the contents of this publication or the information contained herein, and
reserves the right to make changes at any time, without notice. VIA Technologies and Centaur
Technology disclaim responsibility for any consequences resulting from the use of the information
included herein.

VIA and VIA C3 are trademarks of VIA Technologies, Inc.

CentaurHauls is a trademark of Centaur Technology, Inc..

Intel is a registered trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

LIFE SUPPORT POLICY

VIA processor products are not authorized for use as components in life support or other medical
devices or systems (hereinafter called life support devices) unless a specific written agreement
pertaining to such intended use is executed between the manufacturer and an officer of VIA.

1. Life support devices are devices which (a) are intended for surgical implant into the body or (b) support or
sustain life and whose failure to perform, when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. This policy covers any component of a life support device or system whose failure to perform can cause the
failure of the life support device or system, or to affect its safety or effectiveness.

VIA Nehemiah ACE Programming Guide - 1

Table of Contents

1 INTRODUCTION..2

2 ARCHITECTURE...3
2.1 HARDWARE...3
2.2 SOFTWARE..7
2.3 MULTI-TASKING ..11
2.4 EXTENDED KEYS..13
2.5 MODES OF OPERATION...13

3 X86 INSTRUCTIONS...18
3.1 PARAMETERS ..18
3.2 REP...20

4 USING THE ACE...21
4.1 ENABLING..21
4.2 STARTUP ...22

5 PERFORMANCE ...23

6 VERIFICATION..27
6.1 ERRATA ...27

VIA Nehemiah ACE Programming Guide - 2

CHAPTER

INTRODUCTION
VIA is providing a suite of security technologies called Padlock in all new processors. The first Padlock
technology, introduced in the VIA Nehemiah processor, provided a fast hardware random number generator
(RNG) on the processor.

The updated VIA Nehemiah (Stepping 8 and higher) processor core, provides a high performance
implementation of the Advanced Encryption Standard (AES), as specified in Federal Information Processing
Standards Publication 197 (FIPS-197.) This new Padlock feature is called the Advanced Cryptography Engine
(ACE).

NOTE: Throughout this document, a reference to encryption generally means both encryption and
decryption. For example, "the ACE can encrypt" should be taken to mean "the ACE can encrypt or
decrypt". Differences that exist between the encryption and decryption functions of the ACE will be
explicitly discussed.

This guide defines the ACE feature as implemented in the newer VIA Nehemiah processor. The detailed
CPUID identification of the first VIA processor containing the ACE is:

 Vendor ID: CentaurHauls
 Type: 0
 Family: 6
 Model: 9
 Stepping: 8

For support, developers should contact: ace_support centtech.com.

VIA Nehemiah ACE Programming Guide - 3

CHAPTER

ARCHITECTURE

2.1 HARDWARE

The VIA Nehemiah Stepping 8 processor Advanced Cryptography Engine (ACE) is implemented in
hardware with associated microcode. The hardware performs the encryption functions, and the microcode
provides a well-architected x86 instruction interface providing transparent multitasking. This section
describes the ACE hardware structure. This information is hidden from the x86 instruction interface and is
not necessary for proper use of the ACE.

Figure 1 illustrates the conceptual architecture approach used in adding the ACE. A 128-bit wide X-unit is
added in parallel with the SSE unit sharing instruction, load, and store buses. The X-unit has a discrete set of
internal registers that are not visible to x86 instructions. X-unit instructions are issued, in order, to the SSE
unit along with SSE instructions. Once the X-unit instruction is ready for execution, it is dispatched by the
SSE unit to the X-unit hardware. Instruction execution in other units, such as integer, MMX, and floating
point, can proceed in parallel to X-unit operations. SSE instructions, however, are blocked from execution
until the X-unit operation is completed, because all X-unit operations end with storing data to memory. This
store must be completed before subsequent SSE instructions can execute.

VIA Nehemiah ACE Programming Guide - 4

Figure 1. Adding Security Features to x86 Architecture

SSE Unit

SSE registers X registers

X-Unit

128-bit load data

128-bit store data

instruction bus

store stall

Figure 2 provides a further conceptual breakout of X-unit components. There are four input registers and two
output registers. In addition, there is a 128-bit wide, 16-entry RAM that holds the extended keys for
encryption. This RAM can be loaded from memory, or by an extended key generation unit that calculates the
extended key sequence based on the primary key. The AES encryption engine is pipelined and can operate on
two 128-bit data blocks concurrently.

Figure 2. Conceptual X-unit Hardware Overview

SSE Load Bus

X-Unit

encryption & decryption
engine

control reg input-0 reg

extended
key

generation

output-0 reg output-1 reg

SSE Store Bus

input-1 reg

extended
key RAM

key-0 reg

VIA Nehemiah ACE Programming Guide - 5

The X-unit is more complicated than shown in Figure 2 because the X-unit hardware directly supports
several different operating modes. In addition, the extended-key generation hardware is not a distinct
component, but rather is built into the encryption logic to minimize distinct circuitry. Figure 3 summarizes
the VIA Nehemiah Stepping 8 processor X-unit hardware structure surrounding the round engine, which
implements the AES encryption function.

