
VIA C5P
Security Application Note

Version 0.98

This is Version 0.98 of the VIA C5P Security Application Note.

© 2003 VIA Technologies, Inc. All Rights Reserved.
© 2003 Centaur Technology, Inc. All Rights Reserved.

VIA Technologies and Centaur Technology reserve the right to make changes in its products without
notice in order to improve design or performance characteristics.

This publication neither states nor implies any representations or warranties of any kind, including but
not limited to any implied warranty of merchantability or fitness for a particular purpose. No license,
express or implied, to any intellectual property rights is granted by this document.

VIA Technologies and Centaur Technology make no representations or warranties with respect to the
accuracy or completeness of the contents of this publication or the information contained herein, and
reserves the right to make changes at any time, without notice. VIA Technologies and Centaur
Technology disclaim responsibility for any consequences resulting from the use of the information
included herein.

VIA and VIA C3 are trademarks of VIA Technologies, Inc.

CentaurHauls is a trademark of Centaur Technology, Inc..

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Intel and Pentium are registered trademarks of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

LIFE SUPPORT POLICY
VIA processor products are not authorized for use as components in life support or other medical
devices or systems (hereinafter called life support devices) unless a specific written agreement
pertaining to such intended use is executed between the manufacturer and an officer of VIA.

1. Life support devices are devices which (a) are intended for surgical implant into the body or (b) support or
sustain life and whose failure to perform, when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. This policy covers any component of a life support device or system whose failure to perform can cause the
failure of the life support device or system, or to affect its safety or effectiveness.

VIA C5P Security Application Note - 1

Table of Contents

1 INTRODUCTION..2
1.1 RANDOM NUMBER GENERATOR..3
1.2 ADVANCED CRYPTOGRAPHY ENGINE ..5

2 ON RANDOM NUMBERS..7
2.1 THE NEED FOR RANDOM NUMBERS ...8
2.2 WHAT IS A RANDOM NUMBER ..9
2.3 HOW TO GENERATE RANDOM NUMBERS...11
2.4 HOW TO VERIFY RANDOMNESS...15

3 RANDOMNESS TESTING...16
3.1 BACKGROUND ..16
3.2 IMPORTANT TESTS ..19
3.3 OUR METHODOLOGY...19
3.4 RESULTS AND USAGE RECOMMENDATIONS ...21

4 ACE VALIDATION...24

5 CENTAUR SECURITY ROADMAP ...25
5.1 WHAT'S NEXT?..25

VIA C5P Security Application Note - 2

CHAPTER

INTRODUCTION
This chapter introduces the VIA C5P processor
security features.

The recent explosive growth of PC networking and Internet based commerce has significantly increased the
need for good computer and network security mechanisms.

Good security requires good random numbers. Which can be a problem: it is actually quite hard to generate
good random numbers on a computer. (For those who don't understand what a random number is, why they
are needed in computer applications, what a good one is, and how they are generated, Chapter 2 includes
background on these topics.)

To address this need for good random numbers in security applications, VIA introduced the C3 Nehemiah
processor in January, 2003, which includes a high-performance hardware-based random number generator
(RNG) on the processor die. This RNG uses random electrical noise on the processor chip to generate highly
random values at an extremely fast rate. It provides these numbers directly to the application via a new x86
instruction that has built-in multi-tasking support. By including this unique capability directly within the
processor, the VIA C3 Nehemiah processor enables a new level of security for personal computers and
embedded devices.

With the C5P processor (stepping 8 of the C3 Nehemiah), VIA has added a second RNG on the processor
die, which improves the bit generation speed and effective randomness.

Good security also requires good cryptography. Most people understand the need for cryptography; we've all
had our secret decoder rings and thrilled to the stories of espionage and the intrigue of spy versus spy.

Good cryptography is hard, though, conceptually. Getting the algorithms right, and getting the right
algorithms, and using them in a secure fashion (or even in just a relatively less vulnerable fashion), is a
problem that has plagued the brightest minds for generations. Get it right, and you may or may not get a

VIA C5P Security Application Note - 3

footnote in the history books and a raise in your next paycheck; get it wrong and your country may lose the
war. Or your husband may find out ... (oops, wrong article).

Fortunately (for the engineers at Centaur), there are now accepted, standard algorithms for performing
cryptographic functions. Examples include Rivest-Shamir-Adleman (RSA) encryption, the Data Encryption
Standard (DES) and triple-DES (3DES), and more recently, the Advanced Encryption Standard (AES), as
specified in Federal Information Processing Standards Publication 197 (FIPS-197.)

Getting algorithms right is something computer engineers are good at. Making them fast is something we
are even better at. Some of our readers may remember calculating trigonometric functions with eight bit
integer computers. And how much easier and faster it became when hardware floating point primitives
became available on PCs. We can do the same for cryptography.

To address the need for fast and easy-to-use cryptographic primitives, VIA introduces on the C5P processor a
high performance implementation of the Advanced Encryption Standard. This new feature, the Advanced
Cryptography Engine (ACE), provides increased cryptographic capabilities for personal computers.

1.1 RANDOM NUMBER GENERATOR

The VIA C5P processor RNG has many powerful and unique features:1

High Quality

� Hardware-Based. Truly random numbers require a non-deterministic source (as opposed to a
programmed software algorithm). The VIA C3 Nehemiah processor random bits are obtained from
electrical random noise on the processor chip and meet the requirements of truly random numbers:
statistically good, unpredictable, and unreproducible.

� Quality vs. Bit Rate Load Option: Application code can control a hardware filter that selects and
returns one-of-N bits generated (to reduce potential bit-to-bit correlation). Four levels of quality
filtering can be selected. The slowest setting is required for best randomness in the returned values.
The faster settings provide good entropy for applications that use the generated bits as a seed to
another (software) algorithm which produces the random values actually used by the application.

�

� Designed for Verification and Test. Because the RNG allows direct access to the entropy source,
third parties can perform their own tests of the output.

�

High Performance

� High Bit Rate. The VIA C5P processor RNG produces bits at a variable rate. Typical rates vary
from approximately 800K to 1600K bits per second (depending on whether both noise sources have

1Patents pending.

VIA C5P Security Application Note - 4

been selected) at the best quality rate, to over 100M bits per second at the fastest setting. This is from
10 times to 1000 times faster than the next fastest RNG hardware solution that we know of: the Intel
RNG included in the 82802 Firmware Hub. Our higher rates address the needs of applications
requiring high bit rates and can be used with software that algorithmically increases the quality
(randomness) of the numbers produced, for example by applying hashing algorithms to the output.
�

� Asynchronous Multi-byte Generation. The hardware generates random bits at its own pace.
These accumulate into hardware buffers with no impact to program execution. Software may then
read the accumulated bits at any time. This asynchronous approach allows the hardware to generate
large amounts of random numbers completely overlapped with program execution. This is opposed to
good software generators, which can be fast but consume a significant number of cycles.

�

An Efficient and Secure Programming Interface

� Application-level Access: Application code can store the random numbers directly from the
hardware, without the intervention of privileged device drivers. A new x86 instruction is provided to
store random data and the associated valid byte count. In addition, a REP version of the instruction
allows large amounts of random data to be collected with a single instruction. Direct access ensures
that applications receive data directly from the random number generator, avoiding the possibility of
receiving nonrandom data due to malicious or accidental device driver flaws.
�

� Transparent to the Operating System: The operations involved in obtaining random bytes and
verifying the configuration operate in user mode, without operating system knowledge or
involvement. For security purposes, changes to the configuration require a higher privilege level.

�

� Inherent multitasking (Atomic Instruction): Storing random data is a single atomic instruction
within an application. If a task switch occurs, and a different application wants to store random data,
it gets completely new bits.

