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Chapter 1

Introduction

The recent explosive growth of PC networking and Internet based commerce has signi�cantly increased the need
for good computer and network security mechanisms. VIA is addressing this need with its Padlock Security
Suite.
Good security requires good random numbers. Which can be a problem; it is actually hard to generate good
random numbers on a computer. For those who do not understand what a random number is, why they are
needed in computer applications, what a good one is, and how they are generated, Chapter 2 includes background
on these topics.
To address this need for good random numbers in security applications, VIA introduced the Nehemiah processor
in January 2003, which includes a high-performance hardware-based random number generator (RNG) on the
processor die. PadLock RNG uses random electrical noise on the processor chip to generate highly random
values at an extremely fast rate. It provides these numbers directly to the application via a new x86 instruction
that has built-in multi-tasking support. By including this unique capability directly within the processor, the
VIA Nehemiah processor enables a new level of security for personal computers and embedded devices.
On stepping 8 of the Nehemiah, VIA added a second random number generator on the processor die, which
improves the bit generation speed and e�ective randomness.
Good security also requires good cryptography. Most people understand the need for cryptography; we've all
had our secret decoder rings and thrilled to the stories of espionage and the intrigue of spy versus spy.
Good cryptography is hard. Getting the algorithms right, and getting the right algorithms, and using them in
a secure fashion (or even in a relatively less vulnerable fashion), is a problem that has plagued the brightest
minds for generations. Get it right, and you may or may not get a footnote in the history books and a raise in
your next paycheck; get it wrong and your country may lose the war. Or your husband may �nd out ... (oops,
never mind).
Fortunately, there are standard algorithms for performing cryptographic functions. Examples include the Data
Encryption Standard (DES), triple-DES (3DES), and more recently, the Advanced Encryption Standard (AES),
as speci�ed in Federal Information Processing Standards Publication 197 (FIPS-197.) These algorithms are
symmetric key algorithms, which are characterized by using the same secret key for both encryption and
decryption.
Getting an algorithm right is something computer engineers are good at. Making it fast is something we are
even better at. Some of our readers may remember calculating trigonometric functions with eight bit integer
computers. And how much easier and faster it became when hardware �oating point primitives became available
on PCs. We can do the same for cryptography.
To address the need for fast and easy-to-use cryptographic primitives, VIA introduced, on stepping 8 of the
Nehemiah processor, a high performance implementation of the Advanced Encryption Standard. This feature,
PadLock Advanced Cryptography Engine (PadLock ACE), provides increased cryptographic capabilities for
personal computers.
In the VIA Ether processor, the capabilities of PadLock ACE were enhanced.
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CHAPTER 1. INTRODUCTION 5
There is more to security than generating random bits and a good symmetric key algorithm. There are also
public key algorithms, such as Rivest-Shamir-Adleman (RSA) encryption, which use di�erent keys for encryption
and decryption. Public key algorithms can solve subtle problems that occur in protocols using symmetric key
algorithms. For example: if we share the same encryption/decryption key, how do we agree on, or exchange,
the key when we don't have a secure communications channel? If the channel were secure, we wouldn't need
the cryptosystem! Or more commonly, it is the cryptographic algorithms we use that make the communication
secure.
Unfortunately, public key algorithms are much slower than symmetric key algorithms, by many orders of mag-
nitude. Most public key systems involve modulo exponentiation of very large numbers (integers more than 1000
bits in length).
VIA has addressed the need for faster public key cryptography by introducing, in the VIA Esther processor,
PadLock Montgomery Multiplier (PMM). Dr. Peter Montgomery developed an algorithm in 1985 for doing
fast modulo multiplication. Since modulo exponentiation is just (a whole lot of!) modulo multiplication and
division, the Montgomery algorithm is the basis for fast modulo exponentiation.
There is yet more to security. In addition to keeping communications secure, there is a need for digital authen-
tication. How does Bob know that the carefully encrypted message from Alice really came from Alice and not
from Charlie?
To deal with this problem, and to create what are known as digital signatures, there are hash functions.
The National Institute of Standards and Technology (NIST), de�nes a Digital Signature Standard, or DSS in
document FIPS 186-2. A hash function, used in the context of a signature algorithm and in conjunction with
an encryption scheme, provides authentication to digital communications.
The VIA Esther processor introduces PadLock Hash Engine (PHE), a fast hardware implementation of the
SHA-1 and SHA-256 Secure Hash Algorithms as de�ned in the Secure Hash Standard, FIPS 180-2



Chapter 2

Random Number Generator

PadLock Random Number Generator (RNG) has many powerful and unique features.1 PadLock RNG is avail-
able on VIA Nehemiah processors (stepping 3 and higher) and on all VIA Esther processors.

• Hardware-Based. Truly random numbers require a non-deterministic source (as opposed to a pro-
grammed software algorithm). PadLock RNG bits are obtained from electrical random noise on the
processor chip and meet the requirements of truly random numbers: statistically good, unpredictable, and
unreproducible.

• Designed for Veri�cation and Test. Because PadLock RNG allows direct access to the entropy source,
third parties can perform their own tests of the output.

• Asynchronous Multi-byte Generation. The hardware generates random bits at its own pace. These
accumulate into hardware bu�ers with no impact to program execution. Software may then read the
accumulated bits at any time. This asynchronous approach allows the hardware to generate large amounts
of random numbers completely overlapped with program execution. This is opposed to good software
generators, which can be fast but consume a signi�cant number of cycles.

• Application-level Access: Application code can store the random numbers directly from the hardware,
without the intervention of privileged device drivers. An x86 instruction is provided to store random data
and the associated valid byte count. In addition, a REP version of the instruction allows large amounts of
random data to be collected with a single instruction. Direct access ensures that applications receive data
directly from the random number generator, avoiding the possibility of receiving nonrandom data due to
malicious or accidental device driver �aws.

• Transparent to the Operating System: The operations involved in obtaining random bytes and in
verifying the con�guration all operate in user mode, without operating system knowledge or involvement.
But changes to the con�guration require a higher privilege level.

• Inherent multitasking (Atomic Instruction): Storing random data is a single atomic instruction
within an application. If a task switch occurs, and a di�erent application wants to store random data, it
gets completely new bits.

• Raw Bit Access. The raw internally generated random bits may be accessed. Normally the raw bits are
�ltered through a whitener to obtain desirable randomness characteristics.

• Controllable Voltage Bias. The internal voltage bias to the various oscillators can be adjusted. This al-
lows �ne-tuning of the electrical noise sources and may (or may not!) improve the statistical characteristics
of the random bits produced.

1Patents pending.
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CHAPTER 2. RANDOM NUMBER GENERATOR 7
• High Bit Rate. PadLock RNG produces bits at a variable rate. Typical rates vary from approximately
50M to 200M raw bits per second, depending on the processor and whether one or two noise sources
have been selected. In the default con�guration, con�gured for the best randomness, the bit rate will be
reduced to between 0.8M and 10M bits per second. Stepping 3 of the VIA Nehemiah processor has one
noise source. Steppings 8 and higher of the VIA Nehemiah processor, and all steppings of the VIA Esther
processor, have two noise sources. VIA Esther processors may generate random bits at twice the rate of
VIA Nehemiah processors, depending on the voltage bias setting.

2.1 The Need for Random Numbers

Apology to mathematicians, statisticians, security experts, and information scientists: this back-
ground introduction intentionally simpli�es some very complex technical topics and skips many
important considerations.
To help understand the de�nition of a random number for computer applications, we need to understand
something about how they are used. Historically, many computer applications have required random numbers
as an essential component of their logic. For example,

• Monte Carlo simulations of physical phenomena in physics, chemistry, mechanical engineering, electrical
engineering, meteorology, statistics, aerodynamics, hydrodynamics, and other similar disciplines.

• Numeric analysis solutions for many mathematical problems such as solving integral and di�erential equa-
tions, solving linear and non-linear equations, etc.