Figure 3. X-unit Hardware

input_1

input_0

SSE Load Bus

SSE Store Bus

CW

output_0

xor

Round Engine

xor

0
key_in

output_0

Extended Key RAM
(16 x 128b)

hold

xor

xor
first_key

VIA Nehemiah ACE Programming Guide - 6

Consider the data path for a typical xcrypt-ecb instruction. If key loading is necessary, microcode directs
the loading of the key and extended keys are generated into or loaded into the extended key RAM. The
RAM is large enough to hold an extended key for 15 rounds plus the initial key. The hardware automatically
accesses the appropriate 128-bit extended key sequence needed for each round.

Microcode then loads the second data block into input_1 register, and the first data block into input_0
register (ECB mode always works on two data blocks). A load into input_0 automatically starts the
encryption operation. In the first pipeline stage, the first data block is brought from the input 0 register,
XOR'd with the first expanded key block (first key), and passed into the AES round engine. The collection
of holding registers, muxes, and XORs are used by the various operating modes.

The AES round engine takes two clocks per round, but is pipelined to operate on two blocks at a time. Thus,
on the clock after the first data block starts in the round engine, the second data block is XOR'd with the key
and sent to the round engine. In our ECB example, the operation provides an effective throughput of one
clock per round per 128-bit data block. The results of each round feedback to the next round within the
round engine. The appropriate extended key for each round is output from the key RAM to the round
engine. After all rounds are completed, the first-block result passes directly to output_0 register for
subsequent storing. The results for the second data block are passed to output_1 register.

Figure 4 illustrates the internal design of the AES round engine. This logic directly implements the AES
algorithm. The lightly drawn lines represent additional logic (added to the base round logic) used to calculate
the extended key sequence. Each round, for a single block, requires two pipeline stages.

Encryption is performed as shown in section 5.1 of FIPS-197 as summarized in Figure 5 of that document.
The first stage performs the SubBytes S-Box substitution followed by the ShiftRows operation. The S-Box is
implemented as sixteen 2x256x8-bit ROMs (2x for separate encryption and decryption values). The second
pipeline stage performs the MixColumns operation and the XOR of the extended key. The key XOR is
included as another leg in the sequence of XORs performing the mix column function and a bypass of the
mix column function exists for the special last-round function.

Decryption is performed using the equivalent inverse cipher algorithm as described in section 5.3.5 and
summarized in Figure 15 of FIPS-197. The first stage implements the InvSubBytes S-box substitution
followed by the InvShiftRows operation. The second stage implements the InvMixColumns function. This
path is the slowest timing path in the round engine due to the increased number of XOR levels over mix
column.

The hardware occupies about 0.6 mm2 on the VIA Nehemiah Stepping 8 processor and runs at the processor
clock frequency.

VIA Nehemiah ACE Programming Guide - 7

Figure 4. Round Engine Hardware

stage_1

S-Box / InvS-Box
ROM

InvMix
Column

Mix
Columnxor

first key xor

stage_2

Round Engine

enc/dec

enc/dec/
keygen

enc/dec/
last rnd

Shift
Row

InvShift
Row XORs

stage_0

xor

rndcon

0
key

VIA Nehemiah ACE Programming Guide - 8

2.2 SOFTWARE
All X-unit functions are accessed using one new x86 primary opcode. This is a group opcode providing eight
sub-opcode functions. X-unit instruction operands are defined by multiple memory values whose addresses
are contained in general purpose registers. The approach is similar to x86 string instruction formats.

Figure 5 illustrates the instruction architecture and opcodes.

Figure 5. General X-unit Architecture Format

 global enable

X-Unit exists/enable bits in new extended CPUIDCPUID flag

X-Unit MSR read and written using normal MSR insts

REP

0xF3 0x0F

(pointer to Initialization Vector)
rep count

pointer to control word
pointer to key data

pointer to input block
pointer to output block

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

xfunc instruction

implied register contents
 assumed by particular xfunc execution

EFLAGS

bit specifying whether X-unit non-reusable resources are
in use (used to provide transparent multitasking)

MSR control

0xA7 group
opcode

The major components are:

Two bits in the Centaur extended feature flags returned by the CPUID instruction. These bits identify (1)
whether the ACE physically exists on the processor, and (2) whether it is currently enabled.

� A new bit in the existing FCR MSR that allows a privileged program to enable or disable the ACE.

� One non-privileged x86 opcode that provides the VIA Nehemiah Stepping 8 processor cryptographic
features. This is a group format opcode that defines eight group instructions, as shown in Figure 6

VIA Nehemiah ACE Programming Guide - 9

Figure 6. X-unit Instruction Functions

0xF3 0x0F xstore-rng0xA7
group opcodeinstruction name

0

xcrypt-ecb 1

0xC0

0xF3 0x0F 0xA7 0xC8

0x0F 0xA7 0xD0 2xcrypt-cbc0xF3

3

xcrypt-cfb 40xF3 0x0F 0xA7 0xE0

xcrypt-ofb 50xF3 0x0F 0xA7 0xE8

6

7

unused - invalid
instruction0x0F 0xA7 0xD80xF3

0x0F 0xA7 0xF00xF3

0x0F 0xA7 0xF80xF3

unused - invalid
instruction

unused - invalid
instruction

The xcrypt instructions are atomic with respect to the encryption of a single data block (two data blocks in
ECB mode); that is, once execution starts, the specified function completes each block before interrupts are
allowed.