�

Many Optional Features

� Contiguous String Filter: This diagnostic feature, when enabled, ensures that no contiguous string
of zeroes or ones longer than a certain user-specified number (up to 64) can be generated. Please note
that this feature may be discontinued in subsequent processors.
�

� Raw Bit Access. The raw internally generated random bits may be accessed. Normally the raw bits
are filtered through a whitener to obtain desirable random characteristics.

�

� Controllable Voltage Bias. The internal voltage bias to the various oscillators can be adjusted.

VIA C5P Security Application Note - 5

1.2 ADVANCED CRYPTOGRAPHY ENGINE

The VIA C5P processor ACE also has many powerful and unique features.2

General Characteristics

� World-Class Data Rate. Operating on a long series of data blocks, the ACE can encrypt or decrypt
data at a sustained rate of 12.8 Gb/sec.3 This is faster than any known commercial AES hardware
implementation, and several times faster versus software implementations. For a single encryption or
decryption, the effective rate can be even faster: up to 21 Gb/sec.4

�

� It's Free. The unique ACE implementation is so small (approximately 0.6 mm2) that its inclusion
on the VIA C5P processor did not change the die size or any other processor cost factor.

�

� It's Non-Intrusive. Although the ACE provides a significant amount of function with many
options, only one new x86 opcode is used. This is the same new x86 opcode that the VIA C3
Nehemiah processor introduced for the random number generator.

�

� Direct Application-level Access. Application code can directly encrypt and decrypt blocks without
the intervention of any privileged code. One new non-privileged x86 instruction provides all of the
ACE functions without any need for a device driver or for a change to the operating system. In addition to
facilitating the ACE availability, this application-level capability improves security by ensuring that all
related cryptographic information is kept within the application.

�

� Inherent multitasking. In addition to any single application being able to directly use the ACE
features, any number of tasks can use the ACE concurrently without supplemental task management
by the application or by the operating system. Although the ACE implementation contains additional
x86 state, the using tasks do not need to save and restore this state - the hardware manages the
additional state in a transparent fashion.

�

Significant Function Provided

� Performs Both Encryption & Decryption. This seems obvious, but many hardware AES engines
support encryption only. In addition to providing both encryption and decryption, the ACE provides
both with the same performance.

�

2Patents pending.
3Asymptotic REP instruction performance, ECB mode, 1 GHz C5P processor. Future VIA processors running at 2

Ghz will encrypt at over 25 Gb/sec.
4The timing of the encryption and decryption operations is effectively variable since a large portion of the time can be

overlapped with subsequent instruction execution. This rate assumes the maximum possible instruction overlap.

VIA C5P Security Application Note - 6

� All Three AES Key Sizes Are Supported Directly in Hardware. FIPS-197 defines three key sizes
(128-bits, 196-bits, and 256-bits) but requires only that one key size be supported. Many hardware
AES engines support only the basic 128-bit key size. The VIA C5P processor ACE directly supports
all three key sizes in hardware with the same performance.

�

� Four Operating Modes Supported Directly in Hardware. The most common encryption operating
modes are implemented in hardware. These modes are Electronic CodeBook (ECB), Cipher Block
Chaining (CBC), 128-bit Cipher FeedBack (CFB), and 128-bit Output FeedBack (OFB).5 Providing
these operating modes directly in hardware improves performance (versus implementing them in
software) and improves the integrity and security of the encrypted data. Most other AES devices
support only one or two of these modes in hardware.

�

� Multi-block pipelined. For the ECB operating mode, the ACE hardware is pipelined such that it
concurrently operates on two data blocks at the same time, thus doubling the effective data rate.

�

� High-Performance REP Function. The basic encryption and decryption instructions all use the
x86 REP prefix, to allow large amounts of data to be encrypted or decrypted with only one instruction.
Unlike x86 string operations, where multiple string operations are (slightly) faster than REP forms,
the REP encryption and decryption instructions are much faster than a series of comparable single
encryption instructions - generally 50% or more.

�

Significant Flexibility Provided (Optional Features)

� Intermediate Round Results Provided. The ACE hardware implements a special mode that
returns the result of any particular round of the multi-round AES algorithm. Properly calculating this
intermediate result is not obvious since the algorithm for intermediate rounds is different from the last
round of the normal algorithm.

�

� User-Defined Round Count. The user specifies the round count used in the encryption or
decryption. Normally, this will be the round count defined in the AES standard, but some users may
prefer a custom round count for research, improved performance, or increased security.

�

Two Extended Key Generation Options. The ACE hardware has a feature that directly performs the
AES-defined expansion of the user-supplied key into the extended keys used by the AES rounds. In
addition, the application may directly provide a standard or non-standard extended key sequence
directly to the hardware. This may be useful for cryptographic research or using a private encryption
algorithm.

5 As defined in NIST Special Publication 800-38A, Recommendations for Block Cipher Modes of Operation, 2001

VIA C5P Security Application Note - 7

CHAPTER

ON RANDOM NUMBERS
This chapter provides background material on
random numbers for computers.

For those who do not already know what random numbers are, what applications use them, how they are
generated, and why most current generators do not really produce random numbers, this chapter provides a
general background.

Apology to mathematicians, statisticians, security experts, and information scientists: this background
introduction intentionally simplifies some very complex technical topics and skips many important
considerations.

VIA C5P Security Application Note - 8

2.1 THE NEED FOR RANDOM NUMBERS
To help understand the definition of a random number for computer applications, we need to understand
something about how they are used. Historically, many computer applications have required random numbers
as an essential component of their logic. For example,

• Monte Carlo simulations of physical phenomena in physics, chemistry, mechanical engineering,
electrical engineering, meteorology, statistics, aerodynamics, hydrodynamics, and other similar
disciplines.

• Numeric analysis solutions for many mathematical problems such as solving integral and differential
equations, solving linear and non-linear equations, etc.

• Casino games and online gambling (to simulate card shuffling, dice rolling, etc.)

• Creation of lottery numbers

• Generating data for statistical analysis

• Generating data for psychological testing

• Computer games (choosing random behaviors, dealing cards, etc.)

• Computer music generation

�

These applications have different requirements for their random numbers. For example, computer games
generally require neither high performance in generating random numbers nor particularly high degrees of
randomness. Other applications, such as psychological testing, require higher degrees of randomness, but do
not require high performance generation. Large-scale Monte Carlo-based simulations, however, use millions,
billions, or more random numbers, and thus have very high performance requirements.6 These applications
also require good statistical properties of the random numbers, but unpredictability is not particularly
important. Other applications, such as online gambling, have very stringent randomness requirements as well
as stringent non-predictability requirements (the next number cannot be easily predicted from the previous
numbers).

While these historical applications are important to PCs, today the major need for quality random numbers is
computer security. The recent explosive growth of PC networking and Internet based commerce has
significantly increased the need for a wide variety of computer security mechanisms. High quality random
numbers are essential to all of the following major components of computer security:7

Confidentiality. Data encryption is the primary mechanism for providing confidentiality. Many different
encryption algorithms exist (symmetric, public-key, one-time pad, etc.), but all share the critical
characteristic that the encryption/decryption key must not be easily predictable. The cryptographic strength of
an encryption system depends on the strength of the key: that is, the difficulty of predicting, guessing, or
calculating the key. To ensure that keys cannot be easily guessed, random number generators are used to
produce cryptographic keys and other secret parameters in virtually all serious security applications. Many

6James E. Gentle, Random Number Generation and Monte Carlo Methods, Springer, 2002
7This document assumes some knowledge of security concepts, functions, and protocols. If you need some technical

background on these areas and more about random numbers, we recommend the following three classics:
Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John Wiley & Sons, 1996.
Alfred J. Menezes et al., Handbook of Applied Cryptography, CRC Press, 1997
Donald E. Knuth, The Art of Computer Programming: Volume 2, Seminumerical Algorithms, AddisonWesley, 1998.
Chapter 3 covers random number theory in some detail.