• Casino games and online gambling (to simulate card shu�ing, dice rolling, etc.)
• Creation of lottery numbers
• Generating data for statistical analysis
• Generating data for psychological testing
• Computer games (choosing random behaviors, dealing cards, etc.)
• Computer music generation

These applications have di�erent requirements for their random numbers. For example, computer games gen-
erally require neither high performance in generating random numbers nor particularly high degrees of ran-
domness. Other applications, such as psychological testing, require higher degrees of randomness, but do not
require high performance generation. Large-scale Monte Carlo-based simulations, however, use millions, bil-
lions, or more random numbers, and thus have very high performance requirements.2 These applications also
require good statistical properties of the random numbers, but unpredictability is not particularly important.
Other applications, such as online gambling, have very stringent randomness requirements as well as stringent
non-predictability requirements (the next number cannot be easily predicted from the previous numbers).
While these historical applications are important to PCs, today the major need for quality random numbers is
computer security. The recent explosive growth of PC networking and Internet based commerce has signi�cantly
increased the need for a wide variety of computer security mechanisms. High quality random numbers are
essential to all of the following major components of computer security:3
Con�dentiality. Data encryption is the primary mechanism for providing con�dentiality. Many di�erent
encryption algorithms exist (symmetric, public-key, one-time pad, etc.), but all share the critical characteristic

2James E. Gentle, Random Number Generation and Monte Carlo Methods, Springer, 2002
3This document assumes some knowledge of security concepts, functions, and protocols. If you need some technical background

on these areas and more about random numbers, we recommend the following three classics:
Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John Wiley & Sons, 1996
Alfred J. Menzes, et al, Handbook of Applied Cryptography, CRC Press 1997
Donald E. Knuth, The Art of Computer Programming: Volume 2, Seminumerical Algorithms, Addison-Wesley, 1998. Chapter 3

covers random number theory in some detail.



CHAPTER 2. RANDOM NUMBER GENERATOR 8
that the encryption/decryption key must not be easily predictable. The cryptographic strength of an encryption
system depends on the strength of the key: that is, the di�culty of predicting, guessing, or calculating the key.
To ensure that keys cannot be easily guessed, random number generators are used to produce cryptographic keys
and other secret parameters in virtually all serious security applications. Many public key encryption protocols,
such as RSA encryption using PKCS #1, also require reliable sources of randomness.
Many successful attacks against cryptographic algorithms have focused not on the encryption algorithm but
instead on its source of random numbers. As a well-known example, an early version of Netscape's Secure
Sockets Layer (SSL) collected data from the system clock and process ID table to create a seed for a software
pseudo-random number generator. The resulting "random" number was used to create a symmetric key for
encrypting session data. Two graduate students broke this mechanism by developing a procedure for accurately
guessing the random number in less than a minute and thus guessing the session key.4
Authentication. Challenge/response authentication protocols require that challenge values be unpredictable
to ensure that attackers cannot re-use data from previous authentication transactions. The strength of passwords
used to protect access and information also depends on the di�culty of predicting or guessing the password. As
a result, strong random number generators are necessary to automatically generate strong passwords.
Integrity. Digital signatures and message digests are used to guarantee the integrity of communications over a
network. Random numbers are often used in digital signature algorithms to make it di�cult for a malicious party
to forge the signature. Many signing algorithms, including the U.S. Government's Digital Signature Standard5
also require random sources to ensure the security of the signing keys.
In summary, good security requires good random numbers.

2.2 What is a Random Number?

The notion of a random number is a non-intuitive concept. What is randomness? Can any single number be
considered random? Can any �nite sequence of numbers be considered random? Is it the numbers themselves or
the process that generated the numbers that de�nes randomness? These questions are the subject of many tech-
nical papers, doctoral theses, and bar �ghts among philosophers, mathematicians, statisticians, and information
scientists.
One essential fact emerges from this work: there is no such thing as a random number: there are only methods
to produce random numbers.6 A number by itself (or any �nite sequence of numbers) is not random, or
non-random. (Is zero any less random than 42?) A practical de�nition of randomness must focus on the
characteristics of the random number generator as well as the characteristics of numbers it generates.
To identify the desired characteristics, we consider the theoretical de�nition of a perfect random number gener-
ator. A truly random number generator is one where the probability of each generated bit being a zero (or one)
is exactly 1/2, regardless of what it has generated before.7 For example, an unbiased coin �ip should generate
truly random numbers. This de�nition has many implications beyond the statistical characteristics of the bits
generated. It implies that the generator is unpredictable (one can't predict the next coin toss better than 1/2
the time, and unreproducible (two separate coin �ipping experiments give independent results).
Entropy is a related term that we will use a lot in this document. In general, entropy is the measurement of
randomness or chaos. Something that has high entropy is chaotic and unpredictable. Something that is ordered
has low entropy. In cryptography, entropy is usually measured in bits. A truly random one-bit number has
an entropy of one bit. Entropy is directly connected to the information content of a message. For example,
a sequence of n random bits (i.e., a sequence having an entropy of n bits) cannot on average be expressed or
de�ned in less than n bits.
The problem with the theoretical de�nition of randomness is that the amount of entropy cannot be measured
perfectly. It can be easy to demonstrate that a particular generator is not random based on its design (for
example, its design causes the same sequence of generated numbers to recur ever so often). Unfortunately,

4netscape hack http://www.demailly.com/~dl/netscapesj.txt
5Digital Signature Standard(DSS), Federal Information Processing Standard Publication 186, May 19, 1994
6John von Neumann
7There are many di�erent de�nitions used in the literature, but they are all equivalent to this de�nition.



CHAPTER 2. RANDOM NUMBER GENERATOR 9
demonstrating randomness is much more di�cult. Indeed, it is impossible to prove that the output from a
given random number generator is truly random. As a result, the best we can do is to analyze the statistical
characteristics of the previous generated bits and compare them to a mathematically perfect generator.
For security applications, the most important characteristics of random numbers are (paraphrasing Schneier8):
Unbiased Statistical Distribution. Truly random numbers have certain statistical characteristics. These
characteristics can be calculated for a theoretical random generator and compared to the statistics for a generated
sample. Based on this comparison, the probability that the sample came from a biased source can be calculated.
For example, one important statistical characteristic is the number of 0 or 1 bits in the sample. For a sample
of 20,000 bits from a truly random generator, the probability is 0.0001 that the number of 1 bits is less than
9,725 or more than 10,725. Thus, if we analyze 10,000 samples of 20,000 bits each, and �nd many samples that
deviate from these limits, we should suspect that our generator is not truly random (we should expect only one
deviation out of 10,000 tests from a truly random generator).
Of course, this test does not prove randomness. For example, if our generator is stuck at generating alternate
1s and 0s, it would pass this monobit test even though the output is clearly non-random. Thus many di�erent
statistical characteristics must be analyzed in order to feel comfortable about a generator. Our alternating 1s
and 0s sequence would quickly fail many other tests such as a bit-to-bit correlation test, or a multi-bit block
frequency test.
Security applications minimally require good statistical characteristics of the generated random numbers. A
generator that meets only this non-biased requirement is called pseudo-random.
Unpredictability. In addition to good statistical properties, truly random numbers must be unpredictable;
that is, the probability of correctly guessing the next bit of a sequence of bits should be exactly 1/2 regardless
of the values of the previous bits. Some applications do not care about this unpredictability characteristic, but
it is critical to security applications.
An example of a predictable sequence that has good statistical characteristics would be a generator that pro-
duces, for example, 20,000 statistically good random bits and then repeats the exact sequence again. To identify
this problem would require analyzing the samples larger than 20,000 bits. A worse problem with predictability is
the use of typical software generators. For any software generator to be unpredictable requires that the software
algorithm or its initial values be hidden. (If we know the algorithm and initial values, we can produce the same
sequence as the software generator.) From a security viewpoint, a hidden algorithm or magic number approach
is very weak if it is possible for someone to predict the output. For example, the previous section mentioned
a well-known case where the security of a predictable (software) random number generator failed because the
starting values could be guessed easily.
A generator which deterministically derives its output from a starting value, but which meets both the statistical
and unpredictability requirement is called cryptographically secure pseudo-random. (To be precise, these RNGs
meet the unpredictability requirement by making it computationally infeasible to predict output bits. An
adversary with unlimited computational power could guess possible values for the starting state until one is
found that matches the output.)
While some statistical tests may indicate a degree of predictability, whether a generator is considered unpre-
dictable is primarily based on it's inherent design.
Irreproducibility. To meet this requirement, two of the same generators (or the same generator at two di�erent
times), given the same starting conditions, must produce di�erent outputs. Clearly, software algorithms do not
meet this requirement; only a hardware generator based on random physical processes can generate values that
meet this stringent security requirement. There is no test to determine irreproducibility; this determination is
based on the inherent design of the generator. A generator that meets all three requirements is called really, or
truly, random.

