
VIA Nehemiah
Random Number Generator

Programming Guide

Version 1.0

This is Version 1.0 of the VIA Nehemiah RNG Programming Guide.

© 2003 VIA Technologies, Inc. All Rights Reserved.
© 2003 Centaur Technology, Inc. All Rights Reserved.

VIA Technologies and Centaur Technology reserve the right to make changes in its products without
notice in order to improve design or performance characteristics.

This publication neither states nor implies any representations or warranties of any kind, including but
not limited to any implied warranty of merchantability or fitness for a particular purpose. No license,
express or implied, to any intellectual property rights is granted by this document.

VIA Technologies and Centaur Technology make no representations or warranties with respect to the
accuracy or completeness of the contents of this publication or the information contained herein, and
reserves the right to make changes at any time, without notice. VIA Technologies and Centaur
Technology disclaim responsibility for any consequences resulting from the use of the information
included herein.

VIA and VIA C3 are trademarks of VIA Technologies, Inc.

CentaurHauls is a trademark of Centaur Technology, Inc..

Intel is a registered trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

LIFE SUPPORT POLICY

VIA processor products are not authorized for use as components in life support or other medical
devices or systems (hereinafter called life support devices) unless a specific written agreement
pertaining to such intended use is executed between the manufacturer and an officer of VIA.

1. Life support devices are devices which (a) are intended for surgical implant into the body or (b) support or
sustain life and whose failure to perform, when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. This policy covers any component of a life support device or system whose failure to perform can cause the
failure of the life support device or system, or to affect its safety or effectiveness.

VIA Nehemiah RNG Programming Guide - 1

Table of Contents

1 INTRODUCTION...2

2 PROGRAMMING INTERFACE...3
2.1ARCHITECTURE ...3
2.2CONFIGURING AND ENABLING...5

2.2.1CPUID INSTRUCTION IDENTIFICATION .. 5
2.2.2MSR 0X110B ... 6

2.3X86 XSTORE INSTRUCTION ..7
2.3.1XSTORE: STORE RANDOM DATA INSTRUCTION... 8
2.3.2XSTORE: NUMBER OF BYTES STORED ... 9
2.3.3REP XSTORE INSTRUCTION .. 9

2.4STARTUP ...10
2.5MANUFACTURING TESTS..11
2.6DC BIAS..11

4 PERFORMANCE ..16
4.1BIT GENERATION SPEED ...16
4.2INSTRUCTION TIMING..16
4.3POWER MANAGEMENT ...17
4.4RANDOMNESS ..17

VIA Nehemiah RNG Programming Guide - 2

CHAPTER

INTRODUCTION
VIA is providing a suite of security technologies called Padlock in all new processors. The first Padlock
technology, introduced in the VIA Nehemiah processor, provided a fast hardware random number generator
(RNG) on the processor die.

A new VIA Nehemiah processor (stepping 8) extends this feature by placing two separate RNG noise sources
on the die, improving both performance and randomness. This core also includes Padlock’s Advanced
Cryptography Engine or ACE. See the separate programming guide for more details on ACE.

This guide defines the RNG function as implemented in the VIA Nehemiah processor. Earlier versions of
the VIA Nehemiah processor, starting with stepping 3, had a single RNG noise source. Software should not
use the RNG feature on VIA Nehemiah processors prior to stepping 3.

The CPUID identification of the first VIA Nehemiah processor containing the RNG feature is:

 Vendor ID: CentaurHauls
 Family: 6
 Model: 9
 Stepping: 3

The CPUID identification for the newer VIA Nehemiah core with two RNG noise sources is:

 Vendor ID: CentaurHauls
 Family: 6
 Model: 9
 Stepping: 8

Summarizing Nehemiah family core (CentaurHauls Family 6 Model 9) steppings:
Steppings 0 through 2 Steppings 3 through 7 Steppings 8 and higher
No RNG support One RNG Two RNG’s

It is theoretically possible that even with a correct stepping, the RNG feature may not be present. Thus one
must still check for existence of the RNG feature as described in section 2.2.