VIA C5P Security Application Note - 9

public key encryption protocols, such as RSA encryption using PKCS #1, also require reliable sources of
randomness.

Many successful attacks against cryptographic algorithms have focused not on the encryption algorithm
but instead on its source of random numbers. As a well-known example, an early version of Netscape's
Secure Sockets Layer (SSL) collected data from the system clock and process ID table to create a seed for
a software pseudo-random number generator. The resulting random(?) number was used to create a
symmetric key for encrypting session data. Two graduate students broke this mechanism by developing a
procedure for accurately guessing the random number in less than a minute and thus guessing the session
key.8

Authentication. Challenge/response authentication protocols require that challenge values be
unpredictable to ensure that attackers cannot re-use data from previous authentication transactions. The
strength of passwords used to protect access and information also depends on the difficulty of predicting
or guessing the password. As a result, strong random number generators are necessary to automatically
generate strong passwords.

Integrity. Digital signatures and message digests are used to guarantee the integrity of communications
over a network. Random numbers are often used in digital signature algorithms to make it difficult for a
malicious party to forge the signature. Many signing algorithms, including the U.S. Government's Digital
Signature Standard9 also require random sources to ensure the security of the signing keys.

In summary, good security requires good random numbers.

2.2 WHAT IS A RANDOM NUMBER
The notion of a random number is a non-intuitive concept. What is randomness? Can any single number be
considered random? Can any finite sequence of numbers be considered random? Is it the numbers themselves,
or the process that generated the numbers that defines randomness? These questions are the subject of many
technical papers, doctoral theses, and bar fights among philosophers, mathematicians, statisticians, and
information scientists.

One essential fact emerges from this work: there is no such thing as a random number: there are only
methods to produce random numbers.10 A number by itself (or any finite sequence of numbers) is not
random, or non-random. (Is zero any less random than 42?) A practical definition of randomness must focus
on the characteristics of the random number generator as well as the characteristics of numbers it generates.

To identify the desired characteristics, we consider the theoretical definition of a perfect random number
generator. A truly random number generator is one where the probability of each generated bit being a zero (or
one) is exactly ½, regardless of what it has generated before.11 For example, an unbiased coin flip should
generate truly random numbers. This definition has many implications beyond the statistical characteristics of
the bits generated. It implies that the generator is unpredictable (one can't predict the next coin toss better
than ½ the time, and unreproducible (two separate coin flipping experiments give independent results).

Entropy is a related term that we will use a lot in this document. In general, entropy is the measurement of
randomness or chaos. Something that has high entropy is chaotic and unpredictable. Something that is
ordered has low entropy. In cryptography, entropy is usually measured in bits. A truly random one bit number
has an entropy of one bit. Entropy is directly connected to the information content of a message. For

8 http://www.demailly.com/~dl/netscapesec/wsj.txt
9 Digital Signature Standard (DSS)”, Federal Information Processing Standard Publication 186, May 19, 1994.
10 John von Neumann
11 There are many different definitions used in the literature, but they are all equivalent to this definition.

http://www.demailly.com/~dl/netscapesec/wsj.txt

VIA C5P Security Application Note - 10

example, a sequence of n random bits (i.e., a sequence having an entropy of n bits) cannot on average be
expressed or defined in less than n bits.

The problem with the theoretical definition of randomness is that the amount of entropy cannot be measured
perfectly. It can be easy to demonstrate that a particular generator is not random based on its design (for
example, its design causes the same sequence of generated numbers to recur ever so often). Unfortunately,
demonstrating randomness is much more difficult. Indeed, it is impossible to prove that the output from a
given random number generator is truly random. As a result, the best we can do is to analyze the statistical
characteristics of the previous generated bits and compare them to a mathematically perfect generator.

For security applications. the most important characteristics of random numbers are (paraphrasing
Schneier12):

Unbiased Statistical Distribution. Truly random numbers have certain statistical characteristics. These
characteristics can be calculated for a theoretical random generator and compared to the statistics for a
generated sample. Based on this comparison, the probability that the sample came from a biased source
can be calculated.

For example, one important statistical characteristic is the number of 0 or 1 bits in the sample. For a
sample of 20,000 bits from a truly random generator, the probability is 0.0001 that the number of 1 bits is
less than 9,725 or more than 10,725. Thus, if we analyze 10,000 samples of 20,000 bits each, and find
many samples that deviate from these limits, we should suspect that our generator is not truly random (we
should expect only one deviation out of 10,000 tests from a truly random generator).

Of course, this test does not prove randomness. For example, if our generator is stuck at generating
alternate 1s and 0s, it would pass this monobit test even though the output is clearly non-random. Thus
many different statistical characteristics must be analyzed in order to feel comfortable about a generator.
Our alternating 1s and 0s sequence would quickly fail many other tests such as a bit-to-bit correlation test,
or a multi-bit block frequency test.

Security applications minimally require good statistical characteristics of the generated random numbers.
A generator that meets only this non-biased requirement is called pseudo-random.

Unpredictability. In addition to good statistical properties, truly random numbers must be unpredictable;
that is, the probability of correctly guessing the next bit of a sequence of bits should be exactly ½
regardless of the values of the previous bits. Some applications do not care about this unpredictability
characteristic, but it is critical to security applications.

An example of a predictable sequence that has good statistical characteristics would be a generator that
produces, for example, 20,000 statistically good random bits and then repeats the exact sequence again. To
identify this problem would require analyzing the samples larger than 20,000 bits. A worse problem with
predictability is the use of typical software generators. For a software generator to be unpredictable
requires that the software algorithm or its initial values be hidden. (If we know the algorithm and initial
values, we can produce the same sequence as the software generator.) From a security viewpoint, a hidden
algorithm or magic number approach is very weak if it is possible for someone to predict the output. For
example, the previous section mentioned a well-known case where the security of a predictable (software)
random number generator failed because the starting values could be guessed easily.

A generator which deterministically derives its output from a starting value, but which meets both the
statistical and unpredictability requirement is called cryptographically secure pseudo-random. (To be precise,
these RNGs meet the unpredictability requirement by making it computationally infeasible to predict

12Schneier (1996) p.45-46

VIA C5P Security Application Note - 11

output bits. An adversary with unlimited computational power could guess possible values for the starting
state until one is found that matches the output.)

While some statistical tests may indicate a degree of predictability, whether a generator is considered
unpredictable is primarily based on it's inherent design.

Unreproducibility. To meet this requirement, two of the same generators (or the same generator at two
different times), given the same starting conditions, must produce different outputs. Clearly, software
algorithms do not meet this requirement; only a hardware generator based on random physical processes
can generate values that meet this stringent security requirement. There no test to determine
unreproducibility: this determination is based on the inherent design of the generator.

A generator that meets all three requirements is called really, or truly, random.

2.3 HOW TO GENERATE RANDOM NUMBERS
We now know what random numbers are and why they are critical to many applications, especially security.
Why do we need anything special, however, to generate them— Isn't there a random number generator
included in every programming library? Well, there is, but as Schneier points out: "these [software] random
number generators are almost definitely not secure enough for cryptography, and probably not even very
random. Most of them are embarrassingly bad.13 This section explores this problem and describes the three
basic approaches to generating random numbers: software, physical sources, and quantum randomness, and
some combinations of these techniques.