All xcrypt instructions exist in REP form only. Like other REP x86 instructions, they can be interrupted
and restarted. They differ from other REP instructions in that the performance of encrypting N blocks of data
with a REP xcrypt instruction is faster (as much as 50%) than the execution of N separate xcrypt
instructions.

The xcrypt instructions define their operands in x86 general purpose registers.

An EFLAGS register extension in Bit 30, previously unused, allows multiple tasks to use xcrypt
instructions in a fashion transparent to applications and to the operating system.

Figure 7 shows the detailed format of the REP xcrypt-ecb instruction. This performs encryption using the
Electronic CodeBook (ECB) mode. The basic steps to use the instruction: [Note: All addresses assume the
ES segment selector, which may not be overridden]

1. Check the Centaur extended CPUID flags to see if the ACE is present.

2. If necessary, enable the ACE using the FCR MSR. This is a privileged operation but rarely needs to
be done, as the default state at RESET is that ACE is enabled.

VIA Nehemiah ACE Programming Guide - 10

3. Set bit 30 of EFLAGS to 0. This is interpreted by microcode to mean that the control word and
extended keys provided by the subsequent REP xcrypt-ecb instruction are new to this task and
thus need to be loaded into internal hardware registers. This can be done by a PUSHF instruction
followed by a POPF instruction. (Any load of EFLAGS zeroes bit 30). Be sure to do this whenever
you use a new key.

4. Load the effective address (offset) of either (1) the entire extended key sequence, or (2) the key itself
into EBX. A bit in the control word indicates the distinction between these two key-extension
options.

5. Load the effective address (offset) of the desired ACE control word into EDX. The control word
specifies encryption or decryption, the number of rounds, where the extended key comes from, and so
forth.

6. Load the effective address (offset) of the first data block to be encrypted into ESI.

7. Load the effective address (offset) of the start of the ciphertext result area into EDI. The source data
address and the result data address may be identical; the ACE supports encryption in place.

8. Load the number of 128-bit data blocks to be encrypted into ECX. Note that each execution of the
REP xcrypt-ecb function processes two data blocks. When ECX is odd, one extra block will be
encrypted but the result will not be stored to memory.

9. Execute the REP xcrypt-ecb instruction, which performs the following steps:
a. If ECX==0, continue at step 14: the REP instruction is complete.
b. If EFLAGS:30 is 0, the extended keys and control word are loaded into internal hardware registers.
c. EFLAGS:30 is set to 1.
d. Two 128-bit input data blocks are loaded from memory into the hardware.
e. The encryption operation starts.

10. The single encryption operation continues until the specified number of rounds has been completed, or
an addressing exception is encountered. Each round takes two processor clocks. When processing of
all rounds is complete, the result is placed in the appropriate memory location and both ESI and EDI
are incremented by the size of the data stored (usually 32 bytes, but only 16 when ECX is equal to 1).

11. If an addressing exception occurs during the execution of REP xcrypt-ecb (for example, a page
fault), the interrupted EIP and the register state saved by the exception allows the REP xcrypt-ecb
instruction to be re-executed with correct results.

12. If the single operation has completed successfully, two is subtracted from ECX (except if ECX=1,
when only 1 is subtracted) and execution continues at step 9 or at step 13 .

13. Every so often, after an encryption operation has been completed, the REP xcrypt-ecb instruction
allows external interrupts to occur. If the execution is interrupted, the interrupted EIP and the register
state saved by the exception allows the REP xcrypt-ecb instruction to be re-executed continuing
the original sequence of encryptions.

14. Execution of the REP xcrypt-ecb instruction is now complete and interrupts are allowed before
execution of the next x86 instruction starts.

VIA Nehemiah ACE Programming Guide - 11

Figure 7. xcrypt-ecb Instruction

REP

0xF3 0x0F

(rep count for rep-xcrypt)
ptr to control word (128b-aligned)

ptr to key data (128b-aligned)

ptr to input block (128b-aligned)
ptr to output block (128b-aligned)

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

xcrypt-ecb instruction
implied register contents
 assumed by xblock execution

EFLAGS

bit specifying whether new extended keys need
to be loaded or not by xcrypt instruction

0xD8 group opcode
 = 10xA7 0xC8

MULTI-TASKING 2.3

The ACE architecture is specifically designed to address two major (and related) goals:

To allow multiple applications (including the operating system) to use the xcrypt functions without any
operating systems support (such as a device driver), and

To allow multiple applications (including the operating system) to use the xcrypt functions without any
awareness of, or visibility of, other tasks (and their data) that are also using xcrypt functions.

That is, if

(1) Task A executes an xcrypt instruction, and

(2) A task switch subsequently occurs to task B that

(3) Subsequently executes an xcrypt instruction, the following must be true:

• Any inter-instruction state needed to later restart task A and execute subsequent task A xcrypt
instructions must be saved (when task A is suspended) and restored (when task A is restarted) by
existing operating system code, and

• Any inter-instruction state required to execute task B's xcrypt instructions correctly must be restored
(when task B is started) by existing operating system code, and

VIA Nehemiah ACE Programming Guide - 12

• Task B must not be able to see, touch or smell anything (such as the keys) relating to task A's use of
the xcrypt instruction, and vice versa.