For support, interested developers should contact: rng_support centtech.com.

VIA Nehemiah RNG Programming Guide - 3

 CHAPTER

PROGRAMMING INTERFACE

2.1 ARCHITECTURE
Figure 2.1 is a conceptual view of the VIA Nehemiah processor RNG. The major architectural components
are:

Two bits in the Centaur extended feature flags returned by the CPUID instruction. These bits identify

 (1) whether the RNG feature physically exists on the processor, and

 (2) whether it is currently enabled.

A new RNG status and control Machine Specific Register (MSR). In addition to providing status
information, this privileged register controls global options of the RNG.

A high-speed hardware mechanism for generating random bits.

A hardware datapath mechanism that collects the generated bits into multiple buffers.

A non-privileged x86 instruction - xstore - which stores the collected random bits to memory, using
the SSE store bus, as well as placing a copy of the status and control MSR in EAX. Applications can then
verify that the RNG is configured acceptably.

An option to store only a specified subset of the generated bits, thus reducing the effective bit generation
rate but improving the randomness of the data.

A REP version of the x86 instruction which allows easy collection of long contiguous strings of random
data while allowing transparent interrupts.

VIA Nehemiah RNG Programming Guide - 4

Figure 1. Visible RNG Architecture

SSE Store Bus

RNG Unit

Status register

new xstore instruction

application-
visible
status

 string filter

 global
control

hardware generator
 & four 8-byte accumulation

buffers

RNG exists/enable bits visible using new extended CPUIDNew CPUID flag

Control & status New MSR read and written using normal MSR insts

EAX

EDX

random
data

Subsequent sections in this chapter describe in detail these registers and instructions. The basic approach to
use the VIA Nehemiah RNG is simple:

1. If special configuration is required (e.g., for testing purposes), set control values via the RNG MSR.
This is a privileged operation and rarely needs to be done.

2. An application can use xstore at any time to store random data and the instantaneously accurate
count of how many random bytes have been stored. This is an atomic instruction and can be used
concurrently by any number of active tasks (and the operating system). Note, however, that any
global options set in step 1 affect all users.

3. Examine the number of bytes returned in step 2, and repeat step 2, if necessary, until the desired
number of bytes has been obtained.

Or ...

4. Replace steps 2 and 3 with a REP xstore instruction specifying the exact number of bytes desired.

Paranoid (e.g., cryptographic) applications should be advised to verify that the RNG configuration is valid (or
at least unchanged) after each xstore operation. The concern is that a different application running on the
CPU could modify the RNG configuration. Centaur Technology recommends that paranoid applications not
use the REP prefix.

VIA Nehemiah RNG Programming Guide - 5

2.2 CONFIGURING AND ENABLING
To use the VIA Nehemiah processor RNG, three conditions must be met:

1. The RNG feature must physically exist on the chip. Its existence can be discovered from the Centaur
Extended CPUID Feature Flags. This condition is set as part of the manufacturing process and
cannot be changed by software.

2. The RNG feature must be enabled and configured appropriately. The enabled state can be discovered
from the Centaur Extended CPUID Feature Flags. The RNG feature can be enabled or disabled by
writing to a new MSR. The RESET default is enabled. But, see the next condition.

3. SSE instructions must be enabled via the standard x86 method of enabling the FXSAVE/FXRSTOR
instructions using CR4[9] This CR4 enabling also enables the full set of SSE instructions on both
Intel and on VIA Nehemiah processors. If CR4[9] is not set, the RNG behaves as if it were disabled
via the RNG MSR, regardless of the setting of the RNG enable bit in the RNG MSR.

Note: This dependency on SSE is because the RNG datapath just happens to be buried inside the SSE
datapath. This is an implementation choice and future VIA processors may eliminate this dependency.