Software Generators

The most common approach to generating random numbers is using a deterministic algorithm implemented
by a computer program. Such deterministic algorithms cannot generate truly random numbers. (At best they
are predictable and reproducible, and at worst, have bad statistical characteristics.) The quality of software
based random number generators is often summarized with John Von Neumann's famous quote: "Anyone
who considers arithmetic methods of producing random digits is, of course, in a state of sin."14 Thus, software
generators are usually called pseudo-random or quasi-random generators. There is, however, a wide range of
quality among software generators with some being considerably better for security purposes than others.

Many different software algorithms are used, but all comprise two basic steps for each value generated:

� Choose a starting value or seed. All software generators start with some initial value, or seed. Some set
of arithmetic operations (the mixing algorithm) are performed on this initial seed to produce the first
random result. In most cases, this result is then used as the seed to produce the second result, and so
forth. In some cases, a new seed is constructed for each value based on external (to the random number
generator) events (for example, the time-of-day clock).

� Mix the bits from the seed in an attempt to increase its apparent entropy. The mixing algorithms can
be grouped into two distinct groups. Conventional generators such as typically provided for the C
language rand() function perform simple arithmetic operations. Newer algorithms designed specifically
for cryptography perform much more complicated (and time-consuming) operations. Each algorithm has

13Schneier (1996) p44
14John Von Neumann (1951). Quoted in Knuth, 1968, Vol. 2

VIA C5P Security Application Note - 12

different performance characteristics (bit-generation rate), and different randomness characteristics.
Although the mixing operation does not technically increase the total entropy (deterministic process
cannot create entropy), it is believed that properly-designed mixing operations can make it
computationally infeasible to distinguish the output from a true random source.

�

Let's look at the conventional approach, which represents most extent generators. These algorithms take the
previous value generated and they apply some arithmetic operation to it to produce the next value.
Historically, little theory was applied to the mixing algorithm: if it seemed to mix up the seed bits a lot, it was
considered a good algorithm. As an example, Knuth references an extremely complicated algorithm he
invented in 1959 that, when executed, quickly converged to a constant value. This led him to conclude:
"random numbers should not [be] generated with a method chosen at random. Some theory should be
used."15 Subsequently, a significant amount of theory has been applied to defining and analyzing good mixing
algorithms. The result is a set of linear mixing algorithms that are relatively fast and have reasonably
statistical characteristics.

A basic example of a linear algorithm is widely used in modern software generators. It is the linear
congruential method. The calculation is simple:

 +=+xx

where the constants a, c, and m meet some very specific mathematical constraints and the calculations are
performed in the word size of the processor. If the constants are chosen correctly, then the cycle length of the
generator is m. That is, after m numbers, the generated sequence repeats itself. This is, for example, the
approach used in the Microsoft Visual C++ 5.0 library implementation of rand() where m = 231
(0x80000000).

There are several other linear algorithms that have good theoretical underpinnings. These theoretical
characteristics are not intuitively obvious, however. Inventing your own algorithm or making minor changes
to a known good algorithm can yield very bad randomness.

Although the cycle length of the Microsoft rand() example is too short for Monte Carlo simulations and
other applications requiring large amounts of random, linear algorithms can have a reasonably long cycle.
Similarly, well-designed linear algorithms can generate numbers with reasonable statistical characteristics. In
general, however, the most common software algorithms do not have statistical characteristics as good as truly
random values.

Even worse, these algorithms are easily predictable; that is, knowing the algorithm and the constant values
(which are often fixed in the software), one can predict the entire sequence. Even if the seed value isn't
constant, it can be guessed or, knowing the last generated value (or any other previously-generated value), one
can trivially predict the sequence. These generators are also reversible: given the algorithm and a value,
previous values can be easily calculated. These cyclical and predictable characteristics are a disaster for security
applications.

The good news is that extensive research, publication, and analysis has been done for years on software
random number algorithms for use in security applications. One result is the design of some improved non-
linear software generators that closely match the statistical characteristics of a truly random generator and are
somewhat unpredictable. These are called cryptographically secure pseudorandom bit generators (CSPRBG).
They use large internal calculation sizes (typically 64- to 1024-bits) and use cryptographically strong one-way
algorithms. They use values that are determined dynamically rather than built into the code.

15Knuth, pg 6

VIA C5P Security Application Note - 13

Strong one-way functions make it is impracticable to calculate subsequent or previous values given the current
value unless the generator's state is known. Even if an adversary discovers the state at a particular point, the
algorithms are not reversible, making it infeasible to determine the number prior to the compromise. Of
course, knowing the state of the RNG does allow future results to be calculated. As a result, these algorithms
rely on secrecy of the initial conditions and computational intermediates to ensure unpredictability.

A simple example of such a CSPRBG is the Blum-Blum-Shub generator.16 Here is an abstract:

� Start by selecting two large primes, p and q, with certain characteristics and calculate the hidden value
n = pq. Choose some seed, x0, with certain characteristics relative to n.

� Calculate each new random value by

+=xx
 + +=1 1i iz the least significant bit of x

Even if n is known, its particular numeric characteristics make the difficulty of calculating the previous
value very high.

As good as these CSPRBGs are compared to conventional linear software algorithms, however, they still
have some problems:

• They are not widely available. They are also prone to typical software mistakes in the implementation.

• They are often computationally very slow.

• They are predictable in the sense described above (i.e., forward prediction if the initial conditions are
known).

• Like all software algorithms, they are reproducible: they produce the same results starting with the
same input

Their security relies on an assumption that adversaries do not have enough computational power to perform
certain mathematical operations. As a result, their irreversibility cannot be proved, although, in practice, this
is not a major problem.

There is a way to improve the situation here. Rather than relying solely on a software generator to produce all
of the randomness, a software generator can be used in conjunction with a source of true randomness
(entropy). Instead of using the previous result as the seed for the next number to be calculated, output from
the independent source of entropy can be used as the seed. Even if the entropy source is imperfect (provides
less than one bit of entropy per output bit), the results in this case can be more robust than what could be
generated by either the software or the entropy source alone.

An example is using a hardware random number generator (see the next section) to produce the seed for a
software algorithm. Although a variety of designs are used, the software algorithms are often based on
cryptographic hash functions. A hash algorithm mixes up its input bits in a fashion such that its output bits
should be unpredictable unless the entire input is known. Thus, a good hash algorithm effectively destroys
any statistical correlations among the input bits and makes it computationally infeasible to recover the input
from the output. The most commonly used cryptographic hash algorithm, the Secure Hash Algorithm (SHA-
1)17 is a U.S. government standard and has been extensively analyzed.

The primary reasons for using a hybrid approach (as opposed to a pure hardware-based or pure entropy based
approach) are (1) the historically slow speed of entropy and hardware generators, and (2) the lack of perfect
randomness in the hardware or entropy generators. While the VIA C3 Nehemiah processor RNG provides

16 (In choosing an example, I couldn't resist this name.) See Menezes et. al, pg. 186
17 FIPS 180-1, Secure Hash Standards, U.S. Department of Commerce/NIST, 1995

VIA C5P Security Application Note - 14

both high performance and high quality output, users may choose to use it in conjunction with software
based algorithms.

Physical Sources
In terms of randomness characteristics, entropy generators based on physical phenomena fall in between
software generators and quantum based hardware generators. The idea here is to sample some random(?)
physical process and assume the samples are truly random. Unfortunately, computers and software tend to be
very predictable, so designers must be very careful to ensure that they collect good entropy.