The ACE approach to satisfy these requirements is to make xcrypt self-contained. That is, all of the
information needed to perform an encryption is contained within the xcrypt instruction by using pointers
in GPRs to all of the operands. These pointers are saved across task switches by existing operating systems.

A problem with this approach is that loading the extended key sequence into the hardware registers takes
about as long as performing the encryption operation itself. To improve performance, ACE has a mechanism
to avoid reloading keys into the hardware unless they have changed.

For all xcrypt instructions, bit 30 in EFLAGS specifies whether the processor needs to load the extended
key sequence and the control word from memory into the hardware registers:

If EFLAGS:30 is 0 when an xcrypt instruction is executed, the control word and extended key
sequence are loaded into the hardware registers. EFLAGS:30 is then set to 1.

If EFLAGS:30 is 1 when an xcrypt instruction is executed, the control word and extended key
sequence in the hardware registers are presumed correct and are not reloaded. EFLAGS:30 is not
changed.

In addition to this xcrypt behavior, the VIA Nehemiah Stepping 8 processor implements changes to
existing x86 instructions and operation that affect EFLAGS:

EFLAGS:30 is set to 0 by any x86 instruction, interrupt, exception, task switch, etc. operation that causes
EFLAGS to be stored (even if executed in 16-bit mode)

EFLAGS:30 cannot be set to 1 by any x86 instruction that causes EFLAGS to be loaded. Only xcrypt
instructions set this bit to 1.

EFLAGS:30 is set to 0 by a SYSENTER instruction.

The effect of this mechanism relative to multitasking is (starting at the beginning of time):

Task 1 executes a first xcrypt instruction. Since EFLAGS:30 is 0, the xcrypt logic loads the control
word and extended keys into the hardware, and sets EFLAGS:30 to 1.

Task 1 executes a second xcrypt instruction. Since EFLAGS:30 is 1, the xcrypt logic bypasses
loading the control word and extended keys. This improves the performance of the second xcrypt
instruction.

A task switch to task 2 occurs. The process of loading the context of task 2 always involves saving task 1's
EFLAGS and loading task 2's EFLAGS. The save of task 1's EFLAGS sets bit 30 to 0 in the saved
value. The load of task 2's EFLAGS may be done by the operating system with an explicit POPF
instruction, or it may done by the built-in x86 exception or task switch mechanism. Regardless, this load
causes task 2's EFLAGS:30 to be set to 0.

Task 2 executes an xcrypt instruction. Since its EFLAGS:30 is 0, the xcrypt logic loads the control
word and extended keys into the hardware, and sets EFLAGS:30 to 1.

A task switch back to task 1 occurs. The EFLAGS:30 for task 1 has bit 30 cleared to 0, so the next task 1
xcrypt execution will reload the task 1 control word and keys.

VIA Nehemiah ACE Programming Guide - 13

2.4 EXTENDED KEYS

An xcrypt instruction always points to the encryption key. However, AES encryption requires an extended
key sequence. This sequence provides a unique 128-bit value for each round of the algorithm. The ACE
supports two methods for providing these extended keys:

Hardware Generated. The hardware can generate the extended key sequence for both encryption and
decryption for all specifiable round counts. This generation is performed as a side effect of an xcrypt
instruction that points to the base key and points to a control word that specifies hardware-generated
extended keys. This option is the normal approach.

Application Provided. The application can provide the entire extended key sequence instead of letting the
hardware generate it. The load of this extended-key data is performed as a side effect of an xcrypt
instruction that points to the base key followed by the extended keys and points to a control word that
specifies application-provided extended keys.

For hardware generated keys, the key data pointed to by EBX must start with byte 0 of the key (w[0] in AES
notation) on a 16-byte aligned linear address, followed by byte 1 (w[1] in AES notation), up to byte 15 (128-
bit key), 23 (192-bit key), or 31 (256-bit key).

For application loaded keys for encryption, the extended key sequence starts with the normal key as described
above followed immediately by the first byte of the extended key sequence, followed by the second byte, etc.
for the entire sequence of extended keys. That is, the memory sequence w[0], w[1], etc. is as described in
Figure 11 of FIPS-197.

For application loaded keys for decryption, the equivalent inverse cipher extended keys must be provided in the
inverse order (the real key comes last) as described in Figure 15 of FIPS-197. That is, the first addressed byte
is defined in FIPS-197 Figure 15 as dw[0], the next is dw[1], and so forth.

For the application-loaded keys option, the hardware always loads sixteen 128-bit values from memory
regardless of the specified key size. Any values beyond the normal extended key size are ignored and have no
affect on the results, but that memory area must be accessible (within the segment limit, etc.)

2.5 MODES OF OPERATION
The supported modes are implemented by a collection of datapaths surrounding the basic AES round engine.
The application program does not directly control these paths; instead, the application program merely
specifies the operating mode to be used and the hardware manages the routing of data.

