
PadLock Quick Reference

25th July 2008



THIS IS PADLOCK QUICK REFERENCE FORVIA N ANO PROCESSORS VERSION0.95

VIA Technologies and Centaur Technology reserve the right to make changes in its products without notice in order to
improve design or performance characteristics.

This publication neither states nor implies any representations or warranties of any kind, including but not limited to any
implied warranty of merchantability or fitness for a particular purpose. No license, express or implied, to any intellectual
property rights is granted by this document.

VIA Technologies and Centaur Technology make no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this publication or the information contained herein, and reserves the right to make changes
at any time, without notice. VIA Technologies and Centaur Technology disclaim responsibility for any consequences
resulting from the use of the information included herein.

VIA and VIA Nano are trademarks of VIA Technologies, Inc.

LIFE SUPPORT POLICY

VIA processor products are not authorized for use as components in life support or other medical devices or systems
(hereinafter called life support devices) unless a specific written agreement pertaining to such intended use is executed
between the manufacturer and an officer of VIA.

Life support devices are devices which (a) are intended for surgical implant into the body or (b) support or sustain life
and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury to the user.

This policy covers any component of a life support device or system whose failure to perform can cause the failure of the
life support device or system, or to affect its safety or effectiveness.

c© 2008 VIA Technologies, Inc.All Rights Reserved.

c© 2008 Centaur Technology, Inc.All Rights Reserved.

1



DETECTING PADLOCK

IssueCPUID with EAX = 0xC0000000. If it returns withEAX >= 0xC0000001, then a subsequentCPUID instruction
with EAX = 0xC0000001 will return Centaur Extended Feature Flags inEDX, of which:

• EDX:2 - RNG instructions are present

• EDX:3 - RNG instructions are enabled

• EDX:6 - AES instructions are present

• EDX:7 - AES instructions are enabled

• EDX:10 - SHA instructions are present

• EDX:11 - SHA instructions are enabled

NOTE ON TERMINOLOGY

In the instruction descriptions on the following pages, all examples are given with 32-bit registers (EAX , etc). PadLock
instructions in VIA Nano processors work correctly in 16-bit and 64-bit modes, and register usage should be modified
accordingly (AX or RAX , etc).

2



RANDOM NUMBER GENERATION

Instructions:

XSTORE - 0F A7 C0 - store random bytes

REP XSTORE - F3 0F A7 C0 - store rep count random bytes

Register Usage: Input

ECX For REP XSTORE only, contains the number of bytes to be stored

EDX Entropy factor

EDI Pointer to the memory buffer where the random bytes are stored. AssumesES segment. The memory must
be writable

Register Usage: Output

EAX For XSTORE only, contains the number of bytes stored (0-16) in bits 4:0. All other bits are undefined for both
XSTORE andREP XSTORE.

ECX For REP XSTORE, ECX will be zero. Otherwise unchanged.

EDX Bits 0:1 are unchanged, all higher order bits are zero.

EDI Incremented by the number of bytes stored. The memory will contain the random bits generated by the
PadLock hardware.

Notes:

If ECX is initially 0 for REP XSTORE, EAX andEDX are not modified.

If insufficient bits have accumulated in the hardware buffers,XSTORE will store no data.REP XSTORE will execute until
the number of requested bytes are stored.

TheES segment forEDI may not be overridden with another segment prefix. Any such prefix will be ignored.

REP XSTORE is interruptible. As for other x86REP instructions, the registers and memory are modified so that the
instruction can continue execution, after the interrupt is serviced, in a manner transparent to the software.

EDX specifies the entropy of the output bytes:

• EDX = 0 : raw bits as generated by the hardware are stored.

• EDX = 1, 2, or 3 : raw bits are grouped into two blocks of 16 bytes, block 1 =AES key, block 2 =AES plaintext,
and the first 8 bytes ofAES ECB mode ciphertext are stored. This provides more entropy per bit and good statistical
qualities.

3



ADVANCED ENCRYPTION STANDARD

Instructions:

REP XCRYPTECB - F3 0F A7 C8 - encrypt/decryptREP count 16-byte blocks using electronic code book

REP XCRYPTCBC - F3 0F A7 D0 - encrypt/decryptREP count 16-byte blocks using cipher block chaining

REP XCRYPTCTR - F3 0F A7 D8 - encrypt/decryptREP count 16-byte blocks using counter mode

REP XCRYPTCFB - F3 0F A7 E0 - encrypt/decryptREP count 16-byte blocks using cipher feedback

REP XCRYPTOFB - F3 0F A7 E8 - encrypt/decryptREP count 16-byte blocks using output feedback

Register Usage: Input

EAX For all XCRYPT instructions exceptXCRYPTECB : pointer to the Initialization Vector. AssumesES segment.
The memory must be writable.