2.2.1 CPUID INSTRUCTION IDENTIFICATION

The VIA Nehemiah processors (Family=6, Model=9, Stepping=3 & higher) support the Centaur Extended
Feature Flags. When the CPUID instruction is executed with EAX=0xC0000000, the processor returns
0xC0000001 in EAX. Note that earlier VIA Nehemiah processors do not support the Centaur Extended
CPUID Functions and will return EAX=0xC0000000 or EAX=0x00000000 (see the VIA Nehemiah
Processor datasheet for details on the extended CPUID function).

If a CPUID with EAX=0xC0000000 returns a value in EAX >= 0xC0000001 then Centaur Extended
Feature Flags are supported. A CPUID with EAX=0xC0000001 then returns the Centaur Extended Feature
Flags in EDX. There are two bits in EDX that describe the RNG:

EDX[2] == 0 RNG feature does not exist on this chip. A RDMSR/WRMSR of MSR 0x110B will cause
a General Protection Fault, and the xstore instruction will always cause an Invalid Opcode Fault.

EDX[2] == 1 RNG feature exists, a RDMSR/WRMSR of MSR 0x110B is allowed. The behavior of
xstore is dependent upon whether the RNG is enabled or not.

EDX[3] == 0 RNG is disabled. The xstore instruction will cause an Invalid Opcode Fault. This bit
reflects the result of the setting of bit 6 of MSR 0x110B.

EDX[3] == 1 RNG is enabled (usually the RESET default). This bit reflects the result of the setting of
bit 6 of MSR 0x110B. If 1, the xstore instruction can be used at any privilege level (provided that
CR4[9] =1)

2.2.2 MSR 0X110B
A new MSR 0x110B provides both status and control of the RNG feature. In addition, a copy of the MSR
contents as they are at the start of execution of an xstore instruction is placed in EAX as a result of
executing an xstore instruction.

VIA Nehemiah RNG Programming Guide - 6

The EDX portion of this MSR is undefined. The EAX portion of the MSR contains:

31:22 21:16 15:15 14:14 13:13 12:10 9:8 7:7 6:6 5:5 4:0

 Reserved
String filter

count
String filter

failed
String filter

enable
Raw bits
enable

DC bias
Noise
Source
select

Reserved
RNG

enable
Reserved

Current
byte count

Reserved bits have undefined and unpredictable values. In the following detailed description, (O) means a
read-only field output by the processor, (I) means the field can written by software. In addition, the phrase
"when the MSR is read" means when it is read by a RDMSR instruction or when it is copied into EAX as
part of an xstore instruction execution.

VIA recommends that when writing the MSR, all reserved bits should be set to zero. It is not possible to
misconfigure the current version of the VIA Nehemiah processor RNG, but subsequent versions may define
these reserved bits and software that improperly detects the processor stepping may misconfigure these later
steppings.

Any write to MSR 0x110B causes a load reset of the RNG hardware. The load reset actions are:

• The internal hardware buffers are cleared to zero.

• The internal accumulation count in the string filter is reset to zero.

• The various options defined by the MSR are set to the value written to the MSR.

The detailed fields are:

Bits 4:0 Current Random Byte Count (O): When the MSR is read, this read-only field contains the exact
number of random bytes that are currently available for storing. Due to the asynchronous generation of
random bytes, and the fact that multiple programs may be storing data using xstore, the number that
appears may not be the same as the number stored on the next execution of xstore.

When this field appears in the copy of the MSR placed in EAX by the execution of xstore, the number
is the exact number of bytes actually stored.

Bit 6 RNG Enable (I): When set to 1, this bit enables the RNG. When set to 0, the xstore instruction
becomes invalid, and the random number generator is internally disabled to reduce power consumption
(see section 4.3). The extended CPUID feature flag that indicates whether or not the RNG is enabled
(EDX[3]) is a copy of this bit.

This enable bit may be set internally by the RESET process. In this case, the effect on the processor is the
same as if a write MSR set the enable bit.

Bits 9:8 Noise Source Select (I): These bits control which of the two noise sources on the processor input
bits to the accumulation buffers. Source "A" is the same as on earlier VIA Nehemiah processor steppings.
Source "B" is a comparable noise source located elsewhere on the processor die.