VIA Nehemiah ACE Programming Guide - 14

 ECB MODE
In this mode, each data block is encrypted independently from other blocks. Two blocks are pipelined
through the round engine. One block comes from input_0 register, the other from input_1 register (via
the hold register). Each data block is initially XOR'd with the first key block and the result feeds into the
round engine. The result of each encryption round is feed back into the core for the next round. When all
rounds have been completed, the final result is captured in one of the two output registers.

Figure 8. ECB Operating Mode Support

input 0 input 1

output 1output 0

xor

xor

key

key encryption
&

decryption

Electronic CodeBook (ECB) Mode

Ek Ek Ek

P1

C1 C2 C2

P2 P2

encryption

Dk Dk Dk

C1

P1 P2 P2

C2 C2

decryptionloop for each round

encryption

decryption

both

VIA Nehemiah ACE Programming Guide - 15

 CBC MODE
In this mode, the result of each encryption is XOR'd with the next incoming data block. This cipher block
chaining (forwarding) operation insures that any single block of cipher text cannot be decrypted to plain
text; only the entire file can be decrypted. This forwarding means that only one block is encrypted at a
time; no pipelining of the round engine occurs. On the first round, an Initialization Vector (IV) provided
by the application is used in place of the forwarded cipher text.

Unlike EBC, encryption and decryption have different routings through the X-unit.

For CBC encryption, the plain text comes from the input_0 register, is then XOR'd with either the IV or
the forwarded cipher text results from the last block (from the hold register), and the results proceeds to
the key XOR and the round engine. The encryption results are sent to the output register and the hold
register for use on the following encryption.

For CBC decryption, the incoming cipher block is passed on to the key XOR and the round engine for
decrypting. The incoming cipher block is also moved into the hold register for subsequent XOR'ing with
the results of the round engine operating on the next subsequent cipher block.

 Figure 9. CBC Operating Mode Support

input 0 input 1

output 1output 0

xor

previous C save

xor

key

key encryption
&

decryption

Cipher Block Chaining (CBC) Mode

Ek Ek Ek

C1 C2 C2

encryption

decryption

previous P save

P2

+

P1

+

P3

+

Dk

C1 C2 C2

P2P1

+

P3

Dk

+

Dk

+IV

IV

encryption

decryption

both

VIA Nehemiah ACE Programming Guide - 16

 CFB MODE
For encryption, the IV is encrypted from the hold register, and then P1 in routed from input_0 register to
the hold register. The final round results are XOR'd with P1 in xor-b, with the result sent to the output,
and in xor-b, with the result placed back in the hold register to feed the next encryption. Decryption is
similar, except only xor-b is used and Cn is saved in the hold register for the subsequent cycle.

Figure 10. CFB Operating Mode Support

input 0 input 1

output 1output 0

xor

xor

key

key encryption
&

decryption

Cipher FeedBack (CFB) Mode

Ek

C1 C2 C2

encryption

decryption

previous P save

P2

+

P1

+

P3

+

IV

Ek Ek

Ek

C1 C2 C2

P2P1

+

P3

Ek Ek

+ +

IV
encryption

decryption

both

VIA Nehemiah ACE Programming Guide - 17

 OFB MODE
In this mode, the Initialization Vector is encrypted and the result is forwarded to the next round for
further encryption, yielding a sequence of 128-bit blocks. A "one-time pad". This sequence is XOR'd
with the plaintext to produce the ciphertext, or with the ciphertext to reconstruct the plaintext. It is thus
critical that no 128-bit block of the encryped sequence be re-used.

 Figure 11. OFB Operating Mode Support

input 0 input 1

output 1output 0

xor

xor

key

key encryption
&

decryption

Output FeedBack (OFB) Mode

encryption

decryption

previous P save

Ek

C1 C2 C2

P2P1

+

P3

Ek Ek

+ +

IV

Ek

P2P1

+

P3

Ek Ek

+ +

IV

C1 C2 C2

encryption

decryption

both

VIA Nehemiah ACE Programming Guide - 18

CHAPTER

X86 INSTRUCTIONS

3.1 PARAMETERS
 MEMORY FORMATS
All X-unit data loads and stores must be 16-byte aligned. Relative to AES notation, byte 0 is at the lowest
address, byte 1 is at the next higher address, and so forth. That is, data is organized in the normal x86
little endian fashion such that AES byte 0 is the normal x86 architecture byte 0 (the linear address
provided by an instruction operand).

 EDX: THE CONTROL WORD POINTER
DX or EDX in all xcrypt instructions contains the effective address of the ACE control word. This
address is always relative to segment ES. The resulting linear address must be aligned on a 128-bit
boundary, otherwise a General Protection exception occurs.

Whether DX or EDX is used is based on the effective address size for the executed instruction.

The control word fields are:

127:32 31:12 11:10 9:9 8:8 7:7 6:4 3:0

Reserved Reserved
0

Key
size

Decrypt/
encrypt

Intermediate/
normal

key-
 generation

type
algorithm

type
round
count

Bits 3:0 Round count: This four-bit field contains the number of rounds to be used for the encryption or
decryption operation. Although the number of rounds for each key size is specified by the AES, this
standard value is not built into the hardware; the application program must specify the number of rounds.

Bits 6:4 Algorithm Type: This three-bit field specifies the cryptographic algorithm. The only algorithm
currently supported is the AES, which has a field value of 0. Other values are reserved and the ACE
behavior is undefined if this field is set to reserved values.