2.3 How to Generate Random Numbers

We now know what random numbers are and why they are critical to many applications, especially security.
Why do we need anything special, however, to generate them? Isn't there a random number generator included

8Schneier (1996) p. 45-46



CHAPTER 2. RANDOM NUMBER GENERATOR 10
in every programming library? Well, there is, but as Schneier points out: "these [software] random number
generators are almost de�nitely not secure enough for cryptography, and probably not even very random. Most
of them are embarrassingly bad.�9 This section explores this problem and describes the three basic approaches
to generating random numbers: software, physical sources, and quantum randomness, and some combinations
of these techniques.
The most common approach to generating random numbers is using a deterministic algorithm implemented
by a computer program. Such deterministic algorithms cannot generate truly random numbers. (At best they
are predictable and reproducible, and at worst, have bad statistical characteristics.) The quality of software
based random number generators is often summarized with John Von Neumann's famous quote: "Anyone who
considers arithmetic methods of producing random digits is, of course, in a state of sin."10 Thus, software
generators are usually called pseudo-random or quasi-random generators. There is, however, a wide range of
quality among software generators with some being considerably better for security purposes than others.
Many di�erent software algorithms are used, but all comprise two basic steps for each value generated:

• Choose a starting value or seed. All software generators start with some initial value, or seed. Some
set of arithmetic operations (the mixing algorithm) is performed on this initial seed to produce the �rst
random result. In most cases, this result is then used as the seed to produce the second result, and so
forth. In some cases, a new seed is constructed for each value based on external (to the random number
generator) events (for example, the time-of-day clock).

• Mix the bits from the seed in an attempt to increase its apparent entropy. The mixing algo-
rithms can be grouped into two distinct groups. Conventional generators such as typically provided for the
C language rand() function perform simple arithmetic operations. Newer algorithms designed speci�cally
for cryptography perform much more complicated (and time-consuming) operations. Each algorithm has
di�erent performance characteristics (bit-generation rate), and di�erent randomness characteristics. Al-
though the mixing operation does not technically increase the total entropy (deterministic process cannot
create entropy), it is believed that well-designed mixing operations can make it computationally infeasible
to distinguish the output from a true random source.

Let's look at the conventional approach, which represents most extent generators. These algorithms take the
previous value generated and they apply some arithmetic operation to it to produce the next value. Historically,
little theory was applied to the mixing algorithm: if it seemed to mix up the seed bits a lot, it was considered a
good algorithm. As an example, Knuth references an extremely complicated algorithm he invented in 1959 that,
when executed, quickly converged to a constant value. This led him to conclude: "random numbers should not
[be] generated with a method chosen at random. Some theory should be used."11 Subsequently, a signi�cant
amount of theory has been applied to de�ning and analyzing good mixing algorithms. The result is a set of
linear mixing algorithms that are relatively fast and have reasonably statistical characteristics.
A basic example of a linear algorithm is widely used in modern software generators. It is the linear congruential
method. The calculation is simple:

Xn+1 = aXn + c (mod M)

where the constants a, c, and M meet some very speci�c mathematical constraints and the calculations are
performed in the word size of the processor. If the constants are chosen correctly, then the cycle length of
the generator is m. That is, after m numbers, the generated sequence repeats itself. This is, for example, the
approach used in the Microsoft Visual C++ 5.0 library implementation of rand() where M = 0x80000000, or,
equivalently

M = 231

There are several other linear algorithms that have good theoretical underpinnings. These theoretical character-
istics are not intuitively obvious, however. Inventing your own algorithm or making minor changes to a known
good algorithm can yield very bad randomness.

9Schneier (1996) p44
10John von Neumann (1951) Quoted in Knuth, 1968, Vol 2.
11Knuth, pg 6



CHAPTER 2. RANDOM NUMBER GENERATOR 11
Although the cycle length of the Microsoft rand() example is too short for Monte Carlo simulations and other
applications requiring large amounts of random, linear algorithms can have a reasonably long cycle. Similarly,
well-designed linear algorithms can generate numbers with reasonable statistical characteristics. In general,
however, the most common software algorithms do not have statistical characteristics as good as truly random
values.
Even worse, these algorithms are easily predictable; that is, knowing the algorithm and the constant values
(which are often �xed in the software), one can predict the entire sequence. Even if the seed value isn't
constant, it can be guessed or, knowing the last generated value (or any other previously-generated value),
one can trivially predict the sequence. These generators are also reversible: given the algorithm and a value,
previous values can be easily calculated. These cyclical and predictable characteristics are a disaster for security
applications.
The good news is that extensive research, publication, and analysis has been done for years on software random
number algorithms for use in security applications. One result is the design of some improved non-linear software
generators that closely match the statistical characteristics of a truly random generator and are somewhat un-
predictable. These are called cryptographically secure pseudorandom bit generators (CSPRBG). They use large
internal calculation sizes (typically 64 bits to 1024 bits) and use cryptographically strong one-way algorithms.
They use values that are determined dynamically rather than built into the code.
Strong one-way functions make it is impracticable to calculate subsequent or previous values given the current
value unless the generator's state is known. Even if an adversary discovers the state at a particular point, the
algorithms are not reversible, making it infeasible to determine the number prior to the compromise. Of course,
knowing the state of the RNG does allow future results to be calculated. As a result, these algorithms rely on
secrecy of the initial conditions and computational intermediates to ensure unpredictability.
A simple example of such a CSPRBG is the Blum-Blum-Shub generator.12 Here is an abstract:
Start by selecting two large primes, p and q, with certain characteristics and calculate the hidden value n=pq.
Choose some seed, X 0 , with certain characteristics relative to n. Calculate each new random value by

Xi=1 = X2
i mod n

Zi+1 = the least significant bit of Xi+1

Even if n is known, its particular numeric characteristics make the di�culty of calculating the previous value
very high.
As good as these CSPRBGs are compared to conventional linear software algorithms, however, they still have
some problems:

• They are not widely available.
• They are prone to typical software mistakes in the implementation.
• They are often computationally very slow.
• They are predictable in the sense described above (i.e., forward prediction if the initial conditions are
known).

• Like all software algorithms, they are reproducible: they produce the same results starting with the same
input

Their security relies on an assumption that adversaries do not have enough computational power to perform
certain mathematical operations. As a result, their irreversibility cannot be proved, although, in practice, this
is not a major problem.
There is a way to improve the situation here. Rather than relying solely on a software generator to produce all
of the randomness, a software generator can be used in conjunction with a source of true randomness (entropy).