 00 Noise source "A" active

 01 Noise source "B" active

VIA Nehemiah RNG Programming Guide - 7

 10 Both noise sources active

 11 Both noise sources active

On VIA Nehemiah processors prior to stepping 8, these bits are reserved and undefined. The default
RESET state is for both bits to be zero; to operate like earlier VIA Nehemiah processors.

Bits 12:10 DC Bias (I): These bits control the DC bias supplied to the random number generator (see
chapter 3). These bits may affect the speed of the generator and the randomness of the generated bits.

Bit 13 Raw Bits Enabled (I): If this bit is set to 1, the von Neumann compressor (or whitener) in the
hardware generator is disabled and the raw bits produced by the random generator are delivered to the
accumulation buffers (see the hardware summary in chapter 3). A 0 in this bit selects the whitener
function, which is required for producing truly random values. If it is desirable to sample the raw bits,
then the string filter must also be disabled (bit 14) since the raw bits generated go through the string filter
mechanism.

Bit 14 String Filter Enable (I): If set to 1, this enables a test feature that filters out strings of contiguous
ones or zeroes longer than the value set in bits 21:16. Note that enabling the string filter may introduce
non-uniform statistical characteristics in the output. The String Filter feature may be removed in future
versions.

Bit 15 String Filter Fail (I/O): This bit indicates that while the string filter was enabled, the hardware
detected a string of contiguous ones or zeroes longer than the value defined by the filter count in bits
21:16. Only the hardware can set this bit to a 1, but a MSR write can set it to 0. The String Filter feature
may be removed in future versions.

Bits 21:16 String Filter Count (I): The value in this field defines the bit-string length (8 - 63) to be used
by the string filter. Bit string lengths less than 8 will produce unexpected results and should not be used. The
String Filter feature may be removed in future versions.

2.3 X86 XSTORE INSTRUCTION
The VIA Nehemiah processor RNG feature implements a new x86 instruction: xstore. This instruction is
enabled by the RNG enable bit in MSR 0x110B; an Invalid Instruction exception occurs if xstore is
executed when not enabled.

2.3.1 XSTORE: STORE RANDOM DATA INSTRUCTION
This instruction stores zero, one, two, four, or eight random bytes in memory and places a copy of the current
value of the RNG MSR 0x110B in EAX. This copy is referred to as the status word.

The opcode of xstore is an invalid opcode in normal x86 processors. When enabled, the format of the
xstore instruction is:

VIA Nehemiah RNG Programming Guide - 8

0x0F 0xA7 0xC0

The xstore instruction requires that:

• ES:EDI points to the starting (low-order) memory address where the random data is to be stored. No
segment override is possible.

• EDX specifies the rate at which the random data are returned, and the corresponding level of
randomness. Only the lower two bits are meaningful, and the upper 30 bits will be set to zero by the
instruction.

The xstore instruction has many similarities with the x86 stos instruction:

• The value in EDI is updated for the number of bytes stored.

• An address-size prefix affects the size of EDI used and updated.

• A REP prefix affects the behavior of the xstore instruction.

• The usual address exceptions (past the segment limit, etc.) can occur.

And many contrasts:

• A REPNE prefix causes an Invalid Instruction exception.

• In addition to storing the random bytes, the status word is placed in EAX.

• An operand size prefix causes an Invalid Instruction exception.

• The specification of a 16-bit mode in CS is ignored; the full 32-bit EAX is always updated.

• The DF (direction flag) in EFLAGS has no effect: instruction execution always adds the number of
random bytes stored to EDI.

Either zero, one, two, four or eight bytes are always stored to memory depending on the data rate specified by
EDX and the status of the RNG hardware. Software must always provide an appropriate size writable area at
the ES:EDI destination address.