For example, a widely used PC encryption program derives its keys from several seconds of mouse
movements and keystroke timing (directed by the program). The Linux operating system has random number
generators (/dev/random and /dev/urandom) that use entropy generated by the keyboard, mouse, interrupts,
and disk drive behavior as the seed. Microsoft's CryptGenRandom function (part of the Microsoft
CryptoAPI) is similar. It uses, for instance, mouse or keyboard timing input, that are then added to both the
stored seed and various system data and user data such as the process ID and thread ID, the system clock, the
system time, the system counter, memory status, free disk clusters, the hashed user environment block, as the
seed. Many other similar environmental sources of randomness have been tried.

While these physical activities may look random, their randomness cannot be proven, and they run the risk of
generating poor entropy (or no entropy) if the sampled physical activity is dormant or repetitive. There are
several potential security vulnerabilities when using such physical activities. For example, in networked
applications such as browsers, the application traffic between a client and server effectively publishes the
locations and sequence of the client's mouse-events. Similarly, users may enable "snap-to" options that center
the mouse pointer in the center of the button to be pressed and make the click locations predictable. As a
result, the entropy from mouse movements in these environments could be far less than an RNG designer
expected. Similarly, asking the user to create entropy using the keyboard creates bias since humans tend to
follow certain patterns in typing (such as a tendency to use the center of the keyboard).

In summary, it is dangerous to use the entropy values directly as random numbers. Instead, the entropy values
are usually used as the seed to a good hash algorithm to produce the final random numbers. (In the Microsoft
CryptoAPI and Linux examples, a SHA-1 algorithm is applied to the entropy seeds). Other common
problems with entropy generators on computers are that they require hooks in the operating system, they are
difficult to test, they often require some user involvement, and they are slow (since they are based on macro
physical events).

An unusual example of a physically-based random source is available through www.random.org, which
continually provides generated random numbers using atmospheric noise (sampled as radio frequency noise).
The rate varies, but this generator typically produces about 40,000 bits per second.

True Hardware Generators

By now you should be convinced that good security requires good random numbers, and while it is possible to
generate pretty good statistically random numbers using software, it is difficult, slow, and subject to
numerous security pitfalls. The only truly random generator is some mechanism that detects quantum
behavior at the sub-atomic level. This is because randomness is inherent in the behavior of sub-atomic
particles (remember quantum mechanics, Heisenberg's Uncertainty Theorem, etc.).

A quantum based hardware generator is actually practical. Examples that have been used are:

http://www.random.org/

VIA C5P Security Application Note - 15

The interval between the emission of particles during radioactive decays. This technique is used at a web
site to generate random bits that are available on-line from the decay of Krypton-85.18 This source
generates only 30 bytes per second and requires a cumbersome (and dangerous?) pile of hardware.

The thermal noise across a semiconductor diode or resistor. This is the approach most often used in add
on PC hardware.

The frequency instabilities of multiple free running oscillators. This approach is the basis of the VIA C3
Nehemiah RNG approach. While implemented differently than the resistor based approach, ultimately,
the source of randomness is the same.

The charge developed on a capacitor during a particular time period.

These sources have been used in a few commercially available add on random number generator devices, none
of which have achieved much visibility or use. Since they are peripheral devices such as PCI cards and serial
port devices, these commercial hardware generators are expensive and cumbersome. In addition, they are all
made by universities or small companies with limited marketing and distribution capability. Some examples
of such add-on hardware generators are found in these references.19

There is one notable exception to the add on strategy. Intel provided a hardware random number generator in
the 82802 Firmware Hub.20

2.4 HOW TO VERIFY RANDOMNESS

Given the differences in generation algorithms and the inherent theoretical problems with software
generators, the obvious question is: how do we compare or quantify random number generator goodness? For
any serious application or generator design, it is essential to have tests that quantify randomness.

In one sense, the definition of a random number is simple: the probability that each bit generated is a one (or
zero) should be ½. Unfortunately, that definition doesn't help us directly since we can't actually test the
probability for the next bit to be generated. All we can do is to study bits that are actually generated and
analyze their characteristics to see how likely it is that the generator is random based on what it has
generated. This approach turns out to be complicated, and in fact, there is no single or simple set of tests that
can accurately identify randomness.

The underlying difficulty here is that truly random numbers occur randomly. That is, every possible value can
be generated by a truly random source. If we sample 64 bits, for example, from a truly random source, there is
a tiny but non zero probability that all 64 bits will be zero. In that case, should we reject the source as not
random? A potential answer is to collect many 64 bit samples and check to see how many times all zeros
appears. Statistically, we should expect one all zero set per 264 samples. It is usually impractical to collect such
a comprehensive set of samples, however. Indeed, because all outputs should be equally unlikely, no particular
output provides proof of non-randomness. As a result, even the appearance of multiple all zero sets would not
prove that the source is nonrandom. Conversely, what if the sample values are 0, 1, 2, 3, 4, etc.? The values

18 http://www.fourmilab.ch/hotbits/
19http://faust.irb.hr/~stipy/random/hg324.html
 http://comscire.com/index.htm
 http://mywebpages.comcast.net/orb/
 http://www.protego.se/sg100_en.htm

20Benjamin Jun et al., The Intel Random Number Generator, Cryptography Research, Inc., 1999, available from

 http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf

http://faust.irb.hr/~stipy/random/hg324.html
http://comscire.com/index.htm
http://mywebpages.comcast.net/orb/
http://www.protego.se/sg100_en.htm

VIA C5P Security Application Note - 16

and bits seem to be appearing in the right statistical frequency, but do we really believe that the source is
random?

Solutions to this fundamental problem are complex and rely on some understanding of statistical concepts.
This testing topic is very important, however, and requires some attention in order to determine the proper
use of any RNG, including the VIA C3 Nehemiah processor RNG.

VIA C5P Security Application Note - 17

CHAPTER

TESTING RANDOMNESS
This chapter summarizes many methods used for
quantifying randomness. A summary of the testing
performed by Centaur is provided. Users, of course,
may want to perform their own evaluations.

3.1 BACKGROUND
There is no simple way to answer to the question: is a particular generator random? The only answers are
statistical in nature and are only meaningful for relatively large sample sizes. We shall explore testing for
randomness in some detail in this chapter, including a few equations. The intent is to provide adequate
background to understand out randomness testing results In particular, this background section introduces
technical concepts (P-value and α) that are extensively used in subsequent sections in this chapter.

While all randomness testing is statistical in nature, there are several different technical approaches. We
primarily follow the approach proposed by the U.S government’s National Bureau of Standards (NIST).21
The essence of this approach is as follows:22

Identify multiple statistical characteristics of truly random numbers for which to test. No single statistical
characteristic is adequate (for example, a sequence of 1, 2, 3, etc. satisfies a numeric distribution test, but
obviously will fail a basic bit-to-bit correlation test). The basic theory here is that if something has tail
feathers like a duck, walks like a duck, and quacks like a duck, then we may substitute it for a real duck.
Unfortunately, there are many possible characteristics of a duck, and many possible statistical characteristics

21 Juan Soto, Statistical testing of Random Number Generators, NIST: 1999. From Proceedings of the 22nd National In-

formation Systems Security Conference, 10/99. http://csrc.nist.gov/rng/nissc-paper.pdf.
22 Andrew Rukhin, et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications, NIST Special Publication 800-22, 2001. http://csrc.nist.gov/rng/SP800-22b.pdf. This is a good
description of the theory and practice behind random number testing, albeit quite technical.

http://csrc.nist.gov/rng/SP800-22b.pdf

VIA C5P Security Application Note - 18

of random numbers. A particular generator may have a particular flaw that shows up on some characteristics,
but looks random on others. Following the analogy, it may look just like a duck in all characteristics except
for the webbing on its feet. For some applications (swimming), this difference may be catastrophic.