12In choosing an example, I couldn't resist this name. See Menzes et al, p 186
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Instead of using the previous result as the seed for the next number to be calculated, output from the independent
source of entropy can be used as the seed. Even if the entropy source is imperfect (provides less than one bit
of entropy per output bit), the results in this case can be more robust than what could be generated by either
the software or the entropy source alone.
An example is using a hardware random number generator (see the next section) to produce the seed for
a software algorithm. Although a variety of designs are used, the software algorithms are often based on
cryptographic hash functions. A hash algorithm mixes up its input bits in a fashion such that its output bits
should be unpredictable unless the entire input is known. Thus, a good hash algorithm e�ectively destroys any
statistical correlations among the input bits and makes it computationally infeasible to recover the input from
the output. The most commonly used cryptographic hash algorithm, the Secure Hash Algorithm (SHA-1),13 is
a U.S. government standard and has been extensively analyzed.
The primary reasons for using a hybrid approach (as opposed to a pure hardware-based or pure entropy based
approach) are (1) the historically slow speed of entropy and hardware generators, and (2) the lack of perfect
randomness in the hardware or entropy generators. While the VIA Nehemiah processor RNG provides both high
performance and high quality output, users may choose to use it in conjunction with software based algorithms.
In terms of randomness characteristics, entropy generators based on physical phenomena fall in between software
generators and quantum based hardware generators. The idea here is to sample some "random" physical process
and assume the samples are truly random. Unfortunately, computers and software tend to be very predictable,
so designers must be very careful to ensure that they collect good entropy.
For example, a widely used PC encryption program derives its keys from several seconds of mouse movements
and keystroke timing (directed by the program). The Linux operating system has random number generators
(/dev/random and /dev/urandom) that use entropy generated by the keyboard, mouse, interrupts, and disk
drive behavior as the seed. Microsoft's CryptGenRandom function (part of the Microsoft CryptoAPI) is similar.
It uses, for instance, mouse or keyboard timing input, that are then added to both the stored seed and various
system data and user data. Examples of such are the process ID and thread ID, the system clock, the system
time, the system counter, memory status, free disk clusters, the hashed user environment block, as the seed.
Many other similar environmental sources of randomness have been tried.
While these physical activities may look random, their randomness cannot be proven, and they run the risk
of generating poor entropy (or no entropy) if the sampled physical activity is dormant or repetitive. There
are several potential security vulnerabilities when using such physical activities. For example, in networked
applications such as browsers, the application tra�c between a client and server e�ectively publishes the locations
and sequence of the client's mouse-events. Similarly, users may enable "snap-to" options that center the mouse
pointer in the center of the button to be pressed and make the click locations predictable. As a result, the entropy
from mouse movements in these environments could be far less than an RNG designer expected. Similarly, asking
the user to create entropy using the keyboard creates bias since humans tend to follow certain patterns in typing
(such as a tendency to use the center of the keyboard).
In summary, it is dangerous to use the entropy values directly as random numbers. Instead, the entropy values
are usually used as the seed to a good hash algorithm to produce the �nal random numbers. (In the Microsoft
CryptoAPI and Linux examples, a SHA-1 algorithm is applied to the entropy seeds). Other common problems
with entropy generators on computers are that they require hooks in the operating system, they are di�cult
to test, they often require some user involvement, and they are slow (since they are based on macro physical
events).
An unusual example of a physically based random source is available through www.random.org, which continually
provides generated random numbers using atmospheric noise (sampled as radio frequency noise). The rate varies,
but this generator typically produces about 40,000 bits per second.
By now you should be convinced that good security requires good random numbers, and while it is possible to
generate pretty good statistically random numbers using software, it is di�cult, slow, and subject to numerous
security pitfalls. The only truly random generator is some mechanism that detects quantum behavior at the
sub-atomic level. This is because randomness is inherent in the behavior of sub-atomic particles (remember
quantum mechanics, Heisenberg's Uncertainty Theorem, etc.).
A quantum based hardware generator is actually practical. Examples that have been used are:

13FIPS 180-1, Secure Hash Standard, U.S. Department of Commerce/NIST, 1995
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• The interval between the emission of particles during radioactive decay. This technique is used at a web site
to generate random bits that are available on-line from the decay of Krypton-85.14 This source generates
only 30 bytes per second and requires a cumbersome (and dangerous?) pile of hardware.

• The thermal noise across a semiconductor diode or resistor. This is the approach most often used in add
on PC hardware.

• The frequency instabilities of multiple free-running oscillators. This approach is the basis of VIA Pad-
Lock RNG. While implemented di�erently than the resistor based approach, ultimately, the source of
randomness is the same.

• The charge developed on a capacitor during a particular time period.
These sources have been used in a few commercially available add on random number generator devices, none
of which have achieved much visibility or use. Since they are peripheral devices such as PCI cards and serial
port devices, these commercial hardware generators are expensive and cumbersome. In addition, they are made
by universities, or small companies, with limited marketing and distribution capability. Some examples of such
add-on hardware generators are found in these references.15
There are two notable exception to the add-on strategy. One is, of course, PadLock RNG. And Intel provided
a hardware random number generator in the 82802 Firmware Hub.16

2.4 How to Verify Randomness

Given the di�erences in RNG algorithms and the inherent theoretical problems with software generators, we
have the obvious question: how do we compare or quantify random number generator goodness? For any serious
application or generator design, it is essential to have tests that quantify randomness.
In one sense, the de�nition of a random number is simple: the probability that each bit generated is a one
(or zero) should be 1/2. Unfortunately, that de�nition doesn't help us directly since we can't actually test
the probability for the next bit to be generated. All we can do is to study bits that are actually generated
and analyze their characteristics to see how likely it is that the generator is random based on what it has
generated. This approach turns out to be complicated, and in fact, there is no single or simple set of tests that
can accurately identify randomness.
The underlying di�culty here is that truly random numbers occur randomly. That is, every possible value can
be generated by a truly random source. If we sample 64 bits, for example, from a truly random source, there
is a tiny but non zero probability that all 64 bits will be zero. In that case, should we reject the source as
not random? A potential answer is to collect many 64 bit samples and check to see how many times all zeros
appears. Statistically, we should expect one all zero set per 264 samples. It is usually impractical to collect such
a comprehensive set of samples, however. Indeed, because all outputs should be equally unlikely, no particular
output provides proof of non-randomness. As a result, even the appearance of multiple all zero sets would not
prove that the source is nonrandom. Conversely, what if the sample values are 0, 1, 2, 3, 4, etc.? The values and
bits seem to be appearing in the right statistical frequency, but do we really believe that the source is random?
Solutions to this fundamental problem are complex and rely on some understanding of statistical concepts. This
testing topic is very important, however, and requires some attention in order to determine the proper use of
any RNG, including VIA PadLock RNG.

14fourmilab http://www.fourmilab.ch/hotbits/
15http://faust.irb.hr/~stipy/random/hg234.html
http://comscire.com/index.com
http://mywebpages.comcast.net/orb/
http://www.protego.se/sg100_en.htm
16Benjamin Jun et al, The Intel Random Number Generator, Cryptography Research Inc, 1999, available from http://www.

cryptography.com/resources/whitepapers/IntelRNG.pdf
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2.5 Centaur Technology Test Methodology