VIA Nehemiah ACE Programming Guide - 19

Bit 7 Key Generation Type: This one-bit field specifies whether the extended keys are to be generated by
the hardware (0) or are to be loaded from memory (1).

Bit 8 Intermediate/Normal: This one-bit field specifies normal operation (0) or intermediate operation
(1). Intermediate mode allows examination of the result of intermediate rounds.

Bit 9 Encrypt/Decrypt: This one-bit field specifies encryption (0) or decryption (1).

Bits 11:10 Key size: This two-bit field specifies the key size: 128-bit (0), 192-bit (1), 256-bit (2), and
reserved (3). The ACE behavior is undefined if key size is set to the reserved value.

Bits 31:12 Reserved: These bits should be set to 0 and the contents of this field should not be used by the
application.

Bits 127:32 Reserved: Although these bits are not used as part of the control word, they are modified
during key generation. While it is possible for an application to use them as temporary scratch buffers,
this use is not recommended.

 ESI: SOURCE DATA POINTER
SI or ESI in all xcrypt instructions contains the effective address (offset) of the input data. This address
is always relative to the segment specified in ES. The resulting linear address must be aligned on a 128-bit
boundary, otherwise a General Protection exception occurs.

At the end of instruction execution, or if an interrupt (or page fault, etc.) has occurred, SI or ESI is
incremented by the number of bytes stored. The address is always incremented: EFLAGS.DF has no
effect. Whether SI or ESI is used and updated is based on the effective address size for the executed
instruction.

 EDI: RESULT DATA POINTER
DI or EDI in all xcrypt instructions contains the effective address (offset) of the result data generated
by the instruction function. This address is always relative to the segment specified in ES. The resulting
linear address must be aligned on a 128-bit boundary, otherwise a General Protection exception occurs.

At the end of instruction execution, or if an interrupt (or page fault, etc.) has occurred, DI or EDI is
incremented by the number of bytes stored. The address is always incremented: EFLAGS.DF has no
effect. Whether DI or EDI is used and updated is based on the effective address size for the executed
instruction.

 EBX: KEY POINTER
BX or EBX in all xcrypt instructions contains the effective address (offset) of the key data. This address
is always relative to the segment specified in ES. The resulting linear address must be aligned on a 128-bit
boundary, otherwise a General Protection exception occurs. Whether BX or EBX is used is based on the
effective address size for the executed instruction.

The key data takes one of two forms depending on bit 7 of the control word:

� Bit 7 = 0: The primary key. The extended key sequence will be generated by the hardware.

� Bit 7 = 1: The primary key followed by the application calculated extended key sequence.

VIA Nehemiah ACE Programming Guide - 20

 ECX: REP COUNT
CX or ECX in all rep xcrypt instructions contains the count of 128-bit data blocks to be processed.

At the end of instruction execution, CX or ECX will be zero. If an interrupt (or page fault, etc.) has
occurred, CX or ECX will be decremented by the number of blocks processed and stored by the
instruction prior to the interrupt.. Whether CX or ECX is used and updated is based on the effective
address size for the executed instruction.

 EAX: INITIALIZATION VECTOR
AX or EAX in chaining mode rep xcrypt instructions (all modes except ECB) contains the effective
address (offset) of the initialization vector (IV). This address is always relative to the segment specified in
ES. The resulting linear address must be aligned on a 128-bit boundary, otherwise a General Protection
exception occurs. The choice of whether AX or EAX is used is based on the effective address size for the
executed instruction.

As for normal x86 string instructions, if an external interrupt occurs during the processing of the rep
xcrypt instruction, the registers are updated before the interrupt transition occurs such that the rep
instruction may be restarted upon return from interrupt handling. The initialization vector presents a
problem since the original IV is not the right one to use upon instruction restart. So the xcrypt logic
changes either the address in AX/EAX, or changes the data value pointed to by AX/EAX to be the
appropriate IV for the continuing iteration.

Thus, an application program must not assume that EAX is unchanged, or that the value pointed to by EAX is
unchanged, after the execution of a chaining mode rep xcrypt instruction. For OFB mode, and for decryption
using CBC and CFB modes, the value pointed to by EAX will be changed. For encryption using CBC and CFB
modes, the value in EAX itself is changed.

3.2 REP

The rep xcrypt- instructions have similarities with the x86 movs instruction:

The value in EDI is updated with the number of result bytes stored.

An address-size prefix affects the size of EAX, EBX, EDX, ESI, and EDI used.

The usual address exceptions (past the segment limit, page fault, etc.) can occur.

And there are some different semantics:

• The value in ESI is updated with the number of result bytes stored. Note that in ECB mode with an
initial odd value in ECX, one more data block from ESI is processed than is stored.

• A REPNE prefix causes an Invalid Instruction exception.

• An operand size prefix causes an Invalid Instruction exception.

• The DF (direction flag) in EFLAGS has no effect. The operation always proceeds from low address to
high address.

VIA Nehemiah ACE Programming Guide - 21

CHAPTER

USING THE ACE

4.1 ENABLING

To use the VIA Nehemiah Stepping 8 processor ACE, three conditions must be met:

The ACE must physically exist on the chip. Its existence can be discovered from the Centaur Extended
CPUID Feature Flags. This condition is permanently set as part of the manufacturing process.