EBX Pointer to the Encryption Key. AssumesES segment.

ECX Number of 16-byte blocks to encrypt or decrypt

EDX Pointer to the Control Word. AssumesES segment

ESI Input pointer. AssumesES segment. When encrypting this is the plaintext, when decrypting it is the ciphertext

EDI Output pointer. AssumesES segment. When encrypting this is the ciphtertext, when decrypting it is the
plaintext. The memory must be writable.

Register Usage: Output

EAX The register is unchanged. The memory will contain the updated Initialization Vector, to be used with the
next sequential input

EBX Unchanged (register and memory)

ECX 0

EDX Unchanged (register and memory)

ESI Incremented by the number of bytes encrypted or decrypted. Memory unchanged.

EDI Incremented by the number of bytes encrypted or decrypted, except when the Control Word specifies Message
Authentication Code. The memory will contain the ciphertext (for encryption) or plaintext (for decryption)
of the input.

4



Notes:

The control word fields are:

Key Encryption Intermediate Key Message Number of
Size Mode Mode Mechanism Authentication Rounds

Code

127:12 11:10 9 8 7 6:5 4 3:0

00 - 128 bits 0 - encrypt 0 - off 0 - hardware generate 0 - off 10 - 128b keys
0 01 - 192 bits 0 12 - 192b keys

10 - 256 bits 1 - decrypt 1 - on 1 - load from memory 1 - on 14 - 256b keys

The plaintext and ciphertext buffers may point to the same memory location.

TheES segment forEAX , EBX , EDX , ESI, andEDI may not be overridden with another segment prefix. Any such prefix
will be ignored.

For XCRYPTCTR , the high-order 16 bits of the Initialization Vector will be incremented by one for every block processed.
This counter is big-endian, compatible with the counter mode for Wireless specification 801.11i

For application-loaded keys for decryption, the equivalent inverse cipher extended keys must be provided in the inverse
order (the real key comes last) as described in Figure 15 ofFIPS 197.

For calculation of intermediate results for decryption, for all key sizes, it is necessary for the application to load the
extended key schedule.

Message Authentication Code (MAC) is valid forXCRYPTCBC andXCRYPTCFB instructions only. This bit is ignored by
all otherXCRYPT instructions.

REP XCRYPT instructions are interruptible. As for other x86REP instructions, the registers and memory are modified so
that the instruction can continue execution, after the interrupt is serviced, in a manner transparent to the software

FIPS 197 specifies the indicated number of rounds for each of the supported key sizes. TheXCRYPT instructions will
operate on any number of rounds from 1 to 16 (specifying 0 rounds actually performs 16 rounds - think of it as an
assembly language loop counter). For correctAES calculations, the number of rounds must be set as per theFIPS 197
specification.

5



SECURE HASH ALGORITHM

Instructions:

REP XSHA1 - F3 0F A6 C8 - CalculateSHA1 as specified byFIPS 180-2

REP XSHA256 - F3 0F A6 D0 - CalculateSHA256as specified byFIPS 180-2

Register Usage: Input

EAX [0] the XSHA instruction should perform theFIPS 180-2 specified padding of the input stream, and treat the
REP count inECX as a byte counter.

[-1] the XSHA instruction does not perform theFIPS 180-2 padding, and treats theREP count in ECX as
the number of 64-byte blocks of input stream on which to perform theSHA calculation.

ECX Size of the input stream, in bytes (EAX = 0) or in 64-byte blocks (EAX = -1)

ESI Pointer to the input stream. AssumesES segment.

EDI Pointer to a memory buffer with the initial hash constants. AssumesES segment. Must be writable.

Register Usage: Output

EAX If the input value was zero, it will contain the originalECX value. Otherwise it will be unchanged.

ECX If the input value ofEAX was zero,ECX will be unchanged. If the input value ofEAX was -1,ECX will be
zero.

ESI Incremented by the number of bytes processed. Memory unchanged.
If input EAX = 0, the increment is the input value inECX

If input EAX = -1, the increment is the input value inECX * 64

EDI Unchanged. The memory pointed to will contain the result of the secure hash calculation.

Notes:

TheES segment forESI andEDI may not be overridden with another segment prefix. Any such prefix will be ignored.

REP XSHA instructions are interruptible. As for other x86REP instructions, the registers and memory are modified so that
the instruction can continue execution, after the interrupt is serviced, in a manner transparent to the software. ForXSHA

instructions withEAX initially zero, the value inEAX will be modified to indicate the number of bytes processed before
the interrupt.

The hash result is loaded and stored as a sequence of 32-bit integers in little-endian format. FIPS 180-2 specifies big-
endian format. The calling program will need to BSWAP each 32-bit DWORD of the hash if it is to be communicated to
any other program, process, or user.

6