Fortunately, a significant amount of research has been performed and documented relative to the desirable
random number statistics. There are several sets of tests that been shown to be reasonably effective at
identifying flaws in sources of randomness.

For each statistical test identified, perform statistical analysis to identify the probability that a truly random
generator could have produced a sequence less random than the sample tested (for that particular test
characteristic). This probability is called the P-value. Another way of stating this is that the P-value is the
probability of obtaining a test statistic as large or larger than the one observed if the sequence is truly random.

That is, the higher the P-value for a random number sequence, the more the sequence looks like it came from
a random generator (for the particular test statistic). Hence, small P-values are interpreted as evidence that
the sample is unlikely to come from a random source. For example, if the P-value for a particular sample is
0.3, it means that it is 30 % likely that this sample came from a random generator (relative to the particular
test characteristic).

This statistical analysis and resulting P-value calculation require serious mathematics, but the approach is well
documented in the literature.

Identify the acceptable (to the application) probability that a test might reject a sample from a truly random
generator. This acceptable probability is called the level of significance, or α. Typical values of α used in
cryptography applications are from 0.01 to 0.001. An α of 0.005 means that one would accept that, on
average, one sample out of every 200 samples from a truly random generator would be rejected by a particular
test. The same α is generally used for all tests. Larger values for α increase the rate at which good RNGs will
get rejected, while smaller values for α increase the likelihood that a bad RNG may pass the tests.

The connection between of the calculated P-value and the target α is as follows: if the P-value ≥ α, then the
sequence should be considered random (by the particular application for the particular test). A P-value < α
would be considered a failed sample.

Perform all the tests on lots of samples (a contiguous sequence of generated bits). The result from a single
sample (especially for the normal case of P-value ≥ α,) does not adequately identify whether a generator is
truly random or not. The number of samples required depends on the test's requirements, but a careful
analysis will typically include at least 1/α number of samples, and often many more.

For the number of samples tested, calculate the statistical significance of the set of P-values across all samples
and the failure rate. This analysis of the many samples finally gives us an overall confidence factor about the
randomness of the generator.

An detailed example should make this process more clear. Let us consider the simplest test for randomness:
the number of 1 and 0 bits in the sampled sequence. Let n be the number of sampled bits (n > 1000) and S be
the absolute value of the difference between the number of 1 bits and the number of 0 bits. Calculate (we
won’t derive the mathematics here)

 =
S

s
n

, and

 

− = 
 2

s
P value erfc 


 where

−= − ∫
2

0

2() 1
z ufc z e duer

(The erfc(z) functions is a commonly used statistical function called the complementary error function.)
Solving these equations for a P-value = 0.0001, we find that the number of one bits (or zero bits), x, in a

VIA C5P Security Application Note - 19

20,000 bit sample must be between 9,725 and 10,275 (exclusive) in order for the resulting P-value to be ≥
0.0001. That is, there is only a 0.0001 probability that a truly random sample of 20,000 bits will not have a
value x such that 9,725 < x < 10,275. That is, if our sample falls outside of these bit extremes, we could
consider the sample not random with a 99.99 % confidence level.

Why did we pick a target of 0.0001? This was merely our choice as to how stringent our tests for random
numbers should be. (Actually, this happens to be a specific example from an important government standard,
FIPS 140-2, discussed below).

This was merely one sample, however. Two important facts about random number testing that are inherent
in the statistical nature of the tests are:

If a particular sample (or set of samples) passes all statistical tests, it may still come from a non-random
generator.

If a particular sample (or set of samples) fails some statistical test, it may still come from a random
generator, although for the likelihood of a false-negative may be vanishingly small).

Thus, to properly evaluate a generator, many different samples must be analyzed. By measuring more samples
and by running more tests we can increase our confidence in the test results. In the example above, we should
probably run at least 1/0.0001 = 10,000 tests, each of 20,000 bits, and expect to see around one failure from a
truly random generator. There are several statistical approaches for analyzing the results from many samples
in order to give a probability of generator randomness. For example, first consider the passing fraction (those
with P-value ≥ α,) for some test from m samples. One confidence interval that we use is:

−

±
(1)

3
q q

q
m (where 1q = −)

If the passing fraction falls outside this confidence interval, there is evidence that the generator may not be
truly random.

As an example, let us assume that we test 10,000 samples from the above example and one test failed (had a
P-value < α). Our passing fraction is 0.9999. In our example, the confidence level (for α = 0.0001) is
calculated as 0.9996 - 1.0002. Since the passing fraction is within the confidence interval, the samples should
be considered random (relative to this one test). If we had only had 5,000 samples with three failures, our
passing fraction would be 0.9994 and the confidence interval would be 0.999476 - 1.00032. In this case, we
would be outside the limits and probably should conclude that the samples (or the generator) may not be truly
random.

This particular approach to analyzing the failure rate of multiple samples is only one example of many that
can be used. Another important approach is to look at the P-values themselves. Given a large number of
samples, the theory is that the P-values should have a uniform distribution between zero and one. The actual
distribution can be analyzed using a chi-square function to indicate how close the distribution comes to a
theoretical distribution. A common test used to so analyse the P-values is the Kolmogorov-Smirnov test (KS
test)23

 IMPORTANT TESTS 3.2
There are many aspects of randomness that can be tested. Accordingly, there are many tests defined and in
use somewhere. A few of these are robustly defined and have achieved acceptance by the technical
community. Some of the most important tests are:

23This test is described by the NIST at http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

VIA C5P Security Application Note - 20

NIST Test Suite. The Computer Security Resource Center (CSRC) is a part of the US government’s
National Bureau of Standards (NIST) organization. The CSRC has defined 16 statistical tests for
verifying randomness.24 Each test addresses a different potential type of flaw in the generator. In addition
to the definitions, NIST provides a suite of programs that can be used for implementing these tests.

FIPS-140. This is a government cryptography standard, which includes a four-test subset of the full
NIST suite with a specific numeric range of acceptability for each test.

The DIEHARD Tests. These are a suite of 18 statistical tests defined by George Marsaglia of the
University of Florida.25 These are widely used in academia and referenced in many papers on RNGs, but
they are not as well documented or supported as the NIST tests. There is a great deal of overlap between
the NIST tests and the DIEHARD tests, but each contains some unique tests.

Knuth's Tests.26 The tests described in Knuth's classic reference are primarily interesting from a historical
or theoretical perspective since the tests described are basically covered by modern suites like the NIST.
The reference is a good source for understanding the theory behind random number testing.

Many other tests used. Almost everyone who dabbles in random number generation has their own favorites,
and, in fact, usually makes up their own tests.

When testing an RNG, it may also be appropriate to construct additional tests based on the design of a
particular RNG. For example, if an RNG was constructed by flipping ten coins in order then repeating such
that every tenth bit was produced using the same coin, it would be appropriate to apply tests that look at
every tenth bit.

3.3 OUR METHODOLOGY
The statistical test suites described in the previous section were developed to test software random number
generators. These generators are necessarily deterministic, and provide only as much entropy as found in the
initial seed - regardless of the number of "random bits" generated. While Centaur Technology has made extensive
use of these tests, we have found that simpler tests that check for a biased statistical distribution are more
appropriate and more effective for our hardware generator.

During the initial development of the RNG, while we were getting the bugs out and trying to understand the
characteristics of the part, we tested the device with the NIST suite, the DIEHARD suite, the FIPS-140
tests (and many others). These tests proved valuable in helping us to understand some of our earlier failures,
and in comparing the C3 Nehemiah processor RNG with other hardware random number devices and
software algorithms.