Zero, one, or two 4-byte stores perform the store. Thus, all memory-operand restrictions and exceptions that
are applicable to a four-byte store are also applicable to the xstore instruction. If alignment check is
enabled and is to be avoided, then the address in the starting DS:EDI should be 4-byte aligned. Similarly,
segment limit checks, protection check, page faults, etc. behave as if the data size is four bytes.

2.3.2 XSTORE: NUMBER OF BYTES STORED
The rules for the number of bytes stored by xstore are:

� The xstore instruction tests whether an eight-byte hardware accumulation buffer is full. If fewer
than 8 bytes are available, the instruction performs no store, and returns with a zero byte count in the
status word.

� If at least 8 bytes are available in the hardware buffers, the appropriate bits are selected (defined by
EDX, more on this subsequently) and either one or two four-byte stores are performed as required.

VIA Nehemiah RNG Programming Guide - 9

� Note there may be less than four valid random bytes stored depending on EDX. In this case, the
remaining bytes of the store contain zeroes. The byte count in EAX and the update to EDI are based
on the number of random bytes stored, not on the size of the stores themselves.

 Here is a summary:

EDX 1:0 value Total bytes
available

Total bytes
stored

Random
bytes stored

EAX[4:0] &
EDI update
byte count

N/A < 8 0 0 0
00 >= 8 8 8 8
01 >= 8 4 4 4
10 >= 8 4 2 2
11 >= 8 4 1 1

2.3.3 REP XSTORE INSTRUCTION

The REP prefix on an xstore instruction performs as follows:

� The ECX value defines the total number of random bytes to be stored.

� The xstore function is repeatedly performed until the ECX number of random bytes are stored.

� Zero, one or two 4-byte stores are performed as for each iteration of xstore but ECX and EDI are
updated automatically such that random bytes are concatenated into a contiguous string and
iterations continue until the desired number of random bytes are stored.

The implications of storing fewer random bytes than the size of the store are that unaligned four-byte stores
may be performed. These are slower than aligned stores and and will cause an alignment check if it is
enabled. However, the asynchronous nature of the random number generator means that any alignment
checks taken during a REP xstore will overlap with the generation of new bits and there will be no real-
world performance penalty.

Another implication is that on the last iteration, REP xstore may store up to seven bytes to memory
beyond the last random byte stored. Adequate memory must be allocated based on the EDX value to contain
the last one or two four-byte stores.

The REP execution is interruptible. When an exception or interrupt occurs and is taken, or the instruction
completes execution:

(1) ES:EDI is updated to address the next location for storing random byes

(2) ECX is updated to contain the number of random bytes remaining to be stored, and

(3) EAX contains a copy of the current status word. However, the byte count field (4:0) in the status word is
not defined for the REP case.

Code run during an interrupt could, at least in theory, modify the RNG configuration. In (unusual)
environments where this may occur, application programmers should be aware that the RNG status reported
in EAX at the end of the operation may not reflect the configuration at the beginning of the operation. If it

VIA Nehemiah RNG Programming Guide - 10

is important to make sure that the RNG configuration does not change, xstore should be used, not REP
xstore.
The same rules apply as for a non-REP xstore for the REPNE prefix, the AS prefix, the OS prefix, the
size for alignment purposes, the size for other exceptions, etc.

Note: There is a theoretical problem with using the REP xstore instruction because (1) the instruction
does not return control until all requested bytes are stored, and (2) the generation bit rate is variable. The
REP version of xstore prevents easy detection of a situation where the RNG hardware is not returning any
bytes. In practice, this not a real risk, since this situation cannot occur without a catastrophic hardware
failure. Applications can address this possibility by performing a startup test.

2.4 STARTUP

During RESET, if the RNG unit is present:

• MSR 0x110B is initialized with the value: 0x00000040. This enables the RNG unit (bit 6 = 1) and
sets the default values of all control fields to 0.

• The RNG hardware accumulation buffers are cleared to 0 and the accumulation count set to zero.

• Random numbers start to accumulate overlapped with any other RESET or software function.