The statistical test suites described above were developed to test software random number generators. These
generators are necessarily deterministic, and provide only as much entropy as found in the initial seed - regardless
of the number of random bits generated. While Centaur Technology has made extensive use of these tests, we
have found that simpler tests that check for a biased statistical distribution are more appropriate and more
e�ective for testing our hardware generator.
During the initial development of PadLock RNG, while we were getting the bugs out and trying to understand
the characteristics of the part, we tested the device with the NIST suite, the DIEHARD suite, and many others.
These tests proved valuable in helping us to understand some of our earlier failures, and in comparing PadLock
RNG with other hardware random number devices and software algorithms.
However, once we had stable hardware, we determined that a simple chi-square test of the distribution of the
256 possible byte values was more sensitive to deviations from randomness - for PadLock RNG - than any other
test. That is to say that the NIST tests, and the DIEHARD tests, were frequently passing (the P-values were
within the con�dence levels at the expected frequency) when the chi-square test showed failure.
We continue to use the above test suites (particularly the DIEHARD tests) on a regular basis and have incor-
porated them into our comprehensive test harness. But they are no longer part of the routine testing.
(Remember that many of the tests in the above test suites are designed to catch �aws in deterministic random
generators that were already known to have good statistical distributions.)
As noted in the introduction, the raw bits delivered by PadLock RNG display a small bit-to-bit correlation.
The (software selectable) hardware one-of-N �lter reduces this correlation to small levels, such that statistical
tests performed on samples of (say) 10MB of random bits will pass the above statistical tests, allowing for the
fact that - as Marsaglia says - "P happens". A failure is to be expected, occasionally, if you perform enough
tests.
However, even with the hardware one-of-N �lter set at the maximum value, the measured entropy of the bits
from PadLock RNG is still slightly less than 1. That means that a suitably designed test, on a su�ciently large
sample of random bits, will consistently fail.
Once our standard methodology was in place, extensive testing of production steppings of PadLock RNG was
performed. Centaur Technology has sampled and tested in excess of 50 terabytes of data produced by PadLock
RNG. The tests were (and continue to be) run on many di�erent chips running on several di�erent PC platforms
running several di�erent operating systems.
Many thousands of samples, usually of 10 MB each, were taken from each chip/system, using all eight DC bias
settings. The samples were taken with the hardware one-of-N �lter set to the maximum value, to obtain the
best possible results. When stepping 8 of the Nehemiah processor became available, we performed the tests
on each noise source separately and with both noise sources active. Many thousands of samples, also of 10MB
each, were taken with the hardware one-of-N �lter o�, and with the whitener disabled. While the statistical
properties of these samples of raw bits was poor, that is to say they consistently failed the statistical tests, these
samples allowed us to measure the entropy of the raw bits produced by PadLock RNG.
A smaller set of samples was taken at intermediate settings, with the whitener enabled but with the one-of-N
�lter set to less than the maximum value. Most of these samples were taken early in our development process,
which enabled us to determine the appropriate maximum value for the one-of-N �lter.
For every sample, the standard chi-square test on the byte distribution was performed. The cumulative dis-
tribution of the delivered bits was also subjected to the chi-square test, and a Kolmogorov-Smirnov (KS)
goodness-of-�t test on the distribution of the chi-square values for the individual samples was performed. We
also measured the e�ective generated bit rate. And on some samples we performed DIEHARD, NIST, or other
statistical tests.
As noted above, the entropy of PadLock RNG is not a perfect 1 bit of entropy per generated bit. Thus, we
have seen that for very large samples of bits, the chi-square test for the entire sample, or the KS test of the
distribution of the P values from the chi-square tests of the individual 10MB samples (or both), will eventually
fail. Even though each 10MB sample passes our statistical tests.
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Now, when the cumulative distribution chi-square test or the KS test will fail varies with the DC bias setting,
from part to part, and slightly on other environmental conditions such as temperature or what the experimenter
had for breakfast that morning.
Typically, we set an arbitrary limit on the P-value for the cumulative chi-square statistic, and on the KS
statistic. Then, when either test exceeded that limit (sometimes we required that both tests have P values
outside our con�dence level), testing at that bias setting was terminated, a di�erent bias value was set, and the
tests restarted. Of course, the reports of the test harness were saved to disk. Generally, however, the random
bits themselves were not saved, except when we intend to evaluate them later with the NIST or DIEHARD test
suites.
(Hey, do you have 50TB of disk drives lying around? We can �ll a 30 GB drive with raw bits in a little more
than 20 minutes - if the drive controller can keep up with us.)
This procedure would repeat, continuously, for a week or two, when a di�erent chip would be placed in the
system and the entire process began anew. This can be thought of as trying to estimate a Mean Time Before
(Statistical) Failure for PadLock RNG. Evaluation of these data allowed us to select, as the default, that DC
bias setting that gave the best results, on average.
Most tests were run at ambient conditions. A few were run and analyzed at the worst-case temperature
conditions and at intermediate temperatures. The bottom line is that temperature is just one of the variables
that contribute to the entropy of PadLock RNG. Furthermore, the e�ect of changes in temperature on the bit
generation rate varies with the DC bias setting.
As an interesting comparison, and to validate our test harness, the same statistical tests were also performed
on random numbers from other sources. One source is the standard Linux software random number generator
/dev/urandom running on the same PC platforms. This generator gathers environmental noise from device
drivers and other sources into an entropy pool. From this entropy pool random numbers are created using the
SHA-1 hash.

2.6 Start-up

Start-up testing is a good idea in all environments. It is also a good idea to perform some test within an
application before any collected random data is trusted.
Which startup test should be run is not obvious, however. There are two basic things that a startup test could
be testing for:

• Whether PadLock RNG is basically working or not (for example, does it have a stuck bit such that no
data is ever returned).

• The randomness characteristics of the numbers generated.
In normal operation (when the whitener is enabled), it is theoretically possible that the XSTORE instruction
will generate no new bits for a long time. This theoretical delay has no guaranteed maximum, even in a
correctly working part, in the same way that there is no limit to the number of sequential coin tosses that can
come up heads. In practice, however, the likelihood of a long delay is negligible. This is based on (1) general
statistical principles, (2) the inherent design of the random bit generator, and (3) our observations based on
extensive testing. Our testing has never showed any deviation from the basic generation rate over long periods
of continuous operation (many months). The bit rate seems to be nearly constant from startup to shutdown. If
startup tests run successfully (i.e., the hardware has not failed), applications should not need to detect timeouts.
Of course, a very conservative application can easily add a time-out check, since the atomic XSTORE instruction
is usually used in a loop counting the bytes stored. It is easy to add another count that can detect N XSTORE
instructions with no data returned. Alternatively, a time limit can be set and checked by the application.
The timeout detection works because the XSTORE instruction returns to execute the next instruction even if
no random data is available. The REP XSTORE form, however, does not return control until all of the random
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bytes requested have been stored. There is no built-in timeout check. If PadLock RNG has died, the instruction
will wait forever. Since REP XSTORE is interruptible, however, this case hangs the application, but not the
operating system or other applications. It is also theoretically possible to detect a REP XSTORE timeout by
intercepting an interrupt and examining the ECX count compared to some timer information about how long
the REP XSTORE has been executing. This is very tricky and requires hooks into the operating system, so
we recommend the following: do not use the REP XSTORE instruction if you are concerned about an RNG
timeout condition.
The VIA manufacturing tests includes a test of PadLock RNG to verify that the bit generators and the associated
datapaths are alive and working with no stuck bits, etc. It does not assure that PadLock RNG will produce
statistically random bits, but will generally detect catastrophic failures.

At this time, if a processor fails the PadLock RNG test, or times out after a reasonable time without generating

the expected number of bits, the random number generator on that part is permanently disabled. This means that

PadLock RNG may be marked nonexistent on some Esther and Nehemiah processors. VIA may change PadLock

RNG manufacturing tests at any time. Customers requiring PadLock RNG support may wish to contact VIA to

ensure that all parts ordered have an active RNG.

2.7 Results and Recommendations

An independent evaluation of VIA PadLock Random Number Generator has been performed by Cryptography
Research, Inc., of San Francisco.
A copy of the report is available at:www.cryptography.com/resources/whitepapers/VIA_rng.pdf
From their closing commentary:

Our analysis indicates that the Nehemiah core random number generator is a suitable source of

entropy for use in cryptographic applications. The RNG can be easily incorporated within existing

software applications and operating systems and functions well within a multi-application environ-

ment. The device meets the overall design objective of providing applications with a high-performance,

high-quality, and easy-to-use random number generator.