However, once we had stable hardware, we determined that a simple chi-square test of the distribution of the
256 possible byte values was more sensitive to deviations from "randomness" - for our hardware RNG - than
any other test. That is to say that the NIST tests, and the DIEHARD tests, and the FIPS-140 tests were
frequently passing (the P-values were within the confidence levels at the expected frequency) when the chi-
square test was screaming failure.

We continue to use the above test suites (particularly the DIEHARD and the FIPS-140 tests) on a regular
basis and have incorporated them into our comprehensive test harness. But they are no longer part of the
routine testing.

24Ibid.
25http://faust.irb.hr/~stipy/random/manual/html/Diehard.html
26Donald E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Vol2, Chapter 5, Addison Wesley,

1998

VIA C5P Security Application Note - 21

Again, remember that many of the tests in the above test suites are designed to catch flaws in deterministic
random generators that were already known to have good statistical distributions - to find those generators
that deliver a sequence like 0, 1, 2, 3, ... repeatedly, which will pass the statistical distribution tests (like the
chi-square test).

As noted in the introduction, the raw bits delivered by a VIA C3 Nehemiah processor RNG display a small
bit-to-bit correlation. The (software selectable) hardware one-of-N filter reduces this correlation to small
levels, such that statistical tests performed on samples of (say) 10MB of random bits will pass all of the above
statistical tests, allowing for the fact that - as Marsaglia says - "P happens". A failure is to be expected,
occasionally, if you perform enough tests.

However, even with the hardware one-of-N filter set at the maximum value, the measured entropy of the bits
from the VIA C3 Nehemiah RNG is still slightly less than 1. That means that a suitably designed test, on a
sufficently large sample of random bits, will consistently fail.

Once our standard methodology was in place, extensive testing of production steppings of the VIA C3
Nehemiah processor RNG feature was performed. Centaur Technology has sampled and tested in excess of
10TB (yes, that is almost 1014 bits) of data produced by the VIA C3 Nehemiah processor RNG. The tests
were (and continue to be) run on many different chips running on several different PC platforms running
several different operating systems, but most tests have been performed using Red Hat Linux 7.1 (kernel
version 2.4.2-2)

Many thousands of samples, usually of 10 MB each, were taken from each chip/system, using all eight DC
bias settings. The samples were taken with the hardware one-of-N filter set to the maximum value, to obtain
the best possible results. When the C5P processor stepping became available, we performed the tests on each
noise source separately and with both noise sources active.

Many thousands of samples, also of 10MB each, were taken with the hardware one-of-N filter off, and with
the whitener disabled. While the statistical properties of these samples of raw bits was poor, that is to say
they consistently failed the tests, these samples allowed us to measure the entropy of the raw bits produced by
the RNG.

A smaller set of samples was taken at intermediate settings, with the whitener enabled but with the one-of-N
filter set to less than the maximum value. Most of these samples were taken early in our development
process, which enabled us to determine the appropriate maximum value for the one-of-N filter.

For every sample, the standard chi-square test on the byte distribution was performed. The cumulative
distribution of the delivered bits was also subjected to the chi-square test, and a KS test on the distribution of
the chi-square values for the individual samples was performed. We also measured the effective generated bit
rate. And on some samples we also performed FIPS-140, DIEHARD, NIST, or other statistical tests.

As noted above, the entropy of our RNG is not a perfect 1.00 bits of entropy per bit, but somewhat less.
Thus, we have seen that for very large samples of bits, the chi-square test for the entire sample, or the KS test
of the distribution of the P values from the chi-square tests of the individual 10MB samples (or both), will
eventually fail - even though each 10MB sample passes any and all statistical tests at an acceptable rate.

Now, when the cumulative distribution chi-square test or the KS test will fail varies considerably with the DC
bias setting, from part to part, and slightly on other environmental conditions such as temperature or what
the author had for breakfast that morning.

Typically, we set an arbitrary limit on the P-value for the cumulative chi-square statistic, and on the KS
statistic. Then, when either test exceeded that limit (sometimes we required that both tests have P values
outside our confidence level), testing at that bias setting was terminated, a different bias value was set, and the

VIA C5P Security Application Note - 22

tests restarted. Of course, the reports of the test harness were saved to disk. Generally, however, the random
bits themselves were (are) not saved, except when we intend to (later) evaluate them with the NIST or
DIEHARD test suites.

(Hey, do you have 10TB of disk drives lying around? We can fill a 30 GB drive with raw bits in a little more
than 30 minutes - if the drive controller can keep up with us.)

This procedure would repeat, continuously, for a week or two, when a different chip would be placed in the
system and the entire process began anew. This can be thought of as trying to estimate a "Mean Time Before
(statistical) Failure" for the RNG. Evaluation of these data allowed us to select, as the default DC bias
setting for the production stepping of the VIA C3 Nehemiah processor, that bias setting that gave the "best"
results, on average.

Most tests were run at ambient conditions. A few were run and analyzed at worst case temperature conditions
and at intermediate temperatures. The bottom line is that temperature is just one of the variables that
contribute to the entropy of the VIA C3 Nehemiah processor RNG. Furthermore, the effects of changes in
temperature on the bit generation rate varies with the DC bias setting.

As an interesting comparison, and to validate our test harness, the same statistical tests were also performed
on random numbers from other sources. One source is the standard Linux software random number
generator /dev/urandom running on the same PC platforms. This generator gathers environmental noise
from device drivers and other sources into an entropy pool. From this entropy pool random numbers are
created using a SHA-1 hash.

A second alternate source is random data provided by www.random.org. This data is derived on atmospheric
noise sampled as electrical noise (static) on a radio receiver.

3.4 RESULTS AND USAGE RECOMMENDATIONS
An independent evaluation of the VIA C3 Nehemiah Random Number Generator has been performed by
Cryptography Research, Inc., of San Francisco. The attentive reader will recall that these are the same
security consultants who evaluated the Intel 82802 Firmware Hub.

A copy of the report is available at: www.cryptography.com/resources/whitepapers/VIA_rng.pdf

From their closing commentary:

Our analysis indicates that the Nehemiah core random number generator is a suitable source of entropy for use in
cryptographic applications. The RNG can be easily incorporated within existing software applications and operating
systems and functions well within a multi-application environment. The device meets the overall design objective of
providing applications with a high-performance, high-quality, and easy-to-use random number generator.

We suspect that most applications, those that have a need for relatively small samples of random numbers,
will want the best randomness available with the least effort. Since the hardware speed is very fast even with
the one-of-N filter set to the maximum value, these applications should so set the filter and directly use the
numbers returned from the RNG. This option provides very good randomness with no additional software
effort at, typically, a fast 800K bits/second (or 1600K bits/second if both noise sources are selected).

So long as your sample size is on the order of 10MB or smaller, the VIA C3 Nehemiah processor RNG will
deliver very good randomness.

http://www.random.org/

VIA C5P Security Application Note - 23

For samples on the order of 1GB or larger, you can expect that the slight bit-to-bit correlation will exhibit
itself in statistical test failures. For intermediate sample sizes, on the order of 100MB, we recommend that
you run your own tests to determine whether the unmixed output of the RNG is suitable for your needs.

NOTE: we have no idea how this compares with other hardware generators. The VIA C3 Nehemiah
processor RNG is so much faster than other generators that we haven't been able to obtain enough large
samples to test. We do not consider pre-calculated samples as acceptable for testing.

For those applications that require a faster bit generation rate, or require very large samples of random
numbers, or that have cryptographic requirements for the highest possible entropy, Centaur Technology
recommends turning the whitener and the one-of-N filter off, turning both noise sources on, and mixing the
raw bits returned from the C5P RNG (at up to 100M bits/second) with the Secure Hash Algorithm (SHA-
1). If you have need for the fastest possible bit generation rate, it will be worthwhile experimenting with the
DC bias setting. We have observed bit rates near 120M bits/second on some chips at non-default bias
settings.