The ACE must be enabled. The enabled state can be also discovered from the Centaur Extended CPUID
Feature Flags. The ACE can be enabled/disabled by writing to the Function Control Register (FCR),
MSR 0x1107. The RESET default is enabled. But, see the next condition.

SSE instructions must be enabled via the standard x86 method of enabling the FXSAVE/FXRSTOR
instructions using CR4[9] This CR4 enabling also enables the full set of SSE instructions on Intel
processors and VIA Nehemiah Stepping 8 processors.

The VIA Nehemiah Stepping 8 processor supports the Centaur Extended Feature Flags. When the CPUID
instruction is executed with EAX=0xC0000000, the processor returns 0xC0000001 in EAX. Note that
earlier VIA C3 Nehemiah processors do not support the Centaur Extended CPUID Functions and will
return EAX=0xC0000000 or EAX=0x00000000 (see the VIA Nehemiah processor datasheet for details on
the extended CPUID function).

If a CPUID with EAX=0xC0000000 returns a value in EAX >= 0xC0000001 then Centaur Extended
Feature Flags are supported. A CPUID with EAX=0xC0000001 then returns the Centaur Extended Feature
Flags in EDX. There are two bits in EDX that describe the ACE:

EDX[6] == 0 ACE does not exist on this chip. FCR[28] cannot be set to enable the ACE and the new
xcrypt instructions cause an Invalid Opcode Fault.

EDX[6] == 1 ACE exists. The behavior of xcrypt instructions is dependent upon whether the ACE is
enabled or not.

EDX[7] == 0 ACE is disabled. The new xcrypt instructions cause an Invalid Opcode Fault. If the
ACE is present, FCR[28] can be set to enable the ACE

VIA Nehemiah ACE Programming Guide - 22

EDX[7] == 1 ACE is enabled (usually the RESET default. The xcrypt instructions behave as defined
in this application note (provided CR4[9] =1)

All VIA C3 Nehemiah processors implement a Function Control Register (FCR), MSR 0x1107, which can
be written by software to enable or disable various features. One bit controls the ACE - FCR[28]:

0=The ACE is not enabled. If EDX[6] indicates that ACE is present, a WRMSR can set this bit to 1
thus enabling the ACE.

1=The ACE is enabled. A WRMSR can set this bit to 0 thus disabling the ACE.

4.2 STARTUP

The RESET signal is an immediate asynchronous process: RESET halts operation immediately regardless of
the state of the processor. As part of the RESET process, the following ACE actions are performed:

Any in-progress ACE instruction is immediately cancelled with undefined results being stored.

The FCR is reset to its default value. This may or may not directly change the ACE enable status.

The CR4 register is reset to zero. Since this resets the FXSAVE/FXRSTOR enable, (CR4[9]) the ACE
is indirectly disabled.

EFLAGS:30 is cleared to zero.

The INIT signal is an interrupt that occurs between x86 instructions: INIT never halts instructions in the
middle of their execution (except for REP string instructions, where INIT behaves like INTR). The ACE
effect of INIT is:

The CR4 register is reset to zero. Since this resets the FXSAVE/FXRSTOR enable, (CR4[9]) the ACE
is indirectly disabled.

EFLAGS:30 is cleared to zero.

MANUFACTURED STATE
The ACE is tested as part of the VIA Nehemiah Stepping 8 processor manufacturing process. Relative to
potential fault coverage, however, this level of testing is not 100% complete. For certain sensitive applications,
additional testing (by the application) may be desirable.

VIA Nehemiah ACE Programming Guide - 23

CHAPTER

PERFORMANCE

As for all x86 instructions that reference memory, the timing of xcrypt instructions is non-deterministic
due to cache misses, page faults, interrupts, load and store buffer stalls, SSE queue-full stalls, external DMA
snoops, etc. Consistent with other published x86 instruction timings, this section ignores these variables and
assumes a perfect environment: everything is in the cache, no interrupts, no snoops, no stalls, etc.

X-unit instruction timing is more complicated in that a large number of xcrypt execution clocks are
overlapped with subsequent instruction execution clocks. To understand this, Figure 12 is a simple
illustration of the VIA Nehemiah Stepping 8 processor pipeline structure (as it affects the ACE). x86
instructions are fetched and translated by the instruction fetch front-end stages (not shown). Internal micro-
instructions are provided to the execution pipeline from either the x86-instruction translator or the associated
micro-instruction ROM.

All types of microinstructions proceed through the integer pipeline. Media-type instructions (x87 floating-
point, MMX, and SSE instructions) are passed from the E-stage of the integer pipeline to instruction and
data queues feeding the appropriate media-execution engines. Once a SSE micro-instruction (for example) is
placed in the SSE media queue, it can no longer cause an exception and the integer pipeline and other media
units are free to continue executing other instructions while the SSE micro-instruction percolates down the
queue. Thus, the execution of X-unit instructions (handled as SSE instructions) is overlapped with the
execution of subsequent integer, MMX, or floating point instructions.