NOTE: we have no idea how this compares with other hardware generators. VIA PadLock RNG is so much
faster than other generators that we haven't been able to obtain enough large samples to test. We do not
consider pre-generated samples suitable for testing.
Cryptography Research (if you have any security or cryptographic requirements for an RNG, that report is
recommended reading) measured the per-bit entropy of the raw bits from PadLock RNG, and found that the
value lies between 0.78-0.99 bits of entropy per raw bit. These numbers correspond closely with entropy measures
taken during our internal testing. We generally measured numbers at the higher end of that range; Cryptography
Research was creative in setting up a test environment that produced the lower measured entropy. (Again: go
read that report. I'll wait.)
During our testing we frequently mixed raw bits with SHA-1, mixing from 20 to 30 bytes of raw bits to produce
20 bytes worth of random bits. Because of the asynchronous nature of PadLock RNG, the delivered bit rate
is only slightly sensitive to the number of input bytes when mixed with a software implementation of SHA-1.
We recommend using 24 raw bytes as input to the hash algorithm when using this technique: the multiple of 8
maximizes the bit rate from the RNG, and the 24 byte to 20 byte protects against the per-bit entropy being as
low as 0.8333 bits per bit.
However, depending on the paranoia required of your application, you may wish to mix 20, 24, 28, or even 32
bytes (or more!) of raw bits to generate 20 random bytes.
With a VIA Nehemiah processor (stepping 8), using both noise sources, we have measured sustained data rates
of over 50M bits/second. With a VIA Esther processor, using the SHA-1 feature of PadLock Hash Engine
instead of a software implementation, we have measured data rates in excess of 160M bits/second. Bits mixed
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with SHA-1 have been indistinguishable from random on all tests, including our chi-square and KS tests on
samples as large as a ten terabytes.
If you are su�ciently paranoid, increase the number of raw bytes hashed from 24 to 32. This protects against
per-bit entropy as low as 0.625 bits per bit. On that same VIA Esther processor discussed above, with the bit
rate set to a maximum and using PadLock Hash Engine, the date rate still exceeded 120M bits/second.
Provided that the above entropy measures of VIA PadLock RNG are accurate, and that there are no crypto-
graphic �aws involved in mixing bits with SHA-1, these bits should be considered cryptographically secure, or
truly random.
In addition to the Linux /dev/urandom device discussed above, there is also a /dev/random generator on Linux
platforms that functions the same as /dev/urandom, except that the estimated entropy of the output random
numbers does not exceed the estimated entropy of the underlying entropy pool. Thus these bits are considered
cryptographically secure. The bit rate for /dev/random with VIA Nehemiah (stepping 8) processors with the
2.4.2-2 kernels is on the order of a few 100 bits/second.
Many operating systems have incorporated PadLock RNG into their entropy pools. These include Linux kernels
(version 2.6 and later), OpenBSD (version 3.3 and later), and FreeBSD. For customers with these operating
system kernels, the advantages of PadLock RNG are already part of your system.
Centaur Technology may be able to provide advice or assistance to customers with unusual requirements based on
our experience. Please refer to the VIA PadLock Programming Guide for usage details and contact information.
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Advanced Cryptography Engine

PadLock Advanced Cryptography Engine (ACE) has many powerful and unique features.1 PadLock ACE is
supported on stepping 8 and higher of the VIA Nehemiah processor, and on all steppings of the VIA Esther
processor.

• World-Class Data Rate. Operating on a long series of data blocks, PadLock ACE can encrypt or
decrypt data at a sustained rate of 22 Gb/sec.2, faster than other known commercial AES hardware
implementation, and several times faster than software implementations. For a single encryption or de-
cryption instruction operating on 256 data bits, the e�ective rate can be even faster: up to 40 Gb/sec.3

• Free. The unique AES implementation is so small (approximately 0.6 mm2) that its inclusion on VIA
processors did not change the die size or any other processor cost factor.

• Non-Intrusive. Although PadLock ACE provides a signi�cant amount of function with many options,
only one x86 opcode is used. This is the same x86 opcode introduced for the random number generator.

• Application-level Access. Application code can directly encrypt and decrypt blocks without the inter-
vention of any privileged code. One non-privileged x86 instruction provides all PadLock ACE functions
without any need for a device driver or for a change to the operating system. In addition to facilitating
PadLock ACE availability, this application-level capability improves security by ensuring that all related
cryptographic information is kept within the application.

• Inherent multitasking. In addition to any single application being able to directly use PadLock ACE,
any number of tasks can use PadLock ACE concurrently without supplemental task management by
the application or by the operating system. Although PadLock ACE contains additional processor state
information, the using tasks do not need to save and restore this state - the hardware manages the
additional state in a transparent fashion.

• Performs Both Encryption & Decryption. This seems obvious, but many hardware AES engines
support encryption only. In addition to providing both encryption and decryption, PadLock ACE provides
them with the same performance.

• All Three AES Key Sizes Are Supported Directly in Hardware. FIPS-197 de�nes three key sizes
(128-bits, 196-bits, and 256-bits) but requires only that one key size be supported. Many hardware AES
engines support only the basic 128-bit key size. PadLock ACE directly supports all three key sizes in
hardware with the same round-by-round performance.

1Patents pending.
2Asymptotic performance, ECB mode, 2 Ghz Esther processor.
3The timing of the encryption and decryption operations is e�ectively variable since a large portion of the time can be overlapped

with subsequent instruction execution. This rate assumes the maximum possible instruction overlap.
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• Five Operating Modes Supported Directly in Hardware. The most common encryption operat-
ing modes are implemented in hardware. These modes are Electronic CodeBook (ECB), Cipher Block
Chaining (CBC), 128-bit Cipher FeedBack (CFB), Counter (CTR), and 128-bit Output FeedBack (OFB).4
Providing these operating modes directly in hardware improves performance (versus implementing them in
software) and improves the integrity and security of the encrypted data. Most other AES devices support
only one or two of these modes in hardware. Note: CTR mode is not supported on the VIA Nehemiah

processor.
• Multi-block pipelined. For ECB operating mode, PadLock ACE hardware is pipelined such that it
concurrently operates on two data blocks at the same time, thus doubling the e�ective data rate.

• High Performance REP Function. The basic encryption and decryption instructions all use the
x86 REP pre�x, to allow large amounts of data to be encrypted or decrypted with only one instruction.
Unlike x86 string operations, where multiple string operations are (slightly) faster than REP forms, the
REP encryption and decryption instructions are much faster than a series of comparable single encryption
instructions - generally 50% or more.

• Intermediate Round Results Provided. PadLock ACE implements a special mode that returns the
result of any particular round of the multi-round AES algorithm. Properly calculating this intermediate
result is not obvious since the algorithm for intermediate rounds is di�erent from the last round of the
normal algorithm.

• User De�ned Round Count. The user speci�es the round count used in the encryption or decryption.
Normally, this will be the round count de�ned in the AES standard, but some users may prefer a custom
round count for research, improved performance, or increased security.

• Two Extended Key Generation Options. For 128-bit keys, PadLock ACE can directly perform
the AES-de�ned expansion of the user-supplied key into the extended keys used by the AES rounds.
Alternately, the application may directly provide a standard or non-standard extended key sequence
directly to the hardware. This may be useful for cryptographic research or using a private encryption
algorithm.

• Message Authentication. PadLock ACE is extended in the VIA Esther processor to support message
authentication, adding CBC-MAC and CFB-MAC modes to the existing CBC and CFB modes.

3.1 Advanced Encryption Standard

PadLock Advanced Cryptography Engine (ACE) implements the Advanced Encryption Standard (AES) al-
gorithm. The AES is a modern symmetric key encryption algorithm intended to replace the older Digital
Encryption Standard, and has been selected by the National Institute of Standards and Technology (NIST) as
the approved symmetric key algorithm for United States government use. Use of AES has been approved by
the National Security Agency (NSA) for SECRET and TOP SECRET communications.
AES was selected after a multi-year evaluation and selection process involving many - if not most - of the world's
�nest cryptographers. Many algorithms were submitted. The eventual winner of the process was an algorithm
known as Rijndael, after it's developers Joan Daemen and Vincent Rijmen, from the Netherlands.
AES encrypts and decrypts data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits.
The original Rjindael algorithm supported additional block sizes and key lengths, but the AES standard did
not adopt (and PadLock ACE does not support) other block sizes or key lengths.
AES, like most symmetric key algorithms, mixes the bits in each data block with bits from the cipher key
through a number of separate rounds in the encryption engine. For some algorithms, including AES, the cipher
key is altered for each round, so that although each round in the engine may perform the same operations, the
bits from the key di�er for each round, which makes cryptographic attacks against the algorithm more di�cult.
The AES standard de�nes a speci�c number of rounds for each of the three de�ned key sizes: 10 rounds for
128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

4As de�ned in NIST Special Publication 800-38A, Recommendations for Block Cipher Modes of Operation, 2001
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Why is it that the number of rounds di�ers for each key size, and why is more than one round necessary?
Symmetric-key algorithms are designed not only with security in mind, but also with an eye to speed. The
primitive operations in each round are typically chosen to be very fast on the current generation of computers,
particularly personal computers. Operations that are fast are usually simple. Since the algorithm is known,
and since an attacker can frequently specify the plaintext to be encrypted with some unknown key, algorithms
using only one or two rounds can be quickly broken. This is called a "chosen plaintext attack". (Unlike modern
physics with its quarks and color forces cryptographic naming conventions are bland).
Cryptographers spend a great deal of time studying each symmetric key algorithm to determine the minimum
number of rounds necessary for that algorithm to be secure against known cryptographic attacks. Then they
add more rounds to allow for the faster computers of the future. As a "fudge factor" they add still more rounds
that they hope will be enough to secure the algorithm against more powerful but yet unknown attacks.
The number of rounds speci�ed by the FIPS-197 standard is thought by cryptographers to be more than
su�cient. However, PadLock ACE supports all three key sizes at up to 16 rounds as an additional safety factor.
Note that for almost all uses of the AES with PadLock ACE you will be required to use the FIPS 197 speci�ed
number of rounds.