As opposed to RESET, the INIT signal causes no direct actions relative to the RNG feature. That is, INIT
does not internally cause a write to MSR 0x110B. The INIT signal causes CR4, however, to be reset. Since
this resets the FXSAVE/FXRSTOR enable, CR4[9], the RNG is indirectly disabled.

Start-up testing is a good idea in all environments. It is also a good idea to perform some test within an
application before any collected random data is trusted. The FIPS 140-2 standard, in fact, requires start-up
testing of RNG devices at the higher levels of certification.

Which startup test should be run is not obvious, however. There are two basic things that a startup test could
be testing for:

� Whether the RNG feature is basically working or not (for example, does it have a stuck bit such that
no data is ever returned).

� The randomness characteristics of the numbers generated.

In normal operation (the whitener enabled), it is theoretically possible that the xstore instruction generates
no new bits for a long time. This theoretical delay has no guaranteed maximum, even in a correctly working
part, in the same way that there is no limit to the number of sequential coin tosses that can come up heads.
In practice, however, the likelihood of a long delay is negligible. This is based on (1) general statistical
principles, (2) the inherent design of the random bit generator, and (3) our observations based on extensive
testing. Our testing has never showed any deviation from the basic generation rate over long periods of
operation (many months). The bit rate seems to be nearly constant from startup to shutdown. If startup tests
run successfully (i.e., the hardware has not failed), applications should not need to detect timeouts.

VIA Nehemiah RNG Programming Guide - 11

Of course, a very conservative application can easily add a time-out check, since the atomic xstore
instruction is usually used in a loop counting the bytes stored. It is easy to add another count that can detect
N xstore instructions with no data returned. Alternatively, a time limit can be set and checked by the
application.

The timeout detection works because the xstore instruction always immediately returns to execute the next
instruction even if no random data is available. The REP xstore form, however, does not return control
until the all of the random bytes requested have been stored. There is no built-in timeout check. If the RNG
has died, the instruction will wait forever. Since REP xstore is interruptible, however, this case hangs the
application, but not the operating system or other applications. It is also theoretically possible to detect a REP
xstore timeout by intercepting an interrupt and examining the ECX count compared to some timer
information about how long the REP xstore has been executing. This is very tricky and requires hooks
into the operating system, so we recommend the following: do not use the REP xstore instruction if you
are concerned about an RNG timeout condition.

2.5 MANUFACTURING TESTS
The RNG feature on every part is tested as part of manufacturing test. While it is impossible to perform a
strenuous statistical test, a FIPS 140-2 monobits tests is executed (20,000 bits) at EDX=0 (the lowest quality
setting). Passing this test verifies that the bit generator and the associated datapath are alive and working with
no stuck bits, etc. It does not assure that the generator is statistically good enough to be considered truly
random, but will generally detect catastrophic failures that result in highly biased or stuck output. (Actually, a
failure on this FIPS test does not really mean that the generator is not random, but since the probability of a
failure on one sample from a truly random generator is so low, the presumption is that a fail means broken.)

Important: At this time, if a processor fails the RNG test, or times out after a reasonable time without
generating the expected number of bits, the random generator is permanently disabled for that particular part.
This means that the RNG feature may be marked nonexistent on some VIA processors. VIA may change
the RNG manufacturing tests at any time. Customers requiring RNG support may wish to contact VIA to
ensure that all parts ordered have active RNGs.

2.6 DC BIAS
The DC bias adjustment is intended for Centaur Technology's internal analysis, test, and debug. However,
our philosophy is to provide all existing functions to software in case there is some external value in them.
Following that philosophy, we make the DC bias control available.

The VIA Nehemiah processor RNG feature performs well with the default DC bias setting (0). It is possible,
however, that alternate DC bias settings may improve bit-generation speed or randomness characteristics.
The sophisticated or curious user may want to experiment with changing the DC bias. This requires
protected mode access (for writing the RNG MSR).