VIA Nehemiah ACE Programming Guide - 24

Figure 12. VIA Nehemiah Stepping 8 Execution Pipeline Overview

R

A

J

D

G

H

E

S

W

R

X-UnitSSE-Unitx87 FP MMX

ROMXlator

10 entry
queuequeue queue

Integer Pipeline

As an example, referring to the first entry in Table 1, we see that a rep xcrypt-ecb instruction requires 31
clocks to execute (for a round count of 10 and ECX=2) from the viewpoint of an SSE instruction that follows
the rep xcrypt-ecb instruction. If the rep xcrypt-ecb instruction is followed by integer, MMX, or
floating point instructions, however, the rep xcrypt-ecb instruction only appears to take 12 clocks total
relative to these instructions. The missing 19 clocks of X-unit execution are overlapped with 19 clocks of
execution of non-SSE instructions.

In the instruction timing tables below, the following terms are used:

R = the number of rounds specified

N = the number of 128-bit blocks to be encrypted

Microcode is optimized for execution with the extended key and control word already loaded. Thus, the
ACE is started immediately on the assumption that the system is ready and only then is the EFLAGS bit

VIA Nehemiah ACE Programming Guide - 25

tested to determine if keys should be loaded. If so, microcode resets the ACE to halt the encryption, loads or
generates the key, and restarts. Along the way, ECX is tested for zero. That means that unlike REP string
instructions where an ECX value of zero is a NOP, it is possible for REP xcrypt instructions to page fault
when ECX = 0. It also means that the REP xcrypt instructions can be used as long NOP instructions if you
need a delay in your program.

When ECX = 0, REP xcrypt instructions will between 22 and 27 clocks, depending on the state of the
ELFAGS:30 bit and the operating mode.

For large values of the REP count we do not provide separate integer timings. The integer pipeline quickly
slips and stalls into sync with the X-unit. At the completion of the cipher operation, there will be a slight
overlap where the integer unit can fetch subsequent instructions while the ACE completes the final block.
This overlap is comparable to the extra clocks available when doing a single encryption or decryption.

ECB MODE XCRYPT SSE Clocks Integer Clocks

Data Size EFLAGS
bit 30

Extended Key
 Source Base Variable Base Variable

128b 1 9 2*R 17 0

128b 0 Hardware 45 2*R 61 0

128b 0 Memory 76 2*R 84 0

2*128b 1 11 2*R 12 0

2*128b 0 Hardware 47 2*R 56 0

2*128b 0 Memory 78 2*R 79 0

N*128b 1 11 N*R

N*128b 0 Hardware 47 N*R

N*128b 0 Memory 78 N*R

Notes

The REP xcrypt-ecb instruction always operates on two 128-bit blocks of data. However when the
block count in ECX is odd, the extra block of data is not stored.

When ECX is odd and greater than 2, add an extra (R-2) clocks to the SSE Base clocks calculation. The
extra R comes from the fact that ACE does an even number of rounds, but saves two clocks on the final
store since only the first block is written to memory.

VIA Nehemiah ACE Programming Guide - 26

CBC/CFB MODE XCRYPT SSE Clocks Integer Clocks

Data Size EFLAGS
bit 30

Extended Key
 Source Base Variable Base Variable

128b 1 7 2*(R+1) 23 0

128b 0 Hardware 51 2*(R+1) 65 0

128b 0 Memory 72 2*(R+1) 88 0

N*128b 1 7 2*N*(R+1)

N*128b 0 Hardware 51 2*N*(R+1)

N*128b 0 Memory 72 2*N*(R+1)

Notes

Add 11 clocks to the integer timing for DECRYPT of a single block.

Add 5 clocks to the base integer timing for XRCYPT-CFB

OFB MODE XCRYPT SSE Clocks Integer Clocks

Data Size EFLAGS
bit 30

Extended Key
 Source Base Variable Base Variable

128b 1 n/a 48 0

128b 0 Hdw 90 0

128b 0 Appl 113 0

N*128b 1 N/a 4*R-26 45*N

N*128b 0 Hdw 4*R-26 45*N

N*128b 0 Appl 4*R-26 45*N

Notes
In OFB mode, a new IV must be calculated, and stored, for each 128-bit block processed. Thus the SSE
clocks are fewer than the Integer clocks and are not separately recorded.

VIA Nehemiah ACE Programming Guide - 27

CHAPTER

VERIFICATION

Cryptography Research, Inc., of San Francisco has performed an independent evaluation of the ACE unit. A
copy of their report will be available on the VIA website or ask a VIA representative for a copy.

6.1 ERRATA
Some functions documented in this note do not work properly in the current VIA Nehemiah processor
stepping 8:

• The ability to generate extended keys for key sizes of 196- and 256-bits is not working. Attempts to
use this function will cause incorrect and unpredictable results. Hardware extended-key generation for
128-bit keys works correctly.

• Intermediate round results for decryption require that the user provide the extended key schedule.

These errata may be fixed in later steppings.

	hardware
	software
	multi-tasking
	extended keys
	modes of operation
	parameters
	edx: the control word pointer
	esi: source data pointer
	edi: result data pointer
	ebx: key pointer
	ecx: rep count
	eax: initialization vector

	rep
	enabling
	startup
	manufactured state

	errata