3.2 Modes of Operation

The basic AES algorithm operates on each 16 byte data block separately. Used in this basic way, identical
plaintext data blocks will produce identical ciphertext blocks when encrypted with the same key. In some
scenarios, this creates cryptographic weaknesses.
This basic AES mode, known as Electronic Code Book (ECB) is supported directly by the PadLock ACE
hardware engine. Because each block is encrypted separately, PadLock ACE takes advantage of the pipelined
characteristics of the hardware and encrypts (or decrypts) two blocks simultaneously when used in ECB mode.
To overcome these (sometimes) security weaknesses, cryptographers have developed a number of additional
modes for using the AES algorithm. In each of these modes, these is feedback so that the �rst data block
(sometimes as plaintext, sometimes as ciphertext, depending on the mode) is mixed with the second data block,
the second data block with the third, and so on. In addition to ECB mode, PadLock ACE supports these
additional AES modes of operation:

• Cipher Block Chaining (CBC). In this mode, the result of each encryption is XOR'd with the next incoming
data block. This cipher block chaining (forwarding) operation insures that any single block of cipher text
cannot be decrypted to plain text; only the entire �le can be decrypted. This forwarding means that only
one block is encrypted at a time; no pipelining of the round engine occurs. For the �rst plaintext block,
an Initialization Vector (IV) provided by the application is used in place of the forwarded cipher text.

• Cipher Feed Back (CFB). In this mode, the Initialization Vector (IV) is �rst encrypted and the result
is XOR'd with the plaintext (to produce ciphertext) or with the ciphertext (to produce plaintext). This
XOR result is then forwarded as the Initialization Vector for the next block of plaintext. Like CBC mode,
only the entire �le can be decrypted. Note: PadLock ACE implements only CFB-128. 5

• Output Feed Back (OFB). In this mode, the Initialization Vector is encrypted and the result XOR'd with
the �rst block of plaintext. Then the encrypted Initialization Vector becomes the IV for the second block,
where it is again encypted and then XOR'd with the second block of plaintext. And so on. Think of
it as a "one-time pad". This same sequence of sequentially encrypted IV can later be XOR'd with the
ciphertext to reconstruct the plaintext. It is thus critical that no 128-bit block of the encrypted sequence
be re-used. Again, only the entire �le can be decrypted, not just selected blocks.

• Counter Mode (CTR) Counter mode is very much like OFB mode, in that the Initialization Vector is
encrypted and the result XOR'd with the plaintext. It can also be used to pre-calculate a byte stream as

5Please see NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation, for a more complete
description of the various CFB modes (and the other feedback modes implemented by PadLock ACE)
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a pseudo "one-time pad". However, instead of the encrypted Initialization Vector being forwarded, the
original value of the IV is incremented by one, and this new "counter" is encrypted as the IV for the
subsequent block of plaintext. However, the entire 128-bit Initialization Vector is not treated as a 16-byte
integer and incremented. When using Counter Mode, a portion of the Initialization Vector is selected as
a nonce and a never-to-be-reused random value is placed in those bits. A good use for PadLock RNG!
The remaining bits of the Initialization Vector, usually 16 bits or 32 bits, are incremented as an unsigned
integer �eld (without over�ow into the nonce). VIA PadLock ACE implements CTR mode using the last
two bytes of the 16-byte counter as a 16 bit big-endian integer. Reasons for this speci�c integer �eld size
and format may be found in the VIA PadLock Programming Guide. CTR mode is not supported on the

VIA Nehemiah processor.

3.3 Validation

Cryptography Research, Inc. has completed a security evaluation of the Advanced Cryptography Engine. A
copy of their report is available on the VIA web site:
CRI Report http://www.via.com.tw/en/images/Products/eden/pdf/CRI%20Evaluation%20of%20Padlock%
20ACE.pdf

It is also posted at Cryptography Research:
CRI Original http://www.cryptography.com/resources/whitepapers/Centaur_AESstatement.pdf
Customers interested in testing ACE for themselves should obtain a copy of the VIA PadLock Programming
Guide for programming details.
Many Operating Systems, including OpenBSD, FreeBSD, and some of the Linux kernel distributions have
already included support for Padlock ACE. Check with your OS vendor (or read your source code!) to determine
whether or not Padlock ACE is directly supported.



Chapter 4

Hash Engine

PadLock Hash Engine (PHE) has many powerful features.1 PHE is available on all steppings of the VIA Esther
processor.

• Free. The unique PHE implementation is so small (less than 0.5 mm2) that its inclusion on VIA processors
did not change the die size or any other processor cost factor.

• Non-Intrusive. Although PHE provides a signi�cant amount of function with many options, only one
x86 opcode is used. This is the same x86 opcode introduced for PadLock Montgomery Multiplier.

• Application-level Access. Application code can directly hash messages without the intervention of any
privileged code. One non-privileged x86 instruction provides all PHE functions without any need for a
device driver or for a change to the operating system. In addition to facilitating PHE availability, this
application-level capability improves security by ensuring that all related cryptographic information is
kept within the application.

• Support for both SHA-1 and SHA-256. Both of the most commonly used Secure Hash Algorithms
are directly supported by the hardware.

• Inherent multitasking. In addition to any single application being able to directly use PHE, any number
of tasks can use PHE concurrently without supplemental task management by the application or by the
operating system. Although PHE contains additional processor state information, the using tasks do not
need to save and restore this state - the hardware manages the additional state in a transparent fashion.

4.1 Secure Hash Algorithm

Federal Information Processing Standards Publication (FIPS) 180-2 de�nes the Secure Hash Standard. As part
of the standard, FIPS 180-2 speci�es four secure hash algorithms. These algorithms are used to provide a
condensed representation, a message digest, of electronic data - an electronic message or perhaps a �le stored
on your hard drive. They are called secure because:

... it is computationally infeasible, 1) to �nd a message that corresponds to a given message
digest, or 2) to �nd two di�erent messages that produce the same message digest. 2

The idea is that this guarantees a message's integrity. There are times when it is not particularly important
that a message be a secret. In fact, it is often the case that you want a message to be in the clear so that
everyone can read it. "I, Tim Tightwad, declare that I am not and will not be responsible for the debts of Tina

1Patents pending.
2FIPS 180-2 p1
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Spendthrift." You just want to make sure that it wasn't tampered with in transmission and that there is some
way of authenticating that you were the one who sent the message. Tim might be annoyed if Tina could delete
both occurrences of the word "not" while the message was in transit to the newspaper, and make it appear the
he nevertheless sent the message.
This ability to authenticate a message creates methods of creating digital signatures. There are many digital
signature algorithms. NIST has produced publication FIPS 186-2, which speci�es the Digital Signature Standard
(DSS), and the Digital Signature Algorithm (DSA). Key components of DSA are the hash algorithms de�ned
by FIPS 180-2.
There are many uses for a hash function besides full-�edged digital signatures. Many operating system kernels
make use of a hash known as MD-5 for straightforward computing reasons. (Hash tables provide an e�cient
method of representing and storing certain sparse data structures).
As hash functions are widely used in computing and in security, and as providing fast cryptographic/security
primitives is the goal of Centaur and VIA with the PadLock security suite, the VIA Esther processor incorporates
a hardware implementation of the Secure Hash Algorithm (SHA) known as PadLock Hash Engine (PHE).
PHE supports both the original SHA-1 algorithm as de�ned by FIPS 180-1, and the newer SHA-256 algorithm
speci�ed in FIPS 180-2. The two additional hash algorithms de�ned by FIPS 180-2, SHA-384 and SHA-512,
are not implemented in this version of Padlock Hash Engine (PHE).