One might think that a boot time characterization could be used to determine the optimal DC bias setting
for a particular part. But an extensive number of samples must be collected and analyzed statistically, and the

VIA Nehemiah RNG Programming Guide - 12

time required for a comprehensive determination of the correct DC bias is prohibitive for the boot process.
Setting a non-standard DC bias may cause other applications to conclude that the RNG is misconfigured.

For those serious users interested in optimizing the DC bias, Centaur Technology may be able to provide
some advice or assistance based on our testing experience.

VIA Nehemiah RNG Programming Guide - 13

CHAPTER

HARDWARE DESCRIPTION
For ease in understanding, this discussion of the random bit generator describes the original VIA Nehemiah
processor (stepping 3) with a singe set of oscillators. On VIA Nehemiah Steppings 8 and higher, there are
two independent hardware generators, both of which feed into the datapath logic.

Figure 2 provides a pictorial overview of the RNG feature.

There are three fast oscillators, and one slow oscillator. These are free running ring oscillators; that is, their
frequencies are not synchronized or stabilized and individually drift over time. The fast oscillator frequencies
vary around a center of about 1 ns. The slow oscillator varies around a center of about 20 ns.

These oscillator frequencies are influenced by many factors:

• Random quantum effects of the transistor behavior: thermal noise in the channel, gate leakage caused
by tunneling, etc.

• Dynamic voltage and temperature variations.

• Dynamic electromagnetic effects.

• Process differences in silicon dimensions. The oscillators are laid-out at right angles to each other to
further accentuate silicon differences.

• Process differences in silicon characteristics such as implant characteristics.

VIA Nehemiah RNG Programming Guide - 14

 Figure 2. RNG Hardware Overview

4 x 8-byte
buffers

SSE store bus

"<n string"
filter

slow

fastxor

bias

/8

/8 DC bias

1b

w
hitener

shift register

DC bias

Hardware Generator

data
bit
clock

fast
raw bit bypass

select every 2EDX th bit
(microcode)

Datapath & Microcode

EAX
(status)

RNG status/
control

8b

cnt

32b

EDX
(q control)

VIA Nehemiah RNG Programming Guide - 15

The operating voltage of all oscillators is partially controlled by a single DC bias which can be adjusted in
eight steps via a programmable value.

The output of two of the fast oscillators is XOR'd to produce a variable signal. This variable signal further
(in addition to the DC bias) modulates the voltage bias of the slow oscillator.

The output of the variably biased slow oscillator is used as the clock to sample a bit from the third free
running fast oscillator.

Each two bit pair generated is optionally processed through a von Neumann whitener, which may output a
single bit or nothing. If a bit is produced, it is then accumulated in an eight-bit shift register. This whitener
function will reduce or eliminate any residual bias in the hardware generator. For example, the whitener
should correct for biases in the third oscillator's duty cycle.

The input/output function of the whitener is

Input Output
00 Nothing

01 0

10 1

11 Nothing

When eight new bits have been accumulated, a strobe causes the eight bits to be grabbed by the RNG data
path (which is running using the synchronous processor clock).

On the Nehemiah Stepping 8, if both hardware noise generators have accumulated a byte during the same
processor clock cycle, and both are selected, the datapath will accept only that byte from the "original"
generator. The data from the second generator is lost. This is a relatively rare event.

Once eight bits have been generated they are delivered to the synchronous datapath. Each incoming byte is
examined by the string filter function. If it is enabled, it may suppress the delivery of the byte to the
accumulation buffers.

The incoming bytes are placed sequentially in the next consecutive position of four 8-byte buffers. The
hardware maintains FIFO pointers and a count so that it can properly store the incoming bytes and access the
requested bytes.

The xstore instruction itself is implemented in microcode. When executed, the microcode checks to see if
eight new bytes are available in one of the buffers. If not, it returns with a zero byte count indicated in the

VIA Nehemiah RNG Programming Guide - 16

status word. When eight bytes are available, the microcode performs the one-of-N selection (specified by
EDX), assembles the resulting data, and performs the store.