The SHA-1 always outputs 20 bytes. Depending on your security requirements and your estimate of the
entropy of the raws bits from the RNG, you will probably want to mix more than 20 bytes of raw RNG
output with the SHA-1 algorithm.

In the above mentioned report from Cryptography Research (if you have any security or cryptographic
requirements for an RNG, that report is recommended reading), they measured the per-bit entropy of the
raw bits from the VIA C3 Nehemiah processor RNG, and found that the value lies between 0.78-0.99 bits of
entropy per raw bit. These numbers correspond closely with entropy measures taken during our internal
testing. We generally measured numbers at the higher end of that range; Cryptography Research was
creative in setting up a test environment that produced the lower measured entropy. (Again: go read that
report. I'll wait.)

Thus, depending on the paranoia required of your application, you may wish to mix 20, 24, 28, or even 32
bytes (or more!) of raw bits to generate 20 random bytes.

During our testing we frequently mixed raw bits with SHA-1, mixing from 20 to 30 bytes of raw bits to
produce 20 bytes worth of random bits. Because of the asynchronous nature of the VIA C3 Nehemiah
processor RNG, the delivered bit rate is only slightly sensitive to the number of input bytes when mixed with
the SHA-1, and we have measured sustained data rates of over 50M bits/second on a 1.2 Ghz C5P with this
technique. The bits mixed with SHA-1 are indistinguishable from random on all tests, including our chi-square
and KS tests on samples as large as a terabyte. We are currently collecting larger samples.

Provided that the above entropy measures of the VIA C3 Nehemiah processor RNG are accurate, and that
there are no cryptographic flaws involved in mixing bits with the SHA-1, these random bits should be
considered cryptographically secure, or truly random.

As delivered.

In addition to the Linux /dev/urandom device discussed above, there is also a /dev/random generator on
Linux platforms, that functions the same as /dev/urandom, except that the estimated entropy of the output
random numbers does not exceed the estimated entropy of the underlying entropy pool. Thus these bits are
considered cryptographically secure. The bit rate of /dev/random on a C5P with the 2.4.2-2 kernels is on the
order of a few 100 bits/second.

VIA C5P Security Application Note - 24

It is Centaur Technology's understanding that newer Linux kernels (version 2.6 and later), and OpenBSD
(version 3.3 and later), have incorporated the VIA C3 Nehemiah processor RNG into their entropy pools,
when they are running on our processor. For customers with these operating system kernels, the advantages
of the VIA C3 Nehemiah processor RNG are already part of your system.

Centaur may be able to provide advice or assistance to customers with unusual requirements based on our
experience. Please refer to our RNG Programmers Guide for usage details and contact information.

VIA C5P Security Application Note - 25

CHAPTER

ACE VALIDATION
Validating a cryptographic algorithm is - compared with testing a random number generator - almost trivially
easy. After all, it's just an algorithm, with a large number of publicly available data sets with known input
and result values. And unlike random tests, where a small number of test failures is to be expected, the
cryptography engine is either correct or it is not. Any test failure is one too many.

Centaur Technology has developed a comprehensive test package incorporating many of the available data
sets, involving both encryption and decryption, at all three key sizes, in all four supported operating modes,
with varying numbers of input blocks, using both methods of key generation, and with special tests for every
corner case we have been able to think up. We have tested a number of C5P chips in a variety of multi-
tasking environments, with as many as 10 tasks concurrently running version of our ACE test package.

No ACE failures have been observed in production steppings of the VIA C5P.

But don't take our word for it. Cryptography Research, Inc., has recently completed a (brief) security
evaluation of the Advanced Cryptography Engine. A copy of the report is available at:

 www.somesite.org

From their summary:

"Marketing quote from CRI"

Customers interested in testing the ACE for themselves should obtain a copy of the VIA C5P Advanced
Cryptography Engine Programmers Guide for programming details. They may also request (please refer to
the Programmers Guide for contact information) a copy of our test package.

Centaur Technology has learned that OpenBSD (version 3.4) has incorporated the ACE in it's kernel
cryptographic services.

http://www.somesite.org/

VIA C5P Security Application Note - 26

CHAPTER

CENTAUR SECURITY ROADMAP
In addition to our presence on the desktop, VIA processors are used in a growing number of embedded
products. In particular, within the networking infrastructure, where many products aggregate connections to
support SSH, SSL, IPSEC, etc., there is a current need for fast cryptographic processing.

VIA has built, and plans to continue building, devices that meet these existing pent-up needs. Our Random
Number Generator, and the AES encryption/decryption primitives of the Advanced Cryptography Engine,
can be used now. Not next month, not next year, and not before some new protocol and infrastructure has
been introduced and deployed, but immediately.

And they can be used directly by your applications; they do not require support from your favorite operating
system.

5.1 WHAT'S NEXT?
What's next for VIA processors with respect to our security initiative?

SHA-1

The new VIA Esther processor, successor to the Nehemiah (also called the C5I at Centaur), will incorporate
all the security features of the C5P and will add one new security feature: a hardware implementation of the
Secure Hash Algorithm (SHA-1)27 In addition to other, more mundane (to security geeks) features and
improvements in the processor. Like running at 2 Ghz.

27Defined in FIPS180-2

VIA C5P Security Application Note - 27

The SHA-1 logic is already working correctly in simulation, and has been integrated with the Random
Number Generator. The one-of-N filter will be removed; it's functionality will be replaced by using the
internal SHA-1 logic to mix the raw bits, such that the higher settings of the filter will require more raw bits
input into the hash function than the lower settings.

Using the SHA-1 as a mixing function, in the hardware, will make the improved statistical properties of
combining a fast entropy source with a good cryptographic hash algorithm, and the improved security of
delivering only as many random bits as the entropy pool contains, available to your applications regardless of
your operating system support.

Nevertheless, the raw (unwhitened, unfiltered) bits will still be available to customers who want them; device
drivers incorporating such raw bits in their entropy pools will find that the C5I processor RNG will function
identically to the C5P.

You may ask - why is this so wonderful? I can get 50M bits per second of truly random bits from a C5P
today. Yes - but your processor will be running flat-out doing all that SHA-1 mixing. If you can get the
timing right (and ask for random bits just as they become available from the noise sources), you will be able to
achieve a 50M bits per second (or higher) generation rate of truly random bits using about 2% of processor
cycles.

The software API will remain unchanged with a single exception, having to do with memory alignment but
only when the SHA-1 mixer is selected. Interestingly, using the hardware SHA-1 is slightly faster than the
current hardware one-of-N filter. Thus the overhead (in terms of CPU cycles) of using a VIA processor
RNG will be reduced.

Of course, there are other uses for a good hash algorithm besides mixing your random bits. Perhaps in our
next Security Application Note we will discuss them.

We are interested in your opinions and ideas regarding security functionality on our processors. However,
before you call Centaur Technology with your suggestions, please take a look at our Programmers Guides to
the RNG and ACE units. They will give you insight into our current implementation and will perhaps help
you to understand what will be (relatively) an easy or a hard functionality to add.

Also, the Programmers Guides provide contact information.

	random number generator
	
	High Quality
	High Performance
	An Efficient and Secure Programming Interface
	Many Optional Features

	advanced cryptography engine
	
	General Characteristics
	Significant Function Provided
	Significant Flexibility Provided (Optional Features)

	the need for random numbers
	what is a random number
	how to generate random numbers
	how to verify randomness
	background
	important tests
	our methodology
	results and usage recommendations
	what's next?