4.2 Hashes and Random Numbers

In addition to normal uses for a cryptographic hash function, using SHA-1 as a mixing function improves the
statistical properties of the output from random number generators. (See Chapter 2) So much so, that with the
VIA Esther processor, Centaur recommends setting PadLock RNG whitener OFF and the EDX �lter to zero to
obtain the maximum bit rate from PadLock RNG, and then mixing the raw bits with one of the Secure Hash
Algorithms supported by PHE.
Of course, you can mix bits from PadLock RNG with a software implementation of SHA-1. In fact, that is what
most operating system kernels do with the bits they collect into their entropy pools. (Well, they mix with some
hash function. SHA-1 is perhaps the most common). But using PHE is much faster.
How many raw bits to use for the input byte stream to the hash depends on how paranoid you are. Please see
chapter 2 of this application note or any of a number of security textbooks for guidance in setting your paranoia
level.



Chapter 5

Montgomery Multiplier

PadLock Montgomery Multiplier (PMM) has many powerful and unique features.1 PMM is available on all
steppings of the VIA Esther processor.

• Free. The unique PMM implementation is so small (less than 0.5 mm2) that its inclusion on VIA
processors did not change the die size or any other processor cost factor.

• Non-Intrusive. PMM uses the same x86 opcode introduced for PadLock Hash Engine.
• Application-level Access. Application code can use PMM without the intervention of any privileged
code. A non-privileged x86 instruction executes PMM without any need for a device driver or for a change
to the operating system.

• Inherent multitasking. In addition to any single application being able to directly use PMM, any
number of tasks can use PMM concurrently without supplemental task management by the application or
by the operating system. Although PMM contains additional processor state information, the using tasks
do not need to save and restore this state - the hardware manages the additional state in a transparent
fashion.

• Variable modulus: Most hardware-assist big-integer units are very restrictive in the sizes of the big
integer operations that they support. A typical unit may only support one or two sizes, typically 1024
or 2048 bits. PMM supports big integer modulo multiplication in the range from 256 bits to 32768 bits,
inclusive, in increments of 128 bits.

• Compatible data structures: The data structures used for large integers by PMM are compatible with
those used by GMP, the GNU Multiple Precision Arithmetic Library.

5.1 Public Key Encryption

In symmetric key encryption, for example the AES algorithm supported by PadLock ACE, the same cipher key
is used to encrypt and decrypt a message. Since both the sender and the recipient of an encrypted message must
have the same key, and since the key is the only secret thing about the algorithm, symmetric key algorithms
are sometimes known as secret key algorithms.
Symmetric key algorithms are very fast, and with su�ciently long cipher keys (such as those mandated by
FIPS-197) are thought to be secure against cryptographic attacks. What this means is that there are no known
methods for decrypting a message without knowledge of the cipher key that are signi�cantly faster than a brute
force attack. (A brute force attack tries every possible key and looks for output that looks like "real text". The
nature of symmetric key algorithms is such that you will recognize the plaintext when you see it.)

1Patents pending.
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There are cryptosystems known as one-time pads that are provably secure, even against brute force attacks,
assuming that the cipher key (the one-time pad) is a secret. Why doesn't everyone just use one-time pads?
Well, because the secret one-time pad must be just as long as your message. And you can never use the same
one-time pad twice, or the provably secure system is trivially insecure. (For an interesting anecdote, look up
the Venona intercepts with your internet search engine for an historical example with mis-use of one-time pads)
Actually, you could use PadLock RNG to �ll two CD/RW with random bits, keep one for yourself and give one
to your partner. If you use them carefully, and nobody makes an extra copy of that CD/RW, you have a one-
time pad cryptosystem. But you need a di�erent pair of CD/RW for each person with whom you communicate.
Realistically, the chance of user error with these one-time pads is greater than the risk of using a symmetric
key or public key algorithm. But since you can generate the random bits to �ll a 600MB CD/RW in less than
a minute with PadLock RNG you do have that choice.
A better way to handle the problem of key exchange is with a public key cryptosystem. A public key system
is characterized by having di�erent (but related) keys for encryption and decryption. The trick is that with
knowledge of one key the ability to �gure out the other key is computationally infeasible. That's a technical
term for "we know how to do it but it takes a god-awful long time".
There are even protocols using public key algorithms that allow two persons unknown to each other to create
a secret cipher key for use with a symmetric key algorithm, even when they don't trust each other. And with
the right protocol, this key cannot be determined by anyone who is observing all of your communications.
For example, when you order merchandise from a secure web site, a public key protocol has been executed down
in the innards of your networking stack.
Unfortunately, public key systems are much too slow to be used for communication of most messages. We're
talking orders of magnitude slower than symmetric-key systems.
To support faster public key cryptosystems, VIA has introduced PadLock Montgomery Multiplier (PMM) in
the VIA Esther processor.

5.2 What is a Montgomery Multiplier?

The most important function in most public key cryptosystems (RSA, for example) is exponentiation modulo
some modulus M where M is a very large integer, typically of length N = 1024 or N = 2048 bits (or more).
That is, one must calculate modexp(A,B,M)

AB mod M

where A and B are large integers (necessarily smaller than M) also of length N.
Even ignoring the problem of reducing the result modulo M, this takes a long time. There are many di�cult and
elegant methods for reducing the number of primitive arithmetic operations required (32 bit x 32 bit multiplies,
64 bit + 64 bit adds, with a whole lot of shifting going on)
However, so long as we work with our normal, everyday integers (well, actually, a 1024-bit integer is a decimal
number of more than 300 digits: the number of particles in the known universe is a number smaller than 100
digits in length. So, unless you are a cryptographer, your everyday experience does not include numbers this
big!), we have to reduce each multiply operation by performing a division, as A*A is likely to be larger than M,
and modulus is the remainder after the division (A*A) / M.
The normal, everyday integers, mod M, form what is known mathematically as a �eld. Mathematicians have
discovered (or invented - it takes a dissertation length discussion to explain that di�erence) many other �elds.
One of the properties of a �eld is that there is an operation in the �eld conventionally called multiplication,
which is more or less comparable to ordinary multiplication.
In some cases one can transform two ordinary integers into numbers in one of these alternate �elds. Then,
one performs the "multiply" operation within that �eld, and then transforms the "product" back to ordinary
integers. The result will be exactly what you would have calculated with an ordinary multiply.
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This is also true of "division" in a �eld, since division is just multiplication by the inverse, and another property
of a �eld is that an inverse exists for every number, except for "zero".
There is a particular collection of �elds known to mathematicians as the Galois �elds GF(2K). Trust me; you
don't need to know more. An interesting property of these �elds is that the division operation to reduce a
number modulus M is just a binary right shift.
So it is much faster to perform modulo multiply of two large numbers in this �eld because you can replace a
very slow division operation with a very fast right shift. It is even possible to construct hardware so that as
you calculate the partial products of the multiply of A * B, the reduction modulo M (the right-shift) can be
performed in parallel.
Many existing software implementations of modexp(A,B,M), when used as part of a public-key cryptosystem,
already make use of the Montgomery algorithm. However, there is one drawback to using the Montgomery
algorithm, which is that it is computationally expensive to calculate the "magic numbers" that are used to
transform the regular integers into the Galois �eld. But this calculation only needs to be done once for each
modulus M, so that when you need to calculate modexp(A,B,M), which involves many modulo multiplies, the
time gained by using the Montgomery algorithm much more than compensates for the time lost in getting
started.