VIA Nehemiah RNG Programming Guide - 17

CHAPTER

PERFORMANCE

4.1 BIT GENERATION SPEED
The effective rate of generating random bits is variable and depends upon the processor's chip voltage, its
temperature, process variations, phase of the moon, and so forth. For a VIA Nehemiah Stepping 8 processor,
with both noise generators selected, our data show that depending on temperatures and DC bias settings, bits are
delivered to the accumulation buffers at about 80 Mbs to 120 Mbs.

With the whitener selected, the rate will fall to between 12 Mbs and 20 Mbs.

Tests have also shown that there is typically a minor correlation between sequential bits delivered to the
accumulation buffers. To reduce this correlation, the xstore instruction uses the value in the EDX register
(mod 4) as a divider, and returns only every 2EDX bit from the accumulation buffers.

4.2 INSTRUCTION TIMING
The xstore instruction is partly implemented in microcode. The number of execution clocks depends on
whether random data are available, and on the value in EDX (the data rate register). The xstore does not
return any random data unless an eight-byte accumulation buffer is full. If fewer than 8 bytes are available,
the instruction returns status information regarding the RNG with a zero byte count. When an accumulation
buffer is ready, xstore returns the bits to memory as pointed to by ES:EDI and in the quantity specified by
EDX. The status information in EAX correctly indicates the actual number of bytes stored.

The following table gives estimates for the number of clocks required for the xstore instruction. Note that
a 1 GHZ processor requires an average of about 11,000 clocks to fill a single 8-byte accumulation buffer.

VIA Nehemiah RNG Programming Guide - 18

Table 1. xstore Execution Clocks

EDX Data Ready Random Data
Stored Execution Clocks

0-3 No 0 ≈30

0 Yes 8 ≈55

1 Yes 4 ≈310

2 Yes 2 ≈200

3 Yes 1 ≈120

REP xstore is executed as an internal microcode loop of individual xstore instructions until the specified
number of bytes have been stored. If the requested count can be satisfied with a single internal xstore, and
enough bits are in the hardware buffers, add 7 clocks to the values in Table 1.
For the more typical use of collecting a large number of bytes, the speed of REP xstore becomes the bit
generation speed plus a few hundred clocks.

4.3 POWER MANAGEMENT
The RNG hardware is clock-enabled when the MSR enable bit is set. At this time, the random number bit
generator is enabled. In addition, the RNG data path associated with accumulating the data, counting bytes,
etc. is clock-enabled. Thus, dynamic power starts being consumed by the RNG unit when it is enabled
(normally by default at RESET).

Whenever all four 8-byte accumulation buffers are full, the random number bit generator clocks are
temporarily disabled. When a buffer location becomes free, the generator is re-enabled. The associated RNG
data path clocks are never disabled, however, until the MSR enable is cleared. Even though data path clocks
are not disabled, the power consumption of this logic is very small.

Relative to the SSE unit power management, the new xstore instruction behaves like SSE instructions.
That is, when the xstore instruction is seen by the execution unit, the entire SSE unit is enabled until no
further SSE instructions or xstore instructions are seen, at which point the SSE unit is disabled.

4.4 RANDOMNESS

Evaluation of the statistical qualities of the bits produced by the VIA Nehemiah processors is a complex
process. An independent evaluation has been performed by Cryptography Research, Inc., of San Francisco.
A copy of their report is available at: www.cryptography.com/resources/whitepapers/VIA_rng.pdf

A comprehensive discussion of randomness, of Centaur's internal testing methodology and results, and
recommendations for using the Nehemiah RNG feature in various environments is available in the VIA
Nehemiah Security Application Note.

http://www.cryptography.com/resources/whitepapers/VIA_rng.pdf

	architecture
	configuring and enabling
	cpuid instruction identification
	msr 0x110b

	x86 xstore instruction
	xstore: store random data instruction
	xstore: number of bytes stored
	rep xstore instruction

	startup
	manufacturing tests
	dc bias
	bit generation speed
	instruction timing
	power management
	randomness

